
Bachelor thesis

Czech
Technical
University
in Prague

F2 Faculty of Mechanical Engineering
Department of Mechanics, Biomechanics and Mechatronics

Trajectory planning for 5-axis hybrid
parallel-serial Delta robot

Filip Zítek

Supervisor: Ing. Petr Beneš, Ph.D.
Field of study: Theoretical Fundamentals of Mechanical Engineering
August 2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483604Osobní číslo:FilipJméno:ZítekPříjmení:

Fakulta strojníFakulta/ústav:

Zadávající katedra/ústav: Ústav mechaniky, biomechaniky a mechatroniky

Teoretický základ strojního inženýrstvíStudijní program:

bez oboruStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Plánování trajektorie pro 5-osý hybridní paralelní-sériový delta robot

Název bakalářské práce anglicky:

Trajectory planning for 5-axis hybrid parallel-serial delta robot

Pokyny pro vypracování:
1. Seznamte se s kinematikou paralelních robotů typu delta včetně jejich hybridních modifikací.
2. Nastudujte řešení přímé a inverzní kinematické úlohy.
3. Připravte plánování trajektorie s využitím PH (Pythagorean-Hodograph) křivek.
4. Funkčnost vytvořeného plánovače trajektorie ověřte experimentálně.

Seznam doporučené literatury:
[1] Su, T., Cheng, L., Wang, Y.,Liang, X.,Zheng, J., Zhang, H.: Time-Optimal Trajectory Planning for Delta Robot Based
on Quintic Pythagorean-Hodograph Curves, IEEE Access, vol. 6, pp. 28530-28539, 2018
[2] Merlet, J.P.: Parallel Robots. Solid Mechanics and Its Applications, vol. 128, Heidelberg, Springer 2006
[3] Kuřina, J.: Plánování trajektorie paralelního robota, bakalářská práce, FS ČVUT v Praze, 2017

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Beneš, Ph.D. odbor mechaniky a mechatroniky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 15.08.2022Datum zadání bakalářské práce: 22.04.2022

Platnost zadání bakalářské práce: _____________

doc. Ing. Miroslav Španiel, CSc.

podpis děkana(ky)
prof. Ing. Michael Valášek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Petr Beneš, Ph.D.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Annotation

Author: Filip Zítek
Thesis title in English: Trajectory planning for 5-axis hybrid parallel-serial Delta robot
Thesis title in Czech: Plánování trajektorie pro 5-osý hybridní paralelní-sériový Delta

robot
Academic year: 2021/2022
Department/Division: Department of Mechanics, Biomechanics and Mechatronics,

Division of Mechanics and Mechatronics
Supervisor: Ing. Petr Beneš, Ph.D.
Bibliografic information: Number of pages: 55

Number of figures: 24
Number of attachments: 1× CD

Keywords: trajectory planning, Delta robot, hybrid kinematic structure,
Pythagorean-Hodograph curves

Klíčová slova: plánování trajektorie, Delta robot, hybridní kinematická struktura,
Pythagorean-Hodograph křivky

Abstract: This bachelor thesis deals with trajectory planning for a 5-axis
hybrid parallel-serial Delta robot. The task is to prepare a planner
using Pythagorean-Hodograph curves for blends between lines.
First, the kinematics of the robot is studied. After that, the
Pythagorean-Hodograph curve for blends is derived, and the plan-
ner is created. In addition, a user interface is provided for easier
use of the planner. Finally, the functionality of the trajectory
planner is verified experimentally.

Abstrakt: Tato bakalářská práce se zabývá plánováním trajektorie pro
5-osý hybridní paralelní-sériový Delta robot. Úkolem je připravit
plánovač s využitím Pythagorean-Hodograph křivek pro napojení
úseček. Nejprve je nastudována kinematika tohoto robotu. Poté
je odvozena Pythagorean-Hodograph křivka pro napojování a je
vytvořen plánovač, spolu s uživatelským rozhraním pro snazší
ovládání. Na závěr je funkčnost vytvořeného plánovače ověřena
experimentálně.

Acknowledgements

I would like to thank my supervisor
Ing. Petr Beneš, Ph.D., for guiding my
bachelor thesis. I am also grateful to
Testbed for Industry 4.0 for the oppor-
tunity to work on this topic. Specifically,
I would like to thank Baran Alikoç, Ph.D.
and Ing. Vojtěch Šustr for providing con-
sultations and valuable suggestions and
Bc. Václav Kubáček for helping me with
the experiment. Thanks should also
go to my family and friends, especially
Bc. Šárka Trhoňová, for their tremendous
support.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, August 9, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 9. srpna 2022

iv

Abstract

This bachelor thesis deals with trajec-
tory planning for a 5-axis hybrid parallel-
serial Delta robot. The task is to prepare
a planner using Pythagorean-Hodograph
curves for blends between lines. First,
the kinematics of the robot is studied.
After that, the Pythagorean-Hodograph
curve for blends is derived, and the plan-
ner is created. In addition, a user interface
is provided for easier use of the planner.
Finally, the functionality of the trajectory
planner is verified experimentally.

Keywords: trajectory planning, Delta
robot, hybrid kinematic structure,
Pythagorean-Hodograph curves

Supervisor: Ing. Petr Beneš, Ph.D.
Odbor mechaniky a mechatroniky,
Technická 4,
160 00 Praha 6

Abstrakt

Tato bakalářská práce se zabývá plá-
nováním trajektorie pro 5-osý hyb-
ridní paralelní-sériový Delta robot. Úko-
lem je připravit plánovač s využitím
Pythagorean-Hodograph křivek pro napo-
jení úseček. Nejprve je nastudována kine-
matika tohoto robotu. Poté je odvozena
Pythagorean-Hodograph křivka pro na-
pojování a je vytvořen plánovač, spolu s
uživatelským rozhraním pro snazší ovlá-
dání. Na závěr je funkčnost vytvořeného
plánovače ověřena experimentálně.

Klíčová slova: plánování trajektorie,
Delta robot, hybridní kinematická
struktura, Pythagorean-Hodograph
křivky

Překlad názvu: Plánování trajektorie
pro 5-osý hybridní paralelní-sériový
Delta robot

v

Contents

1 Introduction 1

2 Serial, parallel and hybrid robots 3

2.1 Comparison of different kinematic
structures . 3

2.2 Applications of Delta robots 4

2.3 5-axis hybrid Delta robot 5

2.3.1 Forward and inverse kinematics 6

2.3.2 Workspace 9

3 Trajectory planning 10

3.1 Types of used path segments . . . 12

3.1.1 Line . 12

3.1.2 Arc . 13

3.2 Types of used time scaling
functions . 16

3.2.1 S-curve velocity profile 16

3.2.2 Quintic polynomial 18

3.3 Blends . 21

3.3.1 Properties of
Pythagorean-Hodograph curves . . 21

3.3.2 Derivation of the curve for
blends . 22

3.3.3 Reparametrization 26

3.3.4 Velocity and acceleration 27

3.3.5 Use case in a blend 29

3.4 Overruns . 31

3.5 Algorithm of the trajectory
generator . 32

3.5.1 Generating the segments 32

3.5.2 Generating the trajectory . . . 33

3.6 User interface 35

4 Experiment 38

4.1 Setup of the experiment 38

4.2 Generated trajectories 40

4.2.1 Pick-and-place trajectory . . . 40

4.2.2 Cuboid trajectories 41

4.3 Results . 42

5 Conclusion 44

Bibliography 46

vi

Figures

2.1 5-axis Delta robot in Testbed for
Industry 4.0 at CIIRC CTU 5

2.2 3D model of the 5-axis Delta robot 6

2.3 Kinematic model of the 5-axis
Delta robot (left) and a detail of the
movable platform and serial wrist
part (right) . 7

2.4 Side view on one of the parallel
arms of Delta robot 7

2.5 Workspace of the Delta robot . . . 9

3.1 Circular path in space defined by
three points . 13

3.2 S-curve motion law 17

3.3 Quintic polynomial motion law
(blue curve) connected to S-curve
motion laws of adjacent segments . 19

3.4 Geometry of control points of the
blending curve 23

3.5 Curvature of the PH curve used for
blend as a function of its arc length 24

3.6 Eight different solutions for u0, u2
and v2 shown in an example for ϱ “ 1
and φ “ 10° . 25

3.7 A blend using a PH curve. Natural
parametrization with constant ∆t
(left) and reparametrized for constant
arc length increments ∆s (right). . 26

3.8 A blend between two lines 29

3.9 Orientation of the blend in x2y2
plane with respect to the world
coordinate frame x1y1z1 30

3.10 Overruns 31

3.11 First page of the user interface 36

3.12 Second page of the user interface 37

3.13 Third page of the user interface 37

4.1 Setup of the experiment 39

4.2 Gripper of the robot with attached
reflector . 39

4.3 Generated trajectories for two
different values of the blend radius 42

4.4 Pick-and-place trajectory 43

4.5 Cuboid trajectory with a small
blend radius . 43

4.6 Cuboid trajectory with a large
blend radius . 43

vii

Tables

4.1 The points creating the
pick-and-place trajectory 40

4.2 Segments of the pick-and-place
trajectory . 41

4.3 The points creating the cuboid
trajectory with a small blend radius 41

4.4 The points creating the cuboid
trajectory with a large blend radius 41

4.5 Segments of the cuboid
trajectories . 42

viii

Chapter 1
Introduction

Automation of manufacturing processes is a common trend in the industry. For
that, various types of robots are used depending on the application. For pick-and-
place operations, a Delta robot is often used. In its standard form, it has only
three actuated axes, and the end-effector cannot be rotated. A hybrid modification
of this robot can be created by adding a serial wrist to the parallel structure. Two
additional degrees of freedom are gained this way, and the end-effector can now
change its orientation in space.

One of these hybrid Delta robots is located in the Testbed for Industry 4.0 at
the Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), where it
serves research purposes. However, the current solution for trajectory planning
and control of this robot cannot handle all five axes simultaneously. Because of
that, the wrist part of the robot has been fixed in its position up to now, restricting
the application possibilities. Furthermore, only three pre-programmed modes of
operation are available, and there is no easy way to generate a custom trajectory
based on the needs of the user.

To use the full potential of the robot’s structure and kinematics, for example,
to use all five axes at the same time and be able to plan the necessary movement,
a trajectory planner must be created.

The aim of this thesis is to design such a trajectory planner. For that, a
kinematic model of the robot has to exist, as well as a solution for forward and
inverse kinematics. Thus, the suggested guidelines for this thesis are as follows.. Familiarize yourself with the kinematics of parallel robots of type Delta,

including their hybrid modifications. Study the forward and inverse kinematics. Prepare trajectory planning using PH (Pythagorean-Hodograph) curves. Verify the functionality of the created trajectory planner experimentally

Both the kinematic model and the forward and inverse kinematics are already
existing for our Delta robot. Therefore, the task is to study them and learn how
to use them. The trajectory planner should, in addition to the requirements
mentioned above, also be user-friendly so that anyone can work with the robot.
The definition of points in the workspace should be done in a way that would

1

.. 1. Introduction

be reasonable for a human to work with. However, at the same time, it should
be easily implementable in some higher-level motion planning system, which
would decide, for instance, based on computer vision, where the robot should
move. The movement along the generated trajectory should be as fast as possible
while respecting defined kinematic limits and remaining smooth to minimize the
vibrations of the mechanical structure.

Blending curves are used to shorten the path and eliminate the need to
stop when changing the direction of movement. Thus, the total duration of the
trajectory is shorter. In the current solution, arcs are used for the blending, but
that creates a discontinuous curvature along the path and causes vibrations. In
recent years, Pythagorean-Hodograph curves have been examined for the purpose
of blending curves. In our case, existing solutions were insufficient, so a modified
version was introduced.

