
Příloha 1 - Kódové provedení simulátoru

August 10, 2022

1 Model for further simulation
The goal is to create a model for failure simulation. For parameters adjustment exploit the existing
model created by Vit Pawlik with the gradient descend method.

Requirements: 1. Based on deterministic physical model 2. Ability to change inputs (weigth,
temperature, voltage, etc.) 3. Ability to change parameters of assembly parts in time (change of
resistance with temperature) 4. Save the models as .h5 that contains columns of inputs and outputs

Importing libraries

[]: import numpy as np
import pandas as pd
import matplotlib.pylab as plt

from scipy import io
from scipy import signal

import time as tm
import datetime as dt

import h5py

from IPython.display import clear_output

Re-write hand-written state-space function to code function. To fulfil the requirement of change in
constants (as k1, k2 etc.) during the simulation we have to conclude extra inputs into the ODE.
Those inputs would cause the appearance of nonlinear relations such as x1.u2. We would have to
solve nonlinear equations, which we solve by linearization and if these equations are linearized, they
are returned to the initial state before implementing extra inputs. I.e. it seems impossible and we
must find another way.

[]: def generate_ABCD(coeficients):
"""
Generates space-state matricies for the simplified shaker model for given␣

↪→data.

Parameters

1

coeficients : dictionary
Dictionary of all needed coefficients that consists of:
R : float

Resistance of electrical resistor of electromagnetic circuit

L : float
Inductance of electrical coil of electromagnetic circuit

k1 : float
Constant representing loss of induction

k2 : float
Constant representing back EMF

cc : float
Damper constant for damping between coil and armature in Ns/m

kc : float
Spring constant for springing between coil and armature in N/m

cs : float
Damper constant for damping between armature and body in Ns/m

ks : float
Spring constant for springing between armature and body in N/m

cb : float
Damper constant for damping between body and ground in Ns/m

kb : float
Spring constant for springing between body and ground in N/m

mc : float
Mass of the armature coil in kg

mt : float
Mass of the armature in kg

md : float
Mass of the load in kg

mb : float
Mass of the body in kg

Returns

A : list

2

Calculated space state representation matrix A
B : list

Calculated space state representation matrix B
C : list

Calculated space state representation matrix C
D : list

Calculated space state representation matrix D. Always zero.
"""
R=coeficients['R']; L=coeficients['L']
k1=coeficients['k1']; k2=coeficients['k2']
cc=coeficients['cc']; kc=coeficients['kc']
cs=coeficients['cs']; ks=coeficients['ks']
cb=coeficients['cb']; kb=coeficients['kb']
mc=coeficients['mc']; mt=coeficients['mt']
md=coeficients['md']; mb=coeficients['mb']

A = [[0, 1, 0, 0, 0, 0, 0],
[-kc/mc, -cc/mc, kc/mc, cc/mc, 0, 0, k1/mc],
[0, 0, 0, 1, 0, 0, 0],
[kc/(mt+md), cc/(mt+md), -(ks+kc)/(mt+md), -(cs+cc)/(mt+md), ks/

↪→(mt+md), cs/(mt+md), 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, ks/mb, cs/mb, -(kb+ks)/mb, -(cs+cb)/mb, -k1/mb],
[0, -k2/L, 0, 0, 0, k2/L, -R/L]]

B = [[0], [0], [0], [0], [0], [0], [1/L]]

C = A[2:4]

D = [[0.0]]*len(C)

return A, B, C, D

1.1 MatLab model
Load MatLab model by Vit Pawlik

[]: model_data=io.loadmat('MatLab stuff\LDS_model_20st_stred.mat')
matA = model_data['A']
matB = model_data['B']
matC = model_data['C']
matD = model_data['D']
matsys = signal.StateSpace(matA,matB,matC,matD)

3

1.2 Physical model
Physical model based on handwritten State-Space matricies. Shown parameters are adjusted based
on comparation with MatLab model. Designation of every variable is based on the simplified
mechanical and electrical model shown abow.

