
Doctoral Thesis

Czech
Technical
University
in Prague

F1 Faculty of Civil Engineering
Department of Mathematics

Advanced spectral methods for computational
homogenization of periodic media

Ing. Martin Ladecký

Supervisor: doc. RNDr. Ivana Pultarová, Ph.D.
Supervisors–specialists: prof. Ing. Jan Zeman, Ph.D. and Ing. Jan Novák, Ph.D.
Field of study: (P3604) Civil Engineering
Subfield: (3607V034) Mathematics in Civil Engineering
June 2022



ii



Acknowledgements
First and most importantly, I wish to
thank my supervisors Ivana Pultarová
and Jan Zeman. Your extraordinary sup-
port and deep understanding helped me
to overcome many difficulties during my
studies. Only the given opportunities and
the trust you had in me allowed me to
explore the charming world of academia.
Thank you.

Secondly, I would like to thank Jan
Novák for inspiring discussions and all
my friends, colleagues, and coauthors for
their collaboration. Jaroslav Vondřejc,
Till Junge, Stephanie Krueger, Ali Falsafi,
Richard Leute, Lars Pastewka, Dishi Liu,
and Hermann G. Matthies, thank you for
your kindness.

During my studies, I was fortunate to
spend several months at the Technical
University of Braunschweig and the Swiss
Federal Institute of Technology Lausanne.
Hereby, I would like to thank Jaroslav
Vondřejc and Till Junge for memorable
experiences.

Finally, none of this would have been
possible without the support of my wife
Veronika and daughter Zuzka. Thank you
for always being there for me.

Declaration
PhD candidate: Martin Ladecký

Title: Advanced spectral methods
for computational homogenization of
periodic media

Herewith, I declare that the enclosed
doctoral thesis is my own work, written
under the professional guidance of Ivana
Pultarová, Jan Zeman and Jan Novák. I
also certify that all used resources and
data are cited and referenced.

The doctoral thesis has been written in
connection with the research projects
supported by the Center of Advanced
Applied Sciences, the European Regional
Development Fund (project No. CZ
02.1.01/0.0/0.0/16 019/0000778), the
Czech Science Foundation (projects Nos.
20-14736S and 17-04150J), and the Grant
Agency of the Czech Technical University
in Prague (projects Nos. SGS18/005-,
SGS19/002-, SGS20/002-, SGS21/003-,
and SGS22/004/OHK1/1T/11)

In Prague, 22. June 2022

iii



Abstract
Multiscale material modeling is one of the
enabling fields for future industries. To
fully exploit the opportunities of multi-
scale structures, multiscale modeling tech-
niques must be accurate and accessible.
This thesis focuses on iterative computa-
tional homogenization methods special-
ized for digitized microstructures, i.e. mi-
crostructures with geometries defined on
regular grids. These so-called spectral
methods exploit discrete Green’s opera-
tor preconditioning to maintain mesh-size
independent iteration count and the fast
Fourier transform to achieve n log(n) com-
putational complexity. This thesis focuses
on three topics through a collection of five
manuscripts. First, it discusses the effect
of discrete Green’s operator precondition-
ing on the spectra of linear system matri-
ces. The first and second chapters provide
guaranteed, easily computable, two-sided
bounds on individual eigenvalues. These
bounds reveal the distribution of eigenval-
ues which helps to understand grid-size in-
dependence of spectral methods. Second,
the thesis discusses the problem of ring-
ing artifacts that pollute solution gradient
fields of spectral methods. The third chap-
ter provides a detailed description of the
finite element discretization approach that
eliminates ringing artifacts while keeping
the efficiency of spectral methods. The
fourth chapter then analyzes several dis-
cretizations to confirm that the finite ele-
ments deliver the solutions with the least
discretization artifacts. Third, the thesis
discusses the reduction of computational
costs by using reduced-order modeling.
The fifth chapter shows the potential and
efficiency of low-rank tensor techniques in
spectral methods for large-scale problems.

Keywords: computational homogeniza-
tion, FFT-based methods, spectral meth-
ods, finite element method, eigenvalue
bounds, discrete Green’s operator precon-
ditioning

Abstrakt
Víceúrovňové materiálové modelování je
jednou ze klíčových oblastí vývoje pro
budoucí průmyslová odvětví. Pro plné vy-
užítí možností víceúrovňových struktur
musí být techniky víceúrovňového mode-
lování přesné a dostupné. Tato práce se
zaměřuje na iterační výpočetní homoge-
nizační metody specializované na digitali-
zované mikrostruktury, tedy mikrostruk-
tury s geometrií definovanou na pravidel-
ných mřížkách. Tyto takzvané spektrální
metody využívají předpodmínění pomocí
diskrétního Greenova operátoru k udržení
počtu iterací nezávislých na velikosti sítě a
rychlé Fourierovy transformace k dosažení
výpočetní složitosti n log(n). Prostřednic-
tvím souboru pěti rukopisů se tato práce
zaměřuje na tři témata. Nejprve se práce
zabývá vlivem předpodmínění diskrétním
Greenovým operátorem na spektra matic
lineárních systémů. První a druhá kapi-
tola popisuje lehce dostupné, garantované
oboustranné odhady jednotlivých vlast-
ních čísel. Tyto odhady popisují distribuci
vlastních čísel, což pomáhá pochopit nezá-
vislost rychlosti konvergence spektrálních
metod na velikosti síte. Zadruhé se práce
zabývá problémem oscilujících discretiza-
čích chyb, které degradují rešení spekt-
rálních metod. Třetí kapitola podrobně
popisuje přístup založený na metodě ko-
nečných prvků, který eliminuje tyto osci-
lace při zachování účinnosti spektrálních
metod. Čtvrtá kapitola pak analyzuje ně-
kolik diskretizací a potvrzuje, že konečné
prvky poskytují řešení s nejmenšími dis-
cretizačími chybami. Za třetí, pojednává
práce o snížení výpočetních nákladů po-
mocí modelování s redukovaným řádem.
Pátá kapitola ukazuje potenciál a efek-
tivitu využití tenzorů nízké hodnosti ve
spektrálních metodách pro rozsáhlé pro-
blémy.

Klíčová slova: výpočetní homogeni-
zace, metody založené na FFT, spekt-
rální metody, metoda konečných prvků,
odhady vlastných čísel, předpodmínění po-
mocí diskrétního Greenova operátoru
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Chapter 1
Introduction

Many natural bodies such as bamboo and bone exhibit excellent strength and durability
despite having rather low density [156]. Their extraordinary macroscopic mechanical properties
arise from efficient distribution of the bulk material across scales. In similar manner, the
non-linear macroscopic behavior of concrete structures is determined by mechanical properties
of constituents and their geometrical distribution on microscale. Besides the analysis of
existing structures, the design of microstructures becomes an interesting topic as additive
manufacturing technology moves to microscales [113]. Multiscale design enables the creation
of architectured (meta)materials with microstructures beyond those that emerge naturally in
manufacturing processes [62].

This intrinsic multiscale aspect of materials behavior creates a demand for the development
of specialized scale-bridging techniques such as computational homogenization [83, 90, 38]. For
structures with well-separated scales, a concept of periodic homogenization with a periodic
unit cell as a representative volume element of the microstructure can be applied, and
microstructure geometries can be characterized by high-resolution images (originating, e.g.,
from micro-computed tomography [87] or geometry-based models [138]).

Precise multiscale modeling for additive manufacturing or analysis of existing structures
is one of the promising fields for future industries. To fully exploit the opportunities of
multiscale structures, numerical modeling must be accurate and accessible. However, multiscale
simulations that operate concurrently on micro- and macroscales remain too computationally
demanding for everyday use [41]. This is caused primarily by the cost of micro-scale simulations,
i.e. a numerical solution of an underlying partial differential equation (PDE) with periodic
boundary conditions.

The pixel/voxel nature of microcomputed tomography and additive manufacturing pro-
cesses allow us to consider microstructure geometries defined on regular grids. Conventional
discretizations of micromechanical problems with high-resolution microstructures lead to
systems of linear equations with millions to billions of unknowns, which favor iterative solvers
over direct solvers. However, the convergence speed of iterative solvers can deteriorate with
increasing system size. For high-resolution micromechanical problems, a special class of
spectral iterative computational homogenization solvers has been developed. The convergence
of these solvers is independent of the grid size. The grid size independence is achieved by the
discrete Green’s operator of problem with homogeneous reference data that is usually used as
a preconditioner or projection operator. Thanks to the periodic boundary conditions and a
regular discretization grid, the discrete Green’s operator has a sparse representation in the
Fourier space and can be efficiently applied using the fast Fourier transform (FFT) algorithm,
which renders the computational complexity of spectral solvers O(n log(n)), where n is the
number of pixels/voxels.
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1. Introduction .............................................
The FFT-based methods were pioneered by Moulinec and Suquet in the mid-1990s, in the

seminal works [102, 103] that introduced with their fixed-point iterative scheme. Since then,
numerous adjustments, improvements, and applications of their scheme have appeared, as
comprehensively reviewed in [129, 84]. Algorithms developed over the years differ in solvers of
non-/linear systems of equations, discretization approaches, or even micromechanical problem
formulations.

The outstanding performance of the spectral methods is often compromised by the low
accuracy of the solution fields [149]. Fourier-basis or trigonometric polynomial bases are
not well suited for the solution of PDEs with discontinuous data because of their global
supports [17]. Classical spectral methods that employ Fourier basis functions for approximation
of solution produce undesired oscillations in solution fields that e.g. propagate even through
the void regions [80]. Oscillatory solution fields prevent the precise localization of inelastic
deformations that are necessary for predicting complex macroscopic phenomena such as plastic
yielding or crack propagation in materials. Evolution of these, for engineering practice very
important, nonlinear processes are governed by localization of inelastic deformation in meso-
or microstructures. Therefore, the solution of these non-linear models is intrinsically affected
by the accuracy of local solution fields.

Despite the efficiency of FFT-based methods and the fact that standard spectral solvers
use only a single quadrature point/deformation gradient per pixel/voxel, computational
requirements are still considerable for high-resolution microstructures. A cubic millimeter
discretized on a grid with micrometer voxels consists of billions of voxels, which is a dataset hard
to handle without extensive computational resources [1]. A fine discretization is crucial around
material interfaces, where solution fields change rapidly. However, far from interfaces, the
coarser mesh would be sufficient, and such a fine discretization is inefficient. Unfortunately,
standard mesh coarsening techniques destroy the regular discretization structure that is
essential for FFT-based methods. Therefore, alternative mesh coarsening techniques or model
order reduction techniques for FFT-based methods are of interest.

1.1 Thesis objectives

This thesis focuses on three major research topics summarized in the following objectives.

(i) Understanding the effect of discrete Green’s operator preconditioning.

(ii) Minimization of discretization artifacts of spectral methods.

(iii) Reduction of computational requirements of spectral methods.

Reaching these objectives will contribute to a deeper understanding of FFT-based methods,
expand their application range, and further strengthen their role in multiscale simulations.

The first research topic discusses the effect of reference material on the convergence of
iterative solvers. Iterative solvers are used to obtain solutions of systems of linear equations
that arise from discretization of homogenization problems. For the symmetric and positive
definite matrices, the conjugate gradient (CG) method is the method of choice; see, e.g.,
[82, 143, 123]. The convergence of the CG method can be affected by the distribution
(clustering) of eigenvalues of the linear system matrix. Well-separated clusters of eigenvalues
are favorable for the convergence rate, see, e.g., [82, 136] or [45, Section 2]. However,
using finite precision arithmetic, similar types of spectra can slow down convergence; see,
e.g., [93, 140, 44]. Knowing the distribution of the eigenvalues can help to better estimate the

2



.......................................... 1.1. Thesis objectives

quality of the preconditioner for the CG method. Additionally, guaranteed lower bounds on
the smallest eigenvalue of the preconditioned problem give us access to accurate algebraic
error estimates; see, e.g., [94].

In Chapter 2, we investigate the spectra of general diffusion or elasticity problems,
discretized by the conforming finite element (FE) method, and preconditioned by the discrete
Green’s operator of the reference homogeneous problem. We propose an approach for obtaining
guaranteed two-sided bounds on all individual eigenvalues. These bounds depend solely on
the local coefficients, namely on their extremes over supports of the FE basis functions. We
explore how the distribution of the eigenvalues depends on the choice of reference material
and how this affects the number of iterations of the CG solver.

Grid-size independence is not the privilege of Galerkin discretization approach but it is
observed for finite difference or collocation discretization approaches preconditioned by the
discretized Green’s operator. Therefore, in Chapter 3, we generalize our approach for
eigenvalues bounds from Chapter 2 such that it can be applied to other discretization
methods. We use the assumption that the global matrix of the linear system can be obtained
as a sum of local symmetric positive semidefinite matrices. In all these cases, the eigenvalue
bounds depend solely on local material data and on connections between the degrees of
freedom, i.e., on the properties of the discretization. We demonstrate the approach of
obtaining eigenvalue bounds for the finite difference method, the stochastic Galerkin FE
method, and the method of algebraic multilevel preconditioning.

The second research topic focuses on minimizing discretization artifacts. Knowing that the
effect of the discrete Green’s operator preconditioner is not restricted to a Fourier basis, we
use standard FE basis functions with localized supports. The approximation with locally
supported basis functions does not suffer from the Gibbs phenomenon. Additionally, the
regular FE discretization preserves the efficient structure of the discrete Green’s operator.
Therefore, the FFT technique can be used to maintain quasilinear computational complexity
typical for spectral homogenization methods also for FE discretizations. In Chapter 4, we
provide a detailed discretization guideline for a discrete Green’s operator preconditioned
FFT-accelerated FE homogenization scheme. We generalize the approach pioneered by
Schneider et al. [131] and Leuschner and Fritzen [79] and provide an alternative viewpoint
based on linear algebra. Besides reducing ringing artifacts, we focus on the minimization of
mesh-grids anisotropy that generates nonphysical preferential directions in the discretization.
Localized deformations, e.g., cracks in the concrete, are prone to propagate in these directions.
Therefore, we applied spectral methods to more general grids. In the end of Chapter 4,
we discuss the equivalence between our displacement-based scheme and the strain-based
homogenization scheme with the FE projection operator, used in the next chapter.

In Chapter 5, we discuss the problem of discretization artifacts in the strain-based
framework of compatibility projection that considers the deformation gradient as the primary
degree of freedom [75, 150, 25, 25]. We derive a formulation for the projection operator based
on a general gradient stencil and test several finite-difference stencils, a least-square stencil,
and a FE stencil. We observe that the only FE discretization stencil fully eliminates all
ringing artifacts and delivers oscillation-free results.

The third research topic focuses on reducing computational requirements of the FFT-
based methods. Despite their excellent computational efficiency, source requirements are
still considerable for high-resolution microstructures. Therefore, in the last Chapter 6, we
focus on the reduction of computational costs of FFT-based methods using model order
reduction techniques. We employ low-rank tensor techniques that approximate a d-dimensional
tensor by a sum of rank outer products of d vectors. For a sufficiently small rank, this data

3



1. Introduction .............................................
compression can lead to a huge reduction in requirements for computer memory, e.g., the
memory requirement of rank-50 approximation of microstructures with resolution 10243 voxels
can be approximately equivalent to the requirements of full-field storage of microstructure
with resolution 553 voxels [152]. On the series of scalar linear elliptic homogenization problems,
we explore the performance of canonical polyadic, Tucker and Tensor-Train low-rank tensors
format [54, 72].

This thesis compiles five manuscripts (four published and one under the second round of
reviews) adapted into chapters. In addition to intensive collaboration with my supervisors, I
was incorporated in three international research groups during my doctoral studies. Because
of the very collaborative nature of the doctoral study, I am the first author of two manuscripts,
the second author of two manuscripts, and the third author of one manuscript. Detailed
descriptions of my contributions to these manuscripts are provided on the first pages of
the corresponding chapters. I implemented algorithms used in this thesis to the C++-based
open-source platform µSpectre [60] for efficient FFT-based continuum mesoscale modeling,
and Python-based open-source library FFTHomPy [153] for numerical homogenization.

4



Chapter 2
Guaranteed two-sided bounds on all eigenvalues of
preconditioned diffusion and elasticity problems
solved by the finite element method

Abstract: A method of estimating all eigenvalues of a preconditioned discretized scalar diffu-
sion operator with Dirichlet boundary conditions has been recently introduced in T. Gergelits,
K.-A. Mardal, B. F. Nielsen, and Z. Strakoš: Laplacian preconditioning of elliptic PDEs: Lo-
calization of the eigenvalues of the discretized operator, SIAM Journal on Numerical Analysis
57(3) (2019), 1369–1394. Motivated by this paper, we offer a slightly different approach that
extends the previous results in some directions. Namely, we provide bounds on all increasingly
ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized
with the conforming finite element method, and preconditioned by the inverse of a matrix
of the same operator with different data. Our results hold for mixed Dirichlet and Robin or
periodic boundary conditions applied to the original and preconditioning problems. The bounds
are two-sided, guaranteed, easily accessible, and depend solely on the material data.

Reproduced from:

[99] M. Ladecký, I. Pultarová, and J. Zeman. Guaranteed two-sided bounds on all
eigenvalues of preconditioned diffusion and elasticity problems solved by the finite
element method. Applications of Mathematics, 66(1):21–42, 2021. doi: 10.21136/AM.
2020.0217-19

My contribution:

I was involved in the numerical investigation of the algorithms, implementation of all
examples, creation of all results used in the publication, revision and editing of the
manuscript.

CRediT: Methodology, Software, Investigation, Visualization, Writing - Review &
Editing
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2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM ...................
2.1 Introduction

In 2009, Nielsen, Tveito, and Hackbusch studied in [110] spectra of elliptic differential operators
of the type ∇ · k∇ defined on infinite-dimensional spaces which are preconditioned using the
inverse of the Laplacian. They proved that the range of the scalar coefficient k is contained
in the spectrum of the preconditioned operator, provided that k is continuous. Ten years
later, Gergelits, Mardal, Nielsen, and Strakoš showed in [45] without any assumptions about
the continuity of the scalar function k that there exists a one-to-one pairing between the
eigenvalues of the discretized operator of the type ∇ · k∇ preconditioned by the inverse of the
discretized Laplacian and the intervals determined by the images under k of the supports of
the conforming finite element (FE) nodal basis functions used for the discretization.

The present paper contributes to the results of [45] and generalizes some of them. While
in [45], a one-to-one pairing between the eigenvalues and images of the scalar data k defined
on supports of the FE basis function is proved, we introduce guaranteed two-sided bounds on
all individual eigenvalues. Our approach is based on the Courant–Fischer min-max principle.
Similarly as in [45], the bounds can be obtained solely from the data of the original and
preconditioning problems defined on supports of the FE basis functions. While in [110]
and [45] only the diffusion operator with scalar data is considered and the Laplacian operator
is used for preconditioning, we treat also the diffusion operator with tensor data and with
Dirichlet or Robin boundary conditions for both the original and preconditioning operators.
Our theory also applies to operators with non-zero null spaces and to operators with vector
valued unknown functions; as an example we study the elasticity operator with general tensor
data. Any kind of conforming FE basis functions can be employed for discretization; the sets
of the FE basis functions must be the same for the original and preconditioning operators. For
the sake of brevity, the name preconditioning matrix (operator) will be used for the matrix M̃
(or operator) which is (spectrally) close to the original matrix M (or operator, respectively)
rather than for the inverse of M̃. In contrast, in literature, including [45], M̃−1 is often called
the preconditioning matrix.

For numerical solution of sparse discretized elliptic partial differential equations, the
conjugate gradient method (or Krylov subspace methods for symmetric problems, in general)
is a method of choice; see, e.g., [82, 143, 123]. It is well known, that its convergence depends
on distribution (clustering) of eigenvalues of the related matrices and on sizes of components
of the initial residual in directions of the associated invariant subspaces. For example, well
separated clusters of eigenvalues are favorable for the convergence rate, see, e.g., [82, 136] or
the example in [45, Section 2]. Using finite precision arithmetic, however, similar types of
the spectra can slow down the convergence; see, e.g. [93, 140] and the recent comprehensive
paper [44]. Therefore, being aware of the bounds on the individual eigenvalues we can better
estimate the quality of the preconditioner. Our approach can also provide guaranteed easily
accessible lower bounds on the smallest eigenvalue of the preconditioned problem, which is
demanded, for example, for accurate algebraic error estimates; see, e.g., [94].

The structure of the paper is as follows. In the subsequent section, we introduce the diffusion
and linear elasticity equations as examples of scalar and vector valued elliptic differential
equations which our approach can be applied to. In the third section, the discretization
and the preconditioning setting are described. In the fourth section, the main part of the
paper, we suggest a method of estimating the eigenvalues of the preconditioned matrices. The
theoretical developments are accompanied with illustrative examples. Finally, we compare
our method with the recent results from [45]. A short conclusion summarizes the paper.
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................................... 2.2. Diffusion and elasticity problems

2.2 Diffusion and elasticity problems

Our theory of estimating the eigenvalues will be applied to two frequent types of scalar and
vector valued elliptic partial differential equations: the diffusion and linear elasticity equations,
respectively. To this end, let us briefly introduce the associated definitions and notation;
see, e.g., [14, 21, 32, 109] for further details. We assume general mixed boundary conditions
for the diffusion equation, and for simplicity of exposition, homogeneous Dirichlet boundary
conditions for the elasticity equation.

Let Ω ⊂ Rd be a polygonal bounded domain, where d = 2 or 3. We consider the diffusion
equation with Dirichlet and Robin boundary conditions

−∇ ·A∇u = f in Ω, u = g1 on ∂Ω1, n ·A∇u = g2 − g3u on ∂Ω2,

where ∂Ω1 and ∂Ω2 are two disjoint parts of the boundary ∂Ω, ∂Ω = ∂Ω1 ∪ ∂Ω2, and n
denotes the outer normal to ∂Ω2. After lifting the solution u by a differentiable function u0
that fulfills the non-homogeneous Dirichlet boundary condition and substituting u := u+ u0,
the weak form of the new problem reads: find u ∈ V = {v ∈ H1(Ω); v = 0 on ∂Ω1} such that

(u, v)A = lA,f (v), v ∈ V, (2.1)

where

(u, v)A =
∫
Ω
∇v ·A∇udx+

∫
∂Ω2

g3uv dS,

lA,f (v) =
∫
Ω
fv dx−

∫
Ω
∇v ·A∇u0 dx+

∫
∂Ω2

g2v dS +
∫
∂Ω2

n ·A∇u0v dS,

for u, v ∈ V ; see, e.g., [32] for details. We assume f ∈ L2(Ω), g2 ∈ L2(∂Ω2), and g3 ∈
L∞(∂Ω2), g3(x) ≥ 0 on ∂Ω2. The material data A : Ω → Rd×d are assumed to be essentially
bounded, i.e. A ∈ L∞(Ω; Rd×d), symmetric, and uniformly elliptic (positive definite) in Ω.
Thus there exist constants 0 < cA ≤ CA <∞ such that

cA‖v‖2Rd ≤ (A(x)v,v)Rd ≤ CA‖v‖2Rd , x ∈ Ω, v ∈ Rd. (2.2)

The weak form of the linear elasticity problem with homogeneous boundary conditions
reads: find u ∈ V d

0 , V0 = {v ∈ H1(Ω); v = 0 on ∂Ω}, such that

(u,v)C = lC,F (v), v ∈ V d
0 , (2.3)

where

(u,v)C =
∫
Ω

d∑
i,j,k,l=1

cijkl
∂uk
∂xl

∂vi
∂xj

dx,

lC,F (v) =
∫
Ω

d∑
i=1

Fivi dx,

for u,v ∈ V d
0 , where F ∈ (L2(Ω))d are body forces. Due to the homogeneous Dirichlet

boundary conditions on ∂Ω1 = ∂Ω, we use the special notation V0 of the solution space. Let

τij =
d∑

k,l=1
cijkl ekl(u), i, j = 1, . . . , d, (2.4)

7
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be the components of the Cauchy stress tensor τ with the strain components eij obtained
from the displacement vector u as

ekl(u) = 1
2

(
∂uk
∂xl

+ ∂ul
∂xk

)
, k, l = 1, . . . , d.

Assuming d = 3 and denoting ei = eii, i = 1, . . . , d, we can write

e =



e1
e2
e3

2e12
2e23
2e31


=



∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂
∂x2

∂
∂x3

0 ∂
∂x1



 u1
u2
u3

 = ∂u.

We assume that the coefficients cijkl of the tensor c in (2.4) are bounded measurable functions
defined in Ω, cijkl ∈ L∞(Ω), fulfilling the symmetry conditions

cijkl = cjikl = cklij , i, j, k, l = 1, . . . , d. (2.5)

Further, we assume there exists a constant µ > 0 such that

µ
d∑

i,j=1
ξ2
ij ≤

d∑
i,j,k,l=1

cijkl(x)ξijξkl for all symmetric tensors ξ ∈ Rd×d, x ∈ Ω.

Assuming d = 3 and denoting τi := τii, i = 1, . . . , d, due to the symmetries (2.5) of c, there
exist coefficients cij ∈ L∞(Ω), i, j = 1, . . . , 6, such that the stress vector τ can be obtained
from the strain vector as

τ =



τ1
τ2
τ3
τ12
τ23
τ31


=



c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66





e1
e2
e3

2e12
2e23
2e31


= Ce.

Starting from this place, we will use only the new set of material coefficients cij , i, j = 1, . . . , 6,
(instead of cijkl, i, j, k, l = 1, . . . , d) and call the associated matrix C. Certain material
symmetries imply special structures of C. For example, homogeneous cubic 3D materials
correspond to c11 = c22 = c33, c44 = c55 = c66, c12 = c13 = c23, and annihilates the other
components, where c11 > c12, c11 + 2c12 > 0 and c44 > 0. Especially, for isotropic material,
we have

c11 = E(1− ν)
(1 + ν)(1− 2ν) , c12 = Eν

(1 + ν)(1− 2ν) , c44 = E

2(1 + ν) ,

where E > 0 is the Young’s modulus and ν ∈ (−1, 1
2) is the Poisson ratio [109].

The vector F of external forces fulfills

−∂Tτ = −


∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0
0 0 ∂

∂x3
0 ∂

∂x2
∂
∂x1





τ1
τ2
τ3
τ12
τ23
τ31


=

 F1
F2
F3

 = F

8
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yielding
−∂TC∂u = F .

Thus (u,v)C and lC,F (v) can be equivalently written as

(u,v)C =
∫
Ω

(∂v)TC∂udx,

lC,F (v) =
∫
Ω
vTF dx.

If d = 2, the dimensions of the arrays naturally reduce. For example, for cubic materials we
get

u =
(
u1
u2

)
, τ =

 τ1
τ2
τ12

 , ∂ =


∂
∂x1

0
0 ∂

∂x2
∂
∂x2

∂
∂x1

 , C =

 c11 c12 0
c12 c11 0
0 0 c44

 .

2.3 Discretization and preconditioning

We assume that a conforming FE method is employed to discretize the diffusion and elasticity
problems defined by (2.1) and (2.3), respectively. The domain Ω is thus decomposed into
a finite number of elements Ej , j = 1, . . . , Ne. Some continuous FE basis functions (with
compact supports) denoted by ϕk, k = 1, . . . , N , are used as approximation and test functions.
By Pk we denote the smallest patch of elements covering the support of ϕk. Correspondingly
to Section 2.2, we denote the material data by A and C of the diffusion and elasticity
operators, respectively, and the data of the associated preconditioning operators by Ã and
C̃, respectively. The function g3 entering the Robin boundary conditions is allowed to be
different in the original and preconditioning operators; therefore, it is denoted by g̃3 in the
latter.

The stiffness matrices A and C of the systems of linear equations of the discretized
problems (2.1) and (2.3), respectively, have elements

Akl =
∫
Ω
∇ϕl(x) ·A(x)∇ϕk(x) dx+

∫
∂Ω2

g3(x)ϕl(x)ϕk(x) dS

and
Ckl =

∫
Ω

(∂(ϕl1(x), . . . , ϕld(x))T )TC(x)∂(ϕk1(x), . . . , ϕkd(x))T dx, (2.6)

respectively, where k, l = 1, . . . , N , and k, l ∈ {1, . . . , N}d. The preconditioning matrices Ã
and C̃ obtained for the material data Ã and C̃, respectively, have elements

Ãkl =
∫
Ω
∇ϕl(x) · Ã(x)∇ϕk(x) dx+

∫
∂Ω2

g̃3(x)ϕl(x)ϕk(x) dS

and
C̃kl =

∫
Ω

(∂(ϕl1(x), . . . , ϕld(x))T )T C̃(x)∂(ϕk1(x), . . . , ϕkd(x))T dx,

respectively. All integrals are supposed to be carried out exactly.
The idea of preconditioning, see, e.g. [50, Section 10.3] or [123, Chapters 9 and 10], is

based on assumptions that a system of linear equations with a matrix M̃ is relatively easily
solvable and that the spectrum of M̃−1M is more favorable than that of M regarding some

9



2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM ...................
iterative solution method, which does not necessarily mean a smaller condition number [45].
Substituting the equation Mu = B with

M̃−1Mu = M̃−1B or M̃−1/2MM̃−1/2v = M̃−1/2B, u = M̃−1/2v,

thus leads to equivalent problems that can be solved more efficiently than the original one.

2.4 Bounds on eigenvalues of preconditioned problems

The main results of the paper are introduced in this section. Instead of presenting our results
for a general elliptic second order partial differential equation with tensor data and a vector
valued unknown function u, we first present our theory for the (scalar) diffusion equation
with tensor data in full detail. Then we apply the same approach to the elasticity equation.
The section is concluded by some general remarks mainly on relationship between our results
and the recent results from [45].

2.4.1 Diffusion equation

The lower and upper bounds on the eigenvalues 0 ≤ λ1 ≤ · · · ≤ λN of Ã−1A for any uniformly
positive definite measurable data A, Ã : Ω → Rd×d are introduced in this part. The boundary
conditions of the original and preconditioning problems may differ at most in the function
g3, i.e. instead of g3, the function g̃3 can be used in Robin boundary condition of the
preconditioning problem. We assume, however, that there exist constants 0 < cg ≤ Cg <∞
such that

0 ≤ cg g̃3(x) ≤ g3(x) ≤ Cg g̃3(x), x ∈ ∂Ω2.

Since N is the number of the FE basis functions then A, Ã ∈ RN×N . We now build two
sequences of positive real numbers λL

k and λU
k , k = 1, . . . , N . Let us first set

αmin
j = ess infx∈Ej λmin

(
Ã−1(x)A(x)

)
,

αmax
j = ess supx∈Ej λmax

(
Ã−1(x)A(x)

)
,

if no edge of Ej lies in ∂Ω2, and

αmin
j = min

{
ess infx∈∂Ω2∩Ej , g3(x)6=0 g̃

−1
3 (x)g3(x), ess infx∈Ej λmin

(
Ã−1(x)A(x)

)}
,

αmax
j = max

{
ess supx∈∂Ω2∩Ej , g3(x)6=0 g̃

−1
3 (x)g3(x), ess supx∈Ej λmax

(
Ã−1(x)A(x)

)}
if at least one edge of Ej lies in ∂Ω2, j = 1, . . . , Ne. If A(x) and Ã(x) are element-wise
constant and if g3 and g̃3 are constant on every edge (of any element) lying in ∂Ω2, the
computation of αmin

j and αmax
j reduces to calculating the extreme eigenvalues of d×d matrices

on all individual elements Ej , j = 1, . . . , Ne, and eventually comparing them with g̃−1
3 (x)g3(x)

on some of the attached edges. For every function ϕk, supported on the patch Pk, let us set

λL
k = min

Ej⊂Pk
αmin
j , λU

k = max
Ej⊂Pk

αmax
j , j = 1, . . . , N. (2.7)

Thus λL
k and λU

k are in the above sense the smallest and the largest, respectively, eigenvalues
of Ã−1(x)A(x) on the patch Pk, or the extremes of g̃−1

3 g3 along the parts of the boundary of

10
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Pk lying in ∂Ω2. After inspecting all patches, we sort the two series in (2.7) non-decreasingly.
Thus we obtain two bijections

r, s : {1, . . . , N} → {1, . . . , N}

such that
λL
r(1) ≤ λ

L
r(2) ≤ · · · ≤ λ

L
r(N), λU

s(1) ≤ λ
U
s(2) ≤ · · · ≤ λ

U
s(N). (2.8)

Note that we could define and compute λL
k and λU

k directly without defining αmin
j and αmax

j .
However, dealing with the constants αmin

j and αmax
j is more algorithmically acceptable, because

it allows to avoid multiple evaluation of eigenvalues of Ã−1A on every element.
Next we prove an auxiliary lemma. Let σ(M) denote the spectrum of the matrix M.

Lemma 2.1. Let A(x), Ã(x) ∈ Rd×d be symmetric and positive definite for all x ∈ D ⊂ Ω.
Let there exist constants 0 < c1 ≤ c2 <∞ and 0 < c3 ≤ c4 <∞ such that

σ(Ã−1(x)A(x)) ⊂ [c1, c2], x ∈ D, (2.9)

and
0 ≤ c3 g̃3(x) ≤ g3(x) ≤ c4 g̃3(x), x ∈ ∂Ω2 ∩ D.

Then for u ∈ H1
0 (Ω) we get

c1

∫
D
∇u · Ã∇udx ≤

∫
D
∇u ·A∇udx ≤ c2

∫
D
∇u · Ã∇udx (2.10)

and

min{c1, c3}
(∫
D
∇u · Ã∇udx+

∫
∂Ω2∩D

g̃3u
2 dS

)

≤
∫
D
∇u ·A∇udx+

∫
∂Ω2∩D

g3u
2 dS (2.11)

≤ max{c2, c4}
(∫
D
∇u · Ã∇udx+

∫
∂Ω2∩D

g̃3u
2 dS

)
.

Proof. Since for all v ∈ Rd and x ∈ D it follows from (2.9) that

c1 v
T Ã(x)v ≤ vTA(x)v ≤ c2 v

T Ã(x)v,

we get (2.10) by setting v = ∇u and integrating all three terms over D. Inequalities (2.11)
follow obviously using g3 ≥ 0.

Now we introduce the first part of the main results of this paper.
Theorem 2.2. Let us assume that the (d− 1)-dimensional measure of ∂Ω1 is positive. The
lower and upper bounds on the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λN of Ã−1A are given
by (2.8), i.e.,

λL
r(k) ≤ λk ≤ λ

U
s(k), k = 1, . . . , N. (2.12)

Proof. Due to the positive measure of ∂Ω1, the matrices Ã and A are positive definite. We
only prove the lower bounds of (2.12); the upper bounds can be proved analogously. Due to
the Courant–Fischer min-max theorem, e.g. [50, Theorem 8.1.2],

λk = max
S,dimS=N−k+1

min
v∈S, v 6=0

vTAv
vT Ãv

,

11
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where S denotes a subspace of RN . Then we have

λ1 = max
S,dimS=N

min
v∈S, v 6=0

vTAv
vT Ãv

= min
v∈RN , v 6=0

vTAv
vT Ãv

≥ λL
r(1),

where the inequality follows from Lemma 2.1. Indeed, using u = ∑N
i=1 viϕi, definitions (2.7)

and Lemma 2.1 with D = Ω, we get

vTAv
vT Ãv

=
∫
Ω∇u ·A∇u dx+

∫
∂Ω2

g3u
2 dS∫

Ω∇u · Ã∇udx+
∫
∂Ω2

g̃3u2 dS
≥ min
Ej⊂Ω

αmin
j = min

Pk⊂Ω
λL
k = λL

r(1).

Then we proceed to

λ2 = max
S,dimS=N−1

min
v∈S, v 6=0

vTAv
vT Ãv

≥ min
v∈RN , v 6=0, vr(1)=0

vTAv
vT Ãv

≥ λL
r(2),

where the last inequality follows from Lemma 2.1 where (due to vr(1) = 0) D contains only
the patches associated to the FE basis functions ϕj , j 6= r(1),

D = ∪j∈{1,...,N}\{r(1)}Pj ,

and from

min
v∈RN , v 6=0, vr(1)=0

vTAv
vT Ãv

= min
u=
∑N

i=1 viϕi, vr(1)=0

∫
D∇u ·A∇udx+

∫
∂Ω2∩D g3u

2 dS∫
D∇u · Ã∇udx+

∫
∂Ω2∩D g̃3u2 dS

≥ min
Ej⊂D

αmin
j = min

Pk⊂D
λL
k = λL

r(2).

