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Introduction

Why should the markets be of interest for a physicist?
Financial market is a huge system composed of many entities, which interact

in various ways. This leads to very complex behavior with a significant effect on the
whole society. What makes the markets interesting for scientists is the fact that there
is an enormous amount of data, which can be examined and used to test hypotheses.
Studying them can also give an insight to other complex systems, where the data
are more difficult to obtain.

There are several established theories, which are used in quantitative finance
to model markets. These, however, show up not to be based on solid empirical
evidence, yet they are widely used in practice. That can eventually lead to huge
losses for traders.

Physicists, on the other hand, are very sensitive to overlooking empirical data.
Their aim is to find models which could persist observations and tests. Financial
markets offer a great challenge for them.

In this thesis, we show several approaches physicists made. In the first chap-
ter, we introduce basic notions and principles of financial markets, and we try to
find analogies in phenomenological thermodynamics. Second chapter deals with the
cornerstone of quantitative finance, option pricing theory, and it also shows its short-
comings. We will see, that one of the key phenomena occurring in markets is the
collective behavior, which leads to several important consequences. That is the topic
of the third chapter, where we find analogies with the physics of criticality.
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Chapter 1

Physics and markets

In this chapter, we will make a brief introduction to quantitative finance, its
principles and assumptions, and we will try to find some connections with physics.
Next chapters will dive deeper in some concepts.

One of the key concepts in physics, which gave rise to the quantum mechanics,
is the fact that a measurement of some observable variable can change the state,
which is measured. Measurement can even affect previous measurements.

Financial markets are also influenced by measurement. As a matter of fact,
they are measured very intensively in some aspects, for example price changes can
be observed in microseconds. On the other hand, some other factors are not easily
measurable, as the system is composed of millions of actors, each with different
motivation and actions. Anyway, the market is accommodated to measurement.
Continual availability of prices and accessibility of information is fundamental for
the functioning of markets.

What is the level of complexity we need to deal with, when describing markets?
Let us make a comparison with quantum states. We can not say how complex some
quantum state is, we can describe it just in terms of possible measurements. An
electron could have a free will or communicate with other electrons telepathically.
We just do not have anything to say about it, as long as we can not measure it.

In these terms, we can look at financial markets. Critics could say that any de-
scription neglecting free will, inscrutability, irrationality and psychology of market
participants is useless. But we can consider these as hardly measurable (or impossi-
ble to measure) and try to find characteristics, which are observable and tractable
without precise knowledge of every detail.

In physics, this is the aim of statistical mechanics. It deals with large systems,
which are practically indescribable in detail (we can not compute movement of
each individual particle), but are possible to describe in statistical means. In case
of independent non-interacting particles, big deviations vanish and macroscopically
observable quantities occur. That leads to a model of ideal gas. When interactions
take place, collective behaviour can occur, which in specific situations leads to critical
phenomena. These are the reasons, why many of the analogies between physics
and markets can be found in thermodynamics, statistical physics and physics of
criticality.

Markets are composed of many participants, which are connected by various
forms of interaction. These connections change over time, strengthen or loosen, new
forms of them appear frequently. This makes markets very complex and interesting,
but also very hard to deal with mathematically and difficult to model. Some ap-
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4 Chapter 1. Physics and markets

proaches are being developed in the theory of complex systems, namely the network
theory. We will see some basic models in the next chapters.

Next sections will be devoted to basic principles of our description of markets.
We will try to show analogies in physics if possible. However, we will also try to
figure out some specifics of markets, which do not have an analogy in physics.

1.1 Basics of markets, terminology
In this section we will follow [1], although the notions mentioned here are well

established. Financial market is basically a field where trades can occur. One of
the basic assets traded are stocks. A stock is basically a share in the company.
Stocks can be bought or sold, supply and demand determine the price of them.
Profits of a company can be reinvested or distributed to stakeholders in the form of
dividend. Financial markets are not composed only of stock markets, one can trade
commodities (raw products such as metals, food products, oil etc.) for example.
Of great importance is also the foreign exchange, which accounts for currencies
trades. One can buy a bond, which entitle the owner to get paid a certain sum after
some time. Bonds are often issued by states and can also be traded.

The next level of complexity is added with derivatives. As the name sug-
gests, their value is derived from the value of an underlying asset. Derivatives allow
traders to avoid risks as well undergo some. We briefly introduce some of the main
derivatives:

• Forwards and futures: They are agreements between two parties, where one
of them promises to buy an asset at some specific time for a specific price and
another party promises to sell. Forward contract can happen between arbitrary
parties and is tailored, futures contracts are traded on an exchange.

• Options: Call option is a right to buy a particular asset for an agreed amount
at a specified time in the future. Put option is similar, but it is the right to
sell.

• Swaps: Swap is an agreement between two parties to exchange, or swap, future
cashflows. For example, one side agrees to pay the other a fixed interest rate
and the other pays a floating rate.

We will go in deeper detail with options in the next chapter, as there is a nice
mathematical background and a huge playground for an econophysicist.

A market is said to be liquid, if an investor can easily buy or sell an asset at any
time without a significant change in the price of that asset. A typical example of
liquid market is the foreign exchange market, on the other hand one can encounter
low liquidity when trying to sell a car or a house. Market friction amounts for all
kinds of trading costs, including provisions, taxes etc. Market friction is low, if these
costs are negligible compared with the volume traded.

1.2 No arbitrage principle
Many models in finance, including the Black-Sholes theory, assume the absence

of arbitrage possibilities. An arbitrage is a situation, in which one can make un-
bounded profits without accompanying risks. To illustrate this, suppose there are
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three exchange offices in Prague. In one of them, we could buy 1 EUR for 25 CZK.
In the second one, we could sell 1 EURO for 1.1 USD, and in the third one we could
sell 1.1 USD for 26 CZK. This would give us a profit of 1 CZK for every 25 CZK
invested. If we invest 1 million CZK in this trade, we get a profit of 40 thousand
CZK without any risk. This is named free lunch in financial jargon.

No arbitrage principle, as used in many models, says, the market is free of any
arbitrage possibilities. The argument is that if there were any, market participants
would instantaneously use them to make profits, leading the opportunity to vanish.
In our example with exchange offices, this would happen due to the increased demand
for euros in the first office, leading the price to rise adequately.

We see that this principle would not work without the traders searching for the
arbitrage opportunities. If all traders believed that no arbitrage opportunities exist,
nobody would search for them thus leading them to occur again. Is this contra-
dictory? Just due to the strict formulation, that all arbitrage opportunities vanish
instantaneously.

It would be the same as saying, that every thermodynamic system, when devi-
ated from equilibrium, instantaneously reaches equilibrium again. This is not true
and physicist therefore choose much more careful statements. One of the postulates
of thermodynamics says:

Isolated system reaches over time one of the possible thermodynamic equilibrium,
in which it remains until it is forced to change this state by external forces.

If the system is deviated out of equilibrium, we can just state it will reach new
equilibrium state over time.

This can lead us to make a more precise formulation of no arbitrage principle

Financial markets make every arbitrage opportunity vanish over time.

This formulation is much more realistic, on the other hand it is harder to use in
models. As in thermodynamics, examination of states in equilibrium is much easier
than those out of equilibrium, it is easier to assume no arbitrage. Thermodynamic
systems also fluctuate around the equilibrium state, however as far as the fluctua-
tions are small, the predictions of equilibrium models work. The same is believed
with no arbitrage principle.

Let us remind a first law of thermodynamics (or law of energy conservation) in
terms of perpetuum mobile of the first kind:

It is impossible to construct an engine which would work in a cycle and produce
continuous work, or kinetic energy, from nothing.

Paul and Bachnagel [2] offer a formulation of no arbitrage principle reminding the
first law of thermodynamics:

There is no periodically working financial process which generates a risk-free profit
from nothing.

Let us examine this formulation a little. It does not say that it is not possible to
make money without risk. If we put our money on a bank account with an interest
rate, after some time we get more back. However, the amount of money earned due
to the interest rate depends on the time we keep our deposit in the bank. There is
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no way we could speed this process up and use it periodically. However, if the bank
gives us a specific amount of money each time we put a deposit there, we could
repeat the depositing and earn risk-less profits.

Although it is appealing to treat no arbitrage principle as an analogy to energy
conservation in physics, we suggest being more careful. There have been a massive
growth in efficiency during the past centuries, making the vast majority of people
richer. Can we find any energy which compensates this growth? Maybe some dark
energy?

Therefore, we suggest seeing no arbitrage principle just as a mechanism leading
different markets (i.e. exchange offices) to price equilibrium.

1.3 Efficient market hypothesis
Efficient market hypothesis (EMH) is one of the cornerstones of the modern

financial theory. However, we will see that the formulations can differ, as well as the
mathematical representations and their consequences.

One formulation, given by Paul and Baschnagel [2] states, that “all necessary
information for the future price evolution is contained in the present prices.” Another
one, given by [3], says that EMH is “a theory that the price of a security reflects all
currently available information about its economic value.” One of the main econo-
physics books by Mantegna and Stanley [4] says, that “a market is highly efficient
in the determination of the most rational price of the traded asset.” Last but not
least, a book on econophysics modelling by Slanina [5]states, that “all information
you might try to use to make a profit from price movements has already been in-
corporated into the price.”

Although all of these formulations might seem similar, there are differences
leading many authors to come to different conclusions. What does it mean to have
“all necessary information for the future of price”? Necessary for what? To make
future estimates? Or to make profit? How do we define economic value of an asset?
In which sense do mean “rational price”?

Every approach concludes with a statement, that analysis of price histories is
useless, as all the information is already absorbed in the price. To base this on solid
ground, we should try to find a mathematical representation. There are two main
approaches.

1.3.1 Markov property
Paul and Bachnagel deduce, that EMH can be represented as a Markov prop-

erty. Briefly stated, Markov property of a random process means, that it has no
memory.

Definition 1.3.1 (Markov property). A random process 𝑋𝑡, 𝑡 ≥ 0 is said to have a
Markov property, if

𝑃 [𝑋𝑡 = 𝑗|𝑋𝑡𝑛 = 𝑖𝑛, 𝑋𝑡𝑛−1 = 𝑖𝑛−1, ..., 𝑋𝑡1 = 𝑖1] = 𝑃 [𝑋𝑡 = 𝑗|𝑋𝑡𝑛 = 𝑖𝑛] (1.1)

for all 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝑛 ≤ 𝑡 and 𝑖1, ..., 𝑖𝑛, 𝑗 such that conditional probability is
well-defined.
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Gamers account has often a Markov property. If he bets on colors in roulette,
the same amount all the time, the next state of his account is determined just by
the present state and the roulette. History of his wins and losses is irrelevant.

If asset prices had a Markov property, the probability distribution of future
price changes knowing the whole history of the price would be the same, as if we
knew just the present price. We shall point out, that this is a strong property. It is
concerning not just an expectation or other moments, but the whole distribution.

We state that the Markov property is too restrictive. Let us suggest a simple
model. The prices could behave the way, that if there have been many successive
rises or drops in a row, the probability of extreme events can rise. The probabilities
could be centered so that the expected value of future price change would be zero,
but the probability distribution would allow for higher extremes. Here, the prices
would lose the Markov property, because the probability distribution would depend
on the number of successive rises or drops.

Does this model violate EMH? That depends on the formulation of EMH. The
information about the distribution could not be used to make profits, because the
expected value of a price change would be zero. That leads us to the second option
to mathematically formulate EMH.

1.3.2 Martingale property
What is important for a price is that there needs to be a buyer for a seller. The

buyer expects the price to rather rise, if he did not, he would have no reason to buy
the asset. Te seller expects the price to rather fall, if not, he could keep the asset
and sell later with profit. They have opposite expectations.

We suggest, that the average expectation of the traders about the price change
should tend to zero. If there are more trades based on the expectation of a price drop,
there will more sell orders pushing the price down. On the other hand, if there are
more trades expecting price rise, the price will go up adequately. The price always
reacts to the expectations and beliefs of traders.

We will compare this with a martingale property.

