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Abstrakt / Abstract

Ljapunovovy exponenty jsou důležité
pro charakterizaci atraktoru neline-
árního dynamického systému a jeho
citlivost na počáteční podmínky. Jinými
slovy, Ljapunovovy exponenty nám
říkají, kdy je systém chaotický.

V této práci se budeme zabývat
dvěma různými metodami odhadu Lja-
punovových exponentů z datové řady:
Wolfovou a Rossensteinovou metodou.
Aplikaci těchto metod porovnáme na
datových řadách generovaných několika
chaotickými systémy pomocí nume-
rického výpočtu v softwaru Matlab.
Přesnost odhadu Ljapunovových ex-
ponentů ověříme různými metodami v
závislosti na délce analyzovaných da-
tových řad a přidáme k datům šum,
abychom viděli, jak si tyto algoritmy
povedou s přidáním šumem.

Klíčová slova: Chaos, atraktor, dyna-
mické systémy, Lyapunovy exponenty,
Lyapunov spektrum, Wolf metoda,
Rosenstein metoda

Překlad názvu: Výpočet Ljapunovo-
vých exponentů z časových řad

Lyapunov exponents are important
for the characterization of an attractor
of a nonlinear dynamic system and
their sensitivity to initial conditions. In
other words, Lyapunov exponents tell
us when the system is chaotic.

In this Theses we are going to study
two different methods of estimating
the Lyapunov exponents from the data
series: Wolf’s and Rosenstein’s meth-
ods. We will compare the application
of these methods to the data series
generated by several chaotic systems
using a numerical calculation in Matlab
software. We will verify the accuracy of
estimation of the Lyapunov exponents
by different methods depending on the
length of the analyzed data series and
add noise to the data to see how these
algorithms will perform with additive
noise.

Keywords: Chaos, attractor, dy-
namic systems, Lyapunov exponents,
Lyapunov spectrum, Wolf’s method,
Rosenstein’s method
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Chapter 1
Introduction

Before the development of computers and technology that would be able to calculate
the huge amount of data, chaotic results were explained in a deterministic way of
thinking. The thesis of determinism is that all events in the universe are unavoidable.
However, if this world would be deterministic, then we would be able to predict every
event and make a system that would be able to control everything. Chaotic behaviour
was considered to be the impact of disturbances on the systems. Soon after, scientists
started to notice that even very small changes in the initial conditions could make
different outcomes of the events. Concept of chaos is still relatively new, however
widely recognized in mathematics. One of the ways to study dependency of system on
initial conditions is Lyapunov exponents. Calculating Lyapunov exponents let us find
out if a system shows chaotic behaviour.

1.1 Chaos
The concept of chaos has its beginnings in the 1900s. Henri Poincare studied the
problem of object’s movement to 3 mutual gravitational forces. Poincare discovered
that some orbits could be non-periodical and not constantly increasing or close to a
fixed point.

One of the pioneers of discovering chaos was Edward Lorenz. Lorenz worked on
weather prediction and simulation. One day, in 1961, Lorenz decided to take a shortcut.
Instead, to start the whole program from the beginning, he started it midway through.
For initial conditions, he typed numbers from the previous printout. Lorenz noticed
that the new run did not give the same results as the previous one, which was something
unexpected. The new run should duplicate exactly the same outcome, but that did not
happen. After a while, he realized that the computer’s memory stored six decimal
places as .506127, but on the printout, to save space, it was written only three decimal
places: .506. Lorenz discovered, that even small changes in initial conditions were
showing different weather results [1].

Figure 1.1. Lorenz’s 1961 printouts: From nearly same initial points computer for weather
prediction shows patterns that, over the time, were getting more apart from each other,

until they completely lost all resemblance [1].
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In chaos theory these differences in initial conditions and their sensitivity to the out-

come is called ’The Butterfly effect’, or in more technical terms: ’Sensitive dependence
on initial conditions’.

There are many different variations of famous quote for the Butterfly effect, we chose
to say it this way: If a butterfly flutters its wings in Beijing, it could cause a hurricane
in Florida.

This does not mean that one butterfly is directly connected to the tornado on the
other side of the world, but it means that even small changes in initial conditions
can cause a series of events that will give us a different outcome. Soon after these
discoveries, scientists started to change their way of understanding nature, from the
traditional deterministic model to understanding nature as part of the chaos.

There are many ways how we can define deterministic chaos. We will define it as
in [2] as unpredictable chaotic behaviour of nonlinear dynamical systems to which are
applied deterministic rules.

Dynamical systems are set of equations that evolve over the time. They can be
discrete-time (consist of discrete difference equations - maps) or continuous-time (con-
sists differential equations - flows) [3]. Changes of dynamical systems are described
with trajectory and orbit. In continuous-time dynamical systems trajectory is a path
(progress, line development) that flow takes over the time and orbit is a collection of
points (curve) over time evolution. Dynamical systems give us models of real-life events
like the spreading of diseases, weather changes, economic recessions, etc.

