
Příloha 10
Kódové provedení mtools

suspicious_intervals – algoritmus pro získání příznaků learning entropy
suspicious_frequencies – algoritmus pro získání příznaků FFT

import numpy as np

from STUDNA.ptools import learning_entropy_2, clear_noise_rough,

change_order

from STUDNA.ptools import fourier_transformation, find_fft_peaks,

new_fft_peaks

def suspicious_intervals(learning_effort, time_domain, noise_std: float,

cl_par: float = 1, **kwargs):

 """

 Description tool that uses learning entropy to recognize changes in

signal and

 inform of intervals with suspicious activity.

 From the testing this algorithm is capable of safely detecting changes

in signal that are higher

 than 30% of the noise std. Lower percentage is speculated and requires

bw_mag to be maximum.

 WARNING: When the error is smaller than 30% of the noise, then

possibility of false-negative and

 false-positive rapidly increases.

 Parameters

 learning_effort : array

 Sum of absolute value weights of learning neuron summed up

 trough each epoch.

 time_domain : array

 Domain of observing window

 cl_par : int

 Cluster parameter in time_domain units. Determines what should

algorithm

 recognize as one cluster.

 Example: There are 4 suspicious places in signal with time

difference

 (.3, .5, 1, 2) seconds. If cl_par = 1 (s), then three suspicious

places

 with differences (.3,.5,1) are recognized as one cluster.

 noise_std : float

 Standard deviation of the signal noise. It is important for correct

 sensitivity parameter adjustment.

 Returns

 crit_pos : dict

 Dictionary that contains intervals of unusuality,

 total number of unusualities and total duration of

 unusuality.

 'intervals' - List of suspicious intervals in tuple (start,

end)

 'sum' - Sum of all suspects

 'duration' - Total duration of unusual intervals

 'mean' - mean of suspected values

 'std' - std of suspected values

 Keyword Arguments

 adjust_mode : bool

 Mode of function which returns more parameters for

 analysis.

 Careful! Instead of 1 return, tuple of 6 parameters is

 returned.

 Returns:

 crit_pos : dict

 Description above.

 time : array

 Due to calculating differentiations time_domain is slightly

 reduced new time is returned.

 crit_pos_bool : array

 Boolean array that corresponds to positions of the

 starts and ends of unusual interval in shorten time domain.

 Useful to compare with pos_diff to control logic of point

 selection.

 suspect_bool : array

 Boolean array of difference conditions in pos_diff. Useful

to compare

 with crit_pos_bool to check algorithm of start/end

decision.

 G : array

 0/1 array that describes what data are selected as unusual.

 pos_diff : array

 Position differences between unusual data (in array G).

Based

 on this array, data are divided into clusters.

 Useful to compare with E_cleaned to see how bw_par

parameter

 changed the selection.

 E_cleaned : array

 Learning entropy that was cleaned by clear_noise_rough()

 PCA cleaner.

 Useful to compare with E to control how cleaner changed

 the selection.

 E : array

 Learning entropy calculated by learning_entropy_2().

 bw_mag : float

 Bandwidth parameter estimator. Helps to estimate bandwidth that

 determines if learning entropy is suspicious or not.

 bandwidth = bw_mag * std + mean

 The lower the value the higher is sensitivity, but less accurate.

 The higher the value the lower is sensitivity, but more accurate.

 With normal distribution of noise:

 bw_mag = 1 corresponds to aprox. 32% probability that the detected

signal is normal

 bw_mag = 2 ... 5%

 bw_mag = 3 ... 0.3%

 bw_par : float

 Ability to overwrite bandwidth that determines if learning entropy

is suspicious or not.

 buff : int

 Parameter that corresponds to the strength of the

 filter. Buff is the size of one side of the matrix

 that is made from data for PCA process.

 If buff==None then it is selected automatically.

 normalize : bool

 Normalization of the data could enhance and equalize the

 unusualness in signal.

 Default: True

 pca_par : float

 Parameter that changes the filter roughness.

