
Příloha 10 
Kódové provedení mtools  

suspicious_intervals – algoritmus pro získání příznaků learning entropy 
suspicious_frequencies – algoritmus pro získání příznaků FFT 
 

import numpy as np 

from STUDNA.ptools import learning_entropy_2, clear_noise_rough, 

change_order 

from STUDNA.ptools import fourier_transformation, find_fft_peaks, 

new_fft_peaks 

 

 

def suspicious_intervals(learning_effort, time_domain, noise_std: float, 

cl_par: float = 1, **kwargs): 

    """ 

    Description tool that uses learning entropy to recognize changes in 

signal and 

    inform of intervals with suspicious activity. 

 

    From the testing this algorithm is capable of safely detecting changes 

in signal that are higher 

    than 30% of the noise std. Lower percentage is speculated and requires 

bw_mag to be maximum. 

 

    WARNING: When the error is smaller than 30% of the noise, then 

possibility of false-negative and 

    false-positive rapidly increases. 

 

    Parameters 

    ------------------- 

    learning_effort : array 

        Sum of absolute value weights of learning neuron summed up 

        trough each epoch. 

 

    time_domain : array 

        Domain of observing window 

 

    cl_par : int 

        Cluster parameter in time_domain units. Determines what should 

algorithm 

        recognize as one cluster. 

 

        Example: There are 4 suspicious places in signal with time 

difference 

        (.3, .5, 1, 2) seconds. If cl_par = 1 (s), then three suspicious 

places 

        with differences (.3,.5,1) are recognized as one cluster. 

 

    noise_std : float 

        Standard deviation of the signal noise. It is important for correct 

        sensitivity parameter adjustment. 

 

 

    Returns 

    ------------------- 

    crit_pos : dict 

        Dictionary that contains intervals of unusuality, 



        total number of unusualities and total duration of 

        unusuality. 

            'intervals' - List of suspicious intervals in tuple (start, 

end) 

            'sum' - Sum of all suspects 

            'duration' - Total duration of unusual intervals 

            'mean' - mean of suspected values 

            'std' - std of suspected values 

 

 

    Keyword Arguments 

    ------------------- 

    adjust_mode : bool 

        Mode of function which returns more parameters for 

        analysis. 

 

        Careful! Instead of 1 return, tuple of 6 parameters is 

        returned. 

 

        Returns: 

            crit_pos : dict 

                Description above. 

 

            time : array 

                Due to calculating differentiations time_domain is slightly 

                reduced new time is returned. 

 

            crit_pos_bool : array 

                Boolean array that corresponds to positions of the 

                starts and ends of unusual interval in shorten time domain. 

 

                Useful to compare with pos_diff to control logic of point 

                selection. 

 

            suspect_bool : array 

                Boolean array of difference conditions in pos_diff. Useful 

to compare 

                with crit_pos_bool to check algorithm of start/end 

decision. 

 

            G : array 

                0/1 array that describes what data are selected as unusual. 

 

            pos_diff : array 

                Position differences between unusual data (in array G). 

Based 

                on this array, data are divided into clusters. 

 

                Useful to compare with E_cleaned to see how bw_par 

parameter 

                changed the selection. 

 

            E_cleaned : array 

                Learning entropy that was cleaned by clear_noise_rough() 

                PCA cleaner. 

 

                Useful to compare with E to control how cleaner changed 

                the selection. 

 

            E : array 

                Learning entropy calculated by learning_entropy_2(). 



 

    bw_mag : float 

        Bandwidth parameter estimator. Helps to estimate bandwidth that 

        determines if learning entropy is suspicious or not. 

 

        bandwidth = bw_mag * std + mean 

 

        The lower the value the higher is sensitivity, but less accurate. 

        The higher the value the lower is sensitivity, but more accurate. 

 

        With normal distribution of noise: 

        bw_mag = 1 corresponds to aprox. 32% probability that the detected 

signal is normal 

        bw_mag = 2 ... 5% 

        bw_mag = 3 ... 0.3% 

 

    bw_par : float 

        Ability to overwrite bandwidth that determines if learning entropy 

is suspicious or not. 

 

    buff : int 

        Parameter that corresponds to the strength of the 

        filter. Buff is the size of one side of the matrix 

        that is made from data for PCA process. 

 

        If buff==None then it is selected automatically. 

 

    normalize : bool 

        Normalization of the data could enhance and equalize the 

        unusualness in signal. 

        Default: True 

 

    pca_par : float 

        Parameter that changes the filter roughness. 