To make the trajectory planner easy to use, a user interface with a visual
representation of the trajectory was created. As a consequence, it is not necessary
for the user to have programming skills.

This thesis is organized as follows. Chapter 2 gives a brief overview of the
different types of robots, shows some applications of Delta robots, and then
describes in detail the hybrid Delta robot for which the planner is created. In
Chapter 3, the blending curve is derived, and the trajectory planner with the
user interface is designed. The experimental verification of the planner is made in
Chapter 4. Chapter 5 concludes the thesis.

The trajectory planner was created in Matlab R2021a. All of the components
of the planner are available as a code in the attachments.

2

Chapter 2
Serial, parallel and hybrid robots

The most common type of kinematic structure of robots used in industry is
serial. Individual parts of such a robot are connected to adjacent bodies by
joints with exactly one actuated degree of freedom (DoF), for instance, revolute
or prismatic [1]. The distinctive feature of serial robots is an open kinematic
chain. On the contrary, parallel robots are mechanisms that contain a closed-loop
kinematic chain [1].

First, a few terms have to be explained. An operational space, also called a
task space, is the space where the robot performs its movement [2]. A workspace
is a subset of operational space that the robot can reach [2]. A joint space, also
called a configuration space, represents all possible values of actuator positions [2].

Repeatability is the maximum distance between the points reached for the
same desired position of the end-effector [1]. Absolute accuracy is the distance
between the desired final position and the actual final position [1].

2.1 Comparison of different kinematic structures

In general, serial robots are less precise than parallel robots [3]. Although the
repeatability of serial robots is decent, the absolute accuracy is poor [1]. The
reason is that all errors, such as the flexure of the individual links, geometrical
tolerances of joints, or backslashes in gearboxes, accumulate along the kinematic
structure. Even a tiny error in every joint or link causes a significant error in the
position of the robot’s end-effector [1]. Parallel robots are therefore more precise
since the errors are not added cumulatively.

Another disadvantage of serial robots is that every link has to hold, in addition
to the load mass, the weight of the following bodies up to the end-effector [3].
Thus, individual links are experiencing a bending moment. Because of that, they
need to be stiffened and are becoming even heavier [1]. Parallel robots are more
rigid because at least some links are subject to only tension or compression forces,
not a bending moment, and the load is distributed in multiple chains. Furthermore,
the links do not have to support the weight of the whole structure. Heavy parts,
such as motors, are fixed to the stationary frame. Therefore, the total possible
load capacity is considerably greater, and the mechanism can be more subtle [4].

This leads to another difference between serial and parallel structures. The
heavy bodies of serial robots experience high inertial forces, and thus velocity is

3

.................................. 2.2. Applications of Delta robots

limited, whereas parallel robots can operate with much higher velocities due to
lightweight and low-inertia bodies [3].

On the other hand, the workspace of a parallel robot is much smaller than
that of a serial robot of similar size [4]. This is caused by the mechanical structure
of the parallel robot. Additional factors, such as the limits of actuated and
passive joints or possible self-collisions of individual bodies, can further reduce
the workspace [1].

Another disadvantage of parallel structures is their complex kinematics [4].
Especially the inverse kinematics task is rather difficult, as can be seen in Sec-
tion 2.3.1. In addition, prospective singular configurations of parallel structures
create additional degrees of freedom that are not controllable and can lead to fatal
situations [4].

Hybrid robots combine serial and parallel structures. It extends the possi-
ble applications while minimizing the disadvantages of purely serial or parallel
structures. An example of a hybrid robot is a 5-axis Delta robot, described in
detail in Section 2.3. A serial wrist arm is mounted on the movable platform of
a standard parallel Delta robot. Hence, two additional degrees of freedom are
added, allowing the end-effector also to rotate. With that, more sophisticated
manipulation tasks can be performed. Furthermore, the workspace of this hybrid
Delta robot is larger due to the added wrist part.

2.2 Applications of Delta robots

Applications for different robots are given by their properties, advantages, and
disadvantages, which are described above. For a Delta robot, the key feature is fast
and very precise movement. Therefore, the main application is in pick-and-place
operations, where the task is to pick up an object, usually from some conveyor
belt, and place that object somewhere else, for instance, on another conveyor belt,
in the case of a sorting application, directly into some container or box, in the
case of a packaging application, or placing that object in some assembly unit, in
the case of an assembly application [3].

The robotic cell, or directly the end-effector of the robot, is often equipped
with a camera that detects individual objects on the conveyor belt and sends their
positions to the trajectory planner [3]. The hybrid Delta robot, with the serial
wrist and the ability to rotate the object in space during pick-and-place operations,
can even place the object with the desired orientation. This opens up packaging
and assembly applications for all kinds of industries. The most common are the
medical, pharmaceutical, food processing, and microchip assembly industries [5].

The fast movement of Delta robots allows high speeds of the conveyor belts
under it while still being able to pick and place objects precisely. These robots
can perform more than 100 pick-and-place operations per minute, which is much
faster than a human [5]. Thus, automation of packaging and assembly processes
is economically advantageous, and Delta robots are being installed more and more
frequently [3].

4

................................... 2.3. 5-axis hybrid Delta robot

2.3 5-axis hybrid Delta robot

The trajectory planner created in this thesis is designed specifically for a Delta
robot located in the Testbed for Industry 4.0 at the Czech Institute of Informatics,
Robotics and Cybernetics (CIIRC), Czech Technical University (CTU) in Prague1.
It is a hybrid Delta robot with five axes and a nominal payload of 6 kilograms [6].
The robot is shown in Fig. 2.1.

Figure 2.1: 5-axis Delta robot in Testbed for Industry 4.0 at CIIRC CTU

The robot consists of an upper part with parallel arms and a lower part with
a serial wrist, as can be seen in Fig. 2.2. The three actuated revolute joints of
the upper parallel arm axes, denoted A1, A2, and A3, are attached to the basic
frame on top of the robot. Each parallel arm consists of an upper arm and a pair
of forearm links that form a parallelogram. All three arms are connected to a
movable platform.

The two additional actuators for axes A4 and A5 are also fixed to the basic
frame. They are connected via two coaxial telescopic Cardan shafts to the movable
platform. The outer shaft is for the A4 axis and is connected to the worm gearbox
below the movable platform (see Fig. 2.2). The inner shaft of the A5 axis is
connected to the worm drive, which transforms the relative rotation between
the inner and outer shafts into the tilt of the swivel part attached to the worm
gearbox.

The three upper arms cause a purely translational motion of the movable
platform, as in the case of a standard 3-DoF Delta robot. The A4 axis allows

1https://ricaip.eu/testbed-prague/

5

https://ricaip.eu/testbed-prague/

................................... 2.3. 5-axis hybrid Delta robot

rotation of the worm gearbox around a vertical axis, as shown in a kinematic
model in Fig. 2.3. The A5 axis then allows rotation of the swivel part with an
attached tool around a horizontal axis, which is also shown in Fig. 2.3.

Figure 2.2: 3D model of the 5-axis Delta robot

A kinematic model of this robot (see Fig. 2.3) was made by simplifying the
individual bodies of the robot into lines. The global coordinate frame of this
mechanism is also shown in the figure. Its origin is located in the center of the
upper universal joint of the telescopic Cardan shafts. The x axis of this coordinate
frame points towards the A1 actuator and is horizontal, z axis points upwards.

Important joints of the links were named as follows. Actuated joints of the
three parallel arms are called Ai, i “ 1, 2, 3. Elbow joints, where the upper arm
meets the forearm, are called Bi. The point where the forearm connects to the
movable platform is Ci, and the center of this platform is point D. Point F is
where the center of the worm wheel is and, therefore, where the swivel part is
attached to the worm drive. Point E has the same z coordinate as point D but is
shifted to be above point F.

At the end of the swivel part, in the center of the flange, is the point H. If a
tool is attached to this flange, a Tool Center Point (TCP) is defined at the end of
the tool. That is the point that needs to be defined in the workspace to perform
a pick or place operation. Thus, the trajectory planner in Chapter 3 will generate
a trajectory for the TCP.

2.3.1 Forward and inverse kinematics

The position and orientation of the robot’s end-effector (gripper or some other tool)
are related to the positions of the actuated joints through the kinematic structure
of the robot. Since we are dealing with a 5-DoF robot, the easiest way to define
the orientation of the end-effector is directly by the position of the axes in the
wrist of the robot. Therefore, the pose (combination of position and orientation)

6

................................... 2.3. 5-axis hybrid Delta robot

Figure 2.3: Kinematic model of the 5-axis Delta robot (left) and a detail of the movable
platform and serial wrist part (right)

of the end-effector is defined by rxH , yH , zH , q4, q5s. The related positions of the
actuators in the joint space are rq1, q2, q3, q4, q5s. The task of transforming the
joint-space coordinates (positions and their time derivatives) into the task-space
coordinates is called forward kinematics. The opposite, the task of transforming
from the task space to the joint space, is called inverse kinematics [2].

For a standard 3-DoF Delta robot, this is a problem that was already solved,
for example, in [3]. For a serial robot, solutions can be found in almost all robotics
textbooks, for example, in [2] or [7]. For our hybrid robot, forward and inverse
kinematics can be solved by separating the upper parallel arms part and the serial
wrist part. Then the already existing solutions can be easily applied to our robot.
This was already done in [8], so the derivation of forward and inverse kinematics
is not part of my thesis. A brief overview of the derivation in [8] is given in the
following paragraphs.

Forward kinematics

D Ci

Si
Bi

Ai

r3

ℓ2

qi

ℓ1

ℓ2

r3

Figure 2.4: Side view on one of the parallel arms of Delta robot

First, the parallel arms part will be discussed. The task is to get the point D

7

................................... 2.3. 5-axis hybrid Delta robot

with known points Ai and the position of the axes qi, i “ 1, 2, 3 for the individual
axes. Point Bi can be calculated from point Ai, angle qi, and length of the upper
arm ℓ1. Then, a point Si “ rxSi , ySi , zSis

T is created by translating point Bi by
the vector ´́ ÑCiD. The orientation of this vector is known and the length is r3 (see
Fig. 2.4). After that, for the three upper arms, a sphere is made with a center at
the point Si and a radius ℓ2. The point D “ rxD, yD, zDs

T can be found as an
intersection of the three spheres by solving the following set of equations:

pxD ´ xSiq
2

` pyD ´ ySiq
2

` pzD ´ zSiq
2

“ ℓ2
2 (2.1)

There are two solutions to this equation set, with two different values for zD. The
lower value is chosen as point D is below the base frame of the robot.

In the serial wrist part, the task is to get from point D to point H with known
joint positions q4, q5 and lengths r4, h4, r5. This can be done using the following
equation:

H “ D `

»

–

pr4 ` r5 sin q5q cos q4
pr4 ` r5 sin q5q sin q4

´h4 ´ r5 cos q5

fi

fl (2.2)

If a tool is attached to the flange of the robot, the length of the tool can be
added to the length r5. Then, a TCP is computed instead of the H point of the
robot. This can be done only for tools that do not offset the TCP from the line
between points F and H, as in the case of our gripper. In other cases, a more
complex transformation would be needed.

Inverse kinematics

The task is to obtain the joint positions q1, q2, q3 from the known position of the
point H and the joints q4, q5. The serial wrist part can be solved using equation
(2.2) to obtain the point D. If a tool is attached, the same principle as described
in the forward kinematics section can be applied.