Definition 1.3.2 (Fair process). A discrete-time random process {𝑋1, 𝑋2, ...} is
called fair, if

1. E[|𝑋𝑛|] < ∞, ∀𝑛 ∈ N

2. E[𝑋𝑛+1|𝑋𝑛, 𝑋𝑛−1, ..., 𝑋1] = 0, ĺ, ∀𝑛 ∈ N

Having a random process 𝑋1, 𝑋2, ..., let us define a new process of partial sums
𝑌1, 𝑌2, .... It is clear, that this process suffices equation E[𝑌𝑛+1|𝑌𝑛, 𝑌𝑛−1, ..., 𝑌1] = 𝑌𝑛

Definition 1.3.3 (Martingale). A discrete-time random process {𝑌1, 𝑌2, ...}, is called
a martingale, if

1. E[|𝑌𝑛|] < ∞, ∀𝑛 ∈ N

2. E[𝑌𝑛+1|𝑌𝑛, 𝑌𝑛−1, ..., 𝑌1] = 𝑌𝑛, ĺ, ∀𝑛 ∈ N

This definition is sufficient for illustration, one more general is given in ap-
pendix. If prices are martingales, it means that the best estimate (in the probabilis-
tic sense) for the future price, given all the history of the price, is the present value
of it. The differences of prices should then be a fair process.
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Is this a good mathematical representation of the motivation given? We stated
that the average expectation of traders about the future price change should tend to
zero. One group always expects the prices to drop, the other to rise. Both groups can
access the same information. The argument given by [6] is that there is no reason
one group should consistently be better in predicting the future, than the other.
Therefore the average estimate of traders should correspond to the expected value
in probabilistic sense. The best-known derivation of martingale property regarding
prices was given by Samuelson in 1965 [7].

We shall note that many models of prices (such as geometric Brownian motion
with drift) are not martingales. This is because we neglected interest rates, inflation,
risk aversion etc. Trader do not consider just drops or rises of the asset prices. They
compare the investment with other ones. For example, if we expect the price to rise
a little, but we would earn more putting the money in the bank and getting interest,
we are still motivated to sell. Or due to inflation, trader expects all the prices to rise
on average. Then he compares his expectation with this average. If all these factors
could be modelled by an exponential growth with parameter 𝜇, we could modify the
required property as follows:

E[𝑌𝑠|𝑌𝑡, 𝑌𝑡𝑛 , ..., 𝑌𝑡1 ] = exp[𝜇(𝑡 − 𝑠)]𝑌𝑡 ∀𝑛 ∈ N, 0 ≤ 𝑡1 ≤ ... ≤ 𝑡𝑛 ≤ 𝑡 ≤ 𝑠 (1.2)

1.3.3 Information point of view
We can also analyse EMH from the information point of view. In martingales,

we took into consideration only the past of the process. In markets, however, there
are many other relevant information, such as annual reports, forecasts, analyses and
others. One measure of effectivity, as proposed by Eugene Fama, is how fast the
prices react to new information.

Some formulations of EMH state, that the new information is immediately
incorporated into the price, making any analyses useless. However, in practice there
are many funds making money on fast data mining (such as sentiment analysis)
followed by algorithmic trading, making them faster in usage of information than
others. These new technologies then lead to even more efficient markets, faster to
respond to new information.

On the other hand, obtaining and analysing an information is not free, and the
faster we want to do it, the more costly it gets. For some speed, the cost can be
so large, that it would not pay off for anybody. This limitation is discussed by the
theory of marginally efficient markets. Slanina [5] finds here an analogy to the third
law of thermodynamics.

Carnot’s theorem No engine operating between two reservoirs is more ef-
ficient than a Carnot engine operating between them.

The efficiency of Carnot engine is given by 𝜂 = 1− 𝑇𝐶

𝑇𝐻
, where 𝑇𝐻 and 𝑇𝐶 are the

absolute temperature of the hot and the cold reservoir respectively. This means that
by approaching lower temperatures of the cold reservoir we get higher efficiencies.
Third law of thermodynamics limits this.

Third law of thermodynamics It is impossible to cool any system to ab-
solute zero temperature in a finite number of steps.

The third law therefore implies the impossibility of 100 percent efficient engine.
Slanina proposes, that the situation with markets is the same. The 100 percent
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efficiency can not be reached due to diverging costs of gathering and analysing
information in short time.

1.4 Nonexistence of independent description
In the first paragraphs of this chapter, we mentioned an analogy between mar-

kets and quantum physics. We stated that, similarly as the quantum state is affected
by measurement, the markets are also influenced by it. Accessibility of information
is a key element of markets, and they are accommodated to it. However, there is one
thing which is very special to markets. They are influenced not just by measurement,
but also by our way of describing them.

Physical systems are independent on our description (as far as we know). We
can just observe them and try to develop deeper insight into the principles of the
nature. However, if we figure out some description of the financial systems and we
use it for trading, we influence the system by it. The effect could be negligible, but
when we make the description available for the rest of traders, it can change the
behavior of the system significantly.

How could we prevent this to happen? One option is to keep our description
just for ourselves and not use it in the market. This would have no impact not
only to markets, but also to science and the effect would be the same as inventing
nothing. Secondly, our description could be useless for behavior on the market,
leading nobody to use it. Or it could be “invariant under publicity”, holding true
both if traders know it or not.

We are parts of the system we try to describe, therefore every statement we
make is a measurement in some sense. This makes our aim to describe markets even
more difficult.

In the next chapters, we will show models assuming, that prices of assets follow
geometric Brownian motion, which is based on Gaussian distribution. This decrip-
tion leads to analytically solvable solutions and is followed by many textbooks, yet
it hugely underestimates extreme situations. What we will also show is that this
assumption is invalidated by empirical data. N. N. Taleb is one of the main critics of
usage of Gaussian distribution inappropriately, showing how much traders underes-
timate their risks using it [8]. Not only they have unexpected losses during financial
crashes, but also make the whole crisis worse. Therefore, their usage of Gaussian
models further invalidates itself. We can call this amplification of incorrect de-
scription.

This leads us to another question - is it possible to make predictions in financial
markets? This problem was proposed by Lucas in his paper [9], now known as Lucas
critique, in which he dealt with models predicting impact of government regulations
of market. These models have many parameters, which can be found using historical
data. But can we use them to predict future effects of regulations?

Suppose central bank finds a strong anticorrelation between inflation and unem-
ployment in the past. In order to reduce unemployment, the bank imposes measures
to increase inflation. This then leads companies to change their inflation predictions
and therefore change their employment policies, which can lead to opposite effect
than predicted. The model does not take into account, how the behavior of market
participants and the market as whole change due to the regulation proposed, it is
calibrated only to the past data.
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The predictions need not be connected with regulations though. Each time
some prediction change behavior of market, it is vulnerable not to hold. If a re-
spected authority predicts a crisis, it is probable that investors will try to eliminate
risks, therefore change their portfolios and weaken the possible effects. If market
participants figure out the problems, which could cause the crisis, they will try to
eliminate them.

Eventually, due to this effect most of the crises are and will be unpredicted.
On the other hand, most of the positive changes are unpredicted too. Consider
the invention of internet, for example. If anyone could predict it 10 years before it
coming, it would be in place much sooner. The phenomenon of black swans, the
major but unpredicted events, is thoroughly discussed in Talebs work [8].



Chapter 2

Option pricing

In this chapter, we will introduce stochastic modelling of prices as well as stan-
dard option pricing theory. We will also compare theoretical assumptions and results
with empirical evidence and show several shortcomings of these models. In the next
two sections we will follow mainly [10]

2.1 Modelling of prices
First thing we need is a mathematical model of prices. As we have shown earlier,

the prices are influenced by many factors, such as new information coming to the
market or beliefs of the investors. These are hard to predict themselves, moreover
the market mechanisms such as the EMH act against any predictability. On the
other hand, we have shown, that due to interests on bank accounts and inflation,
we can expect a growing trend, an exponential growth on average.

𝑋𝑡 being the price at the time 𝑡, our model of prices can be as follows:

𝑑𝑋𝑡

𝑋𝑡

= 𝜇𝑑𝑡 + “randomness” (2.1)

Why do we compare the increment of the price to its total value? It is because
of the behavior of the market participants. The important quantity for traders is
not the absolute value of a price, but the relative changes. They count the returns
in percentages.

The question arising here is how to choose the randomness part adequately.
The first hypothesis could be, that the randomness should be of the gaussian type,
meaning that the price difference between two times should be a normally distributed
random variable. The rationale behind this is, that if there are many random in-
puts, the average influence should be normally distributed due to the Central limit
theorem (CLT). However, the CLT has some crucial assumptions, which has to be
fulfilled for it to hold. We will discuss these later.

For now, let us build a model based on normal distribution. Related to prices,
it was proposed by Louis Bachelier in 1900, concerning motion of particles it was
elaborated by Albert Einstein in 1905 and the mathematically formalised by Nor-
bert Wiener in 1923. We are talking about Brownian motion, or Wiener process in
mathematical context.

Definition 2.1.1 (Wiener process). Let (Ω, 𝒜,P) be a probabilistic space. A random
process {𝑊𝑡}𝑡≥0 is called Wiener process, if the following properties are satisfied:

11
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• 𝑊0 = 0 a.s.

• It has independent increments, that is ∀𝑡1, 𝑡2, 𝑡3, 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡3, 𝑊𝑡3 − 𝑊𝑡2

and 𝑊𝑡2 − 𝑊𝑡1 are independent random variables

• It has normally distributed increments, ∀𝑠, 𝑡, 0 ≤ 𝑠 ≤ 𝑡, 𝑊𝑡 −𝑊𝑠 ∼ 𝒩 (0, 𝑡−𝑠)

• It has continuous sample paths, that is 𝑊𝑡(𝜔) is continuous ∀𝜔 ∈ Ω as a
function of 𝑡

Although the definition looks appealing, it deserves showing such a process
exists. We refer an interested reader to [11], as this step is not crucial to our topic.

Wiener process has several important properties.

Theorem 2.1.2 (Properties of Wiener process). Let (Ω, 𝒜,P) be a probabilistic
space, {𝑊𝑡}𝑡≥0 a Wiener process. Then {𝑊𝑡}𝑡≥0 has the following properties:

• It is nowhere differentiable

• It is 1/2 self-similar, i.e. (𝑊𝑇 𝑡1 , 𝑊𝑇 𝑡2 , ..., 𝑊𝑇 𝑡𝑛) d= (𝑇 1/2𝑊𝑡1 , 𝑇 1/2𝑊𝑡2 , ..., 𝑇 1/2𝑊𝑡𝑛)
for any 𝑡1, 𝑡2, ...𝑡𝑛 ≥ 0, where d= means equality in distribution.

• It is a Markov process, i.e. 𝑃 [𝑊𝑡 = 𝑗|𝑊𝑡𝑛 = 𝑖𝑛, 𝑊𝑡𝑛−1 = 𝑖𝑛−1, ..., 𝑊𝑡1 = 𝑖1] =
𝑃 [𝑊𝑡 = 𝑗|𝑊𝑡𝑛 = 𝑖𝑛], ∀0 ≤ 𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝑛 ≤ 𝑡.

• It is a martingale, details in appendix

We can find these properties very satisfactory related to finance. The first two
properties say, that we can expect similar behavior on different timescales, something
we see on every price graph. If someone shows us a graph of prices with hidden axes,
we can hardly say if it is an evolution in one day or one year. The second two
properties remind us of the discussion about EMH. We discussed, that the Markov
property may be too strong, however, the model still might be useful.

The Wiener process is the cornerstone of the theory of stochastic differential
equations. Thus, we can write our model of price evolution in the following form:

𝑑𝑋𝑡

𝑋𝑡

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 (2.2)

We interpret this equation in terms of integrals:

𝑋𝑡 − 𝑋0 =
∫︁ 𝑡

0
𝜇𝑋𝑠 𝑑𝑠 +

∫︁ 𝑡

0
𝜎𝑋𝑠 𝑑𝑊𝑠 (2.3)

What remains is to explain the meaning of
∫︀ 𝑡

0 · 𝑑𝑊𝑠. This is the Itô integral.
The construction of Itô integral is well-described in many books, we mention one by
L.C. Evans [11]. What is important for us is the linearity of the Itô integral and the
following rules.

