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Abstract

With the present development in the field of electromobility, new possibilities and
requirements for electronic assistance systems arise. The goal of this thesis is to propose
a system for stabilization and control of lateral dynamics of a electric vehicle with four
independent drives.
In order to develop a mathematical model, basic concepts and equations of vehicle dynamics
are presented. The model parameters are estimated from the data measured on eForce FSE.X
prototype vehicle and validated by simulation. The model is then used for synthesis of
linear parameter varying model predictive controller (LPV-MPC). The performance of the
controller is then successfully evaluated in Simulink as well as in driver-in-loop simulation
in IPG CarMaker environment.

Anotace

Se současným rozvojem elektromobility přichází i nové možnosti a požadavky na asistenční
a bezpečnostní systémy vozidel. Tato práce si klade za cíl navrhnout systém pro úpravu a
stabilizaci boční dynamiky elektrického vozu s nezávislým elektrickým pohonem čtyř kol.
Jsou shrnuty základní rovnice dynamiky vozidel nezbytné pro sestavení matematického
modelu. Jeho parametry jsou potom zvoleny na základě dat naměřených na prototypovém
voze eForce FSE.X a validovány simulacemi. Vytvořený model je použitý pro syntézu
lineárního prediktivního řízení založeného na modelu s proměnnými parametry (LPV-MPC).
Jeho funkce je ověřena na simulacích v programu Simulink a následně úspěšně testována v
driver-in-loop (DIL) simulaci v testovacím prostředí IPG CarMaker.
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1 Introduction

1.1 Torque vectoring

Torque vectoring is a commonly used term for a vehicle control system that is employed to
vary torque bias between each half-shaft and thus create yaw torque on the chassis. Different
manufacturers use different implementations of such system under various trademarks.
Notable examples are Mitusbihi’s S-AWC [1], ZF’s Vector Drive [2] or Rimac All Wheel
Torque Vectoring System [3]. While the first two use electromechanical differential, Rimac
has four electric drives (one for each wheel) and therefore implements torque vectoring only
in a software form.

In recent years, electric vehicles have gained a significant market share [4] and one can
expect it to grow even more rapidly in the near future. Compared to a combustion engine,
an electric drive can be controlled with faster response and can generate negative torque
by energy recuperation. This becomes even more advantageous when each wheel can be
controlled independently. Although such driveline configuration is rarely seen in production
EVs, it is being pioneered by sports cars like the previously mentioned Rimac Nevera or
Schaeffler’s prototype for Deutsche Tourenwagen Masters electric series.

1.2 Formula Student

Formula Student is an international engineering competition for university students. The
goal of the contest is to design and manufacture a new formula style vehicle every year.
Each summer, multiple races take place around the world, where the teams compete in four
dynamics disciplines - acceleration, skidpad, autocross and endurance.

The rules of the competition focus mainly on the safety and do not restrict any technical
aspects of the car. Because of that, the teams often utilize novel technologies in order
to gain an edge in the competition. Throughout the years, it was for example the
use of additive manufacturing, active suspension, generative design of mechanical and
aerodynamics structures, or active ground effect. Similarly, algorithms for active vehicle
dynamics control are used by all of the top teams nowadays. Few examples can be found in
[5], [6] and [7].

The team eForce FEE Prague Formula is based at the Czech Technical University in
Prague, specifically the Faculty of Electrical Engineering. The team has developed its 10th
generation of an electric formula for the 2021 season from the scratch. The formula proved
itself to be very competitive by finishing 2nd in races in Spain and Croatia.

However, one of its weaknesses was its vehicle dynamics control unit (VDCU) because of
the lack of development and personnel. For the 11th generation of eForce’s electric vehicle,
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the torque vectoring system should be revisited and the proposal of a new system is the main
objective of this thesis.

1.3 Vehicle overview

Fig. 1: eForce FSE.11

The vehicle has four independently driven wheels, each implementing the same 25kW
PMSM motor and gearbox. Two 2-channel Lenze Schmidhauser inverters are used to control
the motors and a 600V self-designed accumulator is used to store the energy. The powertrain
is capable of regenerative braking. Custom electronic control unit is used to send torque
requests to the motor controllers. The core of this unit is TMS320F28377D processor
which is programmed using MATLAB’s Embedded Coder directly from Simulink. This
unit is designed to run with period of 10 ms. CAN bus network is utilized to transmit all
communication between the electronic units. All messages broadcasted on the network are
logged and stored in a datalogger for further evaluation and debugging.

For lateral dynamics control it is crucial to know the vehicle’s velocity vector and heading
direction. These are provided by off-the-shelf inertial measurement unit (IMU) Ellipse-N
from SBG Systems. It uses sensor fusion of gyroscope, accelerometers and GPS to provide
precise measurement of vehicle’s location including its orientation in 3D space. Since the
IMU measures heading and velocity vector, it is also able to provide the body slip angle.

Steering angle is measured on the steering column by a magnetic rotary position sensor
on a custom board. It measures the angular position with 0.1 ◦ resolution every 50 ms.
The steering kinematics is known and the resulting steering angle of the front wheels can
be calculated. The kinematic equations are rather complicated and usually simulated in a
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dedicated software. However, on this particular vehicle, the steering is almost linear as can
be seen on Figure 2. For simplicity, the steering geometry will be considered linear and
described by its first order polynomial with equation y = 0.284x.
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Fig. 2: Plot of the wheel steering angle as a function of the steering column angle

Throughout this thesis, following values will be used to parametrize the vehicle. Most of
them have been measured by the author of this thesis, however some of them are difficult or
impossible to measure without specialized equipment, so they were estimated from the data
available and consulted with literature. That is the case of moment of inertia of the chassis
whose value was chosen based on a CAD model and estimation validated by discussion with
other Formula Student teams. Parameters of the tires were estimated based on the available
Formula SAE Tire Testing Consortium dataset as will be discussed further.

1.3.1 Parameters

• m = 260 kg Mass of vehicle including driver

• Iz = 80 kg ·m2 moment of inertia to Z axis

• CoGx = 0.49 [-] relative position of center of gravity towards front axle

• lf = 0.747 m Distance between CoG and center of the front axle

• lf = 0.778 m Distance between CoG and center of the rear axle¨

• t = 1.2 m track, distance between left and right wheel. Is assumed to be the same on
both axles.

