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Vedoucí práce: doc. Ing. Jan Šembera, Ph.D., Technická univerzita v Liberci (TUL), Fakulta mechatro-
niky, informatiky a mezioborových studií (FM)

Abstrakt: Tato bakalářská práce zkoumá implementaci modelu popisujícího šíření kontaminace v pod-
zemních vodách jako transportně-reakční úlohu ve formě soustavy PDR řešených pomocí metody štěpení
operátoru v softwaru TRM2D, který vznikl v rámci projektu TH02030840 "PaReTran". Protože metoda
štěpení operátoru v daném softwaru byla rozšířena metodou adaptivního časového kroku, hlavním cílem
této práce bylo vylepšení dané metody, její otestování s různým nastavením parametrů a analýza vý-
sledků. V rámci řešení bakalářské práce byla nalezena kombinace hodnot parametrů umožňující zacho-
vat přesnost výpočtů s konstantním krokem a zároveň snížit počet iterací, což nyní dovoluje uživatelům
dostávat poměrně přesné výsledky rychleji než při použití výpočtu s konstantním krokem.
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Extension and testing of the algorithm for time step adaptation in the TRM2D software
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Abstract: This bachelor project studies the implementation of the model describing the contaminated
groundwater movement as the reactive-transport problem in a form of the PDE system, solved by the
operator-splitting method in the TRM2D software, developed under the project TH02030840 "PaRe-
Tran". As the operator-splitting method was later extended in this software by the adaptive time step
control method, the main goal of this project lies in improving this method, testing it with different set-
tings and analyzing the results. Eventually, under this project a combination of the parameter values was
found that made it possible to keep the accuracy of the calculations with a constant time step and lower
the number of iterations, which now allows the user to obtain relatively accurate results faster than with
a constant time step.
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Introduction

In such a case where chemical reactions and dynamic processes influence the state of a system, it
is typically difficult to predict the course of events happening in it, because such systems are unstable.
Moreover, given the fact that there can be a change in boundary conditions with a rapid increase in con-
centration of chemical compounds, one has to deal with a stiff problem, where one component of a system
is varying rapidly while the other one – slowly. This makes the calculation especially complicated. In
this bachelor’s degree project such a problem is regarded, the reactive-transport problem.

To solve it, the operator-splitting method (OSM) can be applied. It allows us to divide a complex
problem into a number of simpler tasks, in other words, to solve a sequence of sub-models. There are
several algorithms that enable this method. One of them is called Lie-Trotter splitting and it consists
in calculating the result for the first part and using it as the initial value for the second part. It is the
algorithm chosen to be implemented in the software called TRM2D, which we intend to extend under
this bachelor project.

To further improve the software, a time step control method was implemented by L. Samoilov in the
original software, which previously only used a constant time step. This could help better control the
calculation errors. The essence of this method lies in comparing the current state of the system with the
state in the previous time step. If the state of the system changes too quickly, the method shortens the
time step and lengthens it in the opposite case. However, the software did not allow the user to choose
the accuracy of the comparison and the degree to which the time step can be shortened or extended. Our
aim in this bachelor project is to adapt the code so that the user could easily set these parameters and
later test the performance of the implemented method.

The study is divided into four main chapters: a theoretical description of the reactive-transport prob-
lem (1), explanation of the methods used to solve this problem (2), description of the TRM2D software
and its adaptation under this project (3) and the testing of the extended version of the TRM2D software
(4).
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Chapter 1

Physico-mathematical description of the
groundwater flow model

This chapter serves as the theoretical part of this project and it provides the characterization of the
mathematical model describing the movement of the groundwater through a porous medium, laws and
transport processes taking place in it, and the mathematical formulation of chemical reactions influencing
the concentration change in the model.

1.1 Continuum model of porous medium

Porous materials consist of a matrix (also known as the skeletal portion), consisting of fibers or
granules, and pores between them, filled with liquid or gas. The matrix can form a continuous capillary
network or it might contain pores that are not connected to the network. Furthermore, the network
is usually extremely complex. Taking all of the above into consideration, it would be unnecessarily
complicated to simulate the whole structure of the system to create a mathematical model of it. This is
why it is important to introduce the terms porosity and permeability, which describe a porous medium,
and a continuum model.

Porosity is the ratio of the volume of pores (not including the pores separated from the capillary
network) to the total volume of a piece of porous material. It is usually expressed as a percentage and
symbolized as n. It can be measured by filling the material with liquid of a certain volume to the point
when it is not possible to absorb more of it. Therefore, essentially it describes how much liquid or gas
the material can hold.

Permeability describes how easy it is for the fluid to pass through the material. It depends on the in-
terconnectivity between pores, grain size, the diameter of capillaries, called pore throat, etc. Permeability
is measured in squared meters and is commonly symbolized as k.

A continuum model is an approximation of a structure as continuous. It means that the fact that there
are places in the material where concentration, density, pressure, or other properties of a fluid cannot be
measured is neglected to enable the differentiation.

Dealing with the continuum model, it is necessary to introduce the term representative elementary
volume (REV). REV is the smallest unit of a system large enough to correctly represent the system with
its properties remaining consistent. In this example REV is a unit of a porous material that has the same
porosity and permeability. Its typical dimensions can be several cm3 to several m3.
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1.2 Transport processes in the groundwater model

This section is based on Milan Hokr’s university study book [2] and it provides the basic descrip-
tion of Darcy’s law and the transport processes, influencing the concentration of chemical compounds
dissolved in the groundwater.

1.2.1 Darcy’s experiment, law and microscopic velocity

Darcy’s law was deduced from the experiment conducted by Henry Darcy. In this experiment two
containers known as manometers were connected by an inclined tube filled with sand or any other porous
filter.

In the experiment Henry Darcy was trying to propose the law describing the dependence of the total
discharge on other variables. Total discharge determines how fast the volume unit of fluid will move
over a time unit and it is measured in cubic meters per second. As a result of the experiment, the total
discharge was found to be defined by the following equation:

Q = K ·
S · (h2 − h1)

L
, (1.1)

where K is hydraulic conductivity (includes permeability and properties of fluid, measured in meters per
second – m/s), S is the cross-sectional area (m2) of the tube, L is the length of the tube (m) and h2 and
h1 are the hydraulic heads of the two manometers.

Hydraulic head (or piezometric head) is the height that water rises in manometers relative to some
arbitrary level (sea-level in experiments in natural environments, a bench top in laboratory experiments).

Figure 1.1: Darcy’s experiment, h1 – hydraulic head for the upper manometer, z – arbitrary level.
(Adopted from [9])

Essentially a hydraulic head is the pressure expressed as a height of the water level and measured in
meters. It represents a moving force in the experiment, as the fluid flows from a place with higher energy
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due to higher pressure, as in the law of the communicating vessels where the water levels are known to
be the same in both manometers. Hydraulic head is defined by the formula:

h = hp + hz, (1.2)

where hp is pressure head and hz is elevation head, all measured in meters. The pressure head represents
the hydraulic pressure of water above a vertical level, and the elevation head represents gravitational
energy. Pressure head is defined by the following equation:

hp =
p
ρg
, (1.3)

where p is fluid pressure (Pa), ρ is the density of the fluid (kg/m3) and g is acceleration due to gravity
(m/s2). Elevation head is defined as the difference between the reference level z and the level where the
manometer is attached to the tube with a porous material. Therefore, the hydraulic head formula can be
rewritten as follows:

h = z +
p
ρg
. (1.4)

In practice, Darcy’s law is used to determine the direction of groundwater flow and to evaluate flow
rates according to the hydraulic heads in the “manometers” inserted into the ground.

For describing the movement of water in a specific place inside the porous material it is firstly needed
to define the term flow density as the flow Q per unit cross sectional area of the porous medium (m/s). It
is defined by the formula:

q =
Q
S
. (1.5)

It can be written in another form using Darcy’s law:

q = K ·
△h
L
. (1.6)

Then its limit in the longitudinal direction is considered as follows:

K lim
L→0

△h
L
= K lim

L→0

h(x) − h(x + L)
L

= −
dh
dx
. (1.7)

This way the Darcy velocity in 3D space can be deduced as follows:

q = −K · ∇h. (1.8)

The Darcy velocity in 3D is a function of spatial coordinates and time. Therefore, the gradient of a
hydraulic head is represented as follows:

∇h = (
∂h
∂x
,
∂h
∂y
,
∂h
∂z

). (1.9)

And the hydraulic conductivity quotient in anisotropic material is denoted by the tensor of second
order as follows:

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz
Kzx Kzy Kzz

 . (1.10)

From the Darcy velocity the velocity of a particle of water or of a dissolved substance along the water
flow inside the porous material can be derived.
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For this first the time that the volume of liquid would take to move through a cross-sectional area of
a tube is considered. The total discharge is defined by the following formula:

Q =
V
t
. (1.11)

In this equation V is found by the following formula:

V = nS L, (1.12)

where (S L) is equal to the volume of the area of the tube that the fluid moved through, and n is the
porosity of a tube. Therefore, t from the equation (1.11) can be expressed using the equation (1.5)
defining Q as follows:

t =
nS L
qS
=

nL
q
. (1.13)

From this the following equation can be derived as follows:

υ =
L
t
=

q
n
. (1.14)

This means that the fluid particle will move along L with time t with velocity υ, hence, the microscopic
velocity of particles is faster than Darcy’s velocity.

