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Abstract

Multiscale material modeling is one of the
enabling fields for future industries. To
fully exploit the opportunities of multi-
scale structures, multiscale modeling tech-
niques must be accurate and accessible.
This thesis focuses on iterative computa-
tional homogenization methods special-
ized for digitized microstructures, i.e. mi-
crostructures with geometries defined on
regular grids. These so-called spectral
methods exploit discrete Green’s opera-
tor preconditioning to maintain mesh-size
independent iteration count and the fast
Fourier transform to achieve nlog(n) com-
putational complexity. This thesis focuses
on three topics through a collection of five
manuscripts. First, it discusses the effect
of discrete Green’s operator precondition-
ing on the spectra of linear system matri-
ces. The first and second chapters provide
guaranteed, easily computable, two-sided
bounds on individual eigenvalues. These
bounds reveal the distribution of eigenval-
ues which helps to understand grid-size in-
dependence of spectral methods. Second,
the thesis discusses the problem of ring-
ing artifacts that pollute solution gradient
fields of spectral methods. The third chap-
ter provides a detailed description of the
finite element discretization approach that
eliminates ringing artifacts while keeping
the efficiency of spectral methods. The
fourth chapter then analyzes several dis-
cretizations to confirm that the finite ele-
ments deliver the solutions with the least
discretization artifacts. Third, the thesis
discusses the reduction of computational
costs by using reduced-order modeling.
The fifth chapter shows the potential and
efficiency of low-rank tensor techniques in
spectral methods for large-scale problems.

Keywords: computational homogeniza-
tion, FFT-based methods, spectral meth-
ods, finite element method, eigenvalue
bounds, discrete Green’s operator precon-
ditioning
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Abstrakt

Vicetrovinové materidlové modelovani je
jednou ze klicovych oblasti vyvoje pro
budouci primyslova odvétvi. Pro plné vy-
uziti moznosti viceuroviovych struktur
musi byt techniky vicetiroviiového mode-
lovani presné a dostupné. Tato prace se
zaméruje na iteracéni vypocetni homoge-
niza¢ni metody specializované na digitali-
zované mikrostruktury, tedy mikrostruk-
tury s geometrii definovanou na pravidel-
nych miizkach. Tyto takzvané spektralni
metody vyuzivaji predpodminéni pomoci
diskrétniho Greenova operatoru k udrzeni
poctu iteraci nezavislych na velikosti sité a
rychlé Fourierovy transformace k dosazeni
vypocetni slozitosti nlog(n). Prostfednic-
tvim souboru péti rukopisu se tato préace
zameéruje na tii témata. Nejprve se prace
zabyva vlivem predpodminéni diskrétnim
Greenovym operatorem na spektra matic
linearnich systémi. Prvni a druhd kapi-
tola popisuje lehce dostupné, garantované
oboustranné odhady jednotlivych vlast-
nich ¢isel. Tyto odhady popisuji distribuci
vlastnich ¢isel, coz pomaha pochopit neza-
vislost rychlosti konvergence spektralnich
metod na velikosti site. Zadruhé se prace
zabyva problémem oscilujicich discretiza-
¢ich chyb, které degraduji reseni spekt-
ralnich metod. Treti kapitola podrobné
popisuje pristup zalozeny na metodé ko-
necnych prvki, ktery eliminuje tyto osci-
lace pri zachovani uc¢innosti spektralnich
metod. Ctvrta kapitola pak analyzuje né-
kolik diskretizaci a potvrzuje, ze konecné
prvky poskytuji feseni s nejmensimi dis-
cretizac¢imi chybami. Za tfeti, pojednava
prace o snizeni vypocetnich naklada po-
moci modelovani s redukovanym radem.
Pata kapitola ukazuje potencidl a efek-
tivitu vyuziti tenzord nizké hodnosti ve
spektralnich metodach pro rozsahlé pro-
blémy.

Klicova slova: vypocetni homogeni-
zace, metody zalozené na FFT, spekt-
ralni metody, metoda konecnych prvki,
odhady vlastnych ¢isel, predpodminéni po-
moci diskrétniho Greenova operatoru
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Chapter 1

Introduction

Many natural bodies such as bamboo and bone exhibit excellent strength and durability
despite having rather low density [I56]. Their extraordinary macroscopic mechanical properties
arise from efficient distribution of the bulk material across scales. In similar manner, the
non-linear macroscopic behavior of concrete structures is determined by mechanical properties
of constituents and their geometrical distribution on microscale. Besides the analysis of
existing structures, the design of microstructures becomes an interesting topic as additive
manufacturing technology moves to microscales [113]. Multiscale design enables the creation
of architectured (meta)materials with microstructures beyond those that emerge naturally in
manufacturing processes [62].

This intrinsic multiscale aspect of materials behavior creates a demand for the development
of specialized scale-bridging techniques such as computational homogenization [83, 90, 38]. For
structures with well-separated scales, a concept of periodic homogenization with a periodic
unit cell as a representative volume element of the microstructure can be applied, and
microstructure geometries can be characterized by high-resolution images (originating, e.g.,
from micro-computed tomography [87] or geometry-based models [I38]).

Precise multiscale modeling for additive manufacturing or analysis of existing structures
is one of the promising fields for future industries. To fully exploit the opportunities of
multiscale structures, numerical modeling must be accurate and accessible. However, multiscale
simulations that operate concurrently on micro- and macroscales remain too computationally
demanding for everyday use [41]. This is caused primarily by the cost of micro-scale simulations,
i.e. a numerical solution of an underlying partial differential equation (PDE) with periodic
boundary conditions.

The pixel/voxel nature of microcomputed tomography and additive manufacturing pro-
cesses allow us to consider microstructure geometries defined on regular grids. Conventional
discretizations of micromechanical problems with high-resolution microstructures lead to
systems of linear equations with millions to billions of unknowns, which favor iterative solvers
over direct solvers. However, the convergence speed of iterative solvers can deteriorate with
increasing system size. For high-resolution micromechanical problems, a special class of
spectral iterative computational homogenization solvers has been developed. The convergence
of these solvers is independent of the grid size. The grid size independence is achieved by the
discrete Green’s operator of problem with homogeneous reference data that is usually used as
a preconditioner or projection operator. Thanks to the periodic boundary conditions and a
regular discretization grid, the discrete Green’s operator has a sparse representation in the
Fourier space and can be efficiently applied using the fast Fourier transform (FFT) algorithm,
which renders the computational complexity of spectral solvers O(nlog(n)), where n is the
number of pixels/voxels.



1. Introduction

The FFT-based methods were pioneered by Moulinec and Suquet in the mid-1990s, in the
seminal works [102], T03] that introduced with their fixed-point iterative scheme. Since then,
numerous adjustments, improvements, and applications of their scheme have appeared, as
comprehensively reviewed in [129, [84]. Algorithms developed over the years differ in solvers of
non-/linear systems of equations, discretization approaches, or even micromechanical problem
formulations.

The outstanding performance of the spectral methods is often compromised by the low
accuracy of the solution fields [I49]. Fourier-basis or trigonometric polynomial bases are
not well suited for the solution of PDEs with discontinuous data because of their global
supports [I7]. Classical spectral methods that employ Fourier basis functions for approximation
of solution produce undesired oscillations in solution fields that e.g. propagate even through
the void regions [80]. Oscillatory solution fields prevent the precise localization of inelastic
deformations that are necessary for predicting complex macroscopic phenomena such as plastic
yielding or crack propagation in materials. Evolution of these, for engineering practice very
important, nonlinear processes are governed by localization of inelastic deformation in meso-
or microstructures. Therefore, the solution of these non-linear models is intrinsically affected
by the accuracy of local solution fields.

Despite the efficiency of FFT-based methods and the fact that standard spectral solvers
use only a single quadrature point/deformation gradient per pixel/voxel, computational
requirements are still considerable for high-resolution microstructures. A cubic millimeter
discretized on a grid with micrometer voxels consists of billions of voxels, which is a dataset hard
to handle without extensive computational resources [I]. A fine discretization is crucial around
material interfaces, where solution fields change rapidly. However, far from interfaces, the
coarser mesh would be sufficient, and such a fine discretization is inefficient. Unfortunately,
standard mesh coarsening techniques destroy the regular discretization structure that is
essential for FFT-based methods. Therefore, alternative mesh coarsening techniques or model
order reduction techniques for FFT-based methods are of interest.

B 1.1 Thesis objectives

This thesis focuses on three major research topics summarized in the following objectives.
(i) Understanding the effect of discrete Green’s operator preconditioning.

(ii) Minimization of discretization artifacts of spectral methods.

(iii) Reduction of computational requirements of spectral methods.

Reaching these objectives will contribute to a deeper understanding of FFT-based methods,
expand their application range, and further strengthen their role in multiscale simulations.
The first research topic discusses the effect of reference material on the convergence of
iterative solvers. Iterative solvers are used to obtain solutions of systems of linear equations
that arise from discretization of homogenization problems. For the symmetric and positive
definite matrices, the conjugate gradient (CG) method is the method of choice; see, e.g.,
[82, 143, 123]. The convergence of the CG method can be affected by the distribution
(clustering) of eigenvalues of the linear system matrix. Well-separated clusters of eigenvalues
are favorable for the convergence rate, see, e.g., [82, [I36] or [45, Section 2]. However,
using finite precision arithmetic, similar types of spectra can slow down convergence; see,
e.g., [93, 140} 44]. Knowing the distribution of the eigenvalues can help to better estimate the
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1.1. Thesis objectives

quality of the preconditioner for the CG method. Additionally, guaranteed lower bounds on
the smallest eigenvalue of the preconditioned problem give us access to accurate algebraic
error estimates; see, e.g., [94].

In Chapter |2, we investigate the spectra of general diffusion or elasticity problems,
discretized by the conforming finite element (FE) method, and preconditioned by the discrete
Green’s operator of the reference homogeneous problem. We propose an approach for obtaining
guaranteed two-sided bounds on all individual eigenvalues. These bounds depend solely on
the local coefficients, namely on their extremes over supports of the FE basis functions. We
explore how the distribution of the eigenvalues depends on the choice of reference material
and how this affects the number of iterations of the CG solver.

Grid-size independence is not the privilege of Galerkin discretization approach but it is
observed for finite difference or collocation discretization approaches preconditioned by the
discretized Green’s operator. Therefore, in Chapter |3, we generalize our approach for
eigenvalues bounds from Chapter 2| such that it can be applied to other discretization
methods. We use the assumption that the global matrix of the linear system can be obtained
as a sum of local symmetric positive semidefinite matrices. In all these cases, the eigenvalue
bounds depend solely on local material data and on connections between the degrees of
freedom, i.e., on the properties of the discretization. We demonstrate the approach of
obtaining eigenvalue bounds for the finite difference method, the stochastic Galerkin FE
method, and the method of algebraic multilevel preconditioning.

The second research topic focuses on minimizing discretization artifacts. Knowing that the
effect of the discrete Green’s operator preconditioner is not restricted to a Fourier basis, we
use standard FE basis functions with localized supports. The approximation with locally
supported basis functions does not suffer from the Gibbs phenomenon. Additionally, the
regular FE discretization preserves the efficient structure of the discrete Green’s operator.
Therefore, the FF'T technique can be used to maintain quasilinear computational complexity
typical for spectral homogenization methods also for FE discretizations. In Chapter |4, we
provide a detailed discretization guideline for a discrete Green’s operator preconditioned
FFT-accelerated FE homogenization scheme. We generalize the approach pioneered by
Schneider et al. [I31] and Leuschner and Fritzen [79] and provide an alternative viewpoint
based on linear algebra. Besides reducing ringing artifacts, we focus on the minimization of
mesh-grids anisotropy that generates nonphysical preferential directions in the discretization.
Localized deformations, e.g., cracks in the concrete, are prone to propagate in these directions.
Therefore, we applied spectral methods to more general grids. In the end of Chapter |4,
we discuss the equivalence between our displacement-based scheme and the strain-based
homogenization scheme with the FE projection operator, used in the next chapter.

In Chapter |5, we discuss the problem of discretization artifacts in the strain-based
framework of compatibility projection that considers the deformation gradient as the primary
degree of freedom [75] 150} 25| 25]. We derive a formulation for the projection operator based
on a general gradient stencil and test several finite-difference stencils, a least-square stencil,
and a FE stencil. We observe that the only FE discretization stencil fully eliminates all
ringing artifacts and delivers oscillation-free results.

The third research topic focuses on reducing computational requirements of the FFT-
based methods. Despite their excellent computational efficiency, source requirements are
still considerable for high-resolution microstructures. Therefore, in the last Chapter |6, we
focus on the reduction of computational costs of FFT-based methods using model order
reduction techniques. We employ low-rank tensor techniques that approximate a d-dimensional
tensor by a sum of rank outer products of d vectors. For a sufficiently small rank, this data
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1. Introduction

compression can lead to a huge reduction in requirements for computer memory, e.g., the
memory requirement of rank-50 approximation of microstructures with resolution 10243 voxels
can be approximately equivalent to the requirements of full-field storage of microstructure
with resolution 552 voxels [I52]. On the series of scalar linear elliptic homogenization problems,
we explore the performance of canonical polyadic, Tucker and Tensor-Train low-rank tensors
format [54], [72].

This thesis compiles five manuscripts (four published and one under the second round of
reviews) adapted into chapters. In addition to intensive collaboration with my supervisors, I
was incorporated in three international research groups during my doctoral studies. Because
of the very collaborative nature of the doctoral study, I am the first author of two manuscripts,
the second author of two manuscripts, and the third author of one manuscript. Detailed
descriptions of my contributions to these manuscripts are provided on the first pages of
the corresponding chapters. I implemented algorithms used in this thesis to the C++-based
open-source platform puSpectre [60] for efficient FFT-based continuum mesoscale modeling,
and Python-based open-source library FFTHomPy [153] for numerical homogenization.