[]: burden_weight = 0 #in kg

coef = {
Weights in kg
'mc' : 0.5,
'mt' : 2,
'md' : burden_weight,
'mb' : 630,

Springs in N/m (norm value 1e6 for car, much weaker for epoxy)
'kc' : 1.5,
'ks' : 1.6 ,
'kb' : 1e6 ,

Dampers in Ns/m (usual range of dambers 300-2000 Ns/m)
'cc' : 8,
'cs' : 10 ,
'cb' : 300,

Electrical stuff
'k1' : 8 ,
'k2' : .015 ,
'L' : 1e-4 ,
'R' : 2e-5

}

State-Space equations
A, B, C, D = generate_ABCD(coef)

Model
sys = signal.StateSpace(A,B,C,D)

1.3 Models comparation
The goal is to compare both models and adjust physical parameters of physical model. We will do
that by inputing different signals and comparing the output.

[]: time = np.arange(0, 50, 0.08)

#Creating series of inputs
inputs = np.zeros((2, len(time)))
inputs[0] = np.zeros(len(time))

4

inputs[0][100:]=1
inputs[0][200:]=2
inputs[0][300:]=0

inputs[1] = np.sin(time)
inputs[1][200:] = np.sin(time[200:]*5)
inputs[1][300:] = np.sin(time[300:]*15)

for u in inputs:
t, y, x = signal.lsim(sys, u, time)
matt, maty, matx = signal.lsim(matsys, u, time)

plt.figure(figsize=(15,5))
plt.plot(t, u, label='signal', linestyle='--', color='green')
plt.plot(t, y[:,0], label='HandWritten', color='blue')
plt.plot(matt, -maty, label='MatLab', color='red')
plt.legend()

Basic fucntions
w, H = signal.freqresp(signal.StateSpace(A,B,C[0],D[0]))
matw, matH = signal.freqresp(matsys)
plt.figure(figsize=(15,5))
plt.title('Hand Written Nyquist')
plt.plot(-H.real, H.imag, label='HandWritten', color='blue')
plt.plot(-H.real, -H.imag, label='HandWritten', color='blue')
plt.axis('equal')

plt.figure(figsize=(15,5))
plt.title('MatLab Nyquist')
plt.plot(matH.real, matH.imag, label='MatLab', color='red')
plt.plot(matH.real, -matH.imag, label='MatLab', color='red')
plt.axis('equal')

plt.show()

c:\ProgramData\Anaconda3\lib\site-packages\scipy\signal\filter_design.py:1631:
BadCoefficients: Badly conditioned filter coefficients (numerator): the results
may be meaningless

warnings.warn("Badly conditioned filter coefficients (numerator): the "

5

6

1.3.1 Conclusion

Nyquist characteristics of the created model differ significantly from the MatLab model and the
main difference can be seen on higher input frequencies, where the magnitude of output drops
significantly. For purposes of this work - to create tools for signal description and to predict system
aging - differences in the model dynamics are not substantial and thus can be neglected for further
processing.

1.4 Signal generation
The goal is to create signal that will be changed over time due to aging of parts. Following models
must be created: 1. Clear model without failure or noise (main.h5) 2. Model loaded with noise
(lwn_main.h5) 3. Model loaded with failure (lwf_[name of the failure].h5)

Terms: 1. Real-life sampling rate from provided sensor is used, including dispersion 2. Timestamp
is used as time period 3. Data are separated into aprox. 1 hour periods and 100 hours of data are
generated for every model 4. Every change of parameters will appears first 10 hours and reaches its
maximum after 60 hours of work 5. Large-data format is used for saving 6. Saved signal contains -
Inputs: signal, weigth. Outputs: position, speed. Trained wegths. 7. Final name of model is ‘in-’
+ noi* + ’_’ + nof*

Changable parameters: R, kb, cb, ks, cs, kc, cc, k1, k2, L

Failures: 1. Up to 5% change with the sigmoid function for every changable parameter (parame-
ter) (nof* - sigmoid_5) 1. Up to 10% change with the sigmoid function for every parameter (nof*
- sigmoid_20) 1. Up to 50% change with the sigmoid function for every parameter (nof* - sig-
moid_20) 1. White-noise will appear of max 10% change in every parameter with linear growth.
(nof* - whitenoise_10) 1. Uniform-noise will appear of max 10% change in every parameter with
linear growth. (nof* - uniformnoise_10)

Inputs: 1. Low frequency sine-input for max duration (noi* - sin) 2. Random agresive input for
max duration (noi* - gauss) 3. Every hour different weight of load (noi* - weight) 5. White noise
input (noi* - whitenoise) 6. Sine input with slowly changable frequency for max duration (noi* -
freq) 4. Every hour different weight of load and different input frequency (white, sine with changed
freq, sine, etc) (noi* - all)

7

nof - name of the failure noi - name of the input

First of all we need to define change strategies of parameters

[]: def whitenoise_aging(max_val, i, max_i, min_i=0):
"""
Aging strategy that reduces/increases the value based on whitenoise with␣

↪→linear growth
of standard deviation (std).