Then, for each of the three parallel arms, a vector ´́ Ñ́CiBi, i “ 1, 2, 3, is used.
The coordinates of point Ci are expressed using the coordinates of point D and
distance r3, and the coordinates of point Bi using the lengths r0, ℓ1 and angle qi.
Since the length of the vector ´́ Ñ́CiBi must be ℓ2, one can get kinematic constraints:

fipqi, xD, yD, zDq “ 0 (2.3)

After simplification and rearranging, the constraints with unknown qi can be
expressed in the form

ai cos qi ` bi sin qi ` ci “ 0. (2.4)
After applying trigonometric identities, the joint positions can be found by solving
the quadratic equations

ai
1 ´ t2

i

1 ` t2
i

` bi
2ti

1 ` t2
i

` ci “ 0, (2.5)

where the joint positions are qi “ 2 arctanptiq. The quadratic equation (2.5) has
two roots. The one that creates the robot configuration with the joint Bi pointing
out of the mechanism is chosen [3].

8

................................... 2.3. 5-axis hybrid Delta robot

2.3.2 Workspace

The workspace is defined for the robot’s point E (see Fig. 2.3) because the
Programmable Logic Controller (PLC) that controls the robot cannot handle the
kinematics of the five axes and assumes that A5 is fixed in the original position.
Therefore, the point that is checked in the workspace must be somewhere on the
robot, where the robot’s model in the PLC (shown in Fig. 2.5) corresponds to the
real robot.

To be in the workspace, the point E must be in the green sphere in Fig. 2.5a,
which represents the work zone. Another condition is that the point cannot be in
any of the blocked zones, represented by red blocks in Fig. 2.5b.

These blocked zones are added for the following reasons. One block is placed
on each side of the robot to avoid collisions with the walls of the cage around
the robot. Two blocks restrict movement in the vertical direction to not collide
with the conveyor system under the robot and not exceed the stroke limit of the
telescopic shafts. One more blocked zone is added to avoid collision with the tool
holder placed in the work zone since it is not used yet.

The trajectory planner, created in Section 3, checks whether the point E is in
the defined workspace at every point along the path or not. In the latter case, the
user is notified that the desired trajectory is outside of the workspace and must
modify it. Due to that, the trajectory that is generated always passes through the
check in the PLC.

(a) : Work zone (b) : Blocked zones

Figure 2.5: Workspace of the Delta robot

9

Chapter 3
Trajectory planning

The aim of trajectory planning is to generate inputs to the robot’s actuators so
that the robot’s end-effector will follow the desired trajectory [4]. A trajectory is
a combination of path and motion law [2].

A path is a purely geometrical description of the motion of the end-effector.
The path may be too complex to be fully specified by the user; thus, the user
specifies only the extremal points, intermediate points, or geometric primitives,
and the path is generated according to that [7]. Individual parts of the path,
defined by some points, are called segments. From a mathematical point of view,
a path is a parametric curve (or multiple curves for individual segments) Xppq

for some parameter p. It is convenient to use the arc length parameter s, as it
describes the position along the path [7]. So, the parametrization Xpsq will often
be used.

In some cases, position and orientation are defined separately because then the
path is easier to define, and orientation is important only at the endpoints, as it is
in pick-and-place applications [9]. The case for coupled position and orientation
is, for example, in welding or milling robots, where many via points have to be
interpolated, and the tool’s orientation is essential at every point on the path [9].

The orientation can be generally defined by three angles (for example, Euler
angles, or roll, pitch, yaw), but since our robot has only five degrees of freedom,
the easiest way for the user to define the orientation of the tool in space is by
the joint positions of the wrist part q4 and q5 (shown in Fig. 2.3). Paths can
be generated either in joint space or in operational space. When interpolating
between some points in joint space, the resulting path in operational space is not
predictable, and the robot may collide with some obstacle [2]. Due to the very
restricted workspace of Delta robots, the chance of collision is rather high and,
therefore, paths are usually generated in the operational space.

A time scaling function sptq, also called motion law, specifies the time instances
when the individual points on the path are reached [2]. This function is determined
by the user’s requirements and by satisfying various constraints.

For example, the robot’s actuators have physical limits that cannot be exceeded.
Those limits are of two types – kinematic and dynamic [9]. Kinematic limits
involve a maximum value of velocity, acceleration, and jerk (time derivative of
acceleration). Dynamic limit is the maximum torque that the used motor can
provide [9].

10

....................................... 3. Trajectory planning

For our robot, its dynamic model is not yet complete, so it is impossible to
predict the necessary torques for the desired TCP movement. Therefore only the
kinematic limits are considered in the rest of this thesis. In addition, there can
be some kinematic limits defined for the TCP of the robot as well. The motion
law is used not to exceed these limits simply by modifying the velocities and
accelerations along the path [9]. By applying the time scaling to the path, the
parametric curve gets reparametrized. That means that the individual points for
some specific time instances change, but the geometrical shape of the path stays
the same.

Proper time scaling can be achieved either by using the limits as inputs to
the motion law or by planning the trajectory based on some other input. In the
latter case, the trajectory must be verified afterward to see if the limits are not
exceeded (if so, some modification has to be done) [9].

Another critical issue in trajectory planning is exciting the resonant mode
of the structure. This is, of course, undesirable for a pick-and-place robot, and
therefore smooth trajectories have to be generated [7].

The trajectory must be continuous geometrically and parametrically up to
a degree k, denoted Gk and Ck, respectively [10]. A continuity up to a degree
k “ 2 is essential to achieve our desired smoothness. The used curves are always
C2 continuous; thus, the only place where it needs to be checked is the merging
points of adjacent curves. The geometric continuity of a curve is dependent only
on its geometrical properties. If the two curves touch at the merging point, it is a
geometric continuity G0. If they also have a common tangent at that point, they
are G1 continuous. If they, in addition, have the common curvature at that point,
they are G2 continuous [10].

The parametric continuity also takes into account the used motion law. If the
two curves have a common time derivative of the position with the used parameter
(velocity vector), they are C1 continuous. If they also share the same second time
derivative of position, they are C2 continuous [10]. The parametric continuity
automatically implies the geometric continuity of the same degree [10].

If only line segments were used in the generator, the trajectory would not
have even continuous velocity. To smoothen it, blending functions are used. In the
existing solution for our robot, arcs (parts of a circle) are used for this purpose,
making it C1 continuous with a well-chosen parameter. In this thesis, a C2

continuous blend is proposed. This should, in theory, reduce the vibrations of the
robot that occur with the existing solution.

To sum up, the combination of geometrical path Xpsq and time scaling function
sptq is called trajectory Xpsptqq “ Xptq [2]. The usual trajectory generation process
is to create the geometrical path in operational space based on the points defined
by the user, then apply some motion law to get the time sequence of the poses
of the end-effector, respecting the kinematic limits of the system and yielding a
smooth trajectory [7]. Then, inverse kinematics is used to transform the generated
trajectory from operational space to the joint space [7].

In this thesis, the planning process is done in advance for the whole trajectory,
and after that, it is loaded to the PLC of the robot and performed. All the necessary
components of the generator, described in the following Sections 3.1, 3.2, and 3.3,

11

..................................3.1. Types of used path segments

were implemented in a set of Matlab functions. The PLC runs with a constant time
cycle; therefore, the trajectory must be generated for discrete time instants. This
brings additional problems, such as overruns, described in Section 3.4. The algo-
rithm of the generator, which uses all the components, is described in Section 3.5.
A user interface for easier use of the generator is shown in Section 3.6.

3.1 Types of used path segments

In this part, path segments that are used in the generator are described. Four
different types of path segments are defined based on the most common movements
for a pick-and-place robot. Line. Arc. Blend. Reorientation of the tool

Lines and arcs are described in the following paragraphs. A blend is a curve
that connects two intersecting lines with an angle between them so that the path
is smooth and the total length is shorter. A derivation of a curve that satisfies
these constraints, as well as a more detailed description of its properties, is shown
in Section 3.3.

Reorientation of the tool is an operation in which only the orientation of the
TCP coordinate frame changes and the position stays the same. Because of that,
the path of this segment degenerates into a point.

3.1.1 Line

A line between points A and B can be defined in parametric form by its direction
vector

n “
B ´ A

||B ´ A||
(3.1)

as
Xpsq “ A ` s ¨ n, (3.2)

where s is the parameter. Length of this line is

ℓAB “ ||A ´ B||, (3.3)

and therefore, to span the whole line segment

s P ⟨0, ℓAB⟩ .

Velocity and acceleration on this line can be expressed by differentiating
equation (3.2) with respect to time:

9Xp 9sq “ 9s ¨ n (3.4)

:Xp:sq “ :s ¨ n (3.5)

12

..................................3.1. Types of used path segments

3.1.2 Arc

An arc is a part of a circumference of a circle. The points of the arc in space can
be calculated in many ways. One of them is a parametric form

Xpθq “ C ` r ¨ cospθq ¨ a ` r ¨ sinpθq ¨ b, (3.6)

where the parameter θ is a circle’s sector angle, r is the radius of the circle, C
is the center of the circle, and a, b are vectors responsible for the rotation of the
circle in space. By changing the interval of numbers for angle θ, one can choose
a specific arc section of the circle. Also, an arc-length parameter s can be used
instead of the parameter θ by simple substitution

θ “
s

r
. (3.7)

For this application, the most convenient way to specify the arc/circle is
by three points D, E, F laying on the circle. Then an arc starting at the point
D, going through the point E and ending at the point F can be computed as
suggested in [11].

D

E

F
C

a
b

p

u
w

v

h

Figure 3.1: Circular path in space defined by three points

First, an orthonormal coordinate system u, v, w is created such that the origin
is at the point D, the vector u points towards the point E and the vectors u,
v span the plane in which the three points lay (see Fig. 3.1), by the following
equations

u “
u1

||u1||
,

w “
w1

||w1||
,

v “ w ˆ u,

(3.8)

where

u1 “ E ´ D,

w1 “ pF ´ Dq ˆ u.
(3.9)

13

..................................3.1. Types of used path segments

After that, the center of the circle can be expressed using that orthonormal
coordinate system as

C “ D `
ex

2 ¨ u ` h ¨ v,

where
ex “ ||E ´ D||,

fx “ pF ´ Dq ¨ u,

fy “ pF ´ Dq ¨ v,

h “
pfx ´ ex{2q2 ` f2

y ´ pex{2q2

2fy
.

(3.10)

The radius of the circle is
r “ ||C ´ D|| (3.11)

and the two vectors for rotation of the circle in space can be calculated as

a “ D ´ C, (3.12a)
b “ w ˆ a. (3.12b)

Then the parameter θ in (3.6) is either for a full circle θ P ⟨0, 2πq, or for an
arc segment θ P ⟨0, θmax⟩

θmax “

$

’

’

’

’

&

’

’

’

’

%

arccos
ˆ

pD ´ Cq ¨ pF ´ Cq

||D ´ C|| ¨ ||F ´ C||

˙

, for p Ö w

2π ´ arccos
ˆ

pD ´ Cq ¨ pF ´ Cq

||D ´ C|| ¨ ||F ´ C||

˙

, for p ⇈ w,

(3.13)

where
p “ pD ´ Cq ˆ pF ´ Cq. (3.14)

Special cases

The case where the points D and F coincide has to be handled separately because
||w1|| “ 0 and therefore w in equation (3.8) cannot be computed. In other words,
now there are only two points with different coordinates, and there is no unique
solution for the circle defined by these points. The chosen approach assumes that
the point E lies directly on the opposite side from the point D “ F and therefore,
the center of the circle is

C “
D ` E

2 . (3.15)

Radius r can be calculated as in the first case, using equation (3.11), and since the
first and last points of the arc coincide, a full circle is expected, thus θ P ⟨0, 2πq.