Chapter 2

Guaranteed two-sided bounds on all eigenvalues of
preconditioned diffusion and elasticity problems
solved by the finite element method

Abstract: A method of estimating all eigenvalues of a preconditioned discretized scalar diffu-
ston operator with Dirichlet boundary conditions has been recently introduced in T. Gergelits,
K.-A. Mardal, B. F. Nielsen, and Z. Strakos: Laplacian preconditioning of elliptic PDFEs: Lo-
calization of the eigenvalues of the discretized operator, SIAM Journal on Numerical Analysis
57(38) (2019), 1369-139/. Motivated by this paper, we offer a slightly different approach that
extends the previous results in some directions. Namely, we provide bounds on all increasingly
ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized
with the conforming finite element method, and preconditioned by the inverse of a matriz
of the same operator with different data. Our results hold for mized Dirichlet and Robin or
periodic boundary conditions applied to the original and preconditioning problems. The bounds
are two-sided, guaranteed, easily accessible, and depend solely on the material data.

Reproduced from:

[99] M. Ladecky, I. Pultarova, and J. Zeman. Guaranteed two-sided bounds on all
eigenvalues of preconditioned diffusion and elasticity problems solved by the finite

element method. Applications of Mathematics, 66(1):21-42, 2021. DOI1: |[10.21136/AM
2020.0217-19)|

My contribution:

I was involved in the numerical investigation of the algorithms, implementation of all
examples, creation of all results used in the publication, revision and editing of the
manuscript.

CRediT: Methodology, Software, Investigation, Visualization, Writing - Review &
Editing
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2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM

. 2.1 Introduction

In 2009, Nielsen, Tveito, and Hackbusch studied in [I10] spectra of elliptic differential operators
of the type V - £V defined on infinite-dimensional spaces which are preconditioned using the
inverse of the Laplacian. They proved that the range of the scalar coefficient k is contained
in the spectrum of the preconditioned operator, provided that k is continuous. Ten years
later, Gergelits, Mardal, Nielsen, and Strakos showed in [45] without any assumptions about
the continuity of the scalar function k that there exists a one-to-one pairing between the
eigenvalues of the discretized operator of the type V - KV preconditioned by the inverse of the
discretized Laplacian and the intervals determined by the images under k£ of the supports of
the conforming finite element (FE) nodal basis functions used for the discretization.

The present paper contributes to the results of [45] and generalizes some of them. While
in [45], a one-to-one pairing between the eigenvalues and images of the scalar data k defined
on supports of the FE basis function is proved, we introduce guaranteed two-sided bounds on
all individual eigenvalues. Our approach is based on the Courant—Fischer min-max principle.
Similarly as in [45], the bounds can be obtained solely from the data of the original and
preconditioning problems defined on supports of the FE basis functions. While in [110]
and [45] only the diffusion operator with scalar data is considered and the Laplacian operator
is used for preconditioning, we treat also the diffusion operator with tensor data and with
Dirichlet or Robin boundary conditions for both the original and preconditioning operators.
Our theory also applies to operators with non-zero null spaces and to operators with vector
valued unknown functions; as an example we study the elasticity operator with general tensor
data. Any kind of conforming FE basis functions can be employed for discretization; the sets
of the FE basis functions must be the same for the original and preconditioning operators. For
the sake of brevity, the name preconditioning matrix (operator) will be used for the matrix M
(or operator) which is (spectrally) close to the original matrix M (or operator, respectively)
rather than for the inverse of M. In contrast, in literature, including [45], M~ is often called
the preconditioning matrix.

For numerical solution of sparse discretized elliptic partial differential equations, the
conjugate gradient method (or Krylov subspace methods for symmetric problems, in general)
is a method of choice; see, e.g., [82] 143, [123]. It is well known, that its convergence depends
on distribution (clustering) of eigenvalues of the related matrices and on sizes of components
of the initial residual in directions of the associated invariant subspaces. For example, well
separated clusters of eigenvalues are favorable for the convergence rate, see, e.g., [82] 136] or
the example in |45 Section 2]|. Using finite precision arithmetic, however, similar types of
the spectra can slow down the convergence; see, e.g. [93] [140] and the recent comprehensive
paper [44]. Therefore, being aware of the bounds on the individual eigenvalues we can better
estimate the quality of the preconditioner. Our approach can also provide guaranteed easily
accessible lower bounds on the smallest eigenvalue of the preconditioned problem, which is
demanded, for example, for accurate algebraic error estimates; see, e.g., [94].

The structure of the paper is as follows. In the subsequent section, we introduce the diffusion
and linear elasticity equations as examples of scalar and vector valued elliptic differential
equations which our approach can be applied to. In the third section, the discretization
and the preconditioning setting are described. In the fourth section, the main part of the
paper, we suggest a method of estimating the eigenvalues of the preconditioned matrices. The
theoretical developments are accompanied with illustrative examples. Finally, we compare
our method with the recent results from [45]. A short conclusion summarizes the paper.

6



2.2. Diffusion and elasticity problems

B 2.2 Diffusion and elasticity problems

Our theory of estimating the eigenvalues will be applied to two frequent types of scalar and
vector valued elliptic partial differential equations: the diffusion and linear elasticity equations,
respectively. To this end, let us briefly introduce the associated definitions and notation;
see, e.g., [14] 21), 32 109] for further details. We assume general mixed boundary conditions
for the diffusion equation, and for simplicity of exposition, homogeneous Dirichlet boundary
conditions for the elasticity equation.

Let £2 C R? be a polygonal bounded domain, where d = 2 or 3. We consider the diffusion
equation with Dirichlet and Robin boundary conditions

—V-AVu=finf2, u=giondf2y, n-AVu=gs — gsuon 02,

where 0§21 and 32 are two disjoint parts of the boundary 0f2, 02 = 3§21 U 02, and n
denotes the outer normal to 0f2. After lifting the solution u by a differentiable function wug
that fulfills the non-homogeneous Dirichlet boundary condition and substituting u := u + ug,
the weak form of the new problem reads: find u € V = {v € H*(£2); v = 0 on 921} such that

(w,v)a =lasw), veV, (2.1)
where

(u,v)a = / Vv AVudx + gsuv ds,
Q A2

Li(v) = /fvdac—/Vv-AVuodm—l—/ gwdS+ [ n-AVuguds,
(9] (9] 082 082

for u,v € V; see, e.g., [32] for details. We assume f € L?(£2), g2 € L?*(062), and g3 €
L>®(062), g3(x) > 0 on 3§2. The material data A : 2 — R?*? are assumed to be essentially
bounded, i.e. A € L>®(£2; R™*?), symmetric, and uniformly elliptic (positive definite) in £2.
Thus there exist constants 0 < ¢4 < Cy4 < 0o such that

callv]3a < (A(z)v,v)pa < Caljv|2a, € 02, veR (2.2)

The weak form of the linear elasticity problem with homogeneous boundary conditions
reads: find w € Vi, Vo = {v € H'(2); v =0 on 92}, such that

(w,v)c =lcr(v), ve Vod, (2.3)
where

Oouy, Ov;
(’U,, U)C = / Cijkl dz
J%l: L I5 O 830]

lor(v) = /QZFividm,
=1

for u,v € V§, where F € (L?(£2))? are body forces. Due to the homogeneous Dirichlet
boundary conditions on 02y = 0f2, we use the special notation V| of the solution space. Let

d

Tii= Y cgmen(u), 4,j=1,...,d, (2.4)
k=1
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be the components of the Cauchy stress tensor 7 with the strain components e;; obtained
from the displacement vector u as

1 ouy, ouy _
ekl(u)_2<3l‘l+al’k>, k,l=1,...,d.

Assuming d = 3 and denoting e; = e, i = 1,...,d, we can write
o)
e1 97 U 0
0 2 0
€2 Oxao
es3 0 0 5= “
e = = ) ) dz3 u9 = 3u
2612 871‘2 T.Il 0
u3
2¢e93 0 2 9
9 8 oxs3 852
e 9 9
3l 8:)33 O 81‘1

We assume that the coeflicients c¢;;; of the tensor ¢ in (2.4)) are bounded measurable functions
defined in 2, c;jp € L°(2), fulfilling the symmetry conditions

Cijkl = Cjikl = Cklij, i7j7k7l = 17"'>d' (25)
Further, we assume there exists a constant p > 0 such that
d d
I Z ffj < Z cijrl ()€€, for all symmetric tensors § € Rz e 0.
ij=1 i,k l=1
Assuming d = 3 and denoting 7; := 7, ¢ = 1,...,d, due to the symmetries (2.5) of ¢, there
exist coefficients ¢;; € L>(§2), i,j = 1,...,6, such that the stress vector T can be obtained

from the strain vector as

T1 C11 €12 €13 Ci4 Ci5 Ci6 €1

T2 Cl2 C22 C23 C24 C25 C26 €2

T C13 Co3 €33 C34 C35 C e

S 3 _ 13 €23 €33 €34 C35 C36 3 — Ce.

T12 Cl4 C24 C34 C44 C45 C46 2eq2

723 C15 C25 €35 C45 Cs5 €356 2eg3

T31 C16 C26 C36 C46 C56 Co6 2e31
Starting from this place, we will use only the new set of material coefficients ¢;;, ¢,7 = 1,...,6,
(instead of c¢;ju, 4,7,k,0 = 1,...,d) and call the associated matrix C. Certain material

symmetries imply special structures of C. For example, homogeneous cubic 3D materials
correspond to ¢11 = co9 = €33, C44 = C55 = Cgg, C12 = C13 = C23, and annihilates the other
components, where c11 > ci12, c11 + 2¢12 > 0 and ¢qq > 0. Especially, for isotropic material,

we have
E(1-v) Ev E

A+)(1-20) T 0rva—20) " 20+0)
where E > 0 is the Young’s modulus and v € (—1, 3) is the Poisson ratio [109).
The vector F of external forces fulfills

C11 =

71
0 9 ol T2
T ox1 g 0 52 g oxs 3 Fl
~Tr=-| 0 2 o 2L 2 | B |=F
Oxa Ox1  0x3 T
0 0o 2 o 4 9 12 Fy
oxs 0xo o1 T3
731

oo
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yielding
-8TCou =F.

Thus (u,v)c and lc p(v) can be equivalently written as
(w,0)c = / (90)"Cou da,
Q
lerlv) = / vl Fdzx.
(9}

If d = 2, the dimensions of the arrays naturally reduce. For example, for cubic materials we
get

d
u T1 a1 g ci1 cr2 0
u = , T = T2 5 0= 0 Dz y C = C12 Ci11 0
2 T 0 0 0 0 c
12 925 D1 44

B 2.3 Discretization and preconditioning

We assume that a conforming FE method is employed to discretize the diffusion and elasticity
problems defined by (2.1)) and (2.3), respectively. The domain {2 is thus decomposed into
a finite number of elements &;, j = 1,..., N.. Some continuous FE basis functions (with
compact supports) denoted by ¢, k =1,..., N, are used as approximation and test functions.
By P we denote the smallest patch of elements covering the support of ¢i. Correspondingly
to Section 2.2, we denote the material data by A and C of the diffusion and elasticity
operators, respectively, and the data of the associated preconditioning operators by A and
C, respectively. The function g3 entering the Robin boundary conditions is allowed to be
different in the original and preconditioning operators; therefore, it is denoted by g3 in the
latter.

The stiffness matrices A and C of the systems of linear equations of the discretized
problems (2.1) and (2.3), respectively, have elements

A = [ V(@) Ale)Vir(@) da + /a _ g(@)a(@)on()ds

and
Crl = /0(3(% (@), .., p1,(®)") C()B(pk, (), ..., o1, ()" dar, (2.6)

respectively, where k,l =1,...,N, and k,l € {1,...,N }4. The preconditioning matrices A
and C obtained for the material data A and C, respectively, have elements

A = /Q Voi(x) - Ax) Vy () da + /a _ B@@)en(@)ds
and B B
Cur= [ Oen(@)..... 0, (@) C@)Bons @), ... 1, (@) da

respectively. All integrals are supposed to be carried out exactly.

The idea of preconditioning, see, e.g. [50, Section 10.3] or [I123, Chapters 9 and 10], is
based on assumptions that a system of linear equations with a matrix M is relatively easily
solvable and that the spectrum of M~!M is more favorable than that of M regarding some

9



2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM

iterative solution method, which does not necessarily mean a smaller condition number [45].
Substituting the equation Mu = B with

M~ Mu=M"B or M Y2MM~ /2y = |\~/|_1/2|3, u= |\7|_1/2v,

thus leads to equivalent problems that can be solved more efficiently than the original one.

B 2.4 Boundson eigenvalues of preconditioned problems

The main results of the paper are introduced in this section. Instead of presenting our results
for a general elliptic second order partial differential equation with tensor data and a vector
valued unknown function u, we first present our theory for the (scalar) diffusion equation
with tensor data in full detail. Then we apply the same approach to the elasticity equation.
The section is concluded by some general remarks mainly on relationship between our results
and the recent results from [45].

B 2.4.1 Diffusion equation

The lower and upper bounds on the eigenvalues 0 < Ay < --- < Ay of A~A for any uniformly
positive definite measurable data A, A : 2 — R4 are introduced in this part. The boundary
conditions of the original and preconditioning problems may differ at most in the function
gs, i.e. instead of g3, the function gs can be used in Robin boundary condition of the
preconditioning problem. We assume, however, that there exist constants 0 < ¢, < Cy < 00
such that

0 <cyg3(z) < gs(x) < Cygs(x), € 0.

