Priloha 14

Kédové provedeni mlearning

LNU — tfida navrZeného linearniho prediktivniho modelu s gradientnim uc¢enim
untouched_inputs — funkce zachovava nepozménéné vstupy (pouze pro normalizaci algoritmu)
delayed_inputs — funkce pro vytvoreni dalSich pfiznakl zpozdénim vstupl do LNU
delayed_inout — vytvoreni dalSich priznak(pfidanim a zpoZzdénim predchozich vystupl

Package that contains learning algorithms for the predictors such as LNU,
LM or clasificators

such as Logistic function for multiclas classification or binary
classification.

import numpy as np

class LNU:
mrrn
Linear neuron that uses gradient descent method to estimate
welights.

Useful variables
w : array
Numpy array of latest weights

w_by epoch : array
Numpy array of weights history in each learning epoch.

dw by epoch : array
Numpy array of weights incrementation history during learning in
each epoch.

def err by epoch : array
Numpy array of error history in each epoch.

def w by window : array
Numpy array of weights history for each step in last epoch.

def dw by window : array
Numpy array of weights incrementation history for each step in last
epoch.

def err by window : array
Numpy array of error history for each step in last epoch.

def learning effort

Numpy array that represents the learning activity of each data
step.

Length of the learning effort is corresponding to the number of
steps (i.e.

to the length of the provided data). Each step contains absolute
value of

weights learning incrementation (dw) that is summed up with
previous absolute

values of dw of each learning epoch.

mrrn

def

def

def

~ init (self, 1lr=.5, epochs=100, biased=True):

self. b = (1 if biased else 0)
self. learning rate = 1r
self. n epochs = epochs

Initialisation of future values
self. num of x =0

self. w =20
self. w by epoch = 0
self. w by window = 0
self. dw = 0
self. dw by epoch = 0
self. dw by window = 0

self. err = 0
self. err by epoch = 0
self. err by window = 0
self. learning effort = 0

self. yn = 0

__learn(self, y len, X, y, X, n_X):
for step in range(y len):

x[self. b:n x + 1] = X[step]

self. yn[step] = np.dot(self. w, x)

self. err = self. yn[step] - ylstep]

self. dw = -self. learning rate * self. err * x

self.:w += self. dw

self. w by window[step, :] = self. w

self. dw by window[step, :] = self. dw

self. err by window[step, :] = self. err

self. learning effort[step, :] += abs(self. dw)

fit(self, X, y):

y len = len(y)

n weights = X.shape[l] + self. b
n x = X.shape[l] + self. Db

X = np.ones(n_x)
self. yn = np.zeros(y len)

self. w = np.random.randn(n weights) / n weights
self. err = np.zeros(y_ len)

self. w by window = np.zeros((y_ len, n weights))
self. dw by window = np.zeros((y len, n weights))
self. err by window = np.zeros((y_ len, 1))

self. w by epoch = np.zeros((self. n epochs, n weights))
self. dw by epoch = np.zeros((self. n epochs, n weights))
self. err by epoch = np.zeros((self. n epochs, 1))

self. learning effort = np.zeros((y len, n weights))
for epoch in range(self. n epochs):

self. learn(y len, X, y, X, n_Xx)
self. w by epoch[epoch:] = self. w

self. dw by epoch[epoch:] = self. dw
self. err by epochl[epoch:] = self. err

return self

def update(self, X, y, n_epochs=1):
y_len = len(y)
n weights = X.shape[l] + self. b
n x = X.shape[l] + self. b
X = np.ones(n_x)

self. learning effort = np.zeros((y len, n weights))
self. dw by window = np.zeros((y_ len, n weights))

for epoch in range(n_epochs):
self. learn(y len, X, y, X, n_Xx)

def fake update(self, X, y, n_epochs=1):
y _len = len(y)
n weights = X.shape[l] + self. b
n x = X.shape[l] + self. Db
X = np.ones(n_x)

yn = np.zeros(y len)
err = 0
w = self. w

self. learning effort = np.zeros((y_ len, n weights))

for epoch in range(n_epochs):
for step in range(y len):

x[self. b:n x + 1] X[stepl

yn[step] = np.dot(w, x)

err = yn[step] - ylstepl]

dw = -self. learning rate * err * x

w += dw

self. w by window[step, :] = w

self. dw by window[step, :] = dw

self. learning effort[step, :] += abs(dw)
@property
def w(self):

return self. w

def w by epoch(self):
return self. w by epoch

def dw by epoch(self):
return self. dw by epoch

def err by epoch(self):
return self. err by epoch

def w by window(self):
return self. w by window

def dw by window(self):
return self. dw by window

def err by window (self):

return self. err by window

def learning effort(self):
return self. learning effort

def untouched inputs (inputs, outputs, min delay: int = 1, max delay: int =
None) :
return inputs, outputs

def delayed inputs(inputs, outputs, min delay: int = 1, max delay=None) :
if isinstance (max _delay, type (None)):
max delay = min delay + 1

new array = inputs[max delay:]
new output = outputs[max delay:]
for step in range (min delay,max delay) :
new_array = np.concatenate((new_array, inputs[max delay-step:-
stepl), axis=1)

return new array, new output

def delayed inout (inputs, outputs, min delay: int = 1, max delay: int =
None) :
if isinstance (max delay, type (None)):
max delay = min delay + 1

new inputs = np.concatenate((inputs, outputs), axis=1)
new_array = new_inputs[max delay:]
new output = outputs[max delay:]
for step in range(min delay,max delay):
new_array = np.concatenate((new_array, new inputs[max delay-step:-
stepl), axis=1)

return new_array, new_output