Chaos is present in many fields e.g. physics, chemistry, economy, astronomy. One of
the important problems that all fields have in common is distinguishing deterministic
chaos from noise1. Detecting and quantifying chaos has become an important challenge.

There have been many approaches to specify chaos e.g. fractal power spectra, entropy,
fractal dimension. Unfortunately, based on the research and testing it is proven that
most of them fail to characterize chaos on both model end experimental data [4].

There are different models that explain chaotic systems: (1)Henon, (2)Rössler-chaos,
(3)Lorenz model, (4)Rabinovich-Fabrikan system, (5)Mackey-Glass, (6)Rössler’s hyper-
chaos. In the next chapter, we will explain some of those models.

1.1.1 The synchronization of chaotic systems

One of the important applications of Lyapunov exponents is in the synchronization of
chaotic systems. Let us have two trajectories with very close initial conditions. Over
time, they will exponentially separate (diverge). In consequence, chaotic systems ini-
tially go against synchronization. This became a significant problem, especially because
we can never perfectly know experimental initial conditions. It may seem to us that syn-
chronization of two chaotic systems is impossible, however, with just the right exchange
of information of two systems, synchronization can be made

In terms of chaos, we will define 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 as a process, in two or more chaotic
systems, that adjust their property of motion to common behaviour. These chaotic
systems can be equivalent or nonequivalent. Adjusting can vary from the agreement
of trajectories to locking of phases [5]. It is important to mention, that the word
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 does not always describe the same process and needs to be specified
for different contexts.

It is shown in [6], that systems will synchronize when Lyapunov exponents for the
subsystems are all negative.

1 Data with a big amount of meaningless information that we call noise.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Motivation

To sum up, synchronization is relevant phenomena and its properties have been shown
in nature as in dynamics of cardio-respiratory system or magnetoen-cephalographic2

activity of patients with Parkinson’s disease.
This is a broad topic to cover, and if you are interested to know more about the

synchronization of chaos, we address the reader to Ref. [5]. We will also return to this
topic in Chapter 2.5.

1.2 Motivation
Based on the disadvantages of other methods, we can consider that spectrum of Lya-
punov exponents can provide us with better diagnostic for chaotic systems. For ex-
ample, one of the most popular methods used to quantify chaos is the Grassberger-
Procaccia algorithm. The popularity of this algorithm can be to its simplicity. Never-
theless, this algorithm has some disadvantages as sensitivity to variations in parameters
and it can be unreliable except for long, noise-free time series [7].

Lyapunov exponents are important for the characterization of an attractor of a non-
linear dynamic system and their sensitivity to initial conditions. In other words, Lya-
punov exponents tell us when the system is chaotic. Also, they show us the rate of
exponential attraction (separation), of the two nearby trajectories with different ini-
tial conditions in the phase space (in time evolution). However, calculating Lyapunov
exponents can be difficult. Some of the methods that are used for the calculation of
Lyapunov exponents can face problems as [7]:

. Unreliable for small data sets. Can not apply to experimental data. Numerically unstable. Demands a lot of computation. Can be difficult to implement

The objective of this Thesis is to go through different methods of calculating Lya-
punov exponents from time series: Wolf’s method and Rosenstein’s method. We will
analyze how algorithms perform on different chaotic systems, under different data sizes
and conditions and compare the results of different methods.

1.3 Outline
In Chapter 2 we will define and analyze some of the chaotic systems and go into more
detail about the synchronization of chaotic systems. In Chapter 3, we will define and
explain Lyapunov exponents and go through two of the methods for calculating Lya-
punov exponents: Wolf’s method and Rosenstein’s method. In Chapter 4, we will
compare and analyze the results of those methods under different data sizes and dif-
ferent signal-to-noise ratio (SNR) values. We will see how those methods perform on
different chaotic systems and their error rates. Finally, Chapter 5 contains a summary
of our conclusions.

2 Measurement of the magnetic field generated by the electrical activity of neurons.
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Chapter 2
Chaotic systems

In this Chapter, we chose chaotic systems based on the historical significance and their
use in research in the literature.

Let us first define what is attractor. After considering different definitions we can
say that attractor, in dynamical systems, is a state or group of states to which a system
is prone to evolve.

2.1 Lorenz attractor
First model of chaos we will mention is Lorenz attractor (1963) [8] - named after me-
teorologist Edward Lorenz.

Definition of Lorenz attractor is given by three differential, nonlinear equations:

̇𝑥 = 𝜎(𝑥 − 𝑦) (1)
̇𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦 (2)
̇𝑧 = 𝑥𝑦 − 𝛽𝑧, (3)

where the equations relate to the properties of a two-dimensional fluid layer uniformly
warmed from below and cooled from above. Parameters 𝜎, 𝜌 and 𝛽 represent Prandtl
number1, Rayleigh number2, and certain physical dimensions of the layer itself. Vari-
ables 𝑥, 𝑦 and 𝑧 evolve over time and they represent convective flow, horizontal tem-
perature distribution and vertical temperature distribution.