Since N is the number of the FE basis functions then A, A € RV*N_ We now build two
sequences of positive real numbers )\% and \Y, k=1,...,N. Let us first set

oM — egg infzee, Amin (A~_1($)A($)) ,
o = essSUPgeg; Amax (Afl(w)A(w)) ,
if no edge of &; lies in 0f2, and

min

o™ = min {ess If e 50,nE, gs ()0 G5 ' (®)gs(x), essinfpee, Amin (AN—l(;I;)A(:B))} ,

max

o™ = max {ess SUD 400,08, , g3 () £0 g3 H(x)g3(x), ess SUDPgeg; Amax (A_l(w)A(:c))}

if at least one edge of &; lies in 02, j = 1,..., N.. If A(x) and A(z) are element-wise
constant and if g3 and g3 are constant on every edge (of any element) lying in 02y, the
computation of Oz;-nin and o"** reduces to calculating the extreme eigenvalues of d x d matrices
on all individual elements &;, j = 1,..., Ne, and eventually comparing them with g5 Lx)gs(x)
on some of the attached edges. For every function ¢, supported on the patch Py, let us set

A= min o™® AV = max o7 j=1,...,N. 2.7
k £;CPs i k £;CPy 5] ) ) ( )

Thus )\% and )\g are in the above sense the smallest and the largest, respectively, eigenvalues
of A~!(x)A(z) on the patch Py, or the extremes of g5 g4 along the parts of the boundary of

10



2.4. Bounds on eigenvalues of preconditioned problems

Py lying in 0f25. After inspecting all patches, we sort the two series in (2.7) non-decreasingly.
Thus we obtain two bijections

r,s:{l,...,N} = {1,...,N}

such that
L L L U U U
)\r(l) < /\T(g) <--- < Ar,»(N)y )\5(1) < /\5(2) <---< )‘s(N)‘ (2.8)

Note that we could define and compute )\% and /\kI directly without defining a}ni“ and o',

However, dealing with the constants oz;mn and o is more algorithmically acceptable, because

it allows to avoid multiple evaluation of eigenvalues of A-1A on every element.

Next we prove an auxiliary lemma. Let o(M) denote the spectrum of the matrix M.
Lemma 2.1. Let A(x), A(xz) € R¥? be symmetric and positive definite for all x € D C £2.
Let there exist constants 0 < ¢; < cg < o0 and 0 < ¢3 < ¢4 < 00 such that

c(A Y (2)A(x)) C [c1,¢2], x €D, (2.9)

and
0 <c3g3(®) < g3(w) <cags(x), xe€d2nD.

Then for u € H}(£2) we get

01/ Vu - AVude < / Vu- AVudx < 02/ Vu - AVude (2.10)
D D D
and
min{cy, c3} </ Vu- AVude + _ gau® dS)
D 9822ND
< / Vu- AVudzx + _ggu*dS (2.11)
D 9822ND

< max{ca,cq} </D Vu- AVudz + /8(2 mﬁ§3u2 dS) )
2

Proof. Since for all v € R? and x € D it follows from (2.9) that
vl A(z)v < vTA(z)v < ;v A(x)v,

we get (2.10)) by setting v = Vu and integrating all three terms over D. Inequalities (2.11))
follow obviously using g3 > 0. 0

Now we introduce the first part of the main results of this paper.

Theorem 2.2. Let us assume that the (d — 1)-dimensional measure of 02, is positive. The

lower and upper bounds on the eigenvalues 0 < A\; < Ay < -+ < Ay of A~IA are given
by (2.8)), i.e.,
My S <Ay, k=1,...,N. (2.12)

Proof. Due to the positive measure of 321, the matrices A and A are positive definite. We
only prove the lower bounds of (2.12); the upper bounds can be proved analogously. Due to
the Courant—Fischer min-max theorem, e.g. [50, Theorem 8.1.2],

. vl Av
= max min =,
S,dimS=N—k+1 veS,v#0 yT Ay

Ak

11



2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM

where S denotes a subspace of RY. Then we have

VY.V . vl Av L
max min —=— = min = > A1)
S,dimS=N veS,v£0 yT Ay veRN v£0 vI Av

Al =

where the inequality follows from Lemma 2.1l Indeed, using u = Zf\;1 Vv;p;, definitions (2.7))
and Lemma [2.1| with D = 2, we get

T Vu - AVudz + u?ds i
viAv Ja Joa, 93 > min o™ = min \F = A%m-

vIAy fQ Vu- AVudz + f{mQ gau2dS ~ & J PrC2

Then we proceed to

vl Av vl Av

Ay = max min — > min =
S, dimS=N-1 veS,v#0 yT' Ay ~ veRN v#£0,v,1)=0 vI'Av

L
Z A2y

where the last inequality follows from Lemma 2.1 where (due to v,.;y = 0) D contains only
the patches associated to the FE basis functions ¢, j # (1),

D = Ujeqr,...N\{r)} P

and from
min — = min — —
VE]RN,V#O, Vr(l):[) VTAV uzzfil ViQi, V?"(l):O fD VU . AVU dm + f892ﬁ5 g3u2 dS
> min o™ = min A\ = AL,
T &CD PrCD k r(2)

We can proceed further in the same manner to get all inequalities )\f(k) < A\ of (2.12). O

In Theorem 3.2, we consider positive definite problems with homogeneous Dirichlet and/or
general Robin boundary conditions (with g3 > 0). Neumann boundary condition is a special
type of Robin boundary condition with g3 = 0. In practical implementation of nonhomogeneous
Dirichlet boundary conditions, the lifting function ug does not necessarily have to be employed.
If the same non-homogeneous Dirichlet boundary conditions are considered for the original
and preconditioning problems, the method of getting the lower and upper bounds (2.8)) can
be used unchanged. Our theory, however, does not cover the settings where the original
and preconditioning problems are considered under different non-homogeneous Dirichlet
boundary conditions or different functions go in Robin boundary conditions, or if 9f2; in the
preconditioning problem does not coincide with 921 used for the original problem.

If periodic or Neumann boundary conditions are applied along 0f2 and if they are the same
for the original and preconditioning problems, then A and A are singular; they share the
smallest eigenvalue A\; = 0 and the associated eigenvector. Then we can use the same method
again to get the bounds on all of the eigenvalues of the preconditioned matrix; however, we
must omit the null space of A (which is the same as the null space of /&) from the respective
formulas. To justify the method, we can proceed analogously as in the proof of Theorem [3.2]
where the vectors v are now additionally considered fulfilling Av # 0. Then

T
Ay > min v év > )\1]5(1).
veRN  Av£0 VI Av

12



2.4. Bounds on eigenvalues of preconditioned problems

We can proceed further, analogously to the proof of Theorem |3.2,

T
. v Av
Ag > _min o > A7If(2).
VERN,AV;&O,VT(U:O viAv

In this way we get N — 1 lower bounding numbers on the non-zero eigenvalues of A‘lA, where
both A and A are now considered restricted to the subspace of RY that is orthogonal to the
null space of A. Analogously, we get the upper bounds; thus finally,

Alﬁ(k_l) <A < )‘E(k)v k=2,...,N.

Let us now apply our method to some examples.
Example 2.3. Assume d =2, 2 = (—7,7)%, 082 = {x; 11 = 7},

Alz) = 1+ 0.3sign(sin(z2)) 0.3+ 0.1cos(x;)
N 0.3+ 0.1cos(x1) 14 0.3sign(sin(z2)) |’

and a simple and a more sophisticated preconditioning operators with

Al<m>=(é ‘1)>7 and Az<sc>=<(f3 Of’)7

respectively. Let us consider one of the following settings:

(a) uniform grid with piece-wise bilinear FE functions, N = 102 or 302, g3 = 0; see Figure 2.1}
(b) uniform grid with piece-wise bilinear FE functions, periodic boundary conditions, N = 212;
see Figure [2.2;

(c¢) nonuniform grid and triangular elements with piece-wise linear FE functions, g3 = g3 =
1+ 23, N = 400; see Figure 2.3

The numerical experiments illustrate the results of Theorem [3.2], i.e. that the bounds on the
eigenvalues are guaranteed for different types of boundary conditions. We can also notice that
since A is point-wise closer to A, than to Avl, the spectrum of the second preconditioned
problem (together with its bounds) is closer to unity than the spectrum of the problem
preconditioned by using A;. Note also that refining the mesh does not lead to more accurate
bounds, in general. This is caused by the difference between the extreme eigenvalues of AZ_ A,
1= 1,2, on individual elements; see also Section |2.4.3.

The numbers of the CG steps needed to reduce the energy norm of the errors by the factor
1079 (starting with zero initial vectors) for setting (a) with f = 1 in £ are 17 and 13 for A,
and As, respectively, for N = 102, and 20 and 15 for A; and A, respectively, for N = 302.

Let us emphasize that the error analysis of CG requires not only the eigenvalue distribution,
but also (an estimate of) the components of the initial residual in directions of the associated
eigenvectors; see, e.g., [45, Formula (2.7) and Remark 4.1]. In some cases, however, the
eiegenvalue distribution can lead to a quite accurate estimate of the number of CG steps:
Example 2.4. Assume d = 2, 2 = (—n,7)?, the homogeneous Dirichlet boundary conditions,
a uniform grid, N = 182, and bilinear FE functions. Let £2; and {25 be two small subdomains
in 2 (each covering four elements). Let A(x) = b(x)I, where

bx)=14+2z, xe€ ), bx)=1—z xe€l bx)=1 xzc2\ (21U, (2.13)

where 2 is some constant in (—1,1). For preconditioning we use Laplacian, i.e. A=1 Tn
Figure 2.4, it is seen that the spectrum of A=A contains only a few outlying eigenvalues; the
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— ' ' : ' ' DY
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200 400 600 800 200 400 600 800

Figure 2.1: Lower (\},)) and upper (A{,,) bounds on eigenvalues Ay of Example 2.3 (a) with

N =102 (top graphs) and N = 30? (bottom graphs) preconditioned by operators with A, (left)
and A (right).

100 200 300 r(k) 100 200 300 400

Figure 2.2: Lower ()\%(k)) and upper (/\E(k))Nbounds on ei~genvalues A of Example (b) with
N = 212 preconditioned by operators with A; (left) and A, (right).

number of them does not depend on z. In accordance with this, the number of CG steps to
reduce the energy norm of the error by the factor 10~ is constant (equal to 11) independently
of z €[0.9,0.999]. Note that such a z yields the condition numbers of A"*A varying from 19
to 1999.

B 2.4.2 Elasticity equation

In the elasticity problem, or in vector valued problems in general, the searched function has
multiple components, u(x) = (ui(x),...,uq(x))”, where individual components are coupled
within the equation. For approximation of the scalar functions u;, j = 1,...,d, we use the
same sets of the FE basis functions g, k= 1,..., N, supported again inside the patches Py.
Recall that for the sake of simplicity, we consider homogeneous Dirichlet boundary conditions
only.

Lemma 2.5. Let C(x),C(x) € R™ ™, where m = 3 if d = 2, and m = 6 if d = 3. Let
C and C be symmetric and positive definite for all x € D C (2. Let there exist constants
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_\U
A5t
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L

Figure 2.3: Lower ()\E(k)) and upper ()\E(k)) bounds on eigenvalues \;, of Example 2.3| (¢) with
N = 400 preconditioned by operators with A, (left) and A, (right) with g3 = g3 = 1 + 22.

2 L
§] 2r - AU
) s(k)
15} Y
M 15 )
1 L e I Y
: )‘r(k) /\r(k)
0.5
]
0 . . . . . . . . .
50 100 150 200 250 300 290 300 310 320
k k

Figure 2.4: Lower (/\I;(k)) and upper (/\E(k)) bounds on eigenvalues Ay of Example [2.4| for z = 0.9
(left) and the detail view (right).

0 < 1 < g < 0o such that

o(C™Hx)C(x)) C [c1,¢2], x € D. (2.14)

Then for u € V§! we get
e / (Ou)'COudx < / (Bu)TCOudx < ¢y / (Ou)'Cou dx (2.15)
D D D

Proof. From (2.14)) for all v € RY, x € D, we get
av'C(x)v < vTC(x)v < e v C(x)v.

Then by setting v = du and integrating over D, we obtain (2.15)). O

We now show how to obtain the guaranteed bounds on all individual eigenvalues 0 < \; <

-+ < Agn of the preconditioned elasticity problem C~IC for any positive definite material data

C and C. Since N is the number of the FE basis functions defined on 2 used to approximate

each component of u, the number of unknowns is dN. We now build two sequences )\I,; and

M. k=1,...,dN, to bound the eigenvalues of C~!C. In contrast to Section 2.4.1, for the
min

sake of brevity, we do not define o' and oj***, but we directly set

l)\\% = eS8 infwepk )\min (éil(w)c(w)) ’
A= ess SUDgep, Amax (é_l(m)C(m)> ’

k=1,...,N. Similarly to the case of the diffusion equation in Section 2.4.1, we sort these
two series non-decreasingly, and thus get bijections

R,S:{l,...,N} = {1,...,N},

15



2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM

such that
Moy < S ARavy Asa) S < Ay

Moreover, we double (if d = 2) or triple (if d = 3) all items in the two series of XI,; and Xg
and get two new d-times longer series

" L _ 3L Y U _ U
Ab-D)dr1 = = Aa = A Ap-nyar = = Ma =My K=1,..0N,
that can be sorted non-decreasingly. Thus we obtain two bijections

ros:{l,...,dN} = {1,...,dN},

such that
My = = Ay S Aarn) = - = Aea) <
o S AaN—drn) = = Ay (2.16)
>‘E(1) :...:)\E(d) S)‘E(d-i-l) - "':>‘E(2d) <.
"'S/\E(dN—dH) :"‘:/\E(dN)' (2.17)

Note that for k=1,..., N,

Nty = M(=nas1) = = Aray A5 = A(=1)dr) = 7 = As(ra)-

Now we can introduce the second part of the main results of this paper.