We can proceed further in the same manner to get all inequalities λL
r(k) ≤ λk of (2.12).

In Theorem 3.2, we consider positive definite problems with homogeneous Dirichlet and/or
general Robin boundary conditions (with g3 ≥ 0). Neumann boundary condition is a special
type of Robin boundary condition with g3 = 0. In practical implementation of nonhomogeneous
Dirichlet boundary conditions, the lifting function u0 does not necessarily have to be employed.
If the same non-homogeneous Dirichlet boundary conditions are considered for the original
and preconditioning problems, the method of getting the lower and upper bounds (2.8) can
be used unchanged. Our theory, however, does not cover the settings where the original
and preconditioning problems are considered under different non-homogeneous Dirichlet
boundary conditions or different functions g2 in Robin boundary conditions, or if ∂Ω1 in the
preconditioning problem does not coincide with ∂Ω1 used for the original problem.

If periodic or Neumann boundary conditions are applied along ∂Ω and if they are the same
for the original and preconditioning problems, then A and Ã are singular; they share the
smallest eigenvalue λ1 = 0 and the associated eigenvector. Then we can use the same method
again to get the bounds on all of the eigenvalues of the preconditioned matrix; however, we
must omit the null space of A (which is the same as the null space of Ã) from the respective
formulas. To justify the method, we can proceed analogously as in the proof of Theorem 3.2,
where the vectors v are now additionally considered fulfilling Ãv 6= 0. Then

λ2 ≥ min
v∈RN , Ãv 6=0

vTAv
vT Ãv

≥ λL
r(1).

12
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We can proceed further, analogously to the proof of Theorem 3.2,

λ3 ≥ min
v∈RN , Ãv 6=0, vr(1)=0

vTAv
vT Ãv

≥ λL
r(2).

In this way we get N − 1 lower bounding numbers on the non-zero eigenvalues of Ã−1A, where
both A and Ã are now considered restricted to the subspace of RN that is orthogonal to the
null space of A. Analogously, we get the upper bounds; thus finally,

λL
r(k−1) ≤ λk ≤ λ

U
s(k), k = 2, . . . , N.

Let us now apply our method to some examples.
Example 2.3. Assume d = 2, Ω = (−π, π)2, ∂Ω2 = {x; x1 = π},

A(x) =
(

1 + 0.3 sign(sin(x2)) 0.3 + 0.1 cos(x1)
0.3 + 0.1 cos(x1) 1 + 0.3 sign(sin(x2))

)
,

and a simple and a more sophisticated preconditioning operators with

Ã1(x) =
(

1 0
0 1

)
, and Ã2(x) =

(
1 0.3

0.3 1

)
,

respectively. Let us consider one of the following settings:
(a) uniform grid with piece-wise bilinear FE functions, N = 102 or 302, g3 = 0; see Figure 2.1;
(b) uniform grid with piece-wise bilinear FE functions, periodic boundary conditions, N = 212;
see Figure 2.2;
(c) nonuniform grid and triangular elements with piece-wise linear FE functions, g3 = g̃3 =
1 + x2

2, N = 400; see Figure 2.3.
The numerical experiments illustrate the results of Theorem 3.2, i.e. that the bounds on the
eigenvalues are guaranteed for different types of boundary conditions. We can also notice that
since A is point-wise closer to Ã2 than to Ã1, the spectrum of the second preconditioned
problem (together with its bounds) is closer to unity than the spectrum of the problem
preconditioned by using Ã1. Note also that refining the mesh does not lead to more accurate
bounds, in general. This is caused by the difference between the extreme eigenvalues of Ã−1

i A,
i = 1, 2, on individual elements; see also Section 2.4.3.

The numbers of the CG steps needed to reduce the energy norm of the errors by the factor
10−9 (starting with zero initial vectors) for setting (a) with f = 1 in Ω are 17 and 13 for Ã1
and Ã2, respectively, for N = 102, and 20 and 15 for Ã1 and Ã2, respectively, for N = 302.

Let us emphasize that the error analysis of CG requires not only the eigenvalue distribution,
but also (an estimate of) the components of the initial residual in directions of the associated
eigenvectors; see, e.g., [45, Formula (2.7) and Remark 4.1]. In some cases, however, the
eiegenvalue distribution can lead to a quite accurate estimate of the number of CG steps:
Example 2.4. Assume d = 2, Ω = (−π, π)2, the homogeneous Dirichlet boundary conditions,
a uniform grid, N = 182, and bilinear FE functions. Let Ω1 and Ω2 be two small subdomains
in Ω (each covering four elements). Let A(x) = b(x)I, where

b(x) = 1 + z, x ∈ Ω1, b(x) = 1− z, x ∈ Ω2, b(x) = 1, x ∈ Ω \ (Ω1 ∪Ω2), (2.13)

where z is some constant in (−1, 1). For preconditioning we use Laplacian, i.e. Ã = I. In
Figure 2.4, it is seen that the spectrum of Ã−1A contains only a few outlying eigenvalues; the
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Figure 2.1: Lower (λL
r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of Example 2.3 (a) with
N = 102 (top graphs) and N = 302 (bottom graphs) preconditioned by operators with Ã1 (left)
and Ã2 (right).
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Figure 2.2: Lower (λL
r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of Example 2.3 (b) with
N = 212 preconditioned by operators with Ã1 (left) and Ã2 (right).

number of them does not depend on z. In accordance with this, the number of CG steps to
reduce the energy norm of the error by the factor 10−9 is constant (equal to 11) independently
of z ∈ [0.9, 0.999]. Note that such a z yields the condition numbers of Ã−1A varying from 19
to 1999.

2.4.2 Elasticity equation

In the elasticity problem, or in vector valued problems in general, the searched function has
multiple components, u(x) = (u1(x), . . . , ud(x))T , where individual components are coupled
within the equation. For approximation of the scalar functions uj , j = 1, . . . , d, we use the
same sets of the FE basis functions ϕk, k = 1, . . . , N , supported again inside the patches Pk.
Recall that for the sake of simplicity, we consider homogeneous Dirichlet boundary conditions
only.

Lemma 2.5. Let C(x), C̃(x) ∈ Rm×m, where m = 3 if d = 2, and m = 6 if d = 3. Let
C and C̃ be symmetric and positive definite for all x ∈ D ⊂ Ω. Let there exist constants
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s(k)) bounds on eigenvalues λk of Example 2.3 (c) with
N = 400 preconditioned by operators with Ã1 (left) and Ã2 (right) with g3 = g̃3 = 1 + x2
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r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of Example 2.4 for z = 0.9
(left) and the detail view (right).

0 < c1 ≤ c2 <∞ such that

σ(C̃−1(x)C(x)) ⊂ [c1, c2], x ∈ D. (2.14)

Then for u ∈ V d
0 we get

c1

∫
D

(∂u)T C̃∂udx ≤
∫
D

(∂u)TC∂udx ≤ c2

∫
D

(∂u)T C̃∂udx (2.15)

Proof. From (2.14) for all v ∈ Rd, x ∈ D, we get

c1 v
T C̃(x)v ≤ vTC(x)v ≤ c2 v

T C̃(x)v.

Then by setting v = ∂u and integrating over D, we obtain (2.15).
We now show how to obtain the guaranteed bounds on all individual eigenvalues 0 < λ1 ≤

· · · ≤ λdN of the preconditioned elasticity problem C̃−1C for any positive definite material data
C and C̃. Since N is the number of the FE basis functions defined on Ω used to approximate
each component of u, the number of unknowns is dN . We now build two sequences λL

k and
λU
k , k = 1, . . . , dN , to bound the eigenvalues of C̃−1C. In contrast to Section 2.4.1, for the

sake of brevity, we do not define αmin
j and αmax

j , but we directly set

λ̂L
k = ess infx∈Pk λmin

(
C̃−1(x)C(x)

)
,

λ̂U
k = ess supx∈Pk λmax

(
C̃−1(x)C(x)

)
,

k = 1, . . . , N . Similarly to the case of the diffusion equation in Section 2.4.1, we sort these
two series non-decreasingly, and thus get bijections

R,S : {1, . . . , N} → {1, . . . , N},
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such that

λ̂L
R(1) ≤ · · · ≤ λ̂

L
R(N), λ̂U

S(1) ≤ · · · ≤ λ̂
U
S(N).

Moreover, we double (if d = 2) or triple (if d = 3) all items in the two series of λ̂L
k and λ̂U

k

and get two new d-times longer series

λL
(k−1)d+1 = · · · = λL

kd = λ̂L
k , λU

(k−1)d+1 = · · · = λU
kd = λ̂U

k , k = 1, . . . , N,

that can be sorted non-decreasingly. Thus we obtain two bijections

r, s : {1, . . . , dN} → {1, . . . , dN},

such that

λL
r(1) = · · · = λL

r(d) ≤ λ
L
r(d+1) = · · · = λL

r(2d) ≤ . . .

· · · ≤ λL
r(dN−d+1) = · · · = λL

r(dN), (2.16)
λU
s(1) = · · · = λU

s(d) ≤ λ
U
s(d+1) = · · · = λU

s(2d) ≤ . . .

· · · ≤ λU
s(dN−d+1) = · · · = λU

s(dN). (2.17)

Note that for k = 1, . . . , N ,

λ̂L
R(k) = λL

r((k−1)d+1) = · · · = λL
r(kd), λ̂U

S(k) = λU
s((k−1)d+1) = · · · = λU

s(kd).

Now we can introduce the second part of the main results of this paper.
Theorem 2.6. The lower and upper bounds on all eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λdN of
C̃−1C can be obtained from (2.16) and (2.17), namely

λL
r(k) ≤ λk ≤ λ

U
s(k), k = 1, . . . , dN. (2.18)

Proof. The proof is similar to the proof of Theorem 3.2. By the Courant–Fischer min-max
theorem,

λk = max
S,dimS=dN−k+1

min
v∈S, v 6=0

vTCv
vT C̃v

.

Then
λd ≥ · · · ≥ λ1 = min

v∈RdN , v 6=0

vTCv
vT C̃v

≥ λL
r(1) = · · · = λL

r(d),

where the last inequality follows from Lemma 2.5. Indeed, representing the coefficients of
the components of u = (u1, . . . , ud) with respect to the FE basis functions in a single vector
v = (vT(1), . . . , v

T
(d))T= (v1, . . . , vNd)T , v(j) ∈ RN , j = 1, . . . , d, we get

vTCv
vT C̃v

=
∫
Ω(∂u)TC∂udx∫
Ω(∂u)T C̃∂udx

≥ min
Pk⊂Ω

λ̂L
k = λ̂L

R(1) = λL
r(1) = · · · = λL

r(d).

Next, we remove ϕR(1) from all d bases approximating the components of u = (u1, . . . , ud).
Then

λ2d ≥ . . .≥λd+1 ≥ min
v∈RN , v 6=0, vR(1)=0,...,v(d−1)N+R(1)=0,

vTCv
vT C̃v

≥ λL
r(d+1) = · · · = λL

r(2d),
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where the last inequality follows from
vTCv
vT C̃v

=
∫
D(∂u)TC∂udx∫
D(∂u)T C̃∂udx

≥ min
Pk⊂D

λ̂L
k = λ̂L

R(2) = λL
r(d+1) = · · · = λL

r(2d),

where vR(1) = 0, . . . , v(d−1)N+R(1) = 0, and correspondingly,
D = ∪j∈{1,...,N}\{R(1)}Pj .

Continuing further in this way, we can prove the lower bounds in (2.12). Analogously, we can
get the upper bounds.
Example 2.7. Assume the elasticity equation with homogeneous Dirichlet boundary conditions,
d = 2, Ω = (−π, π)2, N = 212, and the data

C(x) = E(x)
(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 0.5 (1− 2ν)

 , (2.19)

where
E(x) = 1 + 0.3 sign (x1x2), ν = 0.2.

Preconditioning is performed with the constant (homogeneous) data of the type (2.19) with
E = 1 and either ν = 0 or ν = 0.2, denoted by C̃1 and C̃2, respectively. A uniform grid with
piece-wise bilinear FE functions is employed. We can see in Figure 2.5 that the preconditioning
matrix using the data C̃2, which are closer to C, yields the spectrum of the preconditioned
matrix closer to unity. Moreover, we can notice two clusters of eigenvalues approximately
equal to 0.7 and 1.3, respectively. The numbers of the CG steps to reduce the energy norms of
the errors by the factor of 10−9 are 14 and 11 for C̃1 and C̃2, respectively, when we consider
F = (1, 0)T . In this example, C̃1 is diagonal, while C̃2 is more dense. Therefore, the overall
efficiency strongly depends on implementation of the preconditioner. These considerations
are, however, behind the scope of this paper.
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Figure 2.5: Lower (λL
r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of the elasticity problem of
Example 2.7 with N = 212 preconditioned by operators with C̃1 (left) and C̃2 (right).

Remark 2.8. The bilinear form (u,v)C associated with the linear elasticity operator is
equivalent with the following bilinear forms defined in V d

0 , see [14],

(u,v)C,4 =
∫
Ω

d∑
i,j=1

∂vi
∂xj

∂ui
∂xj

dx

(u,v)C,ε =
∫
Ω

(∂v)T∂udx

(u,v)C,d =
∫
Ω

d∑
i=1

(∂(0, . . . , 0, vi, 0, . . . , 0)T )TC∂(0, . . . , 0, ui, 0, . . . , 0)T ,
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2. Guaranteed two-sided bounds on all eigenvalues of preconditioned FEM ...................
where v = (v1, . . . , vd)T . The equivalence constants and the proofs can be found in [14] and
in the references therein. We may notice that our preconditioning matrix C̃ with the data
in the form C̃(x) = I is the same as the matrix of the discretized form (u,v)C,ε. Therefore,
using our method for obtaining the bounds on the eigenvalues of preconditioned problems can
be used to estimate the equivalence constants of the above forms defined in finite-dimensional
subspaces of V d

0 spanned by the FE basis functions; for example, we can immediately get

λL
r(1)(u,u)C,ε ≤ (u,u)C ≤ λU

s(dN)(u,u)C,ε.

2.4.3 General remarks

Let us now compare our results obtained for the diffusion equation with the recent results
from [45]. Analogies for the elasticity equation can be considered straightforwardly. In [45],
the existence of a pairing between the eigenvalues of the preconditioned matrix and the
intervals obtained from the scalar data defined on the patches is proved. Especially, in any
of the intervals, some eigenvalue must be found. This allows us to estimate the accuracy of
the bounds provided that the scalar data are continuous or mildly changing in (parts of) Ω.
In our paper, instead, we get that λk ∈ [λL

r(k), λ
U
s(k)], or λk ∈ [λL

r(k−1), λ
U
s(k)] if the operator is

semi-definite with the null space of the dimension 1. Let us note that

λL
k ≤ λU

k , λL
r(k) ≤ λ

U
s(k), r(k) ≤ s(k), k = 1, . . . , N,

but r(k) 6= s(k) in general, thus the intervals containing the individual eigenvalues are different
than the intervals obtained in [45]. Sometimes, however, the intervals obtained by our method
and by the method of [45] (ordered appropriately) coincide; see the following example.
Example 2.9. Let us consider the test problem from [45, Section 4]: the diffusion equation,
Ω = (0, 1)2, A(x) = sin(x1 + x2)I, and homogeneous Dirichlet boundary conditions on ∂Ω.
Let us use a uniform grid with piece-wise bilinear FE functions, N = 92 or N = 192. For
preconditioning we use Ã(x) = I. The appropriatelly ordered bounds provided by [45] and
the bounds obtained by our method coincide; they are displayed on Figure 2.6.
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Figure 2.6: Lower (λL
r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of Example 2.9 with N = 92

(left) and N = 192 (right).

The approach developed in [45] can be modified to the case of tensor data and existence of
a permutation p : {1, . . . , N} → {1, . . . , N} can be proved, such that

λk ∈ [λL
p(k), λ

U
p(k)], k = 1, . . . , N. (2.20)

The Weyl’s inequality (see, e.g., [133, Section 3.5]) is used in the proof in the same way as
in [45]; the only change is in substituting the extremes of the scalar material data on every
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............................2.4. Bounds on eigenvalues of preconditioned problems

patch Pj by the extremes of the eigenvalues of Ã−1(x)A(x) on Pj . Therefore, we do not
provide the proof here. The bounds obtained from (2.12) and from (2.20) are compared in
Example 2.11.

Using (2.20), under some special conditions, analogously to the results of [45], some
eigenvalues can be identified exactly including their multiplicity. Since we do not present
the proof of (2.20), let us formulate and prove this statement separately. For the sake of
brevity, we formulate it for the case of the nonsingular diffusion equation with the tensor data
only. Generalization to problems with vector valued unknowns is straightforward; see also
Example 2.7.
Lemma 2.10. Let there exist c > 0 such that Ã−1(x)A(x) = cI on a union of m patches
D = ∪mk=1Pjk . Let none of the patches Pjk , k = 1, . . . ,m, attache to ∂Ω2 where g3 6= 0, and
let the patches be associated with m linearly independent FE functions ϕj1 , . . . , ϕjm . Let A
be nonsingular. Then c is an eigenvalue of Ã−1A of multiplicity at least m.
Proof. Let e(j) ∈ RN , (e(j))i = δij , where δij is the Kronecker delta symbol. Then for every
j = j1, . . . , jm,

vTAe(j)

vT Ãe(j)
=
∫
Ω∇v ·A∇ϕj dx+

∫
∂Ω2

g3ϕjv dS∫
Ω∇v · Ã∇ϕj dx+

∫
∂Ω2

g̃3ϕjv dS
= c

∫
Ω∇v ·A∇ϕj dx∫
Ω∇v · Ã∇ϕj dx

= c

for all v ∈ RN , v 6= 0. This means that c is an eigenvalue of Ã−1A associated with the eigen-
vectors e(j), j = j1, . . . , jm. Since the eigenvectors are linearly independent, the multiplicity
of c is at least m.
Example 2.11. In this example, we compare our method of estimating the eigenvalues of Ã−1A
with the method of [45] adapted for tensor data. Especially, we compare the bounds (2.12)
with the intervals (2.20). Since we do not know the permutation p, we order the intervals
according to the permutation r given by (2.8). Let us consider d = 2, Ω = (−1, 1)2, N = 182,
and bilinear FE basis functions. Let

A(x) =
(

1.2 + 0.5 (1 + sign(x1)) x1 0
0 1.1− 0.5 (1 + sign(x2)) x2

)
,

and us use Ã = I for preconditioning. The eigenvalues of Ã−1A and their bounds are displayed
in Figure 2.7. The guaranteed bounds (2.12) are found on the left, while the guaranteed
(unordered) intervals from (2.20) are displayed on the right. In this example, the bounds do
not provide sharp localization of the eigenvalues (left). The intervals, however, provide very
sharp localization of a half of the spectrum (right).

Let us finally focus on limitations of our theory. We could see that in some examples the
bounds did not get closer to the true eigenvalues when the mesh-size decreases. As a repre-
sentative 2D example we can take the diffusion equation with constant data, preconditioned
by the Laplacian, say,

A = diag (2, 1), Ã = diag (1, 1). (2.21)

While the constant lower and upper bounds are obtained

λL
k = 1, λU

k = 2, k = 1, . . . , N,

the true eigenvalues of Ã−1A are distributed between these two bounds almost achieving
both extremes 1 and 2. We could conclude that if the data are of the tensor type and if the
preconditioner is poor, i.e. Ã−1(x)A(x) is not close enough to a multiple of the identity I
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Figure 2.7: Lower (λL
r(k)) and upper (λU

s(k)) bounds on eigenvalues λk of Example 2.11 (left) and
intervals [λL

r(k), λ
U
r(k)] (right).

in Ω, the bounds λL
r(k) and λU

s(k) may not say much about the true eigenvalues; the types
of the FE basis functions and of the mesh influence the distribution of the true eigenvalues
as well. Interestingly, from very recent results of Gergelits et al. [46] we can conclude that
the spectrum of the operator 4−1[∇ · (A∇)], i.e. the continuous form of example (2.21), is
equal to [1, 2]. We hope that further study elucidates a relationship between the eigenvalues
of Ã−1A and the continuous case.

2.5 Conclusion

To the best of our knowledge, [45] is the first paper on estimating all eigenvalues of a
preconditioned discretized diffusion operator. Motivated by [45], we complement to this
theory by introducing another approach based on the Courant–Fisher min-max principle.
This allows generalizing some of the results of [45] to vector valued equations with tensor
data and with more general boundary conditions preconditioned by arbitrary operators of the
same type. We provide guaranteed bounds (defined by (2.8) and by (2.16)–(2.17) for scalar
and vector problems, respectively) to every particular eigenvalue. On the other hand, the
approach of [45] can provide more accurate estimates of (parts of) the spectra in general.
Analogously to [45], the bounds are easily accessible and obtained solely from the data defined
on supports of the FE basis functions. If the data are element-wise constant, only O(N)
arithmetic operations and sorting of two series of N numbers must be performed. Although
we applied our method to only two types of differential equations, we are convinced that the
same approach can be used in a wide variety of problems.
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Chapter 3
Two-sided guaranteed bounds to individual
eigenvalues of preconditioned finite element and
finite difference problem

Abstract: Numerical methods for elliptic partial differential equations usually lead to systems
of linear equations with sparse, symmetric and positive definite matrices. In many methods,
these matrices can be obtained as sums of local symmetric positive semi-definite matrices. In
this paper, we use this assumption and introduce a method which provides guaranteed lower
and upper bounds to all individual eigenvalues of the preconditioned matrices. We apply the
method for preconditioners arising from the same discretization problem but with simplified
coefficients. The method uses solely the data over the solution domain and local connections
between the degrees of freedom defined by the discretization.
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM............
3.1 Introduction

Many numerical methods for partial differential equations (PDEs) lead to the solution of
systems of linear equations. Elliptic PDEs can yield sparse symmetric positive definite
matrices that can be obtained as sums of sparse symmetric positive semi-definite matrices
which only use the data of a small piece of the solution domain. Such matrices are sometimes
called element matrices in the context of the finite element method (FEM). We shall call them
local matrices throughout the paper. For example, in FEM, the entries of such a local matrix
can be defined as energy inner products of pairs of all basis functions over a single element.
Similarly, the matrices resulting from the stochastic Galerkin finite element method (SGFEM)
or from the finite difference method (FDM) can also be obtained as sums of symmetric positive
semi-definite matrices with only a few non-zero entries. Another common feature of these
discretization methods is that the conditioning of the matrices becomes worse if the grid is
getting finer and/or the scales of magnitudes of varying data of the underlying problems are
growing. Therefore, in practical computation, some kind of preconditioning is to be applied. In
this paper, we consider a preconditioning matrix obtained by the same discretization method
as the original system matrix but with different data or using a different operator. Then we
introduce a method providing guaranteed two-sided bounds to all individual eigenvalues of
the preconditioned system or, equivalently, to all generalized eigenvalues of a system defined
by these two matrices. The bounds are based solely on comparing local data of the problem
and of the preconditioning problem and on local connections among the degrees of freedom
(DOFs). Coefficients of the preconditioning operator can be constant, for example, or admit
some other advantageous features which allow an efficient solution method. For example,
discretized diffusion problems can be preconditioned by the discretized Laplacian, and linear
elasticity stiffness matrices can be preconditioned by a discretized homogeneous, possibly
anisotropic elasticity operator. This is efficient if (the approximation of) the inverse of the
preconditioning matrix can be easily obtained, for example, by using the discrete Fourier
transformation, or if the LU-decomposition of the preconditioning matrix can be obtained
and applied to many problems with variable coefficients.

For the numerical solution of sparse discretized elliptic PDEs, the conjugate gradient (CG)
method is a method of choice; see e.g. [82, 93, 140, 143]. Typically, preconditioners leading
to small condition numbers (ratios of the largest and the smallest eigenvalues) are searched
for. However, the localization of the whole spectrum can help to better characterize the
convergence in some particular cases. For example, a few large outlying eigenvalues can
be linked to fast convergence. A detailed exposition is provided in recent paper [44] where,
assuming exact arithmetic, the so called composite bounds are used to demonstrate the
annihilation of the influence of the outlying eigenvalues. In finite precision arithmetic, well
separated outlying eigenvalues may mimic tight clusters of eigenvalues, and thus cause a delay
of convergence of CG. Nevertheless, even when outlying clusters are present, the rounding
errors may not spoil the computation during a sufficient number of steps of CG; see the
example in [45, Section 2].

The idea of estimating generalized eigenvalues based on local properties of the underlying
operators first appeared in [110], where the eigenvalues of elliptic differential operators of
the ∇ · k∇ type defined in infinite-dimensional spaces and preconditioned by the Laplacian
were shown to coincide with the data k. Analogous statements characterizing the spectra of
problems discretized by FEM were introduced in [45, 46] where a one-to-one mapping between
the eigenvalues and a set of intervals defined by the data over the elements was proved. In
algebraic multilevel (AML) preconditioning, a similar idea of inspecting all individual elements
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for obtaining the lower and upper bounds to the minimal and maximal eigenvalues, respectively,
was used [3, 15, 31, 57]. This motivated the spectral estimates in the preconditioning of
SGFEM, see e.g. [23, 74, 116, 117]. In this paper, we extract the core idea of the approach
presented in [99] and show that it can also be applied to some other discretization schemes:
SGFEM, FDM and AML. In all cases, the eigenvalue bounds depend solely on local material
data and on local properties of the discretization. The method is formulated in a general way,
and thus can be applied to other discretized problems.

The outline of the paper is as follows. In the subsequent section, we introduce the method
of getting guaranteed two-sided bounds to all eigenvalues of a preconditioned matrix, or,
equivalently, to generalized eigenvalues of the system matrix with respect to the preconditioning
matrix. Though we focus on problems arising from discretized PDEs, the method is formulated
in a general way. In the third section, we present five frequent discretization methods applied
to some standard problems and show what specific forms of the general estimation method
(what choices of local matrices) can provide reasonable bounds. A short discussion concludes
the paper.

3.2 Two sided bounds to all eigenvalues of a preconditioned
discretized problem

We assume that the stiffness matrix A ∈ RNdof×Ndof of a discretized problem is symmetric and
positive definite, and

A =
Ne∑
n=1

An, (3.1)

where An ∈ RNdof×Ndof , n = 1, . . . , Ne, are symmetric positive semi-definite (local) matrices.
The number of DOFs of the discretized problem is Ndof. When we use FEM, the set of
matrices An can correspond to the construction of A element-by-element. In such a case,
Ne equals the number of elements, and the non-zero entries of every matrix An are only in
the cross-sections of the rows and columns attached to the basis functions supported in the
n-th element. The following two notations will appear as useful: let Sn, n = 1, . . . , Ne, be
sets of indices of non-zero rows (columns) of An, and let Ej , j = 1, . . . , Ndof , denote a set of
such indices n of {1, . . . , Ne} that j ∈ Sn. Again, if we use FEM, then Sn is a set of DOFs
attached to the FE basis functions supported in n-th element. On the other hand, Ej is a
set of element numbers, where the j-th basis function is supported. Let us denote the m-th
column of the Ndof ×Ndof identity matrix by e(m).

Let Ap ∈ RNdof×Ndof be a preconditioning matrix,

Ap =
Ne∑
n=1

Ap
n, (3.2)

where Ap
n ∈ RNdof×Ndof , n = 1, . . . , Ne, are symmetric positive semi-definite matrices. We

assume that the sets Sn and Ej constructed for matrices Ap
n are the same as those built for

An. We also assume that the kernel of An is the same as the kernel of Ap
n for all n = 1, . . . , Ne.

This assumption is not necessary for the main theorem of this section, but it is substantial for
practical application of the theory, since it allows getting sensible bounds to the eigenvalues of
a preconditioned matrix. Note also, that we cannot obtain the same kernels for local matrices
obtained from stiffness and from mass (or identity) matrices in FEM.
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Throughout paper, a formula F valid for all variables v in the set S can be denoted as

F (v), v ∈ S, i.e. without using "for all" or ∀. Similarly, F (n), n = 1, . . . ,m, means that F is
valid for all n in the set {1, . . . ,m}. In many places, however, we consider as helpful to use
the quantifiers explicitly.

We will study the bounds to the generalized eigenvalues of

Au = λApu, (3.3)

or, equivalently, to the eigenvalues of the preconditioned matrix (Ap)−1A. Let us denote these
eigenvalues by

0 < λ1 ≤ λ2 ≤ · · · ≤ λNdof .

If the boundary conditions are periodic or homogeneous Robin, we get one or more smallest
eigenvalues of A and Ap equal to zero and the kernels of A and Ap are equal. In such a case,
we can still apply our method with a small restriction. Instead of the inverse of Ap, we can
use the pseudo-inverse (Ap)# [50]; and we can search for the bounds to (nonzero) eigenvalues
of (Ap)#A by the restriction of RNdof×Ndof to the space orthogonal to the kernel of A. For
simplicity, however, we avoid singular matrices A and Ap in our exposition. We start with a
theorem providing criteria for identifying exact eigenvalues of (Ap)−1A.
Theorem 3.1. Let there exist J pair-wise different indices mj ∈ {1, 2, . . . , Ndof}, j = 1, . . . , J ,
and a constant β > 0 such that

An = β Ap
n

for all n ∈ ∪Jj=1Emj . Then β is a J-tuple eigenvalue of (Ap)−1A, or more precisely,

Ae(mj) = β Ape(mj), j = 1, . . . , J.

Proof. Let j ∈ {1, . . . , J} be arbitrary. Then

Ae(mj) =
Ne∑
n=1

Ane(mj) =
∑

n∈Emj

Ane(mj) =
∑

n∈Emj

β Ap
ne(mj) = β

Ne∑
n=1

Ap
ne(mj) = β Ape(mj).

Since e(mj) are linearly independent for j = 1, . . . , J , the proof is completed.
Now we proceed with the main theorem of the paper providing guaranteed lower and upper

bounds to all individual eigenvalues of (Ap)−1A.
Theorem 3.2. Let matrices A and Ap be symmetric and positive definite and fulfill (3.1)
and (3.2). Let us define for k = 1, . . . , Ndof ,

λL
k = max

{
λ; vTAnv ≥ λ vTAp

nv, n = 1, . . . , Ne, v ∈ RNdof , vj = 0 for all j ∈ TL
k−1

}
, (3.4)

where TL
k , k = 0, 1, . . . , Ndof − 1, are built consecutively: TL

0 = ∅ and TL
k = TL

k−1 ∪ {mk},
where mk is a single (arbitrary) integer such that the maximum in (3.4) is achieved for n = nk
and

mk ∈ Snk \ T
L
k−1.

Analogously, let

λU
Ndof−k+1 = min

{
λ; vTAnv ≤ λ vTAp

nv, n = 1, . . . , Ne, v ∈ RNdof , vj = 0 for all j ∈ TU
k−1

}
,

(3.5)
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where TU
0 = ∅ and TU

k = TU
k−1 ∪{mk}, where mk is an integer such that the minimum in (3.5)

is achieved for n = nk and
mk ∈ Snk \ T

U
k−1.

Then
λL
k ≤ λk ≤ λU

k , k = 1, . . . , Ndof . (3.6)
Proof. We have

λ1 = min
v 6=0

vTAv
vTApv ,

or, equivalently,
λ1 = max{λ; vTAv ≥ λvTApv, ∀ v ∈ RNdof}.

Thus any λL1 ∈ R fulfilling

vTAv ≥ λL1 vTApv, ∀ v ∈ RNdof (3.7)

is a lower bound to λ1. Condition (3.7) is equivalent to
Ne∑
n=1

vTAnv ≥ λL1
Ne∑
n=1

vTAp
nv, ∀ v ∈ RNdof ;

and a sufficient condition to (3.7) is

vTAnv ≥ λL1 vTAp
nv, ∀n = 1, . . . , Ne, ∀ v ∈ RNdof . (3.8)

The maximal λL
1 fulfilling (3.8) is equivalent to the λL

1 defined by (3.4). Thus the first
inequality of (3.6) is proved for k = 1. Let for k = 1 the maximum in (3.4) be achieved with
n = n1. Then let us choose an arbitrary but a unique m1 ∈ Sn1 and set TL

1 = {m1}. In other
words, we exclude m1 in some sense from the set of DOFs in our further consideration. Note
that since the maximum in (3.4) is finite and is achieved for n = n1, the set Sn1 is not empty.

Due to the Courant-Fischer min-max principle

λ2 = max
dimV=Ndof−1

min
v 6=0, v∈V

vTAv
vTApv ≥ min

v 6=0, vm1=0

vTAv
vTApv ,

and thus any λL2 ∈ R such that

vTAv ≥ λL
2 vTApv, ∀ v ∈ RNdof , vm1 = 0,

or, equivalently,

vTAv ≥ λL
2 vTApv, ∀ v ∈ RNdof , vj = 0 for all j ∈ TL

1 , (3.9)

is a lower bound to λ2. A sufficient condition for λL
2 fulfilling (3.9) is, similarly as in (3.8),

obtained from inspecting all pairs of matrices An and Ap
n separately, namely as

vTAnv ≥ λL2 vTAp
nv, ∀n = 1, . . . , Ne, ∀ v ∈ RNdof such that vj = 0, ∀ j ∈ TL

1 . (3.10)

The maximal λL2 fulfilling (3.10) equals the λL2 defined by (3.4). Thus the first inequality
of (3.6) is proved for k = 2. Then we choose such an index n2 that the maximum in (3.4)
is achieved for n = n2. Since the maximum is finite, the set Sn2 \ TL

1 is not empty. Then
we can choose some (unique) m2 ∈ Sn2 \ TL

1 , and set TL
2 = TL

1 ∪ {m2}. We proceed in the
same manner up to λL

Ndof
, the lower bound to λNdof . Analogously, the upper bounds λUk to all

eigenvalues of (Ap)−1A can be obtained starting from λUNdof
and finishing with λU1 .
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The findings of Theorem 3.2 can be summarized as algorithms. A practical implementation

of the algorithms is based on effective computing the extreme λ’s in (3.4). The extremes can
be obtained by inspecting all pairs of local matrices An and Ap

n separately, namely, by solving
very small eigenvalue problems. Moreover, since An and Ap

n use only local data, these extremes
can be obtained by inspecting (element-by-element) the data of the original problem and of
the preconditioning operator. More details are presented in section 3 for some particular
problems and discretization methods.

Algorithm 1 (lower bounds).
1. Set T as an empty set.
2. For k = 1, . . . , Ndof repeat (a)–(c):
(a) Find λL

k as the maximal λ fulfilling inequalities vTAnv ≥ λ vTAp
nv for all n = 1, . . . , Ne,

and for all v ∈ RNdof such that vj = 0 for all j ∈ T .
(b) Take an arbitrary index n for which the equality in (a) is achieved with λ = λL

k and v 6= 0.
(c) Take an arbitrary m ∈ Sn \ T , and set T := T ∪ {m}.

Algorithm 2 (upper bounds).
1. Set T as an empty set.
2. For k = 1, . . . , Ndof repeat (a)–(c):
(a) Find λU

Ndof−k+1 as the minimal λ fulfilling inequalities vTAnv ≤ λvTAp
nv for all n =

1, . . . , Ne, and for all v ∈ RNdof such that vj = 0 for all j ∈ T .
(b) Take an arbitrary index n for which the equality in (a) is achieved with λ = λU

k and v 6= 0.
(c) Take an arbitrary m ∈ Sn \ T , and set T := T ∪ {m}.

Note that while inspecting all pairs of matrices An and Ap
n, n = 1, . . . , Ndof , for some

k > 1 in steps 2(a), we can exclude such matrices An and Ap
n in which Sn ⊂ T , because

Anv = Ap
nv = 0 if vj = 0 for all j ∈ Sn.

Algorithms 1 and 2 are formulated generally, and thus can be applied to various PDEs
and discretization methods in different ways. The details of the algorithms, especially the
choice of local matrices An and Ap

n, are essential for the practical implementation. In the
subsequent section, we introduce five frequent problems and discretization methods and
show some particular choices of An and Ap

n that can lead to acceptable bounds in practical
computation. However, new choices of local matrices and/or new strategies for choosing n in
step 2(b) and m in step 2(c) leading to more accurate bounds can be found in a future study.

