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Introduction

This Bachelor project focuses on reviewing and exploration of an important and
turbulently evolving field of theoretical and mathematical physics called the non-
hermitian quantum mechanics (NHQM). NHQM is inherently associated with
scattering and decay phenomena which involve metastable states of quantum sys-
tems, the so-called resonances .

Metastable states (resonances) correspond to situations when the studied
quantum system (atom, molecule, atomic nucleus) is "almost bound" or "almost
stable" yet it has enough energy to decay (disintegrate) into fragments (electrons,
ions, photons, products of a chemical reaction, or products of an alpha-decay).
Resonances can often be formed by exposing an originally bound system to an
external field (electrostatic, magnetostatic, or to an oscillating field of a laser). Due
to the just mentioned decay into fragments, metastable systems possess a finite
lifetime, as opposed to true bound states, which live infinitely long. Resonances are
manifested physically by Breit-Wigner (Lorentzian) peaks in the experimentally
measurable scattering amplitudes (transmission probabilities, cross sections).

Physical phenomena involving metastable states are very rich but difficult
to describe using the conventional framework of the hermitian quantum mechanics
(HQM). NHQM offers an extremely powerful alternative. (Yet one needs to keep in
mind that NHQM is fully equivalent to HQM when it comes to all the experimen-
tally observable quantities.) As the name already suggests, NHQM is dealing with
nonhermitian operators, in contrast to HQM. Correspondingly, the energy eigenval-
ues of a nonhermitian Hamiltonian are complex valued, such that the resonances
acquire a negative imaginary part proportional to their inverse lifetime (see Chap-
ters 2-3 for a self contained treatment of this issue). NHQM even enables to predict
physical phenomena whose existence one can hardly anticipate when working within
the standard HQM (in particular, an emergence of the so-called exceptional points
and their physical fingerprints, see Chapters 2-3 for details).

The purpose of this project is to review the formalism of NHQM and to
discuss one of its important applications: an interaction of atoms with a weak
intensity laser and formation of the so-called exceptional point by the laser.
The structure of the project is as follows:

In Chapter 1 we outline the basic notions of hermitian scattering theory.
Subsequently, using a 1D toy potential model, we solve the corresponding time
independent Schrödinger equation for the stationary scattering states and calculate
the transmission coefficient. We also solve the associated bound state boundary
value problem.

In Chapter 2 we introduce and explore the theory of NHQM. First, we
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mathematically describe the concept of Gamow-Siegert states (bound states, anti-
bound states, resonances, anti-resonances), then discuss the different methods of
approaching resonances and calculating their associated energies and wavefunctions.
We illustrate these methods again on the same 1D toy potential model as in Chapter
1. Namely, we calculate the transmission probability and compare our results to the
ones obtained in Chapter 1. Lastly, we briefly discuss the mathematical and physical
properties of the anti-bound states.

In Chapter 3 we focus on the problem of interaction of an atomic system
with laser. We overview the basic underlying theoretical notions, most importantly,
the gauge transformations, and the description of laser induced atomic resonances
by means of the nonhermitian Floquet theory. Finally, as the ultimate "holy grail"
of this thesis, we discuss the possible creation of a nonhermitian degeneracy known
as an exceptional point (EP). We present an illustrative numerical calculation of an
EP (for the same toy model as used in Chapters 1-2), and highlight some important,
unusual, counter-intuitive properties of these EPs.
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Chapter 1

Hermitian Scattering Theory

1.1 Introduction

This chapter will provide a brief outline of the quantum mechanical scattering theory
embedded in the framework of conventional (hermitian) quantum mechanics. We
will encounter along the way the phenomenon of scattering resonances, which will
motivate us to switch into the nonhermitian quantum mechanical formalism in later
chapters. The hermitian and nonhermitian approaches to quantum mechanics are
equivalent and yield the same results for all physically observable quantities.

For the sake of maximum simplicity, all our theoretical explorations will
concern one-dimensional single particle quantum systems. However, the presented
formulations are generalizable rather straightforwardly to more complex systems of
two or more quantum particles in three dimensions.

Let us consider a single non-relativistic quantum particle moving in one di-
mension in an external potential. The Hamiltonian of such a particle with mass m
in potential field V (x) is

Ĥ =
p̂2

2m
+ V (x̂) = − ℏ2

2m
∂xx + V (x) ; x ∈ (−∞,+∞) . (1.1)

The state vector |ψt⟩, describing the quantum state of the particle at time t, evolves
according to the Schrödinger equation

iℏ∂t |ψt⟩ = Ĥ |ψt⟩ . (1.2)

In what follows, we shall consider only short ranged potentials. Such that
V (x) falls off to zero quickly enough, i.e.

lim
x→±∞

x3V (x) = 0 . (1.3)

1.2 Time Dependent Scattering Theory

The Hilbert space of eigenstates of the Hamiltonian (1.1), H, is divided into a
discrete set of bound states HB and a continuum of unbound states HC , i.e.

H = HB ⊕HC . (1.4)
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The time evolution operators for a free particle and a particle in a potential
field V (x), respectively, are

Û0(t) = e−
i
ℏ Ĥ0t ; (1.5)

Û(t) = e−
i
ℏ Ĥt ; (1.6)

where
Ĥ0 =

p̂2

2m
= − ℏ2

2m
∂xx (1.7)

is the Hamiltonian of a free particle with mass m.
We will assume the satisfaction of the

Asymptotic Condition for Scattering [41]. If the potential V (x) satisfies the
condition (1.3), then for t→ ±∞, the vector |ψt⟩ evolves as a state vector describing
a free particle, i.e. for every |ψt⟩ ∈ HC there exist an incoming state |ψin⟩ ∈ HC and
an outgoing state |ψout⟩ ∈ HC such that

|ψt⟩
∣∣∣
t→−∞

= Û0(t) |ψin⟩ ; (1.8)

|ψt⟩
∣∣∣
t→+∞

= Û(t) |ψout⟩ . (1.9)

1.2.1 Scattering Operator

We are interested in the overall output for scattering rather then the details of
quantum dynamics at finite times. Our goal is, therefore, to calculate |ψout⟩ using
|ψin⟩. We will do this by determining the scattering operator, Ŝ : HC → HC ,
defined by

|ψout⟩ = Ŝ |ψin⟩ ; (1.10)
which contains all physical information about scattering .

Let us define |ψ⟩ as the state vector of the particle at t = 0, i.e.

|ψ⟩ := |ψt⟩
∣∣∣
t=0

. (1.11)

Using the properties of time evolution operators, |ψt⟩ can be expressed as

|ψt⟩ = Û(t) |ψ⟩ . (1.12)

Let T → +∞. Then applying the asymptotic condition to (1.12) gives us

Û0(−T ) |ψin⟩ = Û(−T ) |ψ⟩ ;

|ψin⟩ = Û †
0(−T )Û(−T ) |ψ⟩ ; (1.13)

Û0(+T ) |ψout⟩ = Û(+T ) |ψ⟩ ;

|ψout⟩ = Û †
0(+T )Û(+T ) |ψ⟩ . (1.14)

Therefore,
|ψout⟩ = Û †

0(+T )Û(+T )Û
†(−T )Û0(−T ) |ψin⟩ . (1.15)

Comparison of this result to the definition of Ŝ, (1.10), shows us that

Ŝ = Û †
0(+T )Û(+T )Û †(−T )Û0(−T ) . (1.16)

Since Û and Û0 are unitary operators, Ŝ is unitary as well.
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1.3 Time Independent Scattering Theory

The operator Ŝ is time independent, this motivates us to try to express it in a time
independent way. It is the time independent formalism which gives deep physical
insights into the quantum mechanical theory of scattering phenomena.

1.3.1 Free Particle

Let |ϕEη⟩ be eigenvectors of the free particle Hamiltonian Ĥ0, defined in (1.7), i.e.

Ĥ0 |ϕEη⟩ = E |ϕEη⟩ (1.17)

− ℏ2

2m
∂xx |ϕEη⟩ = E |ϕEη⟩ . (1.18)

The solution to this differential equation is the plane wave

|ϕEη⟩ = eiKx ; (1.19)

where K ∈ C. By substituting (1.19) back into (1.18) we get

− ℏ2

2m
∂xxe

iKx = EeiKx ; (1.20)

ℏ2K2

2m
= E . (1.21)

Let η := sgn(K), then the wavenumber K can be written explicitly as

K =
η

ℏ
√
2mE . (1.22)

Substitution of (1.21) into (1.20) results in the following equation:

− ℏ2

2m
∂xxe

iKx =
ℏK2

2m
eiKx (1.23)

p̂eiKx = ℏKeiKx . (1.24)

The plane wave (1.19) is, therefore, an eigenfunction of the momentum operator p̂
and

p = ℏK . (1.25)

We thus know the exact value of momentum p, which means that according to the
Heisenberg uncertainty principle, the uncertainty of position x of a free particle is
infinite.

Vectors |ϕEη⟩ make up an orthogonal basis of the Hilbert space H. For
the sake of simplification of later calculations, we require |ϕEη⟩ to be orthonormal;
therefore,

⟨ϕEη|ϕE′η′⟩ = δ(E − E ′)δηη′ ; (1.26)

δ(λ) =
1

2π

∫ +∞

−∞
eiξλ dξ (1.27)

⇒ ⟨x|ϕeη⟩ =
√

m

2πℏℏℏ2|K|
eη

i
ℏℏℏ
√

2mEx . (1.28)
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These vectors are not square-integrable and thus do not belong into the Hilbert
space H. They are improper vectors belonging into the rigged Hilbert space [3]. It
can easily be shown that they also posses the closure property∫ ∞

0

dE
∑
η

|ϕEη⟩ ⟨ϕEη| = Î ; (1.29)

where Î : H → H is an identity operator.
Since vectors |ϕEη⟩ make up a basis of H ⊇ HC , there exist complex coeffi-

cients CEη, DEη such that

|ϕin⟩ =
∫ ∞

0

dE
∑
η

CEη |ϕEη⟩ ; (1.30)

|ϕout⟩ =
∫ ∞

0

dE
∑
η

DEη |ϕEη⟩ . (1.31)

Due to orthonormality of this basis, these coefficients satisfy the following relations
(Fourier coefficients):

CEη = ⟨ϕEη|ϕin⟩ ; DEη = ⟨ϕEη|ϕout⟩ . (1.32)

1.3.2 Lippmann-Schwinger Equation

It can be show that the following relations are also satisfied [38]:

|ψ⟩ =
∫ ∞

0

dE
∑
η

CEη
∣∣ψ+

Eη

〉
(1.33)

=

∫ ∞

0

dE
∑
η

DEη

∣∣ψ−
Eη

〉
; (1.34)

where |ψ⟩ is the state of the system at t = 0, defined in (1.11), and vectors
∣∣ψ±

Eη

〉
are be defined by the

Lippmann–Schwinger equation (LSE) [26]. Let ϵ→ 0+, then

∣∣ψ±
Eη

〉
= |ϕEη⟩ +

1

E − Ĥ ± iϵ
V̂ |ϕEη⟩ ; (1.35)

where 1

E−Ĥ0+iϵ
resp. 1

E−Ĥ0−iϵ
is the retarded resp. advanced Green operator.

Theorem 1. Let
∣∣ψ±

Eη

〉
satisfy the Lippmann-Schwinger Equation (1.35), then

∣∣ψ±
Eη

〉
also satisfies the Schrödinger equation

Ĥ
∣∣ψ±

Eη

〉
= E

∣∣ψ±
Eη

〉
. (1.36)

Proof. See Appendix A.
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Vectors
∣∣ψ±

Eη

〉
are orthonormal, i.e.〈

ψ±
Eη

∣∣ψ±
E′η′

〉
= δ(E − E ′)δηη′ . (1.37)

And they posses the closure property∫ ∞

0

dE
∑
η

∣∣ψ±
Eη

〉 〈
ψ±
Eη

∣∣ = P̂ ; (1.38)

where P̂ : H → HC is a projection operator into HC .
Using the relation (1.33) and the orthonormality of |ϕEη⟩, we get

DE′η′ =
〈
ψ−
E′η′

∣∣ψ〉 = ∫ ∞

0

dE
∑
η

CEη
〈
ψ−
E′η′

∣∣ψ+
Eη

〉
=

=

∫ ∞

0

dE
∑
η

〈
ψ−
E′η′

∣∣ψ+
Eη

〉
⟨ϕEη|ϕin⟩ .

Substitution of this result into (1.31) then gives us

|ϕout⟩ =
∫ ∞

0

dE ′
∑
η′

DE′η′ |ϕE′η′⟩ =

=

∫ ∞

0

dE ′
∑
η′

∫ ∞

0

dE
∑
η

|ϕE′η′⟩
〈
ψ−
E′η′

∣∣ψ+
Eη

〉
⟨ϕEη|ϕin⟩ . (1.39)

We again compare this equation to (1.10), seeing that

Ŝ =

∫ ∞

0

dE′
∑
η′

∫ ∞

0

dE
∑
η

|ϕE′η′⟩
〈
ψ−

E′η′

∣∣ψ+
Eη

〉
⟨ϕEη| . (1.40)

This is the sought-after time-independent formula for Ŝ, which reveals that all the
information about scattering is encoded inside the LSE wavefunctions∣∣ψ±

Eη

〉
.

1.3.3 Reflection and Transmission

In what follows, we shall consider only the case where η = +1, and therefore K > 0
(the formulation for η = −1 would by analogical). It can be shown that functions
ψ+
E(+1)(x) can be determined by solving the following differential equation [38]:(

− ℏ
2m

∂xx + V (x)

)
ψ̃+
E(+1)(x) = Eψ̃+

E(+1)(x) (1.41)

with the boundary conditions

ψ̃+
E(+1) (x→ −∞) = eiKx +R(E)e−iKx ; (1.42)

ψ̃+
E(+1) (x→ +∞) = T (E)eiKx ; (1.43)
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where R(E) resp. T (E) is the reflection resp. transmission coefficient , the
importance of which will be clarified later, and

ψ+
E(+1) =

√
m

2πℏ2|K|
ψ̃+
E(+1)(x) . (1.44)

The wavefunction eiKx describes the incoming free particle, R(E)e−iKx the
reflected wave moving in the opposite direction and T (E)eiKx the transmitted wave
that has passed through the potential barrier.

Boundary conditions (1.42)-(1.43) tell us that for x → −∞, ψ+
Eη(x) is ob-

tained as a superposition of the incoming and the reflected wave. And that for
x → +∞, ψ+

Eη(x) is equal to the transmitted wave. The reflection resp. trans-
mission coefficient is defined as the ratio of the amplitude of the reflected resp.
transmitted wave to the amplitude of the incoming wave. These coefficients ulti-
mately include all the information about scattering and are thus equivalent
to Ŝ. Namely |ϕout⟩ can be obtained from |ϕin⟩ using the following equation [38]:

|ϕout⟩ =
∣∣ϕTout

〉
+
∣∣ϕRout

〉
; (1.45)

where ∣∣ϕRout

〉
=

∫ ∞

0

dE
∣∣ϕE(−1)

〉
R+
E(+1)

〈
ϕE(+1)

∣∣ϕin
〉

; (1.46)∣∣ϕTout

〉
=

∫ ∞

0

dE
∣∣ϕE(+1)

〉
T+
E(+1)

〈
ϕE(+1)

∣∣ϕin
〉

. (1.47)

Since the reflection and transmission coefficients are complex numbers ∀E ∈
R+, they can be expressed in the following forms:

R(E) = |R(E)|ei arg(R(E)) ; (1.48)

T (E) = |T (E)|ei arg(T (E)) . (1.49)

The values of |R(E)|2 resp. |T (E)|2 corresponds to the probability of reflection. resp.
transmission and satisfy the probability conservation1

|T (E)|2 + |R(E)|2 = 1 . (1.50)

The phase arg(T (E)) factors in determining the so-called Eisenbud-Wigner-Smith
time delay , which tells us how long a particle stays in the interaction region and
can be calculated as [10]

τ = ℏ∂E arg(T (E)) . (1.51)

Let us now find an explicit formula for the transmission coefficient T (E).
The expression (1.40) tells us that the matrix elements of Ŝ can be calculated as

S(Eη)(E′η′) = ⟨ϕEη| Ŝ |ϕE′η′⟩ =
〈
ψ−
Eη

∣∣ψ+
E′η′

〉
. (1.52)

It can be shown that the following formula for S(Eη)(E′η′) applies [38]:

S(Eη)(E′η′) = δ(E − E ′)δηη′ − 2iπδ(E − E ′)T(Eη)(E′η′) ; (1.53)

1Proof in appendix B.
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where by definition

T(Eη)(E′η′) := ⟨ϕEη| V̂ |ψEη+⟩ = ⟨ϕEη| V̂ + V̂
1

E − Ĥ + i0+
V̂ |ϕEη′⟩ . (1.54)

These entities are the so-called on-shell T-matrix elements. They are the matrix
elements of the transmission operator

T̂ (E) := V̂ + V̂
1

E − Ĥ + iϵ
V̂ . (1.55)

It can be shown that, using this operator, we can calculate the value of the trans-
mission coefficient as [38]

T (E) = 1 − 2πi
〈
ϕE(+1)

∣∣ V̂ + V̂
1

E − Ĥ + iϵ
V̂
∣∣ϕE(+1)

〉
. (1.56)

This relation equivalent to the Lippmann-Schwinger equation (1.35).

1.4 Numerical Solution of the Time Independent
Schrödinger Equation for the Stationary
Scattering States

We are unable to solve the boundary value problem (1.41)-(1.43) analytically for
general V (x). We can, however, use numeric methods to get an approximate solution
to any degree of accuracy. We will do this by approximating the differential equation
(1.41) by a difference equation.

1.4.1 Difference Approximation

First, we divide the x axis into an equidistant grid, with the distance between grid
points of ∆x, and define

∀n ∈ Z ; xn := n∆x ; (1.57)

ψ̃n := ψ̃+
E(+1)(xn) . (1.58)

Using the Taylor expansion of ψ̃+
E(+1)(x± h) for h > 0 we get

ψ̃+
E(+1)(x+ h) = ψ̃+

E(+1)(x) + (ψ̃+
E(+1))

′(x)h+
1

2
(ψ̃+

E(+1))
′′(x)h2 +O(h3) ; (1.59)

ψ̃+
E(+1)(x− h) = ψ̃+

E(+1)(x)− (ψ̃+
E(+1))

′(x)h+
1

2
(ψ̃+

E(+1))
′′(x)h2 +O(h3) . (1.60)

Adding up these two equations gives us

ψ̃+
E(+1)(x+ h) + ψ̃+

E(+1)(x− h) = 2ψ̃+
E(+1)(x) + (ψ+

E(+1))
′′(x)h2 +O(h4) ; (1.61)
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and thus

(ψ̃+
E(+1))

′′(x) =
ψ̃+
E(+1)(x+ h)− 2ψ̃+

E(+1)(x) + ψ̃(x− h)

h2
+O(h4) . (1.62)

For h = ∆x; therefore,

ψ̃′′
n ≈ ψ̃n+1 − 2ψ̃n + ψ̃n−1

(∆x)2
; (1.63)

and

−
ℏℏℏ2

2m

(
ψ̃n+1 − 2ψ̃n + ψ̃n−1

(∆x)2

)
+ V (xn)ψ̃n ≈ Eψ̃n . (1.64)

Using this relation, we can propagate ψ̃n left and right when knowing two adjacent
values of ψ̃n. This is equivalent to knowing the values of ψ̃n and ψ̃′

n in a single point
(initial conditions).