Figure 2.1. Plot of Lorenz attractor with standard values.

1 Describes the relationship between momentum diffusivity and thermal diffusivity.
2 Product of the Grashof number, which describes the relationship between buoyancy and viscosity within

a fluid.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Rössler-chaos system

In Fig. 2.1 we can see how lines are making many curves that form two overlapping
spirals that look like butterfly wings. These curves never intercept or go back to their
own path. They create a loop, wondering on the one spiral and changing its path to
the other side. This plot represents chaos and its randomness and unpredictability.

2.2 Rössler-chaos system
Definition of the Rössler model (1976) [9] is given by these three nonlinear differential
equations:

̇𝑥 = −(𝑦 + 𝑧) (4)
̇𝑦 = 𝑥 + 𝑎𝑦 (5)
̇𝑧 = 𝑏 + 𝑧 (𝑥 − 𝑐), (6)

where 𝑎, 𝑏 and 𝑐 are parameters and 𝑥, 𝑦 and 𝑧 are variables. For parameters Rössler
used: 𝑎 = 0.20, 𝑏 = 0.20 and 𝑐 = 5.70. Variables 𝑥, 𝑦 and 𝑧 evolve with time.

The simplicity of Rössler model lies in the first two equations which are linear and
one nonlinear equation. This model has two fixed points called 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑎 (𝐹±). One
fixed point 𝐹− lies in the centre of the attractor, and the other one 𝐹+ is outside of
the attractor. To find these points, we set all three equations to zero. After solving
them we will get coordinates for 𝐹±.

(𝑥±, 𝑦±, 𝑧±) = (𝑐 ±
√

𝑐2 − 4𝑎𝑏
2

, −𝑐 ±
√

𝑐2 − 4𝑎𝑏
2

, 𝑐 ±
√

𝑐2 − 4𝑎𝑏
2

) (7)

For Rössler model, we can use linear methods such as eigenvectors, because of their
linear properties. However, to fully understand this system, we need to use nonlinear
methods such as Poincaré maps and bifurcation diagrams.

Figure 2.2. Plot of Rössler attractor with standard values. Red points represent the first
and second fixed points of the system.
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2. Chaotic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Fig. 2.2 we can see that one of the fixed points lies in the centre of the attractor
and the second point lies far from the attractor. Nonlinear behaviour will happen when
the trajectory leaves the 𝑥𝑦 dimension. The second fixed point influences the attractor
and rises the plot to the 𝑧-dimension.

2.3 Henon map

Henon map (1976) [10] is a simplified two-dimensional version of the Lorenz model for
a discrete-time dynamical system that shows us chaotic behaviour. This model is able
to show us the fractal microstructure of a strange attractor. The main purpose of this
model is to make the numerical analysis faster and more accurate, to be able to follow
the solutions for a longer time.

Henon map is a composition of several maps: folding, stretching, contracting.

Figure 2.3. Initial area 𝑎 mapped by 𝑇 all the way into area 𝑑 mapped by 𝑇 ′′′.
Figure 𝑏: 𝑇 ′ preserves areas; Figure 𝑐: Contracts areas; Figure 𝑑: 𝑇 ′′′ preserves areas but

reverses the sign.

The Henon map 𝑇 is composition of 𝑇 = 𝑇 ′′′𝑇 ′′𝑇 ′. Let 𝑥𝑛 = 𝑥, 𝑦𝑛 = 𝑦 and
𝑥𝑛+1 = 𝑥′′′, 𝑦𝑛+1 = 𝑦′′′ (mapping will be iterated). Map is defined by equations:

𝑥𝑛+1 = 1 − 𝛼 𝑥2
𝑛 + 𝑦𝑛 (8)

𝑦𝑛+1 = 𝛽 𝑥𝑛, (9)

where parameters 𝛼 = 1.4 and 𝛽 = 0.3 show us that map is chaotic. By repeated
application of 𝑇, succesive points do not always converge towards an attractor but
sometimes they diverge to infinity.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Rabinovich-Fabrikan system

Figure 2.4. Henon map for values 𝛼 = 1.4 and 𝛽 = 0.3, 𝑥 = 0, 𝑦 = 0. This plot shows the
result of 10000 successive points, starting from the initial points 𝑥0 and 𝑦0.

2.4 Rabinovich-Fabrikan system

Physicists Mikhail Rabinovich and Anatoly Fabrikant, invented a new type of chaotic
system, named Rabinovich-Fabrikan (1979) [2]. What is interesting about this system,
is that it contains third-order nonlinearities that shows us some unusual dynamics
(shapes of wave forms like virtual saddles, double vortex tornado).

Definition of the Rabinovich-Fabrikan system is given by these three nonlinear
differential equations:

̇𝑥 = 𝑦 (𝑧 − 1 + 𝑥2) + 𝛾 𝑥 (10)
̇𝑦 = 𝑥 (3𝑧 + 1 − 𝑥2) + 𝛾 𝑦 (11)
̇𝑧 = −2𝑧 (𝛼 + 𝑥𝑦), (12)

where 𝛼 and 𝛾 are parameters. System dynamics are more sensitive on 𝛼 parameter
than 𝛾. It contains five hyperbolic equilibrium3 points, one at the origin and four
dependent on the parameters 𝛼 and 𝛾.