3.3 Five model problems

We present five model problems of discretized PDEs. In all problems, the PDE is defined in
the physical domain D ⊂ R2. The shape of D is considered polygonal, or even rectangular
if FDM is used. One of these problems is parametrized by a (random) parameter; see
section 3.3.4. The PDEs considered are either the heat equation or linear elasticity equation
with Dirichlet or Robin boundary conditions. The discretization is obtained via FEM, FDM
or SGFEM for the parametrized PDE. The preconditioning matrices are obtained in the
same manner as the stiffness matrices of the underlying problem but for different data or
for a slightly different operator. A different operator is used in AML or SGFEM methods,
where we consider hierarchical finite elements and associated preconditioning and a truncation
based operator, respectively. In FEM based discretizations, we consider the material data as
constant element-wise.

In all cases, a second order elliptic differential equation is considered, either reformulated
into a weak form and discretized, or discretized directly using FDM. Both schemes lead to
systems of linear equations with symmetric a positive definite matrices A. Our concern is to
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construct a preconditioning matrix Ap and to give guaranteed lower and upper bounds to all
eigenvalues of the resulting preconditioned matrix (Ap)−1A. In other words, we search for the
bounds to all particular eigenvalues of the generalized eigenvalue problem

Av = λApv. (3.11)

In the subsequent parts we introduce five model problems illustrating the application of
Theorems 3.1 and 3.2 and of Algorithms 1 and 2. In all five model problems, we focus on the
principles of our new algorithms, therefore the problems are simple without any complicated
geometry or mesh, and with a relatively small number of DOFs. Then we can calculate all
the eigenvalues and their bounds almost exactly; considering rounding errors is beyond the
scope of this paper.

3.3.1 Finite element method and heat equation

The second order scalar elliptic differential equation

−∇ · (a(x)∇u(x)) = f(x), x ∈ D, (3.12)

is considered with Dirichlet or Robin boundary conditions on ∂D = ∂DD ∪ ∂DR,

u(x) = g1(x), x ∈ ∂DD

n(x) · (a(x)∇u(x)) = g2(x)− g3(x)u(x), x ∈ ∂DR,

where n is the outer normal to ∂DR. The coefficient tensor a defined on D is uniformly
positive definite, measurable and uniformly bounded over D, and f ∈ L2(D). Problem (3.12)
is transformed into the weak form and discretized using FEM with continuous and piece-
wise polynomial basis functions φi, i = 1, . . . , Ndof ; see e.g. [32]. This leads to a system
of linear equations with a symmetric and positive definite matrix A. Our concern is to
build a preconditioning matrix Ap and to find bounds to all eigenvalues of the resulting
preconditioned matrix (Ap)−1A. We assume that the preconditioning matrix Ap is obtained
by the discretization of the operator

−∇ · (ap(x)∇u(x)), (3.13)

with the same type of boundary conditions as those of the original problem. We note that
the boundary conditions can be considered different in building A and Ap. This only leads to
a small modification of the algorithm; see a more detailed description in [99]. The coefficient
tensor ap is positive definite, measurable and bounded uniformly in D.

It is well known that the entries of A are obtained as energy scalar products

Aij =
∫
D
∇φj · a∇φi dx+

∫
∂DR

g3uv dx, i, j = 1, . . . , Ndof. (3.14)

The entries of Ap are obtained in the same manner as those of A but with a coefficient tensor
ap,

Ap
ij =

∫
D
∇φj · ap∇φi dx+

∫
∂DR

g3uv dx, i, j = 1, . . . , Ndof.

The local matrices An in (3.1) and, analogously, Ap
n in (3.2) are obtained as

(An)ij =
∫
Dn
∇φj · a∇φi dx+

∫
Dk∩∂DR

g3uv dx, i, j = 1, . . . , Ndof, n = 1, . . . , Ne, (3.15)

27



3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM............
and

(Ap
n)ij =

∫
Dn
∇φj ·ap∇φi dx+

∫
Dk∩∂DR

g3uv dx, i, j = 1, . . . , Ndof, n = 1, . . . , Ne, (3.16)

respectively, where Dn ⊂ D, n = 1, . . . , Ne, are the elements defined by FEM. Then An and
Ap
n are sparse with only a few non-zero entries in the rows and columns indexed by such DOFs
i associated with basis functions φi that do not annihilate in Dn.

Let us now briefly describe how to efficiently use Algorithm 1 for this particular problem
and discretization. For simplicity of exposition, let us consider g1 = g3 = 0. Before starting
Algorithm 1, let us define λmin(x) as the smallest eigenvalue of (ap(x))−1a(x) for almost all
x ∈ D. Let us go through all elements Dn and set

αL
n = ess inf

{
λmin(x); x ∈ Dn

}
.

If a and ap were element-wise constant, αL
n is simply the smallest eigenvalue of (ap(x))−1a(x)

for arbitrary x ∈ Dn. Using this setting, we can easily find such a constant λ that fulfills

vTAnv ≥ λ vTAp
nv, ∀n = 1, . . . , Ne, ∀ v ∈ RNdof . (3.17)

Indeed, since (3.17) is equivalent to∫
Dn
∇v · a∇v dx ≥ λ

∫
Dn
∇v · ap∇v dx, ∀n = 1, . . . , Ne, ∀ v ∈ VFEM,

where VFEM = span{φ1, . . . , φNdof}, it is enough to set

λL
1 = min

n=1,...,Ne
αL
n.

Then we choose some element, say Dn1 , where the minimum is achieved, i.e. λL
1 = αL

n1 , and
choose some DOF attached to this element, say m1. Starting from now, in all used vectors
v∈ RNdof the m1-entry annihilates (is excluded). To get λL

2 we need such λ that

vTAnv ≥ λ vTAp
nv, ∀n = 1, . . . , Ne, ∀ v ∈ RNdof , vm1 = 0.

This is equivalent to

∫
Dn
∇v · a∇v dx ≥ λ

∫
Dn
∇v · ap∇v dx, ∀n = 1, . . . , Ne, ∀ v =

Ndof∑
j=1

vjφj , vm1 = 0.

Thus it is enough to set

λL
2 = min{αL

n; n = 1, . . . , Ne, not all DOFs on Dn are excluded}.

Now we choose n2 such that the minimum is achieved on Dn2 , i.e. λL
2 = αL

n2 . Then we choose
a DOF attached to Dn2 , say m2, that has not been excluded yet. We can proceed in a similar
manner to get λL

3 , λL
4 , . . . . Analogously, we can also get the upper bounds λU

k .
Example 3.3. Let equation (3.12) be defined on D = (0, 1)× (0, 1) with

a(x) =
(

1 + 0.3 sign(x2 − 0.5) 0.3 + 0.1 sign(x1 − 0.5)
0.3 + 0.1 sign(x1 − 0.5) 1 + 0.3 sign(x2 − 0.5)

)
, (3.18)
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Let us consider a homogeneous Dirichlet boundary condition u = g1 = 0 on ∂DD, and a
Robin boundary condition

n · (a∇u) = 0

(thus g2 = g3 = 0) on ∂DR = {(x1, x2); x1 = 1, x2 ∈ (0, 1)}, where ∂D = ∂DR ∪ ∂DD. Let us
partition D into Ne = 450 conforming triangles and consider continuous and piece-wise linear
basis functions attached to Ndof = 210 nodes with undefined solution values. Let us use two
preconditioning matrices for the same boundary conditions and for the data

ap1(x) =
(

1 0
0 1

)
, or ap2(x) =

(
1 0.3

0.3 1

)
, (3.19)

respectively. The eigenvalues λk, k = 1, . . . , Ndof, of (Ap)−1A as well as the lower and upper
bounds λLk and λUk , respectively, obtained by Algorithms 1 and 2, are shown in Figure 3.1.
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Figure 3.1: Eigenvalues of preconditioned stiffness matrices (Example 3.3) obtained by FEM (blue
dots) and their lower and upper bounds (solid red lines) for preconditioners with data ap1 (left)
and ap2 (right), respectively.

Example 3.4. The same setting and preconditioning is used as in Example 3.3 but with data

a(x) =
(

1 + 0.3 cos
(

(x1 + x2)π2

))( 1 0.3
0.3 1

)
.

The eigenvalues λk, k = 1, . . . , Ndof, of (Ap)−1A and the lower and upper bounds λLk and λUk ,
respectively, obtained by Algorithms 1 and 2, are shown in Figure 3.2.
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Figure 3.2: Eigenvalues of preconditioned stiffness matrices (Example 3.4) obtained by FEM (blue
dots) and their lower and upper bounds (solid red lines) for preconditioners with data ap1 (left)
and ap2 (right), respectively.
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM............
3.3.2 Finite element method and linear elasticity

The linear elasticity equation [21, 109] is a vector equation, i.e. the unknown is a vector
function u defined in D. The weak form of the two-dimensional linear elasticity equation with
homogeneous Dirichlet boundary conditions reads to find u = (u1, u2) ∈ (H1

0 (D))2 which
fulfills

∫
D
∂vTC∂udx =

∫
D
vTF dx, ∂u =


∂u1
∂x1
∂u2
∂x2

∂u1
∂x2

+ ∂u2
∂x1

, C =

 c11 c12 0
c12 c22 0
0 0 c33

 , (3.20)

for all v ∈ (H1
0 (D))2. The stiffness tensor C : D → R3×3 is positive definite, measurable and

bounded uniformly in D, and F ∈ (L2(D))2 is the vector of external forces. The stiffness
matrix A and the preconditioning matrix Ap have their entries

Aij =
∫
D
∂(φi1 , φi2)TC ∂(φj1 , φj2) dx and Ap

ij =
∫
D
∂(φi1 , φi2)TCp ∂(φj1 , φj2) dx,

respectively, i1, i2, j1, j2 = 1, . . . , N , where i = (i1, i2), j = (j1, j2) and Ndof = 2N . The local
matrices An and Ap

n, n = 1, . . . , Ne, have their entries

(An)ij =
∫
Dn
∂(φi1 , φi2)TC ∂(φj1 , φj2) dx and (Ap

n)ij =
∫
Dn
∂(φi1 , φi2)TCp ∂(φj1 , φj2) dx,

respectively, i1, i2, j1, j2 = 1, . . . , N . The lower and upper bounds to eigenvalues are then
obtained directly according to Algorithms 1 and 2, respectively. See also more examples
in [99] and another approach in [46].
Example 3.5. Let us consider D = (0, 1) × (0, 1), linear elasticity problem (3.20) and the
preconditioning problem with tensor data C and Cp, respectively, where

C = E(x)
(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 0.5− ν

 , Cp =

 1− νp νp 0
νp 1− νp 0
0 0 0.5− νp

 ,
E(x) = 1 + 0.3 sign (x1 + x2 − 1) and ν = 0.2. The preconditioning matrix uses either data
Cp1 with νp = 0 or Cp2 with νp = 0.2. The FEM discretization with bilinear basis functions
yielding Ne = 196 and Ndof = 2 · 132 = 338 is used. The eigenvalues of (Ap)−1A as well as
their lower and upper bounds are displayed in Figure 3.3. Note that if Cp was a multiple of
C in some parts of D, some eigenvalues can be determined exactly with sharp bounds; see
Theorem 3.1.
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Figure 3.3: Eigenvalues of preconditioned stiffness matrices (Example 3.5) obtained by FEM
for the elasticity equation (blue dots) and their lower and upper bounds (solid red lines) for a
preconditioner with Cp1 (left) and Cp2 (right).
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3.3.3 Algebraic multilevel preconditioning

In this part, we recall algebraic multilevel (AML) preconditioning and estimating the resulting
spectrum. AML methods use nested meshes and associated hierarchical FE basis functions.
In this paper, we use only two levels of hierarchy, which we call coarse and fine and denote
by superscripts c and f, respectively. The details of this useful method can be found
e.g. in [3, 15, 31, 57]. Here we show that the well known algorithm of estimating the
spectrum also fits in the context of Algorithms 1 and 2.

We consider again second-order linear elliptic problem (3.12) defined in a polygonal domain
D with a homogeneous Dirichlet boundary condition on ∂D. We use FEM defining a coarse
triangulation with element-wise linear basis functions φc

j , j = 1, . . . , N c
dof . We assume that a

is constant on every coarse element (triangle) Dn, n = 1, . . . , Ne. Let each coarse element Dn

be split into four (fine) triangles of the same shape with vertices equal either to the vertices
of the coarse triangles or to the centers of the edges of the coarse triangles. We consider
only such fine basis functions attached to the centers of the edges of the coarse triangles: φf

j ,
j = 1, . . . , N f

dof . Thus the set of all fine and coarse basis functions

W = {φc
j ; j = 1, . . . , N c

dof} ∪ {φf
j ; j = 1, . . . , N f

dof}

is linearly independent. The approximation and test spaces are obtained as a span of W ; thus
Ndof = N c

dof +N f
dof . The stiffness matrix A ∈ RNdof×Ndof can be obtained in the block form

A =
(

Acc Acf

(Acf)T Aff

)
,

where the superscripts c and f are related to coarse and fine basis functions (DOFs), respectively,
and Acc ∈ RNc

dof×N
c
dof and Aff ∈ RN f

dof×N
f
dof . In AML methods, one of possible preconditioners

can be
Ap =

(
Acc 0
0 Aff

)
.

The matrix A can be obtained as

A =
Ne∑
n=1

An

where An is a sparse local matrix with only 6× 6 non-zero entries,

(Acc
n )ij =

∫
Dn
∇φc

j · a∇φc
i dx

(Aff
n)lm =

∫
Dn
∇φf

m · a∇φf
l dx

(Acf
n )lj =

∫
Dn
∇φc

j · a∇φf
l dx,

i, j = 1, . . . , N c
dof, l,m = 1, . . . , N f

dof, n = 1, . . . , Ne.
Example 3.6. We consider AML preconditioning for problem (3.12) with a homogeneous
Dirichlet boundary condition on ∂D. We have Ne = 392 coarse elements Dn and Ndof =
N c

dof +N f
dof = 182 + 502 = 684. The resulting eigenvalues of (Ap)−1A and their lower and

upper bounds are displayed in Figure 3.4. As a rule, the bounds are not tight in AML. Instead
of estimating the individual eigenvalues, only λL

1 and λU
Ndof

can be computed to get the upper
bound to the condition number

κ
(
(Ap)−1A

)
≤ λU

Ndof/λ
L
1 .
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The results in Figure 3.4 illustrate that the upper bound is sharp.
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Figure 3.4: Eigenvalues of the preconditioned stiffness matrix (Example 3.6) obtained by FEM
and AML for the heat equation (blue dots) and their lower and upper bounds (solid red lines).

3.3.4 Stochastic Galerkin finite element method

We consider a stochastic (or parameter) second order scalar elliptic differential equation

−∇ · (a(x, ξ)∇u(x, ξ)) = f(x),

where x ∈ D, ξ = (ξ1, . . . , ξNpar) ∈ Ω ⊂ RNpar with Dirichlet boundary conditions on ∂D
defined for all ξ ∈ Ω. The scalar coefficient a is uniformly bounded in D for almost all ξ ∈ Ω.
The gradient operator is applied with respect to the variable x. The weak form reads to find
u ∈ V = H1

0 (D)⊗ L2
ρ(Ω) such that∫

Ω

∫
D
∇v(x, ξ) · (a(x, ξ)∇u(x, ξ)) ρ(ξ) dxdξ =

∫
Ω

∫
D
f(x)v(x, ξ) ρ(ξ) dxdξ, v ∈ V,

where L2
ρ(Ω) is the Lebesgue space with the positive weight function ρ defined on Ω ⊂ RNpar .

The discretization by SGFEM [5, 27, 47, 157] yields a space Vdof which is a span of the
products of N fe

dof finite element basis functions φi(x), i = 1, . . . , N fe
dof , defined in D, with Npol

dof
polynomials ψj(ξ), j = 1, . . . , Npol

dof , defined in Ω. Thus Ndof = N fe
dofN

pol
dof . The matrix of the

discretized problem reads

A(i−1)N+r, (j−1)N+s =
∫
Ω
ψs(ξ)ψr(ξ)

∫
D
∇φj(x) · (a(x, ξ)∇φi(x)) ρ(ξ) dxdξ,

i, j = 1, . . . , N fe
dof , r, s = 1, . . . , Npol

dof .
Preconditioning can be applied in various manners. Here we examine truncated based

preconditioning [11, 23? , 116, 117, 139] where the matrix Ap is built using fewer terms of
expansion of a(x, ξ) than in the original operator. Let us see the following example which is
very simple, still showing all essential principles of estimating the spectra of the preconditioned
matrices for SGFEM.
Example 3.7. Let D = (0, 1), Npar = 1, Ω = R, ρ = e−x2/2, thus the distribution of the
parameter ξ can be considered as random with the Gaussian probability density function ρ
(up to a scaling factor). Let

a(x, ξ) = a0(x) + ξa1(x), a0(x) = 4 + sign(x− 0.3), a1(x) = 0.2.

Let us consider homogeneous Dirichlet boundary conditions for any ξ ∈ Ω. Let N fe
dof = 21,

and either Npol
dof = 5, or Npol

dof = 15, then either Ndof = 105 or Ndof = 315, respectively. Then

A = A(0) + A(1),
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where

A(0)
(i−1)N+r, (j−1)N+s =

∫
Ω
ψs(ξ)ψr(ξ) ρ(ξ) dξ

∫
D
∇φj(x) · (a0(x)∇φi(x)) dx,

A(1)
(i−1)N+r, (j−1)N+s =

∫
Ω
ξψs(ξ)ψr(ξ) ρ(ξ) dξ

∫
D
∇φj(x) · (a1(x)∇φi(x)) dx.

Let the preconditioning matrix be Ap = A(0). Then we can apply Algorithms 1 and 2 to get
the bounds to the eigenvalues of (Ap)−1A in such a manner that the local matrices An and
Ap
n are

(A(0)
n )(i−1)N+r, (j−1)N+s =

∫
Ω
ψs(ξ)ψr(ξ) ρ(ξ) dξ

∫
Dn
∇φj(x) · (a0(x)∇φi(x)) dx,

(A(1)
n )(i−1)N+r, (j−1)N+s =

∫
Ω
ξψs(ξ)ψr(ξ) ρ(ξ) dξ

∫
Dn
∇φj(x) · (a1(x)∇φi(x)) dx,

where Dn = ((n− 1)h, nh), n = 1, . . . , N fe
dof + 1, h = 1/(N fe

dof + 1). Thus Ne = N fe
dof + 1. The

resulting bounds as well as the spectra of (Ap)−1A are displayed in Figure 3.5. We can notice
that in both examples the maximal eigenvalues equal their upper bounds and the minimal
eigenvalues equal their lower bounds. Therefore, a sharp upper bound to the condition number
κ ≤ λU

Ndof
/λL

1 can be obtained from only the first steps of Algorithms 1 and 2; cf. also [? ].
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Figure 3.5: Eigenvalues of preconditioned stiffness matrices (Example 3.7) obtained by SGFEM
(blue dots) and their lower and upper bounds (solid red lines) for Npol

dof = 5 (left) and Npol
dof = 15

(right).

3.3.5 Finite difference method

A lot of FD schemes can be found in literature; see e.g. [76] and the references therein. The
formulae for substituting mixed derivatives in problems with variable and anisotropic data can
be found e.g. in [12, 20, 63, 78, 81, 124, 144]. Special schemes yielding symmetric matrices
are e.g. in [130]. In this part, we consider D = (0, 1)× (0, 1) and a uniform rectangular mesh
with Ndof = N1N2 inner nodes xij , i = 1, . . . , N1, j = 1, . . . , N2, and second-order linear
elliptic problem (3.12) with a homogeneous Dirichlet boundary condition. Thus we have Ndof
unknown function values (DOFs)

uij = u(xij), xij = (ih1, jh2), i = 1, . . . , N1, j = 1, . . . , N2,

where h1 = 1/(N1 + 1), h2 = 1/(N2 + 1). We shall use such difference schemes which lead to
a symmetric system matrix:
∂

∂x1

(
c
∂u

∂x1

)
(xij) ≈

(ci−1,j + cij)ui−1,j − (ci−1,j + 2ci,j + ci+1,j)ui,j + (ci,j + ci+1,j)ui+1,j
2h2

1

∂

∂x2

(
c
∂u

∂x2

)
(xij) ≈

(ci,j−1 + cij)ui,j−1 − (ci,j−1 + 2ci,j + ci,j+1)ui,j + (ci,j + ci,j+1)ui,j+1
2h2

2
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM............
where cij = c(xij), i = 1, . . . , N1, j = 1, . . . , N2. Mixed derivatives are replaced by

 ∂

∂x1

(
c
∂u

∂x2

)
+ ∂

∂x2

(
c
∂u

∂x1

) (xij)

≈ 1
4h1h2

((ui−1,j−1(ci,j + ci−1,j−1) + ui+1,j+1(cij + ci+1,j+1)

−ui−1,j+1(cij + ci−1,j+1)− ui+1,j−1(cij + ci+1,j−1)
+uij(ci−1,j+1 + ci+1,j−1 − ci+1,j+1 − ci−1,j−1)).

It can be shown that the system matrix A can be built as a sum of Ne = (N1 + 1)(N2 + 1)
sparse local matrices An ∈ RNdof×Ndof , each with at most 4× 4 non-zero entries in positions
attached to 2× 2 neighboring unknowns (DOFs) in the nodes {xij ,xi+1,j ,xi,j+1,xi+1,j+1},
i = 0, 1, . . . , N1, j = 0, 1, . . . , N2. There are Ne = N1N2 such 2 × 2 sets. Note that the
function values are known at the boundary nodes and thus some matrices An contain fewer
non-zero entries. The matrices An have in general the following non-zero submatrices (minors)

(An)r,r

= (a11)ij + (a11)i+1,j
2


1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

+ (a11)i,j+1 + (a11)i+1,j+1
2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1



+(a22)ij + (a22)i,j+1
2


1 0 −1 0
0 0 0 0
−1 0 1 0

0 0 0 0

+ (a22)i+1,j + (a22)i+1,j+1
2


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



+(a12)ij + (a12)i+1,j+1
2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

− (a12)i+1,j + (a12)i,j+1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ,

where the vector r contains four indices corresponding to the DOFs attached to nodes xij ,
xi+1,j , xi,j+1, xi+1,j+1 in this order. If some of these sets of 2× 2 nodes contains one or more
boundary nodes, the corresponding matrix An has fewer non-zero entries: 2× 2 or even only
1. The preconditioning matrix Ap and local matrices Ap

n are obtained in the same manner as
A and An, respectively, but for different coefficient data.

Example 3.8. We consider D = (0, 1)× (0, 1), with Ndof = 132 = 169 inner nodes uniformly
distributed in D, homogeneous Dirichlet boundary conditions on ∂D, the coefficient function
a(x) defined by (3.18), and two types of preconditioners with the coefficient functions ap1(x)
and ap2(x) defined by (3.19). Note that the data of the problem and of the preconditioners
are the same as in Example 3.3 up to the boundary condition. We use Ne = 142 = 196. The
resulting eigenvalues and their bounds are displayed in Figure 3.6.
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Figure 3.6: Eigenvalues of preconditioned stiffness matrices (Example 3.8) obtained by FDM
(blue dots) and their lower and upper bounds (solid red lines) for preconditioners with data ap1
(left) and ap2 (right), respectively.

Example 3.9. Let us consider the same setting and preconditioners as in Example 3.8 but
with data

a(x) =
(

1 + 0.3 cos
(

(x1 + x2)π2

))( 1 0.3
0.3 1

)
.

The resulting eigenvalues and their bounds are displayed in Figure 3.7.
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Figure 3.7: Eigenvalues of preconditioned stiffness matrices (Example 3.9) obtained by FDM
(blue dots) and their lower and upper bounds (solid red lines) for preconditioners with data ap1
(left) and ap2 (right), respectively.

3.4 Conclusion

An efficient general algorithm providing two-sided guaranteed bounds to all individual eigen-
values of a preconditioned matrix of some discretized elliptic PDE is introduced in this
paper. The assumption is that the matrices must be obtained as sums of certain locally built
matrices such that the kernels of the corresponding pairs of local matrices are equal. Violating
this assumption still allows using the introduced theory, however, the obtained bounds in
practical examples could be trivial. The algorithm is based on comparing these pairs of local
matrices, or even only on comparing local (material) properties of the operators and on a local
connection among the DOFs defined by the discretization (see Example 3.3). We show that
such local matrices can be naturally obtained in FEM, both for scalar and vector problems,
in AML preconditioning, in SGFEM, and even in FDM. For these discretization methods, we
present examples showing the construction of local matrices and we compute the resulting
exact eigenvalues as well as the obtained bounds. To be able to compute all eigenvalues
exactly, we introduce examples with relatively small Ndof , and we assume only two physical
dimensions of the problems and one physical dimension in the SGFEM problem. However,
the results can be naturally adapted to problems of any dimension.
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3. Two-sided guaranteed bounds to individual eigenvalues of preconditioned FEM and FDM............
In practical examples, some of the obtained bounds are tight and thus the eigenvalues

are localized almost exactly. This is the case, for example, when the preconditioner was a
multiple of the original operator in some parts of D; see Examples 3.4 and 3.9. In other
cases, however, the bounds may not approximate the exact eigenvalues well. There is an
open question whether the bounds can be improved under such conditions. Also, no a priori
accuracy estimates for the bounds are available yet. In practice, we may sometimes need
only bounds to condition numbers. Then only the first steps of Algorithms 1 and 2 can be
performed to get a lower bound to the smallest eigenvalue and an upper bound to the largest
eigenvalue, respectively, and their ratio as an upper bound to the condition number

κ((Ap)−1A) ≤ λU
Ndof/λ

L
1 ,

see Examples 3.6 and 3.7.
The method of characterizing the eigenvalues of a preconditioned matrix introduced

in [45, 46] yields sets of intervals such that there exists a one-to-one mapping between the
eigenvalues and the intervals such that each eigenvalue lies in an assigned interval. This
method can yield different bounds (intervals) for the true eigenvalues than the method
introduced in this paper. For instance, the method of [45, 46] can be able to identify a larger
number of exact eigenvalues in some cases than our approach. In [99, Section 4.3] some further
main differences are pointed out in the context of FEM. On the other hand, the approach
introduced here can be applied to some more general problems and types of the discretization.

We recall that the main condition for the applicability of our algorithm is that the pairs
of local matrices of the original operator and of the preconditioning operator must share
their kernels. This can motivate readers to search for new choices of local matrices for the
presented and also for further problems and discretization methods. We note that especially
in general FDM, the obtained system matrix is usually not symmetric. Thus finding FD
schemes leading to a symmetric matrix and splitting it into local matrices An is a challenging
issue. There is also a space for new improvements in steps 2(b) and 2(c) in Algorithms 1
and 2, where more sophisticated choices of n and m instead of arbitrary could be suggested.
If the original and preconditioning matrices arise from different operators, for example, as
a stiffness matrix and a mass matrix, respectively, the guaranteed spectral bounds can still
be obtained, but Friedrichs or Poincare constants and/or some sophisticated reconstruction
techniques must be employed; see e.g. [39, 160, 145].
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Chapter 4
Optimal FFT-accelerated finite element solver for
homogenization

Abstract: We provide a generalization and a linear algebra-based insight on an FFT-
accelerated finite element (FE) homogenization scheme that was pioneered by Schneider at
al. [131] and Leuschner and Fritzen [79]. The efficiency of the matrix-free scheme follows
from a preconditioned well-scaled reformulation allowing for the use of the conjugate gradient
or similar iterative solvers. The geometrically-optimal preconditioner — a discretized Green’s
function of a periodic homogeneous reference problem — has a block-diagonal structure in the
Fourier space which permits its efficient inversion using the fast Fourier transform (FFT)
techniques for generic regular meshes. This implies that the scheme scales as O(n log(n)) like
FFT, rendering it equivalent to spectral solvers in terms of computational efficiency. However,
in contrast to classical spectral solvers, the proposed scheme works with FE shape functions
with local supports and is free of the Fourier ringing phenomenon. We showcase that the
scheme achieves the number of iterations that are almost independent of spatial discretiszation
and scales mildly with the phase contrast. Additionally, we discuss the equivalence between our
displacement-based scheme and the recently proposed strain-based homogenization technique
with finite-element projection.

Reproduced from:

[101] M. Ladecký, J. R. Leute, A. Falsafi, I. Pultarová, L. Pastewka, T. Junge, and
J. Zeman. Optimal FFT-accelerated finite element solver for homogenisation. 2022.
doi: 10.48550/arXiv.2203.02962

My contribution:

I was one of two main software developers of displacement-based finite elements solver
in the open-source C++ library muSpectre [60]. I provided investigation of numerical
behaviour, implementation of examples, creation of all resuts used in the publication,
writing of the first draft and editing of the manuscript.

CRediT: Writing - Original Draft, Writing - Review & Editing, Conceptualization,
Methodology, Software, Investigation, Visualization
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4. Optimal FFT-accelerated finite element solver for homogenization......................
4.1 Introduction

Complex macroscopic phenomena such as plastic yielding or damage in materials are governed
by the nonlinear behavior of materials at meso-, micro-, or nanoscales. This intrinsic
multiscale aspect of materials behavior creates the demand for the development of specialized
scale-bridging techniques [83, 90, 38]. We focus here on an image-based homogenization
technique [141] that combines the characterization of materials microstructures by high-
resolution images (originating, e.g., from micro-computed tomography [87] or geometry-based
models [138]) and a numerical solution of an underlying partial differential equation (PDE)
with coefficient defined on a regular grid and typically involving periodic boundary conditions.

The solution of such PDEs discretized with the conventional finite element (FE) then
becomes challenging even in the simplest scalar elliptic case, because it results in a system
of equations with millions to billions of unknowns [59, Section 7.6]. In this regard, matrix-
free iterative solvers are clearly preferential to direct solvers because of their lower memory
footprint and speed, with the conjugate gradient (CG) method [56] being the most prominent
candidate. However, the convergence behavior of the CG method depends on the spectral
properties of the linear system matrix and deteriorates with decreasing FE mesh size [59,
Section 7.7].

More than two decades ago, Moulinec and Suquet in their foundational works [102, 103]
proposed a method that resolved these issues. According to its original interpretation, the
method employed fixed-point iterations involving convolution with the Green’s function of an
auxiliary homogeneous problem with data and unknowns defined directly on the input grid.
The method is suitable for high resolution homogenization problems thanks to the efficient
implementation of the convolution step using the fast Fourier transform (FFT) algorithm [50]
and mesh-size independent number of iterations.

These features attracted great interest in the community of computational mechanics of
materials, as documented in two recent surveys by Schneider [129] and Lucarini et al. [84]. In
what follows, we outline the developments most relevant to our work and refer an interested
reader to [129, 84] for the full story of FFT-based methods.
Conjugate gradient solvers. As reported independently by Brisard and Dormieux [18]

and Zeman et al. [158], the original spectral scheme [102, 103] can be further accelerated
when replacing the fixed-point algorithm with the CG method. Later on, these compu-
tational observations were justified by Brisard and Dormieux [19], who showed that the
computational scheme of Brisard and Dormieux [18] follows from the Ritz discretization of
the Hashin-Shtrikman variational principles and by Vondřejc et al. [150], who showed that the
computational scheme of Zeman et al. [158] follows from the Fourier-Galerkin discretization
of the underlying PDE. These results directly extend to nonlinear problems linearized by the
Newton’s method, as first reported by Gélébart and Mondon-Cancel [43] and Kabel et al. [61]
for the Green’s function framework and by Zeman et al. [159] and de Geus et al. [25] for the
Fourier-Galerkin framework.

Oscillations. Because the stress or strain fields may exhibit discontinuities at interphases be-
tween different material phases, discretizing the problem by Fourier trigonometric polynomials
results in spurious numerical oscillations (also referred to as Fourier ringing artifacts in Section
2.5 of [129]) that pollute the approximate results. To reduce these oscillations, Kaßbohm et al.
[64] smoothed the material data and Shanthraj et al. [135] filtered out high Fourier frequencies
from the solution fields. A different approach was used by Willot et al. [155], who considered
a modified Green’s function obtained from a finite difference discretization. Schneider et al.
[130] extended this approach by proposing a staggered grid finite difference approximation
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to the underlying PDE, with a follow-up study [131] on FE discretization employing linear
hexahedral elements. A related approach building on bi/trilinear FE basis functions instead
of the Fourier basis was proposed by Leuschner and Fritzen [79]. Most recently, Leute et al.
[80] developed a compatibility projection-based method in the spirit of Refs. [159, 25] while
considering several finite difference- and finite element-based discretization stencils. Further
discussion on mitigating the oscillation phenomena can be found in a dedicated comparative
study of Ma et al. [86] or in Section 2.5 and 2.6 of Schneider [129].
Our work. We develop an alternative FFT-accelerated, oscillation-free computational

homogenization scheme based purely on FE discretization that scales quasilinearly with the
mesh size. We consider a nonlinear small-strain elasticity micromechanical problem discretized
on a regular periodic grid with FE method in Sections 4.2 and linearize it with the Newton’s
method in Sections 4.3. Note that the localized support of the FE basis functions directly
resolves the oscillation issue, see e.g. [80]. Thus no additional artificial adjustments of the
data or the solution are needed.

In Section 4.4, we overcome the main drawback of the FE discretization — deteriorating
conditioning of a linear system with the increasing size of the discretization grid — using
a suitable preconditioner. Similarly to [131, 79], we construct the preconditioner from a
stiffness matrix of a reference problem with generally anisotropic spatially uniform material
data discretized on the same regular grid as the original problem. Using classical results, see
e.g. [4, Section 5.1.2], we can guarantee that the condition number of the preconditioned linear
system becomes almost independent on the mesh size. Moreover, employing local ratios of the
problem material data and the reference problem material data, we can localize all individual
eigenvalues [118, 45, 99]. This may help to better predict the convergence of the CG method,
see e.g. [45, Section 2]. Therefore, the iterative CG solver is an optimal choice for the solution
of problems with highly resolved microstructures. The application of the preconditioner is
presented in detail in Section 4.5, with emphasis on reducing its computational complexity
using the FFT algorithm [22].

We demonstrate the main features of the proposed algorithm by examples collected in Sec-
tion 4.6 that covers 2-dimensional linear thermal conduction (with the necessary adjustments
outlined in 4.A), 3–dimensional linear small-strain elasticity, and 2–dimensional nonlinear
finite-strain elasto-plasticity. Section 4.7 is devoted to a comparison of our scheme with
related developments by Schneider et al. [131] and Leuschner and Fritzen [79], and Section 4.8
concludes our work.

Notation. We denote d-dimensional vectors and matrices by boldface letters: a = (aα)dα=1 ∈
Rd or A = (Aαβ)dα,β=1 ∈ Rd×d. Matrix-matrix and matrix-vector multiplications are denoted
as C = BA and c = Ba. Vectors and matrices arising from the discretization will be
denoted by a and A, to highlight their special structure. The (I)-th component of a will
be denoted as a[I] and (I, J)-th component of A will be denoted as A[I, J ]. We consider a
general d-dimensional setting throughout the paper. However, for the sake of readability, we
use d = 2 in the expanded form of matrices, such as in equation (4.2).

4.2 Nonlinear small-strain elasticity

We consider a d-dimensional rectangular periodic cell Y = ∏d
α=1

[
− lα

2 ,
lα
2

]
, of volume |Y| =∏d

α=1 lα, to be a representative volume element, i.e., a typical material microstructure; see
Fig. 4.1 for an illustration. The symmetries of small-strain elasticity allow us to employ
the Mandel notation and reduce the dimension of the second-order strain tensor ∇su =
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Figure 4.1: A rectangular two-dimensional cell Y =
[
− l12 ,

l1
2

]
×
[
− l22 ,

l2
2

]
with outlined periodic

microstructure.

1
2(∇u+∇uT) : Y → Rd×dsym to a vector ∂u : Y → Rdm , where ∂ is the symmetrized gradient
operator such that, for d = 2,

∂u =

 (∇su)11
(∇su)22√
2(∇su)12

 =


∂
∂x1

0
0 ∂

∂x2√
2

2
∂
∂x2

√
2

2
∂
∂x1


(
u1
u2

)
.