• CoGz = 0.255 m height of center of gravity

• rw = 0.2 m wheel radius

• i = 13.3 [-] Gear ratio

• τmax = 29.1 N ·m Single motor maximal torque

• Cα = 23000 N/rad Cornering stiffness of tire
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• BPac = 10.55 [-] Magic formula parameter

• CPac = 1.347 [-] Magic formula parameter

• DPac = −1600 [-] Magic formula parameter

• EPac = 0.4464 [-] Magic formula parameter
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Fig. 3: Schematics of current control system

1.3.2 System in use

The system that is currently in use was primarily developed by Marek Laszlo, a former
member of eForce. Detailed overview of his work can be found in his master’s thesis [8].
The system follows generally used concept shown in schematic in Fig. 3 that is common for
majority of implementations that can be found in literature.

Firstly, all the measured signals are processed and checked for their validity. IMU
measurement is converted from north-east-down (NED) world coordinates to obtain the
vehicle’s speed, slip angle and yaw rate. Additional states, such as vertical wheel loads,
are estimated. Signals from pedals are mapped according to the desired response.

The desired yaw rate and possibly also the side slip angle must then be calculated from the
vehicle states and driver’s inputs. Possible solution could be to rely solely on the steering
wheel angle. However, this method would not yield good results since the vehicle lateral
dynamics is also dependent on the velocity. There are several methods to predict the desired
car behavior. Currently employed generator of reference is described in section 4.2.

The difference between these referential values and instantaneous measurements are then
fed into yaw rate and slip angle controllers that adjust their outputs in order to minimize the
error. The controller output is yaw torque Mz. PI control structure is implemented for both
of these controllers.

An additional feedforwad branch is added for faster response and as a backup if IMU
measurement is not possible. Lastly, torque for each wheel is calculated so that the difference
between left and right wheels creates requested yaw torque on the chassis.
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2 Vehicle dynamics modeling

In order to establish a broader context for the controller synthesis, it is important to introduce
the basic concepts and equations of vehicle dynamics. They are necessary for understanding
the system and for the formulation of the dynamic model. The equations of motion are
presented along with basic behavior of the tires. Estimation of vertical tire forces is also
explained as the concepts are later applied to a proposal of an algorithm for yaw torque
distribution in section 6.

2.1 Equations of motion

2.1.1 Referential body frame

Referential frame according to ISO 8855 is used for all the derivations in this thesis. This
prevents any confusion in defining for example slip angles and accelerations and their
positive directions. The system is right-handed and its positive directions and rotations can
be seen on Figure 4.

Fig. 4: Vehicle Axis System ISO 8855-2011. From [9]

Because the motion is described in referential frame which is rotating and thus non-inertial,
an extra term considering the centripetal acceleration must be added to Newton’s equations
according to equation 1. This equation, also called transport theorem, describes the time
derivative of a vector r defined in rotating coordinate system ρ in a non-rotating reference
frame ξ.

dr

dt
|ξ =

dr

dt
|ρ + ω × r (1)

The resulting equations of motion are as follows. Fx and Fy denotes all the forces acting in
x and y direction respectively.
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mẍ− φ̇ẏ =
∑

Fx (2a)

m(ÿ + ẋφ̇) =
∑

Fy (2b)

Izφ̈ =
∑

F × r +Mz (2c)

2.1.2 Body slip angle

Body slip angle is defined as the angle between where the vehicle is heading and the direction
in which it is traveling. Mathematically this is formulated in the following equation. Note
that the velocities are in the body reference frame.

β = atan
(
ẏ

|ẋ|

)
(3)

2.2 Tires

Since all the driving forces acting on the vehicle body come from the tires, a solid model of
their behavior must be developed. Three forces, longitudinal Flon, lateral Flat and vertical
Fz are acting in the contact point between the tire and the road. Front tires are rotated from
the body frame by steering angle δ, however the lateral and longitudinal force are described
in a reference frame fixed to the tire. To obtain Fx and Fy forces parallel with axes of the
chassis, they need to be rotated to match the vehicle frame.

[
Fx

Fy

]
=

[
cos(δ) − sin(δ)

sin(δ) cos(δ)

]
·

[
Flon

Flat

]
(4)

2.2.1 Slip

Lateral and longitudinal forces are generally described in terms of a slip angle and a slip ratio.
Both of these quantities reflect the stress in the rubber. One of them in the lateral direction,
the other in the longitudinal direction. The slip angle, usually denoted α, is calculated as the
angle between a heading vector and a velocity vector at the contact point between tire and
ground. Velocity in the contact point consists of two components, the first one comes from
the translation motion of the body and is identical for all four wheels, the other is generated
by the yaw rotation of the vehicle. For the front left wheel, the formula is as follows.

αFL = atan

(
ẏ + lf · ψ̇
|ẋ− t

2
· ψ̇|

)
− δFL (5)
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Fig. 5: Simulation showing normals to wheel speed vector during simulation

The longitudinal force of the tire depends on the so-called slip ratio which is according to
SAE J670 defined by the following equation 6.[10]

SR =
ẋ

ωw · rw
− 1 (6)

Slip angle is defined by a velocity vector and a referential wheel heading direction. In a
steady state, the velocity vector should be tangent to instantaneous center of motion. This
property was tested by a simple maneuver simulated on a twin-track vehicle model with
three degrees of freedom, where constant longitudinal force was applied to all wheels and the
steering angle was set to be -2 degrees with step change to 2 degrees after the first 6 seconds
of simulation. Dashed line normal to vector of speed was plotted from a contact point of
each wheel. Visualized time steps are chosen to be 0.6 s and do not reflect simulation step,
which was variable and much finer.

As can be seen on Figure 5, all four lines in each time step meet in instantaneous center
of rotation. Additionally, when the vehicle is in a steady state, normals in every time step
meet in the center of the track radius. This simulation suggests that the wheel slip angle
calculation is correct.