1.2.2 Mass Balance equation and transport processes

Mass balance equation is a formula describing the mass change of a certain chemical component in
a system. Let us first consider the equation for the mass change of water written as follows:

∂

∂t

∫
V

ρn dV = −
∫
∂V

ρq dS +
∫
V

(Pρ) dV. (1.15)

In the first term of the equation, the change in mass over time is registered, where n is the porosity of
a medium and ρ is the density of water.

The first term on the right-hand side of the equation describes the amount of water that crossed the
boundary under the influence of transport processes, where q is the flow velocity.

The second term on the right-hand side of the equation describes the movement of water through the
sink and source points. Practically, these are the points where water flows in or out through tubes from
the outside of the system. Here P is the density of sources and sinks and it registers how fast the volume
of the water flow enters or leaves the REV of the system and is measured in

(
m3/(m3 · s)

)
. It is denoted

by the following formula:

P =
Q
V
, (1.16)

where Q is the total discharge of the flow and V is the volume of a REV.
Similarly, the equation for the mass change of a chemical compound dissolved in the water can be

indicated. It can be written as follows:

∂

∂t

∫
V

nc dV = −
∫
∂V

qc dS +
∫
V

(P+c∗ + P−c) dV +
∫
V

r dV. (1.17)
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If the Gauss divergence theorem is applied to the first term on the right-hand side of the equation and
the integrals are cancelled, we get the following formula:

∂c
∂t
= −∇qc +

1
n

(P+c∗ + P−c) +
r
n
. (1.18)

As can be seen, the difference between the (1.15) and (1.17) equations is that the density is replaced
with the concentration of a chemical compound in a solution, in this case measured in mass of a solute
over the solution’s volume.

Other than that, the second term on the right-hand side of the equation is written slightly differently.
Because the concentration of the solution that enters the system from the outside is different than the
concentration inside the system, in the equation it is denoted by c∗. Here P+ is the source term and P− is
the sink term.

Most importantly, there is a new term that was not present in the equation for water mass change,
and it describes the change in concentration that appeared because of the chemical reactions. Chemical
compounds can interact, and for this reason, they can be generated and disintegrated.

Moreover, in the first term of the right-hand side of the equation there is a mass flow denoted by qc.
It is essentially the velocity of the mass movement. This movement is caused by transport processes and
is defined by the following equation:

qc = n(cυ + Dh∇c). (1.19)

One of the transport processes included in the equation is advection. It is the transfer of a solute by
the flow of a solvent. The second part of the equation represents the dispersion. Dh in this term of the
equation represents the hydrodynamic dispersion tensor. It is measured in m2/s and defined as follows:

D = Dm + D f , (1.20)

where Dm is the molecular diffusion tensor and D f is the mechanical dispersion tensor.
Molecular diffusion is caused by the thermal motion of the molecules in the fluid, where the solvent

molecules move from the areas with higher to lower concentration. It is found using the following
formula:

Dm = DmT, (1.21)

where T is the tortuosity tensor, which describes the tortuosity of the canals in the medium, and Dm is the
mass diffusivity, which depends on the temperature, the chemical compound in question, the size of the
molecules and other factors. In a continuous fluid it is the same in all direction, but when it is multiplied
by the tortuosity tensor, the velocity of the movement of molecules is different in all directions.

Mechanical dispersion, on the other hand, is caused by the difference in velocities of flow in different
directions, because of the complex structure of canals in a porous medium, namely, by the interconnec-
tivity and tortuosity of canals.

Mechanical dispersion is determined by two dispersion coefficients: longitudinal (denoted by αL) and
transverse (denoted by αT ). The transverse dispersion coefficient is usually smaller than the transverse.

Fick’s law states that the velocity of molecular motion can be found by the following formula:

ω =
S D(c2 − c1)

x
, (1.22)

where ω is velocity measured in moles per second, S is the cross-sectional area, D is the dispersion
coefficient, (c2 − c1) is the difference in concentration between the areas of where it is going from and
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to and x is the distance between the areas. If we divide both sides of the equation by S and if x tends to
zero, the equation can be rewritten as follows:

∂c
∂t
= Dm∇c, (1.23)

where the left side of the equation represents the diffusion flux and ▽c is the divergence of concentration
in three-dimensional space.

There are other processes that take place in the concentration change in a porous medium, such as
sorption, radioactive decay, processes caused by the double porosity, etc. But it would require a much
more extensive and profound description, than offered by the scope of this project.

1.3 Mathematical formulation of the reaction part of the transport-reaction
model on an example of calcite-dissolution processes

The TRM2D software, described in more detail in P. Štrof’s report [4], uses the PhreeqcRM library
that contains the methods for transformations of geochemical reactions into the mathematical form (more
on the PhreeqcRM library can be found on the USGS team’s web page [5]). The methods are very
complex and to demonstrate it, the following section, based on Lukáš Zedek’s dissertation [6], will
illustrate how difficult it is to transform only three chemical equations of calcite dissolution into the
differential-algebraic and ordinary differential equations.

1.3.1 DAE formulation of the problem

The chemical equations regarded in our project are as follows:

1. CO2(aq) + H2O⇄ H+ + HCO−3 ,

2. CaCO3 + H+ ⇄ Ca2+ + HCO−3 ,

3. H2O⇄ H+ + OH−.

Mathematical description of chemical reactions can bring nonlinear terms into transport-reaction
models. Because of that a system of nonlinear algebraic equations for each time step must be solved. To
make the calculations less time-consuming, it is necessary to minimize the number of unknown variables.
One of the methods to do so is to introduce a term known as the extent of a reaction. It is defined by the
following equation:

ξ =
(ncurrent − ninitial)i

νi
, (1.24)

where ni is the number of moles and vi is the stoichiometric number of the i-th compound of a reaction.
Stoichiometric number is the number before each compound in a chemical equation.

In Table 1.1 the initial concentrations of each chemical compound at equilibrium are represented as
already known initial values, and the concentrations for the next time step are expressed using the extents
of ξ1, ξ2, ξ3 for each of the three chemical reactions, where the extents are the unknown variables.

18



t0 = 0 t = t0 + t1, t1 > 0
c1, [CO2(aq)] c0

1 c0
1 − ξ1

c2, [H+] c0
2 c0

2 + ξ1 − ξ2 + ξ3
c3, [HCO−3 ] c0

3 c0
3 + ξ1 + ξ2

c4, [Ca2+] c0
4 c0

4 + ξ2
c5, [OH−] c0

5 c0
5 − ξ2

Table 1.1: Table of the concentration change with time.

It is important to notice that monitoring of the concentrations of H2O and CaCO3 would not be
necessary because there is a large amount of them in the system, since water is a solvent of the solution
and CaCO3 is the material, which the porous medium consists of, and there will always be much more
of them than any other compound.

The first and the third chemical reactions are fast and describe the simultaneous conversions of reac-
tants to products and of product to reactants resulting in the balance of chemical compounds. The two
reactions can be described by the following equations using the equilibrium constants K and M for each
chemical reaction as the ratios between the concentrations of products divided by the concentrations of
reactants at a state of chemical equilibrium:

K =
c2c3

c1
, (1.25)

M = c2c5. (1.26)

The second chemical reaction is a kinetic reaction, which means that it proceeds in both directions,
but the ratio between its products and reactants changes slowly. Therefore, the second reaction can be
described by the following equation using the equilibrium constant L and the reaction rate constant l,
which defines the direction and rate of a chemical reaction:

L =
c3c4

c2
, (1.27)

dξ2
dt
= l ·

(
1 −

c3c4

c2
·

1
L

)
. (1.28)

The data from Table 1.1 can be plugged into these equations resulting in the following equations:

K =
(c0

2 + ξ1 − ξ2 + ξ3)(c0
3 + ξ1 + ξ2)

(c0
1 − ξ1)

,

dξ2
dt
= l ·

1 − (c0
3 + ξ1 + ξ2)(c0

4 + ξ2)

(c0
2 + ξ1 − ξ2 + ξ3)

·
1
L

 , (1.29)

M = (c0
2 + ξ1 − ξ2 + ξ3)(c0

5 − ξ2).