Theorem 2.1.3 (Simple form of the Itô lemma). Let 𝑓 be a twice differentiable
function. Then for 0 ≤ 𝑠 < 𝑡 the following equation holds:

𝑓(𝑊𝑡) − 𝑓(𝑊𝑠) =
∫︁ 𝑡

𝑠
𝑓 ′(𝑊𝑥) 𝑑𝑊𝑥 + 1

2

∫︁ 𝑡

𝑠
𝑓 ′′(𝑊𝑥) 𝑑𝑊𝑥 (2.4)
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In the next theorem, we use the notation 𝑓1, 𝑓2 as the partial derivative of f
with respect to first or second variable respectively.

Theorem 2.1.4 (Extended form of the Itô lemma). Let 𝑓(𝑡, 𝑥) be a function with
continuous second order partial derivatives. Then for 0 ≤ 𝑠 < 𝑡 the following equa-
tion holds:

𝑓(𝑡, 𝑊𝑡) − 𝑓(𝑠, 𝑊𝑠) =
∫︁ 𝑡

𝑠
𝑓1(𝑥, 𝑊𝑥) + 1

2𝑓22(𝑥, 𝑊𝑥) 𝑑𝑥 +
∫︁ 𝑡

𝑠
𝑓2(𝑥, 𝑊𝑥) 𝑑𝑊𝑥 (2.5)

Let us consider a random process in the following form:

𝑋𝑡 = exp
[︂(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑊𝑡

]︂
(2.6)

Intending to use the extended Itô lemma 2.1.4, we find that

𝑓(𝑡, 𝑥) = exp
[︂(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑥

]︂
𝑓1 =

(︂
𝜇 − 1

2𝜎2
)︂

𝑓(𝑡, 𝑥)

𝑓2 = 𝜎𝑓(𝑡, 𝑥) 𝑓22 = 𝜎2𝑓(𝑡, 𝑥)

Substituting into (2.5) and using linearity, we get that 𝑋𝑡 satisfies the equation:

𝑋𝑡 − 𝑋0 = 𝜇
∫︁ 𝑡

0
𝑋𝑠 𝑑𝑠 + 𝜎

∫︁ 𝑡

0
𝑋𝑠 𝑑𝑊𝑠 (2.7)

or equivalently

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 (2.8)

which is exactly the equation for which we want to find a solution. Therefore, the
stochastic process (2.6) is the solution of our stochastic differential equation, and it
is our model of prices. We call processes of this form Geometric Brownian Motion.

To prepare for the next section, we will need even more general version of Itô
lemma.

Definition 2.1.5 (Itô process). A process of the form

𝑋𝑡 = 𝑋0 +
∫︁ 𝑡

0
𝐴(1)

𝑠 𝑑𝑠 +
∫︁ 𝑡

0
𝐴(2)

𝑠 𝑑𝑊𝑠 (2.9)

where 𝐴(1), 𝐴(2) are random processes adapted to Brownian motion (see definition
in appendix), is called Itô process.

Theorem 2.1.6 (Uniqueness of Itô process coefficients). If a stochastic process
{𝑋𝑡}𝑡≥0 has the form (2.9), then the processes 𝐴(1), 𝐴(2) are determined uniquely.

Theorem 2.1.7 (General Itô lemma). Let 𝑋 be an Itô process and 𝑓(𝑡, 𝑥) a function
with continuous second order partial derivatives. Then for 0 ≤ 𝑠 < 𝑡

𝑓(𝑡, 𝑋𝑡) − 𝑓(𝑠, 𝑋𝑠) =
∫︁ 𝑡

𝑠

[︂
𝑓1(𝑦, 𝑋𝑦) + 𝐴(1)

𝑦 𝑓2(𝑦, 𝑋𝑦) + 1
2[𝐴(2)

𝑦 ]2𝑓22(𝑦, 𝑋𝑦)
]︂

𝑑𝑦

+
∫︁ 𝑡

𝑠
𝐴(2)

𝑦 𝑓2(𝑦, 𝑋𝑦) 𝑑𝐵𝑦 (2.10)
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2.2 Black-Scholes option pricing
Now, as we have the apparatus of stochastic calculus at hand, we would like to

make use of it. In 1973, Black, Scholes and Merton derived an equation usable for
option pricing. We will derive it here and then discuss it.

As we stated in the section introducing financial derivatives, an option is a right
to buy (call option) or sell (put option) a stock at a specific time (time of maturity)
for a specific price (strike price). If one can exercise the option only at the time of
maturity, it is called European option. If one can exercise it before or at the time of
maturity, we call the option American.

The important feature of options is that they are just a right, not an obligation.
If it is not profitable for the owner of the option to exercise it, he can let it expire.
As the option is just a right, we expect there will be some price or fee, for which the
issuer would be willing to sell it. Our task is to find a rational price for an option.

At the time of maturity 𝑇 , the purchaser of a European call option can be in
two situations, depending on the price of the underlying stock 𝑆𝑇 and the strike
price 𝐾:

1. 𝑆𝑇 > 𝐾, then he exercises the stock and have a profit of 𝑆𝑡 − 𝐾

2. 𝑆𝑇 ≤ 𝐾, then he lets the option expire, because he can purchase the stock for
a better price than the strike price

This final state can be compactly written as (𝑆𝑇 − 𝐾)+ = max(0, 𝑆𝑇 − 𝐾). To
find a rational price for an option, we will build an associated portfolio.

2.2.1 Self-financing portfolio
To find a rational price for an option, we want to find a strategy for an issuer

to omit risk. It will be as follows:

• Sell the option for price 𝑉0

• Invest 𝑉0 in a portfolio consisting of the underlying stock and an account with
risk-less interest rate, which is self-financing, i.e. which will not need any other
financial investments during time

• Manage the portfolio such a way that its value at time 𝑇 will be (𝑆𝑇 − 𝐾)+,
which means that issuer will not be at a loss.

We suppose that the price of an underlying asset follows our pricing model from
previous chapter, i.e.

𝑆𝑡 = 𝑆0 exp
[︂(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑊𝑡

]︂
(2.11)

Then we suppose there is a non-risky asset available, such as a bank account,
where we suppose continuous interest. This is called bond. The value of our invest-
ment (𝛽0 being initial deposit) is therefore

𝛽𝑡 = 𝛽0𝑒
𝑟𝑡 (2.12)
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We want to build a portfolio, where we will be able to continuously change the
amount invested in the stock and in the bond. Therefore, there will be two processes,
𝑎𝑡 and 𝑏𝑡 denoting the investment in the stock and bond respectively in the time 𝑡.
The value of our portfolio the time t is

𝑉𝑡 = 𝑎𝑡𝑆𝑡 + 𝑏𝑡𝛽𝑡 (2.13)

We allow 𝑎𝑡 and 𝑏𝑡 to be both positive or negative, meaning that the stock or
money is borrowed (both is possible on the market). We will neglect all transaction
costs for simplicity.

Now what does it mean for a portfolio to be self-financing? It means that it gets
along just with the initial investment, the purchase of stock must be balanced by
corresponding reduction of investment in the bond. This also means that the change
of the wealth 𝑉𝑡 can result only from changes of the prices of 𝑆𝑡 and 𝛽𝑡. In terms of
differentials, this translates as

𝑑𝑉𝑡 = 𝑎𝑡𝑑𝑋𝑡 + 𝑏𝑡𝑑𝛽𝑡 (2.14)

which we interpret as
𝑉𝑡 − 𝑉0 =

∫︁ 𝑡

0
𝑎𝑠 𝑑𝑆𝑠 +

∫︁ 𝑡

0
𝑏𝑠 𝑑𝛽𝑠 (2.15)

2.2.2 Black-Scholes equation
Firstly, the issuer sells the option for 𝑉0. Then, he invests to a self-financing

portfolio described above. But how exactly should he manage the portfolio to achieve
the desired value (𝐾 − 𝑆𝑇 )+ at the maturity time 𝑇?

We suppose, that there is a deterministic function 𝑢(𝑡, 𝑥), such that

𝑉𝑡 = 𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝛽𝑡 = 𝑢(𝑇 − 𝑡, 𝑆𝑡), 𝑡 ∈ [0, 𝑇 ] (2.16)

and we impose the terminal condition

𝑉𝑇 = 𝑢(0, 𝑆𝑇 ) = (𝑆𝑇 − 𝐾)+ (2.17)

We know, that the process {𝑆𝑡}𝑡≥0 follows (2.9) with 𝐴
(1)
𝑡 = 𝜇𝑆𝑡, 𝐴

(1)
𝑡 = 𝜎𝑆𝑡

and 𝑉𝑡 = 𝑢(𝑇 − 𝑡, 𝑆𝑡). We intend to use the general Itô lemma 2.1.7, therefore we
write 𝑢(𝑇 − 𝑡, 𝑥) = 𝑓(𝑡, 𝑥), and we see, that

𝑓1(𝑡, 𝑥) = −𝑢1(𝑇 − 𝑡, 𝑥), 𝑓2(𝑡, 𝑥) = 𝑢2(𝑇 − 𝑡, 𝑥), 𝑓22(𝑡, 𝑥) = 𝑢22(𝑇 − 𝑡, 𝑥)

Now, using 2.1.7 we get

𝑉𝑡 − 𝑉0 = 𝑓(𝑡, 𝑆𝑡) − 𝑓(0, 𝑆0) =∫︁ 𝑡

0

[︂
−𝑢1(𝑇 − 𝑠, 𝑆𝑠) + 𝜇𝑆𝑠𝑢2(𝑡 − 𝑠, 𝑆𝑠) + 1

2𝜎2𝑆2
𝑠 𝑢22(𝑇 − 𝑠, 𝑆𝑠)

]︂
𝑑𝑠

+
∫︁ 𝑡

0
𝜎𝑆𝑠𝑢2(𝑇 − 𝑠, 𝑆𝑠) 𝑑𝑊𝑠 (2.18)

Equation (2.15) also holds. We will rewrite it a little

𝑉𝑡 − 𝑉0 =
∫︁ 𝑡

0
𝑎𝑠 𝑑𝑆𝑠 +

∫︁ 𝑡

0

𝑉𝑠 − 𝑎𝑠𝑆𝑠

𝛽𝑠

𝑟𝛽𝑠 𝑑𝑠

=
∫︁ 𝑡

0
[(𝜇 − 𝑟)𝑎𝑠𝑆𝑠 + 𝑟𝑉𝑠] 𝑑𝑠 +

∫︁ 𝑡

0
𝜎𝑎𝑠𝑆𝑠𝑑𝑊𝑠 (2.19)
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where firstly we used the equation 𝑉𝑡 = 𝑎𝑡𝑆𝑡+𝑏𝑡𝛽𝑡 to obtain 𝛽𝑡 = 𝑉𝑡−𝑎𝑡𝑆𝑡

𝛽𝑡
, and we also

substituted 𝑑𝛽𝑡 = 𝑟𝛽𝑡𝑑𝑡. Then we used the relation (2.8) for 𝑑𝑆𝑡 and the linearity of
Itô integral.

We know, that coefficients of an Itô process are determined uniquely 2.1.6,
therefore the following equations hold:

𝑎𝑡
!= 𝑢2(𝑇 − 𝑡, 𝑋𝑡) (2.20)

(𝜇 − 𝑟)𝑎𝑡𝑆𝑡 + 𝑟𝑉𝑡 = (𝜇 − 𝑟)𝑋𝑡𝑢2(𝑇 − 𝑡, 𝑆𝑡) + 𝑟𝑢(𝑇 − 𝑡, 𝑆𝑡)
!= −𝑢1(𝑇 − 𝑡, 𝑆𝑡) + 𝜇𝑋𝑡𝑢2(𝑇 − 𝑡, 𝑆𝑡)

+ 1
2𝜎2𝑋2

𝑠 𝑢22(𝑇 − 𝑡, 𝑆𝑡)
(2.21)

𝑆𝑠 may assume any positive value, therefore we can write

−𝑢1(𝑡, 𝑥) = 1
2𝜎2𝑥2𝑢22(𝑡, 𝑥) + 𝑟𝑥𝑢2(𝑡, 𝑥) − 𝑟𝑢(𝑡, 𝑥) (2.22)

We rewrite the equation in a more common way

𝜕𝑉

𝜕𝑡
+ 1

2𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 (2.23)

where 𝑉 denotes the value of the portfolio and S the price of the stock. This is the
celebrated Black-Scholes equation

2.2.3 Solution of the Black-Scholes equation
We will show in short, how to find a solution to the Black-Scholes equation.