Note: Only std of white-noise is changed not mean

Parameters

max_val : int, float

Coresponds to the two times standard deviation (std).

Separates outputed values into two groups. Group of
numbers that are lower than max_val are achieved 95%
of the time. Group of numbers that are higher than
max_val are achieved 5% of the time.

i : int, float
Actual step

max_i : int, float
Step at which maximum value is achieved

min_i: int, float, Optional
Step at which minimum value starts to grow

Returns

aged_val : float

Returns value generated by white_noise

"""
if i < min_i:

gain = 0
elif i > max_i:

gain = 1
else:

m = 1/(max_i-min_i)
b = -min_i*m
gain = i*m+b

mean = 0

8

std = max_val/2
return gain*np.random.normal(mean, std)

def sigmoid_aging(max_val, i, max_i, min_i=0):
"""
Aging strategy that reduces maximum value based on modified sigmoid␣

↪→function.
Sigmoid function limit goes to 0, when 'i' goes to -inf, and goes to 1 when␣

↪→'i' goes to +inf.

This sigmoid function is modified that the function is equal to 0, when 'i'␣
↪→<= 0 and function is

equal to max_val, when 'i' = max_i.

Sigmoid can be separated into three parts. Slow growth rate at the␣
↪→beginning, linear course most of

the time and slow decrease in growth at the end.

Parameters

max_val : int, float

Maximum value that will be achieved

i : int, float
Actual step

max_i : int, float
Step at which maximum value is achieved

min_i: int, float, Optional
Step at which minimum value starts to grow

Returns

aged_val : float

Returns max_val multiplied by modified sigmoid function

Example

We want to set maximum value to 10, actual interval is 5, and interval when␣

↪→the value is at its maximum
is 10. The actual interval is in the middle of it's maximum so 50th␣

↪→percentil will be returned.

In:

9

>> sigmoid(max_val=10, i=5, max_i=10)

Out:
>> 5

"""

if i < min_i:
sigm = 0

else:
treshold = 12.3
x = (i-min_i)/(max_i-min_i)*treshold*2-treshold
sigm = 1/(1+np.exp(-x))

return max_val*round(sigm, 5)

def uniformnoise_aging(max_val, i, max_i, min_i=0):
"""
Aging strategy that reduces/increases the value based on uniform noise with␣

↪→linear growth
of standard deviation (std).

Parameters

max_val : int, float

...

i : int, float
Actual step

max_i : int, float
Step at which maximum value is achieved

min_i: int, float, Optional
Step at which minimum value starts to grow

Returns

aged_val : float

Returns value generated by uniform noise

"""
if i < min_i:

10

gain = 0
elif i > max_i:

gain = 1
else:

m = 1/(max_i-min_i)
b = -min_i*m
gain = i*m+b

mean = 0
std = max_val/2
return max_val*gain*np.random.rand()

[]: length=400
a = np.zeros(length)

for step in range(length):
a[step]=sigmoid_aging(1,step,400,100)

plt.figure(figsize=(15,4))
plt.title('Sigmoid aging')
plt.plot(a)
plt.show()

for step in range(length):
a[step]=whitenoise_aging(.1,step,300,100)

plt.figure(figsize=(15,4))
plt.title('White-noise aging')
plt.plot(a)
plt.show()

for step in range(length):
a[step]=uniformnoise_aging(.1,step,300,100)

plt.figure(figsize=(15,4))
plt.title('Uniform-noise aging')
plt.plot(a)
plt.show()

11

Now create function that will reduce parameters based on the strategy

[]: def age_param(param, max_change, i, max_iter, min_iter=0, polarity='minus',␣
↪→strategy='sigmoid'):

"""
Funciton that simulates failure/aging of given parameter based on
chosen strategy.