Theorem 2.6. The lower and upper bounds on all eigenvalues 0 < Ay < Ay < -+ < A\gy of

C~1C can be obtained from (2.16) and (2.17), namely
My €M <Ay, k=1,...,dN. (2.18)

Proof. The proof is similar to the proof of Theorem 3.2, By the Courant—Fischer min-max
theorem,

ey
A = max min —.
S, dimS=dN—k+1 veS,v#£0 yI Cy
Then .
) v’ Cv L L
Ad >+ > A1 = min >)\r(1):"‘:>‘r(d),

veRaN v£0 vTCy

where the last inequality follows from Lemma [2.5] Indeed, representing the coefficients of

the components of u = (uy,...,uq) with respect to the FE basis functions in a single vector
v = (va),...,v@))T: (vi,...,vna)T, V() € RN j=1,...,d, we get

viCv  [,(0uw)TCOudx

= = =~ minXL:XL :)\L ::)\L X
VICy  [(duw)TCOudx ~ Pece * TR o) r(d)
Next, we remove (1) from all d bases approximating the components of u = (u1, ..., uq).
Then
. ey
A2d = oo > Ag1 > min > /\f(dﬂ) B )‘715(2(1),

VERN  v£0,vR(1)=0,...,v(a—1)n+r(1)=0, VI Cv
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2.4. Bounds on eigenvalues of preconditioned problems

where the last inequality follows from
viCv fD(Bu)TCaudaz
VICv [ (8u)TCOude PkCD

where vr(1) = 0,...,v(g-1)n+r(1) = 0, and correspondingly,

JL L L
n A= Ny = Aarn) =+ = Maays

D =Ujeq,.. N\ R} P;-
Continuing further in this way, we can prove the lower bounds in (2.12). Analogously, we can
get the upper bounds. ]
Example 2.7. Assume the elasticity equation with homogeneous Dirichlet boundary conditions,
d=2, 2= (—n,7)% N =212, and the data
1—v v 0
C(x) = v 1-v 0 , (2.19)
0 0 0.5(1—2v)

where
E(x) =14 0.3sign (z122), v =0.2.

Preconditioning is performed with the constant (homogeneous) data of the type (2.19) with
E =1 and either v = 0 or v = 0.2, denoted by C, and Cs, respectively. A uniform grid with
piece-wise bilinear FE functions is employed. We can see in Figure [2.5/that the preconditioning
matrix using the data 6’2, which are closer to C, yields the spectrum of the preconditioned
matrix closer to unity. Moreover, we can notice two clusters of eigenvalues approximately
equal to 0.7 and 1.3, respectively. The numbers of the CG steps to reduce the energy norms of
the errors by the factor of 10~ are 14 and 11 for 01 and Cg, respectively, when we consider
F = (1,0)7. In this example, C| is diagonal, while Cy is more dense. Therefore, the overall
efficiency strongly depends on implementation of the preconditioner. These considerations
are, however, behind the scope of this paper.

2 2
1.5 : 1.5

1 — U 1 /

s(k)
05 _ s |os
k K k
0 - /\L 0
200 400 600 r(k) 200 400 600 800

Figure 2.5: Lower (/\i‘(k)) and upper ()\E(k)) bounds on eigenvalues Ay of the elasticity problem of
Example 2.7 with N = 212 preconditioned by operators with Cy (left) and Cs (right).

Remark 2.8. The bilinear form (u,v)c associated with the linear elasticity operator is
equivalent with the following bilinear forms defined in Vi, see [14],

B / zd: ov; Ou; d
(wv)ea = 0 o= Oy 0x;

(woloe = [ (00) uds
02
d
(w,v)ca = /2(8(0,...,O,Ui,O,...,O)T)TC'B(O,...,O,Ui,O,...,O)T,
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2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM

where v = (v1,...,v4)7. The equivalence constants and the proofs can be found in [14] and
in the references therein. We may notice that our preconditioning matrix C with the data
in the form C(z) = I is the same as the matrix of the discretized form (u, v)c,e. Therefore,
using our method for obtaining the bounds on the eigenvalues of preconditioned problems can
be used to estimate the equivalence constants of the above forms defined in finite-dimensional
subspaces of Vod spanned by the FE basis functions; for example, we can immediately get

A%(l)(“’?“’)c,éf < (uw,u)c < )‘E(dN)(,u@u)C,&'

B 2.4.3 General remarks

Let us now compare our results obtained for the diffusion equation with the recent results
from [45]. Analogies for the elasticity equation can be considered straightforwardly. In [45],
the existence of a pairing between the eigenvalues of the preconditioned matrix and the
intervals obtained from the scalar data defined on the patches is proved. Especially, in any
of the intervals, some eigenvalue must be found. This allows us to estimate the accuracy of
the bounds provided that the scalar data are continuous or mildly changing in (parts of) (2.
In our paper, instead, we get that A\ € P‘%(k:)? )\E(k)], or \, € [)\E(k_l), )‘E(k)] if the operator is
semi-definite with the null space of the dimension 1. Let us note that

AII; S)\U7 )‘717(]4;) S)\E(k)') T(k) SS(k), ]{3:1,...7N,

but (k) # s(k) in general, thus the intervals containing the individual eigenvalues are different
than the intervals obtained in [45]. Sometimes, however, the intervals obtained by our method
and by the method of [45] (ordered appropriately) coincide; see the following example.

Example 2.9. Let us consider the test problem from [45, Section 4]: the diffusion equation,
2 =(0,1)2, A(x) = sin(z1 + x2)I, and homogeneous Dirichlet boundary conditions on 912.
Let us use a uniform grid with piece-wise bilinear FE functions, N = 92 or N = 192. For
preconditioning we use A~(m) = I. The appropriatelly ordered bounds provided by [45] and
the bounds obtained by our method coincide; they are displayed on Figure |2.6.

K r(K) ‘

20 40 60 80 100 200 300

Figure 2.6: Lower (Avlj(k)) and upper (/\g(k)) bounds on eigenvalues \; of Example (2.9 with N = 92
(left) and N = 192 (right).

The approach developed in [45] can be modified to the case of tensor data and existence of
a permutation p: {1,...,N} — {1,..., N} can be proved, such that

A\ € [A]E(k),)\g(k)], k=1,...,N. (2.20)

The Weyl’s inequality (see, e.g., [I33], Section 3.5]) is used in the proof in the same way as
in [45]; the only change is in substituting the extremes of the scalar material data on every
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2.4. Bounds on eigenvalues of preconditioned problems

patch P; by the extremes of the eigenvalues of A~l(z)A(x) on P;. Therefore, we do not
provide the proof here. The bounds obtained from (2.12)) and from (2.20) are compared in
Example 2.11L

Using (2.20)), under some special conditions, analogously to the results of [45], some
eigenvalues can be identified exactly including their multiplicity. Since we do not present
the proof of (2.20), let us formulate and prove this statement separately. For the sake of
brevity, we formulate it for the case of the nonsingular diffusion equation with the tensor data
only. Generalization to problems with vector valued unknowns is straightforward; see also
Example 2.7,

Lemma 2.10. Let there exist ¢ > 0 such that A~(x)A(x) = cI on a union of m patches
D = U, Pj,.. Let none of the patches Pj,, k =1,...,m, attache to 922 where g3 # 0, and
let the patches be associated with m linearly independent FE functions y;j, ..., ;. . Let A
be nonsingular. Then c is an eigenvalue of A-LA of multiplicity at least m.

Proof. Let ) e RN, (el)); = dij, where 0;; is the Kronecker delta symbol. Then for every
J=J15-5Im,

v Aeld) B JoVv-AVp;dx + faQ2 gzpjvdsS B cfoVv-AVyp;de B
vIAel) [, V- AVyp;dx + Joq, G3pjvdS [ Vv AVy;dx

for all v € RY, v # 0. This means that c is an eigenvalue of A~1A associated with the eigen-
vectors e)| j = ji, ..., jm. Since the eigenvectors are linearly independent, the multiplicity
of ¢ is at least m. O

Example 2.11. In this example, we compare our method of estimating the eigenvalues of A-1A
with the method of [45] adapted for tensor data. Especially, we compare the bounds (2.12)
with the intervals (2.20). Since we do not know the permutation p, we order the intervals
according to the permutation r given by (2.8). Let us consider d = 2, 2 = (—1,1)%, N = 182,
and bilinear FE basis functions. Let

[ 1.24+0.5(1 +sign(xy))x 0
Alw) = ( 0 R — 0.5 (1 + sign(x2)) x2 )

and us use A = T for preconditioning. The eigenvalues of A~1A and their bounds are displayed
in Figure [2.7. The guaranteed bounds (2.12) are found on the left, while the guaranteed
(unordered) intervals from (2.20) are displayed on the right. In this example, the bounds do
not provide sharp localization of the eigenvalues (left). The intervals, however, provide very
sharp localization of a half of the spectrum (right).

Let us finally focus on limitations of our theory. We could see that in some examples the
bounds did not get closer to the true eigenvalues when the mesh-size decreases. As a repre-
sentative 2D example we can take the diffusion equation with constant data, preconditioned
by the Laplacian, say,

A =diag(2,1), A =diag(1,1). (2.21)

While the constant lower and upper bounds are obtained
L U
Akzl, )\k::27 kzl,...,N,

the true eigenvalues of A~LA are distributed between these two bounds almost achieving
both extremes 1 and 2. We could conclude that if the data are of the tensor type and if the
preconditioner is poor, i.e. A~!(x)A(x) is not close enough to a multiple of the identity I
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Figure 2.7: Lower (A,,) and upper (A{;,) bounds on eigenvalues Ay, of Example 2.11| (left) and
intervals [)\E(k), /\H(k)] (right).

in {2, the bounds )‘7]7(19) and )\E(k) may not say much about the true eigenvalues; the types
of the FE basis functions and of the mesh influence the distribution of the true eigenvalues
as well. Interestingly, from very recent results of Gergelits et al. [46] we can conclude that
the spectrum of the operator A~1[V - (AV)], i.e. the continuous form of example (2.21)), is
equal to [1,2]. We hope that further study elucidates a relationship between the eigenvalues
of A=A and the continuous case.

. 2.5 Conclusion

To the best of our knowledge, [45] is the first paper on estimating all eigenvalues of a
preconditioned discretized diffusion operator. Motivated by [45], we complement to this
theory by introducing another approach based on the Courant—Fisher min-max principle.
This allows generalizing some of the results of [45] to vector valued equations with tensor
data and with more general boundary conditions preconditioned by arbitrary operators of the
same type. We provide guaranteed bounds (defined by (2.8) and by (2.16)—(2.17)) for scalar
and vector problems, respectively) to every particular eigenvalue. On the other hand, the
approach of [45] can provide more accurate estimates of (parts of) the spectra in general.
Analogously to [45], the bounds are easily accessible and obtained solely from the data defined
on supports of the FE basis functions. If the data are element-wise constant, only O(N)
arithmetic operations and sorting of two series of N numbers must be performed. Although
we applied our method to only two types of differential equations, we are convinced that the
same approach can be used in a wide variety of problems.
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Chapter 3

Two-sided guaranteed bounds to individual
eigenvalues of preconditioned finite element and
finite difference problem

Abstract: Numerical methods for elliptic partial differential equations usually lead to systems
of linear equations with sparse, symmetric and positive definite matrices. In many methods,
these matrices can be obtained as sums of local symmetric positive semi-definite matrices. In
this paper, we use this assumption and introduce a method which provides guaranteed lower
and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the
method for preconditioners arising from the same discretization problem but with simplified
coefficients. The method uses solely the data over the solution domain and local connections
between the degrees of freedom defined by the discretization.

Reproduced from:

[118] I. Pultarovd and M. Ladecky. Two-sided guaranteed bounds to individual eigenval-
ues of preconditioned finite element and finite difference problems. Numerical Linear
Algebra with Applications, 28(5):¢2382, 2021. pOI: 10.1002/nla.2382
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM

. 3.1 Introduction

Many numerical methods for partial differential equations (PDEs) lead to the solution of
systems of linear equations. Elliptic PDEs can yield sparse symmetric positive definite
matrices that can be obtained as sums of sparse symmetric positive semi-definite matrices
which only use the data of a small piece of the solution domain. Such matrices are sometimes
called element matrices in the context of the finite element method (FEM). We shall call them
local matrices throughout the paper. For example, in FEM, the entries of such a local matrix
can be defined as energy inner products of pairs of all basis functions over a single element.
Similarly, the matrices resulting from the stochastic Galerkin finite element method (SGFEM)
or from the finite difference method (FDM) can also be obtained as sums of symmetric positive
semi-definite matrices with only a few non-zero entries. Another common feature of these
discretization methods is that the conditioning of the matrices becomes worse if the grid is
getting finer and/or the scales of magnitudes of varying data of the underlying problems are
growing. Therefore, in practical computation, some kind of preconditioning is to be applied. In
this paper, we consider a preconditioning matrix obtained by the same discretization method
as the original system matrix but with different data or using a different operator. Then we
introduce a method providing guaranteed two-sided bounds to all individual eigenvalues of
the preconditioned system or, equivalently, to all generalized eigenvalues of a system defined
by these two matrices. The bounds are based solely on comparing local data of the problem
and of the preconditioning problem and on local connections among the degrees of freedom
(DOFs). Coefficients of the preconditioning operator can be constant, for example, or admit
some other advantageous features which allow an efficient solution method. For example,
discretized diffusion problems can be preconditioned by the discretized Laplacian, and linear
elasticity stiffness matrices can be preconditioned by a discretized homogeneous, possibly
anisotropic elasticity operator. This is efficient if (the approximation of) the inverse of the
preconditioning matrix can be easily obtained, for example, by using the discrete Fourier
transformation, or if the LU-decomposition of the preconditioning matrix can be obtained
and applied to many problems with variable coefficients.