3 Constant solution to a differential equation.

7



2. Chaotic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.5. Rabinovich-Fabrikant with values 𝛼 = 0.1, 𝛾 = 0.98 and initial values
[0.1, 0.1, 0.1]. This plot shows that system is chaotic.

Rabinovich-Fabrikant system is not a clearly understood problem that is the subject
of only a small number of papers.

2.5 Synchronization types of chaotic systems
Based on the particular coupling configuration, we can divide the synchronization pro-
cess into unidirectional coupling and bidirectional coupling [5–6].

In the case of unidirectional coupling, the system is constructed with two subsystems
that make a drive-response (master-slave) configuration. This means that one of the
subsystems (master) evolves voluntarily and leads (drives) the evolution of the other
subsystem. As a consequence, the other subsystem (response) is 𝑠𝑙𝑎𝑣𝑒𝑑 and must follow
the dynamic of the master. The drive system behaves as chaotic forcing for the response
system which produces external synchronization.

In bidirectional coupling, we have a different case. Both subsystems are coupled with
each other, expressing mutual synchronize behaviour. For example, this type of process
occurs between the cardiac and respiratory systems.

Figure 2.6. Rössler and Lorenz drive-response systems [6].

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Synchronization types of chaotic systems

Complete or identical synchronization (CS) is the simplest one and the first discov-
ered. CS is made up of perfect hooking of the two chaotic systems trajectories. It is
accomplished by a coupling signal, where both systems remain in step with each other
over time evolution.

Figure 2.7. Plot of Complete synchronization on Lorenz system [5].

Except for the complete synchronization, for coupled chaotic systems, there are many
other synchronization states that have been studied: a) phase and lag synchronization,
b) intermittent lag synchronization, c) generalized synchronization, d) imperfect phase
synchronization and e) almost synchronization.
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Chapter 3
Lyapunov exponents

Lyapunov exponents are the average exponential values of divergence or convergence
of two neighbouring trajectories. Using Lyapunov exponents, we can measure this
exponential convergence/divergence and characterize it.

Figure 3.1. A schematic diagram of two separating trajectories [11].

3.1 The Lyapunov spectrum
Let us have 𝑛-dimensional infinitesimal 1 sphere of initial conditions in the continuous
dynamical system, where 𝑛 is the number of variables that describe the system. The
nature of the flow is misshaped (deformed) and over time (𝑡), the 𝑛-sphere evolves into
𝑛-ellipsoid.

Figure 3.2. Transformation of sphere to ellipsoid over time(t).

1 An indefinitely small quantity; a value approaching zero.
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Ellipsoid principal axes expand or contract by values determined by Lyapunov expo-
nents. That means that we can define Lyaponov exponent in the matter of the length
of the principal axis 𝑝(𝑡) of the ellipsoid [4, 12].

𝜆𝑖 = lim
𝑡→∞

1
𝑡

log2
𝑝𝑖(𝑡)
𝑝𝑖(0)

. (1)

We arrange 𝑛 principal axes of the ellipsoid from largest to smallest

𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑛,

where 𝜆1 corresponds to the expanding and 𝜆𝑛 to the most contracting principal axe
in phase space. We notice that the length of the first principal axis grows as 2𝜆1𝑡. The
area defined by the first two principal axes grows as 2(𝜆1+𝜆2)𝑡, the volume defined by
the first 𝑘 principal axes grows as 2(𝜆1+𝜆2+...+𝜆𝑘)𝑡.

This means that we can define 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 as the exponential growth of a
𝑘-volume element, which is given as the sum of the first 𝑘 exponents. This definition
can be useful for use of experimental data [7].

In [13] author proved that every continuous-time dynamical system will have at least
one zero exponent, even if it does not have a fixed point. The ellipsoid axes that are
expanding and contracting are equal to positive and negative Lyapunov exponents. As
the ellipsoid evolves over time, its direction is continuously changing, which means that
we can not well define the direction related to the given exponent.

The system that contains at least one positive Lyapunov exponent will present chaotic
behaviour. The system with all negative Lyapunov exponents will not be chaotic and
it will contain an attracting fixed point or periodic cycle. An example of a non-chaotic
system you can see in Figure 3.3.

Figure 3.3. Plot of Rabinovich-Fabrikant equations with values 𝛼 = 0.1, 𝛾 = 0.5 and initial
values [0.1, 0.1, 0.1]. Example of a non-chaotic system. We can notice attracting fixed

point roughly at (x, y, z) = (1.07, −0.4, 0.07) [2].
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We can use signs of Lyapunov exponents to categorize the asymptotic behaviour of
the system’s dynamic. More details you can see in Table 3.1.