Parameters

12

param : float
Parameter / value to be changed

max_change : float
Maximum change of parameter, that will be achieved.
For example: 0.1 = 10% of change will be achieved.

i : int
Actual iteration

max_iter : int
Number of iterations when maximum change is achieved.

min_iter : int, Optional
Number of iterations when change stars to appear.

polarity : str, Optional
Choose between addition or substraction as cause of aging.
'plus' : addition is applied
'minus': substraction is applied

strategy : str, Optional
Chosen strategy that will be used to age parameter.
'sigmoid' : sigmoid_aging is called, modified sigmoid function

(See more in the description of individual strategy functions)

Returns

aged_param : float

Inputed parameter decreased by chosen strategy

"""
sign = -1 if polarity=='minus' else 1
if strategy == 'sigmoid':

aged_param = param*(1+sign*sigmoid_aging(max_change, i, max_iter,␣
↪→min_iter))

elif strategy == 'whitenoise':
aged_param = param*(1+sign*whitenoise_aging(max_change, i, max_iter,␣

↪→min_iter))
elif strategy == 'uniform':

aged_param = param*(1+sign*uniformnoise_aging(max_change, i, max_iter,␣
↪→min_iter))

return aged_param

And now is time to create a function that will generate the aged signal. First of all, let’s define

13

control strategy.

[]: np.linalg.eig(A)[0]

[]: array([-7.94220461e+00+47.75108239j, -7.94220461e+00-47.75108239j,
-9.06267343e+00 +0.j , -1.28853143e-04 +0.j ,
-1.75650398e-01 +0.j , -2.84600791e-01+39.81348584j,
-2.84600791e-01-39.81348584j])

We can see that all eigenvalues of the A matrix are on the left side of s-plane, which means, the
system is stable. For a stable system, we can use simple open-loop control. Which practically
means we can simply determine input u without feedback.

1. Low frequency sine-input for max duration (noi* - sin)
2. Random agresive input for max duration (noi* - gauss)
3. Every hour different weight of load (noi* - weight)
4. White noise input (noi* - whitenoise)
5. Sine input with slowly changable frequency for max duration (noi* - freq)
6. Every hour different weight of load and different input frequency (white, sine with changed

freq, sine, etc) (noi* - all)

[]: def generate_inputs_strat(time):
u_names = ['Sinus', 'Random', 'White-noise', 'Sinus with different␣

↪→frequency']
U = np.zeros((len(time), 4))
U[:,0] = np.sin(time) + np.random.logistic(0, 0.01, size=len(time))
U[:,1] = np.random.rand(len(time))
U[:,2] = np.random.normal(0, 1, len(time))
U[:,3] = np.cos(2*np.pi*time*0.4+2*np.sin(2*np.pi*0.1*time)) + np.random.

↪→logistic(0, 0.005, size=len(time))
return U, u_names

[]: time = np.arange(0, 30, 1/2000)
U, nms = generate_inputs_strat(time)

[]: show = 100000
for k in range(U.shape[1]):

u = U[:, k]
plt.figure(figsize=(16,2))
plt.title(nms[k]+' input strategy')
plt.plot(time[:show], u[:show])
plt.show()

14

In order to meet the 2nd and 3rd requirements we specified at the beginning, we need to change
parameters in the model. Library scipy signal StateSpace does not allow to change parameters
after creating model nor during the simulation or to input matrices A,B,C,D with the time domain.
One of the possibilities left is something I will refer to as micro-simulation. Micro-simulation.
The scipy model will be created and simulated for a short period of time. After simulation State
Space parameters A,B,C,D are changed based on the aging strategy and the new scipy model is
created. The process repeats until required time. To the whole simulation process, I refer to it as
a makro-simulation.

Note: Micro-simulation is used as an analogy to the cosimulations, where we distinguish micro-
and makro- integration

[]: def time2step(act_time, time_domain, steps, unit='s'):
"""
Calculate step index that coresponds to the specific time in time domain.

Note: This function works with steps, that are refer to batch.
Note: This serves as auxilary function for signal simulation function.

Parameters

15

act_time : float
Time that we want to translate into step

time_domain : array
Array of time in seconds with i.e. np.arange(0,160,0.1)

steps : int
Number of steps that are utilize

unit : str
Unit of inputed act_time.

"""

if unit == 's':
pass

elif unit == 'm':
act_time*=60

elif unit == 'h':
act_time*=60**2

else:
raise ValueError(f"Unit is expected to be: 's', 'm', 'h'. Your input:␣

↪→{unit}")

T = time_domain[1]-time_domain[0]
return act_time*steps/(len(time_domain)*T)

def step2timestep(act_step, time_domain, steps):
"""
Calculate time that coresponds to the specific step in time domain.