The boundary conditions (1.42)-(1.43) can be rewritten with a convenient
wavefunction renormalization as

ψ̃+
E(+1) (x→ −∞) = A(E)eiKx +B(E)e−iKx ; (1.65)

ψ̃+
E(+1) (x→ +∞) = eiKx ; (1.66)

where

T (E) =
1

A(E)
; R(E) =

B(E)

A(E)
. (1.67)

The conditions (1.65)-(1.66) allow us to approximate the value of ψ̃(x) for large
values of |x|. Let

x1 = −L
2

; ∆x =
L

N
; L ∈ R+ ; N ∈ N (1.68)

(therefore, xN = L
2
), where L is large enough such that the values of ψ̃+

E(+1)(x)

near the ends of the interval (−L
2
, L
2
) can be approximated using these boundary

conditions. Values of ψ̃N−1, ψ̃N can then be calculated as follows:

ψ̃N = ψ̃+
E(+1)(xN) ≈ eiKxN ; (1.69)

ψ̃N−1 = ψ̃+
E(+1)(xN−1) ≈ eiKxN−1 . (1.70)

We can now propagate ψ̃n left from these two points using (1.64). This allows us to
compute ψ̃n,∀n ∈ {1, 2, . . . N − 1, N}. Thanks to the condition (1.65), the points
ψ̃1, ψ̃2 satisfy the following relations:

ψ̃1 = ψ̃+
E(+1)(x1) ≈ A(E)eiKx1 +B(E)e−iKx1 ; (1.71)

ψ̃2 = ψ̃+
E(+1)(x2) ≈ A(E)eiKx2 +B(E)e−iKx2 . (1.72)

From these equations we can calculate the values of A(E) and B(E) and subse-
quently, using (1.67), the values of T (E) and R(E) to any degree of accuracy [30].
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1.4.2 Toy Potential Model

We will now demonstrate this method using the toy potential

V (x) = (0.5x2 − 0.8)e−0.1x2 . (1.73)

-1

-0.5

 0

 0.5

 1

 1.5

-15 -10 -5  0  5  10  15

V
(x

)

x

Figure 1.1: Two potential barriers are separated by potential well, suggesting that a
quantum particle of positive energy can be temporarily trapped between the barriers.

using arbitrary (dimensionless) units and setting

ℏ = 1 ; m = 1 (1.74)

and
N = 106 ; L = 50 (1.75)

(therefore, x1 = −25, xN = 25).
Formula (1.50) will be used as a precision check. The closer the value of

|T (E)|2 + |R(E)|2 is to 1 when using our calculated values of T (E), R(E), the
better precision we have achieved.

19



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

|T
(E

)|
2

E

Figure 1.2: transmission probability |T (E)|2. For certain energies peaks in the
transmission probability occur. These energies correspond to phenomena known as
resonances , which will be discussed in detail in Chapter 2. There we will employ
the methods of NHQM to clearly define them and to associate each resonance with
only a single energy level, as opposed to the interval associated with each peak
currently. As we can see, the second peak is much broader than the first one and
the third one even more so. This suggests that there may be other resonances that
are very broad and overlapping and as such cannot be clearly seen in this graph.
This is an issue, which will also be solved in Chapter 2 using methods of NHQM.
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Figure 1.3: Zoom on the first peak corresponding to energy E = 0.62097. We see
that the function reaches the maximum value of 1 at the point E = 0.62097 and
then quickly dies down to zero.
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Figure 1.4: Zoom on the second peak corresponding to energy E = 1.32720.
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Figure 1.5: Phase of T (E) divided by π. We observe abrupt jumps in the phase of
T (E) at the same energies as the previously discussed peaks in probability. This
causes large Eisenbud-Wigner-Smith times for these energies, see (1.51).
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Figure 1.6: Zoom on the first jump corresponding to energy E = 0.62097. We see
that the change in arg(T (E)) is continuous and that the magnitude of the jump is
roughly π.
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Figure 1.7: Real and imaginary parts of the eigenfunction of Ĥ corresponding to
first resonance energy E = 0.62097. The wavefunction is highly localized similarly
to a bound state, and its nodal structure closely resembles the nodal structure of
the second bound state of the linear harmonic oscillator (LHO). This is quite an
atypical behavior for an unbound eigenstate of Ĥ.

23



-4

-2

 0

 2

 4

-15 -10 -5  0  5  10  15

x

Re(ψ+
E(+1)(x))

Im(ψ+
E(+1)(x))

Figure 1.8: Real and imaginary parts of the eigenfunction of Ĥ corresponding to
second resonance energy E = 1.32720. The wavefunction is again partially localized;
however, to a lesser degree than in Figure 1.7. Its nodal structure resembles the nodal
structure of the third bound state of the LHO. This is again not behavior we would
expect from an unbound eigenstate of Ĥ.

24



-300

-200

-100

 0

 100

 200

 300

-20 -10  0  10  20

x

Re(ψ+
E(+1)(x))

Im(ψ+
E(+1)(x))

Figure 1.9: Real and imaginary parts of the eigenfunction of Ĥ corresponding to
the energy E = 0.63, which is only slightly different from the energy used in Figure
1.7. As we can see, even a small departure from the resonance energy results in the
eigenfunction no longer being localized with a nodal structure no longer resembling
a bound state of the LHO.

These results point out a similarity between resonances and bound states.
However, unlike with bounds states, standard quantum mechanics lacks the tools to
efficiently describe resonances and is unable to associate them with a single energy
level. These problems will be remedied by NHQM in Chapter 2.

1.5 Bound States

In this section, we will investigate the problem of solving the Schrödinger equation
for bound states. This will prove a useful analogy for studying phenomena in NHQM
such as resonances and exceptional points, see Chapters 2-3.

We are solving the equation(
− ℏ
2m

∂xx + V (x)

)
ψ(x) = Eψ(x) ; (1.76)

with the bound state boundary conditions

ψ (x→ ±∞) = 0 . (1.77)

Let (bj(x))
∞
j=1 be a discrete orthonormal basis of L2(R). The function ψ(x)

can then be expanded as

ψ(x) =
∞∑
j=1

cjbj(x) ; (1.78)
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where
cj = ⟨bj|ψ⟩ . (1.79)

After substituting (1.76) into (1.78) we get(
− ℏ2

2m
∂xx + V (x)

)∑
j′

cj′bk(x) = E
∑
j′

cj′bj′(x)
∣∣∣ ∫ +∞

−∞
dx b∗j(x)

∑
j′

cj′ ⟨bj| −
ℏ2

2m
∂xx |bj′⟩+

∑
j

cj′ ⟨bj|V (x) |bj′⟩ = Ecj . (1.80)

Using Hamiltonian matrix elements

Hjj′ := ⟨bj| −
ℏ2

2m
∂xx |bj′⟩+ ⟨bj|V (x) |bj′⟩ = H∗

j′j ; (1.81)

we can then rewrite (1.80) as ∑
j′

Hjj′cj′ = Ecj ;

H #»c = E #»c ; (1.82)

where H is an infinite hermitian matrix and #»c an infinite arithmetical column
vector. In numerical calculations they will be approximated by finite ones (basis set
truncation). We have thus converted the operator eigenvalue problem (1.76)-(1.77)
into a matrix eigenvalue problem of linear algebra. This approach is equivalent to
using the quantum mechanical variation principle [15].

A crucial part of the calculation is an appropriate choice of the basis set. We
will use the particle-in-the-box basis set

bj(x) :=

√
2

L
sin

(
jπ

L

(
x− L

2

))
; j ∈ N ; (1.83)

for L ∈ R+ large enough for the potential V (x) to be essentially zero ∀x ∈ R \
(−L,L), and for bound states to be independent of L. This basis is orthonormal,
i.e.

⟨bj|bj′⟩ = δjj′ ; ∀j, j′ ∈ N ; (1.84)

and satisfies the closure property∑
j

bj(x)b
∗
j(x

′) = δ(x− x′), ∀x, x′ ∈
(
−L
2
,
L

2

)
. (1.85)

1.5.1 Toy Potential Model

We will now find a numerical solution to algebraic eigenvalue problem (1.82) for toy
potential (1.73) in arbitrary units, while setting (1.74).
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The following relations will be used when calculating the elements of H:

⟨bj|V (x) |bj′⟩ =
∫ L

2

−L
2

dx bj(x)V (x)bj′(x) =

∫ L
2

−L
2

dx (0.5x2 − 0.8)e−0.1x2bj(x)bj′(x) ;

(1.86)

⟨bj| −
ℏ2

2m
∂xx |bj′⟩ =

∫ L
2

−L
2

dx bj(x)

(
− ℏ2

2m
∂xx

)
bj′(x) =

=
ℏ2

2m

(j′)2 π2

L2

∫ L
2

−L
2

dx bj(x)bj′(x) =
ℏ2

2m

(j′)2 π2

L2
δjj′ . (1.87)

The basis set was truncated to include only the first N ∈ N functions. The calcula-
tions were done using values of N of 100, 200 and 400 and values of L of 50 and 100.
The integration was done numerically with step size of dx = L

106
. The eigenvalue

problem was then solved using the Eigen [16] package for C++.
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Figure 1.10: Resulting energy eigenvalues composed of a single bound state with
energy E0 = −0.29796 and a positive energy continuum. We see that the larger
values of N and L we use, the more points are generated, as our approximations
get better and the positive energy spectrum closer resembles continuum. Since
the Hamiltonian (1.1), appearing in Equation (1.76), is hermitian, all the resulting
eigenvalues are strictly real. They were plotted in the complex plane to better
illustrate the relation to the complex eigenvalues we will see later in Chapter 2,
where the algorithm will be generalized to the complex plane.
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Figure 1.11: Real and imaginary parts of the first and only bound state with energy
E0 = −0.29796 for N = 400, L = 50. As we can see, it is completely localized in
the interaction region (−L

2
, L
2
).

1.6 Summary

We have outlined the formalism of hermitian scattering theory, calculated the scat-
tering operator Ŝ in a time independent way using LSE wavefunctions and de-
scribed reflection and transmission using the reflection and transmission coeffi-
cients. We have subsequently, with the help of numerical models, solved the time
independent Schrödinger equation for stationary scattering states and the
bound state boundary value problem and calculated the values of the trans-
mission coefficient for a toy potential model in one dimension. Results obtained
for physically observable quantities, such as the transmission probability, will be
used as a standard to check our results against in Chapter 2.

In our results we have noticed the phenomenon of scattering resonances
and plotted the state vectors associated with them. Our inability to satisfactorily
predict and describe these phenomena motivates us to switch to a nonhermitian
approach.
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Chapter 2

Nonhermitian Quantum Mechanics

2.1 Introduction and Motivation

For studying and sharply defining resonances, it would be convenient for us to be
able to associate each resonance with a single eigenstate of Ĥ and a single energy
level. This can be done by solving the following familiar eigenvalue problem(

− ℏ2

2m
∂xx + V (x)

)
ψ(x) = Eψ(x) ; (2.1)

but this time allowing E ∈ C and imposing a special kind of boundary conditions
called the Siegert type boundary conditions .

To better describe resonances and other related phenomena we will now gen-
eralize the notion of bound states from HQM into the so-called Gamow-Siegert
states .

2.1.1 Gamow-Siegert States

The Gamow-Siegert states, first conceived by G. Gamow and A. F. J. Siegert in 1939
[36], are defined as the solutions to Equation (2.1) with the Siegert type boundary
conditions

ψ (x→ −∞) = C−e
−iKx = C−e

−iK1xeK2x ; (2.2)
ψ (x→ +∞) = C+e

iKx = C+e
iK1xe−K2x ; (2.3)

where
C−, C+ ∈ C (2.4)

and

K =
1

ℏ
√
2mE =: K1 + iK2, ; K1, K2 ∈ R . (2.5)

We see that each Siegert type boundary condition consists of only a single expo-
nential , as opposed to the more general superposition of two. It can be shown that
the boundary conditions (2.2)-(2.3) result in energy being quantized [29]. One may
also notice that with these boundary conditions

ψ(x→ ±∞) = ∞ ⇐⇒ K2 < 0 ; (2.6)
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where ∞ denotes the complex infinity. Therefore, not all Gamow-Siegert states are
square-integrable and thus do not belong into the domain of HQM .

2.1.2 Classification of Gamow-Siegert States

For future calculations it will be convenient to divide the Gamow-Siegert states into
several categories depending on the value of K. The categories are as follows:

Bound States

Let us first consider the situation where K is strictly imaginary and its imaginary
part positive, i.e.

K = iκ ; κ ∈ R+ ; (2.7)

and therefore
E = −ℏ2κ2

2m
∈ R− . (2.8)

The boundary conditions (2.2)-(2.3) then become

ψ (x→ ±∞) = e∓κx = 0 . (2.9)

We notice that the expression (2.9) is identical to the bound state boundary con-
ditions (1.77). The Gamow-Siegert states are, therefore, in this case, the already
familiar bound states discussed in Chapter 1.

Anti-bound states

This situation occurs whenK is strictly imaginary and its imaginary part is negative,
i.e.

K = −iκ ; κ ∈ R+ ; (2.10)

therefore again

E = −ℏ2κ2

2m
∈ R− (2.11)

and
ψ (x→ ±∞) = e±iKx = e±κx = ∞ . (2.12)

Anti-bound states thus explode as x approaches ±∞. Therefore, the are not square-
integrable and as such do not represent a state of a quantum particle.

Resonances and Anti-Resonances

These situations occur when K is not strictly real or strictly imaginary, i.e.

K1 ̸= 0 ; K2 ̸= 0 ; (2.13)

and therefore
E = − ℏ2

2m

(
K2

1 −K2
2

)
+ i

ℏ
2m

2K1K2 ∈ C . (2.14)
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Let us now assume that K2 > 0, then ψ(x) would be a square-integrable
eigenstate of Ĥ, but since Ĥ is a hermitian operator, E would have to be a real
number. This is contradictory to (2.14). Therefore,

K2 < 0 . (2.15)

We call these states resonances when K1 > 0, and therefore Im(E) < 0
and anti-resonances when K1 < 0 and therefore Im(E) > 0. It will later be
shown that resonances defined in this manner indeed correspond to the resonance
phenomenon encountered in Chapter 1, plotted in Figure 1.2. We notice that both
resonances and anti-resonances explode for x→ ±∞, and are consequently also not
square-integrable.

We are able to switch between resonances and anti-resonances by applying
complex conjugation to (2.1):(

− ℏ2

2m
∂xx + V (x)

)
ψ(x) = Eψ(x)

∣∣∣∗ ; (2.16)(
− ℏ2

2m
∂xx + V (x)

)
ψ∗(x) = E∗ψ∗(x) . (2.17)

This gives us an equivalent eigenproblem with complex conjugated energy and
boundary conditions

ψ∗ (x→ ±∞) = e∓iK1xe∓K2x . (2.18)

As we can see, the only difference is that K1 switched signs. Therefore, for K1 > 0
we have obtained an anti-resonance ψ∗ from the resonance ψ and vice versa for
K1 < 0.

K ∈ R\{0}

A situation where K ∈ R\{0} is impossible, see appendix C.

K = 0

The last possible option is for K to be equal to zero. Therefore, E = 0 and

eiKx = e−iKx = 1 . (2.19)

This makes the Siegert type boundary conditions (2.2)-(2.3) ill-defined, and we thus
discard this situations from our considerations.

2.1.3 Further Comments

Since resonances are not square-integrable, they are not normalizable in the usual
sense. (We will later define the so-called C-normalization, in respect to which it
will be possible to normalize them.) This greatly complicates working with them.
There are two currently known ways of getting around this problem: the com-
plex coordinate method also known as complex scaling (CS) and the method of
Siegert pseudostates . We will now describe both of them in detail, starting with
the complex coordinate method.
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2.2 Complex Coordinate Method

2.2.1 Introduction

The core of this method lies in modifying the resonance wave functions in such a way
that they become square-integrable. This will be done by rotating the resonance
states into the complex plane using analytic continuation [2].

2.2.2 Boundary Conditions

As previously stated, resonances satisfy the Siegert type boundary conditions (2.2)-
(2.3) with

K = K1 + iK2 ; K1 > 0 ; K2 < 0 ; (2.20)

and therefore
ψ (x→ ±∞) = e±iK1xe∓K2x = ∞ . (2.21)

But in order for the function ψ to be square-integrable, it needs to decay for x →
±∞. We will achieve this by substitution of a complex variable. Let us denote

ϑ := − arg(K) . (2.22)

We can then write

K = |K|e−iϑ ; eiK1xe−K2x = exp
(
i|K|xe−iϑ

)
. (2.23)

Next we substitute x with the complex variable

z := xeiθ ∈ C ; θ ∈ R+ ; (2.24)

where θ is called the complex scaling angle . This substitution transforms the
wave function in the asymptotic regions into

eiKz = exp
(
i|K|xe−i(θ−ϑ)

)
= ei|K|x cos(θ−ϑ)e−|K|x sin(θ−ϑ) . (2.25)

Therefore, since the exponential ei|K|x cos(θ−ϑ) is oscillating, in order for eiKz to decay
for x → ±∞, limx→±∞ e−|K|x sin(θ−ϑ) must equal zero. This condition is satisfied
when

ϑ < θ . (2.26)

Since for the bound state K1 = 0 and thus

eiKz = exp
(
∓K2xe

iθ
)
= e∓K2x cos θe∓iK2x sin θ ; (2.27)

then in order for eiKz to decay for x→ ±∞, cos θ needs to be negative, and therefore

ϑ < θ <
π

2
. (2.28)
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2.2.3 Analytic Continuation

We can now extend ψ into the complex plane using analytic continuation1. Let us
define2

φθ(x) := ψ(z)ei
θ
2 = ψ(xeiθ)ei

θ
2 (2.29)

and substitute it into the boundary value problem (2.1), (2.3). This gives us

− ℏ2

2m
∂zzψ(z) + V (x)ψ(z) = Eθψ(z)

− ℏ2

2m

∂2

∂(xeiθ)2
φθ(x) + V (xeiθ)φθ(x) = Eθφθ(x)(

− ℏ2

2m
e−2iθ∂xx + V (xeiθ)

)
φθ(x) = Eθφθ(x) ; (2.30)

with boundary conditions

φθ (x→ ±∞) = exp
(
±iKxeiθ

)
= exp

(
±i|K|ei(θ−ϑ)

)
. (2.31)

We notice that the complex rotated Hamiltonian

Ĥθ := −
ℏℏℏ2

2m
e−2iθ∂xx + V (xeiθ) ; (2.32)

is not hermitian , i.e.
Ĥθ ̸= Ĥ†

θ ; (2.33)

and therefore the eigenvalues of Ĥθ are complex. This is why we call this approach
nonhermitian. Since the eigenvalues of Ĥθ, Eθ, are the same as the eigenvalues from
the initial problem (2.1), they are independent of θ. It can be shown that Ĥθ can
be acquired by a similarity transformation of Ĥ, which will be described in more
detail in Subsection 2.2.5.