Firstly, we will remind us of the boundary conditions:

• 𝑡 = 𝑇 : 𝑉 (𝑇, 𝑆) = (𝑆𝑇 − 𝐾)+

• 𝑆 = 0 : 𝑉 (𝑡, 0) = 0

• 𝑆 → ∞ : 𝑉 (𝑡, 𝑆) ∼ 𝑆

The first condition was discussed earlier. The second basically says that when-
ever price S reaches zero, then due to (2.8) the price will remain zero and the call
option is worthless. The third condition says, that for sufficiently high price 𝑆, it is
definitely bigger than the strike price 𝐾, which is getting negligible for 𝑆 ≫ 𝐾. The
value of the option therefore approaches the price 𝑆.

We make two substitutions and ansatz:

𝑉 = 𝐾𝑓(𝑥, 𝜏), 𝑆 = 𝐾𝑒𝑥, 𝑡 = 𝑇 − 𝜏

(𝜎2/2) (2.24)

which transform our equation and boundary condition to

𝜕𝑓

𝜕𝜏
= 𝜕2𝑓

𝜕𝑥2 + (𝜅 − 1)𝜕𝑓

𝜕𝑥
− 𝜅𝑓 (2.25)

𝜏 = 0 : 𝑓(𝑥, 0) = max(𝑒𝑥 − 1) (2.26)
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where 𝜅 = 2𝑟
𝜎2 . Then we make another ansatz:

𝑓(𝑥, 𝜏) = 𝑒𝑎𝑥+𝑏𝜏 𝑔(𝑥, 𝜏) (2.27)

for 𝑎, 𝑏 real but undetermined. This leaves us with
𝜕𝑔

𝜕𝜏
= 𝜕2𝑔

𝜕𝑥2 + (2𝑎 + 𝜅 − 1)𝜕𝑔

𝜕𝑥
+ [𝑎2 − 𝑏 + (𝜅 − 1)𝑎 − 𝜅]𝑓 (2.28)

Here, 𝑎 and 𝑏 can be chosen to make the expressions in brackets zero, which
gives the heat equation

𝜕𝑔

𝜕𝜏
= 𝜕2𝑔

𝜕𝑥2 (2.29)

with the boundary condition

𝑔(𝑥, 0) = (𝑒(𝜅+1)𝑥/2 − 𝑒(𝜅−1)𝑥/2)+ (2.30)

The equation has a standard solution in the form

1√
4𝜋𝜏

∫︁ +∞

−∞
𝑔(𝑦, 0) exp

(︃
−(𝑥 − 𝑦)2

4𝜏

)︃
𝑑𝑦 (2.31)

which after integration and restoration of the original variables leads to the
solution

𝑉 (𝑆, 𝑡) = 𝑆Φ(𝑑1(𝑆, 𝑡)) − 𝐾𝑒−𝑟(𝑇 −𝑡)Φ(𝑑2(𝑆, 𝑡)) (2.32)

𝑑1(𝑆, 𝑡) = 𝑙𝑛(𝑆/𝐾) + (𝑟 + 𝜎2/2)(𝑇 − 𝑡)
𝜎

√
𝑇 − 𝑡

(2.33)

𝑑2(𝑆, 𝑡) = 𝑑1(𝑆, 𝑡) − 𝜎
√

𝑇 − 𝑡 (2.34)

where Φ(𝑥) is the value of the normal cumulative distribution function at 𝑥.
What is remarkable about this solution? We shall remind that we started with a

random process, and we ended with a deterministic solution. What does this solution
tell us? We can derive a rational price for an option, and also we got a way to manage
the accompanying self-financing portfolio.

The rational price for an option, given the price 𝑆0 at the time 𝑡 = 0 is given
by

𝑉 (𝑆0, 0) = 𝑆0Φ(𝑑1(𝑆0, 0)) − 𝐾𝑒−𝑟𝑇 Φ(𝑑2(𝑆0, 0)) (2.35)
The strategy to maintain risk-less portfolio is then given by the obtained solu-

tion (2.32), (2.13) and (2.20):

𝑎𝑡 = 𝜕𝑉

𝜕𝑆
(𝑆, 𝑡) 𝑏𝑡 = 𝑉 (𝑆, 𝑡) − 𝑎𝑡𝑆

𝛽𝑡

(2.36)

The strategy is risk-less in the sense that if we sell a call option for a price given
by (2.35), use the money to establish a portfolio and then manage the portfolio using
(2.36), we are guaranteed to end with a portfolio value of (𝑆𝑇 = 𝐾)+, which exactly
compensates the loss made by the execution of the option at the maturity time. On
the other hand, if we manage to sell the option for a higher price than the rational
one, we make a risk-less profit which is an arbitrage. Therefore, the option prices
should tend to be the rational ones.

In finance, there is a slightly different notation. The value 𝑎𝑡 is usually denoted
as Δ and the strategy Δ = 𝜕𝑉

𝜕𝑆
is named delta-hedging.
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2.3 Assumptions of the Black-Scholes model
The derivation of Black-Scholes formula is so appealing, that the assumptions

are often forgotten. However, they are crucial and even worse, they mostly do not
correspond to the empirical evidence.

1. There is no credit risk: This means that there is no risk connected with
the issuer of the option or the buyer, for example that the issuer will not be
able to fulfill his obligation to sell, when a call option is exercised. If we had
to include this type of risk, the value of the option would be different. This
assumption is fragile during crises (such as one in 2008).

2. The market is perfectly liquid: There are no transaction costs, there are
no barriers to buying or selling a stock or to deposit money in bank. This
depends on the chosen market.

3. Continuous trading and divisible underlying: It is possible to trade con-
tinuously and the amount of stocks in portfolio need not be an integer. The
continuous trading is more problematic because of transaction costs.

4. The time evolution of the asset prices follow a geometric Brownian
motion: Therefore this model of prices does not violate the EMH. On the other
hand, we will show that this assumption does not correspond to empirical data.
The extremes just happen too often. This can lead to a huge underestimation
of risks.

5. The risk-free rate 𝑟 and the volatility 𝜎 are constant: This can be
relaxed to an assumption, that 𝑟 and 𝜎 are known functions of time. However,
interest-rate is not known in advance and the volatility is hard to estimate.

6. The underlying pays no dividends: However, the Black-Scholes equation
can be modified to allow for dividends.

7. There are no arbitrage opportunities: This assumption is manifested by
the usage of bank account interest rate 𝑟 as the best risk-less rate one could
get. No arbitrage principle says that there could not be a better way to invest
in a risk-less manner.

In the next sections, we will shortly comment the assumption of constant volatil-
ity, then we will elaborate the assumption of geometric Brownian motion.

2.3.1 Volatility smile
As we mentioned, the assumption of constant volatility and interest rate can

be weakened. It can be shown, that if we replace 𝑟 and 𝜎 with their time averages
1

𝑇 −𝑡

∫︀ 𝑇
𝑡 𝑟(𝑠) 𝑑𝑠, 1

𝑇 −𝑡

∫︀ 𝑇
𝑡 𝜎(𝑠) 𝑑𝑠, the Black-Scholes formula remains valid. There are

also generalized models, which assume interest rate and volatility to be stochastic
processes. [12]

However, we can also invert the Black-Scholes formula to derive volatility. Let us
assume that market finds correct price for a European call option, denoted by 𝑉 (𝑚).
The Black-Scholes value of an option depends on the volatility of the underlying,
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𝑉 (𝐵−𝑆) = 𝑉 (𝐵−𝑆)(𝑆𝑡, 𝑇 − 𝑡; 𝐾, 𝑟, 𝜎). Therefore, knowing the interest rate 𝑟, the price
of the underlying 𝑆𝑡, the strike price 𝐾 and the time to maturity 𝑇 −𝑡, we can obtain
the so-called implied volatility from the relation 𝑉 (𝑚) != 𝑉 (𝐵−𝑆)(𝑆𝑡, 𝑇 −𝑡; 𝐾, 𝑟, 𝜎𝑖𝑚𝑝).

We argued that if the Black-Scholes model assumptions were correct, then it
provides rational prices for options. Now we assume that the market also finds
rational prices. Therefore, the implied volatility for one chosen option should be
independent on its strike price 𝐾. However, empirical data show the dependence. In
the following figure, we show the dependence of implied volatility on strike price for
S&P 500 options.

Figure 2.1: Volatility smile for S&P 500 options

This specific shape is called volatility smile in financial literature. Interesting
fact to point out is, that before the market crash in 1987, there was no volatility
smile observed for stock options [12]. The reason for the smile to appear since may
be the so-called “crashophobia”, the fear of traders that the crash similar to 1987
may happen again. The geometric Brownian motion used in the Black-Scholes model
underestimates these extreme events, which leads traders to use higher volatility for
extreme strike prices.

Whatever the reason may be, the volatility smile shows that the Black-Scholes
model is not used by the market as is. That means that the model can not recognize
the best prices, because if it could and the market did not use it, there would be
arbitrage opportunities.

2.3.2 Beyond the geometric Brownian motion
The model of prices used in the Black-Scholes model is the geometric Brownian

motion, the price evolution is thus of the form:

𝑆𝑡 = exp
[︂(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑊𝑡

]︂
(2.37)
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The important quantity in finance is the logarithm of price. We will elaborate
the differences between price logarithms in two different times:

ln 𝑆𝑡 =
(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑊𝑡 (2.38)

Δ ln 𝑆𝑡 = ln 𝑆𝑡+Δ𝑡 − ln 𝑆𝑡 =
(︂

𝜇 − 1
2𝜎2

)︂
Δ𝑡 + 𝜎(𝑊𝑡+Δ𝑡 − 𝑊𝑡) (2.39)

We know that (𝑊𝑡+Δ𝑡 − 𝑊𝑡) ∼ 𝒩 (0, Δ𝑡) and also that the increments of the
Wiener process in non-overlaping times are independent. Therefore,
Δ ln 𝑆𝑡 ∼ 𝒩

(︁(︁
𝜇 − 1

2𝜎2
)︁

Δ𝑡, 𝜎Δ𝑡
)︁

and if we choose a constant time step, these dif-
ferences will be i.i.d. If we make a histogram of these differences, we should observe
a normal distribution, independently on the time difference (scale) we choose. This
is an empirically verifiable statement.

To verify this, we use prices of 504 stocks issued by 500 companies included in
the S&P 500 index. We count the logarithm of prices and then the differences using
a constant interval. The intervals used are 1 minute during the period of 7 days
(631 162 data points in total), then 1 hour during 730 days (2 128 683 data points)
and finally 1 day during 20 years (1 795 472 data points). We must take in account
that the trading stops during nights, weekends etc., therefore we must carefully filter
the data so that only the appropriate differences will be used.

The resulting histograms (in blue) are shown on the three following pictures.
We use the logarithmic scale on the 𝑦 axis to make the difference between normal
distribution and heavy-tails more visible. We count the sample standard deviation,
scale the 𝑥 axis according to it and then compare the data to the normal distribution
with the sample mean and sample standard deviation as parameters (in red).

Figure 2.2: 7 days, 1 minute interval
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Figure 2.3: 730 days, 1 hour interval

Figure 2.4: 20 years, 1 day interval

These histograms are similar to those obtained by Mantegna and Stanley [4].
We can clearly see that the normal distribution does not fit the data on any of the
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chosen timescales. The histograms show much heavier tails than normal distribution
of any parameters can provide. This means that the normal distribution significantly
underestimates extreme events.

What was the rationale behind the usage of geometric Brownian motion? Cer-
tainly the Central limit theorem (CLT). The price is determined by many random
factors, which in sum should form a normal distribution. Let us see the CLT with
all its assumptions.