The disadvantage of this model is in the extents of the reactions, because it would be very difficult
to combine it with the transport part of the system, since it uses concentrations of chemical compounds
as unknown variables instead of the reaction extents. To solve this problem, the model was altered into a
more suitable form.
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1.3.2 ODE form of the problem

Another way to describe the system of chemical reactions mathematically is as a system of equations
expressing the change of concentrations of the chemical compounds with time, using the equation (1.28)
and the terms Rk and Rm qualifying the contribution of the first and the third chemical reactions to the
concentration change of their reactants and products and found by the following formulae:

Rk =
dξ1
dt
,

Rm =
dξ3
dt
.

(1.30)

The system of equations describing the chemical reactions mathematically can be written as follows:

dc1

dt
= (−1) · Rk,

dc2

dt
= (−1) · l ·

(
1 −

c3c4

c2
·

1
L

)
+ Rk + Rm,

dc3

dt
= l ·

(
1 −

c3c4

c2
·

1
L

)
+ Rk,

dc3

dt
= l ·

(
1 −

c3c4

c2
·

1
L

)
,

dc5

dt
= Rm.

(1.31)

Because it is required to find the unknown functions Rk and Rm of the system, both sides of the
equilibrium equations (1.25) and (1.26) can be differentiated as follows:

dK
dt
=

(
dc2

dt
· c3c1 +

dc3

dt
· c2c1 −

dc1

dt
· c2c3

)
: c2

1 = 0, (1.32)

dM
dt
=

dc2

dt
· c5 +

dc5

dt
· c2 = 0. (1.33)

And if we express the Rk and Rm from these two equations and plug the equations from the system
of equations (1.31) into them, we can rewrite the formulae defining Rk and Rm as follows:

Rm =
(2c1 + c3) · c5 · l ·

(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

, (1.34)

Rk = −
c1 · (c2 − c3 + c5) · l ·

(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

. (1.35)
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It is now finally possible to combine the reaction and the transport parts of the groundwater flow
equations, and the system of the transport-reaction equations can be written as follows:

∂c1

∂t
= −∇(c1υ) + ∇(Dh∇c1) +

c1 · (c2 − c3 + c5) · l ·
(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

,

∂c2

∂t
= −∇(c2υ) + ∇(Dh∇c2) −

(
1 −

c3c4

c2
·

1
L

)
−

c1 · (c2 − c3 + c5) · l ·
(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

+

+
(2c1 + c3) · c5 · l ·

(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

,

∂c3

∂t
= −∇(c3υ) + ∇(Dh∇c3) +

(
1 −

c3c4

c2
·

1
L

)
−

c1 · (c2 − c3 + c5) · l ·
(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

, (1.36)

∂c4

∂t
= −∇(c4υ) + ∇(Dh∇c4) +

(
1 −

c3c4

c2
·

1
L

)
,

∂c5

∂t
= −∇(c5υ) + ∇(Dh∇c5) +

(2c1 + c3) · c5 · l ·
(
1 − c3c4

c2
· 1

L

)
(c1 + c3) · c2 + c1c3 + c5 · (c1 + c3)

.

Seeing the number of steps and the complexity of the equations representing the system of only three
chemical reactions to be able to formulate them mathematically, it becomes obvious that the amount of
work that the PhreeqcRM library performs for all the geochemical processes happening in the ground-
water flow makes it very profitable to use.
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Chapter 2

Methods used for solving the
reactive-transport problem

This chapter’s purpose is to list and explain the main problems of the model implementation, cal-
culation of the results and ways to solve these problems. It includes the description and application of
the operator-splitting method and the Euler method for the reaction part, and the errors brought by these
numerical methods.

2.1 Operator splitting method

This section is based on the STIMULATE European Joint Doctorates webpage’s article [1] and H.
Holden’s series of Lectures [8].

2.1.1 Main principles and reasons for utilizing the OSM

In mathematical models the operator-splitting method (OSM) can reduce memory requirements and
increase the stability range. It may also allow users to easily add increasing complexity to a model and
be the only possible solution for very high dimensional problems.

The OSM is a way of dealing with a complex problem by using the divide-and-conquer approach.
This method is used when sub-problems of a system differ physically and, as a result, mathematically.

For example, when the convection-diffusion equation is considered, it is natural to apply OSM, be-
cause diffusion and convection are physically completely different processes. Therefore, if the same
numerical methods are used for both parts of the equation, numerical oscillation and diffusion will ap-
pear.

In another example, the system consisting of the processes of one-way wave distribution and of heat
distribution are considered. If they are solved separately, using the forward Euler numerical method for
the wave equation, the results would be unstable, but the leap-frog integration method would show stable
results. In contrast, it would be the opposite for the heat equation. If it was needed to solve an equation
consisting of both of these parts, the stable results would not be achieved using any of these numerical
methods. But if the OSM is used, an appropriate technique for each part of the equation can be easily
applied.

The OSM’s main idea lies in writing the overall evolution operator as a sum of evolution operators
for each process in the system. This way the equation is divided into a set of sub-equations, each sub-
equation is solved separately with a suitable numerical method and then pieced back together in a way
determined by a specific type of the OSM. The strategy for piecing them back together generally consists
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in the discretization of time and calculating the results for each part of the equation sequentially on sub-
intervals, using the results of one equation in the other one as an initial value.

Different types of OSM specify, in what order the sub-equations will be solved and how the problem
will be split. Now two of the many types of OSMs will be introduced to better understand the general
differences between the types of OSMs.

2.1.2 Common types of OSM

There are several types of OSM, but the three most simplest types are Lie-Trotter splitting method,
Strang splitting method and Additive splitting, and to better understand the principle of OSM methods
it is appropriate to explain it using the simpler ones.The types will be explained on one of the simplest
mixed-type problems, i.e. initial value Cauchy problem described by the following equation:

∂U(t)
∂t
= AU(t) + BU(t), (2.1)

with t ∈ [0,T ],U(0) = U0.

2.1.2.1 Lie-Trotter splitting method

Lie-Trotter splitting is a first order splitting method where the first sub-equation is solved first using
the result from the previous time step as an initial value, then the second sub-equation with the result
from the first sub-equation as an initial value is solved.

The initial value Cauchy problem is split with the Lie-Trotter method into two sub-equations as
follows:

∂u(t)
∂t
= Au(t),

∂υ(t)
∂t
= Bυ(t),

(2.2)

where t ∈ [tn, tn+1] and tn+1 = tn + △t.
To find a primitive function of such equations, the method of separation of variables can be used.

Hence, we get the following equations of an exponential form:

u(t) = e△tAu(t),

υ(t) = e△tBυ(t).
(2.3)

The algorithm for the Lie-Trotter splitting method using the equations (2.3) is defined as follows:

1. u(tn + △t) = e△tAu(tn) with u(tn) = u0(tn),

2. υ(tn + △t) = e△tBυ(tn) with υ(tn) = u(tn + △t),

3. u0(tn + △t) = υ(tn + △t),

4. if T < (n + 1)△t , go to step 1, otherwise stop.

The algorithm in words can be written as follows:
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1. After splitting the equation into two parts with the A and B operators denoted by u(t) and υ(t)
respectively, solve the first equation for a full time step with an initial value of u0(tn) for the first
time step or the results from the previous time steps for others.

2. Solve the second equation using the result of the first step as an initial value for the full time step.

3. Repeat the steps 1-2, but using the result of the second equation as an initial value for the first
equation.

4. Repeat the algorithm until the end of the given time interval with each iteration corresponding to
one time step.

2.1.2.2 Strang splitting method

Strang splitting method (also known as the leap-frog method) is a more advanced and more popular
OSM than the previous one. In the Lie-Trotter method there appears to be a problem of which sub-
equation will be chosen first. In the Strang splitting method this problem is minimized by splitting the
calculation in the middle of a time step. The calculation starts with the first sub-equation for the first
half of a time step, then the second one is solved for a full time step and only after that the calculation
of the first sub-problem is continued for the second half of a time step. This way both sub-problems are
solved more symmetrically. This is why the Strang splitting method is considered more accurate as it is
a second order splitting method.

The initial value Cauchy problem is split with Lie-Trotter method into two sub-equations as follows:

∂u(t)
∂t
= Au(t) with t ∈ [tn, tn+1/2] and u(tn) = un

0,

∂υ(t)
∂t
= Bυ(t) with t ∈ [tn, tn+1] and υ(tn) = u(tn+1/2),

∂ω(t)
∂t
= Bω(t) with t ∈ [tn+1/2, tn+1] and ω(tn+1/2) = υ(tn+1).

(2.4)

The strategy of the Strang splitting method lies in solving the first sub-equation for the first half of
the time step, then solving the second sub-equation for the full-time step with the previous results as
an initial value and then turning back to the first sub-equation, solving it with a result from the second
sub-equation as an initial condition. The algorithm for it is defined using the equations (2.4) as follows:

1. u(tn + △t/2) = e(△t/2)Au(tn) with u(tn) = u0(tn),

2. υ(tn + △t) = e△tBυ(tn) with υ(tn) = u(tn + △t/2),

3. ω(tn + △t/2) = e(△t/2)Aω(tn) with ω(tn + △t/2) = υ(tn + △t),

4. u0(tn + △t) = ω(tn + △t),

5. if T < (n + 1)△t , go to step 1, otherwise stop.

