
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Dance Genre Recognition from a
Video of a Dancing Pair

Štěpán Křivánek
Open informatics

August 2022
Supervisor: prof. Ing. Jiří Matas, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492179Personal ID number:Křivánek ŠtěpánStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Dance Genre Recognition from a Video of a Dancing Pair

Bachelor’s thesis title in Czech:

Rozpoznávání tanečního žánru z videozáznamu páru

Guidelines:

1. Propose an approach for ballroom dance recognition that is based on visual information only. The method will be tested
on videos with one or more dancing pairs.
2. Collect a suitable set of data for both training and testing. Consider both manual annotation and noisy annotation by
the audio-based program for dance recognition developed by T. Pavlín [1] and the dataset of of P. Kouba [2]
3. Solve the problem of tracking of individual dancers using a representation of skeleton keypoints and their clustering into
dancing pairs.
4. Apply a selected method for activity recognition, using the tracks of the pairs. The method should aim at recognising
the dance from the broadest set of viewpoints.
5. Evaluate the method on tracks of varying length and estimate the time necessary to reliably estimate the dance category.
Compare your results with the work of P. Kouba [2]

Bibliography / sources:

[1] Tomáš Pavlín: Dance Recognition from Audio Recordings (Master's thesis, 2020).
[2] Petr Kouba: Recognition of Dance Genres from Video (Master's thesis, 2021).
[3] Z. Cao and G. Hidalgo Martinez and T. Simon and S. Wei and Y. A. Sheikh : OpenPose: Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields (IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019).

Name and workplace of bachelor’s thesis supervisor:

prof. Ing. Jiří Matas, Ph.D. Visual Recognition Group, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 15.08.2022Date of bachelor’s thesis assignment: 03.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Ing. Jiří Matas, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank prof. J. Matas
for his patience and motivation, when
it was needed the most, as well as Petr
Kouba for providing me with his previ-
ous work (including valuable datasets)
and also for his willingness and fresh
ideas.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, 15 August 2022

. .

v

Abstrakt / Abstract

Navrhujeme vylepšení nedávné práce
Petra Kouby, která se týká rozpoznávání
společenských tanců z videa. Soustředili
jsme se výhrádně na vizuální data, a
abychom mohli naše výsledky porovnat,
použili jsme stejné datasety. Stejně jako
Petr Kouba jsme tanečníky reprezen-
tovali jako skeletony. Nicméně jsme
pro jejich extrakci nahradili OpenPose
za HRNet pro dosažení větší přesnosti
skeletonu a MS-G3D jsme zaměnili za
PoseC3D pro přesnější klasifikaci ta-
nečních žánrů. Přesnost (Top-1) nově
navrhované metody dosahuje na 10-
Let’s Dance datasetu 77.4%, což je
přibližně o 22% více než metoda navrh-
nutá v práci Petra Kouby, ta dosahuje
55.5%. Dále jsme metodu otestovali na
datasetu Dance Tutorials Dataset, kde
jsme dosáhli přesnosti 74.5%, což je asi
o 10% více (64.8%).

Klíčová slova: Tanec, Rozpoznávání
, Klasifikace, HRNet, PoseC3D, Open-
Pose, MS-G3D, ByteTrack

Překlad titulu: Rozpoznávání taneč-
ního žánru z videozáznamu páru

We propose improvements of the
recent work of Petr Kouba, concerning
ballroom dance genre recognition from
video. We focused on visual data only
and for comparability we use the very
same datasets. Similarly to Petr Kouba
we use a skeleton representation of the
dancers. However, we replaced Open-
Pose with HRNet for pose estimation to
achieve better precision and MS-G3D
with PoseC3D for more accurate classi-
fication of the dance genres. The Top-1
accuracy of our newly proposed method
evaluated on the 10-Let’s Dance dataset
is 77.4%, which is approximately 22%
higher than the Top-1 accuracy of
the method proposed by Petr Kouba
(55.5%) and also on the Dance Tutorials
Dataset achieving the Top-1 accuracy
74.5%, which is roughly 10% higher
(64.8%).

Keywords: Dance, Recognition, Clas-
sification, HRNet, PoseC3D, OpenPose,
MS-G3D, ByteTrack

vi

Contents /

1 Introduction 1

2 Datasets 3
2.1 The base datasets 3

2.1.1 Dance Tutorials Dataset . . . 3
2.1.2 10-Let’s Dance 3
2.1.3 YT8M Ballroom 5

2.2 Datasets used for pre-
training the models 5

2.2.1 COCO 5
2.2.2 Kinetics-400 5
2.2.3 FineGym 5
2.2.4 NTU-60 5

3 State of the art 6
3.1 OpenMMLab project 6
3.2 Human detection 6
3.3 Human pose estimation 6

3.3.1 Top-Down vs Bottom-
Up approach 7

3.4 Tracking 7
3.4.1 HRNet tracking perfor-

mance 8
3.4.2 Current state of the art

tracking methods 8
3.5 Action recognition 9

3.5.1 Graph convolutional
networks 9

3.5.2 Convolutional neural
networks 9

4 Objects of interest 11
4.1 Pose estimation 11
4.2 Human detection 12
4.3 Human tracking 12
4.4 Pair reduction 13

4.4.1 Pair Matching 13
4.4.2 Pair selection 14

5 Errors 16
5.1 Tracking errors 16
5.2 Pair reduction errors 16
5.3 HRNet pose estimation errors . 17

6 Experiments 19
6.1 Testing environment 19

6.1.1 Hyperparameters 19
6.1.2 Metrics 19

6.2 Learning rate 21
6.3 Datasets split 21

6.4 Fine-tuning 22
6.5 More errors 23
6.6 Pipelines 23
6.7 Comparison to the Kouba

results 24
7 Conclusion 26

References 27

vii

Tables / Figures

1.1 ’The 10 Dances’ belonging
to the so-called International
Style.. .2

2.1 Classes in Dance Tutorials
Dataset, total footage of their
instances and number of dif-
ferent videos from which the
instances were obtained.4

2.2 Classes in 10-Let’s Dance, to-
tal footage of their instances
and number of instances per
class. .4

3.1 Comparison of HRNet-w32
Top-Down and Bottom-Up
approach on COCO and
NTU-60. .7

3.2 Results of pose tracking on
the PoseTrack2017 test set.8

5.1 Statistical summary of some
the most common errors. 16

6.1 Comparison of different ap-
proaches to split the Dance
Tutorials Dataset, evaluated
by the Faster R-CNN + HR-
Net + PoseC3D fine-tuned
on FineGym . 21

6.2 Comparison of models
trained on differently split
Dance Tutorials Dataset on
the 10-Let’s Dance dataset. 22

6.3 Comparison of different fine-
tuning approaches on the
manually split Dance Tuto-
rials Dataset evaluated by
Faster R-CNN + HRNet +
PoseC3D . 22

6.4 Comparison of different fine-
tuning approaches on 10-
Let’s Dance evaluated by
Faster R-CNN + HRNet +
PoseC3D. 22

6.5 Comparison of models
learned on the 10-Let’s
Dance dataset by different
fine-tuning approaches on
the manually split Dance

3.1 Schema of the PoseC3D mod-
el. 10

4.1 OpenPose and HRNet skele-
ton comparison. 12

4.2 Diagram of the examined
pipelines. 15

4.3 Heatmap visualization.. 15
5.1 Example of a tracking error

caused by overlapping and
poorly detected dancers. 16

5.2 Example of a pair selection
error caused by poor tracking. . 17

5.3 Example of a pair selection
error caused by a moving
camera. 17

5.4 Example of pairing errors. 17
5.5 HRNet pose estimation er-

rors.. 18
6.1 An example of a configura-

tion file for MMAction2. 20

viii

Tutorials Dataset evaluated
by Faster R-CNN + HRNet
+ PoseC3D. 22

6.6 Comparison of different
pipelines fed into PoseC3D
on manually split Dance
Tutorials Dataset. 23

6.7 Comparison of applying the
ByteTrack-Reduction before
and after dividing the videos
into 300 frame segments,
evaluated on Dance Tutorials
Dataset with MS-G3D. 23

6.8 Comparison of different
pipelines fed into PoseC3D
on manually split Dance
Tutorials Dataset divided
into 300 frames. 24

6.9 Comparison of different
pipelines fed into MS-G3D
on manually split Dance
Tutorials Dataset divided
into 300 frames. 24

6.10 Comparison of different
pipelines fed into PoseC3D
on the 10-Let’s Dance dataset . 24

6.11 Comparison of different
pipelines fed into MS-G3D
on the 10-Let’s Dance
dataset. 24

6.12 Comparison of the best mod-
el from our pipeline with the
OpenPose + MS-G3D model
from the thesis of Petr Kou-
ba [1]. 25

ix

Chapter 1
Introduction

Dance genre recognition is still quite an unexplored field as it is pretty specific. When
it comes to dance, probably everyone would at some point think about music, since
these two come together just like a fork with a knife. Furthermore, dance genres are
often in correlation with music genres, therefore one may assume a dance genre from
both, music or dancer’s movements.