Similarly, a fourth-order tensor C : Y → Rd×d×d×dsym is represented by a matrix C : Y → Rdm×dm ,

C =

 C1111 C1122
√

2C1112
C2211 C2222

√
2C2212√

2C1211
√

2C1222 2C1212

 ,
where the number of components of the symmetrized gradient in the Mandel notation is

dm =
(d+ 1)d

2 , and indices αm, βm, γm ∈ {1, . . . , dm}.
In the small-strain micromechanical problem, we split the overall strain ε : Y → Rdm into

an average strain e = 1
|Y|
∫
Y ε(x) dx ∈ Rdm and a periodically fluctuating field ∂ũ : Y → Rdm ,

ε(x) = e+ ∂ũ(x) for all x ∈ Y.

Here, ∂ũ denotes the symmetrized gradient in the Mandel notation, and the fluctuating dis-
placement field ũ belongs to the space of admissible functions V =

{
ṽ : Y → Rd, ṽ is Y-periodic

}
.

The governing equations for ∂ũ are the mechanical equilibrium conditions

−∂Tσ(x, e+ ∂ũ(x), g(x)) = 0 for all x ∈ Y,

in which σ : Y × Rdm × Rg → Rdm is the stress field and g : Y → Rg designates the vector of
internal parameters. The equilibrium equations are converted to the weak form∫

Y
∂ṽ(x)Tσ(x, e+ ∂ũ(x), g(x)) dx = 0 for all ṽ ∈ V,

where ṽ is the test displacement field. The weak form (4.2) serves as a starting point for the
FE method.
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4.3 Finite element discretization

For the discretization of the weak form (4.2), we use a uniform mesh and conforming FE
basis functions. In our setting, the discretization mesh does not necessarily follow the regular
pixel/voxel structure, but can correspond to a space-filling pattern of finite elements; see
the first row in Fig. 4.2. The discretization mesh is generated by a periodic repetition of
a discretization stencil in the cell Y; see the second row in Fig. 4.2. Such flexibility in
discretization is useful, e.g., for damage or plasticity material models that exhibit sensitivity
to mesh-grid anisotropy.
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Y
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n
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q
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q
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q
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Figure 4.2: Example of regular periodic FE grids with associated discretization stencils for a
two-dimensional cell Y. All grids consists of 16 pixels (Np = 16). The row (1) shows: (a.1)
grid with 16 discretization nodes (NI = 16) and quadrature points (NQ = 64), (b.1) grid with
16 discretization nodes (NI = 16) and 32 quadrature points (NQ = 32), (c.1) grid with 32
discretization nodes (NI = 32) and 64 quadrature points (NQ = 64). The row (2) shows: (a.2)
one-node stencil (Nn = 1) with one bilinear rectangular element and four quadrature points with
the quadrature weights wQ = 1

4Vp, (b.2) one-node stencil (Nn = 1) with two linear triangular
elements and two quadrature points with the quadrature weights wQ = 1

2Vp, (c.2) two-node stencil
(Nn = 2) with four linear triangular elements and four quadrature points with the quadrature
weights wQ = 1

4Vp, Here, Vp denotes pixel volume, such that VpNp = |Y|.

Strain and stress fields are evaluated at quadrature points xQq , Q ∈ {1, 2, . . . , NQ },
cf. Fig. 4.2, and the displacement fields are sampled at discretization nodes xIn, I ∈
{1, 2, . . . , NI }. The number of discretization nodes NI = NpNn is given by the number
of pixel/voxel-associated discretization stencils Np and the number of nodes per stencil Nn,
as explained in Fig. 4.2. The number of degrees of freedom per stencil is thus dNn and the
total number of degrees of freedom per domain is dNI.

Following the standard FE theory, ṽ and ũ are approximated by continuous element-wise
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polynomials Pk of the degree k; their symmetrized gradients ∂ṽ and ∂ũ then become element-
wise polynomials of the degree up to k. Furthermore, the integral (4.2) can be approximated
with a suitable quadrature rule,∫

Y
∂ṽ(x)Tσ(x, e+ ∂ũ(x), g(x)) dx

≈
NQ∑
Q=1

∂ṽ(xQq )Tσ(xQq , e+ ∂ũ(xQq ), g(xQq ))wQ,

where the positions of the quadrature points xQq and the quadrature weights wQ depend on
the choice of the quadrature rule1 ; recall Fig. 4.2.

Every component ũα of the unknown vector ũ is approximated by a linear combination

ũα(x) ≈ ũNα (x) =
NI∑
I=1

ũNα (xIn)φI(x) for all x ∈ Y,

where the coefficients ũNα (xIn) are the nodal values of ũNα at discretization nodes xIn and φI
are FE basis functions. A partial derivative of this approximation

∂ũNα (x)
∂xβ

=
NI∑
I=1

ũNα (xIn)∂φ
I(x)
∂xβ

for all x ∈ Y,

evaluated in the quadrature points is given by

∂ũNα (xQq )
∂xβ

=
NI∑
I=1

ũNα (xIn)
∂φI(xQq )
∂xβ

for Q = 1, . . . , NQ.

Therefore, if we store the nodal values of displacement ũ(xIn) into a vector ũ ∈ RdNI , the
gradient vector ∂ũ ∈ RdmNQ at all quadrature points is given with

∂ũ = Dũ =

 D1 

 D2√
2

2 D2
√

2
2 D1


[
ũ1
ũ2

]
,

where the matrix D ∈ RdmNQ×dNI consists of sub-matrices of the partial derivatives

Dβ[Q, I] =
∂φI(xQq )
∂xβ

for Q = 1, . . . , NQ and I = 1, . . . , NI,

and ũα stores values of the displacement in the direction α. Due to the local supports of
the basis functions φI , these sub-matrices exhibit significant sparsity, e.g., for the element-
wise linear approximation, shown in the middle of Fig. 4.2, each row of Dβ contains only
two nonzero entries. Since both the interpolating and quadrature points are periodically
distributed in Y, the matrix Dβ has a block circulant structure.

Now, the discretized weak form (4.2) using quadrature (4.3) can be rewritten in the matrix
notation as

ṽTDTWσ(e +Dũ, g) = 0 for all ṽ ∈ RdNI ,

1Note, that under-integrated quadrature rule can be used to reduce memory footprint. However, the quality
of the solution field can deteriorate, see Section 4.6.
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where ṽ stores the nodal values of test displacements, e ∈ RdmNQ stands for the discretized
average strain, σ : RdmNQ × RgNQ → RdmNQ is a nonlinear map transforming, locally at
quadrature points, a vector of discrete strains and internal parameters g ∈ RgNQ to discrete
stresses, and the diagonal matrix W ∈ RdmNQ×dmNQ

W =

Wm  

 Wm 

  Wm


consists of dm identical diagonal matrices Wm ∈ RNQ×NQ storing quadrature weights,
Wm[Q,Q] = wQ.

As the vector ṽ is arbitrary, discretized weak form (4.3) is equivalent to the system of
discrete nonlinear equilibrium conditions

DTWσ(e +Dũ, g) = .

4.3.1 Linearisation

We employ the Newton’s method to solve the nonlinear system (4.3) iteratively. For this
purpose, the (i+ 1)-th approximation of the nodal displacement ũ(i+1) ∈ RNI is given by the
previous approximation ũ(i) ∈ RNI adjusted by a finite displacement increment δũ(i+1) ∈ RNI ,

ũ(i+1) = ũ(i) + δũ(i+1),

with an initial approximation ũ(0) ∈ RNI . The displacement increment δũ(i+1) follows from
the solution of the linear system

DTWC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) = −DTWσ(e +Dũ(i), g(i))︸ ︷︷ ︸
b(i)

,

where the algorithmic tangent matrix C(i) = ∂σ

∂ε
(e +Dũ(i), g(i)) ∈ RdmNQ×dmNQ ,

C(i) =

C(i)11 C(i)12 C(i)13
C(i)21 C(i)22 C(i)23
C(i)31 C(i)32 C(i)33

,
is obtained from the constitutive tangent C(i)(x) = ∂σ

∂ε
(x, e+ ∂ũ(i)(x), g(i)(x)), evaluated

at quadrature points. Therefore, the sub-matrices C(i)αmβm ∈ RNQ×NQ are diagonal with
entries C(i)αmβm [Q,Q] = C(i)αmβm(xQq ). Traditionally, K(i) ∈ RdNI×dNI denotes the matrix of
the linear system (4.3.1), and b(i) ∈ RdNI stands for the right-hand side of (4.3.1).

4.4 Preconditioning

Recall that we focus on micromechanical problems with a finely described microstructure
that involves a large number of degrees of freedom dNI. We aim to use a memory-efficient
matrix-free iterative method to find the solution of the linear system (4.3.1). The system
matrix K(i) is symmetric and positive definite for the symmetric algorithmic tangent C(i),
which renders the CG method as the method of choice, when combined with an appropriate
preconditioner. This section discusses how to construct such a preconditioner in an optimal
manner.
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4.4.1 Reference material-based preconditioner

The idea of preconditioning, see, e.g., [50, Section 10.3] or [123, Chapters 9 and 10], is based
on assumptions that the matrix of the preconditioned linear system

M−1
(i)K(i)δũ(i+1) = M−1

(i) b(i),

has more favourable spectral properties than the original system K(i)δũ(i+1) = b(i). At the
same time, the preconditioning matrixM(i) ∈ RdNI×dNI should be relatively easy to invert, such
that the faster convergence of the iterative method compensates the computational overhead of
the preconditioning. Please note that system matrixM−1

(i)K(i) is no longer symmetric. However,
for symmetric M(i) and K(i), system (4.4.1) is equivalent with the system preconditioned in
the symmetric form M

−1/2
(i) K(i)M

−1/2
(i) δz (i+1) = M

−1/2
(i) b(i), where δz (i+1) = M

1/2
(i) δũ(i+1). The

latter form is in fact solved by the PCG method; see [123, Section 9.2.1] for more details.
Nonetheless, we prefer the notation with the left preconditioning (4.4.1) for brevity.

Our approach is based on a preconditioner constructed in the same manner as the original
matrix of the linear system (4.3.1),

M(i) = Kref
(i) = DTWCref

(i)D ∈ RdNI×dNI ,

where the reference algorithmic tangent matrix Cref
(i) ∈ RdmNQ×dmNQ corresponds to spatially

uniform material data Cref
(i) ∈ Rdm×dm . Finally, substituting (4.4.1) into (4.4.1) leads to the

preconditioned linear system

(Kref
(i))
−1
K(i)δũ(i+1) = (Kref

(i))
−1
b(i),

referred to as the reference material-based preconditioned problem in what follows. Notice that
the spectrum of Kref

(i) contains null eigenvalue(s), associated with the infinitesimal rigid body
modes, thus instead of the inverse of Kref

(i), we consider its (Moore-Penrose) pseudo-inverse2

but still denote it by (Kref
(i))
−1 for notation simplicity.

In the following, we advocate this choice of the preconditioner. First, we derive a compu-
tationally efficient pseudo-inverse of Kref

(i) and second, we explain how the preconditioning
impacts the spectral properties of the matrix of the system (4.4.1).

4.4.2 Fourier pseudo-inversion

Regular FE discretization of the problem with periodic boundary conditions leads to the same
stencil for every pixel. Thus, for the uniform Cref

(i) in the whole Y (at every quadrature point
xQq ), the resulting preconditioning matrix Kref

(i) ∈ RdNnNp×dNnNp ,

Kref
(i) =

Kref
(i)11 Kref

(i)12
Kref

(i)21 Kref
(i)22

 ∈ R2Np×2Np , (for dNn = 2)

consists of (dNn)2 block-circulant blocks Kref
(i)ᾱβ̄ ∈ RNp×Np , where ᾱ, β̄ ∈ {1, . . . , dNn}. All

row vectors of a block-circulant block Kref
(i)ᾱβ̄ contain the same information and each row

is block-periodically shifted with respect to the preceding one. This directly reflects the
periodically repeated discretization pattern; recall Fig. 4.2, and that the action of Kref

(i)ᾱβ̄ is a
discrete convolution of the displacement δũβ̄ with the discretization kernel, as schematically
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Discretisation nodes - xInElements
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δũβ̄ [20]
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Figure 4.3: The block-circulant structure of block Kref
(i)ᾱβ̄ from the preconditioner Kref

(i) for
spatially uniform material data Cref

(i) and periodic boundary condition. The two-dimensional
(d = 2) discretization grid consisting of 20 pixels (Np = 20) with one-node stencil (Nn = 1), and 20
discretization nodes (NI = 20) is shown left. Contributions of unit nodal displacement δũβ̄ [I] = 1
to nodal components of right-hand side vector, graphically shown in the node x6

n, are given as
follows: (•) self contribution, contributions (I) to the right node, (J) to the left node, (J ) to
the upper left node, ( J ) to the upper node, ( J) to the bottom node, and ( J) to the bottom right
node.

shown in Fig. 4.3. Note that in the one-dimensional (d = 1) case with one node per interval
(Nn = 1), Kref

(i) has only one circulant block, Kref
(i) = Kref

(i)11. The block structure of Kref
(i) appears

whenever more than one type of degree of freedom is involved, i.e., d > 1, or Nn > 1.
To make the inversion of Kref

(i) efficient, let us define the discrete d-dimensional Fourier
transform matrix F ∈ RNp×Np such that FH = F−1, where FH is the conjugate transpose
of F . Then the Fourier counterpart

K̂ref
(i)ᾱβ̄ = FKref

(i)ᾱβ̄F
H

to any block-circulant Kref
(i)ᾱβ̄ is diagonal, and has the same spectrum (eigenvalues) as Kref

(i)ᾱβ̄ .
Therefore, K̂ref

(i) is block-diagonal and cheaply (pseudo) invertible

(Kref
(i))
−1 = FH

d (K̂ref
(i))
−1
F d =

[
FH 

 FH

]K̂ref
(i)11 K̂ref

(i)12

K̂ref
(i)21 K̂ref

(i)22

−1 [
F 

 F

]
,

where F d = IdNn ⊗ F and IdNn ∈ RdNn×dNn is the identity matrix. The expanded form in
(4.4.2) apply for dNn = 2.

Finally, inserting (4.4.2) as the preconditioner in (4.4.1) leads to

FH
d (K̂ref

(i))
−1
F d︸ ︷︷ ︸

(Kref
(i))−1

K(i)δũ(i+1) =FH
d (K̂ref

(i))
−1
F d︸ ︷︷ ︸

(Kref
(i))−1

b(i),

which reads in the expanded form as
2For details of Moore-Penrose pseudo-inverse refer to [50]
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FH
d (F dDTWCref

(i)DF
H
d )−1F d︸ ︷︷ ︸

(Kref
(i))−1

DTWC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1)

= −FH
d (F dDTWCref

(i)DF
H
d )−1F d︸ ︷︷ ︸

(Kref
(i))−1

DTWσ(e +Dũ(i), g(i))︸ ︷︷ ︸
−b(i)

.

4.4.3 Spectrum of the preconditioned problem

To support the claim that the system matrix of the linear system (4.4.2) is well conditioned,
we rely on the results published recently in [118, 45, 99] that provide simple algorithms for
obtaining guaranteed two-sided bounds for all individual eigenvalues of the preconditioned
operator by using element-by-element estimates. Note that extremal eigenvalue bounds
obtained by such an element-by-element algorithm were introduced first in [4, 31] and found
use, e.g., in algebraic multilevel methods [3]. Recently, motivated by Nielsen et al. [110],
Gergelits et al. [45] published a new method yielding the bounds to all individual eigenvalues.
This allows not only estimating the condition number of the preconditioned system but also
to characterize its spectrum, which can provide more specific insights into the convergence of
the CG method; see e.g. [45, Section 2] for more details. In [118, 99] an alternative algorithm
is presented that can be applied to a variety of problems and discretization methods.

Let us recall the approach of M. Ladecký et al. [99]. Thanks to the local supports of FE
basis functions φI it is possible to estimate all eigenvalues of the preconditioned linear system
matrix (4.4.2). For each φI , we calculate

λL
I = min

xQq ∈suppφI
λmin

(
(Cref

(i)(xQq ))−1C(i)(xQq )
)
, I = 1, . . . , NI,

λU
I = max

xQq ∈suppφI
λmax

(
(Cref

(i)(xQq ))−1C(i)(xQq )
)
, I = 1, . . . , NI,

where suppφI denotes the support of φI , and λmin, λmax are the minimal and maximal
generalized eigenvalues, respectively. For element-wise constant materials C(i) and Cref

(i), any
quadrature point xQq can be used to evaluate λmin and λmax on element. Therefore, only one
pair λmin, λmax has to be calculated for each element. Considering every λL

I and λU
I d-times

and sorting these two sets into nondecreasing sequences gives the desired lower and upper
eigenvalue bounds.

The resulting eigenvalue bounds are therefore independent of the characteristic element
diameter h, which suggests that the condition number3 κ((Kref

(i))
−1
K(i)) of the preconditioned

linear system (4.4.2) will be independent of the problem size. In contrast, κ(K(i)) = O(h−2)
for the unpreconditioned problem, e.g. [59, Section 7.7]. The ratio between the maximum and
minimum eigenvalues of the preconditioned problem (4.4.2) will increase with an increasing
ratio between extreme eigenvalues of C(i) (so-called material contrast) and decrease as the
reference material data Cref

(i) approach the material data C(i) of the problem. Therefore, we
can call our preconditioner as optimal, or more precisely, as geometrically optimal, which
emphasizes that by keeping the discretization and changing only the data of the preconditioner

3Please note that by the condition number κ((Kref
(i))

−1
K(i)) we mean the ratio of the largest and the smallest

eigenvalues of (Kref
(i))

−1
K(i).
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can lead to the matrix where all eigenvalues are the same, i.e., the condition number is 1.
However, in such a case, the inversion of the preconditioner would become more expensive.
The effects of phase contrast and the choice of Cref

(i) on the CG performance are further
illustrated with examples presented later in Section 4.6.2.

4.5 Implementation

The pseudo-algorithm of the incremental Newton-PCG solver for FE discretization on a regular
grid is outlined in Algorithm 4.1. In the first part, we detail a matrix-free implementation.
The second part deals with the assembly of the preconditioner via matrix-free operators and
the third part focuses on the efficient pseudo-inversion of the preconditioner.

4.5.1 Matrix-free implementation

As mentioned in the previous sections, the explicit matrix structure is useful for explanation,
but the computations can be performed more efficiently in a matrix-free manner.
The Gradient. Computational efficiency of our method relies on the fast evaluation of

the gradient vector ∂ũ = Dũ. For regular periodic discretizations, the multiplication Dũ
can be implemented as a convolution of ũ with a short kernel, namely the gradient stencil.
To emphasize this, we replace matrix notation D and DT with the (matrix-free) operator
notation D : RdNI → RdmNQ and DT : RdmNQ → RdNI , such that

Dδũ(i+1) = Dδũ(i+1), and DTWC(i)Dδũ(i+1) = DTWC(i)Dδũ(i+1).

These operations are equal from the viewpoint of linear algebra, but algorithmically D is of
linear O(NI) cost.
The fast Fourier transform. In the same manner, the multiplication with the discrete

Fourier transform matrix can be replaced with the forward and the inverse fast Fourier
transform algorithm

Fδũ(i+1) = F δũ(i+1) and F−1δũ(i+1) = FHδũ(i+1),

of O(NI logNI) complexity.
Quadrature weights. Quadrature weights do not change through the process, so we fuse

them with the transpose of the gradient operator

DT
W = DTW ,

where DT
W : RdmNQ → RdNI can be interpreted as a weighted discrete divergence operator.

4.5.2 Assembly of the preconditioner

It may be useful to reassemble the preconditioner with updated Cref
(i), whenever C(i) significantly

changes with respect to the previous Newton step, with C(i−1). However, the use of matrix-free
operators D,DT

W ,F and F−1 prohibits the direct assembly of K̂ref
(i) through matrices, like

in (4.4.2). Thus, we suggest an efficient algorithm for the assembly of K̂ref
(i), that is outlined in

Algorithm 4.2.
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Algorithm 4.1 Pseudo-algorithm of the displacement-based Newton-PCG solver
1: Initialize:

2: ũ(0), e . initial displacement, macroscopic strain

3: ηNW, ηCG . Newton- and CG-tolerance

4: itNWmax, itCGmax . max. iterations Newton and CG

5:

6: for i = 0, 1, 2, . . . , itNWmax do . Newton iteration

7: g(i) = . . . . update internal parameters

8: b(i) = −DT
Wσ(e +Dũ(i), g(i)) . right-hand side

9: C(i) = ∂σ

∂ε
(e +Dũ(i)) . material tangent

10: Assembly (K̂ref
(i))
−1

. Preconditioner assembly - Algorithm 4.2

11: Solve for δũ(i+1) with PCG:

12: K(i)δũ(i+1) = b(i) with preconditioner (Kref
(i))
−1 in

itCGmax steps or until the termination criteria (4.6) is reached.

13: ũ(i+1) = ũ(i) + δũ(i+1) . iterative update

14: if
∥∥∥δũ(i+1)

∥∥∥ ≤ ηNW∥∥∥ũ(i+1)

∥∥∥ then

15: Proceed to line 18 . Newton’s method converged

16: end if

17: end for

18: return ũ(i+1)

First, take a look at (block-periodic) ᾱβ̄-block Kref
(i)ᾱβ̄ ∈ RNp×Np of Kref

(i) ∈ RdNnNp×dNnNp .
Thanks to the convolution theorem, the whole diagonal diag(K̂ref

(i)ᾱβ̄) ∈ RNp can be obtained
by the FFT of any, say the first, row or, because of the symmetry, column of Kref

(i)ᾱβ̄,

diag(K̂ref
(i)ᾱβ̄) = F(Kref

(i)ᾱβ̄[1, :])T = F(Kref
(i)ᾱβ̄[:, 1])

where a colon indicates a complete column or row. Before the FFTs, we have to compute
one column Kref

(i)ᾱβ̄[1, :] for each of (dNn)2 blocks Kref
(i)ᾱβ̄ of Kref

(i). Consider a unit impulse
vector ip ∈ RdNnNp that has only one non-zero element equal to 1 on the p-th position.
When we apply Kref

(i) to vector i1, we obtain the first columns of dNn blocks Kref
(i)ᾱ1. From

the structure of Kref
(i) visible in (4.4.2) it is obvious that we need dNn vectors ip to obtain

all (dNn)2 columns Kref
(i)ᾱβ̄[1, :], where p = (β̄ − 1)Np + 1 and β̄ ∈ {1, . . . , dNn}. The whole

procedure is schematically shown in Fig. 4.4.
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DT
WCref

(i)D



1
0
...
0
0
0
...
0


=

[
Kref

(i)11[:, 1]

Kref
(i)21[:, 1]

] [
diag(K̂ref

(i)11) diag(K̂ref
(i)12)

diag(K̂ref
(i)21) diag(K̂ref

(i)22)

] [
Kref

(i)12[:, 1]

Kref
(i)22[:, 1]

]
= DT

WCref
(i)D



0
0
...
0
1
0
...
0


.

F
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F

Figure 4.4: The schematic procedure of matrix-free assembly of K̂ref
(i) for dNn = 2. First columns

of blocks Kref
(i)11 and Kref

(i)21 are obtained as a result of the matrix-free action of Kref
(i) on the

unit impulse vector i1. Diagonals diag(K̂ref
(i)11) and diag(K̂ref

(i)21) are then computed through d-
dimensional FFT of Kref

(i)11[:, 1] and Kref
(i)21[:, 1], respectively. By analogy, columns of blocks Kref

(i)12

and Kref
(i)22 are obtained by the matrix-free action of Kref

(i) on the unit impulse vector ip where
p = (2− 1)Np + 1.

4.5.3 Pseudo-inverse of the preconditioner

Once we have all diagonal blocks K̂ref
(i)ᾱβ̄ , we may proceed to the computation of the pseudo-

inverse of K̂ref
(i). By a proper row and column reordering, it can be seen that the pseudo-inverse

of the block diagonal matrix K̂ref
(i) is equivalent to the pseudo-inverse of Np (number of

pixels/stencils) submatrices
K̂ref

(i)11[J, J ] . . . K̂ref
(i)1β̄[J, J ]

... . . . ...
K̂ref

(i)ᾱ1[J, J ] . . . K̂ref
(i)ᾱβ̄[J, J ]


−1

∈ RdNn×dNn , where J ∈ {1, . . . , Np}.

The (Np − 1) submatrices are of full rank and thus directly invertible. Only one submatrix,
corresponding to the zero frequency Fourier mode, is singular and has to be treated separately.
This block has exactly d null eigenvalues corresponding to d rigid-body modes. We compute
the (Moore-Penrose) pseudo-inverse of this block instead of its inversion4. The pseudo-inverse
can be computed exactly by restriction onto the space orthogonal to the kernel of the singular
block. For any specific type of FE and the corresponding discretization stencil, the kernel can
be exactly identified.

4Please note that the Moore-Penrose pseudo-inverse is depicted by † in Algorithm 4.2.
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Algorithm 4.2 Pseudo-algorithm of reference material based preconditioner assembly
1: Initialize:

2: Cref
(i) . spatially uniform reference material

3:

4: for β̄ = 1, . . . , dNn do . loop over d vectors

5: p = (β̄ − 1)Np + 1 . column index

6: cβ̄ = DT
WC

ref
(i)Di

p . p-th column of Kref
(i)

7: for ᾱ = 1, . . . , dNn do

8: diag(K̂ref
(i)ᾱβ̄) = F(cβ̄[(ᾱ− 1)Np + 1 : ᾱNp]) . assign to K̂ref

(i)ᾱβ̄ diagonals

9: end for

10: end for

11: . pseudo-inverse of singular submatrix of K̂ref
(i)

12: (K̂ref
(i)ᾱβ̄)

−1
[1, 1] =


K̂ref

(i)11[1, 1] . . . K̂ref
(i)1δ̄[1, 1]

... . . . ...

K̂ref
(i) γ̄1[1, 1] . . . K̂ref

(i) γ̄δ̄[1, 1]


†

ᾱβ̄

. 1-th block

13: for J = 2, . . . , Np do . inverse of remaining submatrices of K̂ref
(i)

14: (K̂ref
(i)ᾱβ̄)

−1
[J, J ] =


K̂ref

(i)11[J, J ] . . . K̂ref
(i)1δ̄[J, J ]

... . . . ...

K̂ref
(i) γ̄1[J, J ] . . . K̂ref

(i) γ̄δ̄[J, J ]


−1

ᾱβ̄

. J-th block

15: end for

4.6 Numerical experiments

We demonstrate the numerical behavior of the proposed approach on several examples. In
general, we compare our displacement-based (DB) FE scheme, described in the previous sec-
tions, with the (P)CG accelerated strain-based (SB) Fourier-Galerkin method with numerical
integration taken from [150, 159, 25]. All results were obtained with the µSpectre software, an
open-source platform for efficient FFT-based continuum mesoscale modelling, which is freely
available at https://gitlab.com/muspectre/muspectre. The software package includes
the examples, which are described in the following sections.

Termination criteria. To obtain comparable results, we have to choose the corresponding
termination criteria for both SB and DB schemes. The Newton’s method stops when the
relative norm of strain increment drops below the tolerance ηNW,

∥∥∥δ∂ũ(i+1)

∥∥∥ ≤ ηNW∥∥∥∂ũ(i+1)

∥∥∥.
The (P)CG solver is stopped when the relative (Kref

(i))
−1-norm of the residual drops below the
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tolerance ηCG, ∥∥∥rk(i+1)

∥∥∥
(Kref

(i))−1 ≤ ηCG
∥∥∥r0

(i+1)

∥∥∥
(Kref

(i))−1 .

This choice is motivated by the optimal property of PCG to minimize the error energy norm∥∥∥ek(i+1)

∥∥∥
K(i)

=
∥∥∥δũ(i+1) − δũk(i+1)

∥∥∥
K(i)

,

where δũk(i+1) is the approximation of the solution δũ(i+1) in k-th PCG step. If (Kref
(i))
−1
K(i) ≈

I, then (Kref
(i))
−1-norm of the residual rk(i+1) = b(i) −K(i)δũ

k
(i+1) approximate the error energy

norm, ∥∥∥rk(i+1)

∥∥∥
(Kref

(i))−1 = ek(i+1)
T
KT

(i)(Kref
(i))
−1
K(i)e

k
(i+1)

T =
∥∥∥ek(i+1)

∥∥∥
KT

(i)(Kref
(i))−1

K(i)
.

Additionally, the (Kref
(i))
−1-norm of residual naturally appears in the PCG algorithm, therefore

is free to obtain.

4.6.1 Linear steady-state thermal conduction problem

Y

l Ainc

Amat

l
2

(a) (b)

−20

−10

0

q1
(c)

−5

0

5

q2

Figure 4.5: A linear heat transfer problem from Section 4.6.1. The square periodic unit cell Y
with a square inclusion (a). The flux field component q1 (b) and q2 (c) arising from average
temperature gradient e = [0.01, 0.0]T. Results are obtained with one-node FE stencil (Nn = 1)
with two linear triangular elements discretization and 815 nodes in both directions (NI = 8152).

In the first example, we demonstrate the oscillation-free character of gradient fields arising
from the FE discretization. For this purpose, we reconstruct the benchmark problem from
[79, Section 3.7.1] or [18, Section 3.2], where the Fourier-Galerkin methods exhibit significant
discretization artifacts.

We consider a scalar problem of linear heat transfer, where we look for the flux field q
satisfying the weak balance condition (4.A); see 4.A for more details. The microstructure is
defined by the square periodic unit cell Y, as sketched on the left-hand side of Fig. 4.5. The
composite microstructure consists of an insulating matrix with the conductivity Amat = 100 I,
and a conducting inclusion with the conductivity Ainc = 100 Amat. An average temperature
gradient e = [0.01, 0.0]T is applied. The number of pixels is 8152, and the material coefficients
are constant per pixel. The choice of reference material Aref has no effect on discretization
artifacts, thus we set Aref = I for simplicity. Components of the global flux field q are shown
in Fig. 4.5; q1 in the middle and q2 on the right-hand side. The regions of details depicted in
Fig. 4.6 and Fig. 4.7 are highlighted by the black rectangles in Fig. 4.5.

51



4. Optimal FFT-accelerated finite element solver for homogenization......................
In Fig. 4.6, we show the details of heat fluxes for various discretizations: the Fourier-Galerkin

method in the column (a), the one-node FE stencil (Nn = 1) with two linear triangular
elements and two quadrature points (Fig. 4.2 (b)) in the column (b), the one-node FE stencil
(Nn = 1) with one bilinear rectangular element and four quadrature points (Fig. 4.2 (a)) in
the column (c) and the one-node FE stencil (Nn = 1) with one bilinear rectangular element
and one quadrature point in the column (d).

The Fourier-Galerkin method exhibits strong oscillations through the region. The under-
integrated FE scheme shows checkerboard patterns, while FE solutions of fully-integrated
schemes are devoid of oscillations in the interior of the domains occupied by a single phase
as discretization discrepancies remain confined to the vicinity of the phase boundaries. For
instance, triangular discretizations reduce the phase boundary discretization artifacts to the
two pixel-wide layer around the phase boundary.

The zigzag patterns on the phase boundary arise from the pixel-based geometry. If the
elements can capture the interface of the two phases exactly, we do not get any discretization
artifacts, as can be seen in Fig. 4.6 and Fig. 4.7 in the column (b). This speaks in favour of
using FE over the Fourier-Galerkin discretization.

(a.1)

under-integrated
Fourier-Galerkin

(c.1)

fully-integrated
bilinear FE

(b.1)

fully-integrated
linear FEs

(d.1)

under-integrated
bilinear FE

−2

−1

0
×101

q1

(a.2) (c.2)(b.2) (d.2)

−5

0

5

q2

Figure 4.6: Local heat flux field components q1 (1) and q2 (2) from experiment in Section 4.6.1,
obtained with the under-integrated Fourier-Galerkin method is shown in the column (a), one-node
FE stencil (Nn = 1) with two linear triangular elements and two quadrature points is shown in
the column (b), , one-node FE stencil (Nn = 1) with one bilinear rectangular element and four
quadrature points is shown in the column (c) and one-node FE stencil (Nn = 1) with one bilinear
rectangular element and one quadrature points is shown in the column (d).
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(a.1)
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Fourier-Galerkin

(c.1)

fully-integrated
bilinear FE

(b.1)

fully-integrated
linear FEs

(d.1)

under-integrated
bilinear FE

−2

−1

0
×10−1

∇w̃1

(a.2) (c.2)(b.2) (d.2)

−5

0

5
×10−2

∇w̃2

Figure 4.7: Local temperature gradient field components ∇w̃1 (1) and ∇w̃2 (2) from experiment
4.6.1, obtained with the under-integrated Fourier-Galerkin method is shown in the column (a)„
one-node FE stencil (Nn = 1) with two linear triangular elements and two quadrature points is
shown in the column (b), one-node FE stencil (Nn = 1) with one bilinear rectangular element and
four quadrature points is shown in the column (c) and one-node FE stencil (Nn = 1) with one
bilinear rectangular element and one quadrature points is shown in the column (d).

4.6.2 Small-strain elasticity problem

The second example focuses on the effect of the preconditioner on the number of PCG
iterations with respect to the number of discretization nodes NI and phase contrast ρ. For
this purpose, we use Hashin’s coated sphere construction adapted from [130, Section 4.1] and
the references therein.

We choose a linear small-strain elastic problem described in Section 4.2. The three-phase
microstructure representing a coated sphere in the matrix with effective material properties is
depicted in Fig. 4.8, with the core radius r1 = 0.2, annulus-shaped coating outer radius r2 = 0.4
and the cubic domain edge length l = 1. An average macroscopic strain e = [1, 0, 0, 0, 0, 0]T
is applied. We assume isotropic phases with bulk and shear moduli K1,G1 in the core,
K2,G2 in the coating and Keff,Geff in the surrounding matrix. The bulk moduli K1,K2 are
chosen in a way that the resulting response of the unit cell is equivalent to the response of
a homogeneous material with Keff. As a consequence, the bulk moduli K1,K2 have to be
balanced for particular phase contrast ρ = K2/K1.

First, in accordance with Schneider et al. [130, Section 4.1.3], we set ρ = 103 and the
remaining parameters to

K1
.= 0.00132060, K2

.= 1.3206033, Keff
.= 1.0,

G1
.= 0.00079236, G2

.= 0.7923620, Geff
.= 0.6.
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fully-integrated

trilinear FE
under-integrated

trilinear FE

σ11 σ11σ11

under-integrated
Fourier-Galerkin

σ22 σ22σ22

σ33 σ33σ33

0.0

2.5

5.0

Figure 4.8: Two-dimensional sections at x1 = 0.5 of the 3-dimensional cubic periodic unit cell Y
with a coated sphere inclusion. Radii r1 = 0.2, r2 = 0.4 and the domain size l = 1. Components of
the local stress fields σαα for trilinear FE discretization with eight quadrature points (left column),
trilinear FE discretization with one quadrature point (middle column) and under-integrated
Fourier-Galerkin discretization (right column) with the number discretization nodes NI = 653 .

Two-dimensional sections at x1 = 0.5 of global stress field components are shown in Fig. 4.8
right. Fully-integrated trilinear FE discretization (the left column in Fig. 4.8) generates
oscillation free results compared to under-integrated trilinear FE discretization (the middle
column in Fig. 4.8) the under-integrated Fourier-Galerkin discretization (the left column in
Fig. 4.8).

Second, we are interested in how our preconditioned scheme behaves with respect to the
number of discretization nodes NI and varying phase contrast ρ. The convergence of PCG
depends on the choice of reference material Cref. We compare two cases: the first Cref

Is = Is,
with Is ∈ Rdm×dm being the symmetrized identity tensor (Is)αβικ = 1

2(δαιδβκ + δακδβι) in
the Mandel notation, and secondly Cref

mean = 1
|Y|
∑NQ
Q=1 C(xQq )wQ, where Cref

mean is the mean
stiffness matrices over Y.

The preconditioner with mean reference material Cref
mean exhibits better performance in all

studied cases, see Fig. 4.9. The numbers of iterations slowly increases with the growing NI
until it stabilizes for sufficiently fine discretizations. In addition, Cref

mean significantly reduced
the phase contrast sensibility, especially for ρ > 1 (softer sphere core).