When the condition (2.28) is met, the boundary conditions (2.31) become

φθ (x→ ±∞) = 0 . (2.34)

We are reminded of the bound state boundary conditions (1.77), encountered in
Chapter 1. This similarity will allow us to solve the boundary value problem (2.30),
(2.34) for a toy potential model analogously to solving the bound state boundary
problem in Chapter 1.

2.2.4 Numerical Calculation

We will now find a numerical solution to the boundary value problem (2.30), (2.34)
analogously to solving the boundary value problem (1.76)-(1.77), only this time with
the complex variable z = xeiθ ∈ C instead of x ∈ R. Doing so we arrive at the matrix
eigenvalue problem

Hθ
#»c θ = Eθ

#»c θ ; (2.35)

1It can be shown that it is possible for small enough θ with potentials which are analytic
functions of z [37].

2The importance of the phase ei
θ
2 will be clarified later in Subsection 2.2.5.
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where

bj(x) =

√
2

L
sin

(
jπ

L

(
x− L

2

))
; j ∈ N ; L ∈ R+ ; (2.36)

cθj = ⟨bj|φθ⟩ (2.37)

and
Hθjj′ := ⟨bj| −

ℏ2

2m
e−2iθ∂xx |bj′⟩+ ⟨bj|V (xeiθ) |bj′⟩ . (2.38)

Hθ is an infinite nonhermitian matrix and #»c an infinite arithmetical column vector.

In numerical calculations basis set truncation will again be performed. We have
thus converted the operator eigenvalue problem into a matrix eigenvalue problem of
linear algebra. We will now find a numerical solution to (2.35) for the toy potential
(1.73) in arbitrary units and, as in Chapter 1, setting

ℏ = 1 ; m = 1 . (2.39)

The following relations will be used when calculating the elements of Hθ:

⟨bj|V (xeiθ) |bj′⟩ =
∫ L

2

−L
2

dx bj(x)V (xeiθ)bj′(x) =

=

∫ L
2

−L
2

dx (0.5x2e2iθ − 0.8) exp
(
−0.1x2e2iθ

)
bj(x)bj′(x) ; (2.40)

⟨bj| −
ℏ2

2m
e−2iθ∂xx |bj′⟩ =

∫ L
2

−L
2

dx bj(x)

(
− ℏ2

2m
e−2iθ∂xx

)
bj′(x) =

=
ℏ2

2m

(j′)2 π2

L2

∫ L
2

−L
2

dx bj(x)bj′(x) =
ℏ2

2m

(j′)2 π2

L2
δjj′ . (2.41)

The basis set was truncated to include only its first 400 functions. The integration
was done numerically with step size of dx = L

106
and setting L = 50. The eigenvalue

problem was then solved using the Eigen [16] package for C++.
The larger value of θ we use, the more resonances we can observe, but the

less numerically stable our calculation is. As we will see, the bound state and
resonance eigenvalues of Ĥθ are in theory not dependent on θ, but due to
approximations used in our numerical model our calculated values of Eθ to a small
degree are. The calculations were done using values of θ of 0.1, 0.2, 0,3 and 0.4 to
illustrate this fact.
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Figure 2.1: Resulting eigenvalues of Ĥθ for different values of θ, composed of a ro-
tated continuum, an eigenvalue corresponding to the bound state and the resonance
eigenvalues. We see that for larger values of θ more resonance energies are visible
and that their values nearly, but not perfectly, overlap for different values of θ. The
just calculated resonances arise due to presence of the potential barriers, i.e. due to
shape of the potential. We call them thus shape type resonances .

Table 2.1: Resulting eigenvalues of Ĥθ for the ground state and the first seven
resonances. We notice that the eigenvalue E0 is the same as the bound state energy
in calculated in Chapter 1 and that the real parts of E1, E2 correspond to the peaks
in transmission probability observed in Chapter 1, plotted in Figures 1.3-1.4.

Re(E) Im(E)
E0 -0.29796 2.22601 · 10−14

E1 0.62097 −5.82666 · 10−5

E2 1.32720 -0.01545
E3 1.78458 -0.17375
E4 2.12442 -0.56480
E5 2.45549 -1.11153
E6 2.75722 -1.75551
E7 3.02434 -2.48790
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Figure 2.2: Real and imaginary parts of the the bound state with E = E0, θ = 0.2.
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Figure 2.3: The first resonance wavefunction with E = E1, θ = 0.2 overlaid with
the eigenfunction of Ĥ for E = 0.62097 calculated in Chapter 1.
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Figure 2.4: The second resonance wavefunction with E = E2, θ = 0.2 overlaid with
the eigenfunction of Ĥ for E = 1.32720 calculated in Chapter 1.
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Figure 2.5: Real and imaginary parts of the third resonance wavefunction with
E = E3, θ = 0.2.

Notice that the bound state as well as all the resonances are well contained in the
interaction region (−L

2
, L
2
). The nodal structure of each resonance closely resembles

the nodal structure of corresponding bound states of the LHO.
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When comparing these results with the resonance wave functions obtained
in Chapter 1 using methods of HQM, we see that the functions nearly overlap.
This gives us confidence that the resonances defined as a special case of Gamow-
Siegert states indeed describe the resonance phenomenon observed in Chapter 1.
The reason these wave functions don’t match perfectly is the interference by the
other resonances in the hermitian case.

2.2.5 CS Operator

In this subsection we will define an make use of the so-called CS operator, which
will let us formally implement complex scaling. Let ψ be an eigenfunction of Ĥ, we
then define the CS operator Ŝθ : C∞(R,C) → H by the following relation:

∀x ∈ R ; (Ŝθψ)(x) = ψ(xeiθ)ei
θ
2 = φθ(x) . (2.42)

For small values of θ we can use the approximation

ψ(xeiθ) = ψ(x(1 + iθ))ei
θ
2 = (2.43)

= (ψ(x) + ψ′(x)xiθ)ei
θ
2 + o(θ2) = (1 + ixθ∂x)e

i
2
θψ(x) + o(θ2) . (2.44)

Therefore, for infinitesimal dθ we can write

Ŝdθ = Î + ixdθ∂x . (2.45)

The finite complex rotation Ŝθ can be obtained by repeated applications of the
infinitesimal complex rotation Ŝdθ, i.e.

Ŝθ = Ŝndθ ; n ∈ N ; (2.46)
∀x ∈ R ; ψ(xenidθ) = (1 + ixdθ∂x)

nψ(x) . (2.47)

Let dθ = θ
n

and n→ +∞, then

Ŝθ = lim
n→+∞

(Î + ixdθ∂x)
nei

θ
2 = eixθ∂xei

θ
2 . (2.48)

Let us now convert the eigenproblem (2.1) into a complex rotated eigenprob-
lem:

Ĥψ(x) = Eψ(x)
∣∣∣Ŝθ·

ŜθĤŜ
−1
θ Ŝθψ(x) = E(Ŝθψ)(x)

Ĥθφθ(x) = Eφθ(x) ; (2.49)

where Ĥθ is the previously encountered complex rotated Hamiltonian

Ĥθ = − ℏ2

2m
e−2iθ∂xx + V (xeiθ) ; (2.50)

and
Ŝ−1
θ = e−ixθ∂xe−i

θ
2 = Ŝ−θ . (2.51)
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This shows us that
Ĥθ = Ŝ−1

θ ĤŜθ . (2.52)

Proving that Ĥ and Ĥθ are similar operators.
It can also be shown that the operator Ŝθ is nonunitary [29], i.e.

Ŝ†
θ ̸= Ŝ−1

θ . (2.53)

The operator Ĥθ is, therefore, nonhermitian, i.e.

Ĥθ ̸= Ĥ†
θ . (2.54)

We shall now make a brief mathematical interlude, which will give us the
necessary tools to better formally describe resonances and to introduce their nor-
malization and closure.

2.2.6 Scalar Product, Orthonormality and Closure in
Nonhermitian Quantum Mechanics - Matrix
Formulation

For easier handling of the complex rotated eigenfunctions of Ĥθ, we need orthonor-
mality and closure to be well defined. We will first introduce these concepts in the
language of matrices. This will prove useful when constructing their wave function
formulations. Let N ∈ N and H ∈ CN,N . We can express the eigenvalue problem of
H as

det
(
H − EI

)
= 0 ; (2.55)

where I ∈ CN,N is a unit matrix.
Assuming N distinct eigenvalues Ej (which is the generic case)

∀j ∈ {1, 2, . . . , N} ; H #»c Rj = Ej
#»c Rj ; (2.56)

where #»c Rj are the right eigenvectors of H. Let us now investigate the eigenvalue
problem of the transposed matrix H⊺

H
⊺ #»

d j = Ej
#»

d j (2.57)
#»

d
⊺
jH = Ej

#»

d
⊺
j . (2.58)

Therefore,
#»

d j =
#»c Lj ; (2.59)

where #»c Lj are the left eigenvectors of H. Consequently

( #»c Lj )
⊺
H = Ej(

#»c Lj )
⊺

; (2.60)

H
⊺ #»c Lj = Ej

#»c Lj . (2.61)

Both vectors #»c Lj and #»c Rj make up bases of the vector space CN .
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C-product. Let j, j′ ∈ {1, 2, . . . , N}. Then we define C-product of #»c j′ and #»c j as

( #»c j′ | #»c j) := ( #»c Lj′)
⊺ #»c Rj . (2.62)

Note that C-product is not positively definite and thus is not an actual scalar product
for the vector space CN .

Turnover rule. Let #»a ,
#»

b ∈ CN . Then

#»a
⊺
H

#»

b = (H
⊺ #»a )

⊺ #»

b . (2.63)

Proof. Follows directly from properties of transposed matrices.

C-orthogonality relations. Let j, j′ ∈ {1, 2, . . . , N} and j ̸= j′. Then

( #»c j′| #»c j) = 0 . (2.64)

Proof.

H #»c Rj = Ej
#»c Rj

∣∣∣( #»c Lj′)
⊺·

Ej(
#»c Lj′)

⊺ #»c Rj = ( #»c Lj′)
⊺
H #»c Rj = (H

⊺ #»c Lj′)
⊺ #»c Rj = Ej′(

#»c Lj′)
⊺ #»c Rj

(Ej − Ej′)(
#»c Lj′)

⊺ #»c Rj = 0 .

Ej ̸= Ej′ , and therefore
( #»c Lj′)

⊺ #»c Rj = 0 .

We can also infer that
( #»c j| #»c j) ̸= 0 . (2.65)

Because otherwise #»c Lj would be orthogonal to every vector in CN , and therefore a
zero vector, which is not an eigenvector of H. This allows us to introduce

C-normalization. Normalization of eigenvectors of H such that ∀j ∈ {1, 2, . . . , N}

( #»c j| #»c j) = 1 . (2.66)

By combining C-orthogonality relations with C-normalization we get

C-orthonormality relations. Let j, j′ ∈ {1, 2, . . . , N}. Then

( #»c j′| #»c j) = δj′j . (2.67)

C-closure.
N∑
j=1

#»c Rj (
#»c Lj )

⊺
= I . (2.68)
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Proof. Let #»a ∈ CN . Since vectors #»c Rj make up a basis of CN , there exist coefficients
α1, α2, . . . , αN ∈ C such that

#»a =
N∑
j=1

αj
#»c Rj .

Therefore,
N∑
j=1

#»c Rj (
#»c Lj )

⊺ #»a =
N∑

j=1,k=1

αk
#»c Rj (

#»c Lj )
⊺ #»c Rj =

N∑
j=1,k=1

αkδjk
#»c Rj =

N∑
j=1

αj
#»c Rj = #»a .

Special Cases:

a) Matrix H is hermitian, i.e. H = H†. Equation (2.61) can then be modified in
the following way:

H #»c Rj = Ej
#»c Rj (2.69)

H
⊺ #»c Lj = Ej

#»c Lj

∣∣∣∗ (2.70)

H†( #»c Lj )
∗ = Ej(

#»c Lj )
∗ ; (2.71)

and therefore
#»c Lj = ( #»c Rj )

∗ (for the same normalization) . (2.72)

Lets now denote #»c j :=
#»c Rj , and therefore also #»c ∗

j =
#»c Lj . Orthonormality and

closure can then be expressed as

( #»c ∗
j′)

⊺ #»c j = δjj′ ; (2.73)
N∑
j=0

#»c j(
#»c ∗
j)

⊺
= I . (2.74)

This situations occurs in the standard HQM, where the Hamiltonian Ĥ is
hermitian.

b) Matrix H is symmetrical and nonhermitian, i.e. H = H
⊺ ̸= H†. Therefore,

#»c Rj = #»c Lj =: #»c j . (2.75)

Orthonormality and closure can then be expressed as
#»c

⊺
j′

#»c j = δj′j ; (2.76)∑
j

#»c j
#»c

⊺
j = I . (2.77)

This situation occurs in NHQM, where the complex rotated Hamiltonian Ĥθ

defined in (2.32) is nonhermitian. We can see that orthonormality and clo-
sure written in this form do not contain complex conjugation , this is an
important difference from the hermitian forms (2.73)-(2.74).
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Degeneracies

Degeneracies correspond to the so-called exceptional points , for adequate descrip-
tion of which an even more general formulation is required. They will be demon-
strated on 2-by-2 matrices later in Chapter 3.

2.2.7 Scalar Product, Orthonormality and Closure in
Nonhermitian Quantum Mechanics - Wave Function
Formulation

We shall now translate these concepts into the language of eigenstates of the complex
rotated Hamiltonian Ĥθ, defined in (2.32). Let ∀j ∈ N, φθ,j ∈ C∞(R,C) be distinct
eigenvectors of Ĥθ and {bn(x)}∞n=1 ⊂ C∞(R,R) a complete basis set of C∞(R,C).
Hamiltonian matrix elements of Ĥθ can then be calculated as

Hθnn′ =

∫ +∞

−∞
bn(x)Ĥθbn′(x) dx, ∀n, n′ ∈ N (2.78)

and its eigenvectors as
φj(x) =

∑
n

cnj bn(x) ; (2.79)

where
∀j ∈ N ; cj ∈ C . (2.80)

The expression (2.78) does not contain complex conjugation, since ∀n ∈ N,∀x ∈
R, bn(x) ∈ R. From the characteristics of the operator Ĥθ, we see that the matrix
Hθ ∈ C∞,∞, made up of elements (2.78), is symmetric.

Next we translate into the language of wave functions the C-product defined
in the previous subsection in (2.62).

C-product. Let j, j′ ∈ N. Then we define C-product of vectors φθj and φθj′ as

(φθj|φθj′) :=
∫
R
dxφθj(x)φθj′(x) = (φθj′|φθj) (2.81)

C-product is the scalar product in NHQM. Since (φθj|φθj) can be complex valued,
C-product again is not positively semidefinitive and as such not an actual scalar
product for the vector space C∞(R,C).

In what follows we will truncate the basis {bn(x)}∞n=1 to include only its first
N ∈ N functions. This will make Hθ an N ×N matrix, which will let us make use

of the developments made in Subsection 2.2.7.

Turnover rule. Let j, j′ ∈ {1, 2, . . . , N}. Then

(φθj|Ĥθ|φθj′) = (Ĥθφθj|φθj′) (2.82)

Proof. Follows directly from the matrix turnover rule (2.63) proven in the previous
subsection.
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C-orthogonality relations. Let j, j′ ∈ {1, 2, . . . , N} and j ̸= j′. Then

(φθ,j|φθ,j′) = 0 . (2.83)

Proof. Follows directly from the matrix C-orthogonality relations (2.64) proven in
the previous subsection.

C-normalization. Normalization of eigenvectors of Ĥθ such that ∀j ∈ {1, 2, . . . , N}

(φθj|φθj) = 1 (2.84)

By combining C-orthogonality relations with C-normalization we get

C-orthonormality relations. Let j, j′ ∈ {1, 2, . . . , N}. Then

(φθ,j|φθ,j′) = δjj′ . (2.85)

C-closure. Let x, x′ ∈ R. Then

N∑
j=1

φθj(x)φθj(x
′) = δ(x− x′) . (2.86)

Proof. Let f(x) = δ(x − x′). Since {bn(x)}Nn=1 is a complete basis set, there exist
coefficients {fn}Nn=1 ∈ C such that

f(x) =
N∑
n=1

fnbn(x) ;

fn =

∫ +∞

−∞
bn(x)f(x) dx =

∫ +∞

−∞
bn(x)δ(x− x′) dx = bn(x

′) .

Therefore,

f(x) =
N∑
n=1

bn(x)bn(x
′) .

Using the closure property of eigenvectors of Hθ ∈ CN,N

N∑
j=1

cnj c
n′

j = δnn′ ;

we get

N∑
j=1

ψj(x)ψj(x
′) =

∑
j,n,n′

cnj bn(x)c
n′

j bn′(x′) =
N∑
n=1

bn(x)bn(x
′) = f(x) = δ(x− x′) .
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2.2.8 The Independence of the C-product of the Angle of
Complex Rotation

Let us now take a look at C-product of eigenvectors of Ĥθ, φθ,1, φθ,2, created by
complex rotation of the eigenvectors of Ĥ, ψ1, ψ2, by angle θ

(φθ,1|φθ,2) =
∫ +∞

−∞
dx eiθψ1(xe

iθ)ψ2(xe
iθ) =

=

∫ +∞

−∞
d(xeiθ)ψ1(xe

iθ)ψ2(xe
iθ) . (2.87)

Theorem 2. C-product is independent of the angle of complex rotation.

Proof. Let ψ1, ψ2 be eigenvectors of Ĥ and φθ,1, φθ,2 eigenvectors of Ĥθ created by
complex rotation of ψ1, ψ2 by angle θ ∈ (0; 2π). We will construct an oriented closed
loop γ such that

(φθ,1|φθ,2)− (φθ′,1|φθ′,2) =
∫
γ

dz ψ1(z)ψ2(z) (contour integration) .