Although it is probably a bit more natural to approach such problem as the dance
genre recognition by audio based methods, the audio may not always be available. Such
methods could also suffer from too much ambient noise. In this thesis we focus on the
visual perception only. However, there are still many ways one can handle the visual
information given. One could for example try to classify the action performed just
by the flow of the image pixels, that would likely come with a problem to separate the
ambience, even tho the information about ambience could in some cases be also helpful.
To get rid of this problem we first separate the human skeletons and then work just
with them. In this thesis we study the application of the state of the art skeleton based
action recognition method to dance genre recognition and compare it to another similar
work.

Two recent theses [2] and [1] look respectively into audio and visual based dance
genre recognition. Since we examine the visual based recognition only, the thesis of
Petr Kouba [1] is at our most interest. As the field of computer vision and science in
general still grows quickly, newer and better tools have already been developed and
released. Therefore there are ways to further improve the dance genre recognition
method proposed in the thesis [1] and in this thesis we will introduce a new model
(involving pose estimation, tracking and action recognition) for visual based dance
genre recognition. The new model preserves the idea to interpret people, who are the
subject of our interest, as skeletons with keypoints, but improves most of the core
segments of the model. All these new segments are a part of the OpenMMLab [3]
project, which includes various benchmarks and toolboxes with implementations of the
current state of the art methods in action recognition.

Considering dance genres, there is way too many of them and both theses work with
a set of data, which consists of ballroom dances belonging to the so-called International
Style. Ballroom dances involve 5 standard dances and 5 Latin dances as shown in the
Table 1.1. In the thesis [1] a term ’The 10 Dances’ is introduced to simplify nomencla-
ture and so we will follow the convention and use it as well for any further mentions
of these dance genres. For a clear comparison of the new model we will limit ourselves
only to the The 10 Dances as well and we will also train and validate our model on the
very same datasets as used in [1].

1

1. Introduction .

Latin dances Standard dances

Rumba Tango
Cha-Cha Slowfox
Jive Quickstep
Paso Doble Viennese Waltz
Samba Waltz

Table 1.1. ’The 10 Dances’ belonging to the so-called International Style. The table has
been taken from [1].

2

Chapter 2
Datasets

An integral part of any machine learning are datasets, as a lot of data is usually needed
for a model to learn enough to perform well on the real-world data. In this chapter we
will provide information about the datasets used throughout our experiments and also
about those which were important for the new dance genre recognition model. Since
this work is very closely related to the one of Petr Kouba [1] and we want our results
to be well comparable with his ones, we will be using the very same datasets and their
modifications.

2.1 The base datasets
The base of our datasets consists exactly of those datasets used in the thesis [1]. That
involves three datasets - Dance Tutorials Dataset, 10-Let’s Dance, and YT8M Ballroom.
However, we used only the first two of them for proper training and validation. The
YT8M Ballroom dataset was in the thesis [1] mostly used only to enhance the Dance
Tutorials Dataset with more, yet noisy data. However as the results of [1] show, there
was no significant improvement, and thus we decided to omit it from our tests and
rather focus on the other datasets.

2.1.1 Dance Tutorials Dataset
The Dance Tutorials Dataset was manually obtained and annotated by Petr Kouba as
a part of his thesis [1]. This dataset is constructed to involve a single dancing pair per
video with no other people in the background and it includes exactly the genres from
The 10 Dances. Therefore it should be an example of a best case scenario dataset.
However, the dataset is quite small as it contains only 13 - 21 unique videos per genre
with a total footage of roughly 10 minutes per genre, the exact distribution of this
dataset is shown in the Table 2.1. Due to the low variety of unique videos the dataset is
likely to be easily overfitted. Moreover, the dataset includes videos with very different
lengths, which may cause problems for the training, as the dance genre recognition
model might focus on improving the genres with more footage at the expense of others.

Fortunately the thesis [1] provides us also with a manual annotation on how to split
the data into training and validation ones to preserve roughly the same ratio for all
genres. This also means we can compare the models trained on the very same data. In
this thesis we will proceed to compare both, manually annotated as well as randomly
split data.

2.1.2 10-Let’s Dance
The 10-Let’s Dance dataset is again introduced in the thesis [1]. Nine of the ten genres
originate from a Let’s Dance dataset [4], however since Viennese Waltz is missing in
this dataset, it was added later as a part of the thesis [1]. Therefore one should bare
in mind, that some inconsistencies regarding Viennese Waltz in this dataset can result
from possibly too different samples in comparison to the other genres. Compared to

3

2. Datasets .

Genre Total footage Unique videos

Cha-Cha 10:10 13
Slowfox 10:19 16
Jive 10:27 15
Samba 10:23 16
Tango 10:21 16
Waltz 10:20 18
Paso Doble 10:23 17
Quickstep 10:19 21
Rumba 10:25 16
Viennese Waltz 10:24 21

Table 2.1. Classes in Dance Tutorials Dataset, total footage of their instances and number
of different videos from which the instances were obtained. The table has been taken

from [1].

the Dance Tutorials Dataset, The 10-Let’s Dance dataset includes more variant video
instances with slightly longer footage per genre. Also the instances do not differ as much
in their length, so there is no problem in splitting the dataset just at random. However,
that also means that our training and validation datasets do not exactly match those
used in [1].

Another major difference is that the videos from this dataset usually contain multiple
people. They usually include more than a single dancing pair and also often many
spectators, which are not involved in the action performed to be recognized. That sets
us a challenge to distinguish the relevant people from the misleading ones. Unlike the
Dance Tutorials Dataset, which consists from dancing tutorials as its name suggests,
the 10-Let’s Dance dataset is mostly made out of videos capturing a dance competition.
That means it includes more complex and professional dance moves instead of just the
basic ones.

Genre Total footage Number of instances

Cha-Cha 16:04 96
Slowfox 13:03 77
Jive 17:44 102
Samba 15:59 94
Tango 13:13 79
Waltz 13:23 79
Paso Doble 16:04 94
Quickstep 13:23 80
Rumba 15:14 91
Viennese Waltz 13:31 80

Table 2.2. Classes in 10-Let’s Dance, total footage of their instances and number of in-
stances per class. Some of the instances from 10-Let’s Dance were not available due to
territorial copyright restrictions or due to the video being removed from Youtube. The

table has been taken from [1].

4

. 2.2 Datasets used for pre-training the models

2.1.3 YT8M Ballroom
YT8M Ballroom is the last dataset used for experiments in the thesis [1]. As already
mentioned, the purpose of this dataset was to provide more data for the Dance Tutorials
Dataset and eventually for the 10-Let’s Dance as well. However, it turned out to make
no notable difference, and thus we will omit this kind of experiments and will limit
ourselves to the other two datasets.

2.2 Datasets used for pre-training the models
There also is a few datasets, which we did not use directly during our training or
testing, but they were used for pre-training various parts of the model and therefore
they deserve to be mentioned as well. Most of them will probably be well known to
everyone, who has ever gotten in touch with the action recognition before.

2.2.1 COCO
COCO [5] is a large scale dataset for object detection, segmentation and key-point de-
tection amongst others. It includes predefined training, validation and testing datasets,
which altogether consist of 250000 human images with labeled keypoints. Therefore is
widely used for training the keypoint detection.