The algorithm in words can be written as follows:

1. Solve the first sub-problem for the first half of a time step with an initial value of u0(tn) for the first
time step or the results from the previous time steps for other stages of calculation.
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2. Solve the second sub-problem for a full time step using the result of the first sub-problem solved
for the first half of a time step as an initial value.

3. Solve the first sub-problem for the second half of a time step using the result of the second sub-
problem.

4. Repeat steps 1-3, but using the result of the third step of the algorithm as an initial value for the
first equation in the first step of the algorithm.

5. Repeat the algorithm until the end of the given time interval with each iteration corresponding to
one time step.

In the TRM2D software, the Lie-Trotter splitting method was applied. Even though it is less precise
than other operator-splitting methods including the Strang splitting method described above, it is easier
to implement and takes less time to calculate the results.

2.1.3 Application of the OSM to the transport-reaction problem

In Subsection 1.2.2 of the first chapter of this bachelor project, the groundwater flow equation was
defined as

∂c
∂t
= −∇ · (cυ) + ∇ · (Dh∇c) +

r
n
, (2.5)

which can be rewritten appropriately for the 2D problem as a sum of differential functions as follows:

∂c(t, x)
∂t
= −
∂

∂x
(υx(x) · c(t, x)) −

∂

∂y
(υy(x) · c(t, x)) +

∂

∂x
((Dx(x) ·

∂c(t, x)
∂x

)+

+
∂

∂y
((Dy(x) ·

∂c(t, x)
∂y

) + r(c(t, x)),

(2.6)

where the form of the last term of the equation was described in Section 1.3 of this project. Here c(t, x)
is the vector of concentration functions of different chemical compounds present in the solution, and x is
the vector of space dimensions.

As can be seen from the system of equations (1.36), the reaction part of the equations has no differ-
ential terms unlike the transport part. Therefore, it is difficult to solve the equations, because the methods
solving the differential equations are different than the ones solving non-differential equations. For this
reason, the operator splitting method can be applied.

All the operations applied to the vector of concentrations in the transport-reaction equation are in-
cluded into the operator A, and it can be rewritten the following way as the sum of the operators T and
R, including the operations in the transport and reaction parts of the equation:

T c= −
∂

∂x
(υx(x) · c(t, x)) −

∂

∂y
(υy(x) · c(t, x)) +

∂

∂x
((Dx(x) ·

∂c(t, x)
∂x

)+

+
∂

∂y
((Dy(x) ·

∂c(t, x)
∂y

),

(2.7)

Rc = r(c(t, x)). (2.8)

The reactive transport equation can be written as follows:

∂c
∂t
= Ac, (2.9)
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where A = T + R and

∂u(t)
∂t
= Tu(t),

∂u(t)
∂t
= Ru(t).

(2.10)

To find a primitive function, the method of separation of variables can be used. Hence, if we suppose
both T and R to be linear operators, we get the equations of an exponential form prior to the application
of OSM:

Φh(c) = eA△t c, (2.11)

and after the application of the OSM
Ψh(c) = eR△teT△t c, (2.12)

where h is △t.
Because it was decided to use the Lie-Trotter splitting method in the TRM2D, the transport sub-

problem of the groundwater flow equation is solved first for the full time step, then the reaction sub-
problem is solved for the full time step using the results of the transport sub-problem as an initial value.
Finally, the result of the reaction sub-problem is applied to the transport sub-problem as an initial value
during the next time step.

2.1.4 Evaluation of the local error of the OSM

This subsection is based on M. Leok’s lecture [10].
Although it was stated above that the A operator can be rewritten as a sum of T and R operators, the

equation is not always valid. To demonstrate it let us find the difference between the equations (2.11)
and (2.12), i.e. between the solution of the transport-reaction equation before and after the application
of the OSM.

τ = Φh(c) − Ψh(c). (2.13)

By expanding the exponential functions as the Taylor series, the equation takes the following form:

τ(h) = (1 + hA + h2A2 + . . .) · c − (1 + hR + h2R2 + . . .) · (1 + hT + h2T 2 + . . .) · c. (2.14)

By expanding and simplifying the brackets the equation will take the following form:

τ(h) = h2
(
1
2

(R + T )2 −

(
RT +

1
2

R2 +
1
2

T 2
))
· c + O

(
h3

)
. (2.15)

Following that the local error of the operator-splitting method will take the following form:

τ(h) =
h2

2
(RT − TR) · c + O(h3). (2.16)

The local error of the OSM is generally of the second order in time step h for linear operators T and
R. In the case of commutative operators T and R the local error can be of the third order in h. In the case
of reactive transport problem, T and R do not commute and moreover R is not generally linear. That is
why this analysis is only an inspiration for our application of the OSM.
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2.2 Methods used for solving the reaction part of the reactive-transport
problem

This section is based on J. Šembera’s Lecture notes [3].
As previously mentioned in Section 1.3, the PhreeqcRM module includes plenty of complicated

mathematical and numerical methods for solving the reaction part of the reactive-transport problem. It
is beyond the scope of this bachelor’s degree project to list and explain all of these methods, but it is
important to understand their general principle and problems that can occur while using them, which is
why the Euler method, one of the simplest methods for solving such problems, will be explained in this
section, even though it is less precise.

2.2.1 The Euler method

The PhreeqcRM library gives us information regarding the change of concentration at a certain time
and place for each chemical compound as a system of first order ODEs listed in the system of equa-
tions (1.31). The system of functions on their right-hand sides can be interpreted as a vector of functions
f : < a, b > × < 0,+∞)5 → R+0

5, which can be represented as a directional field in phase space.
The reaction problem is essentially an initial value problem, because it consists of a system of ODEs

with an initial condition. Moreover, an exact solution for this system cannot be found, and for this reason,
the Euler method is used.

This initial value problem can be written as follows:

dc
dt
= f (t, c),

c(a) = ξ,

(2.17)

where f is a vector of ODE functions, a is the beginning of a time interval and ξ is the initial value of
concentration.

The Euler method is one of the simplest discrete numerical methods which can solve such a problem.
Its main idea is in dividing a continuous time interval < a, b > into a finite number n of usually equidistant
time steps ti = a + i∆t, i = 0, 1, ..., n, and then finding an approximation of the exact solution as a jagged
line. The method starts with finding a fragment of a tangent to a directional field at a certain place of
a phase space defined by an initial condition for a certain time step. Then it is continued by finding a
fragment of a tangent to a directional field for a current time step at a place where the previous fragment
ended using its value as the initial condition. Therefore, the system of equations (2.17) can be rewritten
as follows using the Euler method:

ci+1 =ci + (ti+1 − ti) · f (ti, ci)

=ci + ∆t · f (ti, ci),

c0 = ξ,

∆t =
b − a

n
,

(2.18)

where ∆t is an evaluation of the length of an equidistant time step.

2.2.2 Evaluation of the total error of the Euler method

Because the Euler method finds a discretized approximation of a problem, it is obviously important
to estimate its global discretization error. The global discretization error of the method is generally
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described as the accumulated local discretization errors for each time step and defined by the following
formula:

ei = ci − c(ti), (2.19)

where ci is the approximation calculated with the Euler method and c(ti) is the exact solution.
A local discretization error is the difference between the numerical approximation and the exact

solution of the problem for each time step. It is defined by the following formula:

L(c(ti+1),∆t) = ci + ∆t · f (t, c(t)) − c(ti+1). (2.20)

The total error also includes the deviation due to possibly inaccurate initial values in each time step.
To minimize this deviation it is natural to make a calculation for a fine-scale discretization. However,

if it is done, the number of calculations grows dramatically. For this reason, it is also important to take
into consideration a rounding error. It is caused by the rounding of the results of calculations made by
the computer processor, because it is only able to calculate the final number of decimal places. This is
why with the growing number of calculations the accumulated rounding error might become significant.
Moreover, the growing number of calculations will prolong the calculation time. However, as shown in
Figure 2.1 the optimal time step length can be found with a minimal total error.

Figure 2.1: Relation between the discretization and the rounding error, with the time step length lying on
the x-axis and the size of total error of numerical computation – on the y-axis. (Adopted from [3])

It is also important to notice that for certain periods of time the constant time step length might be
too large because the values are changing too rapidly and it is possible to miss some features of the
solution and it is necessary to study this part of the graph more slowly. On the other hand, if the time step
is smaller than necessary for a relatively flat region of the solution graph, some time might be wasted
calculating the results which could be predicted from a directional field for a longer time step. This is
why the adaptive time step control method could be profitable for minimizing these problems.
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2.2.3 The adaptive time step method’s algorithm

This subsection is based on L. Samoilov’s bachelor’s degree project [7]. In this subsection the algo-
rithm of the adaptive time step control method, implemented in the TRM2D software, will be explained.