Figure 2.6: The closed loop created by connecting the two complex rotated contours
xeiθ and xeiθ′ . We choose the integration direction to be counterclockwise.

Since the complex function ψ1(z)ψ2(z) is analytic on the, simply connected, interior
of γ, then, according to Cauchy’s integral theorem [2],∫

γ

dz ψ1(z)ψ2(z) = 0 .
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Therefore,
∀θ, θ′ ∈

(
0,
π

2

)
; (φθ,1|φθ,2) = (φθ′,1|φθ′,2) .

In further calculations, we will use basis functions bn(x), which are even for
even n and odd for odd n, i.e.

∀n ∈ {1, 2, . . . , N} ; ∀x ∈ R ; bn(−x) = (−1)nbn(x) . (2.88)

For a symmetric potential then∫ +∞

−∞
dx bn(x)Ĥθbn′(x) ̸= 0 (2.89)

only for n, n′ with the same parity. The matrix Hθ can, therefore, be written as

Hθ =

(
neven 0
0 nodd

)
. (2.90)

Vectors φj,θ can thus also be divided into even and odd ones. Using this knowledge,
we can rewrite the orthonormality relations (2.85) as∫ +∞

−∞
dxφα,θ(x)φα′,θ(x) = δαα′ ; (2.91)∫ +∞

−∞
dxφα,θ(x)φEν,θ(x) = 0 ; (2.92)∫ +∞

−∞
dxφEν,θ(x)φE′ν,θ(x) = δνν′δ(E − E ′) ; (2.93)

where ν = 0 for even and ν = 1 for odd eigenvectors of Ĥθ. In this notation, the
vectors φα,θ represent bound states and resonances, and the vectors φEν,θ represent
the complex rotated continuum. The closure property (2.86) can, with such a basis,
be rewritten as∑

α

φα,θ(x)φα,θ(x) +
∑
ν

∫
γ

dE ψEν,θ(x)φEν,θ(x
′) = δ(x− x′) . (2.94)

2.2.9 Zeldovich C-product

To guarantee that functions φj,θ are integrable even for small angles, we can expand
the C-product by multiplying it by the expression limϵ→0+ e

−ϵx2 , creating the

Zeldovich C-Product. We define Zeldovich C-product of vectors ψ1 and ψ2 as

(ψ1|ψ2)Z := lim
ϵ→0+

∫
R
dxψ1(x)ψ2(x)e

−ϵx2 = (ψ2|ψ1)Z . (2.95)
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Let us now consider the Zeldovich C-product of vectors φθ,1, φθ,2 created by complex
rotation of vectors ψ1, ψ2 by angle θ

(φθ,1|φθ,2)Z = lim
ϵ→0+

∫ +∞

−∞
d(xeiθ)ψ1(xe

iθ)ψ2(xe
iθ) exp

(
−ϵ(xeiθ)2

)
; (2.96)

where
exp
(
−ϵ(xeiθ)2

)
= exp

(
−ϵx2 cos(2θ)

)
exp

(
−ϵx2i sin(2θ)

)
; (2.97)

and thus
∀θ ∈ [0,

π

4
] ; lim

x→±∞
exp

(
−ϵx2 cos(2θ)

)
= 0 . (2.98)

Therefore, (φθ,1|φ2,θ)Z is well defined even for small values of θ. Using
the same contour integration argument as in the proof of Theorem 2, we see that
the value of the standard C-product (2.81) and the Zeldovich C-product (2.95) is
identical for all pairs of vectors, whose C-product is well defined.

2.2.10 Complex Scaled Scattering Theory

We will now use the mathematical developments made in the previous subsections
to derive a formula for the so-called Breit-Wigner profiles , which will enable us
to isolate the peaks in transmission probability caused by individual resonances.
The transmission coefficient T (E) is a physically observable quantity and thus has
the same value no matter if it is calculated using methods of HQM or NHQM. The
hermitian formula for T (E), (1.56), can be generalized in NHQM as [38]

T (E) = 1− 2πi(ϕθE(+1)|V̂θ + V̂θ
1

E − Ĥθ

V̂θ|ϕθE(+1)) ; (2.99)

where

ϕθE(+1) := ŜθϕE(+1)(x) = ei
θ
2ϕE(+1)(xe

iθ) ; (2.100)

Vθ := V (xeiθ) (2.101)

and ϕE(+1)(x) are the eigenvectors of the free particle Hamiltonian Ĥ0, defined in
(1.7). Let ξθj be eigenvectors of the complex rotated Hamiltonian Ĥθ, then [29]

Ĥθ|ξθj ) = Eθj |ξθj ) ; (2.102)

1

E − Ĥθ

=
∑
j

|ξθj )(ξθj |
E − Eθj

. (2.103)

We call the expression (2.103) the spectral representation of the nonhermitian Green
operator. It is well defined since

∀j ∈ N, Im[Ej] ̸= 0 ⇒ ∀j ∈ N, E ̸= Ej ⇒ E − Ĥθ ̸= 0 . (2.104)

As we can see, the nonhermitian formula (2.99) eliminates the singularity in the
denominator without having to add the factor i0±, seen in (1.56). This in practice
makes the calculation significantly easier [38].
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Since V (x→ ±∞) = 0, we can again use contour integration to get(
ϕθE(+1) |Vθ|ϕθE(+1)

)
=
〈
ϕE(+1)

∣∣V ∣∣ϕE(+1)

〉
=

=

∫ +∞

−∞
dx

√
m

2πℏ2k
e−kxV (x)

√
m

2πℏ2k
eikx =

=

∫ +∞

−∞
dxV (xeiθ)ei

θ
2

√
m

2πℏ2k
exp
(
ikxeiθ

)
ei

θ
2

√
m

2πℏ2k
exp
(
−ikxeiθ

)
; (2.105)

and therefore

T (E) = (2.106)

= 1− 2πi

∫ +∞

−∞
dxV (xeiθ)ei

θ
2

√
m

2πℏ2k
exp
(
ikxeiθ

)
ei

θ
2

√
m

2πℏ2k
exp
(
−ikxeiθ

)
+

− 2πi
∑
j

(ϕθE(+1)|V̂ θ
j |ξθj )(ξθj |V̂ θ

j |ϕθE(+1))

E − Eθj
. (2.107)

We are summing the contributions of bound states, resonances and of the complex
rotated continuum. (There the sum transforms into an integral.) The value of T (E)
is again independent of the angle θ. As we can see, the contribution of any given
resonance or bound state j is

−2πi
(ϕE(+1)|V̂j|ξj)(ξj|V̂j|ϕE(+1))

E − Ej
. (2.108)

Let us now consider the situation, where the real positive energy of the in-
coming particle is close to a resonance energy Ej (not a bound state), i.e. E ≈ Ej.
We can then make the following approximation:

T (E) ≈
(ϕE(+1)|V̂j|ξj)(ξj|V̂j|ϕE(+1))

E − Ej
≈ −iΓj/2
E − (Ej − i

2
Γj)

. (2.109)

⇒ |T (E)|2 ≈
Γ2

j/4

(E − Ej)2 + Γ2
j/4

=: |T (j)
BW(E)|2 ; (2.110)

where
Ej =: Ej −

i

2
Γj ; Ej,Γj ∈ R . (2.111)

These is the so-called Breit-Wigner profiles . Since E ∈ R, this approximation
is only accurate for isolated resonances with Γj ≈ 0. The transmission probability
|T (E)|2, as seen in Figure 1.2, is made up of Breit-Wigner profiles of overlapping
resonances, see Figure 2.9 bellow.

2.2.11 Numerical Calculation - Breit-Wigner Profile

We will now make use of the previously calculated resonance energies, displayed in
Table 2.1, by plotting the first four Breit-Wigner profiles and comparing them to
the transmission probability calculated in Chapter 1, as seen in Figure 1.2.
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Figure 2.7: The Breit-Wigner profile for j = 1 overlaid with the hermitian calcula-
tion of the first peak in |T (E)|2, seen in Figure 1.3. Notice that these plots match
very closely. This is because of only very small interference of resonances other than
the first one.
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Figure 2.8: The Breit-Wigner profile for j = 2 overlaid with the hermitian calcula-
tion of the first peak in |T (E)|2, seen in Figure 1.4. Notice that these plots match
closely, however, to a lesser degree than in Figure 2.2.11. This is because of a slight
interference of resonances other than the second one.

48



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

E
|T(1)

BW(E)|2
|T(2)

BW(E)|2
|T(3)

BW(E)|2
|T(4)

BW(E)|2
|T(E)|2

Figure 2.9: The hermitian calculation of the transmission probability from Figure
1.2 overlaid with the first 4 resonances. The first two peaks match closely with
|T (E)|2, the others less so, as the peaks get wider and the interference of other
resonances larger.

2.2.12 Summary

In this section we have described the complex coordinate method and used it,
along a numeric model, to solve the Siegert boundary value problem for reso-
nances . We have then established the concepts of the scalar product, orthonormal-
ity and closure in NHQM and used them to numerically calculate the Breit-Wigner
profiles of the first four resonances.

The main advantage of CS lies in its wide applicability (multidimensional
many electron systems, exceptional points in experiments [29]).

It does however also have two major disadvantages: i) It is not applicable to
such potentials, which are not dilation analytic [37]. (This obstacle is overcome by
means of the so called exterior complex scaling method [29].) ii) It is not applicable
for the calculation of the anti bound states.

The open problems regarding CS include: i) The determination of the quan-
tum mechanical expectation values (position, momentum, acceleration, spectra of
high harmonic generation). ii) Finding a way of adequately describing wave packet
dynamics.
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2.3 Method of Siegert Pseudostates

2.3.1 Introduction

When using this method, we will be working with the original Gamow-Siegert
states, established in Subsection 2.1.1, without modifying them to become square-
integrable, as opposed to what we did when using complex scaling. For several
decades after the invention of Gamow-Siegert states, at the hands of Gamow and
Siegert [36], there were no clear ways of efficiently calculating them, and in particular
of constructing an appropriate closure property and formulating the scattering the-
ory in terms of these states. It was then Tolstikhin in the 1990s, whose illuminating
insights have facilitated an enormous progress leading to an extremely elegant for-
mulation of the nonhermitian scattering theory in terms of the Siegert pseudostates
[42]. This powerful formalism of Tolstikhin is outlined below.

We define the Siegert pseudostates as finite basis representations of the
Gamow-Siegert states. We will, therefore, be again solving the equation(

− ℏ2

2m
∂xx + V (x)

)
ψ(x) = Eψ(x) ; E ∈ C (2.112)

with the same Siegert type boundary conditions, defined in Subsection 2.1.1,

ψ (x→ −∞) = C−e
−iKx = C−e

−iK1xeK2x ; (2.113)
ψ (x→ +∞) = C+e

iKx = C+e
iK1xe−K2x ; (2.114)

where
C−, C+ ∈ C . (2.115)

2.3.2 Basis Set Expansion

Let a ∈ R+ be large enough such that, thanks to the boundary conditions (2.113)-
(2.114),

ψ(x > a) ≈ C+e
iKx ; (2.116)

ψ(x < −a) ≈ C−e
−iKx ; (2.117)

which can be equivalently expressed as

(∂x ± iK)ψ(x)
∣∣
x=∓a = 0 ; (2.118)

and therefore
ψ′(±a) = ±ikψ(a) . (2.119)

Since we know the value of ψ(x) for x ∈ R \ (−a, a) (and it diverges), we can
limit ourselves to the region x ∈ [−a, a]. We will now expand our eigenfunctions
using the Legendre basis

{bν(x)}∞ν=0 ; bν(x) =

√
2ν + 1

2a
Pν(

x

a
) ; (2.120)
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where Pν are the Legendre polynomials, derivatives of which are easily obtained
using the recursive formula

∀u ∈ R ;
u2 − 1

n

d

du
Pn(u) = (2n+ 1)uPn(u)− Pn−1(u) . (2.121)

The expansion is possible for any function in C(R,C), unlike with the previ-
ously used particle-in-a-box basis set, where we could only expand functions vanish-
ing at the ends of the interaction region [−a, a]. This is due to the Legendre basis
possessing the closure property and being made up of functions that don’t die out
for x = ±a. This basis is also orthonormal on the interval [−a, a], which will be
useful in later calculations. This allows us to write ψ(x) as

ψ(x) =
∑
ν

cνbν(x) . (2.122)

Let us now perform the following operations on the Schrödinger Equation
(2.112):

− ℏ2

2m
∂xxψ(x) + V (x)ψ(x) = Eψ(x)

∣∣∣ ∫ a

−a
dx bν(x) (2.123)

bν(a)(−
ℏ2

2m
)ψ′(a)− bν(−a)(−

ℏ2

2m
)ψ′(−a) + ℏ2

2m

∫ a

−a
dx b′ν(x)ψ

′(x)+

+

∫ a

−a
dx bν(x)V (x)ψ(x) = E

∫ a

−a
dx bν(x)ψ(x) (2.124)

− bν(a)
ℏ2

2m
ikψ(a)− bν(−a)(−

ℏ2

2m
)ikψ(a)) +

ℏ2

2m

∫ a

−a
dx b′ν(x)ikψ(a)+

+

∫ a

−a
dx bν(x)V (x)ψ(x) = E

∫ a

−a
dx bν(x)ψ(x)+

− ℏ2

2m

∑
ν′

(bν(a)bν′(a) + bν(−a)bν′(−a))cν′ +
ℏ2

2m

∑
ν′

∫ a

−a
dx b′ν(x)b

′
ν′(x)cν′+

+
∑
ν′

∫ a

−a
dx bν(x)V (x)bν′(x)cν′ = Ecν . (2.125)

We have thus transformed the eigenvalue problem (2.112)-(2.114) into an algebraic
problem for coefficients cν . The system of equations obtained in this way can be,
for more convenient handling, rewritten into the matrix formulation(

H − iKL− ℏ2K2

2m
I

)
#»c =

#»
0 ; (2.126)

where

Hνν′ =
ℏ2

2m

∫ a

−a
dx b′ν(x)b

′
ν′(x) +

∫ a

−a
dx bν(x)V (x)bν′(x) ; (2.127)

Lνν′ :=
ℏ2

2m
(bν(a)bν′(a) + bν(−a)bν′(−a)) . (2.128)
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This is a quadratic eigenvalue problem for the eigenvalues K and eigenvectors
#»c that can be further simplified as

(A+ λB + λ2I) #»c =
#»
0 ; (2.129)

where

A :=
2m

ℏ2
H ; (2.130)

B := −2m

ℏ2
L ; λ := iK . (2.131)

The solution procedure for the eigenproblem (2.129) is not apriori obvious.
It can however be transformed into a much more easily solvable linear eigenvalue
problem by using the following notation (linearization):(

#»c
#̃»c

)
:=

(
#»c
λ #»c

)
. (2.132)

The problem then becomes(
0 I

−A −B

)(
#»c
#̃»c

)
= λ

(
#»c
#̃»c

)
(2.133)(

B 0

I 0

)(
0 I

−A −B

)
=

(
−A 0

0 I

)
(
−A 0

0 I

)(
#»c
#̃»c

)
= λ

(
B I

I 0

)(
#»c
#̃»c

)
. (2.134)

This is a generalized symmetric eigenvalue problem that we are able to solve
numerically after basis set truncation, which will limit the Legendre basis to only
include its first N ∈ N functions. Therefore,(

−A 0

0 I

)
,

(
B I

I 0

)
∈ C2N,2N ;

(
#»c
#̃»c

)
∈ C2N . (2.135)

2.3.3 Numerical Calculation of K, E, ψ

We shall now find a numerical solution to the eigenvalue problem (2.112)-(2.114).
We will be again using the toy potential (1.73), calculating in arbitrary units and
setting (2.39). The eigenvalue problem (2.134) was solved using the Eigen [16]
package for C++ using the values N = 127 and a = 25.
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Figure 2.10: Resulting values of the wavenumber K. We see a single bound state
with a real positive value ofK being closely mirrored by an anti-bound state with real
negative value of K. The rest of the plot is made up of resonances, anti resonances
and a continuum made discrete by basis set truncation.
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Figure 2.11: Resulting eigenvalues of Ĥ. We see a single real negative energy cor-
responding to the bound state. The anti-bound state seen in Figure 2.10 has an
energy nearly overlapping with the bound state. The rest of the plot is made up of
resonances and a continuum made discrete by basis set truncation.
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Figure 2.12: Real and imaginary parts of the first resonance wavefunction corre-
sponding to the energy E = 0.62097 − 5.82666 · 10−5i. For small values of |x| it
resembles the wavefunction plotted in Figure 1.7, it however diverges for x→ ±∞,
thanks to the boundary conditions (2.113)-(2.114) (though too slowly for us to be
able to conveniently show it in a plot).
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Figure 2.13: Real and imaginary parts of the second resonance wavefunction corre-
sponding to the energy E = 1.32720− 0.01545i. For small values of |x| it resembles
the wavefunction plotted in Figure 1.8, but it again diverges for x → ±∞, thanks
to the boundary conditions (2.113)-(2.114).
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Figure 2.14: A zoomed out view of the real and imaginary parts of the second
resonance wavefunction corresponding to the energy E = 1.32720−0.01545i, showing
that it indeed diverges.
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Figure 2.15: Real and imaginary parts of the third resonance wavefunction corre-
sponding to the energy E = 1.78458 − 0.17375i . It also diverges for x → ±∞,
thanks to the boundary conditions (2.113)-(2.114).

2.3.4 Scalar Product, Orthonormality and Closure

Our main goal in this subsection will be to find a suitable scalar product in respect
to which the just constructed Siegert states will be orthonormal and to construct a
suitable closure type property. We are working with 2N different eigenstates (reso-
nances, anti-resonances, bound states, anti-bound states and discretized continuum
states, which arise due to the finite basis set representation of the problem). We
will be distinguishing the values of λ, #»c ,K and E for different eigenstates of Ĥ by
superscript.