2.2.2 Kinetics-400
Kinetics-400 [6] is the original version of the Kinetics dataset, which contains 400 differ-
ent human action classes with variant YouTube video clips. It is a pioneer between the
datasets aiming for human action recognition. Later, extended versions of this dataset
with 600 and 700 classes were released.

2.2.3 FineGym
FineGym [7] is another action recognition dataset. However, as the name may suggest,
all of the videos from this dataset come from various disciplines performed in a gym-
nasium. This dataset also contains people, who do not belong to the action performed,
such as audience and referees, and involves very closely related classes.

2.2.4 NTU-60
NTU-60 [8], originally called NTU RGB+D, is a large-scale dataset for human action
recognition captured by a depth camera and therefore allowing for 3D human action
recognition.

5

Chapter 3
State of the art

The field of computer science and the computer vision in particular progresses at the
speed of light and what was considered as the state of the art yesterday may not be
so today anymore. Despite the fact Petr Kouba published his thesis just an year ago,
basically all of the parts of his model are nowadays outdated. Many improvements have
been made in all three major subjects of interest for skeleton-based action recognition,
that involves pose estimation, pose tracking and finally the action recognition itself
built on top of these. In this chapter we will discuss their improvement evaluated on
the most relevant benchmarks for our task of dance genre recognition.

3.1 OpenMMLab project
First let’s take a look at the OpenMMLab project [3] as it turned out to be at our
most relevance. Briefly, it is a project which includes and unifies a lot of open-source
projects from the field of computer vision and deep learning. That includes our subjects
of interest, as the contributors of this project are active researchers from all over the
world in the field of action recognition. OpenMMLab includes a lot of different tool-
boxes, but the most important for us are the ones for pose detection MMDetection [9],
pose estimation MMPose [10], object tracking MMTracking [11] and last but not least
a toolbox for general video understanding, which involves action recognition, MMAc-
tion2 [12]. All these toolboxes together create a complete set of what one may need for
dance genre recognition. Moreover they are all well documented and open-source.

3.2 Human detection
Our first point of interest is the human detection. There are many methods, which
aim at detecting various objects and that usually includes human as well and therefore
they would suit our task. As we want the model to have wide range of possibilities
to be used for, we decided to focus mainly on methods for real-time detection. One
of such widely used methods is Faster R-CNN [13], which was also used in the state
of the art model for skeleton based action recognition [14]. And therefore it deserves
our attention. However, as the benachmarks [15] show, the current state of the art for
real-time object detection are modifications of the YOLO [16] series detectors. Some
of them are also implemented in the MMDetection [9] toolbox.

3.3 Human pose estimation
Our second point of interest is the human pose estimation. As mentioned in [1] and
according to the state of the art pose estimation benchmark [17], OpenPose, which was
used for the pose estimation of dancers in [1], has already fallen behind the current state
of the art a lot. There are many more methods, which achieve better results nowadays,

6

. 3.4 Tracking

but we focused in particular on HRNet as it is again the method used in the current
state of the art model for skeleton based action recognition [14]. This model and its
derivations have currently been used by many projects leading human pose estimation
as well as multi-person [18] pose estimation benchmarks. Just to mention a few, they
achieve great results on MPII Human Pose [17] and COCO [19]. And again there is
also an implementation of HRNet in MMPose [10], which in addition also claims to
achieve the same results as other HRNet implementations at higher speed. See their
benchmark1 tested on COCO 2.2.1 dataset.

3.3.1 Top-Down vs Bottom-Up approach
Since we want to compare HRNet [19] with OpenPose [20], we first need to understand
the difference of their pose estimation approach. In general the Top-Down approach
first detects all people on a given image and sets tight bounding-boxes around them,
then it proceeds to detect the keypoints of each individual person by a single-person
pose estimator. The disadvantage of this approach lies in its speed, as it needs to
process each image for every person detected. Yet if there are very few people in the
image, the Top-Down approach can still be comparably fast to the Bottom-Up.

On the other hand, the Bottom-Up approach first detects all keypoints on a given
image and then tries to connect these keypoints into human poses or at least their
parts. The first part (detection of the keypoints) of this approach is usually quite fast,
but the second part may struggle to connect those keypoints and can take a while. A
work [20] proposes a method known as OpenPose, which can estimate human poses
at real-time. However, it also comes with a greater risk of the keypoints not being
correctly connected, which can affect the neighboring frames in further usage as well.

OpenPose is probably the best known human pose estimator using the Bottom-Up
approach and was used in the thesis [1], however most of the state of the art models
nowadays prefer the Top-Down approach. Nevertheless, the Bottom-Up approach may
still perform better at some specific tasks, e.g. to perform a real-time human pose esti-
mation from a mobile phone camera. MMPose [10] does not include an implementation
of OpenPose, but it comes with an implementation of both approaches for HRNet [19].
According to the state of the art in skeleton based action recognition [14], the Top-Down
HRNet performs far better than its Bottom-Up sibling on the COCO 2.2.1 dataset and
slightly better on the NTU-60 2.2.4 dataset as well. The results achieved in this work
are shown in the Table 3.1.

Pose Estimator COCO AP NTU-60

HRNet (Top-Down) 0.746 93.6
HRNet (Bottom-Up) 0.654 93.0

Table 3.1. Comparison of HRNet-w32 Top-Down and Bottom-Up approach on COCO and
NTU-60. The table has been taken from [14].

3.4 Tracking
Our third point of interest is the tracking of the human poses. Since human pose
estimation provides us only with skeletons on each frame, we also need to somehow keep
the track of which skeleton belongs to which one in the continues frames. Considering

1 https://github.com/open-mmlab/mmpose/blob/master/docs/en/benchmark.md

7

https://github.com/open-mmlab/mmpose/blob/master/docs/en/benchmark.md

3. State of the art .
dancing, it becomes quite a difficult task as the dancers keep changing positions quickly,
overlap each other from the camera’s point of view and can also partially or even
completely disappear from the view. There can also be more people in the video, which
in our case includes groups of pairs or people who are not dancing and may therefore
contribute as a noise.

3.4.1 HRNet tracking performance
The work [19] also proposes a pose tracking method for their pose estimation network.
As stated in the chapter 4.3 in [19], the tracking method is based on the one proposed in
SimpleBaselines [21]. The method combines the bounding boxes obtained from a single
image object detector with those calculated from neighboring images by the optical
flow of the video. When the bounding boxes are combined, they apply a non-maximum
suppression to reduce the greatly overlapping bounding boxes into the one with the
highest confidence.

The work [19] compares HRNet with the tracking method described above with other
models on the PoseTrack2017 dataset as shown in the Table 3.2. The metrics used for
the comparison are mAP, which is the mean average precision calculated throughout
the estimated poses, and MOTA, which stands for multi object tracking accuracy and
takes into account the object detection as well as tracking . For more details about these
metrics, follow the work [19]. At the time of its publication, HRNet was dominating
the field of human pose tracking. Few years passed since then and according to [22]
only very few new models managed to overtake the HRNet on PoseTrack2017 dataset
considering the MOTA metric and none considering the mAP metric.

Entry Additional training Data mAP MOTA

ML-LAB COCO+MPII-Pose 70.3 41.8
SOPT-PT COCO+MPII-Pose 58.2 42.0
BUTD2 COCO 59.2 50.6
MVIG COCO+MPII-Pose 63.2 50.7
PoseFlow COCO+MPII-Pose 63.0 51.0
ProTracker COCO 59.6 51.8
HMPT COCO+MPII-Pose 63.7 51.9
JointFlow COCO 63.6 53.1
STAF COCO+MPII-Pose 70.3 53.8
MIPAL COCO 68.8 54.5
FlowTrack COCO 74.6 57.8
HRNet-W48 COCO 74.9 57.9

Table 3.2. Results of pose tracking on the PoseTrack2017 test set. The table has been
taken from [19].