Inverse function to time2step with translation to timestamp.

Parameters

act_step : float

Step that we want to translate into time

time_domain : array
Array of time in seconds with i.e. np.arange(0,160,0.1)

steps : int
Number of steps that are utilize

16

"""

init_timestamp = 1640991600.00
T = time_domain[1]-time_domain[0]
act_time = act_step*len(time_domain)*T/steps
return init_timestamp+act_time

class Timer:
def __init__(self):

self.sta = 0
self.sto = 0

def start(self):
self.sta = tm.perf_counter()

def stop(self):
self.sto = tm.perf_counter()
print(f'Processed in {round(self.sta-self.sto,3)} seconds')

[]: def simulator(u, time, coeficients, change_strat, change_period=3,␣
↪→extra_step=None):

"""
State Space model simulator based on scipy.signal that allows change of␣

↪→parameters during simulation.

Parameters

u : array-like

Generated control signal

time : array-like
Time domain that coresponds to the control signal u

coeficients : dictionary
Dictionary of coeficients that is used for generate
Space State matricies through the generate_ABCD function
and to simulate aging.

change_strat : 2D list
List that contains parameters of coef. change strategy.
Every row in list contains:

parameter_name - name of the parameter must exist inside␣
↪→coeficients dictionary

maximum_change - maximu % change of the parameter
peak_time - time point when the change will achieve its maximum
start_time - time point when the change takes effect
time_unit - units of peak_time and start_time 's', 'm', 'h'

17

polarity - decides if parameter value will decrease or increase␣
↪→'plus'/'minus'

strategy name - name of the strategy that must exist in the␣
↪→age_param function

Example of change_strat:
'sigmoid' strategy that will decrease parameter 'k1' after reaching␣

↪→simulating
time 100s and it will grow until reaching maximum of .9% at 120s.

[
['k2', .9, 120, 100, 's', 'minus', 'sigmoid']
]

change_period : int, Optional
How often are parameteres changed during the simulation.
Minimum period of change is once every three time steps␣

↪→(change_period=3)

extra_step : int, Optional

Returns

y : np.array

Value of the function

t : np.array
Time domain of running simulation
Careful: Due to change_period outputed time 't' might not

migth not be the same as inputed time 'time'

timesteps : np.array
Time domain converted into timesteps

Requirements

libraries

from scipy import io
from scipy import signal

functions
time2step : for translation between time and step
age_param : to change parameters based on specific strategy

+ additional strategy functions
generate_ABCD : creates State Spaces matricies for fixed model

"""

18

#Time&step description
number_of_steps = int(len(time)/change_period)
real_signal_len = number_of_steps*change_period
T = (time[1]-time[0])

#Initialization
changed_coef = coeficients.copy()
A, B, C, D = generate_ABCD(coeficients)
y = np.zeros((real_signal_len, len(C)))
x_sim = [0]*len(A)

#Macro-Simulation
for step in range(number_of_steps):

beg = step*change_period
end = (step+1)*change_period+1 #+1 is needed to slight overlap

#Batch
u_batched = u[beg:end]
period = time[beg:end]-time[beg:end][0]

#Aging strategy
iteration = step if extra_step == None else number_of_steps*extra_step␣

↪→+ step

for cmd in change_strat:
max_step = time2step(cmd[2], time, number_of_steps, cmd[4])
min_step = time2step(cmd[3], time, number_of_steps, cmd[4])

changed_coef[cmd[0]] = age_param(param=coef[cmd[0]],␣
↪→max_change=cmd[1],

i=iteration, max_iter=max_step,␣
↪→min_iter=min_step,

polarity=cmd[5], strategy=cmd[6])

#Micro-Simulation
A, B, C, D = generate_ABCD(changed_coef)
sys = signal.StateSpace(A,B,C,D)
_, y_sim, x_sim = signal.lsim(sys, u_batched, period, X0=x_sim[-1])
if len(y[beg:end]) < len(y_sim):

y[beg:end] = y_sim[:-1]
else:

y[beg:end] = y_sim

timesteps = np.array([1640991600.00 + time_s for time_s in np.arange(0,␣
↪→real_signal_len*T, T)])

return y, np.arange(0, real_signal_len*T, T), timesteps

19

The simulator is created and now it’s time to test it out. Expectations are that the simulation will
last much longer due to repeated StateSpace model generation and micro-simulation. In order to
represent simulator usage, I will describe the meaning of the ‘strategy’ list, because it might be the
most confusing part. I want to simulate the increasing of coefficient ‘k2’ which would mean that the
counter-electromotive force (back EMF) of the model will increase due to changes in the electrical
circuit or the surrounding heat. The coefficient will change up to 30% (0.3) and the change will
take place at 25 sec and it will reach its maximum at 175 sec of simulation. The aging strategy
that we will use is ‘sigmoid’.