The main idea of this method lies in comparing the results of the calculations for the previous time
step with the those for the current time step. For this the Euclidean norm of these two results is evaluated
and if it is significantly larger than the eps parameter, the time step is increased by 10%. Otherwise, it is
halved and the calculation is conducted once again for a new length of a time step.

The algorithm of this method may be represented as shown in Figure 2.2.

Figure 2.2: The algorithm of the adaptive time step method. (Adopted from [7])
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Chapter 3

TRM2D software

This chapter’s purpose is to describe how the TRM2D software works, the changes that were made
to the software as a part of this bachelor project and the reasons for these changes.

3.1 General description of the software

TRM2D is software written in C++, which serves for simulating the groundwater flow movement, in-
cluding the chemical and transport processes, described in previous chapters. The following subsections
will describe the steps and details of the implementation of the mathematical model of the transport-
reaction problem.

3.1.1 Reading input data

The basic structure of the TRM2D software is shown in Appendix C.
The process starts with interpreting data from an input XML file. One of the version of such an XML

file can be seen in Appendix B. An input XML file for this project is divided into several child elements
of the root tag <TRM> on line 2. The first child tag determines the information regarding the output files,
i.e. the filenames, the directory, file suffix and other log details. The second one determines the units of
different physical quantities, mentioned later in this input file under other tags. The units for them are set
as an index number written as an attribute of a tag corresponding to units listed in the <Quantities>
tag. The next two tags include the information regarding the transport and reaction modules. The last
tag in the XML input file on lines 91-98 describes how the output information will be written, e.g. how
often it shall be recorded (e.g. every 1000 of loop steps) from a reaction and transport modules.

The reaction module tag, starting on line 66, includes the data regarding the boundary condition
changes, i.e. if they should be applied, how the PhreeqcRM library will be used for the reaction part of the
problem, which chemical processes will be employed, the values of physical quantities, e.g. temperature,
pressure, saturation, density, etc.

The most important part of the XML input file for this bachelor project is under the transport module
tag, starting on line 22. Firstly, the space characteristics are determined in it, such as the number of
rows and columns of a space grid, where the solution will flow in and out of the system, which transport
components are present in the simulation and most importantly the time data under the <Time> tag on
line 23. It includes data regarding the initial and end values of time and the length of time steps in the be-
ginning of the simulation. The length of time steps can be changed under the <BorderCondChanges>
tag, where according to an index of a time step the length of it is set as a child-element of each child tag
called <Step> .
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The data from the XML input file can be interpreted with the library known as TinyXML. This is an
open-source XML parser which then builds a Document Object Model (DOM) from a file and then is
read and loaded from it by the load_inputs(...) method, partially illustrated in Source Code 3.4,
of the trm_main class responsible for the run of the program in the trm_main.cpp file. This method
determines the way the data from the XML file will be saved and the attributes that will hold the data.
Later the data are saved to a log file with the results of a calculation with the save_inputs(...)
method of the same class.

The part that is the most important to understand in the TRM2D software is the load_time(...)
method of the trm_module class intended for setting a general manner of how the transport and reaction
parts of the system will work and is a parent to the transport_module and reaction_module
classes. The load_time(...) method reads the data from the <Time> tag in the XML file, which
can be seen in Appendix B, regarding the initial and end values of time and the unit of time and saves it
with the set_time(...) method. Then it reads the value of the initial time step index and the length
of the initial time step length and then saves it into the bc_times_steps[...] map where an index
serves as a key and the length of a step is written under the corresponding index. Other data written into
this map are read from the <BorderCondChanges> tag later.

3.1.2 Application of the transport and reaction processes onto the input data

After the input data are loaded the calculation starts in the calculate(...) method of the trm_main
class. This method, illustrated in Appendix A, first activates the transport part, sets the physical quantity
values, initiates the reaction part and the boundary conditions, sets other input data and declares local
data structures. Following that the calculation itself starts as a for loop declaring the t loop variable
with an initial value of time as a starting point, the end value of time as a threshold marking the end
of the for cycle and the curr_time_step local variable as an increment. In this cycle the t_index
local variable, set to zero in the beginning and incremented in the end of the loop, is used to check if it is
currently the time index where the boundary conditions are changed, and if so it carries out the instruc-
tions for the potential change of the time step length and boundary conditions according to a specific
time index. Following that it is checked if the current time value exceeds the end value of time and if so
it subtracts their difference from the current time step, so the calculation is run exactly until the end of
the given time interval. Then the transport module is calculated and if the current time index requires a
calculation in the reaction module it is conducted.

During the run of the program the events are logged into the log XML and CSV files (according to
the settings put in the methods of classes defined in the trm_inout.* files) containing data regarding
the concentrations of each chemical compound changing over time, values of other physical quantities,
lengths of time steps, etc.

3.1.3 Implementation of the adaptive time step method

This subsection briefly describes the adaptive time step control method, whose algorithm was ex-
plained in Subsection 2.2.3 of the previous chapter, implemented in the TRM2D software. It was
placed into the calculation(...) method mentioned in the previous subsection and illustrated in
Appendix A.

Firstly, concentrations of the chemical compounds calculated in the previous time step are saved
to the locally declared vector transport_concs_old on line 57 and transformed into a row vector
tc_old on line 58. Then inside the fragment of the code starting with a labeled statement the last

current time step is evaluated on lines 62-66 in case it gets changed because of the time step control
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method. Following that the calculations of the transport and reaction parts are run, and the concentration
vector is changed after the calculation is transformed into the row vector tc on lines 67-72. It is
followed by the calculation of the concentrace row vector containing the difference between the old
and the new concentrations divided by their average and changes NaN to zero on lines 73-80, appearing
if the vector elements are divided by zero. And finally, the adaptive time step algorithm is implemented
on lines 87-99 as an if statement and in case the current time step needs to be changed and the data
must be recalculated for a new time step, the goto statement returns us to the beginning of the fragment
of code starting with a labeled statement.

It is important to notice that originally the parameters used in the algorithm were declared as local
variables of the method and fixed.

3.2 Adaptation of the software as a part of this bachelor project

The main aim of this bachelor project was testing of the time step control method for different values
of the three parameters and finding their optional settings for the method. However, these parameters
were fixed in the source code of the original TRM2D software, requiring the user to recompile the source
code each time after changing them, which would hinder the process of the parameter optimization. This
is why the adaptation of the software was needed for the testing. In the following subsections the changes
made to the software will be listed and explained.

3.2.1 Reading the parameters from an input file

It was decided to enable the software to read the values of the parameters from an input XML file.
For this the software itself needed to be adapted for a correct interpretation of the data.

As was established earlier, the data regarding the time settings are read from the <Time> tag of an
XML input file with a load_time(...) method. So, it was chosen to be the most appropriate to alter
the source code and XML file in these two places. Since it is information regarding the time step length,
the parameters were added into the <Step> tag. The altered <Step> tag of the XML file can be seen
in the Source Code 3.1.

1 -<Step idTimeStep="0" adaptivestep="yes">
2 <InitialStep>1</InitialStep>
3 <Eps>0.01</Eps>
4 <Par1>0.5</Par1>
5 <Par2>1.3</Par2>
6 </Step>

Source Code 3.1: An altered version of the <Step> tag of an input XML file.

Understandably, the parts of the code reading the input data are in order of the corresponding data
in the XML file. So, the new piece of code was added after the set_time(...) method and the
part reading the initial time index. The "adaptivestep" attribute allows the user to switch from an
adaptive time step to the constant more easily.
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1 double time_step;
2 if (output->get_attr(step_zero_elem, "adaptivestep", false) == "") {
3 time_step = output->get_elem_double(step_zero_elem);
4 } else {
5 time_step = output->get_child_elem_double(step_zero_elem,

"InitialStep");↪→

6 if(output->get_attr(step_zero_elem, "adaptivestep", false) == "yes"){
7 set_adaptive_step(output->get_child_elem_double(step_zero_elem,

"Eps"), output->get_child_elem_double(step_zero_elem, "Par1"),
output->get_child_elem_double(step_zero_elem, "Par2"));

↪→

↪→

8 }
9 }

10 bc_times_steps.clear();
11 bc_times_steps[zero_time_id] = time_step;

Source Code 3.2: An altered version of the load_time(...) method.

The initial length of a time step can be read from both versions of an input file, from the old version
for a constant time step, and the new one which includes data regarding the time step control param-
eters. To determine which version of an input file is used, the if statement checks if there is the
"adaptivestep" attribute in the <Step> tag. If not, the time_step local variable saves the value

with the get_elem_double(...) method from the TinyXML library. Otherwise, the time_step
local variable saves the value with the get_child_elem_double(...) method by reading the value

of the <InitialStep> child tag. Following that the if statement checks if the "adaptivestep"
attribute is equal to "yes" . if so, the set_adaptive_step(...) method, similar to the preexist-
ing set_time(...) method of the trm_module class, is called. It initializes the attributes of the
trm_module class according to the parameters. The implementation of this method is show in Source

Code 3.3.