3.4.2 Current state of the art tracking methods
As the HRNet article [19] was published in 2019 (which may not seem too long ago, but
as we already saw it kind of is in this field), the tracking methods were improved since
then as well. The datasets we use always consist out of at least two people (the danc-
ing pair) and often more, therefore we explore the multiple object tracking methods.
Probably the most prestigious benchmarks for multiple object tracking are nowadays
those published in MOT Challenge [23]. If we take a look at the MOT17 [24] and

8

. 3.5 Action recognition

MOT20 cite[MOT20] benchmarks, the currently leading methods considering MOTA
score are BoT-SORT [25] and ByteTrack [26].

However, there is also another very relevant benchmark for our purposes. The bench-
mark [27] evaluates the multiple object tracking on the DanceTrack dataset. As the
name suggests the DanceTrack dataset consists of various dance genre videos. These
genres are not quiet the same as The 10 Dances and therefore we do not use this dataset
in this thesis. Nonetheless, there is no information about the performance of the BoT-
SORT method in the benchmark [27], however the ByteTrack method ranks yet again
second, considering the MOTA score. Since this benchmark is evaluates tracking of
dancers, we can expect the ByteTrack to have very similar performance on the Dance
Tutorials Dataset and 10-Let’s Dance dataset. Another benefit of ByteTrack is that
there is also an implementation of it in MMTracking [11], therefore we decided to further
inspect ByteTrack in our experiments.

3.5 Action recognition
Our last point of interest is the action recognition. Now when we are finally able to
extract and properly track the skeletons, we would like to estimate the action performed
by them, which in our case is the genre of the dance performed by the skeletons in a
given video.

3.5.1 Graph convolutional networks
Nowadays the most dominant methods for action recognition are based on the graph
convolutional networks (GCN). The basic idea of these methods is to model skeleton
sequences as a spatiotemporal graphs. Such graph consists of a set of vertices, which
represent the keypoints of the skeletons, and a set of edges, which connect the keypoints
to form a human pose (just like bones) and also connect the same keypoints throughout
the consecutive frames. After building such graph, they perform convolution just like
convolution neural networks (CNN), but generalized to be able to work with any number
of neighbors per each cell (vertex in case of GCN).

Petr Kouba in his work [1] already discusses the state of the art of GCN-based
methods. The state of the art of these methods did not change too much and therefore
please follow his work for more information about it. He also in his work adopts one
of the highest scoring GCN-based methods on Kinetics-Skeleton dataset [28] called
MS-G3D, and thus it will be of our interest.

3.5.2 Convolutional neural networks
In spite of the stagnation of GCN-based methods, the work [14] proposes another dif-
ferent approach for skeleton-based action recognition and proposes a new model called
PoseC3D. This model now ranks first at the Kinetics-Skeleton dataset [28] and there-
fore it naturally caught our attention. PoseC3D achieves the accuracy of 49.1% on
the Kinetics-Skeleton dataset [28]. This may not seem as much of the first sight, but
it is actually improvement by more than 10% in comparison to the best GCN-based
methods (MS-G3D scores 38.0%).

PoseC3D follows on from another approach for skeleton based action recognition,
which adopts classical 2D-CNN or 3D-CNN. As mentioned in the work [14], PoseC3D
transforms each skeleton into a heatmap by calculating a gaussian heatmap centered at
each keypoint for each frame. If there are more skeletons in a frame, their heatmaps get
accumulated. When each frame is processed like this, all frames are stacked together

9

3. State of the art .
by the temporal axis and therefore form a 3D volume heatmap. This heatmap is then
fed into the 3D -CNN. The whole process and architecture of the PoseC3D network are
depict in Figure3.1.

The work [14] argues that the reason for using a 3D-CNN instead of a 2D-CNN is
because of its good capability for spatiotemporal feature learning. According to [14],
the GCN-based methods lack robustness and scalability. Moreover, since PoseC3D can
just accumulate the heatmaps of multiple skeletons, the input preserves the same size
regardless of the number of skeletons, which is not the case of GCN-based methods as
their graphs need to be extended.

Besides, PoseC3D is currently at the top of the ranks of many other action recogni-
tion benchmarks [29], including the skeleton-based action recognition. Moreover, there
is also its implementation included in MMAction2 [12], which also makes it a great
candidate to fulfill the last part the model for skeleton-based dance genre recognition.

Figure 3.1. Schema of the PoseC3D model. The figure has been taken from [14].

10

Chapter 4
Objects of interest

In this chapter we describe all the parts of the observed pipeline for visual based dance
genre recognition. We observe the current state of the art method for skeleton based
action recognition PoseC3D and its application to dance genre recognition. We also
combine this method with the method described in the thesis of Petr Kouba [1] to see
which of the parts have the greatest impact on the gained results.

We then provide a diagram of the pipelines in the Figure 4.2. Notice, that we also feed
PoseC3D network with skeletons without previous pair detection and without removing
the audience. Since PoseC3D handles well even large amount of human skeletons, we
do not need to reduce the amount of detected skeletons and observe its impact. We
further refer to this as No-Reduction method.

4.1 Pose estimation

The work [14] adopts the Top-Down approach of HRNet-w32 for pose estimation. Since
the benchmarks presented in the section 3.3 and 3.4 have shown that HRNet performs
quiet well in both, pose estimation and tracking, we decided to stick with it as it should
be a strong competitor for OpenPose. However, we also follow the proposed Top-Down
approach of HRNet as it scores better. This causes some incompatibilities discussed
later in the section, because OpenPose implements a Bottom-Up approach. We discuss
this problem and its solution later in the section 4.3.

HRNet also uses a slightly different format of the skeletons than OpenPose as depict in
the Figure 4.1. There are multiple formats of the skeleton for OpenPose., a 25-keypoint
one and 18-keypoint one. As recommended in the thesis [1] we use the 25-keypoint
one for a better precision and then drop the feet keypoints to obtain the 18-keypoint
skeleton. HRNet skeleton on the other hand uses a 17-keypoint format. To transform
the OpenPose skeleton to HRNet format we drop the neck keypoint and reorder the
rest. To transform the HRNet skeleton to the OpenPose format we calculate the missing
neck keypoint as the average of the two shoulder keypoints, that includes the confidence
calculation.

11

4. Objects of interest .

Figure 4.1. OpenPose and HRNet skeleton comparison. OpenPose skeleton depict on the
left and HRNet on the right.

4.2 Human detection
Considering we use a Top-Down pose estimation approach, we first need to select a
detector, which provides us with bounding boxes of detected humans for each frame.
The work [14] adopts for this purpose a widely used Faster R-CNN [13]. However,
the method we want to use for tracking 4.3 prefers other detector called YOLOX [30].
We can notice that it is a modification of a the detector discussed in the section 3.2.
Moreover we can see on the benchmarks [31], that it is a highly ranked method at
various real-time object detection. For these reasons we decided to go with the YOLOX
method.

4.3 Human tracking
In the task of dance genre recognition, it may be also appropriate to track the detected
humans, so we can treat each human consistently throughout all the frames. For our
purposes, this is a very important prerequisite for a successful reduction of the crowded
video into a single dancing pair. This procedure is further discussed in section 4.4.
As the results of section 3.4 show, the most suitable tracking method for the dance
genre recognition currently seems to be ByteTrack [26] and so we will adopt it into our
pipeline.

Just like the other currently best tracking methods, ByteTrack [26] aims to track
the bounding boxes rather than the skeletons themselves afterwards. However, since
OpenPose is a Bottom-Up approach pose estimator, it does not provide us with bound-
ing boxes. To create them with calculate the minimum and maximum of the x and
y coordinates of keypoints for each skeleton. We would now like to feed the obtained

12

. 4.4 Pair reduction

bounding boxes into ByteTrack. However the implementation we use has closely con-
nected YOLOX detector to ByteTrack and we did not manage to feed ByteTrack with
the bounding boxes from OpenPose.

For that reason we figured another way to set the track ids to the bounding boxes
from OpenPose. We first run ByteTrack with YOLOX and get the bounding boxes
with track ids. Then we proceed to calculate the intersection over union (IoU) of each
of the bounding boxes with each of those from OpenPose. Then we select the pair
of bounding boxes with the highest IoU score, pass the track id ByteTrack bounding
box to OpenPose bounding box and and remove these two bounding boxes from this
procedure. We run this for each frame separately and repeat until either all ByteTrack
bounding boxes passed their track id or all OpenPose bounding boxes were assigned a
track id. The OpenPose bounding boxes with no track id are later in the pair reduction
procedure 4.4 thrown away. Therefore bear in mind that the experiments with Open-
Pose skeletons going through ByteTrack-Reduction described in section 4.4 are laden
with a greater error caused by this method.