[]: timer = Timer()
timer.start()
in_u = U[:,0]

strategy = [['R',500,25,15,'s','plus','sigmoid']]
y, t, _ = simulator(in_u, time, coef, strategy)

timer.stop()

Processed in -7.423 seconds

[]: #Print the stuff
shift = 100
magnifier = 20
plt.figure(figsize=(16, 3))
plt.plot(time[:-shift], magnifier*in_u[:-shift], linewidth=1, color='grey',␣
↪→linestyle='--')

plt.plot(t[:-shift], y[shift:,0])
plt.ylabel('Magnitude')
plt.xlabel('Time [s]')
plt.show()

The test showed that simulation is working as it was required and it also gives inside in simulation
duration. 200 seconds of simulation takes 0.26 to 0.27 seconds of real-time to process. The initial
goal is to create 5 different inputs and 5 different failures and 10 parameters = 250 combinations
and simulate it for 100 hours with 1-hour batches. Every start of the simulator takes 0.1 seconds.
To simulate 25 combs * 100 hours = 2500 hours will take…

20

[]: combs = 250
hours = 100
to_simulate = (combs*hours)*60**2
batch = 0.1
simulated = 200
simul_time = 0.263

needed_time = to_simulate/simulated*simul_time+combs*hours*batch
print(f'It will take {round(needed_time/60/60,1)} hours to simulate')

It will take 33.6 hours to simulate

In order to lower the time it takes to create simulated data, we can reduce the duration of the
simulation and compensate it with a different aging rate. Or we could create samples for a duration
of 30-60 sec every X minutes/hours. The main goal of the simulation duration is to provide enough
data to observe changes in the signal. ### Conclusion Terms of signal generator #1 #3 and #4
are not met. The real sampling frequency is expected to be at 100 kHz which would tremendously
elongate the signal generating process and linear neuron learning. This sampling frequency could be
generated for practice reasons in the future after calculations of the real requirements of signal time
that is needed to predict aging. For further simulations, only 30s samples with a 2 kHz frequency
every 10 minutes will be generated (corresponding to the real measurements from another thesis).
In order to adapt to term #4, the aging will start in the 30s and reach its maximum after 3 hours.

1.5 Data generation
Generating and saving required data. Before we start generating every of 250 combinations, the
first so-called Minimum Value Product (MVP) must be created. This smaller set of signals is
going to serve as a probe sample on which parameters of further signal generation will be ad-
justed. MVP is contained of following signals: 1. cc_sin_sigmoid_20 1. cc_sin_whitenoise_20 1.
L_freq_sigmoid_20 2. k2_freq_sigmoid_20 3. cc_freq_sigmoid_20 4. kc_freq_sigmoid_20 5.
cs_freq_sigmoid_20 6. ks_freq_sigmoid_20

1.5.1 Generator

First, let’s create a function that could generate realistic signal sampling for a specified duration.
We need to be capable to create 30s sampling every 10th minute for 3 hours.

[]: def higher_simulator(simulation_duration, step_size, sample_size, freq,␣
↪→coeficients, change_strat, input_index):

"""
Dedicated simulator that uses simulator() function in loops.
This function allows to create sampling of a specified duration, every Xth␣

↪→minute
for a specifed simulation duration.

Parameters

simulation_duration : float

21

Duration of whole simulation in seconds

step_size : float
How often is sample taken in seconds

sample_size : float
Duration of one sample in seconds

freq : float
Sampling frequency in kHz

coeficients : dictionary
Dictionary of coeficients that is used for generate
Space State matricies through the generate_ABCD function
and to simulate aging.

change_strat : 2D list
List that contains parameters of coef. change strategy.
Every row in list contains:

parameter_name - name of the parameter must exist inside␣
↪→coeficients dictionary

maximum_change - maximu % change of the parameter
peak_time - time point when the change will achieve its maximum
start_time - time point when the change takes effect
time_unit - units of peak_time and start_time 's', 'm', 'h'
polarity - decides if parameter value will decrease or increase␣

↪→'plus'/'minus'
strategy name - name of the strategy that must exist in the␣

↪→age_param function

Example of change_strat:
'sigmoid' strategy that will decrease parameter 'k1' after reaching␣

↪→simulating
time 100s and it will grow until reaching maximum of .9% at 120s.