2.2.2 Forces

Forces generated by a tire can be to some extent predicted for example from finite element
analysis, but for practical use they are generally physically tested in a specialized testing
facility. However, it would not be feasible to conduct these tests as an individual or a single
amateur racing team. That is why FSAE Tire testing consortium was founded to provide
high quality data to Formula Student teams. For one time subscription fee, the teams can
obtain data from various testings of racing tires measured in Calspan research facility. [11]
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The test usually consists of series of slip angle or slip ratio sweeps with different values of
pressure, inclination angle, load and velocity. The tires are only tested in pure slip conditions,
that means lateral force is only described in dependence on the slip angle with no slip ratio,
similarly the longitudinal force is measured only as the function of slip ratio with no slip
angle. However, the reality is far more complex and these two forces cannot be simply
added together.

2.2.3 Magic formula

So-called magic formula is an empirically developed set of equations designed by Dutch
engineer Hans Bastiaan Pacejka. The equations fit the data measured on a wide range of
tires. [12]. The main equation 7 is similar for the lateral and longitudinal force, only the
argument changes.

For description of the force in lateral direction ϕ = Flat and the argument of the function
is the slip angle σ = α. For longitudinal force ϕ = Flon and the argument is slip
ratio σ = SR. For pure slip conditions with constant vertical load and no inclination
angle, BPac, CPac, DPac, EPac coefficients are constant. However, the full Pacejka’s model
can describe these parameters as a function of driving conditions and even works with a
combined slip. Nevertheless, fitting all the parameters to the 78 equations is an exhausting
process and requires specialized software.

Hoosier 10" LC0 tires utilized on FSE.X vehicle were tested by FSAE Tire testing
consortium and the data are available. They were used to fit the magic formula for lateral
tire force for single operating point defined by pressure 84 kPa, inclination angle 0◦ and
Fz = 660 N. The result can be seen on Figure 6.

ϕ(σ) = DPac · sin[CPac · atan(BPac · σ − EPac(BPac · σ − atan(BPac · x)))] (7)

2.2.4 Friction ellipse

The simplest tool which can be used to work with combined slip is the circle of friction. It
sets a boundary for total force calculated as squared sum of longitudinal and lateral force.
The maximal force is the same in all directions and is equal to Coulombs friction force
described by the following formula.

√
Fmax
lon + Fmax

lat = µ · Fz (8)

This is however just a rough approximation as due to the inner construction of tires, the
friction coefficient varies in different directions. More precisely it can be approximated by
an ellipse. Its size and shape can be obtained to some extent from the so-called g-g diagram
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Fig. 6: Fitted tire lateral force data

Fig. 7: G-G diagram of endurance race with estimated friction ellipse

(Figure 7), that is a plot of measured accelerations in y and x directions. In the upper part of
the plot, there is an empty space caused by a power limitation.

This is a quick and easy way of obtaining some information about the tires. It would be
better to measure this data without aerodynamic package, so that the total wheel load does
not change with velocity. The friction ellipse can be described by the equation 9

(
Flon

Fmax
lon

)2

+

(
Flat

Fmax
lat

)2

< 1 (9)

2.2.5 Vertical tire force

Lastly, vertical force on the tires will be discussed. Three main components are assumed
to be acting on a tire in vertical direction. First is the gravitational force that is distributed
between the wheels of the front and rear axle in ratio given by GoGx =

lf
lf+lr

. Center of
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gravity is located on a centerline of the vehicle, left-right static load distribution is neglected
and both wheels on axle supports the same load.

FFL
load = FFR

load = (1− CoGx) ·
m · g
2

(10a)

FRL
load = FRR

load = CoGx ·
m · g
2

(10b)

Formula Student car is typically designed with emphasis on aerodynamics package in order
to obtain extra grip even in low speeds. In this case, the coefficient of lift CL is obtained from
CFD simulations and then validated by physical testing on a track. Lift coefficient is used
in aerospace and when speaking about the downforce, its value should always be negative to
avoid confusion.

For the purpose of this thesis, only the downforce generated by vehicle velocity in x direction
acting in the center of pressure CoP is considered. Thanks to the symmetry of the vehicle,
CoP lies on the x axis of the vehicle body and the aerodynamic force is distributed between
the left and right wheel on same axle equally.

Flift =
1

2
· CL · ρ · Aref · ẋ2 (11)

FFL
aero = FFR

aero = (1− CoPx) ·
−Flift

2
(12a)

FRL
aero = FRR

aero = CoPx ·
−Flift

2
(12b)

Last considered source of tire vertical force is dynamic load transfer, both longitudinal and
lateral. In both cases, the suspension dynamics are neglected. Vehicle is modeled only as
a rigid body sliding on a flat plane. Tire forces act in the ground plane but the center of
gravity is located above ground in the height of CoGz. Acceleration of the CoG creates
torque causing vertical reaction on the tires. The total load on wheels remains the same. For
longitudinal direction, the load transfer is calculated by the formula

∆FFL
z = ∆FFR

z = m · ẍ · CoGz

2 · (lf + lr)
(13a)

∆FRL
z = ∆FRR

z = −m · ẍ · CoGz

2 · (lf + lr)
. (13b)
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During cornering, a centripedal force acts on the CoG and the outer wheels are more loaded
than the inner ones.

∆FFL
z = ∆FRL

z = m · ÿ · CoGz

2 t
(14a)

∆F FR
z = ∆FRR

z = −m · ÿ · CoGz

2 t
(14b)
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3 Model

3.1 Assumptions and goals

In order to obtain a usable model of the motion of a vehicle, significant simplifications need
to be made as with any other complex system. Firstly, the vehicle will be considered to be
single rigid body without suspension geometry.

Secondly, the tracks on which Formula Student competitions take place are usually flat
and made from high quality tarmac without any significant bumps. Therefore, all vertical
dynamics can be neglected without losing much precision.

Thirdly, following the common practice that can be seen in e.g. [13], only one wheel in the
center of each axle is considered. Geometry of resultant vehicle model is on Figure 8.