Theorem 2.3.1 (Central Limit Theorem). Let (𝑋𝑖)∞
𝑛=1 be a sequence of indepen-

dent, identically distributed random variables with finite mean E𝑋𝑖 = 𝜇 and finite
variance 𝑉 𝑎𝑟𝑋𝑖 = 𝜎2. Then∑︀𝑛

𝑖=1 𝑋𝑖 − 𝑛𝜇√
𝑛𝜎

𝒟−→ 𝑋 ∼ 𝒩 (0, 1) (2.40)

where 𝒟−→ denotes convergence in the distribution (see appendix for definition).

The central limit theorem appears in many situations, in finance however, we
do not observe normal distributions often. Some of the assumptions is therefore
violated. Firstly, we will discuss the assumption of finite variance. Then, we will
take a closer look on the independence of random inputs.

Stable distributions and generalized central limit theorem

We would like to find a generalization of the central limit theorem for random
variables with infinite first or second moment. Having (𝑋𝑖)∞

𝑛=1 sequence of indepen-
dent, identically distributed random variables, the question is, if it is possible to find
constants 𝑎𝑛, 𝑏𝑛 and some limiting distribution 𝐿 so that the distribution of the sum

𝑆𝑛 =
∑︀𝑛

𝑖=1 𝑋𝑖 − 𝑎𝑛

𝑏𝑛

converges to the limiting distribution 𝐿. Then we would say that the ditribution of
𝑋𝑖 is in the domain of attraction of the distribution 𝐿. Lévy and Khintchine showed
that any limiting distribution must be stable.

Definition 2.3.2 (Stable random variable). A random variable 𝑋 is called stable,
if for every sequence 𝑋1, . . . , 𝑋𝑛 of independent copies of the random variable 𝑋,
there exist real-valued 𝑐𝑛, 𝑑𝑛 such that

𝑋1 + 𝑋2 + · · · + 𝑋𝑛
𝑑= 𝑐𝑛𝑋 + 𝑑𝑛 (2.41)

Alternatively, we may define stability in terms of the probability density func-
tion.

Definition 2.3.3 (Stable probability density). A probability density 𝑝 is called
stable, if it is invariant under convolution, i.e. for all 𝑎1, 𝑎2 > 0, 𝑏1, 𝑏2 ∈ R, there
exist 𝑎 > 0, 𝑏 ∈ R such that

𝑝(𝑎1𝑥 + 𝑏1) * 𝑝(𝑎2𝑥 + 𝑏2) =
∫︁ ∞

−∞
𝑝(𝑎1(𝑥 − 𝑦) + 𝑏1)𝑝(𝑎2𝑦 + 𝑏2) 𝑑𝑦 = 𝑝(𝑎𝑥 + 𝑏) (2.42)

It is a well known fact, that normal distribution satisfies this relation. Are there
any other stable distributions? This was answered by Lévy and Khintchine in terms
of the characteristic function.
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Definition 2.3.4 (Characteristic function). Let 𝑋 be a random variable with a
probability density 𝑝. Then the characteristic function 𝜙 of this random variable is
defined as a Fourier transform of its probability density, i.e.

𝜙(𝑘) =
∫︁ ∞

−∞
𝑒𝑖𝑘𝑥𝑝(𝑥) 𝑑𝑥 (2.43)

Theorem 2.3.5 (Complete characterisation of stable densities). A probability den-
sity 𝑝𝛼,𝛽 is stable ⇔ its characteristic function satisfies

ln 𝜙(𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖𝜇𝑘 − 𝜎𝛼|𝑘|𝛼

[︁
1 − 𝑖𝛽 𝑘

|𝑘| tan(𝜋
2 𝛼)

]︁
, if 𝛼 ̸= 1, 2

𝑖𝜇𝑘 − 𝜎|𝑘|
[︁
1 + 𝑖𝛽 𝑘

|𝑘|
2
𝜋

ln |𝑘|
]︁

, if 𝛼 = 1
𝑖𝜇𝑘 − 1

2𝜎2𝑘2, if 𝛼 = 2
(2.44)

for some 𝜇 ∈ R, 𝜎 > 0, 0 < 𝛼 ≤ 2, −1 ≤ 𝛽 ≤ 1

The constants 𝜇, 𝛾 are scale factors, on the other hand, 𝛼 and 𝛽 determine
the shape and properties of the probability density. The parameter 𝛼 is of great
importance, because it determines the asymptotic behavior of the probability density
in the case of 0 < 𝛼 < 2:

𝑝𝛼,𝛽(𝑥) ∼ 1
|𝑥|1+𝛼

for |𝑥| → +∞ (2.45)

From this behavior, it is clear that there are finite moments E(|𝑋|𝛿) of such
distribution just for 𝛿 < 𝛼. For example, if 𝛼 ≤ 1, both mean value and variance do
not exist, for 1 < 𝛼 ≤ 2 the variance does not exist.

The parameter 𝛽 determines the asymmetry of 𝑝𝛼,𝛽(𝑥), for example, for 𝛽 = 0,
the 𝑝𝛼,𝛽(𝑥) is an even function of 𝑥.

There are only three cases, in which we can find the probability density in a
closed form:

• 𝛼 = 2: the normal distribution 𝒩 (𝜇, 𝜎2)

• 𝛼 = 1, 𝛽 = 0: the Cauchy distribution, 𝑝1,0(𝑥) = 𝜎
𝜋[(𝑥−𝜇)2+𝜎2]

• 𝛼 = 1
2 , 𝛽 = 1: the Lévy distribution,

𝑝1/2,1(𝑥) =
(︂

𝜎

2𝜋

)︂1/2 1
(𝑥 − 𝜇)3/2 exp

[︃
− 𝜎

2(𝑥 − 𝜇)

]︃
for 𝑥 > 𝜇

Now we are ready to formulate the generalized CLT. We denote 𝐿𝛼,𝛽 as the
cumulative distribution function for the stable density 𝑝𝛼,𝛽.

Theorem 2.3.6 (Generalized central limit theorem). Let (𝑋𝑖)∞
𝑛=1 be a sequence

of independent, identically distributed random variables, whose probability density
has an asymptotic behavior

𝑝𝛼,𝛽(𝑥) ∼ 𝛼𝑎𝛼𝐶±

|𝑥|1+𝛼
for 𝑥 → + ± ∞, 0 < 𝛼 < 2

for some constants 𝐶+, 𝐶− ≥ 0 and 𝑎 > 0. Then∑︀𝑛
𝑖=1 𝑋𝑖 − 𝑎𝑛

𝑎𝑛1/𝛼

𝒟−→ 𝑋 ∼ 𝐿𝛼,𝛽
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where

𝑎𝑛 =

⎧⎨⎩0 if 0 < 𝛼 < 1
𝑛𝐸(𝑋1) if 1 < 𝛼 < 2

𝛽 =

⎧⎨⎩
𝐶−−𝐶+
𝐶++𝐶−

if 𝛼 ̸= 1
𝐶+−𝐶−
𝐶++𝐶−

if 𝛼 = 1

Now we know how the sums of i.i.d. variables with infinite variance or mean
behave. They converge to some stable distribution. The stable distributions, except
for normal distribution, are asymptotic power laws. This may be the reason why we
see heavy tails in the empirical financial data. There is a discussion among scientists,
if the prices can be modelled using stable laws. Akgiray and Booth [13], for example,
argue that the empirical tail shapes differ from those of stable distributions and that
the estimates of parameters may not be robust to these differences. Therefore, they
suggest to use heavy-tailed distributions, which are in the domain of attraction of
the normal distribution.

We have seen on the figures, that the heavy tails appear for 1 minute interval
as well as for 1 day. This may signify that the underlying distribution is stable,
however, it can also be just a very slow convergence to the normal distribution.

We may show a model with such a property, which was proposed by Mantegna
and Stanley [4]. They suggest a random variable could behave as a stable distribu-
tion, but just within some allowed range.

𝑝(𝑥) =

⎧⎨⎩𝑁𝑝𝛼,0(𝑥) for − 𝑥cut ≤ 𝑥 ≤ 𝑥cut

0 otherwise
(2.46)

where 𝑁 is a normalization constant and 𝑥𝑐𝑢𝑡 is the cutoff parameter. By trun-
cating the tails, the variance is made finite, therefore such a variable is in the domain
of attraction of the normal distribution. However, for large values of 𝑥𝑐𝑢𝑡, the con-
vergence is very slow.

We can also truncate the tails smoothly by the exponential function [2].

𝑝(𝑥) ∼

⎧⎨⎩𝑐−𝑒−𝜆|𝑥||𝑥|−(1+𝛼) for 𝑥 ≪ 0
𝑐+𝑒−𝜆𝑥𝑥−(1+𝛼) for 𝑥 ≫ 0

(2.47)

For 𝜆 small, the Lévy character is pronounced and the convergence to normal
distribution is small.

Independence of variables

The second crucial assumption for CLT to hold is the independence of the
random variables. There are many generalizations of the CLT, which relax this
condition, however, all of them rely on at least low correlations between the variables.
There is no limit theorem which would cover strong correlations. On the other hand,
in the times of financial crashes, the correlations between market participants are
very frequent, mass behavior takes place. The same happens in physical systems in
the vicinity of critical points. Therefore, the next chapter is dedicated to critical
phenomena in physics and their analogies in financial systems.



Chapter 3

Critical phenomena, crashes and
crises

In this chapter, we will introduce critical phenomena in physics, their connec-
tions to financial markets, and then we will show some models of critical behavior in
markets. For the critical phenomena in physics, our main sources are [14] and [15].

3.1 Critical phenomena in physics
Critical phenomena are those which happen near critical points. What a critical

point is? For example, water has its critical point at 𝑇𝑐 = 647K and 𝑝𝑐 = 22.064MPa.
Under 𝑇𝑐, there is a sharp difference between the liquid and gas phases, in terms
of different densities (there is nonzero difference between liquid density 𝜌𝐿 and gas
density 𝜌𝐺). At the critical temperature, the difference vanishes and no phase tran-
sition happens. And for even higher temperatures, 𝑇 ≫ 𝑇𝑐, the behavior gets closer
and closer to the ideal gas.

The second typical example of a critical phenomenon is observed in ferromag-
nets. Ferromagnet is a material with macroscopic magnetization. It is caused by
the presence of magnetic domains, within which the spins are aligned to the same
direction. However, by rising the temperature, the magnetization 𝑀 gets lower and
at the critical temperature 𝑇𝑐, it vanishes completely. In fact, 𝑀 approaches zero
with an infinite slope.

What is so interesting about critical points? There are certain quantities, which
diverge at the critical point. For the fluid systems, it is the isothermal compress-
ibility 𝐾𝑇 = 𝜌−1(𝜕𝜌/𝜕𝑃 )𝑇 and the specific heat at constant volume 𝑉 , 𝐶𝑉 =
−𝑇 (𝜕2𝐹/𝜕𝑇 2)𝑉 , where 𝐹 is the Helmholtz free energy, analogously for a magnetic
system it is the isothermal susceptibility 𝜒𝑇 = (𝜕𝑀/𝜕𝐻)𝑇 and the specific heat
at constant magnetic field 𝐶𝐻 = −𝑇 (𝜕2𝐺/𝜕𝑇 2)𝐻 , where 𝐺 is the Gibbs free en-
ergy. These divergences are not precisely predicted by standard models such as the
mean-field model.

Not only that these quantities diverge in the limit 𝑇 → 𝑇𝑐, they diverge as
a power law of the form (−𝜀)−𝜉, where 𝜉 is the characteristic exponent and 𝜀 =
(𝑇 − 𝑇𝑐)/𝑇𝑐 is the reduced temperature. Definition of some of these critical-point
exponents can be found in Table 3.1.

The interesting thing here is that different systems can behave very similarly
near the critical point, having critical exponents the same. Such an example is a

25
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Type 𝛼′ 𝛽 𝛾′

Fluid 𝐶𝑉 =𝑉𝐶
∼ (−𝜀)−𝛼′

𝜌𝐿 − 𝜌𝐺 ∼ (−𝜀)𝛽 𝐾𝑇 ∼ (−𝜀)−𝛾′

Magnet 𝐶𝐻=0 ∼ (−𝜀)−𝛼′
𝑀𝐻=0 ∼ (−𝜀)𝛽 𝜒𝑇 ∼ (−𝜀)−𝛾′

Table 3.1: Table of critical exponents.

single-axis ferromagnet and a simple fluid. We can then find so-called “universality
classes”, in which the systems have the same behavior near critical points.