For the numerical solution of sparse discretized elliptic PDEs, the conjugate gradient (CG)
method is a method of choice; see e.g. [82), 93, (140}, [143]. Typically, preconditioners leading
to small condition numbers (ratios of the largest and the smallest eigenvalues) are searched
for. However, the localization of the whole spectrum can help to better characterize the
convergence in some particular cases. For example, a few large outlying eigenvalues can
be linked to fast convergence. A detailed exposition is provided in recent paper [44] where,
assuming exact arithmetic, the so called composite bounds are used to demonstrate the
annihilation of the influence of the outlying eigenvalues. In finite precision arithmetic, well
separated outlying eigenvalues may mimic tight clusters of eigenvalues, and thus cause a delay
of convergence of CG. Nevertheless, even when outlying clusters are present, the rounding
errors may not spoil the computation during a sufficient number of steps of CG; see the
example in [45, Section 2].

The idea of estimating generalized eigenvalues based on local properties of the underlying
operators first appeared in [I10], where the eigenvalues of elliptic differential operators of
the V - kV type defined in infinite-dimensional spaces and preconditioned by the Laplacian
were shown to coincide with the data k. Analogous statements characterizing the spectra of
problems discretized by FEM were introduced in [45] 46] where a one-to-one mapping between
the eigenvalues and a set of intervals defined by the data over the elements was proved. In
algebraic multilevel (AML) preconditioning, a similar idea of inspecting all individual elements
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3.2. Two sided bounds to all eigenvalues of a preconditioned discretized problem

for obtaining the lower and upper bounds to the minimal and maximal eigenvalues, respectively,
was used [3, 15, B1, 57]. This motivated the spectral estimates in the preconditioning of
SGFEM, see e.g. [23, [74, 116], 117]. In this paper, we extract the core idea of the approach
presented in [99] and show that it can also be applied to some other discretization schemes:
SGFEM, FDM and AML. In all cases, the eigenvalue bounds depend solely on local material
data and on local properties of the discretization. The method is formulated in a general way,
and thus can be applied to other discretized problems.

The outline of the paper is as follows. In the subsequent section, we introduce the method
of getting guaranteed two-sided bounds to all eigenvalues of a preconditioned matrix, or,
equivalently, to generalized eigenvalues of the system matrix with respect to the preconditioning
matrix. Though we focus on problems arising from discretized PDEs, the method is formulated
in a general way. In the third section, we present five frequent discretization methods applied
to some standard problems and show what specific forms of the general estimation method
(what choices of local matrices) can provide reasonable bounds. A short discussion concludes
the paper.

. 3.2 Two sided bounds to all eigenvalues of a preconditioned
discretized problem

We assume that the stiffness matrix A € RNaotXNdot of 3 discretized problem is symmetric and
positive definite, and

Ne
A = Z A, (3.1)
n=1
where A,, € RNdotxNaot 9y = 1, ... N,, are symmetric positive semi-definite (local) matrices.

The number of DOFs of the discretized problem is Ngor. When we use FEM, the set of
matrices A,, can correspond to the construction of A element-by-element. In such a case,
N, equals the number of elements, and the non-zero entries of every matrix A,, are only in
the cross-sections of the rows and columns attached to the basis functions supported in the
n-th element. The following two notations will appear as useful: let S,, n =1,..., Ne, be
sets of indices of non-zero rows (columns) of A,, and let Ej, j =1,..., Nqof, denote a set of
such indices n of {1,..., No} that j € S,,. Again, if we use FEM, then S, is a set of DOFs
attached to the FE basis functions supported in n-th element. On the other hand, Fj; is a
set of element numbers, where the j-th basis function is supported. Let us denote the m-th
column of the Ngof X Ngof identity matrix by elm)

Let AP € RNaotxNdot he a preconditioning matrix,

Ne
AP =" AP (3.2)
n=1

where AP € RNdorXNaot ' = 1 ... N,, are symmetric positive semi-definite matrices. We
assume that the sets S,, and E; constructed for matrices AP are the same as those built for
A,. We also assume that the kernel of A,, is the same as the kernel of AP for alln =1,..., N,.
This assumption is not necessary for the main theorem of this section, but it is substantial for
practical application of the theory, since it allows getting sensible bounds to the eigenvalues of
a preconditioned matrix. Note also, that we cannot obtain the same kernels for local matrices
obtained from stiffness and from mass (or identity) matrices in FEM.
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Throughout paper, a formula F' valid for all variables v in the set S can be denoted as
F(v), v € S, i.e. without using "for all" or V. Similarly, F'(n), n =1,...,m, means that F is
valid for all n in the set {1,...,m}. In many places, however, we consider as helpful to use
the quantifiers explicitly.

We will study the bounds to the generalized eigenvalues of

Au = A\ APu, (3.3)

or, equivalently, to the eigenvalues of the preconditioned matrix (AP)~'A. Let us denote these
eigenvalues by
0 <A< A2 <o < Ay

If the boundary conditions are periodic or homogeneous Robin, we get one or more smallest
eigenvalues of A and AP equal to zero and the kernels of A and AP are equal. In such a case,
we can still apply our method with a small restriction. Instead of the inverse of AP, we can
use the pseudo-inverse (AP)# [50]; and we can search for the bounds to (nonzero) eigenvalues
of (AP)#A by the restriction of RNdot*Naot to the space orthogonal to the kernel of A. For
simplicity, however, we avoid singular matrices A and AP in our exposition. We start with a
theorem providing criteria for identifying exact eigenvalues of (AP)~1A.

Theorem 3.1. Let there exist J pair-wise different indices m; € {1,2,..., Naot}, 7 =1,...,J,
and a constant 3 > 0 such that
A, = BAP

for all n € U}-jzlEmj. Then j is a J-tuple eigenvalue of (AP)~!A, or more precisely,
Ael™i) = BAPe(™) =1 ... J

Proof. Let j € {1,...,J} be arbitrary. Then

Ne Ne
Aelmi) — Z A, elmi) = Z A, e(mi) = Z BAPe™) — 3 Z APe(ms) — g APe(m3)
n=1 n=1

Since e(™i) are linearly independent for j = 1,...,J, the proof is completed. O

Now we proceed with the main theorem of the paper providing guaranteed lower and upper
bounds to all individual eigenvalues of (AP)~!A.

Theorem 3.2. Let matrices A and AP be symmetric and positive definite and fulfill (3.1)
and (3.2). Let us define for k =1,..., Nqof,

A = max{)\; vIALy > AVTARY, n=1,...,N,, v € RNt vj =0 forall j € TkI;_l}, (3.4)

where T,?, k=0,1,...,Ngot — 1, are built consecutively: Ty = () and T,? = Tg:l U {mgy},
where my, is a single (arbitrary) integer such that the maximum in (3.4) is achieved for n = ny,
and

my € Snk \Tkal-

Analogously, let

/\deorkﬂ = min {)\; vIiAv < /\vTAgv7 n=1,...,N,, ve RNt vj =0 forallj € T,gl} ,
(3.5)
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3.2. Two sided bounds to all eigenvalues of a preconditioned discretized problem

where T = () and TY = TY | U{my}, where my, is an integer such that the minimum in (3.5)
is achieved for n = ny, and

Then
A<M <A, k=1,..., Nyt (3.6)

Proof. We have
A1 = min ﬂ
v20 v APy’
or, equivalently,
A1 = max{)\; v Av > W APy, Vv € RVaor},

Thus any A} € R fulfilling
vIAv > XEVIAPY, Wy e RNVaor (3.7)

is a lower bound to A;. Condition (3.7)) is equivalent to

Ne Ne
Z viAv > Ab Z vIAPy Yy € RNt

n=1 n=1

and a sufficient condition to (3.7) is
VALY > APVIARY, Yn=1,..., N, Vv & RNt (3.8)

The maximal A} fulfilling (3.8) is equivalent to the A} defined by (3.4). Thus the first

inequality of (3.6) is proved for k = 1. Let for k = 1 the maximum in (3.4) be achieved with

n = ny. Then let us choose an arbitrary but a unique m; € S,,, and set T’ L — {m1}. In other

words, we exclude m; in some sense from the set of DOFs in our further consideration. Note

that since the maximum in (3.4) is finite and is achieved for n = n;, the set S, is not empty.
Due to the Courant-Fischer min-max principle

. vl Av . vl Av
Ao = max min _————>  min —m——,
dim V=Ngor—1 v#£0,v€V V' APV ~ v#£0,vm, =0 vI APv

and thus any Ay € R such that
viAv > AEVTAPY, Wy e RNaor =0,
or, equivalently,
viAv > AEVT APy, vy e RNaof v, =0 for all j € T, (3.9)

is a lower bound to A2. A sufficient condition for A} fulfilling (3.9) is, similarly as in (3.8),
obtained from inspecting all pairs of matrices A,, and AP separately, namely as

vIiA,v > /\15 vTAflv, Vn=1,...,N,, Vv e RN o guch that v;i=0,Vje€ TlL. (3.10)

The maximal A} fulfilling (3.10) equals the A} defined by (3.4). Thus the first inequality
of (3.6)) is proved for k = 2. Then we choose such an index ng that the maximum in (3.4)
is achieved for n = ny. Since the maximum is finite, the set Sy, \ 7 is not empty. Then
we can choose some (unique) ma € Sy, \ T, and set T4’ = T U {ma}. We proceed in the
same manner up to Akfdof’ the lower bound to Ax, ;. Analogously, the upper bounds )\g to all
eigenvalues of (AP)~!A can be obtained starting from )\[]\deof and finishing with \Y. O
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The findings of Theorem [3.2| can be summarized as algorithms. A practical implementation
of the algorithms is based on effective computing the extreme \’s in (3.4). The extremes can
be obtained by inspecting all pairs of local matrices A,, and AP separately, namely, by solving
very small eigenvalue problems. Moreover, since A,, and AP use only local data, these extremes
can be obtained by inspecting (element-by-element) the data of the original problem and of
the preconditioning operator. More details are presented in section 3 for some particular
problems and discretization methods.

Algorithm 1 (lower bounds).

1. Set T as an empty set.
2. For k=1,..., Ngof repeat (a)—(c):
(a) Find A} as the maximal A fulfilling inequalities vI'A,v > AVvIAPv for all n = 1,..., N,
and for all v € RNdof such that v; =0forall j €T.
(b) Take an arbitrary index n for which the equality in (a) is achieved with A = AL and v # 0.
(c) Take an arbitrary m € S, \ T, and set T := T U {m}.
Algorithm 2 (upper bounds).
1. Set T as an empty set.
2. For k=1,..., Ngof repeat (a)—(c):
(a) Find )\Jgfdof—k 41 as the minimal A fulfilling inequalities viAv < WTARY for all n =
..., Ng, and for all v € RNaof such that v;j =0 forall j€T.
(b) Take an arbitrary index n for which the equality in (a) is achieved with A = A}/ and v # 0.
(c) Take an arbitrary m € S, \ T, and set T':= T U {m}.

Note that while inspecting all pairs of matrices A,, and AP, n = 1,..., Ngof, for some
kE > 1 in steps 2(a), we can exclude such matrices A,, and AP in which S, C T, because
Av =Abv=0ifv; =0 forall j € 5,.

Algorithms 1 and 2 are formulated generally, and thus can be applied to various PDEs
and discretization methods in different ways. The details of the algorithms, especially the
choice of local matrices A,, and AP, are essential for the practical implementation. In the
subsequent section, we introduce five frequent problems and discretization methods and
show some particular choices of A,, and AP that can lead to acceptable bounds in practical
computation. However, new choices of local matrices and/or new strategies for choosing n in
step 2(b) and m in step 2(c) leading to more accurate bounds can be found in a future study.

B 3.3 Five model problems

We present five model problems of discretized PDEs. In all problems, the PDE is defined in
the physical domain D C R2. The shape of D is considered polygonal, or even rectangular
if FDM is used. One of these problems is parametrized by a (random) parameter; see
section |3.3.4. The PDEs considered are either the heat equation or linear elasticity equation
with Dirichlet or Robin boundary conditions. The discretization is obtained via FEM, FDM
or SGFEM for the parametrized PDE. The preconditioning matrices are obtained in the
same manner as the stiffness matrices of the underlying problem but for different data or
for a slightly different operator. A different operator is used in AML or SGFEM methods,
where we consider hierarchical finite elements and associated preconditioning and a truncation
based operator, respectively. In FEM based discretizations, we consider the material data as
constant element-wise.

In all cases, a second order elliptic differential equation is considered, either reformulated
into a weak form and discretized, or discretized directly using FDM. Both schemes lead to
systems of linear equations with symmetric a positive definite matrices A. Our concern is to
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construct a preconditioning matrix AP and to give guaranteed lower and upper bounds to all
eigenvalues of the resulting preconditioned matrix (AP)~'A. In other words, we search for the
bounds to all particular eigenvalues of the generalized eigenvalue problem

Av = X\ APy, (3.11)

In the subsequent parts we introduce five model problems illustrating the application of
Theorems [3.1] and [3.2| and of Algorithms 1 and 2. In all five model problems, we focus on the
principles of our new algorithms, therefore the problems are simple without any complicated
geometry or mesh, and with a relatively small number of DOFs. Then we can calculate all
the eigenvalues and their bounds almost exactly; considering rounding errors is beyond the
scope of this paper.