The second assumption is that the vector b is horizontal; therefore, the z
component of the normal vector w of the circle (to keep the notation as in the
first case) is largest of all the possible rotations of the circle in space. The vector
a “

“

ax, ay, az

‰T can be calculated as in (3.12). Then, the normal vector w can
be expressed as

14

..................................3.1. Types of used path segments

w1 “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

„

ax, ay,
´a2

x ´ a2
y

az

ȷT
, for az ă 0

”

0, 0, 1
ıT

, for az “ 0

„

´ax, ´ay,
a2

x ` a2
y

az

ȷT
, for az ą 0

w “
w1

||w1||

(3.16)

The elements of the vector w1 are obtained by choosing the first two elements
according to the geometry and then computing the third element from the con-
straint w1 ¨ a “ 0 because the vectors must be perpendicular. After that, the
vector b can be calculated as in (3.12b). Finally, all of these variables can be used
in equation (3.6) to obtain the points Xpθq that make the arc.

The cases where either D “ E or E “ F are forbidden in the generator since
they are meaningless.

Velocity and acceleration

After getting the points of the arc Xpθq, one can get the velocity 9Xpθq and the
acceleration :Xpθq at each point by differentiation of Xpθq in equation (3.6) with
respect to time:

9Xpθ, 9θq “ ´r ¨ sinpθq ¨ 9θ ¨ a ` r ¨ cospθq ¨ 9θ ¨ b (3.17)

:Xpθ, 9θ, :θq “ ´r ¨cospθq¨ 9θ2 ¨a´r ¨sinpθq¨ :θ ¨a´r ¨sinpθq¨ 9θ2 ¨b`r ¨cospθq¨ :θ ¨b (3.18)

As well as in equation (3.6), one can use an arc-length parameter s instead of
parameter θ in (3.17) and (3.18) with substitutions

θ “
s

r
, 9θ “

9s

r
, :θ “

:s

r
. (3.19)

15

...............................3.2. Types of used time scaling functions

3.2 Types of used time scaling functions

Two different types of time scaling functions, also called motion laws, are used in
the generator: S-curve velocity profile and quintic polynomial.

For arcs and straight lines, the S-curve is used. The reason is that the
trajectories for pick-and-place operations consist mainly of straight lines (since it
is the shortest path between two points), and minimizing the time period of these
segments in the pick-and-place operation is crucial. Therefore, a motion law that
ensures fast motion and low cycle time of operations is necessary [1].

On the other hand, discontinuous acceleration and thus varying inertial forces
generate vibrations; hence smooth time scaling profile has to be chosen [9]. An
S-curve velocity profile is a compromise of these requirements. It is smooth enough
to be used and still produces a fast movement because the maximum velocity is
being kept as long as possible. In addition to that, it is easy to implement.

For the blend segments, a quintic polynomial is used to slow down during
the turn, reducing the centripetal acceleration and therefore reducing the forces
acting on the end-effector of the robot. Compared to the S-curve, the shape of the
quintic polynomial motion law for velocity (see the 9s profile in Fig. 3.3) matches
the curvature of the blend (see Fig. 3.5) better. If the S-curve were used, the TCP
would slow down at the beginning of the blend and then continue through the
blend with a lower velocity, resulting in a longer total time period of this blend
segment. The use of the quintic polynomial was inspired by the motion law used
in [12].

3.2.1 S-curve velocity profile

This motion law consists of seven phases [2] (see Fig. 3.2)..1. constant positive jerk Jmax until maximum acceleration amax is reached..2. constant acceleration amax..3. constant negative jerk Jmin until acceleration reaches zero and velocity reaches
vmax (at the same time)..4. constant velocity vmax..5. constant negative jerk Jmin until minimum acceleration amin is reached..6. constant deceleration amin..7. constant positive jerk Jmax until acceleration reaches zero, velocity reaches
value v1 and position s1 (at the same time)

Phases 1 – 3 can be grouped into a single acceleration phase, and phases 5 – 7
into a single deceleration phase, as is done in [9].

16

...............................3.2. Types of used time scaling functions

2.1. 3. 4. 5. 6. 7.

Figure 3.2: S-curve motion law

In this trajectory generator, symmetric constraints for maximum acceleration
and jerk are assumed:

amin “ ´amax, Jmin “ ´Jmax. (3.20)

Another assumption is that
s1 ą s0. (3.21)

Given the initial and final values for position and velocity s0, s1, v0 and v1,
there are two possibilities on how to define this motion law [9]..Define vmax, amax and Jmax using the kinematic limits. It could be either

TCP kinematic limits if the trajectory in operational space is being planned
or joint kinematic limits if the trajectory is planned in joint space. The task
is to find the time periods for each phase and then compute the position s,
velocity 9s, acceleration :s and jerk ...s according to equations for individual
phases in [9]..Define the time period for each phase. Note that symmetric limits are
assumed; therefore, the duration of phases with opposite values of constants
(phases 1 and 3 or phases 5 and 7) must be the same. For simplicity, only
motion laws where v0 “ v1 “ 0 are considered in this case. Then it is sufficient

17

...............................3.2. Types of used time scaling functions

to define only the duration of constant nonzero jerk phase t1, the duration of
the grouped acceleration phase t3, and the total time period T . The task in
this case is to first compute the maximum values vmax, amax and Jmax using
equation (3.22), then continue as in the first case and at the end check if
none of the kinematic limits is exceeded.

To transform the time periods into the maximum kinematic values, the
following equations, derived in [9], can be used:

vmax “
s1 ´ s0
T ´ t3

amax “
s1 ´ s0

pT ´ t3qpt3 ´ t1q

Jmax “
s1 ´ s0

pT ´ t3qpt3 ´ t1qt1

(3.22)

There are several combinations of parameters where the trajectory cannot be
realized. Therefore, a verification of the feasibility of the trajectory is necessary
before computing the trajectory. One of the cases is that the total displacement
s1 ´ s0 is so small that the velocity cannot change from v0 to v1 with the given
acceleration and jerk limits. Another case is where the acceleration does not
reach its maximum value, and thus phases with zero jerk are omitted. Also, the
maximum reached velocity may be lower than the velocity limit, and therefore,
a phase 4 with constant velocity is omitted. All of these cases, as well as an
algorithm for this verification, and the necessary equations to calculate the time
periods of the phases for every case, are shown in [9]. In the attached Matlab
function for the generation of the S-curve, all the checks in [9] were implemented.

Once the time periods are known, one can compute the position s and its
time derivatives 9s, :s and ...s in all phases.

3.2.2 Quintic polynomial

Polynomial of degree five for the position, as a function of time t, can be expressed
as

sptq “ a0 ` a1 ¨ t ` a2 ¨ t2 ` a3 ¨ t3 ` a4 ¨ t4 ` a5 ¨ t5, (3.23)

after differentiating with respect to time, the function for velocity is

9sptq “ a1 ` 2 ¨ a2 ¨ t ` 3 ¨ a3 ¨ t2 ` 4 ¨ a4 ¨ t3 ` 5 ¨ a5 ¨ t4, (3.24)

and for acceleration

:sptq “ 2 ¨ a2 ` 6 ¨ a3 ¨ t ` 12 ¨ a4 ¨ t2 ` 20 ¨ a5 ¨ t3. (3.25)

The time parameter t P ⟨0, T ⟩, where T is the total time period of this segment.
There are six coefficients a0, a1, a2, a3, a4 and a5, therefore, six boundary

conditions are needed. The position at the beginning will be denoted s0 (in
general nonzero, so that it can be used after another segment and also to be able
to compensate overruns, discussed in Section 3.4). The length of the path will

18

...............................3.2. Types of used time scaling functions

be denoted ℓblend. The velocity at the beginning and the end is v0. The values
s0 and v0 will be set to match the final values of the previous segment, and the
length ℓblend is given from the geometry of the blend, discussed in Section 3.3.
Finally, the acceleration at the beginning and the end is zero to match it with the
S-curve profile, which will be in the previous and next segments. These conditions
can also be seen in Fig. 3.3.

Therefore, the six constraints are as follows:

sp0q “ s0 spT q “ s1 “ s0 ` ℓblend

9sp0q “ v0 9spT q “ v0

:sp0q “ 0 :spT q “ 0
(3.26)

Position

Velocity

Acceleration

Figure 3.3: Quintic polynomial motion law (blue curve) connected to S-curve motion
laws of adjacent segments

When combining constraints (3.26) with (3.23), (3.24) and (3.25), one can get
the formulas for coefficients

a0 “ s0,

a1 “ v0,

a2 “ 0,

a3 “
10pℓblend ´ T ¨ v0q

T 3 ,

a4 “
15p´ℓblend ` T ¨ v0q

T 4 ,

a5 “
6pℓblend ´ T ¨ v0q

T 5 .

(3.27)

19

...............................3.2. Types of used time scaling functions

Since it is more user-friendly to specify the velocity in the middle of the segment
vM (lowest velocity) instead of the total time period T , one more constraint is
defined:

9s

ˆ

T

2

˙

“ vM (3.28)

Combining it with equation (3.24) and with the coefficients in (3.27), one can get

vM “v0 ` 3 ¨
10pℓblend ´ T ¨ v0q

T 3 ¨

ˆ

T

2

˙2
`

` 4 ¨
15p´ℓblend ` T ¨ v0q

T 4 ¨

ˆ

T

2

˙3
` 5 ¨

6pℓblend ´ T ¨ v0q

T 5 ¨

ˆ

T

2

˙4 (3.29)

and after simplification

vM “
15 ¨ ℓblend ´ 7 ¨ T ¨ v0

8 ¨ T
. (3.30)

The last step is to solve for T

T “
15 ¨ ℓblend

7 ¨ v0 ` 8 ¨ vM
. (3.31)

It may be more convenient not to specify the velocity vM directly, but rather
in a relative value, how much to slow down compared to the initial velocity v0

p “
v0 ´ vM

v0
. (3.32)

Thus, the total time period is

T “
15 ¨ ℓblend

15 ¨ v0 ´ 8 ¨ p ¨ v0
. (3.33)

20

... 3.3. Blends

3.3 Blends

Inspired by the work in [13] and [12], a quintic Pythagorean-Hodograph (PH)
curve is chosen to create the blend between lines. However, the proposed method
considers only right-angled corners, which may be insufficient for our purposes.
Our robot has 5 DoF, and because of that, the pick and place operations do not
have to be vertical, as it is with standard 3-DoF Delta robots. This means that
there could be any angle between the lines of the pick-and-place path. Therefore,
in this thesis, the approach of the authors in [13] and [12] is extended to a solution
for creating a blending curve between two lines with an arbitrary angle between
them.

3.3.1 Properties of Pythagorean-Hodograph curves

Pythagorean-Hodograph curve is a type of Bezier curve [13]. In this thesis, a
PH quintic is considered, as in [13], [12] and [14] because of the limited shape
flexibility of cubic PH curves [14]. Also, only planar curves are considered, because
two intersecting lines always lie in one plane, so a spatial blend will never be
necessary.