Let us now write Equation (2.134) for two different eigenvalues, λ(n), λ(n′),
and perform the following operations:(

−A 0

0 I

)(
#»c (n)

#̃»c
(n)

)
= λ(n)

(
B I

I 0

)(
#»c (n)

#̃»c
(n)

) ∣∣∣ ( #»c ⊺(n′) #̃»c
⊺(n′)

)
· ;(

−A 0

0 I

)(
#»c (n′)

#̃»c
(n′)

)
= λ(n

′)

(
B I

I 0

)(
#»c (n′)

#̃»c
(n′)

) ∣∣∣ ( #»c ⊺(n) #̃»c
⊺(n)
)
·

(
#»c ⊺(n′) #̃»c

⊺(n′)
)(−A 0

0 I

)(
#»c (n)

#̃»c
(n)

)
= λ(n)

(
#»c ⊺(n′) #̃»c

⊺(n′)
)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
;

(
#»c ⊺(n) #̃»c

⊺(n)
)(−A 0

0 I

)(
#»c (n′)

#̃»c
(n′)

)
= λ(n

′)
(

#»c ⊺(n) #̃»c
⊺(n)
)(B I

I 0

)(
#»c (n′)

#̃»c
(n′)

)
.
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Using the the fact that both matrices are symmetrical, subtracting the second equa-
tion from the first gives us

(λ(n) − λ(n
′))
(

#»c ⊺(n′) #̃»c
⊺(n′)

)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
= 0 . (2.136)

For n ̸= n′, λ(n) ̸= λ(n
′); therefore,

(
#»c ⊺(n′) #̃»c

⊺(n′)
)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
= 0 . (2.137)

Theorem 3. Let n ∈ {1, 2, . . . , 2N}. Then

(
#»c ⊺(n) #̃»c

⊺(n)
)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
̸= 0 . (2.138)

Proof. We will prove the statement by contradiction. Let us assume that

(
#»c ⊺(n′ #̃»c

⊺(n′)
)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
= 0 .

This means that vector (
B I

I 0

)(
#»c (n)

#̃»c
(n)

)

is perpendicular to every vector in C2N , and therefore(
B I

I 0

)(
#»c (n)

#̃»c
(n)

)
= 0 .

By applying the same argument again we can see that(
#»c (n)

#̃»c
(n)

)
= 0 .

But this contradicts the fact that

(
#»c (n)

#̃»c
(n)

)
is an eigenvector.

Using (2.137)-(2.138), we see that the relation

(
#»c ⊺(n′) #̃»c

⊺(n′)
)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
(2.139)

is a good candidate for a scalar product of vectors #»c (n) and #»c (n′). And that in
respect to this scalar product vectors #»c (n) will be orthogonal.
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Orthonormality relations. Let n, n′ ∈ {1, 2, . . . , 2N}. We conveniently introduce
a normalization convention such that(

#»c ⊺(n′) #̃»c
⊺(n′)

)(B I

I 0

)(
#»c (n)

#̃»c
(n)

)
= δnn′2λ(n) . (2.140)

Adding the factor 2λ(n) is a useful convention that will simplify certain ex-
pressions in the future.

Closure.
2N∑
n=1

1

2λ(n)

(
#»c (n)

#̃»c
(n)

)(
#»c ⊺(n) #̃»c

⊺(n)
)
=

(
0 I

I −B

)
. (2.141)

Proof. Let
(

#»u
#»v

)
∈ C2N . Then ∃q1, q2, . . . , q2N ∈ C such that

(
#»u
#»v

)
=

2N∑
n=1

qn

(
#»c (n)

#̃»c
(n)

)

∀n ∈ {1, 2, . . . , 2N}, qn =
1

2λ(n)
(

#»u ⊺ #»v ⊺)( #»c (n)

#̃»c
(n)

)(
#»u
#»v

)
Let us now define the matrix

Q :=
2N∑
n=1

1

2λ(n)

(
#»c (n)

#̃»c
(n)

)(
#»c ⊺(n) #̃»c

⊺(n)
)
∈ C2N×2N . (2.142)

We see that

Q

(
B I

I 0

)(
#»u
#»v

)
=

=
2N∑
n=1

1

2λ(n)

(
#»c (n)

#̃»c
(n)

)(
#»c ⊺(n) #̃»c

⊺(n)
)(B I

I 0

)(
#»u
#»v

) 2N∑
n′=1

qn′

(
#»c (n′)

#̃»c
(n′)

)
=

=
2N∑
n=1

1

2λ(n)

(
#»c (n)

#̃»c
(n)

)
2N∑
n′′=1

qn′2λ(n)δnn′ =
2N∑
n=1

qn

(
#»c (n)

#̃»c
(n)

)
=

(
#»u
#»v

)
. (2.143)

Therefore, Q

(
B I

I 0

)
is the 2N × 2N unit matrix. This means that

Q =

(
B I

I 0

)−1

=

(
0 I

I −B

)
. (2.144)
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This is an unconventional closure type property, different to the one encoun-
tered in HQM. It can sometimes be useful to rewrite the closure relations as the
system of equations

2N∑
n=1

#»c (n) #»c
⊺(n) = 2I ;

2N∑
n=1

1

λ(n)
#»c (n) #»c

⊺(n) = 0 ;

2N∑
n=1

λ(n) #»c (n) #̃»c
⊺(n)

= −2B .

2.3.5 Siegert Pseudostate Representation of the Retarded
Propagator

In this subsection we will discuss nonhermitian Siegert based ways of calculating
the so-called retarded Green function and the transmission coefficient, previously
encountered in Chapter 1 and later on Chapter 2 in Subsection 2.2. We will be
working with the retarded Green operator

Ĝ+(E) =
1

E − Ĥ + iϵ
; E ∈ R ; (2.145)

seen in Chapter 1, in (1.35), and with its position representation

G+
E(x, y) = ⟨x| Ĝ+(E) |y⟩ ; (2.146)

known as the retarded Green function.
Our above constructed Siegert pseudostates are expanded in the used basis

set as detailed in Equation (2.122). That is,

ψ(n)(x) =
N∑
ν=1

c(n)ν bν(x) . (2.147)

It can be shown that the retarded Green function (2.146) can be calculated
using the functions ψ(n)(x) as [38], [42]

G+
E(x, y) =

m

ℏℏℏ2

2N∑
n=1

ψ(n)(x)ψ(n)(y)

K(n)(K −K(n))
; (2.148)

where again
K(n) = −iλ(n), ℏK(n) =

√
2mE(n) . (2.149)

The retarded Green function G+
E(x, y) appears ubiquitously in the conven-

tional quantum mechanics and contains all the information about scattering
phenomena . Yet Equation (2.148) managed to express G+

E(x, y) in an equivalent
nonhermitian fashion in terms of the Siegert pseudostates. The operator Ĝ+(E) is
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the so-called propagator, and it can be obtained as a Fourier transformation of the
time evolution operator Û(t) = e−

i
ℏ Ĥt [42]∫ ∞

0

dt Û(t)e
i
ℏ Êt =

∫ ∞

0

dt e
i
ℏ (E−Ĥ+iϵ)t =

e
i
ℏ (E−Ĥ+iϵ)t

i
ℏ(E − Ĥ + iϵ)t

∣∣∣∞
0

= iℏĜ+(E) . (2.150)

It can also be shown that the transmission coefficient, which we have already
encountered and calculated in Chapter 1, using methods of HQM, as well as earlier
in this chapter in Subsection 2.2.11, using complex scaling, can be calculated as [38],
[42]

T+
E = ike−2ika

2N∑
n=1

ψ(n)(−a)ψ(n)(a)

K(n)(K −K(n))
. (2.151)

Here T+
E is expressed as a sum over separate contributions arising from all kinds of

the Siegert pseudostates.

2.3.6 Numerical Calculation of T+
E

We will now use the formula (2.151) with the values of K(n) and ψ(n)(x) calculated
in Subsection 2.3.3 to determine the value of T+

E .
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Figure 2.16: The resulting transmission probability, calculated using the formula
(2.151), overlaid with the hermitian calculation of the transmission probability made
in Chapter 1, plotted in Figure 1.2. We see that their values closely match. Small
discrepancies are caused by the basis set truncation an other approximation used.

60



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6195  0.62  0.6205  0.621  0.6215  0.622

E
|T(E)|2 - hermitian |TE+|2 - nonhermitian

Figure 2.17: The squared norm of the first addend in the sum (2.151), representing
the contribution of the first resonance to the transmission probability overlaid with
the first peak in transmission probability, calculated in Chapter 1, corresponding
to the first resonance, plotted in Figure 1.3. We see that their values very closely
match.

2.3.7 Summary

In this section we have described the method of Siegert pseudostates and illus-
trated its applicability on our simple toy model. We have obtained explicitly the
relevant Siegert eigensolutions (associated with the bound, anti-bound, resonance,
and anti-resonance states), as well as their corresponding wavefunctions. Appro-
priate orthonormality and closure relations for the Siegert pseudostates have been
established, and the Siegert based scattering theory has been formulated.

The main advantage of this approach is that we can calculate all kinds of
Siegert states (bound, anti-bound, resonance, and anti-resonance states), not just
bound states and resonances as we did in the case of complex scaling. Moreover, the
Siegert pseudostate scattering theory leads towards extremely simple and elegant
formulas for the retarded propagator Ĝ+(E), for the transmission coefficient
T̂+
E and for other quantities. Also the time propagation of hermitian wavepackets

can be conveniently performed using the Siegert pseudostates as a basis.
The main disadvantage of this method lies so far in its limited applicability.

(It has not been formulated so far for general multidimensional and multichannel
problems.) But the formalism is still an active field of research and these problems
could thus be solved in the future.
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2.4 Anti-bound States and their Mathematical
and Physical Meaning

Physical meaning of bound states is evident from any introductory quantum me-
chanical textbook. Physical meaning of (anti-)resonances has been clarified enough
in this thesis (see in particular Breit-Wigner peaks in the |T (E)|2), both using com-
plex scaling (see Section 2.2) and the Siegert pseudostate formalism (see Section
2.3). On the other hand, physical meaning of the anti-bound (virtual) states, or
even their mathematical significance, remains much less clear. The literature deal-
ing with anti-bound states is rather scarce, and it is quite possible that additional
and important insights regarding anti-bound states will emerge from the still ongoing
research. Some valuable insights have nevertheless been found. Let us now briefly
mention some existing and insightful works dealing with the anti-bound states:

• Zavin et al. [45] examine the role which an anti-bound state plays when a
bound state penetrates into continuum (via reducing continuously the depth
of a rectangular potential well).

• Klaiman et al. [22] discuss anti-bound states in the context of absolute position
of a resonance peak (resonances below the threshold).

• The phenomenon of bound state entering a continuum has been investigated
further by Garmon [14] who related this penetration of a bound state into a
continuum to an amplification of non-Markovian decay.

• Vertse et al. [5], [25], [44] have examined anti-bound states for 1D model
potentials relevant to nuclear physics.

• Anti-bound states in the context of nuclear physics are also being studied by
Uzikov [43].

• A group theoretical study involving anti-bound states has been performed by
Guerrero [17].

• Inner products involving anti-bound states have been investigated in a math-
ematical study of Julve [20].

• Anti-bound states for a 2-by-2 coupled channel problem have been studied by
Abdelmoula [1].

• Additional works include, e.g. the papers of Tanimu [40] who studied anti
bound states in double and triple potential wells.

• Last but not least, anti-bound states proved to play an important role in
electron-molecule scattering, see the papers of Čížek and Houfek [11], [12],
Čurík [18], Mašín [28] and references therein.
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Chapter 3

Interaction of Atoms with Laser

3.1 Introduction

In this chapter we will overview the problem of interaction of an atom with a laser
pulse. We will introduce powerful formalism of Floquet theory , and show sub-
sequently how laser induced resonances arise in atomic systems. An emergence of
resonances naturally leads us towards invoking the language of NHQM in the present
context of laser driven atoms. Most importantly, our nonhermitian analysis of the
problem will ultimately result in formation of a nonhermitian degeneracy known as
an exceptional point (EP). We will then numerically calculate the corresponding
parameters of the laser pulse, which will result in a creation of such an EP. Peculiar
non-intuitive properties of an EP will then be discussed.

3.2 Basic Framework

Let us motivate our considerations by recalling the textbook problem of a Hydrogen
atom in an external electromagnetic field [19]. The Hamiltonian for a free hydrogen
atom is

Ĥ =
#̂»p

2

2m
+ V ( #̂»x ) = − ℏ2

2m
∆+ V ( #»x ) ; V ( #»x ) = −Ze

2

| #»x |
; (3.1)

where m is the mass of an electron, #»x the position of the electron relative to the
nucleus and Ze the charge of the nucleus.

The incoming electromagnetic field can be described by its vector potential,
#»

A(t, #»y ), with the Coulomb gauge

#»∇ · #»

A(t, #»y ) = 0 . (3.2)

The transverse electric and magnetic fields in Gaussian units can be expressed in
terms of the vector potential

#»

A(t, #»y ) as [19]

#»

E(t, #»y ) = −1

c
∂t

#»

A(t, #»y ) ; (3.3)
#»

B(t, #»y ) =
#»∇× #»

A(t, #»y ) . (3.4)
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For the sake of simplicity, we consider here only a classical electromagnetic
field (not quantized).

Let us recall now the nature of coupling between the Hydrogen atom and the
electromagnetic field. To further simplify the following calculations, and consistently
with a well established practice, we neglect the electromagnetic field created due to
electron acceleration. Then

#»

A(t, #»y ) is not modified by the presence of an atom, and
corresponds to the vector potential of a free laser pulse. The adequate Hamiltonian
of the Hydrogen atom exposed to an external laser field then takes the following
appearance [19]:

ĤMG(t) :=
1

2m

(
#̂»p − q

c

#»

A(t, #»x )
)2

+ V ( #̂»x ) . (3.5)

This is the well known momentum gauge (minimum coupling) form of the Hamilto-
nian. The formula (3.11) is obtained from (3.1) via the formal replacement

#̂»p 7→ #̂»p − q

c

#»

A(t, #»x ) . (3.6)

For our subsequent purposes, and in accordance with a common practice
when dealing with matter-laser interaction, we will now conveniently impose two
simplifications. First, we will adopt the dipole approximation

#»

A(t, #»x ) =
#»

A(t) ; (3.7)

while assuming tacitly that the wavelength of the used laser is much larger than
spatial dimensions of the atomic system. (This assumption is well justified in the
infrared, optical, and ultraviolet range of the spectrum.) Second, we will reduce the
number of spatial dimensions from three to one. In other words, instead of a 3D
Hydrogen atom, we will study from now a 1D model problem characterized by the
momentum gauge Hamiltonian

ĤMG(t) =
1

2m

(
p̂− q

c
A(t)

)2
+ V (x̂) ; (3.8)

where V (x) is again the familiar toy potential (1.73) (not the Coulomb potential).
In this model the electric field (3.3) takes on the following form:

E(t) = −1

c
∂tA(t) . (3.9)

Quantum dynamics of our 1D model atom driven by laser is governed by the
usual time dependent Schrödinger equation (TDSE)

iℏ∂t |ψ(t)⟩ = ĤMG(t) |ψ(t)⟩ . (3.10)

Further theoretical analysis of Equation (3.10) is facilitated by means of unitary
(gauge) transformations, which provide useful alternative representations of the
atom-laser interaction, and which bring additional physics insights.
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3.3 Gauge Transformations

3.3.1 Momentum Gauge

After multiplying out the squared term in (3.5), the momentum gauge Hamiltonian
takes on the appearance

ĤMG(t) =
p̂2

2m
+ V (x̂) −

q

mc
A(t)p̂+

q2

2mc2
A2(t) . (3.11)

We see that the first two terms of (3.11) make up the standard atomic Hamiltonian
without the presence of a laser. The remaining two terms thus account for the
influence of the laser.

We denote the state vectors corresponding to ĤMG(t) in time t as |ψMG(t)⟩.
The corresponding TDSE then reads as follows:

iℏ∂t |ψMG(t)⟩ = ĤMG(t) |ψMG(t)⟩ . (3.12)

3.3.2 Reduced Momentum Gauge

We shall now derive the so-called reduced momentum gauge Hamiltonian. This
will be an intermediate preparatory step to deriving subsequently the length and
acceleration gauges. Let us now define the reduced momentum gauge state vector
at time t by the following relation:

|ψMG(t)⟩ =: eif1(t) |ψRMG(t)⟩ ; (3.13)

where f1(t) is a yet to be determined function of time.
By substituting (3.13) into (3.12) we get

iℏeif1(t)∂t |ψRMG(t)⟩ − ℏf ′
1(t)e

if1(t) |ψRMG(t)⟩ =

=

(
p̂2

2m
− q

mc
A(t)p̂+

q2

2mc2
A2(t) + V (x̂)

)
eif1(t) |ψRMG(t)⟩ (3.14)

iℏ∂t |ψRMG(t)⟩ =

=

(
p̂2

2m
− q

mc
A(t)p̂+ V (x̂)

)
|ψRMG(t)⟩+

(
q2

2mc2
A2(t) + ℏf ′

1(t)

)
|ψRMG(t)⟩ .

(3.15)

We aim to simplify this equation by choosing f1(t) in such a way that the last r.h.s.
term cancels out. This happens when

−ℏf ′
1(t) =

q2

2mc2
A2(t) (3.16)

f1(t) = −1

ℏ
q2

2mc2

∫ t

t0

A2(t′) dt′ . (3.17)

Therefore,
iℏ∂t |ψRMG(t)⟩ = ĤRMG(t) |ψRMG(t)⟩ ; (3.18)
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where

ĤRMG(t) :=
p̂2

2m
+ V (x̂) −

q

mc
A(t)p̂ (3.19)

is called the reduced momentum gauge Hamiltonian. This is because the interaction
with the laser is facilitated by the momentum operator p̂, via the term − q

mc
A(t)p̂.

3.3.3 Length Gauge

Let us now define the length gauge state vector in time t by the following relation:

|ψRMG(t)⟩ =: eif2(t)x̂ |ψLG(t)⟩ ; (3.20)

where f2(t) is a yet to be determined function of time. By substituting (3.19) and
(3.20) into (3.18) we get

iℏeif2(t)x̂∂t |ψLG(t)⟩ − ℏf ′
2(t)e

if2(t)x̂x |ψLG(t)⟩ =

=

(
p̂2

2m
+ V (x̂)− q

mc
A(t)p̂

)
eif2(t)x̂ |ψLG(t)⟩

∣∣∣e−if2(t)x̂· (3.21)

iℏ∂t |ψLG(t)⟩ =

=

(
1

2m
e−if2(t)x̂p̂2eif2(t)x̂ + V (x̂) + ℏf ′

2(t)x̂−
q

mc
A(t)e−if2(t)x̂p̂eif2(t)x̂

)
|ψLG(t)⟩ =

=

(
1

2m

(
p̂2 − if2(t)[x̂, p̂

2]− 1

2
f 2
2 (t)[x̂, [x̂, p̂

2]]

)
+ V (x̂) + ℏf ′

2(t)x̂ +

− q

mc
A(t) (p̂− if2(t)[x̂, p̂])

)
|ψLG(t)⟩ =

=

(
1

2m

(
p̂2 + 2iℏf2(t)− iℏf 2

2 (t)[x̂, p̂
2]
)
+ V (x̂) + ℏf ′

2(t)x̂ +

− q

mc
A(t) (p̂+ ℏf2(t))

)
|ψLG(t)⟩ =

=

(
p̂2

2m
+

1

m

(
ℏf2(t)−

q

c
A(t)

)
p̂+ V (x̂) + ℏf ′

2(t)x̂ +

+
ℏ
m
f2(t)

(
ℏf2(t)−

q

c
A(t)

))
|ψLG(t)⟩ =

=

(
p̂2

2m
+ V (x̂) + ℏf ′

2(t)x̂

)
|ψLG(t)⟩+

1

m

(
ℏf2(t)−

q

c
A(t)

)
(p̂+ ℏf2(t)) |ψLG(t)⟩ .