For the comparison, Petr Kouba in his work [1] groups the skeletons in consecutive
frames based on their pose. His method matches the skeletons in consecutive frames
based on their keypoints distance, the lower the distance the better. Then he applies
the same greedy method. He selects the best pair and removes it from the selection,
but minimizes the keypoint distance instead of maximizing the IoU of the bounding
boxes.

4.4 Pair reduction
Now that we have a set of skeletons, which are all assigned a track id, we connect the
skeletons throughout the frames based on their track id. Then we need to reduce them
into a single dancing pair. To achieve this we first try to match all skeleton into pairs.
That is not a difficult task considering the Dance Tutorials Dataset as there usually
already is just a single pair. However, it is a very challenging task on the 10-Let’s
Dance dataset, because it consists of multiple dancing pairs and a lot of other people
in the audience. When we have the skeletons connected into the pairs, we select the
best dancing pair, while trying lower the chance that a pair in audience gets selected.
We further refer to this pair reduction as ByteTrack-Reduction, since it relies on the
tracked bounding boxes from ByteTrack.

We also refer to the reduction performed by Petr Kouba as Kouba-Reduction, see
its specification in [1] chapter 4.2.2. We unfortunately do not have the access to the
original script and so we can not apply it on the output of HRNet, but we at least have
the already calculated output of the Kouba-Reduction applied to OpenPose.

4.4.1 Pair Matching
While we were trying to observe some pattern that would define a dancing pair, we came
up with two major ideas on how to identify a dancing pair. The first one is to match the
skeletons according to the distance of their hands. From what we observed a dancing
pair very often holds their hands in some way. However, they could also hold one hand
of each other while stretching the other, therefore we calculate the hand distance of
each two skeletons as the minimal distance of each combination of their hands (left-left,
right-right, left-right, right-left). It could happen that the pair real pair does not hold
their hand whatsoever, in this case we hope that the average distance of their hand will
still be lower than compared to others, since they dance close to each other.

13

4. Objects of interest .
The second major idea is to connect a pair based on their bounding box size as we

expect the dancing pair to be in the same distance from the camera and thus have a
similar size of the bounding box, even tho it could benefit pairing men together and
women together, because of their average size in population.

We now multiply the hand distance with the second power of bounding box size
difference as it turned out to be the more important factor. To make sure we do not
benefit pairs with more common frames, we calculate their score as the average over all
common frames. We then apply again the same greedy procedure as used in tracking
and match the pairs continuously from the ones with the highest score.

4.4.2 Pair selection

After we successfully paired all the detected skeletons, we now need to select a dancing
pair. To do so we tried to utilize various parameters with the trial and error method. In
the end we use four parameters, keypoint movement, bounding box movement, bound-
ing box size and the number of common frames. The first three are supposed to reduce
the chance of selecting a pair in the audience, the last one to just maximize the number
of the data we can work with. We always calculate these parameters for both skeletons
in the pair together.

Keypoint movement is calculated as the sum of the distances traveled by all keypoints
between 5 consecutive frames. The reason why we skip 4 frames is to benefit those who
preserve a continuous movement instead of those just vibrating on the same spot. The
downside of this that a poorly detected skeleton, who are vibrating on the same spot,
can still achieve quiet high score.

Bounding box movement is just the same as keypoint movement, but we count only
with one keypoint, being the middle of the bounding box. This is more robust method
for calculating the movement of the pair, but we still skip 4 frames as the bounding
box also vibrates on the same spot.

Bounding box size is the sum of the bounding box width and high. We then calculate
the average over all frames. The idea behind this is to benefit larger bounding boxes
as they are more likely to be a dancing pair, since they are closer to the camera and we
expect the camera to focus on the dancers.

The number of common frames is the number of frames, where both of the pair
members appear together. The reason for this parameter is to eliminate pairs who
could achieve amazing score, but would drastically lower the footage to work with. We
count the common frames instead of the total number of frames, because we expect the
action recognizer to give better results when evaluating the dancers as a pair together
instead of just each dancer separately.

When we finally calculate all these parameters, we normalize across all the dancing
pairs, except the number of common frames, we normalize this one using the total
number of frames. Then we just multiply these values together and select the pair
achieving the highest score. The greatest downside of this method is that we put a
lot of emphasis on the movement of the pair, which is relative to the camera. If the
camera moves to follow a real dancing pair, the dancing pair is actually not moving
much, whereas the audience moves a lot. Therefore we expect this method to work well
on the videos with static camera and we hope that if the camera moves, the dancers
move enough and are big enough to still outscore the audience.

14

. 4.4 Pair reduction

Figure 4.2. Diagram of the examined pipelines.

Figure 4.3. Heatmap visualization. Picture with a skeleton pair on the left, keypoints
heatmap in the middle and limbs heatmap on the right.

15

Chapter 5
Errors

As the methods observed are far from perfect, in this chapter we take a look the most
common or interesting errors, which occurred during our testing.

Error type: Tracking error Pairing error Pair selection error

Occurence 46.7% 20.0% 6.7%

Table 5.1. Statistical summary of some the most common errors based on a sample of 30
videos.

5.1 Tracking errors
Most of the tracking errors result from heavy overlapping of the dancers or dancers
leaving the scene and therefore being later redetected as a different person. The Fig-
ure 5.1 depicts two people being tracked as one person as the lady with big skirt is
difficult to be recognized as a human for the object detector.

Figure 5.1. Example of a tracking error caused by overlapping and poorly detected dancers.

5.2 Pair reduction errors
There are many parts that can fail during the pair reduction procedure. It also already
relies on the tracking results and as depict in Figure 5.2, the combination of errors
results in wrongly selected dancing pair. The reason why this pair was chosen as the
best dancing pair is because it is the only pair that appears on many frames as the
real dancing pairs just mostly pass by and are always redetected as a new dancing pair
and thus have very low percentage of frames they appear on. The camera also moves a
little and therefore the audience get some movement score.

As already mentioned, dealing with the moving camera is the greatest challenge and
as we can see in the Figure 5.3 the camera slowly transfers from the left frame to
the right one, following the dancing pair in the center and thus giving it almost no
movement score, unlike the crowd behind which moves quiet a lot, relatively to the
camera.

The Figure 5.4 depicts the error of pairing. In the left picture the guys on left are
mostly closer to each other than their actual dance partners and are also more similar

16

. 5.3 HRNet pose estimation errors

in size. In the right picture the dance partners of the selected dancers are completely
covered and therefore not detected whatsoever. Therefore it is an example of a pair
which was likely paired together in the later stage as the remaining dancers, but then
achieved a really good score while selecting the best dancing pair, since that does not
count with the pair distance anymore.

Figure 5.2. Example of a pair selection error caused by poor tracking.

Figure 5.3. Example of a pair selection error caused by a moving camera.

Figure 5.4. Example of pairing errors.

5.3 HRNet pose estimation errors
And lastly we show some of the errors during the pose estimation procedure in the
Figure 5.5. The first picture shows a lower body part of one dancer being connected
to the upper body part of the other one, which happened for both of the skeletons and
are therefore doubled. The second picture shows twisted limbs. The third one wrongly
connected keypoints, which is not a real error for PoseC3D. And the last one creating
a completely combined skeleton out of two dancers.

17

5. Errors .

Figure 5.5. HRNet pose estimation errors. 1) Doubled skeleton into a single person 2)
Switched body parts 3) Wrong keypoint connections 4) One skeleton out of two people

18

Chapter 6
Experiments

Now when we finally got acquainted with the observed pipelines for skeleton based genre
recognition and their possible errors, we can run some tests and see the comparison of
all the pipelines and then compare it with the method used in the thesis [1]. However,
there is still a lot of factors which can influence the performance the pipelines. And
to find the best configuration, we need to test them. In these experiments we will
inspect the impact of learning rate and fine tuning various checkpoints retrieved from
different datasets. We test all the different configurations on Dance Tutorials Dataset
as well as on 10-Let’s Dance dataset. All experiments on the 10-Let’s Dance dataset
were given 300 epochs and all the Dance Tutorials Dataset experiments 1000 epochs.
We also provide a preview of the most important sections of a configuration file used
to instantiate PoseC3D with different settings 6.1.