1 void trm_module::set_adaptive_step(double eps, double par1, double par2) {
2 adaptive_time_step = true;
3 adapt_eps = eps;
4 adapt_par1 = par1;
5 adapt_par2 = par2;
6 }

Source Code 3.3: The implementation of the set_adaptive_step(...) method.

3.2.2 Inputting the name of the log file for the adaptive time step

Another factor that could hinder the testing process is the fixed setting of a log filename in the source
code, because the file would always get rewritten over the last version of it. However, sometimes it is
needed to save an old version before running the software again to be able to compare the results later,
or to change its name or a directory. The file contains the norms of the relative deviation vector of the
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compared concentrations from the previous and current time steps, current lengths of time steps, time
indices and time values for each iteration.

1 for (XMLElement *child = root_elem->FirstChildElement(); child != nullptr;
child = child->NextSiblingElement()) {↪→

2 string tag_name = child->Name();
3 if (tag_name == "LogFile") {
4 log.set_values(
5 out.get_attr(child, "filePrefix"), out.get_attr(child,

"fileSuffix"), out.get_attr(child, "logDetails"));↪→

6 log.start_logging();
7 log(BASIC) << "Input data loaded from the XML file '" +

input_file + "'.";↪→

8 }
9 if (tag_name == "EpsFile") {

10 bool required = true;
11 if (out.get_attr(child, "requireOutput") == "no") {
12 required = false;
13 }
14 if (required) {
15 log.set_eps_logfile(required, out.get_attr(child,

"fileName"));↪→

16 }
17 }
18 ...
19 }

Source Code 3.4: A part of the load_inputs(...) method of the TRM2D source code.

Like any other tag from the XML input file, the newly added <EpsFile /> tag is read in the

load_inputs(...) method after the <LogFile /> tag. To leave the source code compatible with
older versions of the input files again, if the tag is not found, nothing happens and the information does
not need to be read. If it is found, then the "requireOutput" attribute is read, and if it shows that
the output file logging data regarding the adaptive time step does not need to be created, then the next
tag is read. Otherwise, other attributes are read and saved as attributes of the log_file class with the
set_eps_logfile(...) method of the same class.

The XML input file and the source code were altered in a similar way described in the previous
subsection analogically to the <LogFile /> tag and the way it was read.

1 <LogFile logDetails="BasicComponentMessages" fileSuffix=".log"
filePrefix="./Log/Log_"/>↪→

2 <EpsFile requireOutput="yes" fileName="norm.txt"/>

Source Code 3.5: The <LogFile /> and the <EpsFile /> tag from an input XML file.
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3.2.3 Changes in the "calculate" method

After the input data are read from an input file, it needs to be used in an appropriate place. As
was mentioned in Subsection 3.1.3, the parameters are initialized and used in the calculate(...)
method in the original code. Because the parameters were read from an XML file, the local variables
holding their values can be replaced with the attributes used for saving the input data. Moreover, the if
statement now checks if the adaptive_time_step attribute is true instead of checking if the eps
parameter is not equal to zero.

1 if (trans.adaptive_time_step) {
2 if (arma::norm(concentrace, 2) < trans.adapt_eps * 0.5)
3 {
4 curr_time_step = curr_time_step * trans.adapt_par1;
5 }
6 else if (arma::norm(concentrace, 2) > trans.adapt_eps)
7 {
8 curr_time_step = curr_time_step * trans.adapt_par2;
9 transport_concs = transport_concs_old;

10 t = t - curr_time_step;
11 goto label;
12 }
13 }

Source Code 3.6: An altered part of the load_time(...) method.

To incorporate the input data regarding the log file of the adaptive time step method, the if state-
ment now checks the require_eps_output attribute in the corresponding fragment of the source code
and, if the output is required, uses the output filename saved in the eps_output_filename attribute.

1 fstream out;
2 if (log.require_eps_output) {
3 out.open(log.eps_output_filename, fstream::out);
4 }

Source Code 3.7: An altered part of the calculate(...) method using data regarding a log file.
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Chapter 4

Testing of the extended TRM2D software

In this chapter the tests ran on the new version of the TRM2D software will be described and the
results of these tests will be interpreted.

4.1 Verifying the consistency of the results between the newly altered ver-
sion of the software and the previous one

To be able to continue the further testing and optimization of the parameters, it is important to ensure
that the version of the TRM2D software extended under this bachelor project works the same way as
the previous version with the parameters fixed in the source code. For this purpose, the old version was
compiled three times, resulting in obtaining three different executable files corresponding to three values
of the fixed eps parameter: 0.91, 0.5 and 0.010293. These files were then run 5 times each. Following
that the new version of the software was run 5 times with three different XML input files setting the eps
parameter to the same three values. The testing problem and the values of the eps parameter were from
L. Samoilov’s bachelor’s degree project [7].

The results for the calcium concentrations, written to the "Ca Results.csv" in the "transport" direc-
tory, were compared. For all 5 runs of both software versions and the eps parameter set to 0.91 and 0.5
the results appeared to be exactly the same. However, they were not for the 0.010293 value of the eps
parameter. For this reason it was decided to compare the maximal deviation of the calcium concentra-
tions for the last time step between each run of the software. The maximal deviation is defined as the
maximal norm of the relative deviation vector and found by the following formula:

κ = ||rel(c1, c2)||max, (4.1)

where c1 and c2 are the vectors of calcium concentrations from the first and second solution respectively,
and rel(x, y) is the vector of the relative deviation of vectors x and y denoted by

[rel(x, y)]i = 2 ·
|xi − yi|

|xi + yi|
. (4.2)

It was established that κ was approximately equal to 8.31 · 10−12, which can be considered tolerable
and might be explained by the rounding error, because the number of iterations for this eps value reaches
2500. Therefore, we can conclude that the two versions of the software show equivalent results and the
changes made to the software under this project do not affect the results of the calculations in it.
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4.2 Formulation of the testing problem

In this section the testing problem for optimizing the parameters of the TRM2D software will be
described.

It was decided to test the software on a 2D problem with the system consisting of 4 columns and 10
rows with each grid cell of volume 5 m3. The porosity was set to 0.2 by default, so, the volume of the
water in each grid cell stands at 1 m3 or 1000 l. The water flow was set to have a direction from the top
left corner to the bottom right. The above data were set in the XML input file.

Figure 4.1: Visual representation of the testing problem.

The amount of calcium in water in equilibrium with calcite was set to 6.54 mg/l and carbon to 1.95
mg/l as an initial condition. The above data were set in the "komain3.phr" file used by the PhreeqcRM
library.

The concentration of calcium in the solution flowing from the top left corner was set to 0.04987
mg/l. The flowing-in solution was also set to have higher pH and a significantly lower concentration of
carbon. The data regarding the flowing-in solution were set in the "kc amd.phr".

Because it was needed to calculate the reference solution for a very fine scale, it was necessary to
choose an optimal time interval, which would allow us to observe the spread of the solution entering the
system while not requiring too much memory space and calculation time. For this reason different states
of the system with a corresponding time value are illustrated in Figures 4.2.

0 days 10 days
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20 days 30 days

40 days 50 days

Figure 4.2: Stages of solution distribution for different time values. The side ratios are distorted due to
the visualisation method. See actual ratios in Figure 4.1.

As can be seen in the figures, the earliest stage where the spread "wave" can already be observed is
for the stage corresponding to 20 days. Therefore, the testing problem was chosen to be calculated for
the time interval < 0, 20 > days.

4.3 Optimizing the parameters

In this section the process of identifying the optimal parameters for the time step control method will
be described. The strategy for it may lie in improving the accuracy of the results, while the time steps
would have to be as short as possible and, thereby, the computational time would be longer. However,
the strategy may also lie in focusing on the reduction of the number of time steps and, consequently,
reducing the computational time while keeping the accuracy at a satisfactory level. In this project it was
decided to follow the second strategy, where the accuracy is supposed to be comparable to the accuracy
for calculation with a constant time step.

The process of testing will consist of consecutively finding the most appropriate values for each
parameter (by comparing the results with the reference data) and using them for finding the optimal
value for the next parameter.

Because we were unable to find an analytical solution for this problem, it was decided to calculate
a solution for the shortest time step possible and use it as reference data for the further testing. It was
empirically determined that the shortest time step possible and reasonable to calculate with was 0.0001
days.