Dimension Dynamics of the attractor Lyapunov spectrum

1 Chaos +
Periodic orbit -
Marginally stable orbit 0

2 Periodic motion 0, -
3 Strange attractor +, 0, -

A two torus 0, 0, -
Limit cycle 0, -, -
Fixed point -, -, -

4 Rössler hyperchaos +, +, 0, -
Hypertortus T3 0, 0, 0, -

Table 3.1. System’s dynamic based of signs of Lyapunov exponents [14].

3.2 Wolf’s method
Wolf’s method [4] has various versions of its algorithm: 1) fixed evolution time programs
for 𝜆1 and 𝜆1 + 𝜆2, 2) variable evolution time programs for 𝜆1 + 𝜆2 and 3) interactive
programs (used on a graphic machine).

3.2.1 Fixed evolution time program for 𝜆1
This program is not considered to be sophisticated but it is easy to understand and a
good start for understanding this algorithm.

Given the time series 𝑥(𝑡), an 𝑚-dimensional phase portrait is reconstructed with
the time delay method2. The point on attractor is defined by

{𝑥(𝑡), 𝑥(𝑡 + 𝜏), ..., 𝑥(𝑡 + [𝑚 − 1]𝜏)}, (2)

then we locate, in the Euclidian sense, the nearest neighbour to the initial point

{𝑥(𝑡0), …𝑥(𝑡0 + [𝑚 − 1]𝜏)} (3)

and denote the distance between these two points. We will mark this distance as 𝐿(𝑡0).
As time evolves, at time 𝑡1, initial length will progress to length 𝐿′(𝑡1). The length 𝐿
is generated through the attractor for a short time that is enough for only a small-scale
attractor structure that is likely to be examined.

If the evolution of time 𝑡 is too wide, 𝐿′ might reduce (shrink) as it passes through
the folding region of the attractor (𝐿′ is defined by two trajectories). This could lead
to inaccuracy of Lyapunov exponent 𝜆1. The next step is to look for a new data point
that sufficiently fulfils two criteria:. Small separation of 𝐿(𝑡1) from the evolved fiducial point.. Small angular separation between the evolved and replacement elements.
2 In experimental data, we usually don’t get all variables.

12
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Figure 3.4. Illustration of Wolf’s method for evolution time program for 𝜆1 [15, 4].

If new data points that fulfil these criteria can not be found, we hold on to the points
that were used. We repeat this process until the fiducial trajectory has traversed3 the
entire data file. At this point we approximate:

𝜆1 = 1
𝑡𝑀 − 𝑡0

𝑀
∑
𝑘=1

log2
𝐿′(𝑡𝑘)

𝐿(𝑡𝑘+1)
, (4)

where 𝑀 is the total number of replacement steps.

3.2.2 Variable evolution time program for 𝜆1 + 𝜆2

This algorithm has similarities to the previous one 3.2.1. However, it is more complex
for implementation. We chose three data points: the initial fiducial point and the two
nearest points (neighbours). By these points, we define area 𝐴(𝑡0). The area 𝐴(𝑡0) is
monitored until it is possible and recommended to do a replacement step. This makes
us use various additional input parameters:

. Minimum number of evolution steps before replacement.. Number of steps to evolve backwards when replacement is shown to be insufficient.. Maximum length (area) before replacement is attempted.

The evolution time is a variable. Evolution continues until a problem happens. Prob-
lems that Wolf’s algorithm includes are:

. Principal axis vector grows too quickly.. The area grows too quickly.. The area element’s skewness4 exceeds a threshold value.

If any of these problems happen, the trio of data points that are mentioned before,
evolve backwards and we try to make replacement. If replacement fails, we will make
another step backward to the trio of points and try again. We repeat this process until
a trio of data points is extremely close to the previous replacement.

3 Visiting the elements of the structure and doing something with the data.
4 Measure of the symmetry of a distribution.
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Figure 3.5. Illustration of Wolf’s method for 𝜆1 + 𝜆2 [15, 4].

Then at this point, we take the best replacement point that is accessible and go
forward. At the first replacement time 𝑡1, two points that are not on fudicial trajectory
are replaced by two new points to get a smaller area 𝐴(𝑡1). The orientation of 𝐴(𝑡1) in
phase space is almost the same as the evolved area 𝐴′(𝑡1).

We repeat this process until the fiducial trajectory has traversed the entire data file.
At this point we estimate:

𝜆1 + 𝜆2 = 1
𝑡𝑀 − 𝑡0

𝑀
∑
𝑘=1

log2
𝐴′(𝑡𝑘)

𝐴(𝑡𝑘−1)
, (5)

where 𝑡𝑘 is the time of replacement step.

3.3 Rosenstein’s algorithm
Rosenstein’s algorithm [7] is meant to be fast and easy to implement. The first step
is to reconstruct the attractor dynamics from single time series using the method of
delays. The next step is to find the nearest neighbours (of each point of trajectory).