B 3.3.1 Finite element method and heat equation
The second order scalar elliptic differential equation

— V- (a(x)Vu(x)) = f(x), =D, (3.12)
is considered with Dirichlet or Robin boundary conditions on 0D = dDp U 0Dg,

uwx) = gi(z), xecdDp
n(z) - (a(@)Vu(z)) = ga(x) - gs(x)u(z), x € IDg,

where mn is the outer normal to dDgr. The coefficient tensor a defined on D is uniformly
positive definite, measurable and uniformly bounded over D, and f € L?(D). Problem (3.12)
is transformed into the weak form and discretized using FEM with continuous and piece-
wise polynomial basis functions ¢;, i = 1,..., Ngof; see e.g. [32]. This leads to a system
of linear equations with a symmetric and positive definite matrix A. Our concern is to
build a preconditioning matrix AP and to find bounds to all eigenvalues of the resulting
preconditioned matrix (AP)"1A. We assume that the preconditioning matrix AP is obtained
by the discretization of the operator

— V- (aP(x)Vu(x)), (3.13)

with the same type of boundary conditions as those of the original problem. We note that
the boundary conditions can be considered different in building A and AP. This only leads to
a small modification of the algorithm; see a more detailed description in [99]. The coefficient
tensor aP is positive definite, measurable and bounded uniformly in D.

It is well known that the entries of A are obtained as energy scalar products

Aij:/ v¢j-av¢idw+/ guvdz, ij=1,. .. N (3.14)
D 0Dgr

The entries of AP are obtained in the same manner as those of A but with a coefficient tensor
aP,

Afj:/ Vqﬁj-aquﬁidw—i—/ gsuvdx, 4,7 =1,..., Ngof.
D 8D

The local matrices A, in (3.1)) and, analogously, AP in (3.2)) are obtained as

(An)ij = / V(;S] -aVo; d:l?-i—/i gsuvdx, 1,7=1,...,Ngot, n=1,..., N, (315)
Dy, DyNODgr
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM

and

(Ag)” = / ngj'ap Vi dil?—l—/i gsuvde, i,7=1,...,Ngor, n=1,..., Ng, (3.16)
Dy, D;NODRr

respectively, where D,, C D, n=1,..., N, are the elements defined by FEM. Then A,, and

AP are sparse with only a few non-zero entries in the rows and columns indexed by such DOFs

1 associated with basis functions ¢; that do not annihilate in D,,.

Let us now briefly describe how to efficiently use Algorithm 1 for this particular problem
and discretization. For simplicity of exposition, let us consider g; = g3 = 0. Before starting
Algorithm 1, let us define A™"(z) as the smallest eigenvalue of (aP(z)) 'a(x) for almost all
x € D. Let us go through all elements D,, and set

ok = essinf {)\mm(ac); S Dn}.
If @ and aP were element-wise constant, o is simply the smallest eigenvalue of (aP(x)) 'a(x)
for arbitrary & € D,,. Using this setting, we can easily find such a constant A that fulfills

vIALY > AVIAPY, Yn=1,... N, Vv e RNt (3.17)

Indeed, since (3.17) is equivalent to

/ Vv -aVuvdx > A Vv-aPVuvdxe, Vn=1,...,Ne, Vv € Vrrm,

Dy,
where Vepm = span{¢i, ..., dn,.}, it is enough to set
AF'= min ak.
n=1,...,Ne

Then we choose some element, say D,,,, where the minimum is achieved, i.e. /\]f = a%l, and

choose some DOF attached to this element, say mq. Starting from now, in all used vectors
v € RNdof the my-entry annihilates (is excluded). To get A5 we need such A that

vIiA,v > )\VTAEV, Vn=1,...,Ng, Vv e RNt Vi, = 0.

This is equivalent to

Nyof

Vv-aVuvdz > A Vov-aPVvde, Vn=1,...,N,, Vv= Z Vi®j, Vm, = 0.

Dn Dy =

Thus it is enough to set
Ay = min{al; n=1,..., N, not all DOFs on D, are excluded}.

Now we choose ny such that the minimum is achieved on D,,,, i.e. Ay = a%Q. Then we choose
a DOF attached to D,,, say ma, that has not been excluded yet. We can proceed in a similar
manner to get Ay, Al .... Analogously, we can also get the upper bounds )\g.

Example 3.3. Let equation (3.12) be defined on D = (0,1) x (0,1) with

alz) = < 1+ 0.3sign(zg — 0.5) 0.3+ 0.1sign(z; — 0.5) > 7 (3.18)

0.3+ 0.1sign(x; —0.5) 1+ 0.3sign(xy —0.5)
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Let us consider a homogeneous Dirichlet boundary condition v = g1 = 0 on 0Dp, and a
Robin boundary condition

n-(aVu) =0

(thus g2 = g3 = 0) on dDR = {(z1,22); 1 =1, 22 € (0,1)}, where 9D = 0Dr UdDp. Let us
partition D into N, = 450 conforming triangles and consider continuous and piece-wise linear
basis functions attached to Ngof = 210 nodes with undefined solution values. Let us use two
preconditioning matrices for the same boundary conditions and for the data

P! (z) = ( é ; ) L or a(z) = ( 0%3 0 ) , (3.19)

respectively. The eigenvalues A\, k = 1,..., Ngof, of (AP)~!A as well as the lower and upper
bounds )\I,; and )\g, respectively, obtained by Algorithms 1 and 2, are shown in Figure 3.1}

50 100 150 200 50 100 150 200
k k

Figure 3.1: Eigenvalues of preconditioned stiffness matrices (Example 3.3|) obtained by FEM (blue
dots) and their lower and upper bounds (solid red lines) for preconditioners with data aP! (left)
and aP? (right), respectively.

Example 3.4. The same setting and preconditioning is used as in Example [3.3| but with data

a(x) = (1 + 0.3 cos <(m1 + 112)7;)) ( 0%3 Oi3 > .

The eigenvalues A, k = 1,..., Ngof, of (AP)"*A and the lower and upper bounds A} and A}/,
respectively, obtained by Algorithms 1 and 2, are shown in Figure [3.2]

15r
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)‘k
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50 100 150 200 50 100 150 200
k k

Figure 3.2: Eigenvalues of preconditioned stiffness matrices (Example 3.4)) obtained by FEM (blue
dots) and their lower and upper bounds (solid red lines) for preconditioners with data aP! (left)
and aP? (right), respectively.
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B 3.3.2 Finite element method and linear elasticity

The linear elasticity equation [211, [109] is a vector equation, i.e. the unknown is a vector
function w defined in D. The weak form of the two-dimensional linear elasticity equation with
homogeneous Dirichlet boundary conditions reads to find u = (u1,us) € (Hg(D))? which
fulfills

0
e ci1 c2 0
/ ' Coudr = / o' Fde, O8u= g—;‘; , C=1] co ¢ 0 , (3.20)
P b 2—;;; + g—;? 0 0 cs3

for all v € (H}(D))?. The stiffness tensor C : D — R3*3 is positive definite, measurable and
bounded uniformly in D, and F € (L?(D))? is the vector of external forces. The stiffness
matrix A and the preconditioning matrix AP have their entries

Aij:/[)6(¢i1>¢i2)Tca(¢j1a¢j2)dm and A?j:/Da(¢i1v¢’iQ)TCpa(¢jla¢j2)d$7

respectively, i1,12,71,J2 = 1,..., N, where ¢ = (i1,42), J = (J1,j2) and Ngof = 2N. The local
matrices A, and AP/ n=1,..., N, have their entries

(A)ig = [ 0(00.0)TC 00y, 0,)de and (AD)ig = [ 0(01,,0,)7 €7 0(31,0,) da

respectively, 11,42, j1,52 = 1,...,N. The lower and upper bounds to eigenvalues are then
obtained directly according to Algorithms 1 and 2, respectively. See also more examples
in [99] and another approach in [46].

Example 3.5. Let us consider D = (0,1) x (0,1), linear elasticity problem (3.20) and the
preconditioning problem with tensor data C and CP, respectively, where

1—v v 0 1—vP VP 0
1—v 0 , CP= vP 1—vP 0 ,

B(e) )
0 0 0.5—v 0 0 0.5 —vP

c= (1+v)(1—2v)

E(x) =1+ 0.3sign (z1 + 22 — 1) and v = 0.2. The preconditioning matrix uses either data
CP! with P = 0 or CP? with vP = 0.2. The FEM discretization with bilinear basis functions
yielding N = 196 and Ngof = 2 - 132 = 338 is used. The eigenvalues of (AP)~!A as well as
their lower and upper bounds are displayed in Figure [3.3] Note that if CP was a multiple of
C' in some parts of D, some eigenvalues can be determined exactly with sharp bounds; see
Theorem 3.1.
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Figure 3.3: Eigenvalues of preconditioned stiffness matrices (Example |3.5) obtained by FEM
for the elasticity equation (blue dots) and their lower and upper bounds (solid red lines) for a
preconditioner with CP! (left) and CP? (right).
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B 3.3.3 Algebraic multilevel preconditioning

In this part, we recall algebraic multilevel (AML) preconditioning and estimating the resulting
spectrum. AML methods use nested meshes and associated hierarchical FE basis functions.
In this paper, we use only two levels of hierarchy, which we call coarse and fine and denote
by superscripts ¢ and f, respectively. The details of this useful method can be found
e.g. in [3, 15, B1, 57]. Here we show that the well known algorithm of estimating the
spectrum also fits in the context of Algorithms 1 and 2.

We consider again second-order linear elliptic problem (3.12)) defined in a polygonal domain
D with a homogeneous Dirichlet boundary condition on dD. We use FEM defining a coarse
triangulation with element-wise linear basis functions ¢S, 7 =1,..., Njs- We assume that a
is constant on every coarse element (triangle) D,, n =1,..., N.. Let each coarse element D,,
be split into four (fine) triangles of the same shape with vertices equal either to the vertices
of the coarse triangles or to the centers of the edges of the coarse triangles. We consider
only such fine basis functions attached to the centers of the edges of the coarse triangles: ¢§-,
j=1,... 7chiof‘ Thus the set of all fine and coarse basis functions

W:{(b;;j:17"'7N50f}u{¢§;j:17"'7N(fiof}

is linearly independent. The approximation and test spaces are obtained as a span of W; thus
Naot = N + Néof. The stiffness matrix A € RNaot*Naof can be obtained in the block form

Acc Acf
A= ( (Acf)T Af'f > )

where the superscripts ¢ and f are related to coarse and fine basis functions (DOFs), respectively,
and A € RNior*Néor and A € RNt Nior, ITn AML methods, one of possible preconditioners

can be
A 0
P _
A_< ' AH).

Ne
A=> A,
n=1
where A,, is a sparse local matrix with only 6 x 6 non-zero entries,
(KD = [ V65-aveide
Dn

(W = [ V4, -aVelda

The matrix A can be obtained as

(A, = /D wg-av(p{dm,

i,j=1,....,NS; I,m=1,... Nis;n=1,... N

Example 3.6. We consider AML preconditioning for problem (3.12)) with a homogeneous
Dirichlet boundary condition on 0D. We have N, = 392 coarse elements D,, and Ngot =
N§,; + Nl = 182+ 502 = 684. The resulting eigenvalues of (AP)~!A and their lower and
upper bounds are displayed in Figure[3.4. As a rule, the bounds are not tight in AML. Instead
of estimating the individual eigenvalues, only A\F and )\[]\deof can be computed to get the upper
bound to the condition number

k(AP TTA) < AR, /AT
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM

The results in Figure |3.4 illustrate that the upper bound is sharp.
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Figure 3.4: Eigenvalues of the preconditioned stiffness matrix (Example |3.6) obtained by FEM
and AML for the heat equation (blue dots) and their lower and upper bounds (solid red lines).

B 3.3.4 Stochastic Galerkin finite element method

We consider a stochastic (or parameter) second order scalar elliptic differential equation

—V - (a(z, &) Vu(z, &) = f(x),

where x € D, £ = (£1,...,¢N,,,) € 2 C RNvar with Dirichlet boundary conditions on 9D
defined for all £ € (2. The scalar coefficient a is uniformly bounded in D for almost all £ € (2.

The gradient operator is applied with respect to the variable . The weak form reads to find
u €V = Hy(D) ® L3(£2) such that

| | ve@.) - (al@. & Vu(@. &) p(e) dade = | [ f@)ut@,€) p(6)dade, vev.

where L%(Q) is the Lebesgue space with the positive weight function p defined on 2 ¢ RVear,
The discretization by SGFEM [5, 27, 47, 157] yields a space Viof which is a span of the
products of Nf¢, finite element basis functions ¢;(z), i = 1,..., N, defined in D, with N, é’gfl
polynomials ¢;(£), j =1,... ,Nggfl, defined in 2. Thus Ngor = Ng%ngsfl. The matrix of the
discretized problem reads

A1) Ntr, (j—1)N+s Z/Q%(f)l/}r(é’)/DV(ﬁj(w) ~(a(z,&)Vei(x)) p(€) dedg,

ij=1,... N rs=1,. NP%

Preconditioning can be applied in various manners. Here we examine truncated based
preconditioning [11l 2377 , [116] 117, 139] where the matrix AP is built using fewer terms of
expansion of a(x, &) than in the original operator. Let us see the following example which is
very simple, still showing all essential principles of estimating the spectra of the preconditioned
matrices for SGFEM.

Example 3.7. Let D = (0,1), Npar = 1, 2 = R, p = e **/2, thus the distribution of the
parameter £ can be considered as random with the Gaussian probability density function p
(up to a scaling factor). Let

a(x, &) = ap(z) + €ar(z), ap(z) =4 +sign(x —0.3), a1(z) =0.2.