Lastly, lateral dynamics are decoupled from longitudinal and the velocity is considered to be
only a variable parameter. This simplification is used in literature when dealing only with
lateral dynamics such as [14] or [15]. Motion equation in x direction then becomes

ẍ = 0 (15a)

ẋ = vx. (15b)

3.2 Nonlinear single-track model

By combining equations from the previous section, a nonlinear state space model can be
developed. An additional yaw torque Mz that is generated by applying different torques to
wheels on each side of the vehicle is added to equations. Mz is multiplied by 1000 to scale
it down in order to get reasonable gain of the system. This is further beneficial for tuning of
the yaw controller.

m(ÿ + vx · φ̇) = Fyf · cos(δ) + Fyr (16a)

Izφ̈ = Fyf · cos(δ) · lf − Fyr · lr + 1000 ·Mz (16b)

Fyf and Fyr are the tire forces in lateral direction generated by front and rear tire respectively,
lf and lr describe chassis geometry according to Figure 8. The lateral tire forces depend on
the wheel slip angles. In case of a single-track model they are calculated by the equations
17a and 17b.
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αf = atan
(
ẏ + φ̇ · lf

vx

)
− δ (17a)

αr = atan
(
ẏ − φ̇ · lr

vx

)
(17b)

The tire force is then calculated according to fitted magic formula. Note that in a single-track
model two wheels are merged into one so the resultant lateral force is multiplied by two.

Fy = 2 ·DPac · sin[CPac · arctan(BPac · α− EPac(BPac · α− arctan(BPac · α))] (18)

3.3 Model validation

This model was created in Simulink as a Matlab function. The vx, δ andMz data used to feed
the simulation were collected during Baltic Open 2021 autocross race. The resulting lateral
acceleration and yaw rate was compared with the collected data. The lateral acceleration
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Fig. 9: Model validated on measured drive data

calculated by the model is in vehicle reference frame and cannot be directly compared with
the data. An additional centripedal acceleration needs to be taken into account.

function [DDY, DDPSI] = model(DY, DPSI, delta, vx, Mz)

SAf = atan((DY+DPSI * l_f)/vx)-delta;

SAr = atan((DY-DPSI * l_r)/vx);

Fyf = 2* D* sin(C* atan(B*SAf - E*(B*SAf-atan(B*SAf))));

Fyr = 2* D* sin(C* atan(B*SAr - E*(B*SAr-atan(B*SAr))));

DDY = 1/m*(Fyf*cos(delta) + Fyr) - vx*DPSI;

DDPSI = 1/Iz*(Fyf*cos(delta)*l_f - Fyr*l_r + 1000*Mz);

end

3.4 Single track model in terms of β and φ̇

The model developed in previous section has yaw rate and lateral acceleration as its state
variables. Nevertheless, it is advantageous to choose body slip angle as the state variable
instead of lateral acceleration. The lateral acceleration is defined in the body reference
frame and so the centripedal acceleration must be subtracted, the measurement is noisy and
arguably gives less insight into the behavior of the vehicle than the body slip angle (β).

Body slip angle is defined as

β = atan
ẏ

vx
. (19)

Editing the equation and calculating the time derivative, following expressions are obtained.
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ẏ = tan(β) · vx (20a)

ÿ =
1

1 + tan2β
· β̇ (20b)

They can be then substituted for lateral acceleration in equations 17a, 17b, 16a and 16b.

After substitution, the equations for slip angle become

αf = atan
(

tanβ +
φ̇lf
vx

)
− δ (21a)

αr = atan
(

tanβ − φ̇lr
vx

)
(21b)

and the state space equations turn into

ḟ =

[
β̇

φ̈

]
=

[
1

mvx·(1+tan2β) · (Fxf · sin(δ) + Fyfcos(δ) + Fyr)− φ̇
1
Iz
· (Fyf · cos(δ) · lf − Fyr · lr + 1000 ·Mz)

]
. (22)

Model response to unit step of yaw torque under various conditions is presented on Figure
10 and 11. Notice how the response on Figure 10 changes with large steer angle. This is
caused by large slip angle at which the lateral force has reached its saturation according to 7.
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Fig. 10: Response of the model to unit yaw torque step at 0.2 s at various steer angle at vx = 10 m/s.
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4 Controller

4.1 Stabilization and changing dynamics

One of the main design considerations when developing torque vectoring algorithm is how
much to change the natural lateral dynamics. Ramp steer maneuver can be performed to plot
static characteristic of the vehicle. During this maneuver, the driver tries to maintain constant
velocity as he slowly turns the steering wheel at a constant rate. Steering angle and lateral
acceleration is recorded and visualized in x-y plot. The shape of resulting curve determines
if the vehicle is understeering or oversteering.

Production vehicles generally tend to understeer as it is safer for an inexperienced driver.
However on the racetrack neutral steering characteristics is preferred. That means that the
curve should be linear for as long as possible. Torque vectoring can change the shape of
steering characteristics.

Fig. 12: Visualisation of possible steering characteristics.
[16]

The yaw controller should also be able to stabilize the vehicle from disturbances such as
hitting bumps in the road and temporarily losing traction on one wheel and help the driver to
follow desired trajectory.

These two objectives are achieved by adjusting the reference signal generator. The
current system was designed to primarily stabilise the vehicle and keep its natural steering
characteristics. That is why a nonlinear reference model was chosen to provide the requested
yaw rate.

4.2 Reference signal

The whole concept of the torque vectoring system relies on a referential yaw rate that needs
to be obtained from driver’s inputs and vehicle states. Reference generator implemented in
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current VDCU code operates in two modes. In low velocities (< 4 m/s) kinematic model is
used as the reference. In higher velocities single-track model with three edgrees of freedom
and nonlinear tires provides referential signals. This approach is rather complicated, since
the dynamic behavior of the model can cause unwanted transient effects and tuning of this
system requires fitting of the whole model.

One of the common approaches is to use steady state steering characteristics. The idea is
to calculate the steady state that the vehicle would reach with current velocity and steering
wheel angle. This approach was taken from [15] where author present derivation of the
formula using geometry and force equilibrium. Needless to say, the same result can be
obtained from equations of already developed dynamic model as the steady state yaw rate
and body slip angle according to equation 23.

ẋ =

[
β̇

φ̈

]
=

[
0

0

]
(23)

The formulae for steady state yaw rate and body slip angle are as follows.

βref =
lr − lf ·m·v2x

2∗Cα(lf+lr)

Ku · v2x + lf + lr
· δ (24)

φ̇ref =
vx

lf + lr +Ku · v2x
· δ (25)

The Ku parameter is called understeering gradient. While it can be calculated from the
parameters according to equation 26, it is suggested to adjust the behavior of the reference
generator by changing the understeer gradient directly and comparing it with drive data. By
tuning the parameters in a way that the desired yaw rate is different than the one measured
on vehicle without torque vectoring, the dynamics of the car can be changed as mentioned
in the previous section.