3.1.1 Scaling
We define the reduced temperature as

𝜀 ≡ 𝑇 − 𝑇𝐶

𝑇𝐶

(3.1)

We then examine the behavior of a function 𝑓(𝜀) when 𝜀 reaches 0. Supposing that
𝑓(𝜀) is continuous in the neighborhood of 𝜀 = 0, we define the critical-point exponent
as

𝜆 ≡ lim
𝜀→0

ln 𝑓(𝜀)
ln 𝜀

(3.2)

Then we use a notation 𝑓(𝜀) ∼ 𝜀𝜆. The function 𝑓 can be written using correc-
tion terms:

𝑓(𝜀) = 𝐴𝜀𝜆(1 + 𝐵𝜀𝑦 + . . . ), 𝑦 > 0 (3.3)
The focus on the critical-point exponent is rationalized by the experimental fact,
that near the critical point, the leading term dominates. On the log-log plot of
experimental data, we should see a straight line signifying power-law behavior, from
which we can determine the critical-point exponent. Determining the whole function
might not be possible.

There are some relations between the critical-point exponents. We will introduce
the Rushbrooke’s inequality concerning 𝛼′, 𝛽, 𝛾′ and then we will show that under
additional assumptions, we can deduce equality.

Rushbrooke inequality

The only relations between the critical-point exponents we can find rigorously
are inequalities. Here, we will examine the magnetic system for intensity 𝐻 = 0 and
𝑇 → 𝑇 −

𝐶

Firstly, we define

𝐶𝑀 ≡ 𝑇

(︃
𝜕𝑆

𝜕𝑇

)︃
𝑀

= −𝑇

(︃
𝜕2𝐹

𝜕𝑇 2

)︃
𝑀

, 𝐶𝐻 ≡ 𝑇

(︃
𝜕𝑆

𝜕𝑇

)︃
𝐻

= −𝑇

(︃
𝜕2𝐺

𝜕𝑇 2

)︃
𝐻

(3.4)

where we used Maxwell relations. We use a thermodynamic relation shown in [14]

𝜒𝑇 (𝐶𝐻 − 𝐶𝑀) = 𝑇

(︃
𝜕𝑀

𝜕𝑇

)︃2

𝐻

(3.5)

It can be shown that for stable systems, the capacity 𝐶𝑀 must be positive. Therefore

𝐶𝐻 ≥ 1
𝜒𝑇

𝑇

(︃
𝜕𝑀

𝜕𝑇

)︃2

𝐻

(3.6)
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Using the definition of exponents in table Table 3.1

𝐶𝐻 ∼ (−𝜀)−𝛼′
, 𝜒𝑇 ∼ (−𝜀)−𝛾′

, (𝜕𝑀/𝜕𝑇 )𝐻 ∼ (−𝜀)𝛽−1

we see can write
(−𝜀)−𝛼′ ≥ const · (−𝜀)−𝛾′(−𝜀)2(𝛽−1) (3.7)

from which we get the Rushbrooke’s inequality

𝛼′ + 2𝛽 + 𝛾′ ≥ 2 (3.8)

For some materials, the experimental values of critical-point exponents fail to add
up to two unless errors are taken into account. Therefore, it can be suggested that
the exponents should satisfy an equality, which is a prediction of the scaling law
hypothesis

Scaling law hypothesis

The scaling law hypothesis is based on the assumption, that the Gibbs potential
𝐺(𝜀, 𝐻) is a generalized homogenous function.

Definition 3.1.1 (Generalized homogenous function). A function 𝑓(𝑥, 𝑦) is gener-
alized homogenous function (GMF), if there exist some constants 𝑎, 𝑏 such that

𝑓(𝜆𝑎𝑥, 𝜆𝑏𝑦) = 𝜆𝑓(𝑥, 𝑦), ∀𝜆 > 0 (3.9)

No rigorous justification for this hypothesis has been found yet, however, it
gives interesting predictions. Let us suppose, that Gibbs potential is GMF, meaning

𝐺(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻) = 𝜆𝐺(𝜀, 𝐻) (3.10)

We may count derivatives of this equation:

𝜆𝑎𝐻

(︃
𝜕𝐺

𝜕𝐻

)︃
𝑇

(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻) = 𝜆

(︃
𝜕𝐺

𝜕𝐻

)︃
𝑇

(𝜀, 𝐻)

𝜆2𝑎𝐻

(︃
𝜕2𝐺

𝜕𝐻2

)︃
𝑇

(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻) = 𝜆

(︃
𝜕2𝐺

𝜕𝐻2

)︃
𝑇

(𝜀, 𝐻)

𝜆2𝑎𝜀
1
𝑇𝑐

(︃
𝜕2𝐺

𝜕𝑇 2

)︃
𝑇

(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻) = 𝜆
1
𝑇𝑐

(︃
𝜕2𝐺

𝜕𝑇 2

)︃
𝑇

(𝜀, 𝐻)

Using definitions and Maxwell relations

𝑀 = −
(︃

𝜕𝐺

𝜕𝐻

)︃
𝑇

, 𝜒𝑇 = −
(︃

𝜕2𝐺

𝜕𝐻2

)︃
𝑇

, 𝐶𝐻 = −𝑇

(︃
𝜕2𝐺

𝜕𝑇 2

)︃
𝑇

we obtain

𝑀(𝜀, 𝐻) = 𝜆𝑎𝐻−1𝑀(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻)
𝜒𝑇 (𝜀, 𝐻) = 𝜆2𝑎𝐻−1𝜒𝑇 (𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻)
𝐶𝐻(𝜀, 𝐻) = 𝜆2𝑎𝜀−1𝐶𝐻(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻)
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Letting 𝐻 = 0 and setting 𝜆 = (−𝜀)−1/𝑎𝜀 in all three equations, we obtain

𝑀(𝜀, 0) = (−𝜀)(1−𝑎𝐻)/𝑎𝜀𝑀(−1, 0) (3.11)
𝜒𝑇 (𝜀, 0) = (−𝜀)−(2𝑎𝐻−1)/𝑎𝜀𝜒𝑇 (−1, 0) (3.12)
𝐶𝐻(𝜀, 0) = (−𝜀)−(2𝑎𝜀−1)/𝑎𝜀𝐶𝐻(−1, 0) (3.13)

Then by letting 𝜀 → 0− and by the definition of the critical-point exponents, we
obtain

𝛽 = 1 − 𝑎𝐻

𝑎𝜀

(3.14)

𝛾′ = 2𝑎𝐻 − 1
𝑎𝜀

(3.15)

𝛼′ = 2𝑎𝜀 − 1
𝑎𝜀

(3.16)

which leads by elimination of 𝑎𝐻 and 𝑎𝜀 to the final equality

𝛼′ + 2𝛽 + 𝛾′ = 2 (3.17)

There are also other critical-point exponents, which one could define, for exam-
ple 𝛿 defined for 𝜀 = 0 as 𝐻 ∼ |𝑀 |𝛿𝑠𝑔𝑛(𝑀). But now we see that we can obtain
them using only 𝑎𝜀 and 𝑎𝐻 . Therefore, we can also obtain other equalities, such as
Widom equality or Griffiths equality.

The second important consequence of the scaling hypothesis is that we can find
some restrictions for the equation of state, as the quantities in it are derived from
termodynamic potentials. We can take the equation

𝑀(𝜆𝑎𝜀𝜀, 𝜆𝑎𝐻 𝐻) = 𝜆1−𝑎𝐻 𝑀(𝜀, 𝐻) (3.18)
Now we can choose 𝜆 = 𝐻−1/𝑎𝐻 , which leads to

𝑀(1, 𝐻−𝑎𝜀/𝑎𝐻 𝜀) = 𝐻−(1−𝑎𝐻)/𝑎𝐻 𝑀(𝐻, 𝜀) (3.19)

Defining the scaled magnetization 𝑀𝐻 ≡ 𝑀
𝐻(1−𝑎𝐻 )/𝑎𝐻

and scaled temperature
𝜀𝐻 = 𝜀

𝐻𝑎𝜀/𝑎𝐻
, we get

𝑀𝐻 = 𝑀(1, 𝜀𝐻) = 𝐹 (𝜀𝐻) (3.20)
Therefore, we get a function of one variable, 𝐹 (𝑋) = 𝑀(1, 𝑥), which we can

compare for different materials. As shown in [15], there are several materials, such
as CrBr3, EuO, Ni or Pd3Fe, whose scaled magnetization against the scaled tem-
perature collapse on the same curve, which is predicted by the Heisenberg model
mentioned below.

3.1.2 Universality
“Empirically, one finds that all systems in nature belong to one of a compar-

atively small number of universality classes.” [15]. It seems that there are just two
Hamiltonians, which can describe these classes.

The first is the 𝑄-state Potts model, which assumes 𝑄 discrete spin orientations
𝜁𝑖 ∈ 1, ...𝑄 and has a Hamiltonian

ℋ1(𝑑, 𝑄) = −𝐽
∑︁
⟨𝑖,𝑗⟩

𝛿(𝜁𝑖, 𝜁𝑗) (3.21)
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Summation is made over neighboring spins, if they have the same orientation, they
contribute −𝐽 to the overall energy, otherwise they contribute nothing.

The second model, so-called n-vector model, allows for continuum of states,
using spin vectors. The Hamiltonian is

ℋ2(𝑑, 𝑛) = −𝐽
∑︁
⟨𝑖,𝑗⟩

𝑆𝑖 · 𝑆𝑗 (3.22)

where 𝑆𝑖 = (𝑆𝑖1, 𝑆𝑖2, ..., 𝑆𝑖𝑛) is an 𝑛-dimensional unit vector and 𝑑 is the dimension-
ality of the system.

Both models are generalizations of the Ising model, which corresponds to 2-state
Potts model ℋ1(𝑑, 2) or to the 1-vector model ℋ2(𝑑, 1). The Ising model is important
for interpreting the liquid-gas critical point or uniaxial ferromagnets. The ℋ2(𝑑, 2) is
useful when interpreting 𝜆-transition in 4He , the ℋ2(𝑑, 3) is the standard Heisenberg
model, which is used to interpret isotropic magnetic materials near critical points.

These models can encompass huge amount of different systems. However, finding
exact solutions in closed form may not be possible. The Ising model has been solved
in dimensions 1, 2. The solution in two dimensions was given by Lars Onsager
in 1944 and it was the first exactly solved model exhibiting a phase transition.
However, it has been shown that finding a partition function for the Ising model in
higher dimensions is an NP-complete problem [16]. On the other hand, numerical
simulations are possible.

3.1.3 Renormalization
Renormalization is a method, which, unlike scaling arguments leading only to

relations between critical-point exponents, can make it possible to find exact values
of the exponents. It is beyond the scope of this work to introduce the whole theory of
renormalization and renormalization group, therefore, we will just show some basics
on the percolation problem following [15].

The percolation problem assumes a 𝑑-dimensional lattice with each site having
probability 𝑝 of being occupied. With 𝑝 small, the occupied sites will be surrounded
by many empty sites, however with 𝑝 increasing, clusters of occupied sites will show
up. We may define the characteristic dimension 𝜉(𝑝) as the average size of clusters.
At some point, the characteristic dimension will diverge as a power-law, 𝜉(𝑝) ∼
|𝑝 − 𝑝𝑐|−𝜈 , and an infinite cluster will appear. The critical probability 𝑝𝑐, is referred
to as the connectivity threshold, because for 𝑝 > 𝑝𝑐 there is an infinite cluster going
through the whole lattice.

We will show the method of renormalization in one dimension on the percolation
problem. On Figure 3.1, we make the Kadanoff-cell transformation.