For the nearest neighbour, we search for the point that minimizes the distance of
the specific reference point 𝑋𝑗. This is written as:

𝑑𝑗(0) = min
𝐗 ̂𝐣

‖𝐗 ̂𝐣 − 𝐗𝐣‖, (6)

where |...| symbolizes Euclidian norm and 𝑑𝑗(0) is the initial distance from the 𝑗 − 𝑡ℎ
point to its nearest neighbour. Here we define limitation to nearest neighbours to have
temporal separation greater than the mean period of the time series. For the mean
period, we use the mean frequency of the power spectrum5.

∣ 𝑗 − ̂𝑗 ∣ > 𝑚𝑒𝑎𝑛 𝑝𝑒𝑟𝑖𝑜𝑑. (7)

With this, we can look at each pair of neighbours as close initial conditions for
different trajectories. Then, the mean rate of separation of nearest neighbours estimates
the largest Lyapunov exponent.

5 We can use other comparable estimate e.g., the median frequency of the magnitude spectrum.
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Divergence of 𝑗−𝑡ℎ pair of nearest neighbour is given by the rate of largest Lyapunov
exponent:

𝑑𝑗(𝑖) ≈ 𝐶𝑗 exp𝜆1(𝑖.Δ𝑡), (8)

where 𝐶𝑗 represents the initial separation. When we take the logarithm by both sides
of the equation, we get:

ln(𝑑𝑗(𝑖)) ≈ ln(𝐶𝑗) + 𝜆1(𝑖.Δ𝑡). (9)

The equation represents a set of parallel lines, where each slope is corresponding
to 𝜆1. Then, using the least-square fit to the line, we can easily calculate the largest
Lyapunov exponent. It is defined by:

𝑦(𝑖) = 1
Δ𝑡

⟨ln(𝑑𝑗(𝑖))⟩, (10)

where ⟨…⟩ represent an average over all values of 𝑗. It is important to mention that
for small, noisy data sets this process of averaging is crucial to calculate 𝜆 accurately.
In equation (8) separation of neighbours is normalized, but as you can see in equation
(9) this normalization is not necessary for calculating 𝜆1. By avoiding normalization,
we can gain a small computational advantage.

Figure 3.6. Outline of Rosenstein’s algorithm [7].
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3.3.1 Reconstruction delay

Let us express the reconstructed trajectory, 𝑋, as matrix:

𝑋 = [𝑋1𝑋2 · · · 𝑋𝑚]𝑇. (11)

Each row of the matrix represents a phase-space vector. 𝑋𝑖 represents the time series.
For an 𝑁-point time series, 𝑋 = [𝑋1𝑋2...𝑋𝑛]𝑇, the reconstructed matrix is represented
as:

𝑋 = ⎛⎜⎜
⎝

𝑋0 · · · 𝑋(𝑚−1)𝜏
...

. . .
...

𝑋𝑛 · · · 𝑋𝑛+(𝑚−1)𝜏

⎞⎟⎟
⎠

, (12)

where 𝑚 is the embedding dimension, and 𝜏 is the reconstruction delay (𝑙𝑎𝑔). Matrix
𝑋 (𝑀𝑥𝑛) and constants 𝑁, 𝑀, 𝑚 and 𝜏 are linked as:

𝑀 = 𝑁 − (𝑚 − 1)𝜏. (13)

To determinate, the right value of reconstruction delay is still an open dilemma. An
overly large estimate of the reconstruction delay 𝜏 will make the elements of every vector
to behave as if they are distributed randomly. On the other hand, underestimating 𝜏
would lead to highly correlated elements of the vector. It would lead elements to be
concentrated around the diagonal in the embedding space, and insufficiently capture
the structure that is perpendicular to the diagonal. Rosenstein’s considers the optimal
estimation of 𝑙𝑎𝑔 can be determined using methods based on auto-correlation function
or correlation sum. Furthermore, we get the smallest errors for the 𝑙𝑎𝑔 where the auto-
correlation function drops to 1 - 1

𝑒 of its initial value. Finding optimal 𝜏 can also be
accomplished using the Fast Fourier Transform (FFT) [7].

The optimal value of 𝑙𝑎𝑔 is different for every system. For the Henon system, the
best results for this algorithm were seen when the value of 𝜏 is equal to one. Lorenz
and Rössler system performed efficiently for all 𝑙𝑎𝑔s, other than extreme ones [15].
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Chapter 4
Numerical results

In this chapter we will compare numerical results we got recreating Wolf’s and Rosen-
stein’s algorithms [15–16]. For Wolf’s, we used 3.2.1 version of method. We will
apply these two algorithms to Lorenz and Rössler systems and see how algorithms
perform with different lengths of time series, and with additive noise. Quantita-
tive analyses of chaotic systems can be sensitive to the observation time 𝑡(𝑠). For
Lorenz system we will use observation time 𝑡(𝑠)=0.01 and for Rössler system 𝑡(𝑠)=0.10.