Ku =
m · (lr − lf )

2 · Cα · (lr + lf )
(26)

Desired yaw rate calculation was validated on drive data, where recorded velocity and steer
angle were used to calculate referential yaw rate which was compared with the vehicles
actual measured yaw rate.
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Fig. 13: Surface plot of desired yaw rate for oversteering vehicle
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Fig. 14: Comparison between calculated referential yaw rate and actual yaw rate for different
understeer gradients
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4.3 Model linearization

For the controller synthesis, the next step is to obtain linearized model of the system in state
space form. The indices c in the equation 27a differentiates the matrices of continuous model
from the discrete ones.

ẋ = Acx+Bcu+Bdcuδ (27a)

y = Ccx+Dcu (27b)

x =

[
β

φ̇

]
u =Mz

uδ = δ

Since Pacejka’s formula for lateral force has no physical background and is only used to fit
the data, its linearization is omitted. First order polynomial is used to fit the data around α =

0 instead. The tire force will be instead approximated by linear function of the slip angle. By
linearizing magic formula around zero slip angle the same result would be achieved anyway.

This is visualized on Figure 6. In order to avoid the complication of multiplying the
coefficient by two every time, its value is assumed to be twice of what value that fitted
the data on 6.

Fy = Cα · α. (28)

The parameter Cα is called cornering stiffness.

Matlab Symbolic Toolbox was used to carry out the derivations. Calculating the jacobian,
the A matrix of state space representation is obtained.
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Ac =
∂f

∂xi

∣∣∣∣
x0

=
Cα (tan(β0)2+1)

(tan(β0)− φ̇0 lr
vx )

2
+1

+
Cα cos(δ)(tan(β0)2+1)(

tan(β0)+
φ̇0 lf
vx

)2
+1

m vx
−

Cα lr

vx

(
(tan(β0)− φ̇0 lr

vx )
2
+1

)− Cα lf cos(δ)

vx

((
tan(β0)+

φ̇0 lf
vx

)2
+1

)
m vx

− 1

−

Cα lr (tan(β0)2+1)
(tan(β0)− φ̇0 lr

vx )
2
+1

−
Cα lf cos(δ)(tan(β0)2+1)(

tan(β0)+
φ̇0 lf
vx

)2
+1

Iz

Cα lr
2

vx

(
(tan(β0)− φ̇0 lr

vx )
2
+1

)+ Cα lf
2 cos(δ)

vx

((
tan(β0)+

φ̇0 lf
vx

)2
+1

)
Iz


x0

(29)

Substituting working point x0 = [0 0]⊺ into the Jacobi matrix, the matrix A of the state
space representation is obtained. In [15] the author uses small angle approximation to get
simplified model. He applies following assumptions and achieves the same result.

1 + tan2β ≈ 1 (30)

atan

(
tanβ +

lr φ̇

vx

)
≈ β +

lr φ̇

vx
(31)

Ac =

[
Cα+Cα cos(δ)

m vx
−Cα lr−Cα lf cos(δ)

m vx2
− 1

−Cα lr−Cα lf cos(δ)
Iz

Cα lr
2+Cα lf

2 cos(δ)
Iz vx

]
. (32)

The system has two inputs - wheel steer angle and yaw torque. The steer angle is however
not controlled and for the controller synthesis it is considered as a measured disturbance
input. By calculating the derivatives of nonlinear state space with respect to u and uδ, the B
matrices are obtained.

B =
∂f

∂u

∣∣∣∣
x0,u0

=

[
0

1000
Iz

]

Bd =
∂f

∂uδ

∣∣∣∣
x0,u0

=

[
−Cα

m·vx)
−Cα·lf )

Iz

]

The states are directly measured, so the Cc matrix is identity matrix and there is no
feedthrough dependence of the output on the input so Dc is zero.

Cc =

[
1 0

0 1

]
(35)
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Dc =

[
0

0

]
(36)

4.4 Discretization

The controller runs in loop on hardware. The code is called periodically every 10 ms to
match the frequency of the rest of the CAN bus network and so the model was discretized
with sample time T = 0.01 s. Lower index notation will be used to describe element in
prediction vector.

xk+1 = Axk +B uk (37a)

yk = C xk +Duk (37b)

Equations 38a-38d, matrices A, B, C, D are obtained from their continuous counterparts
using zero order hold. The derivation of the equations can be found in [17].

A = eAc T (38a)

B = (A− I)A−1
c Bc (38b)

C = Cc (38c)

D = Dc (38d)

4.5 MPC

Model predictive controller was chosen to track the reference. Steering input is included as a
measured disturbance and is assumed to be the same across the prediction horizon. Reference
is also assumed to be same. This approach assumes, that the rate of change of steering angle
and velocity is significantly slower than the lateral dynamics. To respect the changing of the
dynamics with speed, the model updates to current conditions in each time step. In literature,
this approach is called adaptive MPC or LPV-MPC (linear parameter varying). LPV systems
can be considered subset of LTV-MPC (linear time varying). The LTV model is assumed
to arbitrary change with respect to time, however for LPV there exists a set of time varying
parameters, supposedly measurable, that influence the system behavior. [18]

4.5.1 Cost function

The idea of MPC is to find optimal series of inputs up =
[
Mz 1 Mz 2 . . . Mz N

]⊺
to

the system, that minimizes defined cost function over some prediction horizon N .
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minimize J(up) =
1

2
(yp − r)⊺W1(yp − r) + ∆up

⊺W2∆up + up
⊺W3 up (39a)

The cost function was setup universally for case where action value as well as change
of action value is penalized. The output of the system must be predicted based on
current state and vector of inputs so that it can be substituted to cost function. W1 is
block diagonal matrix with weights for both states [Wβ Wφ̇]

⊺ on the diagonal. W2 and
W3 are diagonal weight matrices penalizing change and value of action variable. r =[
βref 1 φ̇ref 1 βref 2 φ̇ref 2 . . . βref N φ̇ref N

]⊺
is a vector of referential values for both

outputs and yp is predicted system trajectory.