Figure 3.1: Kadanoff cells
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First line is the original lattice. Then we make cells of size 𝑏 = 2. Only if
all the sites in the cell are occupied, we mark the cell as occupied, otherwise not.
This transforms the original probability 𝑝 of being occupied to the new probability
𝑝′ = 𝑅𝑏(𝑝), where 𝑅𝑏(𝑝) denotes renormalization transformation. For general value
of 𝑏, the probability of all 𝑏 cells being occupied is 𝑝𝑏, therefore 𝑝′ = 𝑅𝑏(𝑝) = 𝑝𝑏. This
is basically looking at the system at different scales, which is the main principle of
renormalization.

Next, we would like to know, how is the characteristic dimension or correlation
length 𝜉(𝑝) transformed. It is clear that the new correlation length will become

𝜉(𝑝′) = 𝑏−1𝜉(𝑝) (3.23)

Successive Kadanoff-cell transformations take the system away from its critical
point. If for example the initial probability 𝑝 = 0.9, then after one 𝑏 = 2 transfor-
mation we get 𝑝′ = 0.81 and each other transformation lowers both the probability
and the correlation length. The transformation drives the system out of the critical
point.

However, if the system is initially at the critical point, than the correlation
length 𝜉 is infinite and it is such on every scale. Necessary condition for this to
happen is 𝑝′ = 𝑝. Therefore, we want to find a fixed point 𝑝* of the transformation
𝑅𝑏(𝑝), meaning that 𝑅(𝑝*) = 𝑝*.

For our particular choice 𝑅𝑏(𝑝) = 𝑝𝑏, the fixed points are only 𝑝* = 0 and
𝑝* = 1. If the system begins near the fixed point 𝑝* = 1, by transformations, it is
carried away from the fixed point. We say that the fixed point is unstable under the
scaling. On the other hand, the 𝑝* = 0 is stable.

Now, we can expand the transformation near the fixed point:

𝑅𝑏(𝑝) = 𝑅𝑏(𝑝*) + 𝜆𝑇 (𝑏)(𝑝 − 𝑝*) + 𝒪(𝑝 − 𝑝*)2 (3.24)

where 𝜆𝑇 (𝑏) denotes the first derivative of the renormalization function evaluated
at 𝑝* and for our particular transformation and 𝑝* = 1 we have 𝜆𝑇 (𝑏) = 𝑏.

Knowing 𝑅𝑏(𝑝) = 𝑝′, 𝑅𝑏(𝑝*) = 𝑝* and neglecting higher-order terms, we get

𝑝′ − 𝑝* = 𝜆𝑇 (𝑏)(𝑝 − 𝑝*) (3.25)
|𝑝′ − 𝑝*|−𝜈 = |𝜆𝑇 (𝑏)|−𝜈 |𝑝 − 𝑝*|−𝜈 (3.26)

For the choice 𝑏 = 1, we get 𝜆𝑇 (𝑏) = 1, therefore 𝑝′ = 𝑝 and 𝜉′(𝑝) = 𝜉(𝑝), which
means, that 𝜉′ and 𝜉 are the same functions. Therefore

𝜉(𝑝) ∼ |𝑝 − 𝑝𝑐|−𝜈 =⇒ 𝜉′(𝑝′) ∼ |𝑝′ − 𝑝𝑐|−𝜈 (3.27)
𝜉′(𝑝′) = 𝑏−1𝜉(𝑝) =⇒ |𝑝′ − 𝑝𝑐|−𝜈 ∼ 𝑏−1|𝑝 − 𝑝𝑐|−𝜈 (3.28)

As the critical point and the fixed point are the same, we may use 𝑝* = 𝑝𝑐 in (3.26)
and then by comparing (3.26) and (3.28) we finally obtain

𝜈 = ln 𝑏

ln 𝜆𝑇 (𝑏)

For our choice of transformation 𝜆𝑇 (𝑏) = 𝑏, and therefore we obtained the critical-
point exponent 𝜈 = 1. However, this technique can be used for a general transfor-
mation.



3.2. Observations and models in markets 31

3.1.4 Bigger picture
We showed some basics of the physics of critical phenomena. We saw that near

critical points, we can observe power-law behavior with characteristic exponents, for
which we can find useful relations or we can even determine them using renormal-
ization. But what is the relation to other systems? Interesting interpretation is given
in [15] and concerns correlations between spins.

Suppose a lattice of spins. There are many of them in the lattice, but they
can interact only on finite distance, the correlations between them decay exponen-
tially with distance. This characteristic length is determined by the temperature
of the system. On the other hand, the number of paths using which the spins can
interact grows exponentially with the characteristic length of interaction. There-
fore, these two exponentials are in competition, where the winner is determined by
the temperature. The temperature by which the exponentials balance is the criti-
cal temperature 𝑇𝐶 . There, lower order terms play significant role, and we observe
power-law behavior.

This interpretation can be also used in finance. The market is still between the
exponential, gaussian behavior of equilibrium and the power-law behavior of some
critical point. Near crash, the correlations between market participants grow, and
at some point, they can be so high to cause a crash. The vicinity of crash could be
determined by scale-invariant behavior of the market.

3.2 Observations and models in markets

3.2.1 Scale-free behavior of bubbles
First interesting result we will mention was obtained by Preis and Stanley

[17]. They studied microtrends in price evololution and how volatility, transaction
volumes and inter-trade times are connected to these microtrends. The question
was, if there is any connection between small “crises”, i.e. microtrends or bubbles
occurring on small time scales, and the large crises such as that in the 1930’s.

How one can proceed? Firstly, we need to recognize the microtrends in price
time series. We define the price 𝑃 (𝑡) at the time 𝑡 to be a local minimum of order
Δ𝑡, if there is no lower price in the interval [𝑡 − Δ𝑡, 𝑡 + Δ𝑡]. The local maximum is
defined analogously. The order Δ𝑡 determines on which scale we want to determine
the microtrends. Time positions of the successive extrema can be used to define
a renormalized time scale. Let 𝑡min and 𝑡max be times of successive pair of local
minimum and maximum. Then, the renormalised time scale for a positive microtrend
is given by

𝜀(𝑡) ≡ 𝑡 − 𝑡min

𝑡max − 𝑡min
(3.29)

Preis and Stanley analyzed the range 0 ≤ 𝜀 ≤ 2 to see the effects of the trend
switch around 𝜀 = 1 on volatility, transaction volume and inter-trade times. They
used data from European Exchange, namely the German DAX Future contract.
The dataset included all the transactions of three disjoint three-months period. The
inter-trade times were down to 10ms, which allowed to study a wide range of time
scales. For large scales, they used data from S&P 500.
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At first, one can study volatility. Here, we can define local volatility as a squared
price difference between successive trades, 𝜎2(𝑡) = (𝑃 (𝑡) − 𝑃 (𝑡 − 1))2, where t is the
time ordering of transactions, 𝑡 = 1, ..., 𝑇 . Then, one can average the local volatil-
ity over all positive or negative microtrends of order Δ𝑡 to obtain mean volatility
⟨𝜎2

pos⟩(𝜀, Δ𝑡) for positive microtrends and ⟨𝜎2
neg⟩(𝜀, Δ𝑡) for negative ones. To normal-

ize these volatilities, one can use average volatilities 𝜎pos and 𝜎neg which are averages
over all Δ𝑡 up to some Δ𝑡max and over some discrete number of bins in the 𝜀 variable.

What Preis and Stanley observed was that the volatility profile was nearly
identical for different values of Δ𝑡 greater than some Δ𝑡cut. This means that the
volatility behaves similarly for a wide range of scales. Then they counted volatility
aggregation for positive microtrends

𝜎2*
pos(𝜀) = 1

Δ𝑡max − Δ𝑡cut

Δ𝑡max∑︁
Δ𝑡=Δ𝑡cut

⟨𝜎2
pos⟩(𝜀, Δ𝑡)

𝜎pos
(3.30)

and 𝜎2*
neg(𝜀) in an analogous way. Δ𝑡cut = 50 and Δ𝑡max = 1000 were used.

When they then plotted log-log graphs of this volatility aggregation near the critical
point 𝜀 = 1, they found that the data form a straight line, signalizing a power law
dependence. Therefore we can write

𝜎2*(|𝜀 − 1|) ∼ |𝜀 − 1|𝛽𝜎2 (3.31)
where the empirically found critical exponents 𝛽𝜎2 can be found in Table 3.2
What was also analyzed was the dependence of the trade volume, i.e. the number

of contracts traded in each individual transaction, on the renormalized time. Using
the same method as with volatility, i.e. counting mean volume for all microtrends
of order Δ𝑡 and normalizing by average volume, they obtained volume aggregation
𝑣*(𝜀), which also followed a power law near the critical point 𝜀 = 1

𝑣*(|𝜀 − 1|) ∼ |𝜀 − 1|𝛽𝑣 (3.32)

with the exponents (for Δ𝑡cut = 50 and Δ𝑡max = 1000) in Table 3.2. Similarly,
the inter-trade times were analyzed. Even here, the power-law behavior appeared.

Positive microtrend Negative microtrend
𝜀 < 1 𝜀 > 1 𝜀 < 1 𝜀 > 1

Volatility 0.01 -0.30 0.04 -0.54
Volume -0.14 -0.20 -0.17 0
Inter-trade times 0.10 0.12 0.09 0.15

Table 3.2: Critical exponents for German DAX Future contract

Similar scaling exponents were found for the daily closing prices of the S&P500
index, therefore they are valid also for macrotrends. This means that the behavior
of the volatility, volume and inter-trade times has no characteristic scale. Thus, one
can not consider the big market crashes just as outliers, but as a result of the market
scale-free behavior.

3.2.2 The Cont-Bouchaud model
The aim of the Cont-Bouchaud model is to show, what could be the nature of

the market behavior in the normal phases or near the critical points [18], [2]. Let
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us suppose 𝑁𝑡 traders, each trading with the same (average) amount of some given
asset. At each time, 𝑖-th trader can be in one of the following states: he can buy
(𝜑𝑖 = 1), sell (𝜑𝑖 = −1) or wait (𝜑𝑖 = 0). Let us suppose that the change in the
asset price is proportional to the difference between supply and demand, which is
determined by the sum of the states of individual traders

Δ𝑆(𝑡𝑛) ∝
𝑁∑︁

𝑖=1
𝜑𝑖(𝑡𝑛) (3.33)

Now let us suppose that the traders communicate, either directly or by having
same trading strategies depending on the available information. This communication
can be represented by a bond between these traders, which leads them to trade in
the same way, to be in the same trading state. Let us define the probability of the
bond creation as

𝑝𝑏 = 𝑏

𝑁𝑡

(3.34)

where 𝑏 is the average number of bonds of each trader. We do not have detailed
information about how the bonds are created between individual traders, therefore,
to model the market, we choose the bonds randomly. By doing this, we obtain
groups of traders, clusters with the same trading strategy. Such a structure is called
a random graph. Denoting the state of 𝑐-th cluster at the time 𝑡𝑛 𝜑𝑐(𝑡𝑛), size of the
𝑐-th 𝑠𝑐 and let the total number of clusters be 𝑁𝑐. Then

Δ𝑆(𝑡𝑛) ∝
𝑁𝑐∑︁
𝑐=1

𝑠𝑐𝜑𝑐(𝑡𝑛) (3.35)

The distribution of the price differences Δ𝑆(𝑡𝑛) is thus determined by the dis-
tribution of the sizes of clusters. However, the distribution of cluster-sizes for this
model can be found [2] and is given by

𝑝𝑐(𝑠) ∼ 1
𝑠1+3/2 exp

[︁
−(1 − 𝑏)2𝑠

]︁
for 1 ≪ 𝑠 ≪ 𝑁𝑡 (3.36)

for 𝑏 approaching 1 from left and for 𝑁𝑡 → ∞. We see that this is the same
form as of the exponentially truncated Lévy distribution. For 𝑏 close to 1, the Lévy
character is pronounced and the convergence to Gaussian under convolution is slow.
As the price difference distribution Δ𝑆(𝑡𝑛) is proportional to the sum of independent
variables with the distribution 𝑝𝑐(𝑠), this model predicts that we should observe the
characteristic exponent close to 𝛼 ≃ 3/2 in the price changes distribution. This cor-
responds to several analyses of empirical data. For example, Mantegna and Stanley
[4] finds that Lévy distribution with 𝛼 = 1.4 is the best fit for the price distribution
data they had.