A planar quintic PH curve can be expressed as

Xptq “

„

xptq
yptq

ȷ

“

5
ÿ

i“0
Pi ¨ ti ¨ p1 ´ tq5´i, (3.34)

where t P ⟨0, 1⟩ and Pi are the control points shown in equations (3.38).
For a Pythagorean-Hodograph curve, a polynomial function σptq that satisfies

the following condition for every t must exist [14]:

x12ptq ` y12ptq “ σ2ptq (3.35)

This can be achieved, as shown in [13] and [14], by defining

x1ptq “ u2ptq ´ v2ptq,

y1ptq “ 2 ¨ uptq ¨ vptq,
(3.36)

where
uptq “ u0p1 ´ tq2 ` 2u1p1 ´ tqt ` u2t2,

vptq “ v0p1 ´ tq2 ` 2v1p1 ´ tqt ` v2t2.
(3.37)

After combining equation (3.34) with integrated equation (3.36) and (3.37),

21

... 3.3. Blends

the control points Pi in (3.34) can be expressed as [13]:

P1 “ P0 `
1
5

„

2u0v0
u2

0 ´ v2
0

ȷ

(3.38a)

P2 “ P1 `
1
5

„

u0v1 ` u1v0
u0u1 ´ v0v1

ȷ

(3.38b)

P3 “ P2 `
2
15

„

2u1v1
u2

1 ´ v2
1

ȷ

`
1
15

„

u0v2 ` u2v0
u0u2 ´ v0v2

ȷ

(3.38c)

P4 “ P3 `
1
5

„

u1v2 ` u2v1
u1u2 ´ v1v2

ȷ

(3.38d)

P5 “ P4 `
1
5

„

2u2v2
u2

2 ´ v2
2

ȷ

(3.38e)

The main advantage of PH curves for our purpose is that an arc length of
this curve can be expressed as a polynomial function of the curve parameter. In
addition, the arc length is monotonically increasing. This implies that a task to
find a parameter t in (3.34) (and therefore find a point on the curve) with a given
arc length can be computed with relatively low computational cost. In our case,
where a quintic PH curve is used, it is a polynomial of degree five, which can
be solved numerically. Arc length for an arbitrary point, where t “ t1, can be
computed as

spt1q “

ż t1

0
σptq dt “

ż t1

0

a

x12ptq ` y12ptq dt. (3.39)

When the physical limits of the robot are taken into account, only a few
iterations of a Newton-Raphson iteration method are necessary to find a solution
within the robot’s accuracy [15]. Finding a parameter t for some given arc length
is necessary for reparametrization of the curve (see Section 3.3.3), and thanks to
this property of PH curves, it can be done in real-time [12]. Thus a trajectory
can be generated during the movement of the robot.

3.3.2 Derivation of the curve for blends

To simplify the derivation, the curve is always considered to be in the xy plane,
with the start point P0 being the origin of the coordinate system and the first
line being vertical (coinciding with the y axis), as shown in Fig. 3.4. Also, the
curve always creates a right-handed turn. In other words, the x component of the
point P5 is positive. To use it for any arbitrary connection of two lines in space,
this curve has to be rotated and translated appropriately. This is described in
detail in Section 3.3.5.

The geometry of the curve is given by two parameters: angle θ between the
lines that are supposed to merge and radius ϱ, which controls the size of the blend
(how far away from the intersection of the lines should the blend start).

Since the start of the curve is at the origin, the first line is vertical, and the
radius is ϱ, the intersection of the lines lies at r0, ϱsT and the second line is at

22

... 3.3. Blends

φ

θ

ϱ

x

y

P0

P5

Figure 3.4: Geometry of control points of the blending curve

angle φ with positive x axis, where

φ “ θ ´
π

2 . (3.40)

In general, in equation (3.38) there are six parameters u0, u1, u2, v0, v1, and
v2, which control the quintic PH curve. To reduce the number of unknowns, let
us make some assumptions, as in [13]. The line between P0 and P1 is vertical, so
v0 “ 0. Since we blend two straight line segments, the curvature at both ends of
the curve κp0q “ κp1q “ 0. Therefore, v1 “ u1 “ 0.

After that, general equations (3.38) are simplified into:

P0 “

„

0
0

ȷ

(3.41a)

P1 “ P2 “

«

0
u2

0
5

ff

(3.41b)

P3 “ P4 “

«

u0v2
15

u2
0

5 ` u0u2
15

ff

(3.41c)

P5 “

«

u0v2
15 ` 2u2v2

5
u2

0
5 ` u0u2

15 `
u2

2
5 ´

v2
2
5

ff

(3.41d)

Now, we are left with only three unknowns u0, u2 and v2. We will find them
from the following equations.

The first two equations can be derived from the geometric constraints of the
Cartesian coordinates of the point P5 (as shown in Fig. 3.4):

P5 “

„

P5x

P5y

ȷ

“

„

ϱ ¨ cos pφq

ϱ ¨ p1 ` sin pφqq

ȷ

(3.42)

Combining equations (3.41d) and (3.42), we get

u0v2
15 `

2u2v2
5 “ ϱ ¨ cos pφq (3.43)

23

... 3.3. Blends

and
u2

0
5 `

u0u2
15 `

u2
2

5 ´
v2

2
5 “ ϱ ¨ p1 ` sin pφqq. (3.44)

Another condition for obtaining the desired path is that we require a symmetric
curvature profile of the curve and, therefore, extrema in the middle, thus

κ1

ˆ

1
2

˙

“ 0. (3.45)

The curvature of this PH curve (see Fig. 3.5), according to [13], can be expressed
as

κptq “
4u0v2pt ´ t2q

pu2ptq ` v2ptqq
. (3.46)

0 10 20 30 40 50 60 70 80 90 100

s [m]

0

2

4

5
[1

/
m

]

Figure 3.5: Curvature of the PH curve used for blend as a function of its arc length

Combining the time derivative of (3.46) with (3.45), the following formula for
t “ 1

2 can be written

´4 ¨ u0 ¨ v2pv
`1

2
˘

¨ v1
`1

2
˘

` u
`1

2
˘

¨ u1
`1

2
˘

q ¨
`

v2 `1
2
˘

` u2 `1
2
˘˘

`

u2
`1

2
˘

` v2
`1

2
˘˘4 “ 0, (3.47)

where, according to [13],

uptq “ u0 ¨ p1 ´ tq2 ` u2 ¨ t2,

u1ptq “ ´2 ¨ u0 ` 2 ¨ u0 ¨ t ` 2 ¨ u2 ¨ t,

vptq “ v2 ¨ t2,

v1ptq “ 2 ¨ v2 ¨ t,

(3.48)

and for t “ 1
2

u

ˆ

1
2

˙

“ u0 ¨

ˆ

1 ´
1
2

˙2
` u2 ¨

ˆ

1
2

˙2
“

u0 ` u2
4 ,

u1

ˆ

1
2

˙

“ ´2 ¨ u0 ` 2 ¨ u0 ¨
1
2 ` 2 ¨ u2 ¨

1
2 “ ´u0 ` u2,

v

ˆ

1
2

˙

“ v2 ¨

ˆ

1
2

˙2
“

v2
4 ,

v1

ˆ

1
2

˙

“ 2 ¨ v2 ¨
1
2 “ v2.

(3.49)

24

... 3.3. Blends

Now, equations (3.43), (3.44), and (3.47), together with (3.49), can be solved
to get u0, u2 and v2. Since these equations are fairly complicated to solve in hand,
Symbolic Math Toolbox in Matlab by MathWorks [16] was used. The script for
finding these solutions is called derivation_of_equations_for_blending.

It gave us eight solutions (sets of formulas for u0, u2 and v2). To choose the
correct one, the curves for the eight solutions were plotted in an example for ϱ “ 1
and φ “ 10°. The results are shown in Fig. 3.6. In solutions 5 - 8 (in the second
row of the figure), all three unknowns u0, u2 and v2 have opposite signs compared
to solutions 1 - 4 (in the first row). Since in equations (3.41b) - (3.41d) they are
always either in second power or multiplied by each other in pairs, they yield the
same result.

Figure 3.6: Eight different solutions for u0, u2 and v2 shown in an example for ϱ “ 1
and φ “ 10°

One can see that curves in solutions 1, 2, 5, and 6 degenerate into a straight
line, although still respecting the constraints about the point P5 and curvature
in the middle. Solutions 3 and 7 also respect those constraints but create a loop,
which is undesirable. Thus, solution 4 was chosen (solution 8 could also have been

25

... 3.3. Blends

chosen, as it gives the same result). The formulas found are as follows:

u0 “ secpφq ¨

g

f

f

f

e15 ¨ p1 ` sinpφqq ¨

¨

˝

ϱ ¨ p´1 ` sinpφqq

´

´6 ´ 6 sinpφq `
?

2
a

1 ` sinpφq

¯

17 ` 18 ¨ sinpφq

˛

‚

u2 “ secpφq ¨ p1 ` sinpφqq ¨

g

f

f

e

15 ¨
ϱ ¨ cos2pφq

´

´6 ´ 6 sinpφq `
?

2
a

1 ` sinpφq

¯

cos2pφq ´ 35 ¨ p1 ` sinpφqq2

v2 “

g

f

f

e

15 ¨
ϱ ¨ cos2pφq

´

´6 ´ 6 sinpφq `
?

2
a

1 ` sinpφq

¯

cos2pφq ´ 35 ¨ p1 ` sinpφqq2

(3.50)
To sum up the procedure of creating this curve, for a given angle φ and radius

ϱ, values u0, u2 and v2 are computed using (3.50), then inserted into (3.41) to get
the control points. After that, these control points are used in (3.34) to construct
the curve.

3.3.3 Reparametrization

To apply the quintic polynomial motion law, described in Section 3.2.2, the blend
must be first rendered with a uniform arc length [13]. In other types of path
segments, such as lines and arcs (in Section 3.1), this did not have to be considered
because they are naturally with uniform arc length rendering. The effect of
reparametrization can be seen in Fig. 3.7. On the left, the original curve with
constant time increments ∆t is plotted. On the right side, the reparametrized
version for constant arc length increments ∆s is plotted. Note that the shape of
the curve stays the same, only the spacing of the individual points changes.

Figure 3.7: A blend using a PH curve. Natural parametrization with constant ∆t (left)
and reparametrized for constant arc length increments ∆s (right).

26

... 3.3. Blends

The importance of reparametrization of the curve can also be seen when the
continuity of the merge of the blend curve with a line is analyzed. The natural
parametrization does not give continuous velocity and acceleration profiles. The
velocity and acceleration vectors at the merge point have the same orientation
for both curves, but their magnitudes differ. Thus, the blend with natural
parametrization is only geometrically continuous but not parametrically. With
the correctly reparametrized curve, even the magnitudes of the velocity and
acceleration vectors are the same for both curves, and thus the trajectory is C2

continuous.
The task is to find a parameter γ such that the arc length of the points

of the blend is given by some function, the easiest being a linear function for
uniform spacing. For that, a relation between the parameter γ and the arc length
s is needed. Equation (3.39) together with equation (3.36) can be used for this
purpose [13]:

spγq “

ż γ

0

a

x12pγq ` y12pγq dt “ pu2
0 ` 2u0u2 ` u2

2 ` v2
2q

γ5

5 ´

´ p4u2
0 ` 4u0u2q

γ4

4 ` p6u2
0 ` 2u0u2q

γ3

3 ´ 4u2
0
γ2

2 ` u2
0γ.

(3.51)

For some given arc length s, one can find the root of the following polynomial:

pu2
0 ` 2u0u2 ` u2

2 ` v2
2q

γ5

5 ´

´ γ4 ¨ pu2
0 ` u2 ¨ u0q ` p6u2

0 ` 2u0u2q
γ3

3 ´ 2u2
0γ2 ` u2

0γ ´ s “ 0
(3.52)

where the arc length s can be either given by a linear function of time, to create a
curve with constant ∆s as in Fig. 3.7, or given by some time scaling function sptq.
Since spγq is a function that increases monotonically, there is only one root.