4.5.2 Prediction

Trajectory of the system over set horizon is predicted based on current state, input and
disturbance according to equation 40a. The wheel streering anle is uncontrollled input, so it
is considered to be a disturbance. Since its progression over prediction horizon is not know,

it will be considered to remain constant uδ =
[
δ0 δ0 . . . δ0

]N×1

.

yp = P x0 + S up +Ruδ (40a)

Since the D matrix is zero, combining the equations 37a and 37b will result in following
expression for next value of output

yk = C(Axk +B uk +B uδ k) (41a)

For next time step, previous value of state vector can be substituted according to equation
37a. Repeating this step, we get following pattern.

yk = C(Axk +B uk +B uδ k) (42)

yk+1 = C (A (Axk +B uk +B uδ k) +B uk+1 +B uδ k+1)

yk+2 = C (A (A (Axk +B uk +B uδ k) +B uk+1 +B uδ k+1) +B uk+2 +B uδ k+2)

...

Rewritting this in matrix form, P , S and R matrices from equation 40a are found.
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yp =



CA

CA2

CA3

...
CAn


x0 +



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
... . . . ...

CAn−1B CAn−2B CAn−3B . . . CB


up

+



CBδ 0 0 . . . 0

CABδ CBδ 0 . . . 0

CA2Bδ CABδ CBδ . . . 0
... . . . ...

CAn−1Bδ CAn−2Bδ CAn−3Bδ . . . CBδ


uδ

(43)

4.5.3 Action change

The ∆u term in cost function must also be expressed in matrix form. To do that, let’s call
the last applied input ul.

∆u = D up +Dl ul (44)

∆u =



1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1
... . . . . . .

0 −1 1


up +


−1

0
...
0

 ul (45a)

4.5.4 Quadratic programming

Quadratic programming is well understood optimization problem. Because the cost function
is convex and has single minimum, it can be solved fast enough to enable the solver to run
in real time. By combining equations 39a, 40a and 45a into equation 46 quadratic problem
can be formulated 47a.

J(up) = (yp − r)⊺W1(yp − r) + (Dup −DLul)W2(Dup −Dlul) + up
⊺W3up

= ((Px0 + Sup)− r)⊺W1((Px0 + Sup)− r)

+ (Dup −DLul)W2(Du−Dlul) + up
⊺W3up

(46)
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Minimize J(up) =
1

2
up

⊺H up + f⊺up (47a)

H = S⊺W1 S +D⊺W2D +W3

f = −S⊺W1 r+ S⊺W1 P x0 +D⊺W2Dl ul

Subject to : lb < u < ub

4.5.5 Implementation

Proposed controller was developed as a Matlab function and simulated in loop with the
developed model in Simulink.

The weights does not change during the run of the controller, so they can be calculated
beforehand.

Qi = [W_beta; W_dpsi];

I = eye(N);

W1 = diag(kron(ones(N,1), Qi));

W2 = W_deltaMz * I;

W3 = W_Mz * I * 0.1;

Dif = I - diag(ones(N-1,1),-1);

Difl = [-1; zeros(N-1,1)];

The prediction matrices however change with current velocity so they need to be recalculated
in each step. For implementation on HW this code could be optimized. The discrete dynamic
matrices could be for example expressed directly with vx parameter. Moreover, C is unity
matrix so it could be ignored.

Ac = [(Ca + Ca*cos(delta))/(m*vx),...

- ((Ca*l_r)/vx - (Ca*l_f*cos(delta))/vx)/(m*vx) - 1;...

-(Ca*l_r - Ca*l_f*cos(delta))/Iz,...

((Ca*cos(delta)*l_f^2)/vx + (Ca*l_r^2)/vx)/Iz];

Bc = [0; 1000/Iz];

Bdc = [ -Ca/(m*vx); -(Ca*l_f)/Iz];

C = [1 0; 0 1];

A = expm(Ac*Ts);

B = (Ac)\((A-eye(size(A)))*Bc);

Bd = (Ac)\((A-eye(size(A)))*Bdc);

N = 15;
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memS = cell([N,1]);

memR = cell([N,1]);

for i=0:N-1

memS{i+1} = C*(A^i)*B;

memR{i+1} = C*(A^i)*Bd;

end

for i=1:N

P(((i-1)*2+1):2*i, 1:2) = C*A^i;

for j = 1:i

index = i-j+1;

S((i-1)*2+1:i*2, (j-1)+1:j) = memS{index};

R((i-1)*2+1:i*2, (j-1)+1:j) = memR{index};

end

end

Lastly, the H and f matrices are formulated and quadprog function is called. Fortunately,
Matlab Coder supports code generation for this function [19].

ub = Mzmax*ones([N, 1]);

lb = -Mzmax*ones([N, 1]);

rp = kron(ones(N, 1), [betaref, dpsiref]’);

udelta = delta*ones([N 1]);

H = S’*W1*S + Dif’*W2*Dif + W3;

Hsym = (H+H’)/2;

f = -S’*W1*rp + S’*W1*P*x0 + Dif’*W2*Difl*ul ...

+ S’*W1*R*udelta;

optiopt = optimoptions(’quadprog’,...

’Algorithm’,’active-set’, "Display", "none");

[u_sol, cost] = quadprog(Hsym, f,...

[],[],[],[], lb, ub, zeros([N, 1]), optiopt);

u = u_sol(1);

Prediction horizon was set to 15 steps, because at this value it covered the full dynamic
response. β was set to zero as the behavior of body slip angle was found to be very sensitive
to parameters and inconvenient to use for control. Maximal yaw torque was set to Mzmax =

500 Nm in both directions and further tuned by applying penalization to action. Weight of
∆Mz was set so that the controller did not oscillate rapidly however war kept generally as
low as possible. Weights were adjusted according to need, but the default set of weights was
Wβ = 0, Wφ̇ = 0.5, W∆Mz = 0.1 and WMz = 0.5.
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5 Results

5.1 Ramp change

Closed loop system was tested on a simple step input of steering angle. To make the
simulation more realistic, instead of step, the steering angle rises linearly from 0 to 5◦ during
0.2 s. The simulation was done three times at 6, 10 and 14 m/s. The results can be seen on
Figures 15, 16 and 17. In the highest speed, it is apparent that the yaw rate does not reach
the reference perfectly. This is caused by imperfect model ignoring the high slip angle tire
saturation.
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Fig. 15: Closed loop response to steering step at vx = 6 m/s

27



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

0

0.2

0.4

0.6

y
aw

ra
te

[r
ad

/s
]

With controller
Uncontrolled
Reference

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time [s]

0

0.1

0.2

Y
aw

to
rq

u
e

[1
00

0
N

m
]

0

2

4

6

W
h
ee

l
st

ee
ri
n
g

an
gl

e
[/
]

Yaw torque

Steering angle

Fig. 16: Closed loop response to steering step at vx = 10 m/s
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Fig. 17: Closed loop response to steering step at vx = 14 m/s
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5.1.1 LTI-MPC

For validation of the approach, the developed MPC was tested without an online model
update. The velocity was set to vx = 10 m/s and the same step steer test was conducted so
the results could be compared.