However, this prediction depends on the assumption that the parameter 𝑏 is
close to 1. Cont and Bouchaud suggest this to be a property of market, that it is
driven towards 𝑏 ≈ 1. However, they do not offer the reason for this.

3.2.3 The Sornette-Johansen model
Sornette et al. proposed a model to describe crashes inspired by critical phe-

nomena in physics. We examined the phase transition between ferromagnetic and
paramagnetic phase in section 3.1. There we can use temperature 𝑇 as a control
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parameter to approach the critical point at 𝑇𝐶 . Could there be such a parameter in
the market?

It could, however it can not be known by the market. If it had been known, the
market would change its behavior to avoid risk, which would also lead to elimination
of the parameter.

We will not go much into detail, we will only show some results from [2]. Sornette
et al. introduce a hazard rate ℎ(𝑡), which denotes the probability that a crash will
occur in the interval [𝑡, 𝑡 + d𝑡]. When the price of some asset increases, traders focus
their attention on it. Some of them speculates on further increase, however some of
them fear of the trend reversal. This is a normal situation. However, if the attention
of the traders is increased too much, if too many traders start to believe that the
price will rise, a bubble emerges. This, however, also raises the fear of the losses. The
market is then very sensitive to any fluctuation and a small downtrend can cause a
big crash. The hazard rate ℎ(𝑡) therefore means the stress, tension of the market.

The proposed form of a hazard rate is as follows

ℎ(𝑡) = 1
(𝑡𝑐 − 𝑡)𝛾

[𝐵0 + 𝐵1 cos(𝜔 ln(𝑡𝑐 − 𝑡) + Ψ)] for 𝑡 ≲ 𝑡𝑐 (3.37)

that means it follows a power-law with log-periodic correction. 𝛾 is a critical
exponent, which should be universal, however, 𝐵0, 𝐵1, 𝜔, 𝑡𝑐, Ψ are parameters which
need to be found individually.

Assuming, that the deterministic part of price evolution follows a differential
equation

d𝑆𝑑𝑒𝑡 = 𝜇(𝑡)𝑆𝑑𝑒𝑡(𝑡)d𝑡 (3.38)

we would like to find a connection between the drift 𝜇(𝑡) and the hazard rate ℎ(𝑡).
The drift reflects the reward traders demand when investing in the risky asset. As
the hazard rate is proportional to the risk, one can assume 𝜇(𝑡) = 𝜅ℎ(𝑡), introducing
yet another constant 𝜅. From this, one can find a relation for the deterministic part
of the price 𝑆𝑑𝑒𝑡, however, the ability of predictions of this model is debatable due
to the large number of constants to fit.

Here we can also regard to section 1.4, where we discussed the nonexistence of
independent description. The question, which immediately arises, if there can be an
independent prediction of crisis. If a single trader predicts crisis, he can reallocate his
portfolio to avoid risk, by doing so, however, he influences the market. Furthermore,
if there was a widely believed prediction of crash in the future, could the prediction
persist? The market would definitely change its behavior to avoid the crash. This
can lead to the elimination of the danger, however, it can also speed up the process
of the market fall. In any case, the prediction dramatically influences the market,
which will very probably behave in a different way than originally predicted.
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Appendix

A Remarks from probability theory
Definition A.1 (Random variable). Let (Ω, 𝒜,P) be a probability space and 𝑋 :
Ω → R a real function which is 𝒜-measurable, i.e.

∀𝑐 ∈ R, 𝑋−1(−∞, 𝑐) ∈ 𝒜 (39)

Then we call 𝑋 a random variable, abbreviated r.v.

Here, we just give definition of convergence in distribution used in the main
text.

Definition A.2 (Convergence in distribution). The sequence (𝑋𝑛)∞
𝑛=1 of random

variables converges in distribution to the random variable 𝑋, denoted 𝑋𝑛
𝒟−→ 𝑋, if

lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹 (𝑥) (40)

for every 𝑥 ∈ R at which 𝐹 (𝑥) is continuous, where 𝐹𝑛 are cumulative distribution
functions of 𝑋𝑛 and 𝐹 is the cumulative distribution function of 𝑋.

B Random processes
Definition B.1 (Random process). Let 𝑇 be a nonempty set. Then we call a system
of random variables 𝑋𝑡, 𝑡 ∈ 𝑇 a random process on 𝑇 .

Usually, we use 𝑇 = N for discrete random processes or 𝑇 = R or some interval
for continuous-time processes. For 𝜔 ∈ Ω given, 𝑋(𝜔, 𝑡) is a function of time, which
we call a trajectory of a random process, or sample path. It is one concrete realisation
of the random process, for example a price evolution of one given asset.

C Martingales
We motivated the usage of martingales for the Efficient Market Hypothesis in

subsection 1.3.2. Here we want to show the general definition of martingale for a
continuous-time random processes.

Definition C.1 (𝜎-algebra generated by a random variable). Let (Ω, 𝒜,P) be a
probability space, 𝑌 a random variable. Then we define 𝜎(𝑌 ) = {𝑌 −1(𝐴) | 𝐴 ∈
ℬ(R𝑛)} to be the sigma-algebra generated by the random variable 𝑌 .
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Definition C.2 (Conditional expectation with respect to a random variable). Let
(Ω, 𝒜,P) be a probability space, X, Y random variables, E(|𝑋|),E(|𝑌 |) < +∞.
Conditional expectation of r.v. X with respect to a r.v. Y is a 𝜎(𝑌 )-measurable
function, denoted as E(𝑋|𝑌 ), satisfying∫︁

𝐴
E(𝑋|𝑌 ) dP =

∫︁
𝐴

𝑋 dP ∀𝐴 ∈ 𝜎(𝑌 )

It is straightforward to generalize this definition for any 𝜎-algebra 𝒜* ⊂ 𝒜.

Definition C.3 (Conditional expectation with respect to 𝜎 algebra). Let (Ω, 𝒜,P)
be a probability space, X random variable, E(|𝑋|) < +∞ , 𝒜* ⊂ 𝒜 𝜎-algebra. The
conditional expectation of the r.v. X with respect to 𝒜* is a 𝒜*-measurable function,
denoted as E(𝑋|𝒜*), satisfying∫︁

𝐴
E(𝑋|𝒜*) dP =

∫︁
𝐴

𝑋 dP ∀𝐴 ∈ 𝒜*

Let us mention several important properties of the conditional expectation:

1. If 𝑋 is independent of 𝒜*, then E(𝑋|𝒜*) = E(𝑋)

2. E(E(𝑋|𝒜*)) = E(𝑋)

3. Linearity: E(𝑎𝑋 + 𝑌 |𝒜*) = 𝑎E(𝑋|𝒜*) + E(𝑌 |𝒜*)

4. If 𝜎(𝑋) ⊂ 𝒜*, then E(𝑋|𝒜*) = 𝑋

5. 𝑋, 𝑌 ∈ 𝐿2(Ω, 𝒜), 𝜎(𝑋) ⊂ 𝒜*. Then E(𝑋𝑌 |𝒜*) = 𝑋E(𝑌 |𝒜*)

6. Tower property: Let ℱ ⊂ ℱ ′ ⊂ 𝒜 be two 𝜎-algebras. Then:

E(𝑋|ℱ) = E(E(𝑋|ℱ ′)|ℱ)
E(𝑋|ℱ ′) = E(E(𝑋|ℱ)|ℱ ′)

7. Jensen inequality: Let 𝜙 be a convex function and E(|𝜙(𝑋)|) ≤ ∞. Then
𝜙(E(𝑋|𝒜*)) ≤ E(𝜙(𝑋)|𝒜*)

If we interpret 𝒜* as the information available to us, we can regard E(𝑋|𝒜*)
as the best estimate of the r.v. X, given this information.

A random process is a set of random variables ordered by the parameter 𝑡. With
𝑡 increasing, the information available about the process also increases. We describe
this using filtration.

Definition C.4 (Filtration). Let (Ω, 𝒜,P) be a probability space. Then we call the
set of 𝜎-algebras (𝒜𝑡)𝑡∈𝑇 , for which ∀𝑠, 𝑡 ∈ 𝑇, 0 ≤ 𝑠 ≤ 𝑡 : 𝒜𝑠 ⊂ 𝒜𝑡 ⊂ 𝒜, a filtration.

Definition C.5 (Random process adapted to filtration). A random process (𝑋𝑡)𝑡∈𝑇

is adapted to a filtration (𝒜𝑡)𝑡∈𝑇 , if ∀𝑡 ≥ 0, 𝜎(𝑋𝑡) ⊂ 𝒜𝑡

It is clear, that a random process is always adapted to its natural filtration
𝒜𝑋

𝑡 = 𝜎(𝑋𝑠, 0 ≤ 𝑠 ≤ 𝑡)
Now we have everything ready to define the general martingale property for a

continuous-time process.
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Definition C.6 (Continuous-time martingale). Let (Ω, 𝒜,P) be a probability space,
(𝑋𝑡)𝑡≥0 a random variable adapted to a filtration (𝒜𝑡)𝑡∈𝑇 , for which E(|𝑋𝑡|) < ∞, ∀𝑡 ≥
0. Then we call (𝑋𝑡)𝑡≥0 a martingale, if the so-called martingale-property is satisfied:

E(𝑋𝑡|𝒜𝑠) = 𝑋𝑠 𝑎.𝑠. ∀𝑡 ≥ 𝑠 ≥ 0

If, instead of equality, just the inequalities ≤, ≥ are satisfied, we call (𝑋𝑡)𝑡≥0 a
supermartingale or submartingale respectively.

Now, we would like to show that the Wiener process 𝑊𝑡 (Brownian motion) is
a martingale with resect to its natural filtration (ℱ𝑡)𝑡∈𝑇 .

E(𝑊𝑡|ℱ𝑠) = E(𝑊𝑡 − 𝑊𝑠 + 𝑊𝑠|ℱ𝑠)
= E(𝑊𝑡 − 𝑊𝑠|ℱ𝑠) + E(𝑊𝑠|ℱ𝑠)
= E(𝑊𝑡 − 𝑊𝑠) + 𝑊𝑠 = 𝑊𝑠

where in second equation we used linearity, in the third that 𝑊𝑡 −𝑊𝑠 is independent
of ℱ𝑠 for 𝑡 > 𝑠 and in the last, we used that E(𝑊𝑡 − 𝑊𝑠) = 0 for the Wiener process
and 𝑡 > 𝑠. Therefore, the Wiener process is a martingale.

Secondly, we would like to find some analogy for the geometric Brownian mo-
tion. It is defined as

𝑋𝑡 = 𝑋0 exp
[︂(︂

𝜇 − 1
2𝜎2

)︂
𝑡 + 𝜎𝑊𝑡

]︂
(41)

We will find its conditional expectation with respect to the natural filtration of
the underlying Wiener process.

E(𝑋𝑡|ℱ𝑠) = E(𝑋0𝑒
(𝜇− 1

2 𝜎2)𝑡+𝜎𝑊𝑡 |ℱ𝑠)

= 𝑋0𝑒
(𝜇− 1

2 𝜎2)𝑡E(𝑒𝜎(𝑊𝑡−𝑊𝑠)+𝑊𝑠|ℱ𝑠)

= 𝑋0𝑒
(𝜇− 1

2 𝜎2)𝑡𝑒𝜎𝑊𝑠E(𝑒𝜎(𝑊𝑡−𝑊𝑠)|ℱ𝑠)

= 𝑋0𝑒
(𝜇− 1

2 𝜎2)𝑡𝑒𝜎𝑊𝑠E(𝑒𝜎(𝑊𝑡−𝑊𝑠))

= 𝑋0𝑒
(𝜇− 1

2 𝜎2)𝑡𝑒𝜎𝑊𝑠𝑒
1
2 𝜎2(𝑡−𝑠)

= 𝑒𝜇(𝑡−𝑠)𝑋𝑠

This is exactly the form we motivated in (1.2). In third equation, we used the
property 5 of the conditional expectation, in the fifth we used the mean of log-
normal distribution.
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