(3.22)

Where we used the Baker–Campbell–Hausdorff relationship [33]. We are again try-
ing to cancel out the last term of the equation, giving us

f2(t) = − q

ℏc
A(t) . (3.23)

Therefore,
iℏ∂t |ψLG(t)⟩ = ĤLG(t) |ψLG(t)⟩ ; (3.24)

where

ĤLG =
p̂2

2m
+ V (x̂) + qE(t)x̂ ; E(t) = −1

c
∂tA(t) (3.25)
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is the length momentum gauge Hamiltonian. We see that again the first two terms
of the equation make up the standard atomic Hamiltonian without the presence of a
laser. The remaining term thus accounts for the influence of the laser, which in this
case happens through the position operator x̂, that is why we call this the length
gauge. Notice that the last term of (3.25), qE(t)x̂, is the energy of the dipole qx̂ in
an external electric field E(t).

3.3.4 Acceleration Gauge

We will define the acceleration gauge state vector in time t by the following relation:

|ψRMG(t)⟩ =: eif3(t)p̂ |ψAG(t)⟩ ; (3.26)

where f3(t) is a yet to be determined function of time. By substituting (3.19) and
(3.26) into (3.18) we get

iℏeif3(t)p̂∂t |ψAG(t)⟩ − ℏf ′
3(t)e

if3(t)p̂p̂ |ψAG(t)⟩ =

=

(
p̂2

2m
+ V (x̂)− q

mc
A(t)p̂

)
eif3(t)p̂ |ψAG(t)⟩

∣∣∣e−if3(t)p̂· (3.27)

iℏ∂t |ψAG(t)⟩ =

=

(
p̂2

2m
+ e−if3(t)p̂V (x̂)eif3(t)p̂ + ℏf ′

3(t)p̂−
q

mc
A(t)p̂

)
|ψAG(t)⟩ =

=

(
p̂2

2m
+ V (x̂+ ℏf3(t))

)
|ψAG(t)⟩+

(
ℏf ′

3(t)−
q

mc
A(t)

)
p̂ |ψAG(t)⟩ ; (3.28)

where we used the fact that the translation operator e
i
ℏ p̂ξ satisfies the relation

∀g ∈ C(R,C) ; ∀x, ξ ∈ R ; e−
i
ℏ p̂ξg(x)e

i
ℏ p̂ξ = g(x+ ξ) . (3.29)

Again, in order for the last term to cancel out, we set

ℏf ′
3(t) =

q

mc
A(t) (3.30)

f3(t) =
1

ℏ
q

mc

∫ t

t0

A(t′) dt′ . (3.31)

Therefore,

iℏ∂t |ψAG(t)⟩ = ĤAG(t) |ψAG(t)⟩ ; (3.32)

where

ĤAG(t) =
p̂2

2m
+ V (x̂+ α(t)) ; α(t) =

q

mc

∫ t

t0

A(t′) dt′ (3.33)

is the acceleration gauge Hamiltonian. The effect of the laser is incorporated here
into the displacement of the potential V (x̂) by a time dependent shift term α(t).

Importantly, for large values of |x|, the potential term V (x̂ + α(t)) falls off
to zero, and the Hamiltonian (3.33) is thus reduced to the Hamiltonian of a free
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particle, Ĥ0 = p̂2

2m
. In other words, our quantum particle (e.g. an electron) does

not feel the effect of the laser at large distances from the atom. This enables us
to study laser assisted scattering of electrons on atoms by means of the scattering
formalism which was described above in Chapters 1-2. Indeed, the fundamental
prerequisite of scattering theory – the asymptotic condition – holds for the just
presented acceleration gauge Hamiltonian of Equation (3.33). This is the basic
advantage of the acceleration gauge compared to the momentum and length gauges
(where the formulation of scattering theory is in principle also possible, but much
more formally complicated).

Weak Field Regime

If we assume weak laser intensity (small enough values of α(t)), we can, using Taylor
expansion, make the following approximation:

ĤAG(t) ≈
p̂2

2m
+ V (x̂) + V ′(x̂)α(t) . (3.34)

Equation (3.34) explains neatly the name acceleration gauge: The effect of laser
is incorporated in the last term, which contains V ′(x̂), i.e. the acceleration of the
electron.

3.3.5 Monochromatic Laser Light

From now on we will assume that the incoming electromagnetic radiation corre-
sponds to monochromatic laser light. This assumption is justified, since the incom-
ing electromagnetic pulse has a slowly varying envelope, supporting many optical
cycles. The vector potential then takes the following form:

A(t) = A0 sin(ωt) ; (3.35)

where ω is the corresponding laser frequency. Therefore,

E(t) = −1

c
∂tA(t) = −A0

1

c
∂t sin(ωt) = E0 cos(ωt) ; (3.36)

α(t) =
q

mc

∫ t

t0

A(t′) dt′ = A0
q

mc

∫ t

t0

sin(ωt′)(t′) dt′ = α0 cos(ωt) ; (3.37)

where
E0 = −A0

ω

c
; α0 = − q

ωmc
A0 . (3.38)

The coefficient α0 is called the quiver amplitude . The different gauge Hamiltonians
become

ĤMG(t) =
p̂2

2m
+ V (x̂)− q

mc
A0 sin(ωt)p̂+

q2

2mc2
A2

0 sin
2(ωt) ; (3.39)

ĤRMG(t) =
p̂2

2m
+ V (x̂)− q

mc
A0 sin(ωt)p̂ ; (3.40)

ĤLG(t) =
p̂2

2m
+ V (x̂) + qE0 cos(ωt)x̂ ; (3.41)

ĤAG(t) =
p̂2

2m
+ V (x̂+ α0 cos(ωt)) ≈

p̂2

2m
+ V (x̂) + V ′(x̂)α0 cos(ωt) . (3.42)
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Since the incoming electromagnetic pulse is oscillating, it gives kicks to the electron
and thus creates a possibility for its excitation and even for its detachment from the
atom (ionization) [8].

3.4 Floquet Theory

3.4.1 Introduction and Motivation

We are interested to study light induced dynamics of an atom. This would imply to
solve the TDSE (3.32), which for monochromatic fields takes the form

iℏ∂t |ψAG(t)⟩ = ĤAG(t) |ψAG(t)⟩ ; (3.43)

where
ĤAG(t) = − ℏ2

2m
∂xx + V (x+ α0 cos(ωt)) ; (3.44)

see the previous section.
Importantly, in the case of monochromatic (time periodic) fields, we can

take advantage of a powerful formalism of Floquet theory [29], which enables us to
study instead an equivalent "stationary" time independent problem. (As we will
see shortly, the time variable plays the role of an additional coordinate here.) The
fundamental advantage of Floquet theory consists of the fact that it enables us to
introduce the concept of laser induced resonances of an atom, and thus to exploit
subsequently the powerful formalism of NHQM in order to study laser induced
processes in atoms.

The following theorem is what motivates us to investigate the Floquet for-
malism:

Theorem 4. Let the function φ : R2 → C and the quantity EQE ∈ C satisfy the
following equation: (

ĤAG(t
′)− iℏ∂t′

)
φ(t′, x) = EQEφ(t′, x) ; (3.45)

then the function
ψ(t, x) := e−

i
ℏE

QEtφ(t′, x)
∣∣∣
t′=t

(3.46)

satisfies the TDSE (3.43).

Proof. (
ĤAG(t

′)− iℏ∂t′
)
φ(t′, x) = EQEφ(t′, x)

∣∣∣e− i
ℏE

QEt′·

EQEe−
i
ℏE

QEt′φ(t′, x) + iℏe−
i
ℏE

QEt′∂t′φ(t
′, x) = ĤAG(t

′)e−
i
ℏE

QEt′φ(t′, x)

iℏ∂t′e−
i
ℏE

QEt′φ(t′, x) = ĤAG(t
′)e−

i
ℏE

QEt′φ(t′, x)

⇒ iℏ∂tψ(t, x) = ĤAG(t)ψ(t, x) .
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This means that the desired solutions to the TDSE (3.43) can be obtained by solving
the Floquet problem (3.45), which can be understood as an eigenvalue problem of
the generalized Hamiltonian

ĤF := ĤAG(t
′)− iℏ∂t′ ; (3.47)

called the Floquet Hamiltonian . The term −iℏ∂t′ is called the kinetic operator
for t. From now on, we will denote the dynamical coordinate t′ as t, since there will
be no possibility for confusion.

3.4.2 Basic Framework

Let us now systematically introduce the Floquet formalism. Equation (3.45) can be
redisplayed as

ĤFφ(t, x) = EQEφ(t, x) ; (3.48)

and, as we recall, it can be understood as an eigenvalue problem of ĤF. The quantity
EQE is the so-called quasi-energy . Since the Hamiltonian (3.44) is time periodic
with the period of one optical cycle equal to T = 2π

ω
, it is natural to impose on the

Floquet eigenvectors φ(t, x) the periodic boundary condition

φ(t, x) = φ(t+ T, x) ; T =
2π

ω
; (3.49)

where ω is the frequency of the laser. Meaning that φ(t, x) is time periodic with
the period T . Since, in this case, time t is treated as an additional degree of
freedom (dynamical coordinate), the eigenvectors of ĤF belong to the vector space
L2((0, T ) × R) (as opposed to just L2(R) for eigenvectors of Ĥ). The eigenstates
of ĤF are called Floquet states . We say that these atomic states are dressed by
laser light .

The above Theorem 4 shows that every Floquet eigensolution provides a
particular solution of the TDSE (3.43). It can be even shown that the general
solution of the TDSE can be built up as a linear combination of all the just mentioned
different linearly independent Floquet solutions [29].

3.4.3 Brillouin Zones

Separable Hamiltonian (No Laser)

For the sake of maximum clarity, we will deal first with the no-laser case. This is
because we want to motivate heuristically our considerations, which will be pursued
later for the case when the laser is on, and because we wish to introduce the concept
of Brillouin zones and show that the zeroth Brillouin zone corresponds to the
usual atomic eigenstates in the absence of the laser. When the laser is off, the
Floquet eigenproblem (3.48) becomes(

Ĥatom − iℏ∂t
)
φ(t, x) = EQEφ(t, x) ; (3.50)

where
Ĥatom := − ℏ2

2m
∂xx + V (x) ; (3.51)
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is the time independent atomic Hamiltonian, describing the atom without the influ-
ence of a laser. We will denote its eigenstates resp. eigenvalues as ψν(x) resp. Eν ,
i.e.

Ĥatomψν(x) = Eνψν(x) . (3.52)

We can then substitute ψν(x) into (3.50) for φ(t, x), giving us(
Ĥatom − iℏ∂t

)
ψν(x) = EQEψν(x) (3.53)

EQE = Eν ; (3.54)

i.e. ψν(x) solves Equation (3.50) if EQE = Eν . In other words, the eigenstates of
Ĥatom coincide with a particular class of the sought Floquet solutions.

Let us now try to find all the possible Floquet eigenstates. The no-laser
Floquet Hamiltonian in (3.50) is separable; therefore, its eigenvalue problem reduces
to two mutually independent eigenproblems: the eigenproblem of Ĥatom we have just
discussed, and the eigenproblem of the kinetic operator of t

−iℏ∂tfn(t) = Ẽnfn(t) ; (3.55)

f(t) = f(t+ T ) ; T =
2π

ω
(3.56)

the solution of which is

∀n ∈ Z ; Ẽn = nℏω ; fn(t) = e
i
ℏ Ẽnt . (3.57)

Since the laser is off, the laser frequency ω is irrelevant physically, yet it is still
instructive to explore how ω enters mathematically into our considerations. We can
now find the solution to (3.50) by multiplying the solutions of (3.52) and (3.55).
The resulting quasi-energy EQE will be the sum of Eν and Ẽn [29]. Therefore,

∀n ∈ Z ; φ(t, x) = ψν(x)e
inωt ; EQE = Eν + nℏω . (3.58)

We have thus just found explicitly all the Floquet eigenstates and expressed
them using the eigenstates of the atomic Hamiltonian Ĥatom. The above Equation
(3.58) shows that EQE is defined modulo ℏℏℏω (with ambiguity nℏω). The ener-
gies are divided into so-called Brillouin zones according to the value of n. The
factor einωt is called the Brillouin factor. Analogous statements apply also for the
corresponding eigenvectors.

General Hamiltonian

When we take into account the influence of the laser, the Floquet Hamiltonian ĤF

ceases to be separable. But the basic argument, which was just outlined above for
the separable case, remains valid.

Theorem 5. Let n ∈ Z and let the function φ : (0, T ) × R → C and the quantity
EQE ∈ C satisfy Equation (3.48) with the boundary conditions (3.49). Then the
function φ̃ : (0, T )× R → C and the quantity ẼQE ∈ C defined as

φ̃(t, x) := φ(t, x)einωt ; ẼQE := EQE + nℏω (3.59)
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satisfy the equation
ĤFφ̃(t, x) = ẼQEφ̃(t, x) (3.60)

with the boundary conditions

φ̃(t+ T, x) = φ̃(t, x) . (3.61)

Proof. (
ĤAG(t)− iℏ∂t

)
φ̃(t, x) = ẼQEφ̃(t, x) (3.62)(

ĤAG(t)− iℏ∂t
)
φ(t, x)einωt =

(
EQE + nℏω

) (
φ(t, x)einωt

)
(3.63)

ĤAG(t)φ(t, x)e
inωt + nωℏφ̃(t, x)einωt − iℏ∂tφ(t, x)einωt =

= EQEφ(t, x)einωt + nωℏφ̃(t, x)einωt
∣∣∣ · e−inωt (3.64)(

ĤAG(t)− iℏ∂t
)
φ(t, x) = EQEφ(t, x) . (3.65)

We see that the quazi-energies are again divided into the Brillouin zones, even for
the general case. At zero laser intensity the corresponding zeroth Brillouin zone
states coincide with the stationary atomic eigenstates as explained above in (3.58).
When the laser is continuously switched on, these atomic states change continuously
as a function of α0, in other words, they become dressed by laser light. For any laser
intensity, all the other Floquet eigensolutions are constructed from those of the
zeroth Brillouin zone, as detailed in (3.59).

3.4.4 The Floquet Coupled Channel Problem

General Formulation

We shall now elaborate further on the Floquet formalism. We will use the fact that
functions

einωt ; n ∈ Z (3.66)

create a complete basis set, which is orthonormal with respect to the following scalar
product:

1

T

∫ T

0

dt
(
einωt

)∗ (
ein

′ωt
)
= δnn′ . (3.67)

We can, therefore, expand φ(t, x) as

φ(t, x) =
+∞∑

n=−∞

φn(x)e
inωt . (3.68)
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The substitution of (3.68) into (3.48) gives us(
− ℏ2

2m
∂xx + V (x+ α0 cos(ωt))− iℏ∂t

) +∞∑
n=−∞

φn(x)e
inωt = EQE

+∞∑
n=−∞

φn(x)e
inωt

(3.69)

− ℏ2

2m

+∞∑
n′=−∞

φ′′
n′(x)ein

′ωt + V (x+ α0 cos(ωt))
+∞∑

n′=−∞

φn′(x)ein
′ωt+

+ ℏω
+∞∑

n′=−∞

φn′(x)ein
′ωt = EQE

+∞∑
n′=−∞

φn′(x)ein
′ωt

∣∣∣ ∫ T

0

dt e−inωt

− ℏ2

2m
φ′′
n(x) + ℏωnφn(x) +

+∞∑
n′=−∞

Vnn′(x)φn′(x) = EQEφn(x) ; (3.70)

where

Vnn′ :=
1

T

∫ T

0

e−inωtV (x+ α0 sin(ωt))e
in′ωt dt =

=
1

T

∫ T

0

V (x+ α0 cos(ωt))e
−i(n−n′)ωt dt =: Vn−n′(x) . (3.71)

For more compact formulation, let us now express these equations in the
language of matrices:

#»φ(x) :=


...

φ1(x)
φ0(x)
φ−1(x)

...

 ; (3.72)



. . . ...
• V1(x) V2(x) V3(x)

V−1(x) • V1(x) V2(x)
V−2(x) V−1(x) • V1(x)
V−3(x) V−2(x) V−1(x) •

... . . .




...

φ1(x)
φ0(x)
φ−1(x)

...

 = E


...

φ1(x)
φ0(x)
φ−1(x)

...

 ; (3.73)

where the diagonal term (•) in the nth row and nth column is

− ℏ2

2m
∂xx + nℏω + V0(x) . (3.74)

The problem (3.70) can then be concisely written as

−
ℏℏℏ2

2m
∂xx

#»φ(x) + V(x) #»φ(x) = EQE #»φ(x) ; (3.75)

[V(x)]nn′ := Vn−n′(x) + δnn′nℏω . (3.76)
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This equation formally resembles the 1D time independent Schrödinger equa-
tion, the only difference consists in the fact that the eigenfunctions have multiple
components and that the potential is a matrix entity. Equation (3.75) is called the
coupled channel Schrödinger equation (or the coupled channel problem). Its
different rows and columns are called channels .

Weak Field

From now on we will assume a weak intensity field, meaning that

ĤAG(t) = − ℏ2

2m
∂xx + V (x) + V ′(x)α0 cos(ωt) . (3.77)

The elements of V(x) then take the following form:

∀n, n′ ∈ Z ; Vn−n′(x) = V (x)δn−n′ +V ′(x)α0
1

2i
(δ(n−n′+1)0−δ(n−n′−1)0) ; (3.78)

which can be written out for different values of n− n′ as

V0(x) = V (x) ; (3.79)

V1(x) = −V ′(x)α0
1

2i
= V ∗

−1(x) ; (3.80)

∀k ∈ Z, |k| > 1 ; Vk(x) = 0 . (3.81)

The matrix V(x), therefore, becomes tridiagonal. Equation (3.75) is in this case
called the tridiagonal Floquet problem . Without the laser, this matrix would be
diagonal,

Vn−n′(x) = V (x)δnn′ ; (3.82)

and we could therefore separate the individual channels. In other words, the channels
would then be independent, and n would thus become a good quantum number.

3.4.5 Nonhermitian Floquet theory

Let us analyze again the above formulated Floquet formalism. The diagonal of the
Floquet matrix possesses the form Ĥatom + nℏω, where Ĥatom denotes the Hamil-
tonian describing the atom without the influence of a laser defined in (3.51). The
Floquet channels are mutually shifted by nℏℏℏω, and the off-diagonal matrix ele-
ments represent the couplings generated by the laser. These are however spatially
localized (in the acceleration gauge), they die out for large values of |x|. This shows
that the nth diagonal channel is locally (for finite values of x) coupled by the laser
to the other channels.