6.1 Testing environment

For reproduction purposes of our experiments on PoseC3D, we run them all with the
random seed for numpy and pytorch set to 0 and deterministic options for CUDNN
backend as described in the documentation1. For a better comparison with [1] we
originaly wanted to run all the tests on 2 GPUS, unfortunately during the experimenting
we discovered a bug, which resulted into running all the experiments on a single GPU
and since we already spent a lot of time on these experiments we proceeded to finish
the experiments with just a single GPU. Considering the MS-G3D settings, we follow
the best resulting ones obtained in the thesis of Petr Kouba [1].

6.1.1 Hyperparameters

We kept all the hyperparameters except learning rate the way they were set by default
by the authors of PoseC3D. That means we use a SGD optimizer with a weight decay
of 0.0003 and batch size of 16. We only needed to adjust the learning rate as discussed
in 6.2

6.1.2 Metrics

There are various methods to measure classification accuracy. The most popular one is
probably the Top-k accuracy. The Top-k accuracy will be represented as a percentage of
the correctly classified classes, where correctly means that the correct label is within the
first k predicted labels. In our experiments we will use the Top-1 accuracy only, despite
the Top-2 accuracy or even other Top-k accuracies holding a valuable information too,
as it would be rather overwhelming to follow the tables.

1 https://mmaction2.readthedocs.io/en/latest/getting_started.html

19

https://mmaction2.readthedocs.io/en/latest/getting_started.html

6. Experiments .
...
dataset_type = 'PoseDataset'
ann_file_train = 'data/posec3d/gym_train.pkl'
ann_file_val = 'data/posec3d/gym_val.pkl'
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
train_pipeline = [

dict(type='UniformSampleFrames', clip_len=48),
dict(type='PoseDecode'),
dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True),
dict(type='Resize', scale=(-1, 64)),
dict(type='RandomResizedCrop', area_range=(0.56, 1.0)),
dict(type='Resize', scale=(56, 56), keep_ratio=False),
dict(

type='Flip', flip_ratio=0.5,left_kp=left_kp, right_kp=right_kp),
dict(

type='GeneratePoseTarget',
sigma=0.6,
use_score=True,
with_kp=True,
with_limb=False),

dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])

data = dict(
videos_per_gpu=16, # Batch size of each single GPU
workers_per_gpu=2, # Workers to pre-fetch data for each single GPU
...

optimizer
optimizer = dict(

type='SGD', lr=0.2, momentum=0.9,
weight_decay=0.0003) # this lr is used for 8 gpus

optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
learning policy
lr_config = dict(policy='CosineAnnealing', by_epoch=False, min_lr=0)
total_epochs = 240 # Total epochs to train the model
checkpoint_config = dict(interval=10)
workflow = [('train', 10)]
evaluation = dict(

interval=10,
metrics=['top_k_accuracy', 'mean_class_accuracy'],
topk=(1, 5))

...
dist_params = dict(backend='nccl')
log_level = 'INFO' # The level of logging
work_dir = './work_dirs/posec3d/slowonly_r50_u48_240e_gym_keypoint'
load_from = None # load models as a pre-trained model from a given path.
resume_from = None # Resume checkpoints from a given path

Figure 6.1. An example of a configuration file for MMAction2 [12].

20

. 6.2 Learning rate

6.2 Learning rate
The first part of our testing aims to find the optimal or more likely suboptimal learning
rate. The authors already suggest one for various different setups of the network, but
for 8 GPUS. The suggested learning rates may vary a bit, but for our purposes the
most important ones were 0.1 and 0.2. Since we use only one GPU, by applying the
linear scaling rule we get a suggested learning rates around 0.01 and 0.03. For the fine-
tuning purposes we can expect it to be even lower. However these assumptions may
be also very wrong and therefore we decided to run most of our experiments for the
learning rates of 0.05, 0.01, 0.005, 0.003 and 0.001 to cover a wider interval of possibly
suboptimal learning rates

As one can see on the Table 6.1 and the Table 6.3, which were both evaluated
on Dance Tutorials Dataset, it seems that the suboptimal learning rate is somewhere
around 0.005, since it seems to be the peak of the neighboring learning rates and
performs significantly better. However considering the 10-Let’s Dance dataset, the
Table 6.4 suggests, that even higher learning rate could potentially achieve even better
results.

6.3 Datasets split
The second part focuses on different ways to split the datasets. That concerns mostly
the Dance Tutorials Dataset. A common technique is to split the dataset into a training
part and a validation part at random, while preserving a specific ratio. However as
already discussed in 2.1.1 splitting a dataset with varying length of the data samples
such as Dance Tutorials Dataset at random could make the learning overfit towards
specific genres. In the thesis [1] this problem is mentioned, yet not tested.

To see if the manual Dance Tutorials Dataset split avoids it better, we compare both
dataset splits, manual performed for the purposes of [1] as well as random one. We also
compare two different approaches for the random split. Both random split approaches
split the dataset into 80% for the training part and 20% for the validation part. The
first approach splits the dataset by the number of videos per genre in that ratio. The
second approach splits the dataset by the length of the total footage per genre in that
ratio and cuts the total footage of training dataset for each genre to the lowest one to
make the training portion of the footage for all the genres equally long.

Even tho it may seem that the random split approach brings better results according
to the Table 6.1 as split by count performs better on its own validation dataset, when
we tried to test all three approaches on the 10-Let’s Dance dataset as shown in the
Table 6.2, we discovered that the model trained on manually split Dance Tutorials
Dataset achieves much better reults. Therefore it seems that both of the random split
methods tend to overfit more and the consideration mentioned in [1] was right.

Base learning rate: 0.001 0.003 0.005 0.01 0.05

Split by count 55.6% 63.9% 69.4% 66.7% 61.1%
Split by footage 53.7% 57.4% 59.3% 55.6% 42.6%
Manual split 57.1% 60.0% 62.9% 51.4% 40.0%

Table 6.1. Comparison of different approaches to split the Dance Tutorials Dataset, eval-
uated by the Faster R-CNN + HRNet + PoseC3D fine-tuned on FineGym.

21

6. Experiments .

Split method: Split by count Split by footage Manual split

Top-1 accuracy 17.0% 14.0% 21.6%

Table 6.2. Comparison of models trained on differently split Dance Tutorials Dataset on
the 10-Let’s Dance dataset.

6.4 Fine-tuning
The third part compares the PoseC3D part of the model instantiated with three
checkpoints, which were trained on three different datasets - Kinetics-400 2.2.2, Fine-
Gym 2.2.3 and NTU-60 2.2.4, to see if it has any impact on how well or fast can the
model learn. We also decided to include a comparison of the fine-tuning methods with
training from scratch.

As shown in the Table 6.3 and the Table 6.4, all three methods preformed quite well,
but the one pre-trained on Kinetics-400 2.2.2 is the best and just slightly behind on the
10-Let’ Dance dataset and actually equal on the Dance Tutorials Dataset is the model
pre-trained on FineGym 2.2.3. NTU-60 2.2.4 fell a bit behind on the 10-Let’s Dance
dataset and learning from scratch is unsurprisingly last, yet it managed to keep up a
bit and with higher learning rate, or given more time, could potentially catch up. We
also tried to test all models on Dance Tutorials Dataset to see if one does not tend to
overfit more than the others and from what we can see in the Table 6.5, all models kept
their positions and thus the model pre-trained on Kinetics-400 2.2.2 seems to be our
favorite.

Base learning rate: 0.001 0.003 0.005 0.01 0.05

Kinetics-400 48.5% 57.1% 60.0% 62.9% 57.1%
FineGym 57.1% 60.0% 62.9% 51.4% 40.0%
NTU-60 54.3% 60.0% 57.1% 57.1% 54.3%
Scratch 20.0% 31.4% 45.7% 37.1% 45.7%

Table 6.3. Comparison of different fine-tuning approaches on the manually split Dance
Tutorials Dataset evaluated by Faster R-CNN + HRNet + PoseC3D.