4.6.3 Finite-strain elasto-plastic problem

The purpose of the last example is twofold. First, we demonstrate the applicability of the
approach to real-world problems in the finite-strain setting, and the effect of nonphysical
oscillations on the results. Second, we point out the equivalence of our DB FE scheme with SB
scheme with FE projection operator recently proposed by Leute et al. [80]. The equivalence
of these two approaches is briefly explained later in Section 4.7.1.

For this purpose, we adapt the example from Section 5.5 of de Geus et al. [25]. The example

54



........................................4.6. Numerical experiments

10−4 10−2 100 102 104

Phase contrast ρ = K2/K1

100

101

102

103

N
u

m
b

er
of

it
er

at
io

n
s

to
re

ac
h

1
0
−

6
re

si
d

u
al

n
or

m
The reference material Cref = Is

NI = 163

NI = 323

NI = 643

NI = 1283

10−4 10−2 100 102 104

Phase contrast ρ = K2/K1

100

101

102

103

N
u

m
b

er
of

it
er

at
io

n
s

to
re

ac
h

1
0
−

6
re

si
d

u
al

n
or

m

The reference material Cref = Cref
mean

NI = 163

NI = 323

NI = 643

NI = 1283

Figure 4.9: The number of PCG iterations for trilinear FE discretization for different phase
contrasts ρ and number of discretization nodes NI. Termination parameter for linear solver
ηCG = 10−6.

studies a sample of a dual-phase steel obtained by a scanning electron microscope. Responses
of the material phases are elastic and homogeneous in the elastic part of deformation with
Young’s moduli E = 200GPa and Poisson’s ratios ν = 0.3, and differ in the parameters of
linear hardening in the plastic regions, see [25, Section 5] for more details on the material
model.

The yield stress τy evolves with respect to plastic strain εp, initial yield stresses τhardy0 , and
hardening moduli Hhard

0 such that τy = τy0 +Hεp. We set these parameters to

τhardy0 = 2τ softy0 = 0.003E, and Hhard
0 = 2Hsoft

0 = 0.01E.

Total macroscopic deformation gradient

F =
√

3
2

[
0.995 0

0 −0.995

]
is applied in 5 load increments.

We solved this problem with the following schemes: the under-integrated SB Fourier-
Galerkin scheme with Fourier projection operator from [159, 25], SB scheme with two linear
triangular FEs and the FE projection operator from [80], the DB FE scheme with two linear
triangular FEs, and the DB FE scheme with one bilinear rectangular FEs. We set the Newton
tolerance to ηNW = 10−5 and (P)CG tolerance to ηCG = 10−5. We solve three cases with
identity Cref = I , symmetrized identity Cref = Is and mean value Cref = Cref

mean reference
materials, in with analogy to Section 4.6.2.

First, the distributions of global plastic strain εp obtained for these four approaches are
shown in the first row of Fig. 4.10. The regions of details (the second row) uncover the
checkerboard patterns in the plastic strain fields of the under-integrated SB Fourier-Galerkin
solution (a.2), that are a direct consequence of the oscillating stress field (a.3). The other
three schemes, columns (b) to (d), produce solutions without oscillations.

Second, the number of Newton’s method steps and the total number of (P)CG iterations
needed to solve the problem with these four approaches are shown in Table 4.1. The table
highlights the equivalence of our DB scheme and the SB scheme presented by Leute et al.
[80], if equivalent discretizations are used.
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(a.1)
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Fourier projection
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Figure 4.10: Global plastic strains εp in dual-phase steel with applied deformation gradient (4.6.3)
in row (1) with local detials in row (2). Row (3) shows accompanying normalized shear stresses
P12 in detailed area. Discretization schemes in columns: (a) the standard SB scheme with Fourier
projection operator, (b) the SB scheme with FE projection operator with two linear triangular
elements, (c) the DB FE scheme with two linear triangular elements, and (d) the DB FE scheme
with one bilinear rectangular elements. All quantities are averaged per pixel.
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strain-based (SB) displacement-based (DB)

Cref Fourier
projection FE projection linear FE bilinear FE

Newton steps 11 9 9 10

I 1012 861 861 761

(P)CG steps Is 781 609 609 540

Cref
mean 585 457 457 407

Table 4.1: The number of Newton’s method steps and the total number of (P)CG steps required
to solve the finite-strain elasto-plastic problem of Section 4.6.3 for a three choices of reference
material, with Newton tolerance ηNW = 10−5 and (P)CG tolerance ηCG = 10−5. Discretization
approaches from left to right: the standard SB Fourier-Galerkin scheme with Fourier projection
operator, SB scheme with FE projection operator with two linear triangular elements, the DB FE
scheme with two linear triangular elements, and the DB FE scheme with one bilinear rectangular
element per pixel. Numbers in boldface highlight the equivalence of our DB FE scheme and SB
FE scheme presented by Leute et al. [80].
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4.7 Comparison with related FFT-based schemes

Several FFT-based computational homogenization schemes exist [129, 84]. An interested
reader may therefore find a comparison and placement of our approach in the context of
contemporary literature useful.

Recall that our approach is derived from the weak form of the mechanical equilibrium
condition (4.2) with an unknown displacement field. The equilibrium (4.2) is discretized in
the standard Galerkin manner with the FE basis functions. The nonlinear nodal equilibrium
(4.3) is linearized by the Newton’s method, and the system of linear equations (4.3.1) is solved
by the PCG method. Favourable convergence property of the PCG method is guaranteed by
the reference material based preconditioner (4.4.1), which fast application builds on FFT.

4.7.1 The Connection with strain-based approaches

Unlike the DB FE, most spectral methods use strains (gradients) as unknown. SB approaches,
like those in [80, 159, 130], typically use the projection operator to enforce the compatibility
of strain fields. To reveal a link between the DB and SB approaches, recall the preconditioned
scheme (4.4.2),

(DTWCref
(i)D)−1︸ ︷︷ ︸

(Kref
(i))−1

DTWC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) =− (DTWCref
(i)D)−1︸ ︷︷ ︸

(Kref
(i))−1

DTWσ(e +Dũ(i), g(i))︸ ︷︷ ︸
−b(i)

,

where we omit the FFTs for simplicity. In the case of linear triangles or tetrahedral elements
with a single quadrature point per element, all quadrature weights wQ are equal. Then the
multiplication by quadrature weights W can be left out in (4.7.1), leading to

(DTCref
(i)D)−1︸ ︷︷ ︸

(Kref
(i))−1

DTC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) =− (DTCref
(i)D)−1︸ ︷︷ ︸

(Kref
(i))−1

DTσ(e +Dũ(i), g(i))︸ ︷︷ ︸
−b(i)

.

Next, we replace the iterated unknown ũ(i) with its gradient ∂ũ(i), recognizing that ∂ũ(i) =
Dũ(i). After the multiplication with D from the left-hand side, we finally obtain

D(DTCref
(i)D)−1DT︸ ︷︷ ︸
Γ 0

(i)

C(i)δ∂ũ(i+1) =−D(DTCref
(i)D)−1DT︸ ︷︷ ︸
Γ 0

(i)

σ(e + ∂ũ(i), g(i)),

where Γ 0
(i) : RdmNQ → RdmNQ stands for the discretized periodic Green’s operator. Leute et

al. [80] described that by setting Cref
(i) = Is , Γ 0

(i) projects an arbitrary field from RdmNQ to its
closest compatible part in the least square sense with respect to the L2-norm.

Therefore, this section demonstrates that the schemes (4.7.1) and (4.7.1) are equivalent and
generate equivalent solutions in every step of the CG in exact arithmetic. If corresponding
stopping criteria are used, CG yields the same approximate solutions. Thus, the only
decision-making argument is the possibility of efficient implementation.

4.7.2 The Connection with FEM-FFT approaches

To the best of our knowledge, our method shares the most similarities with the linear hexahedral
elements (FFT-Q1 Hex) formulation by Schneider at al. [131] and Fourier-Accelerated Nodal
Solver (FANS) by Leuschner and Fritzen [79]. The novelty of our approach lies in the following:
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. The gradient operator. Similarly to FFT-Q1 Hex and FANS, the gradient field is derived
with respect to the FE approximation. However, we do not express the discrete gradient
operator D in the Fourier space, but keep it in the real space. The direct convolution
with a short gradient kernel is cheaper than the Fourier convolution via forward and
inverse FFTs. We use the Fourier representation only for the efficient inverse of the
preconditioner Kref

(i) as discussed in Section 4.4.. Preconditioner and reference material. Our preconditioner (4.4.1) has the same form
as the fundamental solution G0 contained in the discretized periodic Green’s operator
Γ 0

(i) of FFT-Q1 Hex scheme (equation (16) of [131]), and the fundamental solution φ̂
in FANS (equation (49) of [79]), therefore we expect similar conditioning of all three
schemes. However, we provide detailed insight from a linear algebra viewpoint. Direct
correspondence between the reference material Cref

(i), material C(i)(x) and the resulting
eigenvalues renders the optimization of Cref

(i) more accessible. The closer the reference
material is to the real material of the sample, the better conditioning the discretized
problem has. Therefore, in contrast to [159, 25], we recommend reassembling the
preconditioner K̂ref

(i) when the material tangent significantly changes in Newton’s method.. Discretization grid. Both FFT-Q1 Hex and FANS are developed for bi/trilinear FE basis
and quadrilateral/hexahedral elements. Their authors mentioned a possible extension for
more complex elements which we present in this paper. In addition, the discretization
grid of our method does not have to follow the pixel/voxel structure. We allow for an
arbitrary space-filling pattern of elements to be used, recall the patterns in Fig. 4.2.
Further extension of our formulation to FE with higher-order polynomial basis functions
is therefore straightforward.. Computational complexity. Computational complexity of FFT-based methods is governed
by O(n logn) complexity of the FFT. However, in our scheme, we compute two FFTs
on dNn displacement fields of size NI, instead of dm strain fields of size NQ in FFT-
Q1. Because the number of strain components dm exceeds the number of displacement
components dNn per stencil and the number of quadrature points NQ exceeds the number
of discretization nodes NI, our method has smaller computational overhead than the
DB methods that evaluate the gradient in the Fourier space and perform FFT on the
strain-sized fields. For instance, in the case of trilinear hexahedral FEs with 8 quadrature
points per element, the saving factor of our method is 24.

4.8 Conclusions

In this paper, we present a novel and optimal approach for computational homogenization
of nonlinear micromechanical and thermal problems in periodic media. The efficiency is
achieved due to a clever interplay between the PCG solver and the geometry and physical
properties of the problem [106]. Standard FE discretization on a regular grid is coupled with
the Newton’s method to handle the nonlinear system iteratively. The linearized system is
solved by the PCG method, which is enhanced with a preconditioner based on a discretized
inverse (Green’s) operator for a problem with spatially uniform reference material data. The
proposed matrix-free method exhibits excellent convergence properties as the number of linear
solver iterations is bounded independently of the number of discretization nodes and shows
mild phase-contrast sensitivity. Our main findings are summarized as follows:
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. The condition number associated with the preconditioned linear system decreases as

the reference material data approaches the material data. Two-sided bounds for all
eigenvalues of the preconditioned linear system are easily accessible and thus provide
valuable insight into the choice of the reference material.. The computational complexity is governed by the FFT algorithm applied to the dis-
placement field. The preconditioning operator is cheaply inverted and applied in Fourier
space, while the gradient is evaluated through the convolution with a short kernel in the
real space.. The FE bases produce oscillation-free stress and strain solution fields with marginal
discretization artifacts at the phase interfaces. Additional variability of discretization
patterns allows the reduction of mesh anisotropy and a more accurate representation of
the geometry and the solution.

In addition, the Galerkin nature of the FE method connected with the minimization of
the related energy functional allows us to use a well-built theory on the FE method for error
estimation, convergence analysis, and other useful tools. In the future, the extension of the
equivalence of DB and SB schemes to a general reference material and the fusion of low-rank
tensor approximation technique of Vondřejc et al. [152] with our FE scheme are of primal
interest.

4.A Thermal conduction

The proposed preconditioned FE method can be used also for potential problems such as
thermal conduction or electrostatics. From a mathematical viewpoint, these problems are
described by a scalar elliptic partial differential equation.

For the scalar thermal conduction problem, we split the overall temperature gradient
∇w : Y → Rd into an average temperature gradient e = 1

|Y|
∫
Y ∇w(x) dx ∈ Rd and a

periodically fluctuating field ∇w̃ : Y → Rd

∇w = e+∇w̃ for all x ∈ Y.

Here, ∇w̃ denotes the temperature gradient, and the fluctuating temperature field w̃ belongs to
the space of admissible functions V = {ṽ : Y → R, ṽ is Y-periodic }. The governing equation
for ∇w̃ follows from the thermal equilibrium condition

−∇ · q(x, e+∇w̃(x)) = 0 for all x ∈ Y,

in which q : Y×Rd×Rq → Rd is the flux field. As usual, the equilibrium equation is converted
to the weak form ∫

Y
∇ṽ(x)Tq(x, e+∇w̃(x)) dx = 0 for all ṽ ∈ V

that serves as the starting point for the FE method. Following the discretization scheme
described in Section 4.3, the linearisation in Section 4.3.1 and preconditioning in Section 4.4
leads to a well-conditioned linear system

FH(FDTWAref
(i)DF

H)−1F︸ ︷︷ ︸
(Kref

(i))−1

DTWA(i)D︸ ︷︷ ︸
K(i)

δw̃ (i+1) =FH(FDTWAref
(i)DF

H)−1F︸ ︷︷ ︸
(Kref

(i))−1

DTWq(e +Dw̃ (i))︸ ︷︷ ︸
−b(i)

,
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for a finite Newton’s method increment δw̃ (i+1). Material data matrix A(i) ∈ RdNQ×dNQ

stores values of conductivity tangent matrix A(i)(x) = ∂q

∂∇w̃
(x, e + ∇w̃(x)) ∈ Rd×d in

(i)-th Newton’s method step, and Aref
(i) ∈ RdNQ×dNQ comes from spatially uniform material

data Aref
(i) ∈ Rd×d. Another small difference lies in the form of the gradient matrix D,

∇w̃ = Dw̃ =
[
D1
D2

][
w̃
]
.

Here, the entries are the same as in the elasticity problem, recall equation (4.3).
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Chapter 5
Elimination of ringing artifacts by finite-element
projection in FFT-based homogenization

Abstract: Micromechanical homogenization is often carried out with Fourier-accelerated
methods that are prone to ringing artifacts. We here generalize the compatibility projection
introduced by Vondřejc et al. [150] beyond the Fourier basis. In particular, we formulate the
compatibility projection for linear finite elements while maintaining Fourier-acceleration and
the fast convergence properties of the original method. We demonstrate that this eliminates
ringing artifacts and yields an efficient computational homogenization scheme that is equivalent
to canonical finite-element formulations on fully structured grids.

Reproduced from:

[80] R. J. Leute, M. Ladecký, A. Falsafi, I. Jödicke, I. Pultarová, J. Zeman, T. Junge,
and L. Pastewka. Elimination of ringing artifacts by finite-element projection in
FFT-based homogenization. Journal of Computational Physics, 453:110931, 2022. doi:
10.1016/j.jcp.2021.110931
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I was involved in software implementation in the open-source C++ library muSpectre,
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5.1 Introduction

Mechanical homogenization seeks the computation of effective mechanical properties, such as
homogenized elastic constants or the complete (potentially nonlinear) stress-strain response,
given the microstructure of material and constitutive laws for the individual components.
Homogenization often operates on periodic “representative” volume elements that are charac-
teristic for the material under investigation [95, 90]. The intrinsic periodicity of such volume
elements suggests the use of a spectral Fourier-basis [17] for the efficient numerical solution of
the homogenization problem.

Since the seminal works by Moulinec and Suquet in 1994 [102] and 1998 [103], (fast)
Fourier transform (FFT) based homogenization methods were developed rapidly; see, e.g.
Refs. [129, 84] for authoritative reviews. The spectral method is here used to solve the
partial differential equation (PDE) for a static mechanical equilibrium of a microstructure.
The availability of highly optimized FFT implementations (like FFTW [40]) enabled the
implementation of efficient and highly parallel spectral solvers which can beat standard
implementations of the finite element method (FEM) in speed and accessible system sizes [122].

A major advantage of spectral methods is that it is straightforward to increase the basis
set and by this systematically improve the accuracy of the solution. However, because of
their global support trigonometric polynomials are not well suited for the solution of PDEs
with discontinuous material coefficients or discontinuities in their solution. This leads to
a phenomenon known as Gibbs ringing. Gibbs ringing in Fourier spectral methods is well
documented, and there are several approaches to suppress the problem [52].

Gibbs ringing persists in FFT-based homogenization methods and was investigated by
several authors (see e.g. Refs. [107, 64, 155, 19, 154, 130, 69, 86]). A typically mitigation
strategy is the introduction of discrete derivatives: for example, Müller [107] used a finite
difference discretization or Willot [154] and Schneider et al. [130] describe a central-difference
scheme on a staggered grid. Other FFT-accelerated solution schemes using finite differences [77,
146] or finite elements [131, 79] can be found in the literature. However, published works
have mainly focused on natural extensions of the Moulinec-Suquet scheme that is formulated
in terms of a reference problem in the displacement space, i.e. for small-strain elasticity in
form of the Navier-Lamé equations, that explicitly contain the constitutive law. A solution in
Fourier space is then only possible for a homogeneous reference medium. Heterogeneity is
superimposed onto this reference solution through Lippman-Schwinger-like approaches for
capturing it. Convergence properties of such schemes deteriorate with the strength of the
heterogeneity.

In this article we discuss the problem of ringing in FFT-based homogenization methods and
present a general solution to it for which we combine the advantages of an FEM-type Galerkin
approach with the speed-up of a FFT method. We work in the framework of compatibility
projection developed by Lahellec, Vondrejc, Zeman, de Geus and coworkers [75, 150, 25, 25]
that considers the deformation gradient as the primary degree of freedom and eliminates
the need for an explicit reference medium. Different to previous works, we derive a general
expression for a discretized operator for the projection on compatible fields and we propose
an elimination rather than a mitigation of the problem for certain operator choices. We
show that in addition to Gibbs ringing, the solution with projection techniques is prone to
ringing artifacts arising from missing degrees of freedom in the formulation of the deformation
gradient.

Our suggested improvements to the method are supported by numerical simulations and
comparison with analytical results. We suggest a linear finite-element-based projection
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operator that eliminates all ringing artifacts and discuss the analogy of the modified FFT-
based homogenization method to standard FEM. All methods are implemented in the open
source code µSpectre [60] and the numerical examples shown in Section 5.3 can easily be
reproduced by running the corresponding examples of the software.

5.2 Methods

5.2.1 Compatibility projection

We investigate microstructures by a representative volume element (RVE) in a periodic
simulation cell Ω0. The microstructure can consist of different phases which are described by
arbitrary small- or finite-strain material models. Here and in the following we will denote
first-order tensors (vectors) by arrows and second-order tensors by bold symbols.

Any deformation of the simulation cell can be described by a function (the placement map)
~χ : Ω0 → Ω, mapping the undeformed grid positions ~r ∈ Ω0 into a deformed configuration
~χ(~r) ∈ Ω where Ω is the deformed periodic simulation domain. The overall goal is to solve
for the static mechanical equilibrium of the periodic cell for a given deformation. The static
mechanic equilibrium is given by [8]

∇ ·PT (F(~r)) = ~0 or ∂αPiα(F(~r)) = 0, (5.0)

with implicit summation over repeated indices (the Einstein summation convention) and
a dot product (·) as defined by the second part of Eq. (5.2.1). Greek indices indicate a
tensor dimension representing a derivative, whereas Latin indices are used for all other tensor
dimensions. P is the first Piola-Kirchhoff stress tensor, in general a non-linear function of the
deformation gradient

F(~r) = ∇~χ(~r) or Fiα(~r) = ∂αχi(~r) (5.0)

Note that the partial derivatives ∂α ≡ ∂/∂rα in Eqs. (5.2.1) and (5.2.1) are with respect to
the undeformed configuration Ω0 of the cell.

The most widely used homogeneization schemes combine Eqs. (5.2.1) and (5.2.1), leading
to a set of second-order differential equations in ~χ. For small strains, those are the well known
Navier-Lamé equations that contain spatial derivatives of the elastic constants. The Green’s
function of this second order differential equation therefore explicitly contains the constitutive
law. Solution with Fourier-techniques then requires the introduction of a homogeneous
reference material.

In contrast, the formulation employed here [75, 150, 25, 25] solves the set of first-order
differential equations given by Eqs. (5.2.1) and (5.2.1). This leaves the deformation gradient
F as a degree of freedom. Equation (5.2.1) can be interpreted as the constraint that F needs
to be compatible, i.e. given by the gradient of a respective placement map. We now solve
Eqs. (5.2.1) and (5.2.1) in the subspace of compatible second-order tensors such that the pair
of first-order differential equations reduces to the single first-order differential Eq. (5.2.1).
This is formulated mathematically by a projection operator G that maps any second-order
tensor onto its compatible part and thereby into the subspace of compatible tensors.

Following Refs. [150, 25, 25], we reformulate Eq. (5.2.1) in the weak (weighted residual)
form, ∫

Ω0
dDr~t(~r) ·

(
∇ ·PT (F(~r)

))
= −

∫
Ω0

dDr
(
∇⊗ ~t(~r)

)
: PT (F(~r)

)
= 0, (5.0)

65



5. Elimination of ringing artifacts by finite-element projection in FFT-based homogenization............
where ~t(~r) is an arbitrary periodic (vector-valued) test function and ⊗ the outer product.
The symbol D is the dimension of the space, i.e. vectors ~r ∈ RD and second-order tensors
F ∈ RD×D. The colon : is the double dot product, a tensor contraction over two indices,
A : B = AijBji with implicit sums over D terms. Surface terms that should appear in
Eq. (5.2.1) vanish due to periodicity. If we interpret the test function ~t(~r) as a displacement,
then δF(~r) = ∇⊗ ~t(~r) is a suitable set of compatible test gradients. We can therefore write
the equilibrium condition as∫

Ω0
dDr δF(~r) : PT (F(~r)

)
=
∫
Ω0

dDr
(
G ? δF̃

)
(~r) : PT (F(~r)

)
=
∫
Ω0

dDr δF̃T (~r) :
(
G ?P (F)

)
(~r) = 0

where now δF̃ is an arbitrary (no longer necessarily compatible) test function and G ? A
denotes the application of the self-adjoint operator G to a right-hand side object A. We now
discretize the gradients rather than the displacement field, i.e. in the spirit of the Galerkin
method, we express the test gradient δF̃ and the deformation gradient F within the same
basis set.

Equation (5.2.1) no longer contains gradients of the constitutive law, given by P(F). The
compatibility operator G is clearly independent of it since it just ensures fulfillment of the
compatibility condition, i.e. ∇× (G : δF̃) = 0 for finite strain formulations.

The compatibility operator G is block-diagonal in the Fourier basis, where the blocks are
second-order tensors. This leads to the expression [25]

Ĝ(~k) : F{P(F)}(~k) = 0 or Ĝiαβj(~k)F{Pjβ(F)}(~k) = 0, (5.0)

where Ĝ ∈ CD×D×D×D is a fourth-order tensor and ~k the wavevector. We use the hat symbol
to denote a Fourier-transformed quantity and F{·}(~k) for the explicit Fourier transform of a
quantity as given in 5.A by Eq. (5.A). The numerical solution of Eq. (5.2.1) benefits from the
fact that for gradient-based optimizers, the steps of the optimization procedure automatically
lead to compatible F, see [25].

The operator G projects arbitrary tensor fields onto compatible fields, i.e. fields that can
be expressed as the gradient of a lower order tensor. For enforcing the compatibility for
second-order tensor fields, the operator is given by [150]

Ĝiαβj(~k) = δij ĝαβ(~k), with ĝαβ(~k) =

0 if~k = ~0,
kαkβ
k2 else,

(5.0)

where kα is the component α of the wavevector ~k and k = |~k|.

5.2.2 Interpreting the projection operator

The projection operator lends itself to a simple interpretation. Let us assume we have an
arbitrary vector field ~v(~r). This field is only a gradient ~v(~r) = ∇φ(~r) of a scalar field φ(~r) if
its curl vanishes, ∇× ~v(~r) = ~0. If the field is also periodic, we call it a periodic compatible
field. In the context of homogenization, ~v is a row of the deformation gradient F and φ
a component of the placement map ~χ. We are interested in the special case where ~v(~r) is
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periodic but φ(~r) is not. The periodicity of ~v will be later intrinsically fulfilled through the
Fourier transform and we only investigate the gradient property here. For non-compatible
fields, we search for the scalar field φ(~r) that minimizes the residual vector

~R(~r) = ∇φ(~r)− ~v(~r) (5.0)

in a suitable sense (for compatible fields, ~R ≡ ~0). For a minimal residual vector, Eq. (5.2.2)
is an equivalent formulation of Eq. (5.2.1) and the operator D−1 introduced below is the
Green’s function of that equation.

The canonical requirement is minimization in the least-squares sense, i.e. minimization of

R =
∫
Ω0
d3r ~R(~r) · ~R(~r). (5.0)

We now need to choose a specific basis set for a series expansion of φ(~r). In a Fourier basis,

φ(~r) = ~v0 · ~r + 1
N

∑
~k 6=~0

φ̂(~k) exp
(
i~k · ~r

)
(5.0)

and an equivalent expansion holds for ~v,

~v(~r) = 1
N

∑
~k

~̂v(~k) exp
(
i~k · ~r

)
(5.0)

with ~̂v(~0) = ~v0 and N the total number of voxels, see 5.A. Note that in Eq. (5.2.2) we have
set the (arbitrary) mean value of φ(~r) to zero but added a linear function that cannot be
represented in the Fourier basis whose derivative gives the mean value of Eq. (5.2.2). In terms
of homogenization, this mean value describes the affine deformation of the whole RVE and
plays the role of the boundary condition of the constituting differential equation.

In the Fourier space the residual becomes

~R(~k) = ~̂D(~k)φ̂(~k)− ~̂v(~k) (5.0)

for ~k 6= ~0 where ~̂D(~k) = i~k is the Fourier representation of the gradient ∇. For ~k = ~0 we
obtain ~v0 = ~̂v(0). Parseval’s theorem yields R = ∑

~k
~R∗(~k) · ~R(~k), or

R =
∑
~k 6=0

(
~̂v∗ · ~̂v − ~̂D · ~̂v∗φ̂− ~̂D∗ · ~̂vφ̂∗ + ~̂D · ~̂D∗φ̂∗φ̂

)
(5.0)

where the star is the complex conjugate. Note that all symbols in Eq. (5.2.2) – ~̂v, ~̂D and φ̂
– are functions that depend explicitly on ~k but that dependence has been omitted here for
brevity. Minimization gives the secular equation

~̂D(~k) · ~̂D∗(~k)φ̂(~k) = ~̂D∗(~k) · ~̂v(~k). (5.0)

We can solve this for (note that ~k 6= ~0)

φ̂(~k) =
~̂D∗(~k)

~̂D(~k) · ~̂D∗(~k)
· ~̂v(~k) ≡ ~̂D−1(~k) · ~̂v(~k) (5.0)
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where we interpret the term

~̂D−1(~k) =
~̂D∗(~k)

~̂D(~k) · ~̂D∗(~k)
(5.0)

as the inverse of the derivative, i.e. as some form of “integration”.
In a next step, we compute the gradient of φ̂(~k). This yields

~̂w(~k) = ~̂D(~k)φ̂(~k) = ~̂D(~k)
(
~̂D−1(~k) · ~̂v(~k)

)
= ĝ(~k) · ~̂v(~k) (5.0)

with
ĝ(~k) = ~̂D(~k)⊗ ~̂D−1(~k). (5.0)

The operator ĝ(~k) hence projects an arbitrary field on its compatible part in the least squares
sense with respect to the integral inner product (L2-norm). The full projection operator for
the deformation gradient is given by the first part of Eq. (5.2.1). Using the Fourier derivative
~̂D(~k) = i~k yields the specific form of the projection operator given in Eq. (5.2.1). Since G
contains the Green’s function of Eq. (5.2.1), but not of Eq. (5.2.1), it is independent of the
constitutive law. The formulation of the projection operator for small-strain elasticity is
described in 5.B.

5.2.3 Discrete projection

Rather than using Eq. (5.2.2), we can expand φ(~r) in other bases of choice. For example,
we will below employ linear finite elements. Other discretizations of the gradient operator
∇ with less suitable properties can be obtained through finite-differences methods. We here
assume that the simulation cell is structured in a regular (equally spaced) grid with node
positions {~r IJ}, where I and J are node indices. We will call the individual grid cell a
voxel and develop the theory in two dimensions, but generalization to three dimensions is
straightforward. In two dimensions the position ~r IJ is the lower left corner of voxel IJ . The
placement map ~χ is only known at the nodes which are the corners of the voxels.

The discrete derivative (in some “direction” α) in voxel I, J can generally be written as the
convolution

Dαχ(~r IJ) = 1
∆(α)

∑
ij

sij(α)χ(~r I+i,J+j) (5.0)

with ~r I+i,J+j = ~r IJ + ~r ij and ∆(α) the voxel size in direction α where the round brackets
indicate that there is no Einstein sum convention applied for the index (α) and periodicity of
~r in a natural sense is considered. The collection of coefficients sij is called the stencil of the
operation. We will introduce different stencils below and note that derivatives in different
directions α require different stencils. In the following we will assume that the deformation
gradient is described by a set of d derivatives, but that d is not necessarily equal to the
dimension D of the system. This allows the subdivision of voxels into multiple evaluation
points, i.e., d may be an integer multiple of D. Using nq evaluation points per voxel leads to
d = nqD derivatives per voxel within the framework that we now develop. The subscript ()q
was chosen because these evaluation points correspond to Gaussian quadrature points in a
classic finite-element discretization.

By expanding the discrete placement map into a Fourier series of the form given by Eq. (5.A),
we can write the derivative operation in Fourier space as

D̂α(~k) = 1
∆(α)

∑
ij

sij(α) exp
(
i~k · ~r ij

)
. (5.0)
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Again the case ~k = ~0 is special since ∑ij s
ij
(α) = 0. For ~k 6= ~0, we can use the same argument

as above: A general vector field ~̂v(~k) can be projected (in the least squares sense) onto its
compatible part ~̂w(~k) using

ŵα(~k) = ĝαβ(~k)v̂β(~k) (5.0)
with

ĝαβ(~k) =
D̂α(~k)D̂∗β(~k)
D̂γ(~k)D̂∗γ(~k)

= D̂α(~k)D̂−1
β (~k), (5.0)

cf. Eq. (5.2.2). We want to mention that by the Helmholtz decomposition δαβ − gαβ(~k) is
a projection to divergence free fields, with applications to error estimation. The projection
operator for the deformation gradient is then given by Ĝiαβj(~k) = δij ĝαβ(~k). Note that
ĝ ∈ Cd×d and Ĝ ∈ CD×d×d×D. The projection operator is idempotent (i.e. a projection),
since,

Ĝlγαi(~k)Ĝiαβj(~k)f̂jβ(~k)

= δliĝγα(~k)
(
δij ĝαβ(~k)f̂jβ(~k)

)
= δliδijD̂γ(~k)D̂−1

α (~k)D̂α(~k)D̂−1
β (~k)f̂jβ(~k)

= δlj ĝγβ(~k)f̂jβ(~k)
= Ĝlγβj(~k)f̂jβ(~k)

This compatibility operator Ĝ is the projection generalized for arbitrary derivative operators
~̂D.
The case ~k = ~0 contains the boundary condition and is treated as for the Fourier deriva-

tive. For multiple elements, each element needs to hold the same gradient for ~k = ~0. We
want to emphasize that in this discrete basis, the discrete Fourier transformation has the
role of accelerating the convolution rather than providing the basis set for the underlying
discretization.

5.2.4 Finite differences and Lanczos-σ correction

Canonical discrete derivative operators are given by finite difference schemes. We here consider
the first-order central-differences,

∂χi
∂rα

=
χi
(
rj + δjα∆(α)

)
− χi

(
rj − δjα∆(α)

)
2∆(α)

+O
(
(∆(α))2

)
, (5.0)

which can be expressed in Fourier space as follows (see e.g. [146]):

D̂cd
α (~k) =

i sin(kα∆(α))
∆(α)

. (5.0)

Remember that ∆(α) is as before the grid spacing in direction α and there is no summation
over indices in parenthesis. We note that this central-differences scheme is related to the
Lanczos-σ correction for Gibbs ringing in direction α [55], σ(α)(~k) = sin(kα∆(α))/kα∆(α).
Expressed using the σ-factor, the derivative operator is given by Dcd

α (~k) = ikασ(α)(~k).
Another common first-order finite difference scheme is forward-differences,

∂χi
∂rα

=
χi(rj + δjα∆(α))− χi(rj)

∆(α)
+O(∆(α)) (5.0)
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(a.1) (b.1) (c.1) (d.1)

(c.2) (d.2)(b.2)(a.2)

central-differences forward-differences least squares linear finite-elements

Figure 5.2.1: Graphical representation of the different stencils sij(x) and sij(y) for the derivatives in
x and y-direction of the discrete derivative operators D̂α(~k). Column (a) shows central-differences,
(b) forward-differences, (c) least squares and (d) linear finite-element stencils. Row (1) shows
the derivatives in x-direction and (2) in y-direction. Computed derivatives are assigned to the
voxel marked in blue. For linear finite elements in (d), the voxel is subdivided into two triangles.
Full dots indicate positive stencil values and open dots negative ones. Thick lines indicate the
direction of the derivative and dotted lines in column (c) indicate connected stencils in the non
derivative direction. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

with the Fourier-space representation

D̂fd
α (~k) =

exp
(
ikα∆(α)

)
− 1

∆(α)
. (5.0)

The full stencil coefficients for these two schemes as applied to two-dimensional problems
are shown in Fig. 5.2.1a and 5.2.1b. Inserting these coefficients into the generic expres-
sion Eq. (5.2.3) yields the specific Fourier representations given in Eqs. (5.2.4) and (5.2.4).
Figure 5.2.1 also has a graphical representation of these discrete derivatives.

5.2.5 Least squares

We now turn to a purely geometric interpretation of the deformation gradient to derive
alternative discrete stencils. The deformation maps an infinitesimal fiber vector δ~r into
δ~r′ = F(~r) · δ~r. Assuming constant F over a given voxel (light blue rectangle in Fig. 5.2.2a),
the voxel is affinely deformed by the deformation gradient F (green parallelogram in Fig. 5.2.2b)
and cannot represent arbitrary displacements of the corners (dark blue trapezoid in Fig. 5.2.2b)
as long as the deformation gradient F is uniform on that voxel. In order to represent the
corner displacements exactly, we can for instance subdivide the voxel, e.g. in 2D into two
triangles (see Fig. 5.2.2c and Fig. 5.2.2d), introducing multiple elements per voxel, with their
own uniform deformation gradient per element. We will discuss this decomposition in the
next section and will for now continue to work with a uniform deformation gradient per voxel
and require matching of the corner displacements in a least-squares sense.
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Figure 5.2.2: Non-affine deformation of the single 2D voxel at I=0, J=0. (a) The undeformed
voxel (light blue) is described by its four corners ~rij in a grid with grid spacing ∆x and ∆y. (b)
A non-affine deformation of this voxel is shown in dark blue. The green parallelogram shows the
least-squares approximation of the dark blue trapezoid using a uniform gradient F throughout
the voxel. (c) The single voxel of (a) is subdivided into two triangles, the deformation of each is
described by a uniform deformation gradients F(1) for the dashed triangle and F(2) for the dotted
triangle. (d) Individual affine deformation of these two triangles (green) can perfectly match the
prescribed corner displacements (dark blue).

We now regard the displaced corner positions only within a single voxel (see Fig. 5.2.2a).
Without loss of generality, we choose the voxel I=0, J=0 with undeformed corner coordinates
{~r 00, ~r 01, ~r 10, ~r 11}. To distinguish this subset of four nodes from the whole grid we name
it ~r kl with k, l ∈ {0, 1}. The true deformed coordinates are ~χ kl and the affinely deformed
coordinates produced by the deformation gradient F are ~ψ kl. We require that the affinely
deformed rectangle matches the true deformation in a least square sense. This means we are
looking for the deformation gradient F that minimizes the residual

R =
∑
k,l

∣∣∣~ψ kl − ~χ kl
∣∣∣2 . (5.0)

Since the affinely deformed voxel is spanned by the two vectors F ·∆~r 10 and F ·∆~r 01 with
∆~r kl =

(
~r kl − ~r 00

)
, we can write the affine deformed coordinates as

~ψ 10 = ~ψ 00 + F ·∆~r 10

~ψ 01 = ~ψ 00 + F ·∆~r 01

~ψ 11 = ~ψ 00 + F ·∆~r 11.