In the actual trajectory generator, the quintic polynomial motion law (Sec-
tion 3.2.2) is used to get a value of s for a given time t. This value is then inserted
into (3.52) and a root γ of this polynomial can be found. After that, a point
on the reparametrized curve, which respects the given motion law, is created by
inserting the found γ into (3.34). The control points of the curve are still given
by its geometry and can be computed as in the previous Section 3.3.2. Doing this
for every time instance t, the whole trajectory of the blend, with a proper time
scaling, is created.

3.3.4 Velocity and acceleration

The next step is to find velocity and acceleration after reparametrization. A chain
rule has to be used when differentiating it to get the velocity and acceleration
of Xpγpsptqqq since a parameter of a point on the curve is a function of another
parameter.

The final formulas for both velocity and acceleration are quite long, and it
does not make sense to show them in here; therefore, only the process of their
creation is shown, and the final equations can be found in the attached code since

27

... 3.3. Blends

if anybody needs them for their application, they will serve better as a piece of
code.

Velocity

The velocity can be expressed as

9Xpγq “
dXpγpsptqqq

dt
“

dX
dγ

dγ

ds

ds

dt
, (3.53)

where

dX
dγ

“

»

—

–

dx

dγ
dy

dγ

fi

ffi

fl

(3.54)

can be differentiated using Xpγq from (3.34) with control points (3.41) straight-
forwardly. The term ds

dt
“ 9s is already given from the motion law. Finding dγ

ds
requires having the formula for γpsq, but since spγq is known from equation (3.51),
the rule for the derivative of the inverse function can be used:

dγ

ds
“

1
dspγq

dγ

(3.55)

The differentiated terms can be found in the attached Matlab function
blending.

Acceleration

The acceleration can be expressed as

:Xpγq “
d 9Xpγq

dt
“

d
dt

ˆ

dX
dγ

dγ

ds

ds

dt

˙

. (3.56)

When applying the product rule, one can get

:Xpγq “
d
dt

ˆ

dX
dγ

˙

dγ

ds

ds

dt
`

dX
dγ

d
dt

ˆ

dγ

ds

˙

ds

dt
`

dX
dγ

dγ

ds

d
dt

ˆ

ds

dt

˙

(3.57)

and after handling the time derivatives in each term, the equation for acceleration
is created

:Xpγq “
d2X
dγ2 ξ2 9s2 `

dX
dγ

dξ

dγ
ξ 9s2 `

dX
dγ

ξ:s, (3.58)

where ξ “
dγ

ds
for simplicity. All of the terms can be differentiated straightforwardly

from already existing formulas or are given from the used motion law. They can
also be found in the attached Matlab function blending.

28

... 3.3. Blends

3.3.5 Use case in a blend

In the trajectory generator, a blend is created between two line segments, see
Fig. 3.8. Let the first line segment be between points A and B, and the second
line segment between points B and C. Then, if there is a nonzero radius ϱ defined
at point B, the blend is created at that point as follows. First, directional vectors

A

B

C

n1

n2

ϱ

ϱ

Bstart

Bend

Figure 3.8: A blend between two lines

of the lines pointing towards the intersection point are computed:

n1 “
B ´ A

}B ´ A}

n2 “
B ´ C

}B ´ C}

(3.59)

After that, the angle between the lines θ and an angle φ between the second
line and x axis are

θ “ arccos
ˆ

n1 ¨ n2
}n1} ¨ }n2}

˙

, φ “ θ ´
π

2 . (3.60)

Points where the blend should start and end are

Bstart “ B ´ ϱ ¨ n1,

Bend “ B ´ ϱ ¨ n2.
(3.61)

The next step is to find the control points of a blend curve in the xy plane
based on ϱ and φ. This is done using equation (3.50) to get the values u0, u2 and
v2 and then inserting them into (3.41) to get the control points.

The length of the blend can be found when γ “ 1 is inserted into equation
(3.51). This length, together with a given value of the velocity at the beginning
and in the middle of the blend, can be used to generate the quintic polynomial
motion law.

Note that the trajectory generator is working with discrete time instants
because of the inner loop in the PLC of the robot, which sends a command
with desired position and velocity to the actuators every iteration of this loop.
Therefore, a time vector is created, where the values are spaced uniformly, with a

29

... 3.3. Blends

step equal to the cycle time of the PLC. For every value in this time vector, the
arc length parameter s and its time derivatives are computed using (3.23) – (3.25).

Every value of s is then reparameterized, as described in Section 3.3.3, to
get a corresponding value of γ. This value can be inserted as a parameter into
(3.34), where the control points are already known. Now, the points Xxy of the
blend, respecting the motion law, are generated, but only in the xy plane with
the beginning at the origin.

The last step is therefore rotating and translating the blend so that it can
merge with the rest of the trajectory. The rotation can be done using a matrix

R “

»

–

d1 n1 c1
d2 n2 c2
d3 n3 c3

fi

fl , (3.62)

where the individual columns are axes of the orthonormal coordinate system
x2 y2 z2 of the blend expressed in the world coordinate frame x1 y1 z1, see Fig. 3.9.
According to the figure, they can be defined as follows:

n1 “
“

n1 n2 n3
‰T

c “
“

c1 c2 c3
‰T

“
p´n1q ˆ n2

||p´n1q ˆ n2||

d “
“

d1 d2 d3
‰T

“
n1 ˆ c

||n1 ˆ c||
.

(3.63)

n1

c

n2

d

z2

x2

y2

z1

y1

x1

Bstart

Figure 3.9: Orientation of the blend in x2y2 plane with respect to the world coordinate
frame x1y1z1

The curve of the blend in the proper position and with the correct orientation in
space is given by rotating the points Xxy using the rotation matrix and translating
it so that the first point of the blend is at the point Bstart. The same rotation
matrix can be used to transform velocity and acceleration:

X “ R ¨ Xxy ` Bstart

9X “ R ¨ 9Xxy

:X “ R ¨ :Xxy

(3.64)

30

.. 3.4. Overruns

3.4 Overruns

To run the trajectory on the physical robot, it has to be discrete with a constant
time step. Therefore, a time vector with values that increase by this constant step
is created and used as input to the time scaling function. However, in most cases,
the total duration of this time scaling function is not an integer multiple of the
time step. Because of that, the last point of the trajectory segment is not exactly
at the end of this segment but a bit closer to the starting point.

The next generated point would interfere with the following trajectory segment,
which is unacceptable. Also, if the next segment started with the first point at
the beginning of its segment, the two adjacent points (the last point of the first
segment and the first point of the second segment) would be closer to each other
than they should be. This affects the velocity and acceleration at that point – with
a sudden jump in the spacing of the points, the velocity is discontinuous.

The solution is to generate one more point after each segment and measure
its distance from the official end of the relevant segment. This distance is called
overrun. Then, the points of the next segment are shifted by that overrun to keep
the spacing as computed from the time scaling. This can be easily achieved by
adding the overrun value to the starting position s0 of the time scaling function
of the next segment.

The described method can be seen in Fig. 3.10. The blue dots represent the
points of the line segment, and the red dots represent the points of the blend
segment. The last blue dot is just before the end of the line segment; the next one
would be in the blend segment (the red dot with a blue outline). The gray dot is
the transition of the two segments, where the first red dot should be, but then it
would be too close to the last blue dot. Therefore, the first red dot is offset by
the overrun value to be at the place where the next blue dot would be.

Figure 3.10: Overruns

This issue depends on the velocity at that point. When the velocity is low, or
even zero, when stopping between segments, this overrun value is small enough
that it may not be noticeable. However, with higher velocities, especially in a
transition between line and blend segments, the gaps between the points and thus
also the overrun grow, and discrepancies in velocity occur.

31

.............................. 3.5. Algorithm of the trajectory generator

3.5 Algorithm of the trajectory generator

All the path and time scaling functions described above will now be combined
and used in the actual trajectory generator. The generator itself is divided into
two functions. The first takes the points defined by the user and creates a data
structure that contains all the necessary information about the individual segments.
The second function then uses this data structure to generate the trajectory in a
form that is ready to be used in the physical robot. In this way, modularity of the
generator is achieved since, in some applications, a different method of choosing
the segments than by individual points may be better. One can easily create his
method to generate the data structure and then use only the second function to
get the actual trajectory.

3.5.1 Generating the segments

The first function is called generate_segments. As input, it takes a set of points
with additional information about each one:. coordinates of the point x, y, and z. radius of the blend at that point ϱ. boolean variable b if it is a second point of a triplet creating an arc. orientation q4, q5 of the wrist part of the robot (axes A4 and A5) at that

point

The user can create the desired path by defining these parameters at each defined
point. By default, all points are connected by lines with a blend of the defined
radius between them. If the blend is not wanted at some point, the radius can be
set to zero. If an arc made by three points is desired instead of connecting the
three points by two lines, the second point should have the boolean variable b set
to logical 1. The orientation of the wrist part of the robot does not have to be
defined at every point; it automatically interpolates the orientation between the
two defined poses. Also, if there are two points after each other with the same
coordinates but different orientations, a wrist reorientation is planned.

At the beginning of the Matlab function, the input is checked to ensure a
feasible trajectory – the blend radii at the first and last points have to be zero
because there is no line to blend it with. Also, the boolean variable for creating
an arc b cannot be set to logical 1 for two points next to each other, and a blend
cannot be planned at a point of an arc. Another condition is that the wrist
orientation must be defined at the first and last point. When a reorientation is
planned, there also cannot be any blend at that point.

After that, the code goes through the individual points one by one in a loop,
sorts them by their type, and creates the data structure of the segments. If the
point has the same coordinates as the previous one, a reorientation segment is
added. If not, the boolean value b is checked, and if it is logical 1, an arc segment
is added. If it is logical 0, the radius of the blend is checked. If zero, only a line

32

.............................. 3.5. Algorithm of the trajectory generator

segment is planned between this and the previous point. If the blend radius is
nonzero, the starting point of the blend is computed, and two segments are added
– a line between the previous point and the starting point of the blend and a blend.
In that case, the next iteration of this loop has to start the geometrical path of
the next segment at the end of the blend and not at the point from the input.

With every segment, the necessary values are stored in the structure:. type – a type of segment (line, blend, arc or reorient). R – rotation matrix, only for a blend segment, created as in (3.62) and (3.63). phi – angle between the second line and the x axis, defined in (3.40), only
for a blend segment. rho – radius of the blend, only for a blend segment. startPoint – coordinates of the point, where this segment starts. middlePoint – only for arc and blend segments, the second point from input
for arc, the point form input for blend. endPoint – coordinates of the point, where this segment ends. vector – directional vector, only for a line segment. orientDefined – boolean variable to find out if the orientation of the wrist
is defined in this segment. q4 – angle of axis A4 (part of orientation of the wrist). q5 – angle of axis A5 (part of orientation of the wrist)

In the end, all of the blend segments have to be checked to see if the blend
does not reach too far and interfere with the adjacent segments. If so, the user
has to change either the position of the points or the radius of the blend. The
output of this function is the mentioned segment data structure.

3.5.2 Generating the trajectory

The second function is called traj_generation. As input, it takes the segment
data structure plus the orientation of the wrist at the beginning. Its purpose is to
create a set of positions qi and velocities 9qi, i “ 1 . . . 5, for actuators of the robot
so that the TCP will follow the desired trajectory.

For each of the already existing segments, kinematic limits (maximum Carte-
sian velocity, acceleration, and jerk of TCP, as well as joint velocity, acceleration,
and jerk limits) have to be assigned. This can be done either by setting global
limits for all segments, as is done in this function, or by attaching the limits to
the data structure of the individual segments, as in the user interface shown in
Section 3.6.