Base learning rate: 0.001 0.003 0.005 0.01 0.05

Kinetics-400 65.5% 73.1% 74.9% 76.0% 76.6%
FineGym 70.8% 73.1% 72.5% 67.8% 57.3%
NTU-60 66.7% 63.7% 68.4% 66.7% 64.9%
Scratch 35.7% 39.8% 48.5% 51.5% 57.9%

Table 6.4. Comparison of different fine-tuning approaches on the 10-Let’s Dance dataset
evaluated by Faster R-CNN + HRNet + PoseC3D.

Fine-tune method: Kinetics-400 FineGym NTU-60 Scratch

Top-1 accuracy 31.5% 30.3% 29.6% 26.5%

Table 6.5. Comparison of models learned on the 10-Let’s Dance dataset by different fine-
tuning approaches on the manually split Dance Tutorials Dataset.

22

. 6.5 More errors

6.5 More errors
But before we get to the pipelines comparison, at this point we realized we did not
split the Dance Tutorials Dataset videos by 300 frames, which drastically lowered the
results obtained. However, it should not change much about the previous observations
and therefore we stick with those results. Since we also already wasted a lot of time
and computational power, we still provide some more results obtained on the Dance
Tutorials Dataset before splitting it by 300 frames. In the Table 6.6 you can see the
pipelines evaluated on the Dance Tutorials Dataset without splitting by 300 frames.

Base learning rate: 0.003 0.005 0.01 0.05

HRNet + ByteTrack-Reduction 61.1% 61.1% 69.4% 61.1%
HRNet + No-Reduction 61.1% 66.7% 66.7% 58.3%
OpenPose + ByteTrack-Reduction 58.3% 52.8% 52.8% 47.2%
OpenPose + No-Reduction 61.1% 63.9% 58.3% 55.6%

Table 6.6. Comparison of different pipelines fed into PoseC3D on manually split Dance
Tutorials Dataset.

This resulted also into not splitting the videos before transforming them into MS-
G3D input format, which we though should perform worse as the ByteTrack-Reduction
is performed on the whole video and therefore, there is more segments with missing
dancing pairs. After we rerun the tests with applying the ByteTrack-Reduction after
the 300 frame split, we compared the results depict in the Table 6.7 and observed that
there is no real difference.

Base learning rate: 0.003 0.005 0.01 0.05

HRNet (reduction before split) 52.0% 48.0% 47.1% 52.9%
HRNet (reduction after split) 50.0% 52.8% 47.2% 47.2%
OpenPose (reduction before split) 44.1% 47.1% 49.0% 40.2%
OpenPose (reduction after split) 44.4% 38.9% 47.2% 33.3%

Table 6.7. Comparison of applying the ByteTrack-Reduction before and after dividing the
videos into 300 frame segments, evaluated on Dance Tutorials Dataset with MS-G3D..

6.6 Pipelines
Now we finally get to the most important part of the tests, combining almost all com-
ponents of the pipeline presented in the work [14] and [1]. For a clear comparison we
rerun even the pipeline of Petr Kouba again, using the settings that achieves the best
results in his work [1]. It achieves slightly worse results than presented in his work.
But still decent enough so we do not consider it as an error.

In the Table 6.8 and the Table 6.9 we can see that the most dominant methods on
Dance Tutorials Dataset are those using PoseC3D, specifically with no reduction into a
single dancing pair. The ByteTrack-Reduction performs slightly better with PoseC3D
than the Kouba-Reduction but worse with MS-G3D. We can also observe that HRNet
is performing slightly better than OpenPose with both action recognition networks.

Now if we take a look at the 10-Let’s Dance dataset compared in the Table 6.10 and
Table 6.11, we can observe again dominance of the PoseC3D network and again with

23

6. Experiments .

Base learning rate: 0.003 0.005 0.01 0.05

HRNet + ByteTrack-Reduction 68.6% 68.6% 68.7% 71.6%
HRNet + No-Reduction 72.6% 73.5% 74.5% 72.6%
OpenPose + ByteTrack-Reduction 62.8% 67.7% 66.7% 63.7%
OpenPose + No-Reduction 70.6% 72.6% 72.6% 72.6%
OpenPose + Kouba-Reduction 68.8% 66.4% 63.2% 64.8%

Table 6.8. Comparison of different pipelines fed into PoseC3D on manually split Dance
Tutorials Dataset divided into 300 frames.

Base learning rate: 0.003 0.005 0.01 0.05

HRNet + ByteTrack-Reduction 50.0% 52.8% 47.2% 47.2%
OpenPose + ByteTrack-Reduction 44.4% 38.9% 47.2% 33.3%
OpenPose + Kouba-Reduction 60.0% 56.8% 60.0% 58.4%

Table 6.9. Comparison of different pipelines fed into MS-G3D on manually split Dance
Tutorials Dataset divided into 300 frames.

Base learning rate: 0.005 0.01 0.05 0.1

HRNet + ByteTrack-Reduction 55.4% 50.9% 50.9% 41.8%
HRNet + No-Reduction 77.4% 74.0% 74.6% 62.2%
OpenPose + ByteTrack-Reduction 40.7% 40.7% 44.1% 36.2%
OpenPose + No-Reduction 69.5% 76.8% 75.1% 57.6%
OpenPose + Kouba-Reduction 57.1% 51.7% 56.6% 42.3%

Table 6.10. Comparison of different pipelines fed into PoseC3D on the 10-Let’s Dance
dataset.

Base learning rate: 0.005 0.01 0.05 0.1

HRNet + ByteTrack-Reduction 54.4% 54.4% 50.0% 25.4%
OpenPose + ByteTrack-Reduction 44.6% 41.1% 36.6% 26.8%
OpenPose + Kouba-Reduction 50.0% 51.1% 42.9% 23.1%

Table 6.11. Comparison of different pipelines fed into MS-G3D on the 10-Let’s Dance
dataset.

no pair reduction. However, in this example we see that the pair reduction methods do
not perform that much better with PoseC3D, than with MS-G3D. HRNet again slightly
but still outperforms OpenPose.

6.7 Comparison to the Kouba results
As we saw on the previous results. The best model is by far HRNet with No-Reduction
fed into PoseC3D and thus it is out best candidate to compare with the results obtained
by Petr Kouba [1]. We compare the models based just on the visual information only
and without applying sliding-window [1]. As we can see in the Table 6.12, the PoseC3D
model strongly outperforms the one introduced in Kouba’s work as it shows increase

24

. 6.7 Comparison to the Kouba results

by about 10% on the Dance Tutorials Dataset and about 22% on the 10-Let’s Dance
dataset.

Considering their run time speed, since OpenPose with PoseC3D achieves just slightly
worse results, we could exchange it in case it performs way faster than the proposed HR-
Net. Therefore it all comes down to MS-G3D and PoseC3D. From our experiments we
noticed, that the PoseC3D network is quiet slower than the MS-G3D with low amount
of skeletons, however it scales way better with large amount of skeletons, because of its
CNN base, which is not being extended.

Dataset: Dance Tutorials Dataset 10-Let’s Dance Dataset

OpenPose + MS-G3D [1] 64.8% 55.5%
HRNet + PoseC3D 74.5% 77.4%

Table 6.12. Comparison of the best model from our pipeline with the OpenPose + MS-G3D
model from the thesis of Petr Kouba [1].

25

Chapter 7
Conclusion

In this thesis we follow up on the recent work [1], which proposes a GCN-based action
recognition method with OpenPose estimator and implements its own tracking method
to solve the difficult problem of the dance genre recognition. We propose a new model
using HRNet with no tracking and PoseC3D. This model according to the results shown
in the Table 6.12 performs far better on the Dance Tutorials Dataset as well as 10-Let’s
Dance dataset and thus has a great potential. It achieves results beyond our expec-
tations as the Top-1 accuracy was improved by roughtly 10% on the Dance Tutorials
Dataset and by roughly 22% on the 10-Let’s Dance dataset. This number may not be
exact as both implementations rely on various settings.