We now insert these into Eq. (5.2.5) and minimize with respect to F and ~ψ 00. This yields
the secular equations

∂R

∂ ~ψ 00
= 2

∑
k,l

(
~ψ kl − ~χ kl

)
= ~0

∂R

∂F = 2
∑
k,l

(
~ψ kl − ~χ kl

)
⊗∆~r kl = 0
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or

~ψ 00 = 1
4
∑
k,l

(
~χ kl − F ·∆~r kl

)
(5.0)

and

F ·
∑
k,l

∆~r kl − 1
4
∑
m,n

∆~rmn

⊗∆~r kl =
∑
k,l

~χ kl − 1
4
∑
m,n

~χmn

⊗∆~r kl. (5.0)

For rectangular lattices with lattice spacing ∆x and ∆y, this can be solved to give

F = 1
2
(
~χ 10−~χ 00+~χ 11−~χ 01

∆x
~χ 01−~χ 00+~χ 11−~χ 10

∆y

)
. (5.0)

The corresponding stencil coefficients are shown in Fig. 5.2.1.

5.2.6 Linear finite elements

The previous section argued that a uniform deformation gradient per voxel is insufficient
to represent the voxel’s deformation as measured by the displacement of each corner. This
becomes evident from simply counting the degrees of freedom: In two dimensions, the
voxel’s deformation (and rotation) is given by three vectors (6 degrees of freedom) while the
deformation gradient has 4 independent components. In this section, the problem is solved by
splitting the voxel into two triangles that are each described by a uniform deformation gradient
(see Fig. 5.2.2c). The voxel still has 6 degrees of freedom, but now we have 2 deformation
gradients with a total of 8 independent components and the constraint that the diagonal
boundary between the two triangles remain of the same length and direction (two blocked
degrees of freedom). From a simple geometric argument, this triangular decomposition can
hence describe arbitrary corner displacements (see Fig. 5.2.2d).

This geometric point of view is fully equivalent to a formulation using linear finite elements.
Within our rectangular lattice, we use the usual linear shape functions

N
(1)
00 (x, y) = 1− x/∆x− y/∆y

N
(1)
10 (x, y) = x/∆x

N
(1)
01 (x, y) = y/∆y

where the origin of the coordinate system is at the bottom left of the voxel and an equivalent
set of shape functions exists for element (2) in Fig. 5.2.2c. The shape function gradient
of χ(x, y) = χ00N

(e)
00 (x, y) + χ10N

(e)
10 (x, y) + χ01N

(e)
01 (x, y) is constant on element (e) and

given by the stencil coefficients shown in Fig. 5.2.1d for the two deformation gradients.
The stencil for element (1) is identical to the forward-differences scheme. The stencil for
element (2) is a forward-differences scheme evaluated on a different set of nodes turning
it into a backward differences scheme. Generalizations of this scheme to non-orthogonal
voxels and three dimensions are straightforward. This formulation is identical to traditional
linear finite elements, but unlike classical finite-elements, the projection formulation yields a
condition number that is independent of system size, leading to scale-independent convergence
properties [99]. (One can also get a full characterization of the spectrum which can lead
to a better estimate of the performance of the conjugate gradient method [45].) Note that
the least square approach described in the previous section simply yields the average of the
deformation gradients on the two triangles.
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(a) (b) (c) (d)

Figure 5.2.3: The suggested projection operator for the finite-element formulation is acting on a
random, non-compatible deformation gradient field and projects it onto the respective compatible
field. The figure shows (a) an undeformed grid (b) in which triangular elements are independently
randomly deformed and presented in an exploded view. The random deformation is corrected by
(c) applying the projection operator G and (d) translating from the exploded view into a compact
cell where all triangles fit together.

It is important to emphasize that this formulation requires storing two deformation gradients
per voxel. In the discrete projection developed above, this means we have nq = 2 evaluation
points and d = 4 derivatives for the two-dimensional formulation. The deformation gradient
F and Piola-Kirchhoff stress P are then both elements of RD×D×nq within the projection
scheme. For the evaluation of the constitutive law, both F and P need to be decomposed in
their element-wise contributions F(e) and P(e) that are elements of RD×D. We can formally
write

F =
(

F(1)

F(2)

)
(5.0)

for this decomposition. We note that finite-element discretizations with multiple quadrature
points can be described in this discrete projection using similar decompositions.

The interpretation put forward at the beginning of this section is that the deformation
gradient describes the geometry of the respective triangle (see Fig. 5.2.2d). This allows an
intuitive interpretation of the projection operator G. We start with a decomposition of some
domain into triangles (Fig. 5.2.3a). The rotation and shape of each of these triangles is
described by a deformation gradient F(e) ∈ RD×D. We now randomly disturb these triangles
by adding a random number to the components of their deformation gradients. The resulting
structure (see exploded view in Fig. 5.2.3b) is clearly no longer compatible. Application of G
(Fig. 5.2.3c) adjusts the shape of each triangle such that they are again compatible and can
be assembled into a continuous deformed structure (Fig. 5.2.3d).

5.2.7 Even vs. odd number of grid points

The original formulation of the compatibility projection that employs the Fourier derivative
only works exactly for odd-sized grids, which is a result of the structure of the projection
operator. The Fourier derivative is ambiguous at the Nyquist frequency (or the edge of the
first Brillouin zone). This ambiguity originates in the freedom of choosing one of two possible
equivalent even numbered Fourier grids {ki} from the class ki∆ ∈ [−π, π) or ki∆ ∈ (−π, π],
where ∆ is the grid spacing. Even sized grids sample the frequency exactly at the Brillouin
zone boundary (see Eq. (5.A) for the choice ki∆ ∈ [−π, π)). As a result the two possible
grids differ only in one single grid point, the Nyquist frequency.

We first analyze the situation for the Fourier-derivative. The Nyquist frequency is given
by kNy = ±π/∆, where an even-sized grid contains either the positive or negative Nyquist
frequency. Typically this small difference does not matter for the periodic function f̂(k)
because the Fourier coefficients are also equivalent in the single point ±kNy where the two
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Figure 5.2.4: Real (continuous line) and imaginary (dashed line) parts of the three different
derivative operators, D̂F (Fourier derivative, light blue), D̂cd (central-differences, dark blue) and
D̂fd (forward-differences, green). The real part of the central-differences and Fourier-type projection
operator are zero everywhere and therefore not shown. Data points are shown for an even grid
(open squares) with eight points and for an odd grid (triangles) with seven points, see Eq. (5.A).
Only the even grid has a data point at the Nyquist frequency, here chosen to be at −π/∆.

grids differ, f̂(−kNy) from the one grid containing −kNy has the same value as f̂(+kNy) from
the other grid containing +kNy. Thus, the Fourier series does not depend whether the positive
or negative Nyquist frequency is included in the grid and is therefore unambiguous for any
(sampled) function f(x). However, when analyzing the Fourier series of DFf(x), where the
upper index “F” indicates the explicit use of the Fourier derivative D̂F(k) = ik, evaluated on
grid points x,

DFf(x) = 1
N

∑
k

ikf̂(k) exp (ikx) = 1
N

∑
k

S(k, x), (5.0)

we find for the summand S(kNy, x) at the Nyquist frequency

S(kNy, x) = ikNyf̂(kNy) exp
(
ikNyx

)
= ikNyf̂(kNy) cos(kNyx) (5.0)

where we used kNyx ∝ πn, n ∈ Z. Since D̂F(kNy) = ikNy 6= −ikNy = D̂F(−kNy) the summand
S(kNy, x) 6= S(−kNy, x) which gives an ambiguity in the Fourier series of DFf(x) for even
sized grids at the Nyquist frequency whenever f̂(kNy) 6= 0. The outcome of the Fourier series
in Eq. (5.2.7) depends on which one of the two possible even sized grids is taken. This
ambiguity vanishes for odd-sized grids, since the function is never evaluated at the Nyquist
frequency and there is only a single possible choice for the Fourier grid. Figure 5.2.4 plots
D̂F(k) at the discrete evaluation points for even and odd-sized grids as an illustration of this
problem.

We now analyze the finite-differences (FD) and finite-element (FE) derivative operators.
All derivative operators of this type resolve the ambiguity at the Nyquist frequency. However,
we have to take care of the spectrum of these operators. The convolution implicit to the
derivative can be represented by the real circular (system-)matrix BIJ ,

∇~χI ≈
∑
J

BIJ · ~χJ . (5.0)
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The relation
∇~χ ≈ F−1

{
D̂(k) · ~̂χ(k)

}
(5.0)

connects the matrix BIJ to the generalized derivative operator D̂(k) and by Eq. (5.2.3) also to
the stencil coefficients sij from Sec. 5.2.3. Since the Fourier transform is only used to compute
the convolution of Eq. (5.2.7), there is no ambiguity at the Nyquist frequency. However,
D̂(k) must be invertible for the computation of Eq. (5.2.2). This is equivalent to requiring
that the rank of the matrix D̂T D̂ or equivalent BTB must be N − 1. While we need to
check this explicitly for the finite-differences stencils, it is well known that this is fulfilled for
fully-integrated finite-element formulations. This means that there is no ambiguity between
even and odd grid points for the finite-element projection presented here.

5.3 Examples and validation

In the following, we describe four two-dimensional examples to demonstrate the methods
developed above with a focus on ringing phenomena. In a last example we analyze the
convergence behavior of the described methods. First, we investigate a single soft voxel in a
uniform hard matrix under biaxial strain. This minimal example already shows strong ringing
artifacts in the xy-component of the stress tensor. Second, we analyze a cell with two pillars
separated by one layer of voxels with the Young modulus set to zero. This example shows the
ability to handle infinite material contrast with vacuum [128, 85] and simulate a free surface
despite the intrinsic periodic boundary conditions. Additionally, one of the pillars contains an
inhomogeneity which gives rise to ringing artifacts in the original spectral formulation. Third,
we test the numeric correctness of the results by investigating an Eshelby inhomogeneity.
We compare the results obtained by the FFT-based method against the analytical Eshelby
solution, corrected for periodic boundary conditions. Finally, we demonstrate the feasibility of
the method for complex constitutive laws on a damage mechanics problem. Additionally we
discuss the computational properties of the different methods using the example of a random
two-phase material. For all examples, we solve Eq. (5.2.1) with a coupled Newton-Raphson
conjugate-gradient solver as also used by other groups [129, 75] and outlined in 5.C.

5.3.1 Single voxel inhomogeneity

A classical continuum mechanics problem is the inhomogeneity, an inclusion of a material in
a matrix with different material properties. At the boundary of the inhomogeneity, there is
a discrete change in the material properties which usually leads to Gibbs ringing artifacts
in spectral methods. As minimal example of such an inhomogeneity, we present a single
voxel inhomogeneity (in red) placed in the center of a 17 × 17 voxel matrix (in green) as
shown in Fig. 5.3.1a. The matrix with Young modulus Ehard is ten times harder than the
inhomogeneity Esoft = Ehard/10, and both have the same Poisson ratio of ν = 0.33. The
material response is described by an isotropic finite strain linear elastic law as described in
Refs. [8, 25].

We apply a biaxial tensile strain of 10% (Fxx = Fyy = 0.1 and Fxy = Fyx = 0) and investigate
the shear component Pxy of the first Piola-Kirchhoff stress for different implementations of the
projection operator. The shear component of the stress shows the strongest ringing artifacts.
The normal stress components Pxx and Pyy behave similar to the shear component, i.e. all
components show reduced or eliminated ringing for the discrete projection operators discussed
here. Figure 5.3.1 gives an overview of the results where the first row, panels (b.1) to (g.1),
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Figure 5.3.1: Soft single voxel inhomogeneity in hard matrix (Ehard = 10Esoft) at 10% biaxial
strain computed on a 17× 17 grid. (a) shows the phase setup of the central inhomogeneity (red)
embedded in the matrix (green). The first row (x.1) shows the color coded shear component of
the first Piola-Kirchhoff stress Pxy on the deformed grid. The second row gives the shear stress
along rows of the grid as indicated by the colored double arrows in between the subfigures of the
first row. In red the row through the inhomogeneity voxel and then going down row by row in
orange, green and blue. The point markers indicate the voxel data and the lines are only added to
guide the eye. In the last two columns the continuous line with point markers represents the shear
stress of the lower triangle and the dashed line with plus markers represents the upper triangle (see
Fig. 5.2.2). The data points are presented at the geometric center of the triangles and voxels. The
gray line is the level of zero stress for each row and the y-scaling is the same for all columns (x.2)
to make a direct comparison possible. The columns represent the data generated with different
projection operators as indicated by the column titles: (b.i) Fourier, (c.i) central-differences, (d.i)
forward-differences, (e.i) least squares, (f.i) Fourier type on two evaluation points per voxel and
(g.i) the linear finite element type projection on two elements per voxel.

show the color coded stress and the second row, panels (b.2) to (g.2), give a more detailed
look on the stress along selected rows of the matrix as indicated by the colored arrows in
between the subfigures in the first row of Fig. 5.3.1. The lines in the panels (b.2) to (g.2) are
ordered from top to bottom starting from the center row, i.e. the row with the inhomogeneity
in red. Each column represents the result found with a different projection operator: Column
(b) for the Fourier-type projection operator as given by Eq. (5.2.1), (c) for central-differences
given by Eq. (5.2.4), (d) for forward-differences given by Eq. (5.2.4), (e) for the least square
scheme described in Sec. 5.2.5, (f) for the Fourier-type projection operator on two evaluation
points per voxel (see 5.D) and (g) for linear finite elements on two elements per voxel as
derived in Sec. 5.2.6.

Panel (b) show the stress field for the original method (e.g. Ref. [25]), with a projection
operator based on the Fourier derivative. As expected we observe strong ringing artifacts
leading to a checkerboard pattern of the stress field. The stress field and its oscillations
are strongest at the inhomogeneity and decay with increasing distance to the discontinuity.
However, the ringing does not disappear even at the edges of the cell which was also tested
for finer grids, different material contrasts and a slightly inhomogeneous matrix (results not
shown). The symmetry of the setup leads to a line of zero stress in the row and column that
contains the inhomogeneity (see Fig. 5.3.1b.1 and red line in Fig. 5.3.1b.2).

Results obtained with the central-differences projection operator are shown in Fig. 5.3.1c.1
and c.2. The Gibbs ringing artifacts should be strongly suppressed for this method, however
we observe a checkerboard pattern of different style compared to (b). This checkerboard
pattern originates in the well-known [37, 121] (odd-even) decoupling into two subgrids over
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short distances of the central-differences stencil shown in Fig.5.2.1a. The decoupling of the
two grids is not complete because of an odd-sized grid (17× 17) and the oscillations decay
with increasing distance from the inhomogeneity.

The forward-differences stencil, results shown in panels (d), leads to an oscillation-free
but slightly asymmetric stress field which originates from the asymmetry of the forward-
differences scheme (see Fig.5.2.1b). This asymmetry is corrected by the least square stencil
shown in panels (e). However, the stress has also a checkerboard pattern with checkerboard
characteristics of (b.1) and (c.1). We note that the reason for this ringing artifact is neither
the Gibbs phenomenon nor the decoupling of two subgrids but the fact that the least-squares
derivative cannot represent arbitrary deformations of the voxels as discussed in Sec. 5.2.5.
This discussion, and the outcomes from (b) to (e), indicate that a symmetric and ringing free
stress field cannot be obtained by a method with a single deformation gradient per voxel.

Therefore, we also investigated projection operators evaluated on two evaluation points
per voxel. For the Fourier type projection operator on two evaluation points per voxel, as
described in 5.D, we still observe ringing, see panel (f). However, ringing is reduced with
respect to the Fourier derivative on a single evaluation point. In panel (f.2) the continuous
line represents the stress values in the lower triangle (P (1)

xy ) and the dashed line represents the
stress in the upper triangle (P (2)

xy ) (cf. Fig. 5.2.2c). In difference to the stress fields computed
with a single evaluation point per voxel the two evaluation points per voxel slightly break
the symmetry of the problem. This can be seen in the non-zero stress along the row of the
inhomogeneity shown by the red line in (f.2).

Finally, we find a ringing free stress field for the discrete projection operator obtained from
linear finite elements on two elements per voxel, panel (g). The asymmetry between the two
elements of a voxel discussed in the previous paragraph persists for this formulation. The stress
field result presented in panel (g) seems to be the most appropriate solution to the problem
due to its smooth, ringing free field. This conclusion will be supported by the following three
examples. We would like to again emphasize that ringing in this example does not only result
from the Gibbs phenomenon, which does not exist for a discrete projection operator (as is
evident for the forward-differences in panel (d)). A description of local deformation with too
few degrees of freedom as shown (e.g., the least square type projection in (e)) also gives rise
to ringing.

5.3.2 Two pillars and vacuum

We use a setup consisting of two pillars, as shown in Fig. 5.3.2.a, to qualitatively investigate
an infinite material contrast and the ability to represent a free surface. This would allow
breaking the periodic boundary conditions which are intrinsic to FFT-based methods. We
choose a simulation domain of 17× 17 voxels and subdivide it into two pillars (in green) with
Youngs modulus Ehard and Poisson number ν = 0.33. The two pillars are separated by a
layer consisting of single voxel of a material with zero stiffness (in light blue), i.e. Evac = 0.
One can think of this material as “air” or “vacuum”. At the surface of the pillars we thus
have an infinite material contrast. The left pillar, of width 7 voxels, has additionally an
inhomogeneity (in red) of three voxels in its center. The soft inhomogeneity has a Youngs
modulus of Esoft = Ehard/10 and the same Poisson number of ν = 0.33 as the pillar. The
inhomogeneity was introduced to generate a non-homogeneous strain field with the ringing
artifacts documented in the previous section. The setup is strained by 10% in the y-direction
and held at constant size in x-direction. Simulations use the same finite strain model as those
of Sec. 5.3.1.
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Figure 5.3.2: The first Piola-Kirchhoff shear stress Pxy of two pillars at 10% strain in y-direction.
(a) displays the phase setup. The left pillar (green) has an inhomogeneity (red) of three voxels in
its center which are ten times softer than the rest of the pillar. The right pillar (green) is separated
by two layers of zero stiffness material (blue) from the left pillar. The first row (x.1) presents the
shear stress field for the full grid. The second row (x.2) presents the shear stress as function of x
for selected rows of the simulation grid indicated by colored arrows in the first row (x.1). The
rest of the figure is illustrated as described for Fig. 5.3.1.

Figure 5.3.2 is organized in the same manner as Fig. 5.3.1. In the first row, panels (b.1)
to (g.1), we show the color coded stress field Pxy. In the second row, panels (b.2) to (g.2),
we present the stress field as function of χx at fixed positions χy, starting from the center
of the inhomogeneity (red line) and going row by row down in orange, green and light blue.
The gray vertical lines represent zero stress for each curve. The continuous and dashed lines
in panels (f.2) and (g.2) represent the stress of the lower and upper triangular element of a
voxel, respectively. The columns are ordered as in Fig. 5.3.1: (b) Fourier type projection,
(c) central-differences, (d) forward-differences, (e) least squares projection, (f) Fourier-type
projection on two evaluation points and (g) linear finite-element projection on two elements.

For the Fourier-type projection operator in panel (b), we observe ringing artifacts in the
left pillar originating from the inhomogeneity. These artifacts are transmitted through the
vacuum region to the right pillar. The shear component of the stress should be zero in the
right pillar but shows clear ringing artifacts. The “vacuum” region of zero stiffness is therefore
not able to decouple the two pillars. At the symmetry axis in x- and y-direction of the
inhomogeneity we can again observe a region of zero stress of single voxel thickness.

Central-differences, panel (c), lead to a strong decoupling of the grid into two sub grids.
The vacuum cannot decouple the strain field in the pillars because the stencil has a range of
three voxels. This leads to strong oscillations in x-direction in the two subgrids. In the right
pillar, that has a width of an even number of grid points in the x-direction, the decoupling
results in almost zero width of the voxels of one sub grid. (Only four voxels are clearly visible
in panel (c.1).) Remarkably the left pillar has no ringing in y-direction in the columns of non
zero stress. In this example, it becomes very clear that the central-differences are sensitive to
the setup and number of grid points. For slightly different widths of the pillars or a different
mesh grid one can observe these artifacts also in the other pillar (not shown).

Panels (d) and (e) (forward-differences and least-squares), show the same behavior as
discussed for a single voxel inhomogeneity in the previous Sec. 5.3.1 with an asymmetric, but
non-ringing response for the forward-differences and a symmetric and ringing response for the
least squares scheme. However, the right pillar shows zero shear stress, indicating that for
these projection operators the vacuum layer is able to decouple the two pillars. The vacuum
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layer grows in x-direction to absorb the shrinkage of the two pillars (since ν = 0.33) while the
average strain in x-direction is zero. At the surfaces of the left pillar the shear stress field
goes to zero as one would expect it for a surface. These discrete derivative schemes decouple
the two pillars because their stencil extend only between neighboring nodes.

The Fourier type projection on two evaluation points in panel (f) leads to similar results in
the left pillar as for the single voxel inhomogeneity. A ringing artifact from the left pillar is
observed in the right pillar which indicates a coupling between the two pillars through the
vacuum region. As in the first example, Fig. 5.3.1f, the two evaluation points lead to a slight
symmetry breaking resulting in non-zero stress at the symmetry axis through the center of
the inhomogeneity in the left pillar, i.e. the red line in panel (f.2).

For the linear finite-element projection shown in panel (g), we again observe artifact-free
results. The left pillar shows a smooth, ringing free and symmetric (besides the previous
discussed slight asymmetry between upper and lower triangle) stress field originating from
the inhomogeneity. The vacuum regions grow in x-direction to absorb the shrinking of the
pillars in that direction. In the right pillar we find no artifacts from the stress field of the left
pillar; thus the pillars are fully decoupled.

This example shows that it is possible to simulate infinite material contrast with vacuum
as the soft phase. A single layer consisting of material of zero stiffness can decouple different
regions in the RVE and thus break the intrinsic periodic boundary conditions of the FFT-based
method in one direction. As expected from the theoretical considerations in Sec. 5.2 the linear
finite-elements projection operator has the best performance and results in a stress field that
is artifact free and qualitatively correct. To further investigate the methods developed here,
we continue with a quantitative analysis of an Eshelby inhomogeneity.

5.3.3 Eshelby inhomogeneity

The Eshelby inhomogeneity is similar to the first example of a minimal inhomogeneity
consisting of a single voxel. The Eshelby inhomogeneity is an ellipsoidal body inside an infinite
elastic medium where the elastic medium differs in its material properties from the ellipsoidal
body. The analytical solution to the Eshelby problem is well known [33, 34, 105, 92]. We
choose the specific (cylindrical) geometry shown in Fig. 5.3.3a with a hard matrix (light green)
of Youngs modulus Ehard and a soft inhomogeneity (red) of Young’s modulus Esoft = Ehard/10
and zero eigenstrain. The numerical calculations employ a fine mesh of 151 × 151 voxels
to properly resolve the cylindrical inhomogeneity with half axes of 10% of the domain edge
lengths. The inhomogeneity is placed in the center of the domain and centered on a voxel to
retain a symmetric discretized area. For the numerical calculations we use the small-strain
formulation (see 5.B) since the analytical Eshelby expressions are also obtained in this limit.

The results of these calculations are summarized in Figure 5.3.3. Rows (c.1) to (i.1) show
the full solution of the shear strain εxy on the 151×151 grid. The next row, panels (c.2) to (i.2),
show a zoom of the region containing just the inhomogeneity. The three colored lines at the
center (dark green), upper half (orange) and lower half (purple) of the inhomogeneity in panel
(a) indicate the location of the strain components that are shown in the third row, panels (c.3)
to (i.3), for the normal strain εxx in x-direction at the center and in the fourth row, panels
(c.4) to (i.4), for the shear strain εxy for the upper and lower half of the inhomogeneity. Note
that this data is shown only over the zoomed region, not the full calculation. The columns (c)
to (h) again represent results obtained for different projection operators as indicated in each
column: (c) is the Fourier-type projection, (d) central-differences, (e) forward-differences, (f)
the least square type projection, (g) the Fourier type projection on two evaluation points per
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Figure 5.3.3: Shear strain of an Eshelby inhomogeneity at biaxial applied strain εxx = εyy = 1%
at the boundaries on a 151× 151 grid. (a) shows the phase setup of a soft inhomogeneity (red) in
a hard, Ehard = 10Esoft, matrix (green). The colored lines indicate the rows for which the strain
is shown in the third and second row. (b) illustrates the correction of the analytical Eshelby
inhomogeneity for periodic boundary conditions. The strain field of the central inhomogeneity is
corrected by adding up the strain field from surrounding inhomogeneities as illustrated here in a
3× 3 matrix. The analytical solution presented in column (i) was done for a 11× 11 matrix, i.e.,
including five periodic images in both the positive and negative horizontal and vertical direction.
In the first row (x.1) we present the color coded shear strain εxy on the whole grid. The second
row (x.2) is a zoom on the shear strain field at the inhomogeneity with the same color coding.
The third and fourth row show the strain as function of x along selected rows of the zoomed
region in row two. The third row (x.3) shows the normal strain in x-direction along the green
row indicated in (a). Row four (x.4) presents the shear strain along the middle row of the upper
half cylinder (orange) and the middle row through the lower half cylinder (purple) as indicated
in (a). The columns present the results gained with the indicated projection operators: (c.i)
Fourier, (d.i) central-differences, (e.i) forward-differences, (f.i) least squares, (g.i) Fourier on two
evaluation points per voxel, (h.i) linear finite elements on two elements per voxel and the column
(i) presents the analytical Eshelby solution. In the columns (g) and (h) the third and fourth
row show the strain values in the lower triangle, triangle one in Fig. 5.2.2c. In panel (h.3) the
additional gray curve shows the convergence of the numerical simulation towards the analytical
result for an eleven times finer grid with 1661× 1661 grid points.

voxel and (h) the linear finite-elements projection from sec. 5.2.6.
The additional column (i) represent the analytical results of the Eshelby inhomogeneity.

The analytical result is obtained for an inhomogeneity in an infinite media at 1% biaxial strain
(εxx = εyy = 0.01, εxy = 0) and is corrected for periodic boundary conditions by summing
up the influence of 11× 11 non-interacting periodic Eshelby inhomogeneities (see panel (b)
of Fig. 5.3.3). This correction scheme for periodic boundary conditions converges quickly
with the number of images. The average strain on the central inhomogeneity is used as the
boundary conditions for the periodic numerical computations.

The Fourier-type projection operator gives qualitatively correct results. Panels (c.3) and
(c.4) show a quantitative view of two components of the strain tensor that both clearly show
oscillations within the inhomogeneity. As expected, we observe strong ringing artifacts which
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lead to a deviation from the analytical result especially within the inhomogeneity. Note that
the normal strain along the center line vanishes due to symmetry reasons and hence does not
show ringing.

For the central-differences scheme in panels (d.i), we observe a symmetric checkerboard
pattern of decreasing amplitude when approaching the center of the inhomogeneity. At the
boundary of the inhomogeneity, there is a double ring-like pattern in the strain field originating
from the local decoupling into two subgrids by this scheme.

The forward-differences scheme in column (e) produces ringing-free fields but with the
drawback of the already discussed asymmetry, best shown in panel (e.3). However the
asymmetry of the field is partly suppressed by working in the small strain limit where
εxy = εyx. The asymmetry of the strain field is also noticeable in panel (e.4).

Column (f) shows the results produced by the least squares projection operator. As for the
two previous examples we observe a checkerboard like pattern of decreasing intensity when
approaching the center of the inhomogeneity (see panel (f.2)).

The Fourier-type projection on two evaluation points per voxel (panel (g)) produces a strain
field similar to the standard case with a single point per voxel (panel (c)), however the ringing
artifacts appear distributed more homogeneously over the entire inhomogeneity. Panels (g.3)
and (g.4) show for clarity only the strain field for the lower triangular element (element one
in Figure 5.2.2c). The ringing artifacts in (g.3) and (g.4) are less symmetric than the one of
panels (c.3) and (c.4), originating from the symmetry breaking by the triangular mesh.

For the linear finite-element projection on two elements shown in column (h), we find
ringing-free fields and the sharpest drop of the strain at the boundary of the inhomogeneity.
Panel (h.3) shows the smoothest curves that are close to the analytical solution presented in
(i.3). The normal strain shows a small variation across the inhomogeneity while the analytical
solution (panel (i.3)) is almost constant. We find similar variation in the shear strain shown
in panel (h.4). The gray line in panel (h.3) demonstrates exemplary the convergence of the
numeric simulation towards the analytical result for a eleven times finer grid with 1661× 1661
grid points. The curves shown in panels (h.3) and (h.4) are closest to the analytical result.
We additionally note that, unlike mitigation of oscillations with higher-order finite-differences
schemes, it does not appear that the finite-element projection scheme leads to a diffusive
solution.

In summary, we find reasonable agreement with the analytical solution for all projection
operators. Linear finite elements gives the smoothest curves and results closest to the
analytical findings. As in the previous cases, only the forward-differences projection and
the finite-elements projection eliminate the ringing artifact. For a finer grid we observe a
convergence towards the analytical result. It is worth noting that the similar behaviour of
the finite-elements and forward-differences projections is easily explained by the fact that
the latter corresponds to the finite-element projection where only the lower left triangles are
considered.

5.3.4 Damage problem

As a drawback of FFT-based solution methods, ringing artifacts can have a drastic effect
on the solution of a homogenization problem. Damage mechanics problems are especially
vulnerable to fluctuations in the stress field caused by ringing artifacts, since localization is
one of the most important characteristics of such problems. A reliable, fast, and ringing-free
homogenization method is therefore essential to address damage mechanics problems.

In order to illustrate the error introduced by the ringing artifact into a damage problem, we
solve a two-dimensional problem representing a concrete microstructure using an Alkali-Silica
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(a) Fourier projection (b) Linear finite elements on two el. projection

Aggregates Cement paste ASR gel pockets Damaged pixels

Figure 5.3.4: Damage fields in concrete micro-structure RVEs using (a) Fourier projection solver
(b) FEM projection solver.

reaction (ASR) damage model. In this model, the expansion of gel pockets inside aggregates
damages the microstructure.

In the modeled concrete microstructure, three phases are considered — a soft matrix
with damage (Cement paste), hard inclusions with damage (Aggregates), and gels whose
expansion is modeled by a growing spherical eigenstrain. Polygon-shaped aggregates are
placed in the RVE using the level set approach (LSA) algorithm [137, 134], with an aggregate
size distribution chosen to match sieve sizes from real concrete structures. The aggregate
size distribution is truncated on the lower end in order to keep the shape of the aggregates
physically sound considering the discretization grid. ASR gel pockets are placed randomly
within the aggregate to fill 2% of the cell surface. Concrete paste and aggregate are represented
by a linear damage model as their constitutive law [120, 30, 108]. Due to the brittleness of
concrete, the damage part of the bi-linear damage laws is taken steeper than its elastic part.

In the damage phase, the damage surface threshold is defined by the magnitude of strain
measured by the L2-norm. As long as the damage material’s strain is below a determined εu,
it behaves as a linear elastic isotropic material with Young modulus of E0 , and afterwards
its stress decreases with equivalent stiffness of −αE0 until the stress becomes zero. From
that point on, the material does not carry any stress (complete failure). An eigenstrain
with the final amplitude of 20εu was applied on gel voxels, placed as explained beforehand,
in 1000 consecutive steps in the carried out simulation. The damage field caused by this
loading scenario is depicted in Fig. 5.3.4 employing Fourier and FEM projection solvers. As
observed in Fig. 5.3.4 the damage pattern evolved in the Fourier projection solver solution
is checker-boarded and therefore non-physical. While as demonstrated in Fig. 5.3.4b, after
damage initiation around ASR gel pockets, micro-cracks formed during the damage process
coalesce to form cracks with lengths in the range of 0.2 times the RVE length. Comparison of
Fig. 5.3.4a, b suggests that, in contrast with Fourier projections solvers, ringing-free spectral
FEM projection solvers are capable to simulate mechanics damage RVE problems.

5.3.5 Convergence properties

We analyze the computational properties of the presented methods for a random two-phase
system with a simple finite-strain hyper-elastic material as described in Ref. [25, 61]. The

82



....................................... 5.4. Summary & Conclusion

Figure 5.3.5: Convergence properties of a random two-phase system. (a) and (b) show the random
two-phase system for a coarse 31× 31 and a fine 1023× 1023 grid respectively. The structures
consists of a soft phase in red and a hard phase in green with Youngs moduli Ehard = 10Esoft and
a Poisson ratio of ν = 0.33. (c) shows the convergence of the stress divergence norm ‖G : P‖ with
respect to the number of conjugate-gradient steps for the two investigated grid resolutions and all
investigated derivative operators (D̂Fourier – Fourier derivative, D̂central-diff. – central-differences
derivative, D̂forward-diff. – forward-differences derivative, D̂least squares – least squares derivative,
D̂Fourier 2 p. – Fourier derivative on two evaluation points and D̂linear FE 2 el. – linear finite-elements
derivative on two elements). The data points represent the value at each Newton-Raphson step
and lines are only added to guide the eyes.

system is constructed from slit islands [88] of a two-dimensional random self-affine Gaussian
field with Hurst exponent H=0.2, generated as described in Refs. [119, 58]. Self-affine scaling
is cutoff at 0.3L at large distances and 0.07L at small distances, where L is the lateral
(periodic) dimension of the cell. This slit island analysis yields a two-phase system with
equal concentration of both phases. The two-phase system is generated on a 1023 × 1023
grid which we then downsample to 31× 31 to vary resolution. This leads to the phase setups
shown in Fig. 5.3.5 (a) and (b). Panel (c) of Fig. 5.3.5 displays the convergence of ‖G : P‖
(the norm of the divergence of the stress) summed over all pixels. All projection operators
show similar convergence properties for the two investigated grids. For the smaller grid with
31× 31 voxels, the simulation starts with ‖G : P‖ ≈ 3.5 for the projection operators forming
a rectangular mesh (Fourier, central-differences, forward-differences and least square) and
with ‖G : P‖ ≈ 4.7 for a triangular mesh (Fourier with two evaluation points, linear finite
elements) with twice the number of evaluation points. All projection methods need four
Newton steps of about 41 conjugate-gradient (CG) steps per Newton step to converge. For
the larger grid with 1023× 1023 voxels the initial norm of the stress divergence is higher by
about a factor 35 compared to the smaller grid. Because of the higher initial norm of the
stress divergence, we need five Newton steps to converge to the required tolerance and about
48 CG steps per Newton iteration. However, this is a small increase of about 50% in total
amount of CG steps compared to an increase in the number of voxels by a factor 103. In
summary, we observe a similar behavior for all methods presented here.

5.4 Summary & Conclusion

We have extended the compatibility projection of Lahellec, Vondřejc, Zeman, de Geus and
coworkers [75, 150, 25, 25] to standard finite-differences and finite-element basis sets. We
show that using linear finite elements as a basis set eliminates ringing artifacts of the Fourier
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basis but retains the advantages of the compatibility projection, such as the rapid convergence
rate. In particular, this formulation allows perfect decoupling of periodic images with zero-
stiffness regions of single-voxel width. This opens the method to the study of free surfaces or
metamaterials (see also Refs. [128, 85]). We note that the ideas behind compatibility projection
can be exploited to construct preconditioners for standard finite-element formulations beyond
the linear elements presented here [100].

Among the projection operators examined in this paper, all but the least squares operator
guarantee a compatible strain field. It is useful to think of those compatible projection
operators in two categories; discretizations with local support and discretizations with global
support, where local support refers to non-overlapping projection stencils. We observe that
only two local support projections, the finite-element projection and the forward-differences
projection eliminate ringing, unlike the Fourier and central-differences operators (global
support and non-local support including neighbouring voxels). This observation allows a well
known property of finite-element calculations, where discretization errors are to be expected
to be significant at the length scale of the element size (= support size) by St. Venant’s
principle. This observation allows to interpret the ringing artifact as a discretization error to
be expected at the length scale of the support.