System Equation Parameters t(s) Expected 𝜆1

Lorenz[8] ̇𝑥 =�(x-y) 𝜎 = 16.0 0.01 1.50[4]
̇𝑦 = 𝑥(�−𝑧) − 𝑦 𝜌 = 45.92
̇𝑧 = 𝑥𝑦−�𝑧 𝛽 = 4.0

Rössler[9] ̇𝑥 = −(𝑦 + 𝑧) 𝑎 = 0.15 0.10 0.090[4]
̇𝑦 = 𝑥 + 𝑎𝑦 𝑏 = 0.20
̇𝑧 = 𝑏 + 𝑧(𝑥 − 𝑐) 𝑐 = 10.0

Table 4.1. Chaotic dynamical systems and theoretical values for the largest Lyapunov
exponent, 𝜆1. The sampling period is denoted by ∆𝑡 [7].

4.1 Runge-Kutta methods
To get numerical results of Lyapunov exponents, we have to find numerical solutions
of ordinary differential equations (ODEs). There are many different methods that are
used for solving ODEs. These methods can vary in stability, accuracy and simplicity
[2]. In this paper, we will use Runge-Kutta methods for solving ODEs.

The Runge–Kutta methods [2, 17], developed around 1900 by the german mathemati-
cians C. Runge and M.W. Kutta, are a group of explicit and implicit iterative methods
used to approximately solve ODEs.

The general form [18] is:

𝑌𝑛+1 = 𝑦𝑛 + ℎ𝐹(𝑇𝑛, 𝑦𝑛; ℎ), 𝑛 >= 0, 𝑦0 = 𝑌0, (1)

where 𝐹(𝑇𝑛, 𝑦𝑛; ℎ) can be considered as average slope of the solution on the interval
[𝑡𝑛, 𝑡𝑛+1].

One of the explicit and well-known Runge–Kutta method is the fourth order
Runge–Kutta method generally referred to as RK4.

However, explicit Runge–Kutta methods are not best for solving stiff equations. Their
region of absolute stability is small, which is why they are usually unstable. Hence, it
is better to use implicit Runge–Kutta methods that are more stable for stiff equations.
If you are interested to know more about Runge–Kutta methods, we advise the reader
to Ref. [17].
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4.2 Time series length

Let us consider the performance of two algorithms for time series of different lengths.

Wolf’s algorithm (see results in Table 4.2) performed better for the Rössler system.
The Lorenz system was more difficult to test for the fixed observation time because its
ill-defined orbital period made it difficult to avoid catastrophic replacements near the
separatrix [4].

System N m Callculated 𝜆1 % error

Lorenz 1000 3 0.362 -75.86
2000 1.162 -22.53
3000 1.191 -20.06
4000 1.942 29.46
5000 2.147 43.13

Rössler 400 3 0.061 -31.66
800 0.057 -36.66
1200 0.036 -59.88
1600 0.054 -39.77
2000 0.108 20.00

Table 4.2. Numerical results of Wolf’s method for time series of different lengths.

Rosenstein’s [7] reported that their algorithm works well for small 𝑁, with errors less
than ±10% in almost all cases. Also, it is reported that algorithm faces more difficulty
with the Rössler system.

In Table 4.3, you can see the results we got implementing this algorithm. For 𝜏 we
used for Lorenz system value 10, and for the Rössler system we used value 8. We can
say that a bigger value of 𝑁 gives us better results with an error of 2.6% for the Lorenz
system, and an error of -4.4% for Rössler system. In our case, for smaller 𝑁 we got
errors less ±15.5% in almost all cases.

As we mentioned, quantitative analyses of chaotic systems can be sensitive to the
observation time 𝑡(𝑠). Best results are obtained when 𝑡(𝑠) is relatively long, and value
of 𝑁 is bigger (𝑁 = 5000, 𝑡(𝑠) = 0.01 𝑠, 𝑁 ⋅ ∆𝑡 = 50 𝑠). However, comparable results
can be achieved even when 𝑁 is smaller. That is why, it is advised in [7], that as long
𝑡(𝑠) is small enough (approximately 𝑛 to 10𝑛 points [4], to secure a minimum number
of points per orbit of the attractor), it is better to reduce the sampling rate (decrease
𝑁) and not the observation time 𝑡(𝑠).
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System N 𝜏 m Callculated 𝜆1 % error

Lorenz 1000 10 3 0.464 -69.06
2000 1.281 -14.6
3000 1.269 -15.4
4000 1.382 -7.8
5000 1.539 2.6

Rössler 400 8 3 0.074 -17.7
800 0.081 -10.0
1200 0.099 10.0
1600 0.084 -6.6
2000 0.086 -4.4

Table 4.3. Numerical results of Rosenstein’s method for time series of different lengths.

Figure 4.1. Plot of Average Log Divergence versus Expansion Step for the Lorenz attractor
for a) N = 1000, b) N = 2000, c) N = 3000, d) N = 4000.
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Figure 4.2. Plot of Average Log Divergence versus Expansion Step for the Lorenz attractor
for N = 5000.