 Default: 0.3

 buff_par : float

 Parameter that changes the filter strength. When buff size is

 selected automatically.b

 Default: 0.05

 """

 # Order is left for potential future updates. Orders higher than 2 are

not tested.

 order = 2

 bw_mag = 1.47 if isinstance(kwargs.get('bw_mag'), type(None)) else

float(kwargs.get('bw_mag'))

 # To detect suspicious intervals we are using learning entropy which

enhances unusualness in

 # learning effort

 E = learning_entropy_2(learning_effort, order=order)

 # Filter will remove negligible unusualness

 E_cleaned = clear_noise_rough(E, buff=kwargs.get('buff'),

normalize=kwargs.get('normalize'),

 pca_par=kwargs.get('pca_par'),

buff_par=kwargs.get('buff_par'))

 # Estimate sensitivity by magnitude, mean and noise

 if isinstance(kwargs.get('bw_par'), type(None)):

 bw_par = bw_mag*np.std(E_cleaned.T**2) + np.mean(E_cleaned.T**2)

 else:

 bw_par = kwargs.get('bw_par')

 # Last separation of negligible and useful unusuality by

 # threshold that corresponds to multiplication of data mean

 # cleaned learning entropy is magnified for better results

 G = E_cleaned.copy() ** 2

 G[G >= bw_par] = 1

 G[G < bw_par] = 0

 # Original

 # G[G >= bw_par * np.mean(G)] = 1

 # G[G < bw_par * np.mean(G)] = 0

 # There is a possibility that we did not made a selection of suspicious

 # intervals. In that case output should be 'nan'

 if sum(G) != 0:

 # Based on G we select time-frames that contain significant

 # unusualities in order to define intervals of unusualities

 pos = time_domain.reshape(-1, 1)[order:][G == 1]

 # We separate unusualities into clusters based on how far away they

are

 # from each other in terms of time steps.

 pos_diff = change_order(pos, 2, False)

 suspects_bool = (pos_diff <= cl_par)

 crit_pos_bool = np.array([False] * len(suspects_bool))

 # Final step is to select beginning and end of each interval

 # [FALSE, TRUE] in array means beginning

 # [TRUE, FALSE] means end of unusuality interval

 prev_state = False

 for k, state in enumerate(suspects_bool):

 if (not prev_state) and state:

 crit_pos_bool[k] = True

 elif prev_state and not state:

 crit_pos_bool[k - 1] = True

 prev_state = state

 # If there is odd number of checkpoints which means one of the

intervals

 # started but has not ended, then end of this interval is probably

last point

 # of the array.

 if sum(crit_pos_bool) % 2 > 0: crit_pos_bool[-1] = True

 starts = pos[crit_pos_bool][::2]

 ends = pos[crit_pos_bool][1::2]

 crit_pos = {'intervals': [(start, end) for start, end in

zip(starts, ends)],

 'sum': int(sum(G)),

 'duration': sum(ends - starts[:len(ends)]),

 'mean': np.mean(E_cleaned[G == 1]),

 'std': np.std(E_cleaned[G == 1])}

 else:

 pos_diff = np.array([])

 crit_pos_bool = np.array([False])

 suspects_bool = np.array([False])

 crit_pos = {'intervals': [(float('nan'), float('nan'))],

 'sum': 0,

 'duration': float('nan'),

 'mean': float('nan'),

 'std': float('nan')}

 if kwargs.get('adjust_mode') == True:

 return crit_pos, time_domain[order:], crit_pos_bool, suspects_bool,

G, pos_diff, E_cleaned, E

 else:

 return crit_pos

def suspicious_frequencies(bench_dataset, compared_dataset, timestep):

 """

 Description tool based on fourier transform. Detects new frequencies in

that

 appeared in the compared_dataset in relation to bench_dataset.

 Parameters

 bench_dataset : array-like

 Dataset that contains frequencies that will be ignored.

 Serves as benchmark.

 compared_dataset : array-like

 Dataset that might contain new frequencies.

 timestep : float

 Time difference on time-domain. Serves to calculate the frequency

domain.

 Returns

 returns : dict

 Dictionary that contains new appeared power spectral densities

(psd) and

 frequencies (frq). Ordered by psd from highest to lowest.

 'psd' - power spectral density

 'frq' - frequency

 """

 returns = dict()

 # Calculate freq. and psd

 psd_bench, frq_bench = fourier_transformation(bench_dataset, timestep)

 psd, frq = fourier_transformation(compared_dataset, timestep)

 # Find freq.

 _, frqs_bench = find_fft_peaks(psd_bench, frq_bench)

 psds, frqs = find_fft_peaks(psd, frq)

 # Find new frequencies

 returns['psd'], returns['frq'] = new_fft_peaks(frqs_bench, frqs, psds)

 # Sort from highest to lowest

 sorter = {key: value for key, value in zip(returns['psd'],

returns['frq'])}

 sorter = dict(sorted(sorter.items(), reverse=True))

 returns['psd'] = np.array(list(sorter.keys()))

 returns['frq'] = np.array(list(sorter.values()))

 return returns