5.A Discrete Fourier transformation

The 2D discrete Fourier transformation is defined as follows through out the paper. The
generalization to 1D or 3D is straight forward. We divide the simulation domain of edge
lengths Lx, Ly into Nx, Ny voxels of equal edge lengths ∆i = Li/Ni in each spatial direction
i ∈ {x, y}. The lower left corner of voxel nx = I, ny = J is then given by

rIJi = Li
Ni
ni, ni = 0, 1, . . . , Ni − 1. (5.0)

The corresponding wave vectors {~k IJ} with mx = I,my = J are

k IJi =2π
Li
mi,

mi =

−Ni
2 , . . . , 0, 1, . . . ,

Ni
2 − 1 , Ni even,

−Ni−1
2 , . . . , 0, 1, . . . , Ni−1

2 , Ni odd.

For the discrete Fourier transform of the function ~f(~r) we use

F
(
~f(~r)

)
(~k) = ~̂f(~k) =

∑
~r

~f(~r) exp
(
−i~k · ~r

)
(5.-1)

with the corresponding inverse transformation

F−1
(
~̂f(~k)

)
(~r) = ~f(~r) = 1

N

∑
~k

~̂f(~k) exp
(
i~k · ~r

)
. (5.-1)

5.B Small-strain projection

It is often useful to carry out calculations in the small-strain limit. Small strains are special
because the strain tensors (that replaces the deformation gradient) has to remain symmetric.

84



........................................5.B. Small-strain projection

For a formulation that involves multiple elements per voxel, we also require multiple symmetric
strain tensors per voxel. While in the finite strain formulation, these were absorbed in our
derivative indices α, β etc., we need to introduce a specific element index for the small-
strain case and can no longer distinguish between derivatives and Cartesian coordinates
because of the symmetry in between derivatives and coordinates. Additionally to the previous
introduced indices we will therefore use capital Greek letters (Θ, Λ, Ξ, . . . ) to denote elements.
Components of the strain tensor will be denoted by small Latin indices.

We now introduce the strain tensor e in lieu of the deformation gradient, Eq. (5.2.1). The
strain tensor for element Θ is

eΘ = 1
2
[
∇Θ ⊗ ~u+ (∇Θ ⊗ ~u)T

]
, (5.-1)

where ∇Θ is the (potentially discrete) derivative operator for element Θ and ~u(~r) = ~χ(~r)− ~r
are the displacements from the undeformed positions ~r. For a given e, we minimize the
residual R = ∑

Θ

∑
~k

R∗Θ(~k) : RΘ(~k) with

RΘ(~k) = 1
2

(
~̂DΘ(~k)⊗ ~̂u(~k) + ~̂u(~k)⊗ ~̂DΘ(~k)

)
− êΘ(~k) (5.-1)

with respect to ~u∗, where we have transformed into the Fourier-space and introduced the
gradient operator ~̂DΘ(~k). The full residual is given by

2R =
∑
Θ

(
~̂D∗Θ · ~̂DΘ ~̂u∗ · ~̂u+ ~̂D∗Θ · ~̂u ~̂u∗ · ~̂DΘ

− ~̂D∗Θ · eΘ · ~̂u∗ − ~̂u∗ · eΘ · ~̂D∗Θ

− ~̂DΘ · e∗Θ · ~̂u− ~̂u · e∗Θ · ~̂DΘ + 2e∗Θ : eΘ

)
.

Minimization yields 1 +
∑
Θ

ĝΘΘ

 · ~̂u =
∑
Θ

(
~̂D−1
Θ · êΘ + êΘ · ~̂D−1

Θ

)
(5.-1)

with
~̂D−1
Θ =

~̂D∗Θ∑
Λ
~̂DΛ · ~̂D∗Λ

and ĝΘΛ = ~̂DΘ ⊗ ~̂D−1
Λ . (5.-1)

Equation (5.B) can be formally solved to give

~̂u = ĥ ·
∑
Θ

(
~̂D−1
Θ · êΘ + êΘ · ~̂D−1

Θ

)
. (5.-1)

or
ûi =

∑
Θ

(
D̂−1
Θ,lĥim + ĥilD̂

−1
Θ,m

)
êΘ,lm. (5.-1)

with

ĥ =

1 +
∑
Θ

ĝΘΘ

−1

. (5.-1)
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To arrive at the projection operator, we now need to insert Eq. (5.B) into Eq. (5.B). This
yields the small-strain projection operator

ĜΘΛ,ijlm = 1
2

(
ĝΘΛ,ilĥjm + ĝΘΛ,imĥjl + ĝΘΛ,jlĥim + ĝΘΛ,jmĥil

)
, (5.-1)

where the projected strains are given by

êΘ,ij =
∑
Λ

ĜΘΛ,ijlmêΛ,ml. (5.-1)

By combining the pairs of indices α = Θ, j and β = Λ, l, we can write this in the same form
as the large strain projection, êiα = Ĝiαβj êjβ. Note that for a single element Θ = 1, we can
write down the expression for ĥ analytically,

ĥ = 1− 1
2 ĝ11. (5.-1)

Using this expression and the Fourier derivative for ~̂D(~k) gives the small-strain projection
operator of Ref. [97, Section 6].

5.C Algorithm & implementation

All described methods are implemented in the open source software µSpectre [60]. We
follow recent works [25] in solving Eq. (5.2.1) by a Newton-Raphson scheme coupled with a
conjugate-gradient solver. The algorithm is described in detail in the panel Algorithm 5.1.

Algorithm 5.1 Solve Eq. (5.2.1), G : P(F) = 0 for Nli load increments ∆Fj

1: Initialize:
2: ηeq., ηNR, ηCG . equilibrium-, Newton-Raphson- and CG-tol.
3: iNR,max, iCG,max . max. iterations Newton-Raphson and CG
4: ∆F0, . . . , ∆FNli . load increments
5: F0 = 1 or 0 . finite-strain/small-strain initial state
6:
7: for j = 0, 1, 2, . . . ,Nli do . load incremental loop
8: F0 = F0 +∆Fj . update initial state by load increment
9: b0 = −G : P(F0)

10: if ‖b0‖ ≤ ηeq. then . the problem was homogeneous
11: Proceed from line 7 . next load increment
12: end if
13: for i = 0, 1, 2, . . . , iNR,max do . Newton-Raphson iteration
14: Solve for δF with conjugate-gradient:
15: G : K(Fi) : δF = bi in iCG,max steps to accuracy ηCG
16: Fi+1 = Fi + δF
17: bi+1 = −G : P(Fi+1)
18: if ‖bi+1‖ ≤ ηeq. or ‖δF‖ /‖Fi+1‖ ≤ ηNR then
19: Proceed to line 22 . Newton-Raphson converged
20: end if
21: end for
22: F0 = Fi+1 . new initial state
23: end for
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Note that K in the conjugate-gradient solver represents the local tangent stiffness. For the
Newton-Raphson solver we use two stopping criteria in line 18 of Algorithm 5.1, of which only
one has to be fulfilled for convergence. The first criteria is measuring the convergence of the
stress divergence and the second one is evaluating the convergence of the Newton-Raphson
steps. In line 10 we detect a trivial homogeneous material behaviour by measuring the stress
divergence which makes the Newton-Raphson solver redundant for the specific load increment.
The computational complexity for all projection operators is dominated by the FFT evaluation
in Eq. (5.2.1) and thus given by O

(
N log(N)

)
where N is the number of voxels. A discussion

of performance and details of the algorithm will be presented in an upcoming paper [100].

5.D Fourier-type projection operator on two evaluation points
per voxel

The Fourier-type derivative can be extended to several gradient evaluation points per voxel.
This is useful to investigate the influence of Gibbs ringing separately from the effect of missing
degrees of freedom. The standard Fourier-type derivative is evaluated at the grid points
of the Fourier grid, which are the centers of the voxels. Hence, for a triangular mesh we
additionally evaluate the Fourier derivative at the geometrical center of each triangle. For
a two dimensional rectangular cell of edge lengths ∆i, as shown in Fig. 5.2.2c, that means
applying a shift of ±(∆1, ∆2)/6 from the center. The Fourier derivative operator D̂α(~k) = ikα
acquires a phase to yield

D̂1,i(~k) = iki exp

−i
6
∑
i

ki∆i

 ,
D̂2,i(~k) = iki exp

+i
6
∑
i

ki∆i

 ,
where we used explicit the indices 1 and 2 to denote the derivative operator in the center of
the lower and upper triangle as shown in Fig. 5.2.2.
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Chapter 6
FFT-based homogenisation accelerated by low-rank
tensor approximations

Abstract: Fast Fourier transform (FFT) based methods have turned out to be an effec-
tive computational approach for numerical homogenisation. In particular, Fourier-Galerkin
methods are computational methods for partial differential equations that are discretised with
trigonometric polynomials. Their computational effectiveness benefits from efficient FFT
based algorithms as well as a favourable condition number. Here these kind of methods are
accelerated by low-rank tensor approximation techniques for a solution field using canonical
polyadic, Tucker, and tensor train formats. This reduced order model also allows to efficiently
compute suboptimal global basis functions without solving the full problem. It significantly
reduces computational and memory requirements for problems with a material coefficient
field that admits a moderate rank approximation. The advantages of this approach against
those using full material tensors are demonstrated using numerical examples for the model
homogenisation problem that consists of a scalar linear elliptic variational problem defined in
two and three dimensional settings with continuous and discontinuous heterogeneous material
coefficients. This approach opens up the potential of an efficient reduced order modelling of
large scale engineering problems with heterogeneous material.

Reproduced from:

[152] J. Vondřejc, D. Liu, M. Ladecký, and H. G. Matthies. FFT-based homogenisation ac-
celerated by low-rank tensor approximations. Computer Methods in Applied Mechanics
and Engineering, 364:112890, 2020. doi: 10.1016/j.cma.2020.112890

My contribution:

I was involved in software implementation into a Python open-source library FFTHomPy,
investigation of numerical behavior of the method, creation of results used in the pub-
lication, writing the first draft of the Section 6.4 on numerical examples, and review
and editing of the whole manuscript.
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Editing
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6. FFT-based homogenisation accelerated by low-rank tensor approximations ..................
6.1 Introduction

FFT-based methods. A fast Fourier transform (FFT) based method has been introduced as an
efficient algorithm for numerical homogenisation in 1994 by Moulinec and Suquet [102]. The
method, that has application in multiscale problems, represents an alternative discretisation
approach to the finite element method. The effectiveness of FFT-based homogenisation relies
on the facts that the system matrix is never assembled, the matrix-vector product in linear
iterative solvers is provided very efficiently by FFT, and the condition number is independent
of discretisation parameters.

Since the seminal paper in 1994 the methodology has been significantly developed. Originally
the approach has been based on Lippmann-Schwinger equation, which is a formulation
incorporating Green’s function for an auxiliary homogeneous problem. Its connection to a
standard variational formulation has been discovered in [150] by using the fact that Green’s
function is a projection on compatible fields (i.e. gradient fields in scalar elliptic problems),
see [96]. It has allowed to fully remove the reference conductivity tensor from the formulation,
and interpreted the method from the perspective of finite elements also in nonlinear problems
[159, 25]. Moreover, the standard primal-dual variational formulations allow to compute
guaranteed bounds on effective material properties [151], which provides tighter bounds than
the Hashin-Shtrikman functional.

Significant attention has been focused on developing discretisation approaches that justify
the original FFT-based homogenisation algorithm. Many efforts have been made on discretisa-
tion with trigonometric polynomials, starting with [158] and followed by [151, 147, 159, 126].
Other discretisation approaches are based on pixel-wise constant basis functions [19, 18], linear
hexahedral elements [131], or finite differences [154, 155]. The variational formulations also
allowed to derive convergence of approximate solutions to the continuous one [150, 126, 19].

The various discretisation approaches have been studied along with linear and non-linear
solvers [36, 104, 158, 98, 18, 61, 159, 25, 127]. Other research directions focus, for example, on
multiscale methods [70, 49, 28], highly non-linear problems in solid mechanics [10, 24, 16, 132],
and parameter estimation features FFT and model reduction [42].
Low-rank approximations. The general idea of low-rank approximations is to express or

compress tensors with fewer parameters, which can lead to a huge reduction in requirements
for computer memory and possible significant computational speed-up. For matrices as second
order tensors, the optimal low-rank approximation in mean square sense is based on the
truncated singular value decomposition (SVD). A computationally cheaper choice is Cross
Approximation [51, 7] which has only linear complexity in matrix size N . Low-rank formats or
tensors of order larger than two include the canonical polyadic (CP), Tucker, and hierarchical
schemes such as the tensor train and the quantic tensor-train form of [54, 72]. Low-rank
formats are not only needed to compress the data tensor as the final delivered result of
high-dimensional numerical modellings, but are also preferred to approximate tensors in the
numerical solution process. In [48] the proper generalised decomposition is adopted for the
construction of low-rank tensors in CP and Tucker formats in a numerical homogenisation
from high-resolution images. It is also possible to compute the tensors directly in low-rank
formats, which can be provided by a suitable solver [73, 142, 29, 6, 91]. The rank one tensors
in low-rank approximations can be seen as suboptimal global basis functions.

However, the need to compute with tensors in low-rank formats requires one to deal with
operations such as addition, element-wise multiplication, or Fourier transformation. Since
the low-rank tensors are described with fewer parameters, the computational complexities
are typically reduced, which may lead to significant speed-up of computations. However,
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performing such operations with tensors in low-rank format, it typically happens that the
representation rank of the tensors grows, which calls for their truncation, i.e. their approx-
imation or reparametrisation with fewer parameters while keeping a reasonable accuracy
[114, 115, 13]. This truncation of tensors may be viewed as a generalisation of the rounding of
numbers, which occurs when working with floating point formats. In general, the applications
of low-rank approximations are very broad, e.g. for stochastic problems with high number
of random parameters [35, 91, 111, 68], acceleration of solutions to PDEs [67, 66], or model
order reduction [112], but its application to FFT-based homogenisation is new. However, an
alternative low-rank representation has been studied recently in [71].
Structure of the paper. In section 6.2, two state-of-the-art Fourier-Galerkin methods are

described for a model homogenisation problem of a scalar elliptic equation. In particular, the
two discretisation methods based on numerical and exact integration are described along with
their corresponding linear systems. Then in section 6.3 the low-rank approximation techniques
are summarised and their application within a Fourier-Galerkin method is discussed. In
section 6.4, the effectiveness of low-rank approximations is demonstrated on several numerical
examples.
Notation. We will denote vectors and matrices by boldface letters: a = (ai)i=1,2,...,d ∈ Rd

or A = (Aij)di,j=1 ∈ Rd×d. Matrix-matrix and matrix-vector multiplications are denoted
as C = AB and c = Ab, which in Einstein summation notation reads Cik = AijBjk and
bi = Aijbj respectively. The Euclidean inner product will be referred to as a · b̄ = ∑

i aibi,
and the induced norm as ‖a‖ =

√
a · ā. Vectors, matrices, and tensors such as x , b,

and A arising from discretisation will be denoted by the bold sans-serif font in order to
highlight their special structure. For N = (N1, . . . , Nd) ∈ Nd, the components of a tensor
A ∈ RN = ⊗d

α=1 RNα of order d will be denoted as A[k1, ..., kd]. The multiindex notation
will be also incorporated to simplify the components of the tensors, e.g. A[k1, ..., kd] = A[k]
for a multi-index k = [k1, . . . , kd]. The space RN , composed of tensors of order d, can be
considered as a vector space, which allows to talk about its dimension as the number of basis
vectors, i.e. dimRN = ∏d

α=1Nα.
The space of square integrable Y-periodic functions defined on a periodic cell Y = (−1

2 ,
1
2)d

is denoted as L2(Y). The analogous space L2(Y ;Rd) collects Rd-valued functions v : Y → Rd
with components vi from L2(Y). Finally, H1

0 (Y) = {v ∈ L2(Y) | ∇v ∈ L2(Y ;Rd),
∫
Y v(x)x =

0} denotes the Sobolev space of periodic functions with zero mean.

6.2 Homogenisation by Fourier-Galerkin methods

6.2.1 Model problem

A model problem in homogenisation [9] consists of a scalar linear elliptic variational problem
defined on a unit domain Y = (−1

2 ,
1
2)d in a spatial dimension d (we consider both d = 2 and

d = 3) with material coefficients A : Y → Rd×d, which are required to be essentially bounded,
symmetric, and uniformly elliptic. This means that for almost all x ∈ Y, there are constants
0 < cA ≤ CA < +∞ such that

A(x) = AT (x), cA‖v‖2 ≤ A(x)v · v ≤ CA‖v‖2 for all v ∈ Rd.

The homogenisation problem is focused on the computation of effective material properties
AH ∈ Rd×d. Its variational formulation is based on the minimisation of a microscopic energetic
functional for constant vectors E ∈ Rd, which represents an average of the macroscopic
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gradient, as

AHE ·E = min
v∈H1

0 (Y)
a
(
E +∇v,E +∇v

)
, (6.0)

where the bilinear form a : L2(Y;Rd)× L2(Y;Rd)→ R is defined as

a
(
e,w

)
:=
∫
Y
A(x)e(x) ·w(x)x.

The minimisation Sobolev space H1
0 (Y) consists of zero-mean Y-periodic microscopic fields

v : Rd → R, which have locally square integrable weak gradient and finite L2-norm on
Y; together with (6.2.1) it satisfies the existence of a unique minimiser. Note that the
minimisation problem (6.2.1) corresponds to the scalar elliptic partial differential equation
−∇ · [A(x)∇u(x)] = f(x) with a special right-hand side f(x) = −∇ ·A(x)E and periodic
boundary conditions.

6.2.2 Fourier-Galerkin methods

Alternatively, the minimisers in (6.2.1) are described by a weak formulation: find u ∈ H1
0 (Y)

such that

a
(
∇u,∇v

)
= −a

(
E,∇v

)
∀ v ∈ H1

0 (Y).

This formulation is the starting point for a discretisation using Galerkin approximations, when
the trial and test spaces are substituted with finite dimensional ones. We choose to discretise
the function space using trigonometric polynomials, which leads to a Fourier-Galerkin method.

In order to compute the effective matrix AH one has to solve d minimisation problems or
weak formulation for different E, which are usually taken as the canonical basis of Rd. Here we
consider exclusivelyE = (δ1,i)di=1 ∈ Rd (i.e. in 3DE = [1, 0, 0]); therefore, the (1, 1)-component
of the homogenised properties will be of particular interest, i.e. AHE ·E = AH,11 =: AH.

6.2.2.1 Trigonometric polynomials

The Fourier-Galerkin method, [125, 150, 147] is built on discretisations using the space of
trigonometric polynomials

TN =
{ ∑
k∈ZN

v̂ [k]ϕk | v̂ [k] ∈ C, and v̂ [k] = v̂ [−k]
}
,

where ϕk(x) = exp(2πik · x) are the well-known Fourier basis functions. The number of
discretisation points N = [N, . . . , N ] ∈ Rd in this work take only odd values because an
even N introduces Nyquist frequencies that have to be omitted to obtain a conforming
approximation, see [151] for details.

There are also other natural basis vectors ϕk
N : Y → R, the so-called fundamental trigono-

metric polynomials. They are expressed as a linear combination

ϕk
N (x) = 1

|N |Π

∑
m∈ZN

ω−kmN ϕm(x) for x ∈ Y,
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of Fourier basis function ϕm with complex-valued weights ωmk
N = exp

(
2πi∑d

α=1
mαkα
Nα

)
for

m,k ∈ ZN . The weights are from the discrete Fourier transform (DFT) matrices in CN×N

with components

FN [m,k] = 1
|N |Π

ω−mk
N , F−1

N [m,k] = ωmk
N for m,k ∈ ZN .

The coefficients of trigonometric polynomials in the two different base are connected by the
discrete Fourier transform (DFT), particularly expressed as

v(x) =
∑

k∈ZN

v̂ [k]ϕk(x) =
∑

k∈ZN

v [k]ϕk
N (x) and v̂ = FNv .

Due to the Dirac-delta property ϕl
N (xk

N ) = δkl of the fundamental trigonometric polynomials
on a regular grid of points xk

N = kα
Nα

for k, l ∈ ZN , the coefficients of the trigonometric
polynomials are equal to the function values at the grid points, i.e. v [k] = v(xk

N ).
Differential operators are naturally applied on trigonometric polynomials. In particular the

gradient

∇v(x) =
∑

k∈ZN

v̂ [k]∇ϕk(x) =
∑

k∈ZN

2πikv̂ [k]ϕk(x),

corresponds to the application of the operator ∇̂N : CN → Cd×N on Fourier coefficients as
(∇̂N v̂)[α,k] = 2πikαv̂ [k]. The adjoint operator ∇̂∗N : Cd×N → CN corresponding to the
divergence is then expressed as

(∇̂∗N ŵ)[k] =
d∑

α=1
−2πikαŵ [α,k].

Then the gradient operator can be expressed with respect to the basis with fundamental
trigonometric polynomials as

∇v(x) =
∑
k

(
F−1

N ∇̂NFNv
)
[k]ϕk

N (x)

where the d-fold discrete Fourier transform (emphasises with bold) FN = Cd×N → Cd×N
acts individually on each component of the vector field (FNw )[α] = FNw [α] for α = 1, · · · , d.

The numerical treatment of the weak formulation (6.2.2) or a corresponding Galerkin
approximation requires the use of numerical integration. In this manuscript we incorporate
two versions: an exact integration [147] as described in sub-section 6.2.2.3, and a numerical
integration as described in sub-section 6.2.2.2.

6.2.2.2 The Fourier-Galerkin method with numerical integration (GaNi)

This numerical integration based on the rectangle (or the mid-point) rule corresponds to the
original Moulinec-Suquet algorithm [102, 103], as the resulting discrete solution vectors fully
coincide. This approach, applied to the bilinear form (6.2.1) on regular grids, reads

a
(
e,w

)
≈ aN

(
eN ,wN

)
=

∑
k∈ZN

A(xk
N )eN (xk

N ) ·wN (xk
N ) =

(
Ãe,w

)
Rd×N

,
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where e and w store the function values on the grid (e.g. e[α,k] = eN ,α(xk

N )), and Ã ∈
Rd×d×N×N is a block diagonal tensor with components

Ã[α, β,k, l] = δklAαβ(xk
N );

but one only needs to store the diagonals, which can be done in a tensor of shape d× d×N .
The numerical integration leads to an approximate formulation of the Galerkin approxima-

tion of (6.2.2):

find u ∈ TN : aN
(
∇uN ,∇vN

)
= −aN

(
E,∇vN

)
, ∀vN ∈ TN ;

note that the approximation is exact for constant material coefficients A. This formulation,
that can be seen also as a collocation method [158], is equivalent to the original Moulinec
and Suquet formulation [102] in the sense that the solution vectors coincide [150]. However,
the formulation here builds on the variational formulation [150] solved for the potential field
(instead of gradient one).

The combination of numerical integration and differentiation of trigonometric polynomials
(6.2.2.1) allows to approximate the bilinear form in terms of the nodal values of potential
fields

aN
(
∇uN ,∇vN

)
=
(
ÃF−1

N ∇̂NFNu,F−1
N ∇̂NFNv

)
Rd×N

.

In order to deduce the linear system, all operators acting on test vectors vN are moved to
the trial vector uN as adjoint operators to reveal the linear system in the original space

F−1
N ∇̂

∗
NFN ÃF−1

N ∇̂NFNu = −F−1
N ∇̂

∗
NFN ÃE,

where E ∈ Rd×N is constant with components E[α,k] = Eα. One may notice that the system
can be solved in Fourier space to save one computation of FFT and its inverse, which leads
to the linear system in Fourier space

∇̂∗NFN ÃF−1
N ∇̂N û = −∇̂∗NFN ÃE.

6.2.2.3 Fourier-Galerkin method with exact integration (GA)

For many types of material coefficients (6.2.1) and basis functions, there is a possibility
to integrate the bilinear forms in the weak formulation exactly, which leads to a Galerkin
approximation with exact integration

find u ∈ TN : a
(
∇uN ,∇vN

)
= a

(
E,∇vN

)
∀vN ∈ TN .

However, the exact integration of the Fourier-Galerkin formulation, in contrast to FEM, leads
to a full linear system, which can be overcome with a double-grid integration with projection
(DoGIP) [151, 147]. The DoGIP is a general method applicable also within the finite element
method [148]. The original evaluation of the material law on a grid of size N is reformulated
as an evaluation on a double grid 2N − 1 with modified material coefficients; they can be
expressed as a modification of the original material coefficients.

The main idea relies on expressing gradients of the trial and a test function together

∇uN (x)⊗∇vN (x) = eN (x)⊗wN (x) =
∑

k∈Z2N−1

e[:,k]⊗ w [:,k]ϕk
2N−1(x)
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with respect to the basis of the double grid space consisting of trigonometric polynomials
with doubled frequencies T2N−1; the arrays e and w store the values of the trigonometric
polynomials on the double grid, e.g. e[α,k] = eN ,α(xk

2N−1) for α ∈ {1, . . . , d} and k ∈ Z2N−1.
Then the bilinear form can be expressed on the double grid

a
(
eN ,wN

)
=

∑
k∈Z2N−1

∫
Y
A(x)ϕk

2N−1(x)x : e2N−1[:,k]⊗ w2N−1[:,k] =
(
Ae,w

)
Rd×(2N−1)

where : is a double contraction between two matrices of size d×d and the material coefficients
are defined as

A[α, β,k, l] = δkl

∫
Y
Aαβ(x)ϕk

2N−1(x)x for α, β ∈ {1, . . . , d} and k, l ∈ Z2N−1.

This integration can be performed exactly for a large class of material coefficients. In
particular in [147, 151], square or circular inclusions have been considered, as well as image-
based composites, materials with coefficients constant or bilinear over pixels (voxels in 3D).
Moreover, the evaluation of modified material coefficients can be performed effectively by
FFT.

In order to derive the linear system, we have to still describe the interpolation from the
original to the double grid space. As the spaces of trigonometric polynomials are nested
TN ⊂ TM for N <M (element-wise), we can just inject the polynomial to the bigger space
by adding trigonometric polynomials with zero Fourier coefficients. This can be represented
by the zero-padding injection operator I : Cd×N → Cd×(2N−1), defined as

(Iŵ)[:,k] =

ŵ [:,k], for k ∈ ZN

0 for k ∈ Z2N−1 \ ZN

.

Its adjoint operator I∗ : Cd×(2N−1) → Cd×N just removes the frequencies k ∈ Z2N−1 \ ZN ,
i.e. projects on the k ∈ ZN .

This allows us to deduce the linear system with exact integration

∇̂∗NI∗F2N−1AF−1
2N−1I∇̂N û = −∇̂∗NI∗F2N−1AE,

which has very similar structure compared to the scheme based on numerical integration
(6.2.2.2).

6.2.3 Preconditioning

Following the recent paper [99], the preconditioning of both linear systems (6.2.2.2) and
(6.2.2.3) is based on a Laplacian expressed in the Fourier domain as

P̂ [k, l] = δklk · l for k, l ∈ ZN ,

which is a simple diagonal preconditioner. Its inverse is given by the Moore-Penrose pseudoin-
verse P̂−1[k, l] = δkl

1
k·k for k ∈ ZN \ {0} and P̂

−1[0,0] = 0; the latter condition enforces the
zero-mean property of the approximated vectors. The preconditioned systems are explicitly
stated for both discretisation schemes

P̂
−1∇̂∗NFN ÃF−1

N ∇̂N û = −P̂−1∇̂∗NFN ÃE,

for the preconditioning of (6.2.2.2), and

P̂
−1∇̂∗NI∗F2N−1AF−1

2N−1I∇̂N û = −P̂−1∇̂∗NI∗F2N−1AE.

for the preconditioning of (6.2.2.3).

95



6. FFT-based homogenisation accelerated by low-rank tensor approximations ..................
6.3 FFT-based methods with low-rank approximations

Applying low-rank approximation techniques is of particular interest for problems with a
huge number of degrees of freedom. The low-rank approximations can not only furnish a
posterior data compression of the solution array, but also reduce computational complexity
by exploiting low-rank format representations in the solution process. For the latter one
needs some operations such as additions, element-wise multiplication, and the fast Fourier
transform (FFT) to be implemented on tensors in low-rank format. In this section we
introduce an FFT-based solution process incorporating low-rank representations of tensors.
In the following sub-section 6.3.1, the low-rank approximation formats are summarised along
the corresponding operations; details can be found in textbooks or in appendix 6.A. Then
the application of low-rank approximation for the Fourier-Galerkin method is described and
discussed in sub-section 6.3.2, and the suitable linear solvers in sub-section 6.3.3.

6.3.1 Overview of low-rank formats

Here we give a brief introduction of three types of low-rank tensors that are applied in this
work, they are of canonical polyadic (CP), Tucker, and tensor train format respectively. The
CP format is only used for tensors of order two because of its intrinsic difficulty in finding
optimal approximation for tensors with higher order. The necessity and impact of rank
truncation is also emphasized. Interested readers are provided by more details about the
operations on the low-rank tensors in the Appendix 6.A.

6.3.1.1 Canonical polyadic format

A CP r-term approximation of a tensor v ∈ KN1×···×Nd (the field K is R or C) is a sum of r
rank-1 tensors. In this work the CP format is only used for tensors of order two (d = 2), i.e.
matrices. In this case the representation has the form:

v ≈ ṽ =
r∑
i=1
c [i]b(1)[i]⊗ b(2)[i],

where c ∈ Rr stores the coefficients with respect to vectors b(j) ∈ Kr×Nj in the directions
of indices j. A low-rank representation for order-2 tensors (matrices) can be obtained by
various matrix factorizing methods, among which the Singular Value Decomposition (SVD) is
prominent as it provides a factorization that minimises the Frobenius-norm error of an r-term
approximation. The level of compression (reduction of memory requirements) depends on
the rank r. In order to find a solution in such a low-rank form, it requires to perform several
operations occurring in the Fourier Galerkin method, particularly the FFT and element-wise
multiplication.

The linearity and the tensor-product structure of the Fourier transform facilitates to express
d-dimensional FFT of a tensor (of order d) as the sum of tensor products of 1-dimensional
FFTs, i.e.,

FN (ṽ) =
r∑
i=1
c [i]FN1(b(1)[i])⊗FN2(b(2)[i]).

For the same number of tensor components in all directions j, i.e. Nj = N , this d-dimensional
FFT algorithm has a complexity O(drN logN), which is much better than O(dNd logN) for
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the full tensor, when the rank r is kept low. Note that this operation does not change the
rank of a transformed tensor.

Another operation that occurs in the Fourier-Galerkin method is the sum and the element-
wise (Hadamard) product of two tensors in low-rank format. In the case of the CP format it
is computed as:

ṽ + w̃ =
r∑
i=1
cv [i]

(
b

(1)
v [i]⊗ b(2)

v [i]
)

+
s∑

k=1
cw [k]

(
b

(1)
w [k]⊗ b(2)

w [k]
)
,

ṽ � w̃ =
r∑
i=1

s∑
k=1
cv [i]cw [k]

(
b

(1)
v [i]� b(1)

w [k]
)
⊗
(
b

(2)
v [i]� b(2)

w [k]
)
.

While addition of two tensor costs no floating point operations and only requires more memory,
the element-wise multiplication has a complexity of O(rsdN), which is significantly less than
the Nd operations for full tensors, especially when the ranks r and s are much smaller than
N .

6.3.1.2 Tucker format

The decomposition of higher order tensors has many variants. The Tucker format represen-
tation is linked to the definition of a tensor subspace V = ⊗d

j=1 Vj where Vj is a subspace
of RNj generated by the span of vectors {b(j)[i] | i = 1, . . . , rj}; these vectors, which may be
a frame, are typically chosen as an orthogonal or orthonormal basis. The Tucker format is
then a linear combination of tensor products of all possible combinations of basis vectors in
different directions, i.e.

v ≈
r1∑
i1=1
· · ·

rd∑
id=1
c [i1, . . . , id]

d⊗
j=1

b(j)[ij ] ∈ RN ,

where the core c ∈⊗d
α=1 Rrα is a tensor of order d. The CP format is then a special form of

the Tucker format with a diagonal core. Note that naturally there can be different number of
basis vectors in different directions.

6.3.1.3 The Tensor train (TT) format

The tensor train is another format which is suitable for the decomposition of higher order
tensor. The idea is based on recursive decompositions done sequentially along the tensor’s
individual spatial dimensions. For tensors of order 3, the decomposition of the tensor of size
N ×N ×N is computed in two steps. Using the standard SVD algorithm, the decomposition
is first computed on the reshaped matrix of size N ×N2. It is followed by the decomposition
of the reshaped right-singular vectors, i.e. of the matrix of size N ×N . The above recursive
decomposition thus leads to

v =
r1∑
i1=1

r2∑
i2=1

b(1)[1, :, i1]⊗ b(2)[i1, :, i2]⊗ b(3)[i2, :, 1],

where the vectors b(j)[ij−1, :, ij ] ∈ RNj are vectors in direction j. The tensor’s components
can be explicitly written for k = (k1, k2, k3) as

v [k] =
r1∑
i1=1

r2∑
i2=1
b(1)[1, k1, i1]b(2)[i1, k2, i2]b(3)[i2, k3, 1].
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For d = 2 it is identical to the CP format.

The tensor train format in (6.3.1.3) is again expressed as a linear combination of rank one
tensors, on which a d-dimensional FFT can be applied through a series of one-dimensional FFTs
on the train carriages along the second index, i.e. applied on the vectors b(j)[ij−1, :, ij ] ∈ KNj

for all ij . The operations addition or element-wise multiplication are discussed in the
Appendix 6.A.3.

6.3.1.4 Rank truncation

Rank truncation is the way to reduce computational complexity by a reasonable compromise
in the precision of the low-rank approximations. It is particularly necessitated by the fact
that operations on low-rank tensors like addition and element-wise multiplication usually
inflate the representation rank r, potentially at a very fast rate, which is detrimental to a fast
computation. On the other hand, in the resulted representation, a large part of the r terms
are not essential and can be given up without or with minor loss of accuracy, if done correctly.

Rank truncations of tensors in the three low-rank formats are all based on QR decomposition,
SVD, or high order SVD (HOSVD) [53], which provide optimal or suboptimal truncations
and error estimates.

Other truncations are also possible. Particularly, the element-wise multiplication of two
tensors with rank r results in a tensor of rank s = r2, which is truncated with computational
complexity O(Ns2) for CP and Tucker and O(Ns3) for TT format. In case of higher rank r
of the original tensors, the truncation become computational bottleneck. To speed up the
basis orthogonalization procedure, the basis with relatively small norms can also be removed
before the orthogonalization to trade accuracy for efficiency. This is usually beneficial in an
iterative solver.

We supplement a more detailed introduction to the truncation procedure in each low-rank
format in the Appendix 6.A.

6.3.2 Applications of low-rank approximations on the linear systems

Here, we discuss the application of low-rank formats on the linear systems (6.1), which are
again stated here for the reader’s convenience

C̃︷ ︸︸ ︷
P̂
−1∇̂∗NFN ÃF−1

N ∇̂N û =

b̃︷ ︸︸ ︷
−P̂−1∇̂∗NFN ÃE,

P̂
−1∇̂∗NI∗F2N−1AF−1

2N−1I∇̂N︸ ︷︷ ︸
C

û = −P̂−1∇̂∗NI∗F2N−1AE︸ ︷︷ ︸
b

.

The solution vector u (or their Fourier coefficients û = Fu) stores the values of the
trigonometric polynomial on the d-dimensional regular discretisation grid. Therefore the
solution vector can be naturally represented as a tensor of order d, which allows a low-rank
representation. In order to avoid the computation of the full tensor and its decomposition, the
low-rank tensor û is computed by a suitable iterative solver introduced in 6.3.3. It requires to
perform matrix vector multiplication for a low-rank tensor v , which is approximated as

C̃v ≈ T P̂−1T ∇̂∗NFNT ÃF−1
N ∇̂Nv ,

Cv ≈ T P̂−1T ∇̂∗NI∗F2N−1T AF−1
2N−1I∇̂Nv ;
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similarly, the right-hand side of the linear systems is approximated by a low-rank tensors

b̃ = −T P̂−1∇̂∗NFN ÃE,

b = −T P̂−1∇̂∗NI∗F2N−1AE.