To start the optimization of the parameters, it was decided to find an optimal value of the eps pa-
rameter first with temporary default values of the par1 and par2 parameters set to 1.5 and 0.5 and an
initial time step equal to 1 day. The values that the eps parameter was going to be set to were from the
"norm.txt" log file, registering the Euclidean norms of the concentrations of the current and previous time
steps after the calculation for a constant time step. It was suggested that because the Euclidean norm is
compared to the eps parameter, the results might be of similar precision to the calculation for a certain
constant time step if the eps parameter is equal or similar to the minimal Euclidean norm registered in
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the "norm.txt" file logged after the calculation for this length of a time step. For this purpose, the results
for different lengths of a constant time step were calculated and put into Table 4.1.

∆t [days] 0.1 0.01 0.001
N[1] 200 2,000 20,000
κ[1] 3.12 · 10−2 3.05 · 10−3 2.76 · 10−4

ϵ[1] 0.113765 0.011282 0.001127

Table 4.1: Results for different lengths (∆t) of a constant time step, where N – number of iterations, κ –
maximal norm of the relative deviation vector, ϵ – minimal Euclidean norms.

The minimal Euclidean norms for each calculation from Table 4.1 were used as the values of the eps
parameter with the initial length of a time step equal to 1 day and the results of these calculations were
put into Table 4.2.

eps [1] 0.113765 0.011282 0.001127
N[1] 469 4,537 40,580
κ[1] 2.68 · 10−2 2.64 · 10−3 2.38 · 10−4

Table 4.2: Results for different values of the eps parameter corresponding to the time step lengths.

As can be seen from Table 4.2 the number of iterations for an adaptive time step is approximately
twice as large as for a corresponding constant time step calculation, but κ is slightly smaller. To make the
calculation more effective there were attempts to find a more appropriate value for the eps parameter,
similar to the one used before, resulting in a smaller number of iterations and the maximal deviation still
comparable to that of a constant time step calculation. In the following tables the results of such attempts
are listed.

eps [1] 0.19 0.25 0.4
N[1] 280 213 137
κ[1] 4.5 · 10−2 6.05 · 10−2 9.44 · 10−2

Table 4.3: Results of calculations with maximal deviation similar to that of a constant time-step calcula-
tion with the length of a time step 0.1 days.

eps [1] 0.019 0.025 0.04
N[1] 2500 2113 1224
κ[1] 4.81 · 10−3 5.81 · 10−3 9.94 · 10−3

Table 4.4: Results for calculations with maximal deviation similar to that of a constant time-step calcu-
lation with the length of a time step 0.01 days.

Having observed the results of the calculations, it was decided that to obtain similar maximal devia-
tion from the adaptive time-step method and smaller number of iterations, it is necessary to set the value
for the eps parameter ranging between 0.19 and 0.4 or 0.019 and 0.4 to obtain more precise results.
Therefore, the maximal deviations for the adaptive time-step method are 10 times more precise for 10
times smaller value of the eps parameter. The value of eps that is corresponding well enough to the
constant time steps 0.1, 0.01, 0.001 can be considered 0.27·10−x where x ∈ {0, 1, 2}, because κ and N of
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the calculations with this value were found to be the most compromise. The results of the calculations
for different values of x are listed in Table 4.5.

eps [1] 0.27 0.027 0.0027
N[1] 163 1,953 18,743
κ[1] 7.71 · 10−2 6.29 · 10−3 5.91 · 10−4

Table 4.5: Results for calculations with different values of the eps parameter.

After fixing the testing values of eps, the next step was to find optimal values for the other two
parameters: par1 determining by how many percent a time step will be prolonged and par2 determining
by how many percent a time step will be shortened. To get a general idea of how the two parameters
would affect the results of the calculations faster, 0.27 value of the eps parameter was used first. In the
following tables the results of such calculations with different values of the two parameters are shown.

par2 [1] 0.1 0.3 0.4 0.45 0.5 0.55 0.6
N[1] 164 168 172 171 163 174 162
κ[1] 2.59 · 10−1 1.69 · 10−1 1.01 · 10−1 6.2 · 10−2 3.91 · 10−2 8.91 · 10−2 1.65 · 10−1

Table 4.6: Calculations for the eps parameter set to 0.27 and par1 to 1.5 by default.

From the data shown in Table 4.6 it was deduced that the optimal value of the par2 parameter ranges
between 0.45 and 0.55. Moreover, the results for 0.1 and 0.3 were inconsistent between different runs.

While testing the software with different values of par1 it was determined that they did not affect the
results at all for the eps equal to 0.27 and slightly for eps equal to 0.027. Therefore, it was decided to
calculate the results with different values of par1 with the value of eps set to 0.0027.

par1 [1] 2 1.7 1.5 1.4
N[1] 15,007 15,971 18,743 17,354
κ[1] 8.46 · 10−4 7.51 · 10−4 5.91 · 10−4 6.56 · 10−4

Table 4.7: Calculations for the eps parameter set to 0.0027 and par2 to 0.5 by default.

From the data shown in Table 4.6 it is evident that κ still does not change significantly, but the 1.5
value gives the smallest κ and the value 2 gives the smallest number of iterations.

Because it was difficult to determine which value of par1 is the most appropriate to use, the results
were calculated for different values of par1 and optimal values of par2 for eps equal to 0.27.

par2 [1] 0.45 0.5 0.55
par1 [1] 2 1.7 1.4 2 1.7 1.4 2 1.7 1.4
N[1] 155 159 178 163 202 162 182
κ[1] 6.98 · 10−2 6.42 · 10−2 6.09 · 10−2 3.91 · 10−2 1.05 · 10−1 9.17 · 10−2 8.78 · 10−2

Table 4.8: Calculations for the eps parameter set to 0.27.

From the data in Table 4.8 it is evident that the value of par2 with the smallest κ is 0.5 and it also
gives one of the smallest N. Therefore, it can be suggested that the most appropriate value of par2 is
equal to 0.5. Moreover, for par2 equal to 0.45 and 0.55 κ is slightly smaller for par1 equal to 1.4.

In Table 4.9 there are results for eps equal to 0.0027, because the larger eps did not show any
significant differences between the results for different values of par1, and for par2 equal to 0.5.
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par1 [1] 1.3 1.45 1.6
N[1] 17,958 17,084 16,375
κ[1] 3.18 · 10−4 3.42 · 10−4 3.66 · 10−4

Table 4.9: Calculations for the eps parameter set to 0.0027 and par2 to 0.5.

From Table 4.9 it seems evident that even for such a small eps value the difference between κ for
different par1 parameters is not significant. Therefore, the most appropriate value of par1 for this testing
problem can be considered 1.6, because it gives the smallest N.

To sum up, various values of the eps parameter corresponding to certain orders of precision were
found during the testing and the combination of par1 equal to 1.6 and par2 equal to 0.5 can be con-
sidered the most suitable for this testing problem. Finally, the combination of the three chosen values
for the parameters gives the results with slightly larger κ and quite smaller N than for the corresponding
constant time steps.
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Conclusion

This bachelor’s degree project addresses the difficulties related to solving the reactive-transport prob-
lem with the operator-splitting method (OSM) and how it can be extended by the adaptive time step
control method. For this purpose, the theoretical basis behind the mathematical model describing the
movement of the contaminated groundwater through a porous material and its application in the TRM2D
software were studied. Among the needed theoretical grounds were the occurring transport and reac-
tion processes, principles for building the PDE system describing the chemical reactions, and numerical
methods solving them. Among the methods explained under this project were the Euler method, the
OSM and the adaptive time step method. Particular attention was paid to the OSM, because its main idea
determines the operating principle of the TRM2D software, which lies in dividing it into transport and
reaction modules and then calculating the results by calling the modules’ methods consecutively for each
time step.

For a possible improvement of the software’s performance, the adaptive time step control method
was later implemented. One of the main goals of this bachelor’s degree project was the extension of
this method in the TRM2D software. After the implemented changes were listed and explained in this
project, it was needed to test if they did not affect badly the performance of the software, which was later
confirmed.