In the absence of laser light, any bound state of the nth channel is embedded
in the continuum of the lower lying channels n′ < n. Now, if the laser is turned
on, this bound state becomes coupled to the just mentioned continuum states, and
ceases to be bound, i.e. it becomes a metastable state called a Feshbach resonance
[29].

HQM does not offer an efficient language for describing resonances, as we
have seen in Chapters 1-2. Therefore, if resonances are present, we are motivated
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to formulate nonhermitian Floquet theory. We will use complex scaling for this
purpose, but omit all the underlying technical details, which are similar to those de-
scribed in Section 2.2 above. Since t is a periodic coordinate and as such won’t cause
divergence of the wavefunctions, it will only be necessary to scale the space coordi-
nate x. The passage into nonhermitian Floquet theory is facilitated via performing
the following substitution:

x 7→ xeiθ ; θ ∈ (arg(
√
2mEQE),

π

2
) ; (3.83)

as explained in Subsection 2.2.5. Correspondingly, our complex scaled Floquet eigen-
problem will look as follows:

Ĥθ
Fφ

θ(t, x) = EQE
θ φθ(t, x) ; (3.84)

where

Ĥθ
F := − ℏ2

2m
e−2iθ∂xx + V (xeiθ) + V ′(xeiθ)α0 cos(ωt)− iℏ∂t ; (3.85)

φθ(t+ T, x) = φθ(t, x) . (3.86)

The eigenproblem (3.75) is transformed into

−
ℏℏℏ2

2m
e−2iθ∂xx

#  »

φθ(x) + Vθ(x)
#  »

φθ(x) = EQE
θ

#  »

φθ(x) ; (3.87)

where

# »

φθ(x) :=


...

φθ1(x)
φθ0(x)
φθ−1(x)

...

 ; (3.88)

Vθ(x) :=


. . . ...

− ℏ2
2m
e−2iθ∂xx + V (xeiθ) + 0ℏω α0

2
V ′(xeiθ)

α0

2
V ′(xeiθ) − ℏ2

2m
e−2iθ∂xx + V (xeiθ) + 1ℏω

... . . .

 .

(3.89)

This corresponds to our nonhermitian Floquet problem. It can be shown, analog-
ically to the proof of Theorem 2 in Chapter 2, that the resulting resonance eigen-
values are independent of θ. The corresponding Floquet resonances (metastable
atomic states dressed by laser light) can be then in principle obtained by solving this
complex scaled coupled channel problem numerically, using the basis set expansion
method and linear algebra, much as we did already in Chapter 2. Subsequently, the
associated solution of the TDSE can be accessed via Equation (3.46), and physical
observables can be calculated (we omit here all the details and refer to [29]).

An example calculation of this sort is presented in the following figure:
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Im
(E

)

Re(E)
n = -2 n = -1 n = 0 n = 1 n = 2

hω

near eigenvalue
coalescence

Figure 3.1: Eigenvalues of the complex scaled Floquet eigenproblem (3.87) plotted
schematically for θ = 0.2, with the toy potential (1.73), and without the presence of
the laser (ω ̸= 0, α0 = 0). Different colors (violet, blue, red, green) correspond to the
different Brillouin zones whose pertinent values of n are indicated in the figure. The
"blue" eigenvalues associated with the n = 0 Brillouin zone are arising from those
plotted in Figure 2.1 in Chapter 2 where we considered just an atomic system without
coupling to the laser. The "violet", "red", and "green" eigenvalues are constructed
from their "blue" counterparts via mere shift by nℏω, consistently with what we have
proven above in Equation (3.59). As one can see, the Floquet resonances associated
with different Brillouin zones are mixed together in the complex energy plane, and
some of them can get even very close to each other (see, e.g. the blue and red crosses
marked by the arrow). The red cross arises in this case from the n = 1 bound state
of our model atom, whereas the blue cross originates from the first n = 0 shape type
atomic resonance (whose width Γ is so small that this resonance is located almost
at the real axis). This also shows that the just shown Floquet resonances are of a
mixed shape-Feshbach type.

3.5 Nonhermitian Degeneracy - Exceptional Points
Induced by Laser

3.5.1 Theoretical Considerations

So far, the laser parameters α0 and ω have been completely arbitrary. These are
two independent control parameters, enabling us to shift the resonance energies in
any direction of the 2D complex plane.

This brings us to an idea to optimize the laser parameters (α0, ω) as to
arrange for a nonhermitian degeneracy, the so-called exceptional point (EP) (This
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amounts, e.g. to arrange for coalescence of the red and the blue cross plotted in
Figure 3.1.).

Let us describe now the formation of an EP explicitly. We will use here
the bound state and resonance energy values calculated, without the presence of a
laser, in Chapter 2, using the toy potential (1.73), displayed in Table 2.1 as well as
their corresponding statefunctions, plotted in Figures 2.3-2.4. The resonances, the
energies of which we’ll try to match, are the first n = 0 Feshbach type resonance (red
cross) and the n = 1 Brillouin resonance (blue cross). The eigenvalue associated
with the first n = 0 shape type resonance, for α0 = 0, is

ER =: ER − i

2
ΓR = 0.62097− 5.82666 · 10−5i ; (3.90)

and its corresponding eigenfunction ψθR(x). Recall that we use arbitrary units
throughout. The eigenvalue associated with the n = 1 Brillouin resonance, aris-
ing form the original atomic bound state shifted by ℏω, equals to

EB =: EB + ℏω = −0.29796 + ℏω ; (3.91)

and its corresponding complex scaled eigenfunction will be denoted as ψθB(x)eiωt.
When the laser is switched on, the original bound state penetrates into the

negative imaginary energy plane, and the different Brillouin zones of Figure 3.1 be-
come coupled. This results in shifting the locations of the Floquet resonances in the
complex energy plane. Importantly, the largest laser induced coupling occurs here
in the case of those Floquet resonances which are nearly degenerate in the absence
of the laser. This allows us, to a good approximation, to investigate the forma-
tion of an EP just via taking into account the two above mentioned Floquet states
ψθR(x), ψ

θ
B(x)e

iωt and their laser induced coupling. Here we neglect the couplings
to other Floquet resonances as well as to the rotated continua. In other words, we
use from now on the truncated Floquet basis set (ψθR, ψ

θ
B(x)e

iωt). This reduces the
matrix (3.89) to(

(ψθR|Ĥθ
F|ψθR) (ψθR|V ′(xeiθ)α0

2
|ψθB)

(ψθB|V ′(xeiθ)α0

2
|ψθR) (ψθB|Ĥθ

F|ψθB)

)
=

(
ER − i

2
ΓR α0D

α0D EB + ℏω

)
=: H ;

(3.92)
where the coupling element D := 1

2
(ψθR|V ′(xeiθ)|ψθB) =: DRe + iDIm can be obtained

numerically, as

D =
1

2
(ψθR|V ′(xeiθ)|ψθB) ≈

∫ 25

−25

dxψθR(x)V
′(xeiθ)ψθB(x) = −1.24145+2.95759·10−4i ;

(3.93)
It can be shown by contour integration that the value of D is not dependent on θ.
Recall that we are looking for values of (ω, α0) such that quasi-energy degeneracy
occurs. For this purpose we will first find the eigenvalues of (3.92).

To help us further simplify this problem, the matrix H can be rewritten as

H = AI +B

(
1 λ
λ −1

)
; (3.94)
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where

A =
1

2
(ER + EB + ℏω)− i

4
ΓR ; (3.95)

B =
1

2
(ER − EB − ℏω)− i

4
ΓR ; (3.96)

λ =
2DRe(ER − EB − ℏω)−DImΓR + i [2DIm(ER − EB − ℏω) +DReΓR]

(ER − EB − ℏω)2 + 1
4
Γ2
R

α0 .

(3.97)

Since the eigenvalues of H can, thanks to Equation (3.94), be obtained as the sum
of A and the eigenvalues of the matrix(

1 λ
λ −1

)
; (3.98)

the eigenproblem (3.94) is reduced to solving the eigenvalue problem of (3.98), which
is done in Appendix D. Namely, the resulting eigenvalues of H are

E±(λ) = A±
√
λ2 + 1 . (3.99)

The just displayed formula (3.99) shows immediately that finding the desired special
values of (ω, α0) is possible. Indeed, an eigenvalue degeneracy occurs whenever

λ = ±i . (3.100)

And the sought EP is thus formed.
Let us consider specifically the case of λ = i. By substituting λ = i into

(3.95)-(3.97), we can calculate the values of (ω, α0) corresponding to this EP as

ωEP =
1

ℏℏℏ

(
ER − EB −

1

2

DIm

DRe
ΓR

)
;

α0EP =
1

4

ΓR

DRe
.

(3.101)

(3.102)

3.5.2 Numerical Calculation

We will now again employ the toy potential (1.73), while setting ℏ = 1, m = 1 and
using arbitrary units, to numerically calculate the values of (ωEP, α0EP). We make
use of the values of the resonance and bound state energies calculated in Section
2.2. This gives us the parameters causing the creation of an EP by laser:

ωEP = 0.91893 ;

α0EP = 9.38682 · 10−5 .

(3.103)
(3.104)

We see that the value α0 is indeed small enough compared to the lengthscale of the
used potential (1.73). Hence the weak field approximation (3.77) is well justified.
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3.5.3 Properties of the Exceptional Points

In Appendix D, we have shown that as λ approaches ±i, the eigenvectors of (3.98)
start overlapping and become more linearly dependent, eventually resulting in an
eigenvector degeneracy for λ = ±i. The phenomenon of eigenvector degener-
acy has been known mathematically in linear algebra (defective matrices, Jordan
blocs). The degeneracy (coalescence) of eigenvectors is a phenomenon specific for
NHQM, it does not have an analogy in standard HQM. This is where the termi-
nology "exceptional points" comes from. The resulting single eigenvector of (3.98)
is (

1
±i

)
. (3.105)

This vector is self orthogonal in respect to the C-product (2.62).
Interesting mathematical properties of the EPs include an unusual closure

property (see Equation (D.17) in the Appendix D), self orthogonality as already
mentioned above and as detailed in Appendix D, as well as double valuedness of the
eigenvalue when encircling an EP. This double valuedness is illustrated in the figure
below:

-0.4
-0.2

 0.0
 0.2

 0.4 0.6

0.8

1.0

1.2

1.4

-1.0

 0.0

 1.0

Re E
Im E

EP
Re λ Im λ

Figure 3.2: Real and imaginary parts of the function
√
λ2 + 1 entering into the

eigenvalue formula (3.98). For convenience, we plot here just a segment of the
graph, corresponding to λ = +i + e+iβ where β ∈ [0, 4π). As one can see, the
plotted graph of

√
λ2 + 1 is double valued , i.e. an EP λ = +i must be encircled

twice (β must run from 0 to 4π) in order to return to the starting value associated
with β = 0.

Most importantly, the EPs are not just exotic mathematical peculiarities. In
fact, just the opposite is true: EPs arise in a wide variety of physically relevant
situations (e.g. quantum mechanics of laser driven atoms [4], [6], [21], [23], [24], [31],
waveguide optics [13], acoustics [34], electric circuit theory [7], elasticity [35], excited
state quantum phase transitions [39]). The physical implications of EPs represent
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an active area of current research, one may expect significant discoveries coming in
the future.

3.6 Summary

In this Chapter 3 we have provided a tutorial overview of the problem of interaction
of an atom with laser. We have introduced an adequate Hamiltonian in different
mutually equivalent gauges (namely, the momentum, reduced momentum, length,
and acceleration gauges), and highlighted the advantage of the acceleration gauge
for theoretical studies of laser assisted scattering phenomena.

Subsequently, we have considered more specifically just monochromatic lasers,
and formulated the powerful formalism of the Floquet theory , which enables us
to formulate laser driven atomic dynamics as e generalized stationary eigenvalue
problem (where the time variable plays the role of an additional coordinate).

Importantly, the Floquet picture clarifies how laser induced resonances
arise in atomic systems. Nonhermitian complex scaled Floquet theory was thus
accordingly introduced.

The just summarized powerful theoretical tools enable us to study the cre-
ation of a nonhermitian degeneracy known as an exceptional point (EP). We have
explicitly shown how such an EP is formed by choosing appropriately the laser pa-
rameters, and we have commented on peculiar mathematical and physical properties
of EPs.
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Concluding Remarks

In this Bachelor project, we have outlined (in a more or less self contained fashion)
the formalism of nonhermitian quantum mechanics (NHQM) and its appli-
cation on scattering theory . Explicit numerical calculations (for a simple yet
ubiquitous 1D toy model) have illustrated the strength of NHQM. It has also been
verified that the two existing distinct approaches to NHQM (complex scaling ,
method Siegert pseudostates) provide the same physical information as the con-
ventional scattering calculations. Being equipped with the powerful formalism of
NHQM, we have presented in more detail one of its most prominent applications
related to laser driving of atoms. Most importantly, an emergence of a nonhermitian
degeneracy called an exceptional point (EP) has been demonstrated theoretically
for the case of laser driven atoms, parameters characterizing such an EP have been
also explicitly calculated, and we have commented on peculiar mathematical and
physical properties of the EPs.

I believe that the contents of this project may serve as a reasonable starting
point to anyone who wishes to enter the turbulently evolving field of NHQM.

81



Bibliography

[1] ABDELMOULA, Salmine a Hamadi BAKLOUTI. Bound and anti-bound states
for coupled-channel scattering. Mathematical Methods in the Applied Sciences.
2017, 40(15). ISSN 0170-4214. Available at: doi:10.1002/mma.4400

[2] AHLFORS, Lars. Complex analysis. 3rd edition. Cambridge (Massachusetts):
Ams Chelsea Publishing, 1979. ISBN 0-07-000657-1.

[3] ANTOINE, Jean-Pierre. Quantum Mechanics beyond Hilbert space. Lecture
Notes in Physics. Springer Verlag, 1998, 504, 5-40. ISSN 0075-8450. Available
at: doi:10.1007/BFb0106773

[4] BEN-ASHER, Anael, Daniel ŠIMSA, Tereza UHLÍŘOVÁ, Milan ŠINDELKA a
Nimrod MOISEYEV. Laser Control of Resonance Tunneling via an Exceptional
Point. Physical Review Letters. 2020, 124(25). ISSN 0031-9007. Available at:
doi:10.1103/PhysRevLett.124.253202

[5] BORBÉLY, I. a T. VERTSE. Inhomogeneous Schrödinger equation for anti-
bound and resonant states. Computer Physics Communications. 1995, 86(1-2).
ISSN 00104655. Available at: doi:10.1016/0010-4655(94)00158-X

[6] BURKE, Philip George. R-Matrix Theory of Atomic Collisions: Application
to Atomic, Molecular and Optical Processes. 1. Belfast: Springer-Verlag Berlin
and Heidelberg GmbH & Co., 2013. ISBN 9783642267581.

[7] CHOI, Youngsun, Choloong HAHN, Jae Woong YOON a Seok Ho SONG.
Observation of an anti-PT-symmetric exceptional point and energy-difference
conserving dynamics in electrical circuit resonators. Nature Communications.
2018, 9(1). ISSN 2041-1723. Available at: doi:10.1038/s41467-018-04690-y

[8] COHEN-TANNOUDJI, Claude, Gilbert GRYNBERG a Jacques DUPONT-
ROC. Atoms-Photon Interactions: Basic Processes and Applications. New-
York: John Wiley, 1992. ISBN 0471625566.

[9] DARAI, J., A. RÁCZ, P. SALAMON a R. G. LOVAS. Antibound poles in cut-
off Woods-Saxon and strictly finite-range potentials. Physical Review C. 2012,
86(1). ISSN 0556-2813. Available at: doi:10.1103/PhysRevC.86.014314

[10] DESHMUKH, Pranawa C., Sourav BANERJEE, Ankur MANDAL a Steven
T. MANSON. Eisenbud–Wigner–Smith time delay in atom–laser interactions.
The European Physical Journal Special Topics. 2021, 230. Available at:
doi:10.1140/epjs/s11734-021-00225-7

82



[11] DVOŘÁK, Jan, Karel HOUFEK a Martin ČÍŽEK. Vibrational excitation in
the e + CO2 system: Nonlocal model of ΣΠ vibronic coupling through the
continuum. Physical Review A. 2022, 105(6). ISSN 2469-9926. Available at:
doi:10.1103/PhysRevA.105.062821

[12] DVOŘÁK, Jan, Miloš RANKOVIĆ, Karel HOUFEK, Pamir NAG, Roman
ČURÍK, Juraj FEDOR a Martin ČÍŽEK. Vibronic Coupling through the Con-
tinuum in the e + CO2 System. Physical Review Letters. 2022, 129(1). ISSN
0031-9007. Available at: doi:10.1103/PhysRevLett.129.013401

[13] EL-GANAINY, Ramy, Konstantinos G. MAKRIS, Mercedeh KHA-
JAVIKHAN, Ziad H. MUSSLIMANI, Stefan ROTTER a Demetrios N.
CHRISTODOULIDES. Non-Hermitian physics and PT symmetry. Nature
Physics. 2018, 14(1). ISSN 1745-2473. Available at: doi:10.1038/nphys4323

[14] GARMON, S., T. PETROSKY, L. SIMINE a D. SEGAL. Amplifica-
tion of non-Markovian decay due to bound state absorption into contin-
uum. Fortschritte der Physik. 2013, 61(2-3). ISSN 00158208. Available at:
doi:10.1002/prop.201200077

[15] GRIFFITHS, David Jeffrey. Introduction to Quantum Mechanics. Upper Saddle
River (New Jersey): Prentice Hall, 1995. ISBN 978-0-13-124405-4.

[16] GUENNABAUD Gaël, BENOÎT Jacob, and others. (2010). Eigen v3. .

[17] GUERRERO, J. A group-theoretical derivation of the S-matrix for the Pöschl-
Teller potentials. Journal of Physics: Conference Series. 2010, 237. ISSN 1742-
6596. Available at: doi:10.1088/1742-6596/237/1/012012

[18] HVIZDOŠ, Dávid, Chris H. GREENE a Roman ČURÍK. Energy-dependent
frame transformation theory for dissociative recombination. ArXiv. 2019. Avail-
able at: doi:10.48550/arXiv.1910.02631

[19] JACKSON, John David. Classical Electrodynamics. 3rd edition. Chicago: John
Wiley, 1999. ISBN 978-0-471-30932-1.