Figure 4.3. Plot of Average Log Divergence versus Expansion Step for the Rössler system
for N = 2000.
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4.3 Additive noise

In this section, we decided to add noise to our experimental data to see how it will
affect the results of these two algorithms. As we mentioned before in 1.1, one of the
important problems in dynamical systems is to determinate deterministic chaos from
noise. In reality, obtaining data with measurement, without noise is almost unachiev-
able. Removing the noise, while leaving the signal intact leads us to a better ability to
detect the chaos. However, the underlying signal could have some frequency content in
the stopband or the filter may substantially alter the phase in the passband [7].

We will add a signal-to-noise ratio (SNR). The SNR is defined as the ratio of the
power signal to the noise power (pure noise signal, background noise). If SNR is lower
than 10, we can consider it to be a high noise. Moderate noise is between 100 and 1000
and SNR greater than 1000 a low noise.

Figure 4.4. Lorenz attractor with additive noise SNR = 1000.

Our results for Wolf’s algorithm (see results in Table 4.4) show us the worse results
for data with high noise. In our case, Rosenstein’s algorithm performed better with
noise.
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System N m SNR Callculated 𝜆1 % error

Lorenz 5000 3 1 8.848 489.8
10 3.102 106.8
100 2.147 43.1
1000 2.146 43.0
10000 2.141 42.7

Rössler 2000 3 1 2.1689 2308.8
10 0.1215 35.0
100 0.10818 20.2
1000 0.10817 20.1
10000 0.107 18.8

Table 4.4. Numerical results of Wolf’s method with additive noise.

For Rosenstein’s algorithm (see results in Table 4.5) we can observe that even with
additive noise, we can expect acceptable results for 𝜆1, excluding the extremely high
noise. For data with low noise, the error was smaller then ±10% for both systems. The
worst results were for the high noise levels, as mentioned above.

It seems that we cannot estimate the largest Lyapunov exponent in the environments
with high-noise, however presence of the positive slope gives us qualitative confirmation
of a positive exponent and with this, confirmation of chaos.

System N 𝜏 m SNR Callculated 𝜆1 % error

Lorenz 5000 10 3 1 0.536 -64.2
10 1.196 -22.06
100 1.374 -8.4
1000 1.412 -5.86
10000 1.481 -1.26

Rössler 2000 8 3 1 0.0122 -86,6
10 0.0259 -72.2
100 0.0845 -6.11
1000 0.0849 -5.66
10000 0.0871 -3.33

Table 4.5. Numerical results of Rosenstein’s method with additive noise.
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Figure 4.5. Effects of noise level for Lorenz attractor: (a) SNR = 1, b) SNR = 10, c) SNR
= 100, d) SNR = 1000, e) SNR = 10000.
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Figure 4.6. Effects of noise level for Rössler system: (a) SNR = 1, b) SNR = 10, c) SNR
= 100, d) SNR = 1000, e) SNR = 10000.
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Chapter 5
Summary

Lyapunov exponents are important for the characterization of an attractor of a nonlinear
dynamic system and their sensitivity to initial conditions. Many of the existing methods
for estimating the largest Lyapunov exponent face the difficulties of being unreliable
for small data sets, computationally intensive, and relatively difficult to implement.

The aim of this Thesis was to study different methods of estimating the Lyapunov
exponents from the data series and to compare the application of different methods on
the data series generated by several chaotic systems using a numerical calculation in
Matlab software. Then, to verify the accuracy of estimation of the Lyapunov exponents
by different methods depending on the length of the analyzed data series and to add
SNR to analyze how these algorithms will perform.

Comparing to Wolf’s method, Rosenstain’s algorithm takes advantage of all available
data, which makes this method more accurate for small data sets. Wolf’s method focuses
is on ’fiducial’ trajectory, hence it fails to take advantage of all the available data.
However, based on the research [19], even if Rosenstein’s algorithm takes advantage of
all available data, it does not seem to be better designed to study small data sets as it
was originally proposed. Also, Wolf’s method requires additional computation. Both
methods perform better with a larger size of data set.

Rosenstein’s considers that this algorithm can be seen as a better ’predictive’ model
(prediction in the location of the nearest neighbours, simple delay line, etc.) that re-
quires less computation compared to other predictive methods (e.g., polynomial map-
ping, neural networks).

Rosenstein’s method is considered to be easy to implement. In our opinion, it was
easier to implement Rosenstein’s method and it seemed more stable than Wolf’s.

In our opinion, the results for Wolf’s algorithm could be better, based on the other
papers and implementations, and our recreation was not as good as expected.

Based on our knowledge of this topic and the small research we did, we can not
conclude that either algorithm is superior to the other. In Ref. [19] authors found
Rosenstein’s algorithm to perform better, however, there are other articles saying that
it is yet premature to conclude that either algorithm is superior.

For other interesting methods for calculating Lyapunov exponents, we address the
reader to Ref. [20].

Lyapunov exponents are still a popular and up-to-date topic in research, and we
would like to refer readers to some of the latest papers that are interesting to read Ref.
[21].
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Appendix A
Enclosure List

CD with source codes in MATLAB:

. Lorenz attractor. Rossler system. Henon map. Rabinovich-Fabrikan system. Rosenstein method. Wolf method
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