This new model is a proposal for skeleton based action recognition by the work [14].
It substitutes OpenPose with external tracking method for HRNet to improve the pose
estimation of dancers. It also replaces the GCN-based action recognition with more
robust 3D-CNN-based network, PoseC3D. Further we tried to optimize very few of its
parameters, but kept most of the model untouched and as presented by [14].

We implemented a new tracking method for reducing the crowd of people on a video
into a single dancing pair. This method suffers mostly from a moving camera, which
could possibly be solved by applying optical flow methods to calculate the movement
of the camera. However, it also turned out that the best model just does not use
tracking of a dancing pair at all, which is quiet surprising and would deserve further
investigation.

We also tried to compare different approaches of splitting the datasets to see if we
can get more of it. That was unfortunately without success, but we at least confirmed
our expectations. The datasets seem to however be a bit of a problem as none of them
seems to be big and complex enough to be a good candidate for pre-training a model,
which could withstand real-world data.

As we compared only the base of our models, there is still a lot of space for further
improvements of this model. We would recommend to also apply the sliding-window
method as proposed in [1]. In this thesis we also did not try the combination with
any audio-based dance genre recognition method. An application of such audio-based
method would also definitely further improve the model.

26

References

[1] Petr Kouba. Recognition of Dance Genres from Video. Czech Technical University,
FEE . 2021.
https://dspace.cvut.cz/bitstream/handle/10467/97076/F3-DP-2021-
Kouba-Petr-PetrKoubaThesisFinal.pdf.

[2] Tomáš Pavlín. Dance Recognition from Audio Recordings. Charles University,
MFF . 2020.
https://dspace.cuni.cz/handle/20.500.11956/116600.

[3] OpenMMLab contributors. OpenMMLab.
https://github.com/open-mmlab.

[4] Daniel Castro, Steven Hickson, Patsorn Sangkloy, Bhavishya Mittal, Sean Dai,
James Hays, and Irfan A. Essa. Let’s Dance: Learning From Online Dance Videos.
CoRR. 2018, abs/1801.07388

[5] (Facebook AI). COCO (Microsoft Common Objects in Context).
https://paperswithcode.com/dataset/coco.

[6] (Facebook AI). Kinetics (Kinetics Human Action Video Dataset).
https://paperswithcode.com/dataset/kinetics.

[7] (Facebook AI). FineGym.
https://paperswithcode.com/dataset/finegym.

[8] (Facebook AI). NTU RGB+D.
https://paperswithcode.com/dataset/ntu-rgb-d.

[9] MMDetection Contributors. OpenMMLab Detection Toolbox and Benchmark.
2018.
https://github.com/open-mmlab/mmdetection.

[10] MMPose Contributors. OpenMMLab Pose Estimation Toolbox and Benchmark.
2020.
https://github.com/open-mmlab/mmpose.

[11] MMTracking Contributors. OpenMMLab Video Perception Toolbox and Bench-
mark. 2021.
https://github.com/open-mmlab/mmtracking.

[12] MMAction2 Contributors. OpenMMLab’s Next Generation Video Understanding
Toolbox and Benchmark. 2020.
https://github.com/open-mmlab/mmaction2.

[13] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell.. 2017, 39 (6), 1137–1149.
DOI 10.1109/TPAMI.2016.2577031.

[14] Haodong Duan, Yue Zhao, Kai Chen, Dian Shao, Dahua Lin, and Bo Dai. Revis-
iting Skeleton-based Action Recognition. CoRR. 2021, abs/2104.13586

27

https://dspace.cvut.cz/bitstream/handle/10467/97076/F3-DP-2021-Kouba-Petr-PetrKoubaThesisFinal.pdf
https://dspace.cvut.cz/bitstream/handle/10467/97076/F3-DP-2021-Kouba-Petr-PetrKoubaThesisFinal.pdf
https://dspace.cuni.cz/handle/20.500.11956/116600
https://github.com/open-mmlab
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/dataset/kinetics
https://paperswithcode.com/dataset/finegym
https://paperswithcode.com/dataset/ntu-rgb-d
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmtracking
https://github.com/open-mmlab/mmaction2
http://dx.doi.org/10.1109/TPAMI.2016.2577031

References .
[15] (Facebook AI). Real-Time Object Detection.

https://paperswithcode.com/task/real-time-object-detection.
[16] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.

You Only Look Once: Unified, Real-Time Object Detection. CoRR. 2015,
abs/1506.02640

[17] (Facebook AI). Pose Estimation on MPII Human Pose.
https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose.

[18] (Facebook AI). Multi-Person Pose Estimation.
https://paperswithcode.com/task/multi-person-pose-estimation.

[19] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep High-Resolution Repre-
sentation Learning for Human Pose Estimation. CoRR. 2019, abs/1902.09212

[20] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CoRR. 2018,
abs/1812.08008

[21] Bin Xiao, Haiping Wu, and Yichen Wei. Simple Baselines for Human Pose Esti-
mation and Tracking. CoRR. 2018, abs/1804.06208

[22] (Facebook AI). Pose Tracking on PoseTrack2017 .
https://paperswithcode.com/sota/pose-tracking-on-posetrack2017.

[23] (MOT Challenge). MOT Challenge.
https://motchallenge.net/.

[24] (Facebook AI). Multi-Object Tracking on MOT17 .
https://paperswithcode.com/sota/multi-object-tracking-on-mot17.

[25] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. BoT-SORT: Robust
Associations Multi-Pedestrian Tracking. CoRR. 2022, abs/2206.14651
DOI 10.48550/arXiv.2206.14651.

[26] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo, Wenyu
Liu, and Xinggang Wang. ByteTrack: Multi-Object Tracking by Associating Every
Detection Box. CoRR. 2021, abs/2110.06864

[27] (Facebook AI). DanceTrack .
https://paperswithcode.com/dataset/dancetrack.

[28] (Facebook AI). Skeleton Based Action Recognition on Kinetics-Skeleton dataset.
https://paperswithcode.com/sota/skeleton-based-action-recognition-
on-kinetics.

[29] (Facebook AI). Revisiting Skeleton-based Action Recognition.
hhttps://paperswithcode.com/paper/revisiting-skeleton-based-action-
recognition.

[30] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. YOLOX: Exceeding
YOLO Series in 2021. 2022.
https://arxiv.org/pdf/2107.08430.pdf.

[31] (Facebook AI). YOLOX: Exceeding YOLO Series in 2021.
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-
2021.

28

https://paperswithcode.com/task/real-time-object-detection
https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
https://paperswithcode.com/task/multi-person-pose-estimation
https://paperswithcode.com/sota/pose-tracking-on-posetrack2017
https://motchallenge.net/
https://paperswithcode.com/sota/multi-object-tracking-on-mot17
http://dx.doi.org/10.48550/arXiv.2206.14651
https://paperswithcode.com/dataset/dancetrack
https://paperswithcode.com/sota/skeleton-based-action-recognition-on-kinetics
https://paperswithcode.com/sota/skeleton-based-action-recognition-on-kinetics
hhttps://paperswithcode.com/paper/revisiting-skeleton-based-action-recognition
hhttps://paperswithcode.com/paper/revisiting-skeleton-based-action-recognition
https://arxiv.org/pdf/2107.08430.pdf
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Datasets
	The base datasets
	Dance Tutorials Dataset
	10-Let's Dance
	YT8M Ballroom

	Datasets used for pre-training the models
	COCO
	Kinetics-400
	FineGym
	NTU-60

	State of the art
	OpenMMLab project
	Human detection
	Human pose estimation
	Top-Down vs Bottom-Up approach

	Tracking
	HRNet tracking performance
	Current state of the art tracking methods

	Action recognition
	Graph convolutional networks
	Convolutional neural networks

	Objects of interest
	Pose estimation
	Human detection
	Human tracking
	Pair reduction
	Pair Matching
	Pair selection

	Errors
	Tracking errors
	Pair reduction errors
	HRNet pose estimation errors

	Experiments
	Testing environment
	Hyperparameters
	Metrics

	Learning rate
	Datasets split
	Fine-tuning
	More errors
	Pipelines
	Comparison to the Kouba results

	Conclusion
	References