Let us consider homogeneous Dirichlet boundary conditions for any & € §2. Let N(ff)f =21,
and either Nggfl =5, or Nggfl = 15, then either Ngor = 105 or Ngof = 315, respectively. Then

A=A 4 AL
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3.3. Five model problems

where

Ag?)l)N-w (j—=1)N+s /w8(5)¢r(§)P(§)d§/ Voi(z) - (ao(x)Vei(x)) da,
A pinonwee = [ €8©U€ o€ [ V0,@) - (1(2)Voi(a) da

Let the preconditioning matrix be AP = A(®). Then we can apply Algorithms 1 and 2 to get
the bounds to the eigenvalues of (AP)~'A in such a manner that the local matrices A,, and
AP are

(A7(10)>(Z DN+r, (j—1)N+s / s (E)r(€) p(§) dg/D v(bj(x) +(ao(2)Vi(x)) da,
(Agzl)>(z DN+7, (j—1)N+s / §Ys (&) (§) p(&) df/D v¢j($) (a1(2)Vei(z)) dz,

where D,, = ((n — 1)h,nh), n=1,..., N, + 1, h=1/(N; +1). Thus No = N, + 1. The
resulting bounds as well as the spectra of (AP)~!A are displayed in Figure 3.5, We can notice
that in both examples the maximal eigenvalues equal their upper bounds and the minimal
eigenvalues equal their lower bounds. Therefore, a sharp upper bound to the condition number
k< /\IJ{,O1 ./ AL can be obtained from only the first steps of Algorithms 1 and 2; cf. also [? ].
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Figure 3.5: Eigenvalues of preconditioned stiffness matrices (Example |3.7) obtained by SGFEM
(blue dots) and their lower and upper bounds (solid red lines) for N?% =5 (left) and N¥ = 15
(right).

B 3.3.5 Finite difference method

A lot of FD schemes can be found in literature; see e.g. [76] and the references therein. The
formulae for substituting mixed derivatives in problems with variable and anisotropic data can
be found e.g. in [12, 20] 63, [78, 8T, 124], 144]. Special schemes yielding symmetric matrices
are e.g. in [I30]. In this part, we consider D = (0,1) x (0,1) and a uniform rectangular mesh
with Ngqof = N1Ns inner nodes x;j, ¢ = 1,..., Ny, j = 1,..., Ny, and second-order linear
elliptic problem ({3.12)) with a homogeneous Dirichlet boundary condition. Thus we have Nyof
unknown function values (DOFs)

UU:’LL(meJ), le:(Zhl’]hQ)v izla"'aNl’ j:]-a"-aNQa

where hy = 1/(N1 + 1), hg = 1/(N2 + 1). We shall use such difference schemes which lead to
a symmetric system matrix:

d ( du ) (i) ~ (ci—1y + cijui—1,j — (cim1,y + 265 + Cip1,5)tig + (Cij + Cig1,5) Uit
ij

971 \“0z1 = 2h2
9 [, 0w (i) ~ (cij—1 + cij)uij—1 — (Cij—1 4 2¢ij + cijr1)uij + (Cij + Cija1)tijen
Oxo \ Owo K 2h2
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM

where ¢;; = c(xi;), i =1,...,N1, j=1,..., Nao. Mixed derivatives are replaced by
Ox1 \ Oxo Oxo \ Oz "
1

Q

((wi—1,j-1(cij + cim1-1) + wir1j+1(cij + civ1,4+1)
4hihg

—Ui—1j+1(Cij + Ci-14+1) — Uir1,j-1(Cij + Cit1,5-1)

Fuig(Cior i1 + Cipr-1 = Citd gl — Cim1j-1))-

It can be shown that the system matrix A can be built as a sum of Ne = (N7 + 1)(N2 + 1)
sparse local matrices A,, € RNaotXNaof " each with at most 4 x 4 non-zero entries in positions
attached to 2 x 2 neighboring unknowns (DOFs) in the nodes {@;j, ®it1,j, i j+1, Tit1,j+1},
1 =0,1,...,N1, 7 = 0,1,...,Na. There are N, = N1N3y such 2 x 2 sets. Note that the
function values are known at the boundary nodes and thus some matrices A,, contain fewer
non-zero entries. The matrices A, have in general the following non-zero submatrices (minors)

(An)rr
1 -1 0 0 0 0 0 0
_ (an)ij+(an)ipy | -1 1 0 0 (a11)ij+1 + (@11)i+1541 [ 0 O 0 0
2 0 00 0 2 00 1 -1
0 000 00 -1 1
1 0 -1 0 0 0 0 0
+(a22)ij + (a22)ij+1 00 00 (a22)it1, + (a22)it1,5+1 | O 1 0 —1
2 -1 0 1 0 2 0 0 0 0
0 0 0 0 0O -1 0 1
1 0 0 -1 0 0 0 0
n (a12)ij + (a12)i+1,5+1 000 0| (a2)it1j+(@2)ijr|[ 0 1 =10
2 0 00 0 2 0 —1 1 0
-1 0 O 1 0 0 0 0

where the vector r contains four indices corresponding to the DOFs attached to nodes x;;,
Tit1,j, Tij+1, Tit1,j4+1 in this order. If some of these sets of 2 x 2 nodes contains one or more
boundary nodes, the corresponding matrix A, has fewer non-zero entries: 2 X 2 or even only
1. The preconditioning matrix AP and local matrices AP are obtained in the same manner as
A and A,,, respectively, but for different coefficient data.

Example 3.8. We consider D = (0,1) x (0,1), with Ngof = 132 = 169 inner nodes uniformly
distributed in D, homogeneous Dirichlet boundary conditions on 9D, the coefficient function
a(z) defined by (3.18), and two types of preconditioners with the coefficient functions aP!(x)
and aP?(z) defined by (3.19). Note that the data of the problem and of the preconditioners
are the same as in Example [3.3 up to the boundary condition. We use N, = 142 = 196. The
resulting eigenvalues and their bounds are displayed in Figure |3.6.
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Figure 3.6: Eigenvalues of preconditioned stiffness matrices (Example |3.8) obtained by FDM
(blue dots) and their lower and upper bounds (solid red lines) for preconditioners with data aP!
(left) and aP? (right), respectively.

Example 3.9. Let us consider the same setting and preconditioners as in Example |3.8| but

with data
T 1 03
a(x) = (1 + 0.3 cos ((xl +x2)2)> ( 03 1 > .

The resulting eigenvalues and their bounds are displayed in Figure |3.7.
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Figure 3.7: Eigenvalues of preconditioned stiffness matrices (Example [3.9) obtained by FDM
(blue dots) and their lower and upper bounds (solid red lines) for preconditioners with data aP!
(left) and aP? (right), respectively.

. 3.4 Conclusion

An efficient general algorithm providing two-sided guaranteed bounds to all individual eigen-
values of a preconditioned matrix of some discretized elliptic PDE is introduced in this
paper. The assumption is that the matrices must be obtained as sums of certain locally built
matrices such that the kernels of the corresponding pairs of local matrices are equal. Violating
this assumption still allows using the introduced theory, however, the obtained bounds in
practical examples could be trivial. The algorithm is based on comparing these pairs of local
matrices, or even only on comparing local (material) properties of the operators and on a local
connection among the DOFs defined by the discretization (see Example 3.3). We show that
such local matrices can be naturally obtained in FEM, both for scalar and vector problems,
in AML preconditioning, in SGFEM, and even in FDM. For these discretization methods, we
present examples showing the construction of local matrices and we compute the resulting
exact eigenvalues as well as the obtained bounds. To be able to compute all eigenvalues
exactly, we introduce examples with relatively small Nyor, and we assume only two physical
dimensions of the problems and one physical dimension in the SGFEM problem. However,
the results can be naturally adapted to problems of any dimension.
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM

In practical examples, some of the obtained bounds are tight and thus the eigenvalues
are localized almost exactly. This is the case, for example, when the preconditioner was a
multiple of the original operator in some parts of D; see Examples [3.4] and [3.9. In other
cases, however, the bounds may not approximate the exact eigenvalues well. There is an
open question whether the bounds can be improved under such conditions. Also, no a priori
accuracy estimates for the bounds are available yet. In practice, we may sometimes need
only bounds to condition numbers. Then only the first steps of Algorithms 1 and 2 can be
performed to get a lower bound to the smallest eigenvalue and an upper bound to the largest
eigenvalue, respectively, and their ratio as an upper bound to the condition number

K((Ap)_lA) S A}{Qjof/AL?

see Examples 3.6/ and |3.7.

The method of characterizing the eigenvalues of a preconditioned matrix introduced
in [45] 46] yields sets of intervals such that there exists a one-to-one mapping between the
eigenvalues and the intervals such that each eigenvalue lies in an assigned interval. This
method can yield different bounds (intervals) for the true eigenvalues than the method
introduced in this paper. For instance, the method of [45] [46] can be able to identify a larger
number of exact eigenvalues in some cases than our approach. In [99, Section 4.3] some further
main differences are pointed out in the context of FEM. On the other hand, the approach
introduced here can be applied to some more general problems and types of the discretization.

We recall that the main condition for the applicability of our algorithm is that the pairs
of local matrices of the original operator and of the preconditioning operator must share
their kernels. This can motivate readers to search for new choices of local matrices for the
presented and also for further problems and discretization methods. We note that especially
in general FDM, the obtained system matrix is usually not symmetric. Thus finding FD
schemes leading to a symmetric matrix and splitting it into local matrices A,, is a challenging
issue. There is also a space for new improvements in steps 2(b) and 2(c) in Algorithms 1
and 2, where more sophisticated choices of n and m instead of arbitrary could be suggested.
If the original and preconditioning matrices arise from different operators, for example, as
a stiffness matrix and a mass matrix, respectively, the guaranteed spectral bounds can still
be obtained, but Friedrichs or Poincare constants and/or some sophisticated reconstruction
techniques must be employed; see e.g. [39) 160}, [145].
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Chapter 4

Optimal FFT-accelerated finite element solver for
homogenization

Abstract:  We provide a generalization and a linear algebra-based insight on an FFT-
accelerated finite element (FE) homogenization scheme that was pioneered by Schneider at
al. [131)] and Leuschner and Fritzen [79]. The efficiency of the matriz-free scheme follows
from a preconditioned well-scaled reformulation allowing for the use of the conjugate gradient
or similar iterative solvers. The geometrically-optimal preconditioner — a discretized Green’s
function of a periodic homogeneous reference problem — has a block-diagonal structure in the
Fourier space which permits its efficient inversion using the fast Fourier transform (FFT)
techniques for generic reqular meshes. This implies that the scheme scales as O(nlog(n)) like
FFT, rendering it equivalent to spectral solvers in terms of computational efficiency. However,
in contrast to classical spectral solvers, the proposed scheme works with FE shape functions
with local supports and is free of the Fourier ringing phenomenon. We showcase that the
scheme achieves the number of iterations that are almost independent of spatial discretiszation
and scales mildly with the phase contrast. Additionally, we discuss the equivalence between our
displacement-based scheme and the recently proposed strain-based homogenization technique
with finite-element projection.

Reproduced from:

[10I] M. Ladecky, J. R. Leute, A. Falsafi, I. Pultarova, L. Pastewka, T. Junge, and
J. Zeman. Optimal FFT-accelerated finite element solver for homogenisation. 2022.
DOI: [10.48550/arXiv.2203.02962

My contribution:

I was one of two main software developers of displacement-based finite elements solver
in the open-source C++ library muSpectre [60]. I provided investigation of numerical
behaviour, implementation of examples, creation of all resuts used in the publication,
writing of the first draft and editing of the manuscript.

CRediT: Writing - Original Draft, Writing - Review & Editing, Conceptualization,
Methodology, Software, Investigation, Visualization

37


http://dx.doi.org/10.48550/arXiv.2203.02962

4. Optimal FFT-accelerated finite element solver for homogenization

. 4.1 Introduction

Complex macroscopic phenomena such as plastic yielding or damage in materials are governed
by the nonlinear behavior of materials at meso-, micro-, or nanoscales. This intrinsic
multiscale aspect of materials behavior creates the demand for the development of specialized
scale-bridging techniques [83], 90, [38]. We focus here on an image-based homogenization
technique [141] that combines the characterization of materials microstructures by high-
resolution images (originating, e.g., from micro-computed tomography [87] or geometry-based
models [138]) and a numerical solution of an underlying partial differential equation (PDE)
with coefficient defined on a regular grid and typically involving periodic boundary conditions.

The solution of such PDEs discretized with the conventional finite element (FE) then
becomes challenging even in the simplest scalar elliptic case, because it results in a system
of equations with millions to billions of unknowns [59, Section 7.6]. In this regard, matrix-
free iterative solvers are clearly preferential to direct solvers because of their lower memory
footprint and speed, with the conjugate gradient (CG) method [56] being the most prominent
candidate. However, the convergence behavior of the CG method depends on the spectral
properties of the linear system matrix and deteriorates with decreasing FE mesh size [59,
Section 7.7].

More than two decades ago, Moulinec and Suquet in their foundational works [102, 103]
proposed a method that resolved these issues. According to its original interpretation, the
method employed fixed-point iterations involving convolution with the Green’s function of an
auxiliary homogeneous problem with data and unknowns defined directly on the input grid.
The method is suitable for high resolution homogenization problems thanks to the efficient
implementation of the convolution step using the fast Fourier transform (FFT) algorithm [50]
and mesh-size independent number of iterations.

These features attracted great interest in the community of computational mechanics of
materials, as documented in two recent surveys by Schneider [129] and Lucarini et al. [84]. In
what follows, we outline the developments most relevant to our work and refer an interested
reader to [129] [84] for the full story of FFT-based methods.