As can be seen on the simulation results, the system does not work at all. At 6 m/s the yaw
torque has negative value making the response worse than uncontrolled and at 14 m/s the
vehicle loses stability.
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Fig. 18: Closed loop response of LTI-MPC to steering step at vx = 6 m/s
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Fig. 19: Closed loop response of LTI-MPC to steering step at vx = 14 m/s
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5.2 Disturbance attenuation

Disturbance was simulated as an unmeasured step in a steering input of 5.73 ◦ (0.1 rad)
for duration of 0.3 s applied at 0.5 s simulation time. The simulation was conducted for
combinations of velocity 10 and 14 m/s and steering angle 0◦ and 5◦. The ability to attenuate
such disturbance depends significantly on the weight of rate of change of action variable.

The results show that while the controller does apply some counter torque to balance the
error, the predictor expects the system to stabilize itself (as can be seen on Figure 20) and
therefore it does not fully compensate for the error.
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Fig. 20: Closed loop response to disturbance at vx = 10 m/s and δ = 0◦ with visualized prediction
trajectories for every 5th simulation step

31



0 0.5 1 1.5
time [s]

0

0.2

0.4

0.6

0.8

y
aw

ra
te

[r
a
d
/
s]

With controller
Uncontrolled
Reference

0 0.5 1 1.5
time [s]

-0.8

-0.6

-0.4

-0.2

0

Y
aw

to
rq

u
e

[1
00

0
N

m
]

0

0.5

1

W
h
ee

l
st

ee
ri
n
g

an
g
le

[/
]

Yaw torque
Steering angle

Fig. 21: Closed loop response to disturbance at vx = 14 m/s and δ = 0◦
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Fig. 22: Closed loop response to disturbance at vx = 14 m/s and δ = 5◦
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5.3 Virtual test drive

Two experiments were conducted using IPG CarMaker virtual driving environment. In the
first one, only the inputs were measured and then applied to closed loop simulation with the
developed single track model. This way the response to real inputs was tested in order to
validate the controller performance under changing velocity.

Fig. 23: Measured inputs for simulation

Fig. 24: Simulation of control loop with measured data
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The second test was done with the controller running in real time with CarMaker. Using
CarMaker for Simulink suite, it is possible to access the simulation and alter its variables
in during the execution. CarMaker supports external input devices such as gaming steering
wheel with pedals, which can be used to control the virtual vehicle.

Even though the virtual multibody vehicle model was developed according to the actual
vehicle, the controller’s prediction model had to be re-fitted to its dynamics that had turned
out to be slightly different than model fitted in Section 3.2.

Driver-in-loop test drive was done with and without the controller on a model of a real
Formula Student track. The very first realization was that the controller is way too aggressive
and thus its weights had to be adjusted again. The ride with and without torque vectoring
could not be directly compared, because inexperienced driver will not follow the same path
and his actions will vary significantly between each lap. Subjectively, the main difference
was that the car felt more sensitive and faster in corners. However, the loss of traction in
high speed corners was more common with the controller turned on. It is difficult to make a
conclusion from this, because the driver does not have a direct feedback and it gets hard to
know the limits of the car without it.

Fig. 25: CarMaker virtual driving environment

In order to obtain at least some objective results, the drive data with and without the controller
had to be compared. It was decided to perform a simple double lane change maneuver on the
same track which was used to record data on Figure 23. The test was performed 40 times in
total, switching the controller on and off after each 10 repetitions starting with the controller
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Fig. 26: Recorded data from virtual drive

turned on. Subjectively, with the controller turned off, the car was understeering and was
much less responsive. The torque vectoring took a few rides to get used to however.

Comparison of the data is perhaps not as conclusive as one would hope for without
performing a proper data analysis such as cropping the signals so that all of them start at
the same time. Noticeable difference was however apparent when the steering angle and
yaw rate signals were compared. With torque vectoring, less steering action was required
and the yaw rate was overall faster.
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Fig. 27: Repeated double lane change test results
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6 Yaw torque distribution

Last layer of the system is the actual application of the yaw torque on the chassis. In the
simplest case, this torque can be evenly distributed between left and right wheels according
to formula 48.

−∆FxFL = −∆FxRL = ∆FxFR = ∆FxRR =
Mz

2 · t
(48)

Currently implemented algorithm varies the longitudinal distribution of torque according to
multiple adjustable parameters and limits the maximal torque, that can be applied to a single
motor. If the saturation is reached, the algorithm starts to reduce the torque on the opposite
side and thus reduces the total forward torque. However, the performance can be optimized
by taking into account the wheel load. This way loss of traction can be prevented and the
grip is effectively utilized.

Since it is not always possible to adhere to yaw torque request and forward force while
staying within the tire grip limit, the idea is to formulate this as an optimization problem
that weights these three requirements and finds according optimal solution. Because
the requirements are formulated in terms of the forces acting on the chassis, instead of
working with the motor torques, the vector of the longitudinal tire forces is defined as
θ =

[
FFL
x FFR

x FRL
x FRR

x

]⊺
. Once the optimal values of vector θ are found, they will be

easily converted to the motor torque requests according to the equation 49.