In this function, there are two subsequent loops in which the individual
segments are transformed into a trajectory. The first loop takes care of the time

33

.............................. 3.5. Algorithm of the trajectory generator

scaling part, and the second loop combines it with the geometry and completes
the trajectory generation. The reason for dividing it into two loops is that the
defined orientation of the wrist part of the robot is not obligatory in every segment.
However, for computing the inverse kinematics for every point of the trajectory,
the orientation of the wrist at that point has to be already known. Therefore, all
segments have to be run through to get the interpolated orientation of the wrist
for the whole duration of the trajectory, and after that, the second loop can do
the rest.

First loop

All of the segments are examined one by one to obtain the correct time scaling
function and orientation of the wrist in this segment. If it is a line segment, an
S-curve velocity profile is applied. The initial velocity is set according to the final
velocity of the previous segment, and the final velocity is defined by the user or
zero if the next segment is not a blend (and the robot has to stop).

If it is a blend segment, a function blending is called. It calculates the
geometry of the blend based on the values phi and rho in the data structure for
this segment. After that, it computes the arc length of the blend and generates
a quintic polynomial motion law, with the initial and final velocity as the final
velocity of the previous segment and the velocity in the middle of the blend as
defined by the user. Then, it works on the reparametrization and generates the
individual points, as well as velocities and accelerations, for the whole blend.
These values are then compared with the velocity and acceleration limits to see if
the blend is feasible.

For an arc segment, a function circle3Dfunc computes all the necessary
variables in equation (3.6). The length of the arc ℓ “ θmax ¨ r is then used to
generate an S-curve velocity profile. In this case, both the initial and final velocities
are zero. Note that in both the blend and arc segments, the normal acceleration
is not taken into account.

Finally, if it is a reorientation segment, an S-curve velocity profile is computed
individually for both axes of the wrist of the robot. The lengths of the two time
scaling profiles for the axes are compared, the longer one is chosen, and a new
S-curve for the other axis is generated to match the duration of the phases of the
chosen S-curve. The reason for doing so is that the longer duration means lower
kinematic limits, and therefore slowing down the faster S-curve ensures that both
axes will not exceed their limits.

In all types of segments, except for reorientation, the variable orientDefined
is checked. If the orientation of the wrist is defined in this segment, the duration
since the last defined orientation is computed, and an S-curve for both axes of the
wrist are generated to match this duration.

At the end of every iteration of this loop, kinematic limits for axes A4 and
A5 are checked, and all the computed variables, which will be necessary later, are
added to the data structure.

34

.. 3.6. User interface

Second loop

In the second loop, all segments are again examined one by one. This time, the
motion law sptq is known, as well as the orientation of the wrist q4, q5. For line or
arc segments, the parameter s is inserted into equation (3.2) or (3.6), respectively.
By doing so, the points Xpsq of the trajectory segment are created. The same is
done for velocity and acceleration – equations (3.4) and (3.5) are used for a line,
equations (3.17), (3.18) and (3.19) for an arc.

For blend segments, the points are already stored in the data structure, and
the only task left is to rotate and translate the curve according to (3.64). For
reorientation, the path is a single point; therefore, no computation is needed.

After that, an inverse kinematics function is applied to get the joint coordinates
and their time derivatives. The next step is to perform checks to see if the E
point of the robot is in the workspace, if the joint positions q1, . . . , q5 are within
its limits, and if the kinematic limits for the upper arm axes are not exceeded.

The final step in the generation process is to transform the joint coordinates
into suitable machine coordinates because the control system uses different units
and zero offset than the kinematic model shown in Fig. 2.3. The main output
of this function is a variable Q_machine containing the joint positions qi and
velocities 9qi, i “ 1 . . . 5, which can be loaded into the physical robot, and the
trajectory can be performed. The rest of the output variables serve for plotting
the trajectory, which is used especially in the user interface for this generator,
described below.

3.6 User interface

By using the functions described above, one can generate the desired trajectory.
However, to simplify the generation process, a user interface was created using
Matlab App Designer [17]. It uses all the functions described above, with only a
few changes to make it compatible with the rest of the user interface.

It consists of three pages. On the first page (see Fig. 3.11), the segments are
created. The user can fill in the data about every point, and it gets stored in the
table on the left. A live preview of the points in space is shown in the 3D plot on
the right side. After the user adds all the points to make the desired trajectory,
the function generate_segments is called, and the segments are generated. In
addition, the path and the orientation of the wrist at the defining points are shown
in the plot.

35

.. 3.6. User interface

Figure 3.11: First page of the user interface

After that, the user can move to the second page (see Fig. 3.12), where the
individual segments are shown in a table. Every segment is automatically named
based on the type of the segment and the names of the points defined on the
previous page. The kinematic limits for individual segments can be modified as
well as the global kinematic limits for axes. In addition, the desired velocity can
be defined either at the end of a line segment or in the middle of a blend segment.
After setting everything as the user wants, the trajectory is generated using the
function traj_generation. A velocity profile of the TCP is shown below the
table.

36

.. 3.6. User interface

Figure 3.12: Second page of the user interface

A summary of the generated trajectory is shown on the third page (see
Fig. 3.13). On the left side, a path colored with respect to the velocity of TCP at
that point is plotted. Also, the user can use the buttons below the plot to see the
plots of positions, velocities, or accelerations of either the TCP or individual axes.
The trajectory can be saved to the computer for later use or be sent directly to
the PLC of the robot.

Figure 3.13: Third page of the user interface

37

Chapter 4
Experiment

To verify that the trajectory planner is working as intended, an experiment with
the physical robot was carried out. Three different trajectories were generated
using the created user interface of the planner. Then, they were uploaded to the
PLC of the robot and performed. Besides visual validation that the robot moves
as it should, a Leica laser tracker was used for precise and real-time measurement
of the trajectory.

In addition, the positions of the axes were traced by the robot’s PLC during
the movement, and forward kinematics was used to get the positions of the
TCP. Overall, three independent data sets (generated trajectory, laser tracker
measurement, and traced positions of the robot’s axes) were compared for three
different trajectories.

Since the data from the laser tracker are expressed in its own coordinate
system, they cannot be compared directly with the data in the coordinate system
of the robot. A transformation between the two coordinate systems is quite
complicated because the position of the laser tracker with respect to the robot is
unknown. Thus, for simplicity, only the relative positions of the measured points
are considered, and the comparison is made only on the basis of the shape of the
path.

4.1 Setup of the experiment

The following equipment was used to conduct the experiment:. Leica Absolute Tracker AT960 [18]. Red Ring Reflector 0.5” [19]. Reflector Holder 0.5” [20]. Trajectory Planner (software). Leica AT960 Tracker Pilot (software)

The Leica laser tracker was placed in front of the Delta robot, as can be seen
in Fig. 4.1. The reflector was then attached to the gripper of the robot using
the magnetic reflector holder, as shown in Fig. 4.2. Note that the reflector is not

38

.................................... 4.1. Setup of the experiment

placed in the TCP of the robot (at the very end of the tool, between the fingers of
the gripper). Due to this, the A4 and A5 axes of the robot had to be fixed during
the experiment. Then, the shape of the measured path would not be different
from the actual path of the TCP.

Figure 4.1: Setup of the experiment

The reflector has an acceptance angle of ±30° [19], so the laser tracker was
placed as far away from the robot as possible to maximize the size of the measured
trajectory.

Figure 4.2: Gripper of the robot with attached reflector

39

..................................... 4.2. Generated trajectories

The trajectory was generated using the user interface (shown in Section 3.6)
and then uploaded to the PLC of the robot via OPC UA (Open Platform Commu-
nications – Unified Architecture). The code for sending the trajectory is not part
of this thesis and, therefore, is not described in detail. After that, the trajectory
was performed, the data from the laser tracker were recorded using a Leica AT960
Tracker Pilot application, and the positions of the axes were traced in the PLC.

4.2 Generated trajectories

Three different trajectories were generated. In all of them, the A4 and A5 axes
had to be fixed in their positions due to the reasons with the reflector mentioned
above. For each trajectory, tables with all the necessary parameters are given so
that anyone can generate the same trajectory according to them. Figures of the
geometrical shapes of the trajectories can be found in the following Section 4.3.

The Cartesian kinematic limits of TCP for the three trajectories were set to the
following values. Velocity limit vlim “ 0.05 m/s, acceleration limit alim “ 0.2 m/s2,
and jerk limit Jlim “ 0.4 m/s3. The kinematic limits of the individual axes were
left as default.

4.2.1 Pick-and-place trajectory

The first trajectory represents a standard pick-and-place operation and is defined
by four points A, . . . , D (see Table 4.1). It consists of three lines with blends
between them. The first line is vertical for the pick operation, followed by a
horizontal line to move above the final location. The third line is for the place
operation, but this time it is not vertical to show a blend between non-right-angled
lines (see Fig. 4.4a). In a real application, the gripper could also rotate to match
the orientation of the line in space. This could be used, for example, in some
assembly applications.

Individual segments with defined velocities are shown in Table 4.2. As
mentioned in Section 3.6, the defined velocity is the one at the end of a line
segment, whereas, for a blend, it is the velocity in the middle of the blend.

Name x [m] y [m] z [m] ϱ [m] q4 [°] q5 [°]

A 0.0408 -0.0483 -1.4600 0 -49.8 0
B 0.0408 -0.0483 -1.3500 0.04 -49.8 0
C -0.1000 0.1000 -1.3500 0.05 -49.8 0
D -0.1500 0.1500 -1.4600 0 -49.8 0

Table 4.1: The points creating the pick-and-place trajectory

40

..................................... 4.2. Generated trajectories

Type Defined velocity [m/s]

Line from A to B 0.05
Blend at point B 0.03
Line from B to C 0.05
Blend at point C 0.03
Line from C to D 0

Table 4.2: Segments of the pick-and-place trajectory

4.2.2 Cuboid trajectories

The other two generated trajectories are defined by eight points A, . . . , H, which
are the vertices of a rectangular cuboid. The paths generated by these points
can be seen in Fig. 4.5a and Fig. 4.6a. The difference between the two paths is
the radius of the blend at the vertices. One path was created with a small blend
radius ϱ “ 0.03 m (see Table 4.3) and the other path with a large blend radius
ϱ “ 0.045 m (see Table 4.4). The difference can also be seen in Fig. 4.3. The
individual segments of these two trajectories can be seen in Table 4.5. The defined
velocities for each segment are kept the same for both versions.