[20] JULVE, J., S. TURRINI a F. J. DE URRÍES. Inner Products of Energy Eigen-
states for a 1-D Quantum Barrier. International Journal of Theoretical Physics.
2014, 53(3). ISSN 0020-7748. Available at: doi:10.1007/s10773-013-1890-y

[21] KAPRÁLOVÁ-ŽĎÁNSKÁ, Petra Ruth. Complex time method for quantum dy-
namics when an exceptional point is encircled in the parameter space. Annals of
Physics. 2022, 443. ISSN 00034916. Available at: doi:10.1016/j.aop.2022.168939

[22] KLAIMAN, Shachar a Nimrod MOISEYEV. The absolute position of a reso-
nance peak. Journal of Physics B: Atomic, Molecular and Optical Physics. 2010,
43(18). ISSN 0953-4075. Available at: doi:10.1088/0953-4075/43/18/185205

[23] KYLSTRA, N. J. a C. J. JOACHAIN. Double poles of the S-matrix in laser-
assisted electron-atom scattering. Europhysics Letters (EPL). 1996, 36(9). ISSN
0295-5075. Available at: doi:10.1209/epl/i1996-00283-5

83



[24] LATINNE, O., N. J. KYLSTRA, M. DÖRR, J. PURVIS, M. TERAO-
DUNSEATH, C. J. JOACHAIN, P. G. BURKE a C. J. NOBLE. Laser-
Induced Degeneracies Involving Autoionizing States in Complex Atoms.
Physical Review Letters. 1995, 74(1). ISSN 0031-9007. Available at:
doi:10.1103/PhysRevLett.74.46

[25] LÉVAI, G., Á. BARAN, P. SALAMON a T. VERTSE. Analytical solutions for
the radial Scarf II potential. Physics Letters A. 2017, 381(23). ISSN 03759601.
Available at: doi:10.1016/j.physleta.2017.04.010

[26] LIPPMANN, Bernard Abram a Julian Seymour SCHWINGER. Variational
Principles for Scattering Processes. Physical Review. 1950, 79(3). Available at:
doi:10.1103/PhysRev.79.469

[27] MAKSIMOV, Dmitrii N., Valery S. GERASIMOV, Andrey A. BOGDANOV a
Sergey P. POLYUTOV. Enhanced sensitivity of an all-dielectric refractive index
sensor with an optical bound state in the continuum. Physical Review A. 2022,
105(3). ISSN 2469-9926. Available at: doi:10.1103/PhysRevA.105.033518

[28] MAŠÍN, Zdeněk a Jimena D . GORFINKIEL. Shape and core excited resonances
in electron collisions with diazines. The Journal of Chemical Physics. Milton
Keynes, 2012, 137(20). Available at: doi:10.1063/1.4767345.

[29] MOISEYEV, Nimrod. Non-Hermitian Quantum Mechanics. Cambridge: Cam-
bridge University Press, 2011. ISBN 9780511976186.

[30] MORTON, Keith William and D.F. MAYERS. Numerical Solution of Par-
tial Differential Equations: An Introduction. Cambridge: Cambridge University
Press, 2005. ISBN 9780511812248.

[31] PICK, Adi, Petra Ruth KAPRÁLOVÁ-ŽĎÁNSKÁ a Nimrod MOISEYEV.
Ab-initio theory of photoionization via resonances. The Journal of Chemical
Physics. 2019, 150(20). ISSN 0021-9606. Available at: doi:10.1063/1.5098063

[32] ROMAN, Paul. Advanced quantum theory: an outline of the fundamental ideas.
Peterborough (Ontario): Reading, MA. : Addison-Wesley Pub. Co., 1965. ISBN
978-0201064957.

[33] ROSSMANN, Wulf. Lie Groups: An Introduction Through Linear Groups. Ox-
ford: Oxford Science Publications, 2002. ISBN 978-0-19-859683-7.

[34] SHI, Chengzhi, Marc DUBOIS, Yun CHEN, Lei CHENG, Hamidreza
RAMEZANI, Yuan WANG a Xiang ZHANG. Accessing the exceptional points
of parity-time symmetric acoustics. Nature Communications. 2016, 7(1). ISSN
2041-1723. Available at: doi:10.1038/ncomms11110

[35] SHMUEL, Gal a Nimrod MOISEYEV. Linking Scalar Elastodynamics and Non-
Hermitian Quantum Mechanics. Physical Review Applied. 2020, 13(2). ISSN
2331-7019. Available at: doi:10.1103/PhysRevApplied.13.024074

84



[36] SIEGERT, A. J. F. On the Derivation of the Dispersion Formula for Nu-
clear Reactions. Physical Review. 1939, 56(8). ISSN 0031-899X. Available at:
doi:10.1103/PhysRev.56.750

[37] SIMON, Barry. Quadratic form techniques and the Balslev-Combes theorem.
Communications in Mathematical Physics. 1972, 27(1). ISSN 0010-3616. Avail-
able at: doi:10.1007/BF01649654

[38] ŠINDELKA, Milan. An Introduction to Scooattering Theory. arXiv, 2022. Avail-
able at: doi:10.48550/ARXIV.2204.03651

[39] ŠINDELKA, Milan, Lea F. SANTOS a Nimrod MOISEYEV. Excited-
state quantum phase transition studied from a non-Hermitian perspec-
tive. Physical Review A. 2017, 95(1). ISSN 2469-9926. Available at:
doi:10.1103/PhysRevA.95.010103

[40] TANIMU, Abdullahi a Egor MULJAROV. Resonant states in double and triple
quantum wells. arXiv, 2018. Available at: doi:10.48550/arXiv.1802.09855

[41] TAYLOR, John R. Scattering Theory: The Quantum Theory of Nonrelativistic
Collisions. Boulder (Colorado): John Wiley, 1972. ISBN 0-471-8490-6.

[42] TOLSTIKHIN, Oleg I., Valentin N. OSTROVSKY a Hiroki NAKAMURA.
Siegert pseudostate formulation of scattering theory: One-channel case.
Physical Review A. 1998, 58(3), 2077-2096. ISSN 1050-2947. Available at:
doi:10.1103/PhysRevA.58.2077

[43] UZIKOV, Yu.N. Quasi-Bound 3He−η State and Spin-Observables of the Reac-
tion pd → 3Heη. EPJ Web of Conferences. 2010, 3. ISSN 2100-014X. Available
at: doi:10.1051/epjconf/20100303019

[44] VERTSE, T., R. G. LOVAS, P. SALAMON a A. RÁCZ. Poles of the S-matrix
in Woods-Saxon and Salamon-Vertse potentials. AIP Conference Proceedings.
2012, 2012, 1491(1). Available at: doi:10.1063/1.4764215

[45] ZAVIN, Raya a Nimrod MOISEYEV. One-dimensional symmetric rectangu-
lar well: from bound to resonance via self-orthogonal virtual state. Journal of
Physics A: Mathematical and General. 2004, 37(16). ISSN 0305-4470. Available
at: doi:10.1088/0305-4470/37/16/011

85



Appendix A

LSE Vectors
∣∣∣ψ±
Eη

〉
as Solutions to

the Schrödinger Equation

Proof. Let ϵ→ 0+ and let
∣∣ψ±

Eη

〉
satisfy the Lippmann-Schwinger equation, then

∣∣ψ±
Eη

〉
= |ϕEη⟩+ lim

ϵ→0+

1

E − Ĥ ± iϵ
V̂ |ϕEη⟩

∣∣∣(E − Ĥ ± iϵ)·

(E − Ĥ)
∣∣ψ±

Eη

〉
± iϵ

∣∣ψ±
Eη

〉
= (E − Ĥ) |ϕEη⟩ ± iϵ |ϕEη⟩+ V̂ |ϕEη⟩ ;

and since Ĥ = Ĥ0 + V̂ and ϵ→ 0+

(E − Ĥ)
∣∣ψ±

Eη

〉
± iϵ

∣∣ψ±
Eη

〉
= (E − Ĥ0) |ϕEη⟩ ± iϵ |ϕEη⟩

(E − Ĥ)
∣∣ψ±

Eη

〉
= (E − Ĥ0) |ϕEη⟩ = |0⟩

Ĥ
∣∣ψ±

Eη

〉
= E

∣∣ψ±
Eη

〉
.

86



Appendix B

Probability Conservation in
Scattering

Proof. By applying
∫ L
−L dx

(
ψ̃+
)∗

for large enough L to both sides of (1.41) we get

∫ L

−L
dx
(
ψ̃+
)∗

(x)

(
− ℏ2

2m
∂xx + V (x)

)
ψ+(x) = E

∫ L

−L
dx
(
ψ̃+
)∗

(x)ψ̃+(x) ;∫ L

−L
dx ψ̃+(x)

(
− ℏ2

2m
∂xx + V (x)

)(
ψ̃+
)∗

(x) = E

∫ L

−L
dx ψ̃+(x)

(
ψ̃+
)∗

(x) ;∫ L

−L
dx
[
−
(
ψ̃+
)∗

(x)∂xxψ̃
+(x) + ψ̃(x) + ∂xx

(
ψ̃+
)∗]

= 0 ;[
ψ̃+(x)∂x

(
ψ̃+
)∗

(x)−
(
ψ̃+
)∗

(x)∂xψ̃
+(x)

] ∣∣∣L
−L

= 0 .

Since L is as large as one wishes, we can now use the boundary conditions (1.42)-
(1.43) to get

iK
[
−|T (E)|2 − |T (E)|2 + 1− e2iKLR(E) + e−2iKLR(E)− |R(E)|2+

+1− e−2iKLR(E) + e2iKLR(E)− |R(E)|2
]
= 0 ;

2
[
|R(E)|2 + |T (E)|2 − 1

]
= 0 ;

|R(E)|2 + |T (E)|2 = 1 .
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Appendix C

Nonexistence of Siegert States with
K ∈ R\{0}

Proof. Let us assume that K ∈ R, K ̸= 0.

K2 = 0 ⇒ ψ (x→ ±∞) = e±iK1x .

Equation (2.1) for ψ and ψ∗ tells us that

− ℏ2

2m
∂xxψ(x) + V (x)ψ(x) = Eψ(x)

∣∣∣ψ∗(x) ;

− ℏ2

2m
∂xxψ

∗(x) + V (x)ψ∗(x) = E∗ψ∗(x)
∣∣∣ψ(x)

− ℏ2

2m
∂xxψ(x)ψ

∗(x) + V (x)ψ(x)ψ∗(x) = Eψ(x)ψ∗(x) ;

− ℏ2

2m
∂xxψ

∗(x)ψ(x) + V (x)ψ∗(x)ψ(x) = E∗ψ∗(x)ψ(x)

− ℏ
2m

[
ψ∗(x)ψ′′(x)− ψ(x) (ψ∗)′ (x)

]
= 0

∣∣∣ ∫ b

a

dx ;[
ψ∗(x)ψ′′(x)− ψ(x) (ψ∗)′ (x)

] ∣∣∣b
a
= 0 ;

where Wψ(x) := ψ∗(x)ψ′′(x) − ψ(x) (ψ∗)′ (x) is the Wronskian of ψ, i.e Wψ(x) is
x-independent (flux conservation).

Now for L large enough and

a := −L, b := L ;[
ψ∗(x)ψ′′(x)− ψ(x) (ψ∗)′ (x)

] ∣∣∣L
−L

= 0

K1 [−K1 + i+K1 + i] = 0

i2K1 = 0

K1 = 0 .

meaning that K = 0, which contradicts our initial assumption. Therefore, a situa-
tion where K ∈ R\{0} is impossible.
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Appendix D

Solution to the Eigenvalue Problem
of (3.98)

Let us denote
Hλ :=

(
1 λ
λ −1

)
; (D.1)

where λ ∈ C. We shall now solve the eigenvalue problem of Hλ

Hλ
#»

ψ
(j)
λ = E

(j)
λ

#»

ψ
(j)
λ ; (D.2)

which can be expressed in the following way

det

(
Hλ − ÎE

)
=

∣∣∣∣∣1− E
(j)
λ λ

λ −1− E
(j)
λ

∣∣∣∣∣ = −
(
1− E

(j)
λ

)2
− λ2 = 0 . (D.3)

Therefore, the eigenvalues of Hλ are

E±1
λ = ±

√
λ2 + 1 . (D.4)

D.1 Non-degenerate Case

Let us first investigate the situation, when

λ ̸= ±i ; (D.5)

and therefore
E

(±1)
λ ̸= 0 ⇒ E

(+1)
λ ̸= E

(−1)
λ . (D.6)

The eigenvectors of Hλ can be found as:(
1− E

(+1)
λ λ

λ −1− E
(+1)
λ

)
=

(
1−

√
λ2 + 1 λ

λ −1−
√
λ2 + 1

)
∼

∼
(
−λ2 λ

(
1 +

√
λ2 + 1

)
λ2 −λ

(
1 +

√
λ2 + 1

)) ∼
(
−λ 1 +

√
λ2 + 1

0 0

)
⇒ #»

ψ
(+1)
λ = C

(+1)
λ

(
1 +

√
λ2 + 1
λ

)
. (D.7)
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(
1− E

(−1)
λ λ

λ −1− E
(−1)
λ

)
=

(
1 +

√
λ2 + 1 λ

λ −1 +
√
λ2 + 1

)
∼

∼
(
λ
(
1 +

√
λ2 + 1

)
λ2

λ
(
1 +

√
λ2 + 1

)
λ2

)
∼
(
1 +

√
λ2 + 1 λ
0 0

)
⇒ #»

ψ
(−1)
λ = C

(−1)
λ

(
−λ

1 +
√
λ2 + 1

)
. (D.8)

We will now show that with the appropriate normalization the resulting lin-
early independent eigenvectors are orthonormal:(

#»

ψ
(1)
λ

)⊺
#»

ψ
(−1)
λ =

(
#»

ψ
(−1)
λ

)⊺
#»

ψ
(1)
λ =

= C
(1)
λ C

(−1)
λ

[
−λ
(
1 +

√
λ2 + 1

)
+ λ

(
1 +

√
λ2 + 1

)]
= 0(

#»

ψ
(1)
λ

)⊺
#»

ψ
(1)
λ =

(
C

(1)
λ

)2 (
1 +

√
λ2 + 1

2
+ λ2

)
= 2

(
C

(1)
λ

)2 (
λ2 +

√
λ2 + 1 + 1

)
(

#»

ψ
(−1)
λ

)⊺
#»

ψ
(−1)
λ = 2

(
C

(−1)
λ

)2 (
λ2 +

√
λ2 + 1 + 1

)
λ2 +

√
λ2 + 1 + 1 = 0 ⇐⇒ λ = ±i

⇒
(

#»

ψ
(j)
λ

)⊺
#»

ψ
(j′)
λ = δjj′ ⇐⇒ C

(±1)
λ =

±1√
2(λ2 +

√
λ2 + 1 + 1)

. (D.9)

Moreover, these two eigenvectors possess the following closure property:

∑
j

#»

ψ
(j)
λ

(
#»

ψ
(j)
λ

)⊺
=

 (
#»

ψ
(1)
λ,1

)2
+
(

#»

ψ
(−1)
λ,1

)2 #»

ψ
(1)
λ,2

#»

ψ
(−1)
λ,1 +

#»

ψ
(−1)
λ,2

#»

ψ
(1)
λ,1

#»

ψ
(1)
λ,1

#»

ψ
(1)
λ,2 +

#»

ψ
(−1)
λ,1

#»

ψ
(−1)
λ,2

(
#»

ψ
(1)
λ,1

)2
+
(

#»

ψ
(−1)
λ,1

)2
 =

=

 (
2C

(1)
λ

)2 (
λ2 +

√
λ2 + 1 + 1

)
C

(1)
λ

[
λ
(
1 +

√
λ2 + 1

)
− λ

(
1 +

√
λ2 + 1

)]
C

(1)
λ

[
λ
(
1 +

√
λ2 + 1

)
− λ

(
1 +

√
λ2 + 1

)](
2C

(1)
λ

)2 (
λ2 +

√
λ2 + 1 + 1

)
 =

(
1 0
0 1

)
⇐⇒ C

(1)
λ = C

(−1)
λ .

(D.10)

D.2 Exceptional Points

We will now discus the remaining case when

λ = ±i . (D.11)

Therefore an energy degeneracy occurs :

E
(+1)
λ = E

(−1)
λ = 0 . (D.12)

We can see that the procedure for generating eigenvectors used in the previous
section cannot be used in this case, since

lim
λ→±i

C
(±1)
λ = lim

λ→±i

±1√
2(λ2 +

√
λ2 + 1 + 1)

= ±∞ ; (D.13)
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and the expressions used for C(±1)
λ , (D.7)-(D.8), thus become ill defined for λ = ±i.

The vectors
#»

ψ
(±1)
λ become linearly dependent. This indicates an extremely unusual

situation: For λ = λEP = ±i, the eigenproblem (D.2) gives rise just to a single
eigenvector, namely,

#»

ψ
(1)
±i =

#»

ψ
(−1)
±i =

(
1
±i

)
; (D.14)

assuming a convenient normalization. We shall thus hereafter write just
#»

ψ±i rather
than

#»

ψ
(±1)
±i . In other words, we encounter here not just eigenvalue degeneracy,

but also an eigenvector degeneracy occurs [29]. This is an extremely peculiar
situation known in linear algebra.

The single eigenvector (D.14) is self-orthogonal, i.e.(
#»

ψ±i

)⊺
#»

ψ±i = 1 + i2 = 0 . (D.15)

Further theoretical developments of the properties of the EPs require an ade-
quate formulation of the closure property. Clearly, the above displayed conventional
closure formula (D.10) breaks down, since in the EP situation only a single eigenvec-
tor of Hλ exists. For the sake of clarity, we shall from now on consider just the case

of λ = +i. In order to build up a closure type relation we need to add another vector
#»

ϕ ∈ C2, linearly independent of
#»

ψ+i. This vector will no longer be an eigenvector
of H+i. We require that

#»

ψ+i
#»

ϕ
⊺
+

#»

ϕ
(

#»

ψ+i

)⊺
= Î (D.16)(

1
i

)(
ϕ1 ϕ2

)(ϕ1

ϕ2

)(
1 i

)
=

(
1 0
0 1

)
. (D.17)

Therefore,

2ϕ1 = 1 ⇒ ϕ1 =
1

2
;

2iϕ2 = 1 ⇒ ϕ2 =
−i
2

;

iϕ1 + ϕ2 = 0 ⇐⇒ i

2
− i

2
= 0 ;

⇒ #»

ϕ =
1

2

(
1
−i

)
. (D.18)

As we can see
#»

ϕ is determined uniquely. The vector
#»

ψ i can be obtained from
#»

ϕ
thanks to their following important property:

H+i
#»

ϕ =
1

2

(
1 i
i −1

)(
1
−i

)
=

(
1
i

)
=

#»

ψ+i . (D.19)

This is a very important lemma used frequently in further mathematical develop-
ments of the theory of EPs.
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