These approximations involve several operations in low-rank formats such as differentiation,
divergence, Fourier transform, and the truncation operator T , which keeps the rank r at
an affordable level. The operations are tabulated in the Table 6.3.1 together with the
corresponding implementations in low-rank format and their impact on the rank r.

Operation low-rank tensor implementation Rank r

Differentiation (gradient) element-wise multiplication remains unchanged
Divergence element-wise multiplication and addition is increased
Evaluation of material law element-wise multiplication is increased
d-dimensional FFT series of 1D FFTs remains unchanged
Preconditioning element-wise multiplication is increased

Table 6.3.1: Operations and their implementations in low-rank formats

Since the material coefficients Ã,A and the preconditioner P−1 are diagonal or block-
diagonal for non-isotropic material coefficients, the related matrix-vector multiplications are
implemented as element-wise multiplications, which inevitably inflates the representation
rank of the tensors in low-rank format. We apply a rank truncation after each multiplication
to keep the computational complexity at a relatively low level, while maintaining reasonable
accuracy in the solution.

The application of the gradient and divergence in Fourier space is also implemented as
element-wise multiplications. The differentiation operator for trigonometric polynomials is by
nature a rank-1 tensor in the form

∇̂N = [2πiK1 ⊗ 1⊗ 1,1⊗ 2πiK2 ⊗ 1,1⊗ 1⊗ 2πiK3]

in the 3D setting, where Kα = (k ∈ Z ; |k| < N/2) is a vector of all discrete frequencies
in direction α. So the corresponding element-wise multiplication keeps the rank of tensors
unchanged. However, for the divergence the contraction along the first component of ∇̂N is
provided by the operation addition of two low-rank formats, which increases the rank, and
hence a truncation has to be performed.

The last operation that occurs in the system is the d-dimensional fast Fourier transform
(FFT) which is efficiently evaluated using 1-dimensional FFTs. Moreover the rank of the
tensor remains the same in this operation.

6.3.3 Linear solvers

For the full solver we have used preconditioned conjugate gradients, which is considered to be
the best available solver for FFT-based homogenisation [98, 99]. However, the linear systems
with low-rank approximations require solvers that are insensitive to small perturbations, as
the matrix-vector product is computed only approximately, due to the truncation of tensors.
Therefore conjugate gradient method that builds on the orthogonalisation of Krylov subspace
vectors using a short-term recurrence relation is inappropriate.
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The systems with low-rank approximations are solved here with minimal residual iteration

[123] which is closely related to Richardson iteration. The latter is well established in the
FFT-based community, as it corresponds to the original Moulinec-Suquet algorithm. Both
methods solve the linear system Cu = d , see (6.2) and (6.3) for details, by the iteration

u(i+1) = u(i) + ω (d − Cu(i))︸ ︷︷ ︸
r (i)

=
(
I − ωC

)
u(i) + ωd .

In the Richardson iteration, the parameter ω is chosen such that the iteration matrix (I−ωC)
has a norm smaller than one to guarantee convergence. A fixed value ω is set on the basis of
a priori knowledge about the extreme eigenvalues of the system matrix C, i.e.

ω = 2
λmin(C) + λmax(C) ,

because it satisfies the minimal norm of the iterative matrix as proposed in [103] for FFT-based
homogenisation. Here λmin(C) denotes the smallest positive eigenvalue, as the system matrix
is only positive semidefinite. In particular, the linear systems in (6.1) contains one zero
eigenvalue corresponding to the constant fields, while the linear systems that are formulated
in traditional FFT-based homogenisation for gradients fields contain many zero eigenvalues
corresponding to the eigenspace composed of divergence-free fields. In both cases the solver
produces the solution in the space of compatible fields.

In the minimal residual iteration, the parameter ω is chosen at each iteration as the
minimizer of the next residual r (i+1) over all increments of u in the direction of r (i)., i.e.

u(i+1) = u(i) + ω(i)r (i), with ω(i) =

(
C r (i), r (i)

)
‖C r (i)‖2

.

We adopt the latter method in this work, because of our observation that the minimal residual
iteration is more robust than Richardson iteration, for which we have observed a divergence
when a massive truncation has been used during the iterations. For a low-rank approximation
of a solution vector, note that the solver has to deal with the matrix vector product Cu(i),
which is computed only approximately (6.3) to limit the growth of the solution rank. The
rank also grows by the operation addition during the iteration. Therefore, a truncation is
included at each step of the low-rank variant of the minimal residual iteration, i.e.

u(i+1) = T [u(i) + ω(i)(d − Cu(i))].

6.4 Numerical results

The methodology described in the previous sections is tested on several numerical examples
with material parameters defined in section 6.4.1. We compare two numerical homogenisation
schemes: the Fourier-Galerkin method with numerical integration (GaNi) and a version with
exact integration (Ga), described in sections 6.2.2.3 and 6.2.2.2. The preconditioned linear
systems stated in (6.1) are solved by conjugate gradient method. The same systems that are
equipped with low-rank tensor approximations are solved by the minimal residual iteration,
which is discussed in section 6.3.3.

The numerical results were calculated using software FFTHomPy (FFT-based Homogenisa-
tion in Python), which is freely available at https://github.com/vondrejc/FFTHomPy; the
software contains examples, which are described in the following sections.
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6.4.1 Material parameters
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(a) : Square inclusion (�) in 2D
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(b) : Square (cube) inclusion (�) in 3D

Figure 6.4.1: Material coefficients (6.4.1) of the square and the cube inclusion defined by (6.4.1).
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(a) : Stochastic material (S) in 2D
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(b) : Stochastic material (S) in 3D

Figure 6.4.2: One sample of the stochastic material defined by (6.4.1).

Here, we present two material examples on which we did numerical tests. The first is
defined as

A�(x) = I(1 + ρχ(x))

where I ∈ Rd×d is the identity matrix and the parameter ρ = 10 corresponds to a material
contrast. The function χ : Y → Rd describing the topology of the inclusions is defined on a
unit cell Y = (−1

2 ,
1
2)d as

χ(x) =

1 for x such that xi < 0.3 for i = 1, . . . , d,
0 otherwise

,

which is also depicted in 2D in Figure 6.4.1. The corresponding low-rank approximations
have rank 2 for all three formats (CP, Tucker, tensor train).

As a second example, one sample of a stochastic material has been obtained using the
truncated Karhunen-Loève expansion [2] of the squared exponential Matérn covariance function
[89]. In order to obtain positive definite material coefficients, the exponential function has
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been applied on the expansion, which leads to the following form

AS(x) = I exp
(
C +D

∑
k∈I

c[k]ϕk(x)
)
.

The most important modes of the expansion has been selected (20 modes in 2D and 26 modes
in 3D) and the corresponding frequencies are collected in the index set I. The coefficients
c[k] for k ∈ I has been sampled from uniform distribution on the interval [−0.5, 0.5]. The
constants C and D scales the material coefficients such that the minimal eigenvalue of A is 1,
and the maximal 10. The particular sample that is used for the computation is plotted in
Figure 6.4.2. The material coefficients were approximated in low-rank formats with a rank set
to 10. For a comparison to the full solution, the full material coefficients have been recovered
in order to compute exactly the same problem.

All the numerical problems have been computed with the same number of discretisation
grids in each direction N = [N, . . . , N ] ∈ Rd.

6.4.2 Behaviour of linear systems during iterations
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Figure 6.4.3: Evolution of the norm of residua during minimal residuum iteration; computed in
2D for N = 1215 and in 3D for N = 135.

The evolution of the norm during the minimal residual iteration is investigated because
it describes well the character of the low-rank approximations. The numerical results in
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Figure 6.4.3 depict the Euclidean norm of the residuum r = d − Cu(i)

‖r‖ =
( ∑
k∈ZN

∣∣∣r [k]
∣∣∣2) 1

2

because it corresponds to the L2-norm of the corresponding trigonometric polynomial. Note
that since the problem is solved in Fourier space, the residuum components agree with the
Fourier coefficients of the corresponding trigonometric polynomial.

Although the truncation of the growing tensor’s rank can be provided by a tolerance to
an approximation error, it is difficult to set up the parameters properly during the solver.
Particularly it may happen that the rank significantly increase resulting in unnecessary
computational demands, especially when the tensors are far away from the solution. Therefore
the truncation has been performed to a fixed rank. The solution which is from a large
dimensional space RN with the dimension ∏d

α=1Nα is approximated with a significantly
smaller number of parameters. Therefore there is always a residual error which can be
diminished only by an increasing rank of the low-rank formats. Note that the rank-one tensors
occurring in all three low-rank formats are automatically computed by a solver and are thus
suboptimal global basis vectors for the particular problem. Therefore the method can be seen
as a model order reduction technique.

From the results in Figure 6.4.3, we can observe that solutions with higher rank have larger
potential in reducing the norm of residuum regardless the discretisation method (Ga and
GaNi), material problem (� and S), or the low-rank format (CP, Tucker, TT). This proposes
a rank adapting solver that starts with a lower solution rank and increases the rank during
the iterations. We also notice that the norms of residuum during iterations decrease with
higher rate for the problem with the square inclusion (material �), however, the rate is more
stable for the material S. Although, the material � was systematically computed with GaNi
method and material S with Ga, which is in accordance with the recommendation in [149],
the discretisation method has no influence on the character of the behaviour during iterations.
These finding are in agreement with [91] analysing the stochastic linear systems and solvers
approximated with low-rank approximations.

Note that the computation of the Frobenius norm of tensors in Tucker format is computa-
tionally demanding. Therefore, we have used the equivalent Frobenius norm of the Tucker’s
core, which can be computed much faster.

6.4.3 Algebraic error of the low-rank approximations

In the Figure 6.4.4, the approximation properties of the low-rank formats are depicted. As an
criterion, the relative algebraic error between the homogenised properties of low-rank solution
AH,N ,r and of the full solution AH,N has been used, i.e.

relative error = AH,N −AH,N ,r

AH,N
.

This is chosen because the error in the homogenised properties corresponds to the square of
the energetic semi-norm (norm on zero-mean fields) of the algebraic error between the full
solution and the low-rank approximation

‖uN − uN ,r‖2A = a
(
∇uN −∇uN ,r,∇uN −∇uN ,r

)
= AH,N ,r −AH,N ;
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Figure 6.4.4: Relative errors (6.4.3) of low-rank solutions computed in 2D for N = 1215 and in
3D for N = 135.

for the derivation see [149, Appendix D]. We also note that the full solution uN has been
computed using conjugate gradients with high accuracy (tolerance 10−8 on the norm of the
residuum) to obtain a solution that is close to the exact one. The low-rank solution has been
obtained from minimal residual iteration, which was stopped when the residuum failed to be
decreased. The minimal residual iteration was used to provide low-rank solution with the
minimal norm of residuum.

We can observe that the results are again similar regardless of the discretisation method
(Ga and GaNi), material problem (� and S), or the low-rank format (CP, Tucker, TT). An
increase in the solution rank leads to a significant reduction of the relative error. However,
the low-rank approximations of the material S reach the threshold error corresponding to
the full approximate solution obtained from the conjugate gradients. It also shows that the
low-rank method is more accurate for a problem with continuous material property (material
S) than for the one with discontinuous coefficients (material �).

6.4.4 Memory and computational efficiencies

Here, we discuss the computational and memory requirements to resolve the linear system
using low-rank approximations. Additionally to the previous examples, the CPU times and
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Formats
Operations Element-wise product FFTd Truncation

full Nd O(Nd logN ) —
CP dNrs O(dNr logN) O(dNr2)
Tucker dNrs+ rdsd O(dNr logN) O(dNr2 + rd+1)
TT dNr2s2 O(dNr2 logN) O(dNr3)

Table 6.4.1: Asymptotic computational complexities in terms of floating point multiplications.
The operations are performed on full tensors of order d and shape (N, . . . , N), and on the same
tensors in their CP, Tucker, and tensor-train (TT) formats with maximum rank r and s (s for the
second operand in a binary operation).

format memory requirements
full Nd

CP dNr
Tucker dNr + rd

TT 2Nr + (d− 2)Nr2

Table 6.4.2: Memory requirements to store tensors of order d with shape (N, . . . , N) for full, CP,
Tucker, and tensor-train (TT) formats with maximum rank r.

approximation properties of low-rank formats were tested for an anisotropic material. The
heterogeneous material coefficients A� and AS were modified by adding a spatially constant
anisotropic material tensor B, i.e.

Ã•(x) = A•(x) +B,

where the matrices

B =
(

5.5 −4.5
−4.5 5.5

)
, B =

 4.25 −3.25 −1.25
√

2
−3.25 4.25 1.25

√
2

−1.25
√

2 1.25
√

2 7.5


have eigenvalues (1, 10) in 2D and (1, 5, 10) in 3D.

2D, � 3D, �
N 45 135 405 1215 5 15 45 135 175
r (isotropic) 3 3 5 7 3 3 3 5 5
r (anisotropic) 5 11 21 31 3 3 5 11 11

Table 6.4.3: Rank r of low-rank solutions that reach the same accuracy as the full solution for
various values of N , for isotropic and anisotropic material �. The full solver has been computed
with grid size (N, . . . , N) while sparse solver with (3N, . . . , 3N). The stopping criterion of conjugate
gradients for the full solver was set to 10−6 on the norm of residuum.

As we are using several low-rank formats and several operations on them, the computational
complexities and memory requirements are summarised in Tables 6.4.1 and 6.4.2. The memory
requirements of the FFT-based systems are controlled by memory requirements for material
coefficients, preconditioner, solution vector, and possibly other vectors needed to store as
a requirement of the linear solver. Provided that the ranks are kept small, the memory of
low-rank solvers scales linearly with N , while full solver scales with Nd, which makes the
method effective particularly for tensor with high order.
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Figure 6.4.5: The CPU time of Ga solver to solve the problem with isotropic (1st row) and
anisotropic (2nd row) material �. The full solution has been computed on a grid of size (N, . . . , N)
while the low-rank solution on the grid (3N, . . . , 3N) with various solution ranks to achieve the
same level of accuracy as the full scheme. The stopping criterion of conjugate gradients for the
full solver was set to 10−6 on the norm of residuum.

We compare the CPU time of full and low-rank solvers for homogenisation with exact
integration (Ga) on the same level of accuracy measured by the energetic norm. It is achieved
by the following procedure. The reference full solution was computed using conjugate gradient
method on the regular grid (N, . . . , N) with the tolerance 10−6 on the norms of residua. In
order to achieve the same accuracy as the full solution, the low-rank solver was run on a
bigger grid (αN, . . . , αN) with the multiplier α = 3. The rank of low-rank approximations
was increased step-by-step until it achieved a required error tolerance defined in (6.4.3). The
iterations of the low-rank solver (for a given rank) are stopped when the residuum fails to
decrease. This procedure, which creates a great possibility for a rank reduction in the low-rank
solution, is applicable only for problems that allow an exact integration of material coefficients
(here material �).

The results in Figure 6.4.5 shows that the CPU time scales as Nd for a full solution, and
almost linearly for low-rank solutions on the isotropic material �. In the anisotropic cases
the time costs of low-rank solutions are relatively higher but still cheaper than that of the
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Figure 6.4.6: The CPU time of GaNi solver to solve the problem with isotropic (1st row) and
anisotropic (2nd row) material S. Both the full and low-rank solution are computed on the same
grid. The stopping criterion of conjugate gradients for the full solver was set to 10−6 on the norm
of residuum. The minimal residuum iteration for the low-rank approximation was computed with
various rank to achieve a required error tolerance defined in (6.4.3).

full solution. The difference in these two cases is due to the different ranks of the low-rank
solutions. For isotropic material �, the solution rank increases only slowly with N , while for
its anisotropic counterpart the rank increases at a faster rate (as tabulated in the Table 6.4.3).
In general, the results show that the low-rank solver are significantly faster for larger N ,
despite being run on a larger computational grid.

We also did the comparison of both solvers for the isotropic and anisotropic material S.
However, the smooth material S is better suited for the homogenisation with the numerical
integration (GaNi), see the comparison in [149]. Therefore, the comparison of the solvers
is run on the same discretisation grid. The ranks of the low-rank solution are chosen such
that it achieves a relative error (as defined in (6.4.3)) below 10−3 or 10−6. The ranks remain
stable when N increases, which makes the CPU time of the low-rank solver almost linear in
N , as shown in Figure 6.4.6.
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6.5 Conclusion

This paper is focused on the acceleration of Fourier–Galerkin methods using low-rank ten-
sor approximations for spatially 2-dimensional and 3-dimensional problems of numerical
homogenisation. The efficiency of this approach builds on incorporation of the fast Fourier
transform (FFT) and low-rank tensor approximation into the iterative linear solvers. The
computational complexity is reduced to be quasilinear in the size of the discretisation and
linear in spatial dimension d, since on a low-rank tensor of order d, the d-dimensional FFT can
be performed as a series of one-dimensional FFTs. In this paper three formats — canonical
polyadic (CP), Tucker, and tensor train (TT) — have been considered, and all of them show
similar advantage in saving the computational cost.

The main results are summarised as the following:. The incorporation of low-rank tensor approximations lead to a significant reduction of
memory and computational cost in the solution of the homogenisation problems.. The method is more suitable for material coefficients with relatively smaller rank. The
low-rank approximation solvers computationally benefits from the better asymptotic
behaviour, see Table 6.4.1 and 6.4.2. The advantage is accentuated for problems of a
higher spatial dimension d leading to tensors with order d.. The low-rank approximation can be seen as a model order reduction technique.

Since the low-rank approximation provides a significant memory reduction it allows to
compute the solution on a finer grid. Therefore, the proposed method based on low-rank
approximation may provide more accurate solution than the conventional method based on
full tensors, especially when the material is of a relatively small rank.

6.A Low-rank tensor approximations

Here we provide more details of the low-rank tensor approximations techniques utilized in
this paper. This includes the approximation in CP, Tucker and tensor train formats.

6.A.1 The canonical polyadic format

A canonical polyadic (CP) or r-term representation v r of a tensor v ∈ KN1×···×Nd ( K is either
R or C) is a sum of r rank-1 tensors, i.e.

v ≈ v r =
r∑
i=1
c [i]

d⊗
j=1

b(j)[i]

with b(j) ∈ Kr×Nj and ⊗ denotes tensor product. This format has linear storage size
r
∑d
j=1Nj . But for d ≥ 3 and a given r, the construction of an error minimizing v r is not

always feasible [53, Proposition 9.10] because the space of CP format tensor with fixed r is
not closed [53, Lemma 9.11].
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6.A.1.1 Element-wise multiplication

The element-wise (Hadamard) product of two tensors of ranks r and s in CP format is
computed as:

v r � w s =
r∑
i=1

s∑
k=1
cv [i]cw [k]

d⊗
j=1

(
b

(j)
v [i]� b(j)

w [k]
)
.

This operation has complexity rs∑d
j=1Nj and the product has a new rank rs.

6.A.1.2 Fourier transform

Due to the linearity and tensor structure of the Fourier transform FN of a size N ∈ Nd, a
d-dimensional Fourier transform of a CP tensor is broken down to a series of 1-d Fourier
transform, i.e.,

FN (v r) =
r∑
i=1
c [i]

d⊗
j=1
FNj (b(j)[i]).

Hence a FFT on a CP tensor has complexity drN logN .

6.A.1.3 Rank truncation

Operations (e.g. element-wise multiplication) applied on tensors in CP format usually inflate
the representation rank. This calls for a truncation to a prescribed rank or error tolerance.

For d = 2, this reduction is done by rank truncation based on QR decomposition and singular
value decomposition(SVD). Let the matrices B(j) ∈ KNj×r collect the vectors {b(j)[i]}ri=1 for
the j-th dimension, we have their re-orthogonalisations B(1) = Q(1)R(1) and B(2) = Q(2)R(2)

by QR decompositions. A SVD R(1)R(2) = U (1)Σ(U (2))> facilitates the truncation. Suppose
U

(1)
k , U (2)

k and Σk are the truncated ones with rank k ≤ r, the truncated form of the CP
representation (6.A.1) is

vk =
k∑
i=1
c [i]b̂(1)[i]⊗ b̂(2)[i]

where b̂(1)[i], b̂(2)[i] are the columns of Q(1)U
(1)
k , Q(2)U

(2)
k respectively, and c [i] are the

diagonal entries of Σk.
For d ≥ 3, the k-rank form could be obtained by numerical error minimizing procedures

[53], e.g. Alternative Least-Squares method. But there is no guarantee that the procedures
would converge, and if they would, there is no guarantee that they converge to the global
optimum. This is due to the non-closedness of the set of rank-r CP tensors with d ≥ 3.

6.A.2 Tucker format

A Tucker format representation (or tensor subspace representation) of a tensor v ∈ KN1×···×Nd ∈
V is a linear combination of frames (usually orthogonal bases) of the tensor space V . Suppose
V = ⊗d

j=1 Vj , the subspace Vj has basis vectors {b(j)[ij ] ∈ KNj : 1 ≤ ij ≤ rj} with ranks
r = (r1, . . . , rd). The tensors ⊗d

j=1 b
(j)[ij ] for all 1 ≤ ij ≤ rj form the bases of the space V.

Then we have a unique coefficient c [i1, i2, . . . , id] for every v ∈ V such that

v ≈ vr =
r1∑
i1=1
· · ·

rd∑
id=1

cv [i1, i2, . . . , id]
d⊗
j=1

b
(j)
v [ij ],
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where c ∈ Kr1×···×rd is called the core tensor. Given any prescribed rank vector r, an error
minimizing approximation vr can be found by a high-order singular value decomposition
(HOSVD) [26]. When the vectors {b(j)[ij ] ∈ KNj : 1 ≤ ij ≤ rj} form only a frame of the
subspace V (e.g. after addition of two tensors), the core tensor is not unique, however, a
representation with orthogonal bases can be obtained by applying QR decomposition to the
frames and HOSVD to the accordingly updated core.

6.A.2.1 Element-wise multiplication

Let another Tucker format tensor with rank s be defined as

ws =
s∑
k

cw [k]
d⊗
j=1

b
(j)
w [kj ]

the element-wise (Hadamard) product of vr and ws has also a Tucker format

vr � ws =
t∑
l

c [l]
d⊗
j=1

b(j)[lj ]

where t = r � s and c = cv ⊗ cw , i.e. the Kronecker product of the two coefficient tensors.
So for any 1 ≤ j ≤ d, the index lj is related to ij and kj by lj = ijkj = ijrj + kj , and u is
obtained from v and w through

u
(j)
lj

= u
(j)
ijkj

= v
(j)
ij
� w(j)

kj
for 1 ≤ ij ≤ rj , 1 ≤ kj ≤ sj

Let N = maxiNi, r = maxi ri and s = maxi si, the computational complexity of the element-
wise product is bounded by dNrs+ rdsd, in which the first term is the cost for computing
{u(j)

lj
: 1 ≤ lj ≤ Rj}dj=1, and the second for the Kronecker product of coefficient tensors.

6.A.2.2 Fourier transform

The Fourier transform of vr is

FN (vr) =
r∑
i

c [i]
d⊗
j=1
FNj (b(j)[ij ])

which only involves the basis vectors. If FFT is applied, the complexity is of orderO(drN logN).

6.A.2.3 Rank truncation

The Tucker representation (6.A.2) can be obtained either by a HOSVD applied on a full
tensor or by an operation (e.g. element-wise multiplication) over other Tucker operands. In
the first case, an error minimizing rank truncation is readily available due to the property of
HOSVD:

σ
(j)
1 ≥ σ(j)

2 ≥ · · · ≥ σ(j)
rj , for j = 1, · · · , d,

where σ(j)
ij

is the 2-norm of the ij-th slice of the core tensor c cut on the j-th dimension. If
the truncation rank is kj < rj , the error of the truncated representation vk is bounded by

‖vr − vk‖ ≤

 d∑
j=1

rj∑
i=kj+1

(σ(j)
i )2


1/2

.
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In the second case the bases {b(j)[ij ]}
rj
ij=1 have to be re-orthogonalised first, and then a

HOSVD of the updated core tensor is to be made to facilitate the truncation as in the first
case. This procedure [53, as detailed in] is analogues to the re-orthogonalisation and SVD for
the 2D CP format representations, but with higher tensor order.

6.A.3 Tensor train format

A tensor train(TT) representation [115] of a tensor v ∈ KN1×···×Nd can be expressed as a
series of consecutive contractions of tensors b(j) ∈ Krj−1×Nj×rj of order 3 for j = 1, · · · , d,
which are the carriages of the tensor train. An equivalent expression in the form of tensor
products is

v ≈ vr =
r1∑
i1=1
· · ·

rd−1∑
id−1=1

b
(1)
v [1, :, i1]⊗ b(2)

v [i1, :, i2]⊗ · · · ⊗ b(d)
v [id−1, :, 1]

r is the TT-rank of v with a constrain r0 = rd = 1 to keep the elements of v scalars. The TT
format is stable in the sense that for any prescribed r an error minimizing vr can always be
constructed by a series of SVDs on consecutive matricisations of v .

6.A.3.1 Element-wise multiplication

Let another TT format tensor with rank s be defined as

ws =
s1∑
i1=1
· · ·

sd−1∑
id−1=1

b
(1)
w [1, :, i1]⊗ b(2)

w [i1, :, i2]⊗ · · · ⊗ b(d)
w [id−1, :, 1]

with b(j)
w ∈ Ksj−1×Nj×sj . The element-wise product of vr and ws can also be expressed in

TT format:

vr � ws =
t1∑
i1=1
· · ·

td−1∑
id−1=1

b(1)[1, :, i1]⊗ b(2)[i1, :, i2]⊗ · · · ⊗ b(d)[id−1, :, 1]

where t = r � s and b(j) = b
(j)
v ∗ b(j)

w . Here the ∗ denotes one type of Khatri–Rao product
[65] which makes Kronecker product only in the first and third dimensions, i.e. it yields an
order 3 tensor b(j) ∈ Krj−1sj−1×Nj×rjsj . The complexity of the element-wise product is of
order O(dNr2s2) with N , r and s as defined in the subsection 6.A.2.

6.A.3.2 Fourier transform

The Fourier transform of vr can also be carried out by doing 1-D transforms on each carriage:

FN (vr) =
r1∑
i1=1
· · ·

rd−1∑
id−1=1

FN1(b(1)
v [1, :, i1])⊗FN2(b(2)

v [i1, :, i2])⊗ · · · ⊗ FNd(b
(d)
v [id−1, :, 1])

in which the FNj (·) is made on the fibres along the second mode. If FFT is applied here, the
number of operations is of order O(dr2N logN).
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6.A.3.3 Rank truncation

The tensor train representation (6.3.1.3) can be obtained either by transforming a full tensor
into tensor train format by using d− 1 sequential SVDs applied on auxiliary matrices of the
tensor (known as TT-SVD) [115], or as a result of operations (e.g. additions or multiplications)
over tensor train operands. In the first case, an error minimising rank truncation could be
directly carried out in the TT-SVD process. The truncation has an error bound (∑d−1

k=1 ε
2
k)1/2,

where εk is the Frobenious norm error introduced by the truncation of the k-th SVD. In the
second case, a re-orthogonalisation has to be done in the first place, this is followed by d− 1
sequential SVDs on unfolded carriages. This process is known as TT-truncation (also called
rounding).

For the first case, the complexity of truncation is the same as that for the TT-SVD, which is
of order O(Nd+1). A cheaper alternative for TT-SVD is TT-cross approximation as introduced
in [114]. The complexity of TT-truncation in the second case is of order O(dNr3).
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Chapter 7
Conclusions

This thesis aimed at contributing to a deeper understanding and development of spectral
methods for computational homogenization of periodic microstructures. In particular, we
focused on three major research objectives.

(i) Understanding the effect of discrete Green’s operator preconditioning.

(ii) Minimization of discretization artifacts of spectral methods.

(iii) Reduction of computational requirements of spectral methods.

We discussed these topics in the form of the collection of five manuscripts adapted to
Chapters 2-6.

In the first part, related to objective (i), we focused on the effect of the discrete Green’s
operator preconditioner on the mesh-independent convergence rate of the conjugate gradient
(CG) method. The CG method benefits from the clustering of eigenvalues (at least in
exact arithmetic). We inspect the spectrum of the preconditioned linear system arising
from discretization of homogenization problems, i.e., elliptic partial differential equations.
In Chapter 2, we analyze the distribution of eigenvalues of general diffusion or elasticity
problems, discretized by the conforming FE method and preconditioned by the discrete Green’s
operator of the reference problem. We provided a constructive proof that bounds on these
eigenvalues are defined by the local properties of the material data and the reference material
data. Bounds are obtained from the data on supports of FE basis functions. Therefore, these
eigenvalue bounds are independent of the characteristic element size, which suggests that the
condition number (ratio of the biggest and smallest eigenvalue) of the preconditioned linear
system is independent of the problem size. FE basis functions (the corresponding degrees
of freedom) are connected to the same eigenvalues if their supports are inside a subdomain
where the material and the reference material do not change. Therefore, mesh refinement in
the interior of a homogeneous subdomain does not generate additional distinct eigenvalues
(in exact arithmetic).

We proposed an algorithm that provides guaranteed, two-sided, easily accessible eigenvalues
bounds. For pixel/voxel representation of geometry with element-wise constant data, our
approach provides eigenvalue bounds in linear complexity, i.e., O(n) arithmetic operations
must be performed. This affordable guaranteed lower bound on the smallest eigenvalue gives
access to better control of solution precision over the iterative process, provided by accurate
algebraic error estimates; see, e.g., [94]. Additionally, we investigated how the choice of the
reference material affects the convergence of the CG method. The provided proof of the direct
correspondence between the reference material, material of the problem, and the resulting
eigenvalues renders the optimization of the reference material data more accessible. The
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7. Conclusions .............................................
closer the reference material is to the real material of the sample, the better conditioning the
preconditioned discretized problem has and the spectrum contains a small number of clusters,
recall, e.g., Section 2.7. However, the FFT technique is, up to now, restricted to homogeneous
reference problems. We also experimentally observed that the weighted mean values reference
material can reduce the number of CG iterations compared to the conservative choice with
identity matrix; recall, e.g., Section 4.6.3.

The mesh-size independent CG iteration count is observable also for other, non-Galerkin,
discretization schemes. Therefore, in Chapter 3, we extended the results of Chapter 2
beyond the Galerkin approach with FE basis functions. We used the assumption that the global
matrix of the linear system can be obtained as a sum of local symmetric positive semidefinite
matrices. In these cases, the eigenvalue bounds depend solely on local material data and on
connections between the degrees of freedom, i.e. on the properties of the discretization. We
demonstrated the approach of obtaining the eigenvalues bounds for the finite difference method,
the stochastic Galerkin FE method, and the method of algebraic multilevel preconditioning.

In the second part, related to objective (ii), we focused on minimizing discretization artifacts
of FFT-based methods. In Chapter 4, we derived a micromechanical solver in a standard
FE manner, enhanced by a discrete Green’s operator preconditioner. We provided a linear
algebra-based viewpoint on the discretization of the micromechanical problems, i.e. elliptic
PDEs. We explained how regular FE discretization preserves the efficient block-circulant
structure of the preconditioner, which allows us to use the FFT technique for its efficient
inversion and application. Thanks to FFT, FE discretization maintains the quasilinear
computational complexity typical of spectral homogenization solvers.

Using an exactly integrated FE scheme delivered ringing-free results. However, this accuracy
comes at the cost of higher memory consumption because the exactly integrated trilinear
element needs 8 quadrature points (or at least 5 quadrature points for 5 linear tetrahedral
elements). This expands the memory requirements of the FE scheme in comparison to
standard spectral schemes with 1 quadrature points. However, the scheme is derived in
a flexible manner and allows for the use of an arbitrary integration rule. We tested an
under-integrated trilinear FE with 1 quadrature point per element/voxel. However, this
more memory efficient scheme does not completely eliminate discretization artifacts, as was
explained later in Chapter 5. This observation suggests that the price of higher memory
cost has to be paid for simulations of localized phenomena.

Additionally, we extended the range of FFT-based methods from simple regular grids (one
discretization node per pixel/voxel) to more general regular grids (multiple discretization
nodes per pixel/voxel), recall Fig. 4.2. This, e.g., allows discretizations with equilateral
triangles with minimal mesh anisotropy, which is useful for modeling of crack propagation in
the concrete. We also showed the equivalence between our displacement-based scheme and
the strain-based scheme with the FE projection operator, used in Chapter 5. This readily
extends the application range of our method for obtaining the eigenvalue bounds discussed in
Chapter 2.

Chapter 5 followed the discussion on ringing artifacts that naturally appear in the solutions
of the Fourier-Galerkin discretization. In this chapter, we used the strain-based formulation
that considers the deformation gradient as the primary degree of freedom, and enforce the
compatibility of gradient fields with the compatibility projection operator, recall Section 5.2.1.
We derived a general formulation of the projection operator for arbitrary gradient stencils, and
described the derivation of finite-difference stencils, a least-square stencil, and a FE stencil.

We showed in Section 5.3.4 that the ringing phenomena pollutes the solution stress-strain
field and cannot be used for modeling of problems with localized deformations. Beside
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the Gibbs ringing of Fourier basis, the solution is prone to ringing artifacts arising from
missing degrees of freedom in the formulation of the deformation gradient. This phenomenon
occurs because a single deformation gradient tensor is not enough to describe all admissible
deformations of a pixel/voxel. One of the main results of the Chapter 5 is the observation
that for full elimination of all ringing artifacts we need gradient stencils that are equivalent
to FE discretization. This speaks in favor of the FE scheme from Chapter 4.

The third part, related to objective (iii), was dedicated to the reduction of computa-
tional costs of spectral methods. High-resolution 3D microstructures are extremely memory
demanding, and handling such datasets is still unaffordable for widespread use.

In Chapter 6, we explored the potential of low-rank tensor approximation techniques in
the context of spectral solvers. Low-rank tensors can sparsely express d-dimensional fields
as the outer products of d vectors. This makes them suitable for spectral methods with the
regular discretization grids, which also have an outer product structure. Standard arithmetic
operations such as addition, element-wise multiplication, or FFT can be performed with
low-rank tensors, thus the whole numerical solution process can be performed directly in a
compressed, low-rank format. Performing such operations can increase the representation
rank of the tensors, which requires rank truncation, i.e. their reparametrisation with a smaller
rank while keeping a reasonable accuracy [115, 13].

We studied performances of the canonical polyadic, Tucker, and Tensor-Train low-rank ten-
sors format [54, 72] on the series of scalar linear elliptic homogenization problems. We showed
that the memory and computational costs of the FFT-based methods can be significantly
reduced while keeping rounding errors at an acceptable level. In this chapter, we showed
the potential of an efficient reduced-order modeling that may be attractive for large-scale
engineering problems.

7.1 Perspectives for future research

We showed in Chapter 2 and Chapter 4 that the proper choice of the reference material
can lead to a significant decrease in the number of CG iterations. The change of the reference
material in the displacement-based scheme is straightforward. However, in the strain-based
scheme a simple change of reference material in a discrete Green’s operator can significantly
slow down convergence, if the method is not implemented properly. Therefore, we are currently
working on manuscript that discusses this problem and suggests an alternative implementation
strategy for strain-based scheme, solved by the CG method.

Combining the FE scheme of Chapter 4 with the low-rank tensor technique of Chapter 6
can deliver promising results and is in the scope of my near-future work. Furthermore, in
Chapter 6, we observed that Krylov solvers improve the solution with a rank-one update
in every iteration. This feature can be utilized to speed up the solver by an adaptive rank
strategy. I intend to explore and exploit this observation to speed up the low-rank technique.

An effective homogeneous algorithmic tangent can be obtained from solutions to microme-
chanical problems. Guaranteed upper and lower bounds on effective tangents are necessary
to quantify the quality of obtained numerical results. The upper bound is easily accessible
(based on minimization principles) from the solutions of the primal (original) homogenization
problems. However, the lower bound requires solutions to the dual homogenization problems.
In an upcoming manuscript, we discuss the problem of guaranteed upper and lower bounds
on effective tangents for FE discretization in 3D. We derive a technique for the construction
of proper FE approximation subspaces that are necessary for solving the dual problems.
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