Name x [m] y [m] z [m] ϱ [m] q4 [°] q5 [°]

A 0.008 -0.008 -1.4500 0 -49.8 0
B -0.008 -0.008 -1.4500 0.03 -49.8 0
C -0.008 -0.008 -1.3500 0.03 -49.8 0
D -0.008 0.008 -1.3500 0.03 -49.8 0
E -0.008 0.008 -1.4500 0.03 -49.8 0
F 0.008 0.008 -1.4500 0.03 -49.8 0
G 0.008 0.008 -1.3500 0.03 -49.8 0
H 0.008 -0.008 -1.3500 0.03 -49.8 0
A 0.008 -0.008 -1.4500 0 -49.8 0

Table 4.3: The points creating the cuboid trajectory with a small blend radius

Name x [m] y [m] z [m] ϱ [m] q4 [°] q5 [°]

A 0.008 -0.008 -1.4500 0 -49.8 0
B -0.008 -0.008 -1.4500 0.045 -49.8 0
C -0.008 -0.008 -1.3500 0.045 -49.8 0
D -0.008 0.008 -1.3500 0.045 -49.8 0
E -0.008 0.008 -1.4500 0.045 -49.8 0
F 0.008 0.008 -1.4500 0.045 -49.8 0
G 0.008 0.008 -1.3500 0.045 -49.8 0
H 0.008 -0.008 -1.3500 0.045 -49.8 0
A 0.008 -0.008 -1.4500 0 -49.8 0

Table 4.4: The points creating the cuboid trajectory with a large blend radius

41

... 4.3. Results

Figure 4.3: Generated trajectories for two different values of the blend radius

Type Defined velocity [m/s]

Line from A to B 0.05
Blend at point B 0.03
Line from B to C 0.05
Blend at point C 0.03
Line from C to D 0.05
Blend at point D 0.03
Line from D to E 0.05
Blend at point E 0.03
Line from E to F 0.05
Blend at point F 0.03
Line from F to G 0.05
Blend at point G 0.03
Line from G to H 0.05
Blend at point H 0.03
Line from H to A 0

Table 4.5: Segments of the cuboid trajectories

4.3 Results

The results of this experiment are presented in the following figures. Data are
grouped by the three trajectories, starting with the pick-and-place trajectory in
Fig. 4.4, then the cuboid trajectory with a small blend radius in Fig. 4.5 and the
last being the cuboid trajectory with a large blend radius in Fig. 4.6. Each figure
compares the three different data sources – generated trajectory (blue line), data
from the positions of individual axes after using forward kinematics (orange line),
and data from the laser tracker (green line).

Note that the measured data from the laser tracker are expressed in a different
coordinate system, and the plots are manually rotated to approximately match
the orientation of the other two plots of the same trajectory.

42

... 4.3. Results

(a) : Generated (b) : Forward kinematics (c) : Laser tracker

Figure 4.4: Pick-and-place trajectory

(a) : Generated (b) : Forward kinematics (c) : Laser tracker

Figure 4.5: Cuboid trajectory with a small blend radius

(a) : Generated (b) : Forward kinematics (c) : Laser tracker

Figure 4.6: Cuboid trajectory with a large blend radius

On the basis of the visual comparison of the plotted trajectories, one can
see that the shapes are very similar. Moreover, the generated trajectories (blue
lines) and those created by using forward kinematics on the traced axes’ positions
(orange lines) are identical, which proves that the inverse and forward kinematics
match.

The trajectories from the laser tracker (green lines) are not exactly identical,
but their shape is similar to that of the other two data sources. Therefore,
the trajectory planner is working as intended, and its functionality was verified.
Additional experiments and more advanced evaluation methods are needed to
obtain more information on the trajectory.

43

Chapter 5
Conclusion

In this bachelor thesis, a trajectory planner for a 5-axis hybrid parallel-serial
Delta robot was created. Thanks to that, trajectories for all five axes of the robot
can be performed, which widens the range of possible applications. A custom
Pythagorean-Hodograph curve was derived and used for blends between lines.
The trajectory planner was created in a way that is easy to use and does not
require any programming skills, so anyone can use it. All tasks were successfully
completed.

First, a comparison was made between serial, parallel, and hybrid kinematic
structures, showing the advantages and disadvantages of each structure. After
that, applications of Delta robots were presented based on their key features, such
as fast movement and precision.

Furthermore, a detailed description of the hybrid Delta robot located at the
CIIRC CTU was given. The mechanical structure of the physical robot and
the kinematic model were shown. In addition, the task of forward and inverse
kinematics, which had already been solved, was studied, and a brief overview of
its derivation was given. The workspace of our Delta robot was also described.

In the following chapter, the trajectory planner for our Delta robot was created.
At the beginning of this chapter, used terms, such as path or time scaling, were
explained, and the requirements of a trajectory planner were discussed. Next, the
used path segments and time scaling functions were described in detail. For the
path, a line, arc, blend, and reorientation segments are implemented. An S-curve
velocity profile and a quintic polynomial are used for time scaling.

After that, the properties of Pythagorean-Hodograph curves were shown, and
a curve to blend between two intersecting line segments with an arbitrary angle
between them was derived. Then, this curve was reparametrized, and a quintic
polynomial motion law was applied. In addition, formulas for the velocity and
acceleration of this blend curve were derived. Also, an issue with velocity and
acceleration discrepancies occurred at the merging point of two segments, and a
solution was proposed and implemented. At the end of this chapter, the algorithm
of the trajectory planner was made by combining the individual functions described
above, and a user interface for this planner was created.

An experiment on the physical robot was conducted to verify the functionality
of the created trajectory planner. A laser tracker and traced axes positions were
used to compare the shape of the real trajectory with the generated one for three

44

.. 5. Conclusion

different trajectories. The actual trajectory matches the generated one, which
confirms that the trajectory planner works as intended.

This thesis provides a functional trajectory planner for a 5-axis hybrid parallel-
serial Delta robot. Future work should focus on extending the possibilities of this
planner, for example, by adding new segment types, and improving the existing
ones, for instance, by not neglecting the normal acceleration of the TCP. Also,
the user interface could be improved by visualizing the point where the kinematic
limits are exceeded so that the user knows which segment to modify.

Additional features, such as defining new points of the trajectory in a co-
ordinate system of the attached tool, can be added. The input of the points
into the segment generator from a higher-level motion planning system is also
an interesting extension of this planner. Finally, the whole planner could be
implemented to the PLC of the robot, and the trajectory could be computed in
real-time instead of pre-computing it in Matlab.

45

Bibliography

[1] J. Merlet, Parallel Robots. Solid Mechanics and Its Applications, Springer
Netherlands, 2012.

[2] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and
Control. USA: Cambridge University Press, 1st ed., 2017.

[3] J. Kuřina, “Plánování trajektorie paralelního robota,” Bachelor thesis, Faculty
of Mechanical Engineering, Czech Technical University, Prague, 2017.

[4] M. Mihelj, T. Bajd, J. Lenarčič, A. Stanovnik, and M. Munih, Robotics.
Springer Netherlands, 2019.

[5] Midwest Engineered Systems, Inc., “Delta Robots.” https://www.mwes.com/
delta-robots/. Accessed on 2022-07-30.

[6] “Autonox Robotics GmbH. DELTA robot RL5-1450-6kg.” https://
autonoxfinder.com/en/a_00802. Accessed on 2022-07-30.

[7] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics. Springer London,
2009.

[8] B. Alikoç, V. Šustr, F. Zítek, J. Řehořík, P. Burget, and A. Lomakin, “Motion
Modelling and Simulation of a 5-Axis Industrial Delta Robot,” Submitted to
Mechatronics, 2022.

[9] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic Machines
and Robots. Springer Berlin, Heidelberg, 2008.

[10] I. Linkeová, Základy počítačového modelování křivek a ploch. 2020.

[11] “3d coordinates of circle center given three point on the cir-
cle.” https://math.stackexchange.com/questions/1076177/
3d-coordinates-of-circle-center-given-three-point-on-the-circle,
Apr 2016. Accessed on 2022-07-12.

[12] X. Liang and T. Su, “Quintic pythagorean-hodograph curves based trajectory
planning for delta robot with a prescribed geometrical constraint,” Applied
Sciences, vol. 9, no. 21, 2019.

46

https://www.mwes.com/delta-robots/
https://www.mwes.com/delta-robots/
https://autonoxfinder.com/en/a_00802
https://autonoxfinder.com/en/a_00802
https://math.stackexchange.com/questions/1076177/3d-coordinates-of-circle-center-given-three-point-on-the-circle
https://math.stackexchange.com/questions/1076177/3d-coordinates-of-circle-center-given-three-point-on-the-circle

.. 5. Conclusion

[13] T. Su, L. Cheng, Y. Wang, X. Liang, J. Zheng, and H. Zhang, “Time-optimal
trajectory planning for delta robot based on quintic pythagorean-hodograph
curves,” IEEE Access, vol. 6, pp. 28530–28539, 2018.

[14] B. Dong and R. T. Farouki, “Phquintic: A library of basic functions for the
construction and analysis of planar quintic pythagorean-hodograph curves,”
ACM Trans. Math. Softw., vol. 41, oct 2015.

[15] R. T. Farouki, “Introduction to Pythagorean-Hodograph curves.”
https://faculty.engineering.ucdavis.edu/farouki/wp-content/
uploads/sites/51/2021/07/Introduction-to-PH-curves.pdf. Accessed
on 2022-07-15.

[16] MathWorks, “Symbolic Math Toolbox.” https://www.mathworks.com/
products/symbolic.html. Accessed on 2022-07-18.

[17] MathWorks, “Matlab App Designer.” https://www.mathworks.com/
products/matlab/app-designer.html. Accessed on 2022-07-18.

[18] Hexagon, “Leica Absolute Tracker AT960.” https://www.
hexagonmi.com/en-US/products/laser-tracker-systems/
leica-absolute-tracker-at960. Accessed on 2022-08-02.

[19] Hexagon, “Red Ring Reflector.” https://shop.hexagonmi.com/na/en_US/
USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-0-5%
22/p/575739. Accessed on 2022-08-02.

[20] Hexagon, “Reflector Holder.” https://shop.hexagonmi.com/
na/en_US/USD/Catalog/Laser-Tracker/Reflector-Holders/
Reflector-Holder-0-5%22-%28OFF-10-SH-0-B-12-7-SS%29/p/577220.
Accessed on 2022-08-02.

47

https://faculty.engineering.ucdavis.edu/farouki/wp-content/uploads/sites/51/2021/07/Introduction-to-PH-curves.pdf
https://faculty.engineering.ucdavis.edu/farouki/wp-content/uploads/sites/51/2021/07/Introduction-to-PH-curves.pdf
https://www.mathworks.com/products/symbolic.html
https://www.mathworks.com/products/symbolic.html
https://www.mathworks.com/products/matlab/app-designer.html
https://www.mathworks.com/products/matlab/app-designer.html
https://www.hexagonmi.com/en-US/products/laser-tracker-systems/leica-absolute-tracker-at960
https://www.hexagonmi.com/en-US/products/laser-tracker-systems/leica-absolute-tracker-at960
https://www.hexagonmi.com/en-US/products/laser-tracker-systems/leica-absolute-tracker-at960
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-0-5%22/p/575739
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-0-5%22/p/575739
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflectors/Red-Ring-Reflector-0-5%22/p/575739
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflector-Holders/Reflector-Holder-0-5%22-%28OFF-10-SH-0-B-12-7-SS%29/p/577220
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflector-Holders/Reflector-Holder-0-5%22-%28OFF-10-SH-0-B-12-7-SS%29/p/577220
https://shop.hexagonmi.com/na/en_US/USD/Catalog/Laser-Tracker/Reflector-Holders/Reflector-Holder-0-5%22-%28OFF-10-SH-0-B-12-7-SS%29/p/577220

	Introduction
	Serial, parallel and hybrid robots
	Comparison of different kinematic structures
	Applications of Delta robots
	5-axis hybrid Delta robot
	Forward and inverse kinematics
	Workspace

	Trajectory planning
	Types of used path segments
	Line
	Arc

	Types of used time scaling functions
	S-curve velocity profile
	Quintic polynomial

	Blends
	Properties of Pythagorean-Hodograph curves
	Derivation of the curve for blends
	Reparametrization
	Velocity and acceleration
	Use case in a blend

	Overruns
	Algorithm of the trajectory generator
	Generating the segments
	Generating the trajectory

	User interface

	Experiment
	Setup of the experiment
	Generated trajectories
	Pick-and-place trajectory
	Cuboid trajectories

	Results

	Conclusion
	Bibliography