Conjugate gradient solvers. As reported independently by Brisard and Dormieux [I8]
and Zeman et al. [I58], the original spectral scheme [102], [103] can be further accelerated
when replacing the fixed-point algorithm with the CG method. Later on, these compu-
tational observations were justified by Brisard and Dormieux [19], who showed that the
computational scheme of Brisard and Dormieux [I8] follows from the Ritz discretization of
the Hashin-Shtrikman variational principles and by Vondfejc et al. [I50], who showed that the
computational scheme of Zeman et al. [I58] follows from the Fourier-Galerkin discretization
of the underlying PDE. These results directly extend to nonlinear problems linearized by the
Newton’s method, as first reported by Gélébart and Mondon-Cancel [43] and Kabel et al. [61]
for the Green’s function framework and by Zeman et al. [I59] and de Geus et al. [25] for the
Fourier-Galerkin framework.

Oscillations. Because the stress or strain fields may exhibit discontinuities at interphases be-
tween different material phases, discretizing the problem by Fourier trigonometric polynomials
results in spurious numerical oscillations (also referred to as Fourier ringing artifacts in Section
2.5 of [129]) that pollute the approximate results. To reduce these oscillations, Kabohm et al.
[64] smoothed the material data and Shanthraj et al. [135] filtered out high Fourier frequencies
from the solution fields. A different approach was used by Willot et al. [I55], who considered
a modified Green’s function obtained from a finite difference discretization. Schneider et al.
[130] extended this approach by proposing a staggered grid finite difference approximation
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to the underlying PDE, with a follow-up study [I31] on FE discretization employing linear
hexahedral elements. A related approach building on bi/trilinear FE basis functions instead
of the Fourier basis was proposed by Leuschner and Fritzen [79]. Most recently, Leute et al.
[80] developed a compatibility projection-based method in the spirit of Refs. [159, [25] while
considering several finite difference- and finite element-based discretization stencils. Further
discussion on mitigating the oscillation phenomena can be found in a dedicated comparative
study of Ma et al. [86] or in Section 2.5 and 2.6 of Schneider [129].

Our work. We develop an alternative FFT-accelerated, oscillation-free computational
homogenization scheme based purely on FE discretization that scales quasilinearly with the
mesh size. We consider a nonlinear small-strain elasticity micromechanical problem discretized
on a regular periodic grid with FE method in Sections 4.2 and linearize it with the Newton’s
method in Sections 4.3l Note that the localized support of the FE basis functions directly
resolves the oscillation issue, see e.g. [80]. Thus no additional artificial adjustments of the
data or the solution are needed.

In Section [4.4] we overcome the main drawback of the FE discretization — deteriorating
conditioning of a linear system with the increasing size of the discretization grid — using
a suitable preconditioner. Similarly to [I31], [79], we construct the preconditioner from a
stiffness matrix of a reference problem with generally anisotropic spatially uniform material
data discretized on the same regular grid as the original problem. Using classical results, see
e.g. |4, Section 5.1.2], we can guarantee that the condition number of the preconditioned linear
system becomes almost independent on the mesh size. Moreover, employing local ratios of the
problem material data and the reference problem material data, we can localize all individual
eigenvalues [118], 45, [99]. This may help to better predict the convergence of the CG method,
see e.g. [45] Section 2]. Therefore, the iterative CG solver is an optimal choice for the solution
of problems with highly resolved microstructures. The application of the preconditioner is
presented in detail in Section [4.5 with emphasis on reducing its computational complexity
using the FFT algorithm [22].

We demonstrate the main features of the proposed algorithm by examples collected in Sec-
tion 4.6/ that covers 2-dimensional linear thermal conduction (with the necessary adjustments
outlined in |4.A)), 3—dimensional linear small-strain elasticity, and 2—-dimensional nonlinear
finite-strain elasto-plasticity. Section |4.7] is devoted to a comparison of our scheme with
related developments by Schneider et al. [I31] and Leuschner and Fritzen [79], and Section 4.8
concludes our work.

Notation. We denote d-dimensional vectors and matrices by boldface letters: @ = (aq)%_; €
R? or A = (Aag)i’ g1 € R9*4, Matrix-matrix and matrix-vector multiplications are denoted
as C = BA and ¢ = Ba. Vectors and matrices arising from the discretization will be
denoted by a and A, to highlight their special structure. The (I)-th component of a will
be denoted as a[l] and (I, J)-th component of A will be denoted as A[l, J]. We consider a
general d-dimensional setting throughout the paper. However, for the sake of readability, we
use d = 2 in the expanded form of matrices, such as in equation (4.2)).

B 4.2 Nonlinear small-strain elasticity

We consider a d-dimensional rectangular periodic cell Y = []%_, [—%‘, %}, of volume |Y| =

ngl la, to be a representative volume element, i.e., a typical material microstructure; see
Fig. 4.1 for an illustration. The symmetries of small-strain elasticity allow us to employ
the Mandel notation and reduce the dimension of the second-order strain tensor Viu =
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I 1 I 1
Figure 4.1: A rectangular two-dimensional cell ) = {—21, 21} X [—22, 22} with outlined periodic
microstructure.

%(V’u +Vau') : Y = R4 to a vector Qu : Y — R where 8 is the symmetrized gradient

sym

operator such that, for d = 2,

P
(Vsu)un Bay 0 "
Ou=| (Vsu)2 |=|[ 0 7 <U;> .
V2(Vsu)1z @a%z ?a%l

dxdxdxd
sym
Ciin Cii22 V2Ci119
C=| Comn Cozz2  V2Ca212 |,
V2Ci911 V2Ci222  2Cia12

where the number of components of the symmetrized gradient in the Mandel notation is

d+1)d
dm = (2), and indices am, Bm, Ym € {1, ..., dm}-

X drn
)

Similarly, a fourth-order tensor C : ) — R is represented by a matrix C : J) — R%m

In the small-strain micromechanical problem, we split the overall strain € : J) — R% into
an average strain e = ﬁ Jye(x)dz € R%n and a periodically fluctuating field 84 : J) — R,

e(x) =e+0u(x) foralaxe).

Here, 8u denotes the symmetrized gradient in the Mandel notation, and the fluctuating dis-
placement field @ belongs to the space of admissible functions V = {’5 Y >R s y-periodic}.
The governing equations for du are the mechanical equilibrium conditions

—8'o(x, e+ di(x),g(x) =0 forallxe),

in which o : ) x R x R9 — R% is the stress field and g : Y — RY designates the vector of
internal parameters. The equilibrium equations are converted to the weak form

/ 8%(x) o (x, e + du(x),g(x))de =0 forall o € V,
Yy

where ¥ is the test displacement field. The weak form (4.2)) serves as a starting point for the
FE method.
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. 4.3 Finite element discretization

For the discretization of the weak form (4.2)), we use a uniform mesh and conforming FE
basis functions. In our setting, the discretization mesh does not necessarily follow the regular
pixel/voxel structure, but can correspond to a space-filling pattern of finite elements; see
the first row in Fig. [4.2. The discretization mesh is generated by a periodic repetition of
a discretization stencil in the cell V; see the second row in Fig. 4.2l Such flexibility in
discretization is useful, e.g., for damage or plasticity material models that exhibit sensitivity
to mesh-grid anisotropy.
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Figure 4.2: Example of regular periodic FE grids with associated discretization stencils for a
two-dimensional cell J). All grids consists of 16 pixels (N, = 16). The row (1) shows: (a.l)
grid with 16 discretization nodes (N; = 16) and quadrature points (Ng = 64), (b.1) grid with
16 discretization nodes (N; = 16) and 32 quadrature points (Ng = 32), (c.1) grid with 32
discretization nodes (N7 = 32) and 64 quadrature points (Ng = 64). The row (2) shows: (a.2)
one-node stencil (N, = 1) with one bilinear rectangular element and four quadrature points with
the quadrature weights w? = 1V, (b.2) one-node stencil (N, = 1) with two linear triangular
elements and two quadrature points with the quadrature weights w® = %Vp, (c.2) two-node stencil
(N, = 2) with four linear triangular elements and four quadrature points with the quadrature
weights w? = 1V}, Here, V,, denotes pixel volume, such that VN, = [V).

Strain and stress fields are evaluated at quadrature points aqu, Q € {1,2,...,Nq},
cf. Fig. 4.2 and the displacement fields are sampled at discretization nodes m{l, I €
{1,2,..., N1 }. The number of discretization nodes N; = N,N, is given by the number
of pixel/voxel-associated discretization stencils N, and the number of nodes per stencil Ny,
as explained in Fig. [4.2. The number of degrees of freedom per stencil is thus d/N, and the
total number of degrees of freedom per domain is d V.

Following the standard FE theory, © and @ are approximated by continuous element-wise
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4. Optimal FFT-accelerated finite element solver for homogenization

polynomials Py, of the degree k; their symmetrized gradients 8o and 4 then become element-
wise polynomials of the degree up to k. Furthermore, the integral (4.2) can be approximated
with a suitable quadrature rule,

/y 85(z) o (z, e + Bia(x), g(z)) dw
Nq
~ Z aﬁ(a:qQ)TU(az(?, e+ Bﬁ(azg),g(sch)) w®,
Q=1

where the positions of the quadrature points qu and the quadrature weights w® depend on
the choice of the quadrature rule’ ; recall Fig. |4.2.
Every component i, of the unknown vector @ is approximated by a linear combination

Ny
o () ~ @ (x) =Y _ i) (x))¢' (x) forallz €,
I=1

where the coefficients @Y (z]) are the nodal values of @Y at discretization nodes = and ¢!

are FE basis functions. A partial derivative of this approximation

00 (@) _ §h ;v 1) 00" (@)

———= forallxz € ),
Des 2 T (x;, dz5 orallz €}y
evaluated in the quadrature points is given by
oud (@) Xy, 00" (@F)
— = E t ——= =1,...,Ng.
31‘5 ~ Un (mn) 8:175 or Q ) y4VQ

Therefore, if we store the nodal values of displacement @(x!) into a vector i € RV, the

gradient vector i € R%MNa at all quadrature points is given with

1
'j Y
¥2p, ¥zp, (L™

where the matrix D € R&NaxdN congists of sub-matrices of the partial derivatives

09" (x)

Ds(Q,I] = dus

for@Q=1,...,Ngand I =1,..., Ny,
and i, stores values of the displacement in the direction «. Due to the local supports of
the basis functions ¢!, these sub-matrices exhibit significant sparsity, e.g., for the element-
wise linear approximation, shown in the middle of Fig. 4.2, each row of Dg contains only
two nonzero entries. Since both the interpolating and quadrature points are periodically
distributed in ), the matrix Dg has a block circulant structure.

Now, the discretized weak form (4.2) using quadrature (4.3) can be rewritten in the matrix
notation as

V' D"Wo(e+ Dii,g) =0 for all ¥ € R,

'Note, that under-integrated quadrature rule can be used to reduce memory footprint. However, the quality
of the solution field can deteriorate, see Section [4.6
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where ¥ stores the nodal values of test displacements, e € R%Na stands for the discretized
average strain, o : RmNa x R9Ve — RImNo j5 a nonlinear map transforming, locally at
quadrature points, a vector of discrete strains and internal parameters g € R9VQ to discrete
stresses, and the diagonal matrix W € R%mNgxdmNg

W=]|o0o W, o
o o W,

consists of dp, identical diagonal matrices Wy, € RMe*Na storing quadrature weights,

Wi [Qa Q} = w.
As the vector v is arbitrary, discretized weak form (4.3) is equivalent to the system of
discrete nonlinear equilibrium conditions

D"Wo (e + Dii,g) = o.

B 4.3.1 Linearisation

We employ the Newton’s method to solve the nonlinear system (4.3) iteratively. For this
purpose, the (i 4+ 1)-th approximation of the nodal displacement U1y € RM is given by the
previous approximation ;) € RM adjusted by a finite displacement increment 0l(iy1) € RM,

U1y = U@y + 0l 1),

with an initial approximation &) € RN, The displacement increment § (i) follows from
the solution of the linear system

D'WC ;D ;1) = —D"Wao(e + Dii;y, g)),
—_———
K b

0
where the algorithmic tangent matrix C;) = a—Z(e + Digy, 94)) € RImNgxdmNg

Cihn Cuiz Cuys
Ciy= |Cw2r Cw22 Cuy2sl,
Cizt Cazz Cryss

is obtained from the constitutive tangent C;(x) = g—:(m, e + du(x), g (x)), evaluated

at quadrature points. Therefore, the sub-matrices C a5, € RNe*Na are diagonal with
entries C(j)a,.8. (@ Q@ = Cliyam 6m(m§). Traditionally, K ;) € RIN*ANt denotes the matrix of
the linear system (4.3.1), and b, € RN stands for the right-hand side of (4.3.1)).

. 4.4 Preconditioning

Recall that we focus on micromechanical problems with a finely described microstructure
that involves a large number of degrees of freedom d/N;. We aim to use a memory-efficient
matrix-free iterative method to find the solution of the linear system (4.3.1). The system
matrix K;) is symmetric and positive definite for the symmetric algorithmic tangent C;),
which renders the CG method as the method of choice, when combined with an appropriate
preconditioner. This section discusses how to construct such a preconditioner in an optimal
manner.
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B 4.4.1 Reference material-based preconditioner

The idea of preconditioning, see, e.g., [50, Section 10.3] or [123, Chapters 9 and 10], is based
on assumptions that the matrix of the preconditioned linear system
-1 e _ -1
M i) K0ty = My be),
has more favourable spectral properties than the original system K;)di(;41) = b(;). At the
same time, the preconditioning matrix M;) € RAN1xdNT should be relatively easy to invert, such
that the faster convergence of the iterative method compensates the computational overhead of
the preconditioning. Please note that system matrix M (_Z)IK (i) is n