        Default: 0.3 

 

    buff_par : float 

        Parameter that changes the filter strength. When buff size is 

        selected automatically.b 

        Default: 0.05 

 

    """ 

    # Order is left for potential future updates. Orders higher than 2 are 

not tested. 

    order = 2 

 

    bw_mag = 1.47 if isinstance(kwargs.get('bw_mag'), type(None)) else 

float(kwargs.get('bw_mag')) 

 

    # To detect suspicious intervals we are using learning entropy which 

enhances unusualness in 

    # learning effort 

    E = learning_entropy_2(learning_effort, order=order) 

 

    # Filter will remove negligible unusualness 

    E_cleaned = clear_noise_rough(E, buff=kwargs.get('buff'), 

normalize=kwargs.get('normalize'), 

                                  pca_par=kwargs.get('pca_par'), 

buff_par=kwargs.get('buff_par')) 

 

    # Estimate sensitivity by magnitude, mean and noise 



    if isinstance(kwargs.get('bw_par'), type(None)): 

        bw_par = bw_mag*np.std(E_cleaned.T**2) + np.mean(E_cleaned.T**2) 

    else: 

        bw_par = kwargs.get('bw_par') 

 

    # Last separation of negligible and useful unusuality by 

    # threshold that corresponds to multiplication of data mean 

    # cleaned learning entropy is magnified for better results 

    G = E_cleaned.copy() ** 2 

    G[G >= bw_par] = 1 

    G[G < bw_par] = 0 

    # Original 

    # G[G >= bw_par * np.mean(G)] = 1 

    # G[G < bw_par * np.mean(G)] = 0 

 

    # There is a possibility that we did not made a selection of suspicious 

    # intervals. In that case output should be 'nan' 

    if sum(G) != 0: 

        # Based on G we select time-frames that contain significant 

        # unusualities in order to define intervals of unusualities 

        pos = time_domain.reshape(-1, 1)[order:][G == 1] 

 

        # We separate unusualities into clusters based on how far away they 

are 

        # from each other in terms of time steps. 

        pos_diff = change_order(pos, 2, False) 

        suspects_bool = (pos_diff <= cl_par) 

        crit_pos_bool = np.array([False] * len(suspects_bool)) 

 

        # Final step is to select beginning and end of each interval 

        # [FALSE, TRUE] in array means beginning 

        # [TRUE, FALSE] means end of unusuality interval 

        prev_state = False 

        for k, state in enumerate(suspects_bool): 

            if (not prev_state) and state: 

                crit_pos_bool[k] = True 

 

            elif prev_state and not state: 

                crit_pos_bool[k - 1] = True 

 

            prev_state = state 

 

        # If there is odd number of checkpoints which means one of the 

intervals 

        # started but has not ended, then end of this interval is probably 

last point 

        # of the array. 

        if sum(crit_pos_bool) % 2 > 0: crit_pos_bool[-1] = True 

 

        starts = pos[crit_pos_bool][::2] 

        ends = pos[crit_pos_bool][1::2] 

        crit_pos = {'intervals': [(start, end) for start, end in 

zip(starts, ends)], 

                    'sum': int(sum(G)), 

                    'duration': sum(ends - starts[:len(ends)]), 

                    'mean': np.mean(E_cleaned[G == 1]), 

                    'std': np.std(E_cleaned[G == 1])} 

 

    else: 

        pos_diff = np.array([]) 

        crit_pos_bool = np.array([False]) 



        suspects_bool = np.array([False]) 

        crit_pos = {'intervals': [(float('nan'), float('nan'))], 

                    'sum': 0, 

                    'duration': float('nan'), 

                    'mean': float('nan'), 

                    'std': float('nan')} 

 

    if kwargs.get('adjust_mode') == True: 

        return crit_pos, time_domain[order:], crit_pos_bool, suspects_bool, 

G, pos_diff, E_cleaned, E 

    else: 

        return crit_pos 

 

 

def suspicious_frequencies(bench_dataset, compared_dataset, timestep): 

    """ 

    Description tool based on fourier transform. Detects new frequencies in 

that 

    appeared in the compared_dataset in relation to bench_dataset. 

 

    Parameters 

    ------------- 

    bench_dataset : array-like 

        Dataset that contains frequencies that will be ignored. 

        Serves as benchmark. 

 

    compared_dataset : array-like 

        Dataset that might contain new frequencies. 

 

    timestep : float 

        Time difference on time-domain. Serves to calculate the frequency 

domain. 

 

 

    Returns 

    ---------- 

    returns : dict 

        Dictionary that contains new appeared power spectral densities 

(psd) and 

        frequencies (frq). Ordered by psd from highest to lowest. 

            'psd' - power spectral density 

            'frq' - frequency 

 

    """ 

    returns = dict() 

 

    # Calculate freq. and psd 

    psd_bench, frq_bench = fourier_transformation(bench_dataset, timestep) 

    psd, frq = fourier_transformation(compared_dataset, timestep) 

 

    # Find freq. 

    _, frqs_bench = find_fft_peaks(psd_bench, frq_bench) 

    psds, frqs = find_fft_peaks(psd, frq) 

 

    # Find new frequencies 

    returns['psd'], returns['frq'] = new_fft_peaks(frqs_bench, frqs, psds) 

 

    # Sort from highest to lowest 

    sorter = {key: value for key, value in zip(returns['psd'], 

returns['frq'])} 

    sorter = dict(sorted(sorter.items(), reverse=True)) 



    returns['psd'] = np.array(list(sorter.keys())) 

    returns['frq'] = np.array(list(sorter.values())) 

 

    return returns 

 

 

 