Another important goal of this project was to analyze the impact of the different values of the param-
eters on the performance of the TRM2D software. As a result, we managed to find a combination of the
parameter values showing the results with accuracy similar to accuracy of the results calculated with a
constant time step, but requiring less computational time.
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Appendix A

Original implementation of the
"calculate(...)" method

1 void trm_main::calculate()
2 {
3 trans.remove_results();
4 react.remove_results();
5

6 trans.activate();
7 vector<double> tmp_porosity = trans.get_component_data("Porosity", "",

-1);↪→

8 react.set_porosity(tmp_porosity);
9 react.set_components_for_factors(&trans.porosity, &trans.volume,

&trans.conductivity_long, &trans.conductivity_trans);↪→

10 react.init();
11 activate_boundary_conditions();
12

13 log(BASIC) << "Calculation of time steps loop started.";
14 vector<double> transport_concs;
15 vector<double> transport_concs_old;
16 arma::rowvec tc;
17 arma::rowvec tc_old;
18 double eps = 0;
19 /////////////////////////////////////////////////////////////////////////
20 // mapping component Pas2Phr to be used in reaction part to calculate

factors↪→

21 vector<double> mapping;
22 vector<string> transport_names;
23 current_bc_time = 0;
24 unsigned initial_time_index = trans.get_time_init_id();
25 unsigned t_index = initial_time_index;
26 string map_component_id = react.get_map_component_id();
27

28 double curr_time_step = trans.get_time_step(trans.time_init_id);

47



29 double t;
30 unsigned time_steps_count = 0;
31

32 for (t = trans.time_init + curr_time_step; t < trans.time_end +
trans.time_end * NUMERIC_EPS; t = t + curr_time_step) {↪→

33 time_steps_count++;
34 }
35 unsigned step_index = 0;
36

37 fstream out;
38 out.open("c:\\Trm\\norm.txt", fstream::out);
39

40 for (t = trans.time_init + curr_time_step; t - curr_time_step <
trans.time_end - trans.time_end * NUMERIC_EPS; t = t + curr_time_step)↪→

41 {
42 progress_value = static_cast<unsigned>(100 *

(static_cast<double>(t_index) -
static_cast<double>(trans.get_time_init_id())) /
static_cast<double>(time_steps_count));

↪→

↪→

↪→

43 if (trans.is_bc_change_time(t_index)) {
44 current_bc_time = t_index;
45 curr_time_step = trans.get_time_step(current_bc_time);
46 // initial conditions used only at zero time
47 if (t_index == initial_time_index) {
48 vector<double> tmp_values =

arma::conv_to<vector<double>>::from(
trans.get_component_data("TransportComponents", t_index,
map_component_id));

↪→

↪→

↪→

49 vector_values init_cond(tmp_values);
50 react.activate(
51 transport_concs, transport_names, init_cond,

trans.get_component_data("InComponents", t_index,
map_component_id),

↪→

↪→

52 t_index, t - curr_time_step,
trans.get_first_component_of_id("0"));↪→

53 trans.init(transport_concs, transport_names,
initial_time_index);↪→

54 }
55 trans.modify_grid_flow(t_index);
56 }
57 transport_concs_old = transport_concs;
58 tc_old = arma::conv_to<arma::rowvec>::from(transport_concs);
59 t_index++;
60

61 label:
62 if (t > trans.time_end)
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63 {
64 curr_time_step = trans.time_end - t + curr_time_step;
65 t = trans.time_end;
66 }
67 trans.calculate(t_index, t, transport_concs, transport_names,

current_bc_time, mapping, curr_time_step);↪→

68 if (react.is_calculated_step(step_index)) {
69 react.calculate(t_index, t, curr_time_step, transport_concs,

transport_names, mapping);↪→

70 }
71

72 tc = arma::conv_to<arma::rowvec>::from(transport_concs);
73 arma::rowvec concentrace = ((tc - tc_old) / (tc + tc_old)) * 2;
74 for (int i = 0; i < concentrace.n_cols; i++)
75 {
76 if (isnan(concentrace(i)))
77 {
78 concentrace(i) = 0;
79 }
80 }
81

82 if (out.is_open())
83 {
84 out << arma::norm(concentrace, 2) << "/___/" << curr_time_step <<

"/___/" << t_index << "/___/" << t << endl;↪→

85 }
86

87 if (eps > 0) {
88 if (arma::norm(concentrace, 2) < trans.adapt_eps * 0.5)
89 {
90 curr_time_step = curr_time_step * 1.1;
91 }
92 else if (arma::norm(concentrace, 2) > trans.adapt_eps)
93 {
94 curr_time_step = curr_time_step * 0.5;
95 transport_concs = transport_concs_old;
96 t = t - curr_time_step;
97 goto label;
98 }
99 }

100 step_index++;
101 }
102

103 out.close();
104

105
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106 log(BASIC) << "Calculation of time steps loop ended.";
107 react.close();
108 }
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Appendix B

Original version of an input XML file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <TRM xsi:schemaLocation="DHI.PASTRM

C:\MyFiles\TACR\Epsilon02\TransportSim\PasTRM\Example5\PasTRMv10_02.xsd"
xmlns="DHI.PASTRM" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

↪→

↪→

↪→

3

4 <LogFile filePrefix="Log\Log_" fileSuffix=".log"
logDetails="BasicComponentMessages" />↪→

5

6 <Quantities>
7 <None quantityID="0">1</None>
8 <Time quantityID="1">day</Time>
9 <Length quantityID="2">m</Length>

10 <Volume quantityID="3">m3</Volume>
11 <Flow quantityID="4">m3/d</Flow>
12 <Temperature quantityID="31">K</Temperature>
13 <Pressure quantityID="32">kPa</Pressure>
14 <Mass quantityID="33">kg</Mass>
15 <Concentration>
16 <Liquids quantityID="101 ">mg/l</Liquids>
17 <Phases quantityID="102">mg/kg</Phases>
18 <Gases quantityID="103">mol/l</Gases>
19 </Concentration>
20 </Quantities>
21

22 <TransportModule name="TRM" version="2020.01.13" type="console">
23 <Time quantityID="0">
24 <Init>0</Init>
25 <End>20</End>
26 <Step idTimeStep="0">1</Step>
27 <BorderCondChanges>
28 <Step idTimeStep="10">2</Step>
29 <Step idTimeStep="20">13</Step>
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30 </BorderCondChanges>
31 </Time>
32 <GridSize>
33 <Nrows>40</Nrows>
34 <Ncols>1</Ncols>
35 </GridSize>
36 <GridElements>
37 <Volume typeID="denseVector" dataTypeID="double" Nrows="40"

quantityID="3">↪→

38 <Data>5</Data>
39 </Volume>
40 <InOutFlow typeID="sparseVector" dataTypeID="double"

Nrows="40" quantityID="4" idTimeStep="0">↪→

41 <IndexData>
42 1 0.5
43 5 -1
44 40 0.5
45 </IndexData>
46 </InOutFlow>
47 </GridElements>
48 <GridElements2GridElements>
49 </GridElements2GridElements>
50 <InComponents idTimeStep="0">
51 <Component id="0" name="Pas2Phr" typeID="sparseMatrix"

dataTypeID="double" Nrows="40" quantityID="101">↪→

52 <IndexData>
53 5 50
54 </IndexData>
55 </Component>
56 </InComponents>
57 <TransportComponents idTimeStep="0" Time="0">
58 <Component id="0" name="Pas2Phr" typeID="denseMatrix"

dataTypeID="double" Nrows="40" quantityID="101">↪→

59 <Data>
60 3
61 </Data>
62 </Component>
63 </TransportComponents>
64 </TransportModule>
65

66 <ReactionModule name="PhreeqCRM" version="3.3.11-12535"
runReactionStep="1">↪→

67 <Nthreads>8</Nthreads>
68 <PhreeqcDatabase directoryPath="inputs">
69 phreeqc.dat
70 </PhreeqcDatabase>

52



71 <OnInit writeOutput="true" errorHandlerMode="1"
componentH2O="false" rebalanceFraction="0.5"
rebalanceByCell="true" useSolutionDensityVolume="false"
setPartitionUZSolids="false" unitsSolution="1"
unitsPPassemblage="1" unitsExchange="1" unitsSurface="1"
unitsGasPhase="1" unitsSSassemblage="1" unitsKinetics="1">

↪→

↪→

↪→

↪→

↪→

72 <InitCond mapValue="3"
directoryPath="inputs">komain3.phr</InitCond>↪→

73 <BorderCond mapValue="50" directoryPath="inputs"
idTimeStep="0">kc_amd.phr</BorderCond>↪→

74 </OnInit>
75 <OnActivation initFrom="MapComponent" borderCondChange="true">
76 <InitCond>
77 <MapComponent componentID="0"/>
78 </InitCond>
79 <BorderCond>
80 <IDTimeStep>0</IDTimeStep>
81 </BorderCond>
82 </OnActivation>
83 <RunCells timeConversion="1.1574e-5" representativeVolume="1"

saturation="1" density="1" pressure="1" temperature="20">↪→

84 <Run idTimeStep="0" time="0">
85 </Run>
86 </RunCells>
87 <PhreeqcOutputs>
88 <RunOutputs directoryPath="Results" prefixFilename="pichem_amd_1D"

writeCells="all" writeSteps="all">↪→

89 <WriteCell id="0"/>
90 <WriteStep id="0"/>
91 </RunOutputs>
92 <DumpFile></DumpFile>
93 </PhreeqcOutputs>
94 </ReactionModule>
95

96 <ResultFile directoryPath="Results" filename="results.xml"
useCsvSubdirs="true">↪→

97 <Transport writeCells="all" writeSteps="all">
98 <LoopStep>1</LoopStep>
99 </Transport>

100 <Reaction writeCells="all" writeSteps="all">
101 <LoopStep>1</LoopStep>
102 </Reaction>
103 </ResultFile>
104

105 </TRM>
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Appendix C

TRM2D structure description

Figure C.1: Basic structure of the TRM2D software. (Adopted from [4])
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