τ =
Fx · rw
i

(49)

Maintaining the total forward force request Fx req means simply that the sum of all four
torques equals the requested value. In matrix form it can be written as

S =
[
1 1 1 1

]
S θ = Freq. (50a)

The yaw torque request can be written as

Y =
[
− t

2
cosδ + lf sinδ

t
2
cosδ + lr sinδ

t
2

t
2

]
Y θ = Mz (51a)
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Fig. 28: Pure slip lateral force test data from Calspan fitted with Pacejka’s magic formula
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Fig. 29: Friction ellipse with maximal longitudinal force visualized

Lastly, the maximal longitudinal force must be calculated in order to know the limit of
longitudinal force of each wheel. This could be done from the wheel slip angle and further
tire lateral force estimation. In addition, the size and shape of friction ellipse for matching
vertical load of each tire would have to be assessed. This could be quite easily approximated
from available TTC data (Figure 28) and adjusted by scaling factor. Equations for vertical
load estimation are presented in Section 2. If friction ellipse and lateral force is known,
the maximal and minimal longitudinal force can be calculated from equation 9. This is
visualized on Figure 29.

Fx lim =

√
1−

(
Fy

Fymax

)2

· Fxmax (52)

Question arises as how to formulate this request. The force should be smaller than its limit,
so it can be formulated as a constraint for the optimization solver. In addition to that however
the forces should ideally be distributed evenly between the wheels. If only a limit was set,
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for example the solution θ = [500 0 0 0]⊺ could be optimal. Instead of hard limits, the
forces are minimized proportionally to their maximal value. This request could however go
against the first one so attention must be paid to correct setting of the weight factors.

L =


i

FFL
xlim·rw

0 0 0

0 i
FFR
xlim·rw

0 0

0 0 i
FRL
xlim·rw

0

0 0 0 i
FRR
xlim·rw

 (53)

Combining all three requirements, cost function can be formulated.

J(θ) = (S θ − Fx req)
⊺W1 (S θ − Fx req)

+ (Y θ −Mz)
⊺W2 (Y θ −Mz)

+ (L θ)⊺ W3 (L θ)

(54)

Equation 54 was rewritten so that it can be solved by quadratic solver.

H =
[
S⊺W1S + Y⊺W2Y+ L⊺W3L

]
f = −Fx refW1 −Mz refW2Y (55a)

The torque distribution is then solved as a quadratic problem.

min J(x) =
1

2
x⊺Hx+ f⊺x (56a)

−Fx lim < x < Fx lim

The proposed algorithm was realized in Matlab and tested in CarMaker’s virtual driving
environment. The manoeuvre consisted of acceleration from stand still to 50 km/h, lane
change and acceleration to 60 km/h. Built-in virtual driver was used to control the steering
and acceleration.
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Fig. 30: Proposed traction distribution tested on lane change maneuver
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7 Conclusion

The main objective of this thesis was to design a controller that would improve and stabilize
lateral dynamics of a prototype vehicle.

In the beginning, a short introduction to the vehicle, its characteristics and available
measurements are presented along with a description of a current state of the implemented
torque vectoring system. Then vehicle dynamics equations and principles are presented to
build mathematical background for model based design. Publicly available data as well as
self-measured data were used to fit and validate the developed model.

Based on the model, a linear parameter varying model predictive controller (LPV-MPC)
is proposed to improve the dynamics of the vehicle. The response to simple step input is
presented to validate the controller and its variations. The performance of the system is
then evaluated on drive data as well as in driver-in-loop simulation. Lastly, an algorithm for
distribution of yaw torque between four wheels is presented.

The proposed controller adjusts itself to the dynamics that change with time. This is an
advantage over the current solution which has a single PI controller. Alternatively, a gain
scheduling could be implemented to current solution. A potential drawback could be the
computation time on HW, however the implementation should be feasible, according to
[20], where the authors investigated performance of a similar control structure on a similar
hardware.

Although the algorithm works in a simulation, some potential problems have to be addressed
to assure a complete safety under all conditions before its implementation to a real vehicle.
For example, the velocity must always be greater than zero for the system to work correctly.
The controller does not reflect the nonlinearities of the tires and thus might underperform
while driving at the limits. Additional constraint on a maximal possible body slip angle
could be added to the optimizer.

Alternatively, the full model including Pacejka’s formula for tire force could be linearized
in each controller cycle or even successively in each prediction step. This approach is
successfully applied to a similar problem in [21]. Even though the weights of cost function
were adjusted to achieve desired simulation results, in reality, they would need to be adjusted
according to the driver’s liking to be more or less aggressive.

The concept explored in this thesis is the combination of the yaw controller and its
distribution into a single system which would directly return four wheel torques. This
approach means that the yaw torque could only be applied if the tires would allow it. A
similar system is proposed in [14] where the model also includes information about wheel
angular velocity and thus also substitutes a traction control system. However, the idea was
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rejected as such system would not be consistent with the current implementation and would
therefore require its complete redesign.

Besides the original objective of this thesis, another significant contribution is the know-how
that could be applied to develop a similar controller for following trajectory of an
autonomous car. Team eForce also competes in the driverless category of Formula Student
and a predictive lateral controller would improve the performance of the autonomous car
significantly compared to the current reactive PI controller.
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List of symbols and abbreviations

• m [kg] Mass of vehicle including driver

• Iz [kg ·m2 ] moment of inertia to Z axis

• CoGx [m] relative position of center of gravity towards front axle

• CoGz [m] height of center of gravity

• CoPx [-] relative position of center of lift towards front axle

• lf [m] length between front axle and CoG

• lr [m] length between rear axle and CoG

• t [m] track, distance between left and right wheel. Is assumed to be the same on both
axles.

• Flon [N] longitudinal force acting on tire

• Flat [N] lateral force acting on tire

• rw [m] wheel radius

• ωw [rad/s] wheel angular velocity

• δ [rad] steering angle

• µ [-] friction coefficient between tire and road

• Cα [N/rad] cornering stiffness of the tire

• BPac, CPac, DPac, EPac, F Pac [-] Magic Formula coefficients

• τ [Nm] motor torque

• CL [-] coefficient of lift

• Aaero[m
2] front aerodynamic area
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List of used SW

• Matlab & Simulink R2021a

• IPG CarMaker 10.2

• LATEX
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List of attachments

• model_check.slx

• model_check_script.mlx

• closed_loop_simulation.slx

• close_loop_simulation_script.mlx

• derivations.mlx

• yaw_rate_generator.mlx

• IPGCarMaker_torque_vectoring_subsystem.slx

• signalsRun1.mat

• CarMaker_logged_data

– noTV1.mat

– noTV2.mat

...

– noTV20.mat

– TV1.mat

– TV2.mat

...

– TV20.mat
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