[
['k2', .9, 120, 100, 's', 'minus', 'sigmoid']
]

input_index : int
Index of input created by generate_inputs_strat()

Requirements

functions

22

generate_inputs_strat() : to generate strategies of input with slight␣
↪→offset

simulator() : main simulation function

"""

#num_of_steps, one_step, sim_duration,one_step
time = np.arange(0,sample_size,1/(freq*1e3))
time_len = len(time)

num_of_steps = int(simulation_duration/step_size)

Input initialisation
y = np.zeros((time_len*num_of_steps,2))
t = np.zeros(time_len*num_of_steps)
u = np.zeros(time_len*num_of_steps)

for stp in range(num_of_steps):
srt = stp*time_len
end = (stp+1)*time_len
Input initialization (added offset randomness)
rnd_factor = np.random.randint(0, 10)
U, _ = generate_inputs_strat(np.arange(rnd_factor,␣

↪→rnd_factor+sample_size, 1/(freq*1e3)))
u[srt:end] = U[:,input_index]

Simulation process
spec_stp = stp*step_size/simulation_duration
print(spec_stp)
y[srt:end,:], _, t[srt:end] = simulator(u[srt:end], time, coeficients,␣

↪→change_strat=change_strat, extra_step=spec_stp)

clear_output(wait=True)
print(f'Ready {stp+1}-th simulation of total {num_of_steps}␣

↪→simulations')

clear_output(wait=True)
print('Simulation completed')
return t, y, u

[]: #Aging parameters & Aging strategy
aging_start = 30
aging_end = 150

strategies = [['cc',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['cc',0.2,aging_end,aging_start,'s','plus','whitenoise'],

23

['L',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['k2',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['cc',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['kc',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['cs',0.2,aging_end,aging_start,'s','plus','sigmoid'],
['ks',0.2,aging_end,aging_start,'s','plus','sigmoid']]

groups = ['cc_sin_sigmoid_20',
'cc_sin_whitenoise_20',
'L_freq_sigmoid_20',
'k2_freq_sigmoid_20',
'cc_freq_sigmoid_20',
'kc_freq_sigmoid_20',
'cs_freq_sigmoid_20',
'ks_freq_sigmoid_20']

30 sec, every 10 minutes, for 3 hours
Bubble Trouble: Parametry se ovlivňují pouze s pohledem na 30 vteřin ne na␣
↪→generaci

Now let’s test it out.

[]: timer = Timer()
timer.start()
t, y, u = higher_simulator(200, 60, 30, 1, coef, [strategies[0]], 0)
timer.stop()

Simulation completed
Processed in -11.695 seconds

[]: plt.figure(figsize=(15,5))
plt.plot(y[:,0])
plt.plot(u[:])
plt.show()

24

Disruptions in the signal are created purposely. It simulates time samples at different times. So
what we see on the plot is not one simultaneous signal, it is 6 samples of 30 s duration.

1.5.2 Data saving

The goal is to create a file with the name samples_package_0.h5 that will contain mentioned
signals and those are made of matrices of timestamp, inputs and outputs. Inputs are the mass of
the load and signal, outputs are position and velocity.

[]: def save_it(data, file_name, group_name):
with h5py.File(file_name + ".h5", 'w') as file:

group = file.create_group(group_name)
for col in data:

dataset = group.create_dataset(col, shape=data[col].shape,␣
↪→maxshape=(None,))

dataset[:] = data[col].astype(float)
print(f'Data {group_name} are saved.')

1.5.3 Generate and save

Following datasets are being generated and saved. 1. cc_sin_sigmoid_20 1. cc_sin_whitenoise_20
1. L_freq_sigmoid_20 2. k2_freq_sigmoid_20 3. cc_freq_sigmoid_20 4. kc_freq_sigmoid_20
5. cs_freq_sigmoid_20 6. ks_freq_sigmoid_20

[]: file_name = "samples_package_0"

strateg_id = 7
input_id = -1

simulation_time = 3*60**2
sampling_period = 10*60
sampling_duration = 30
frequency = 2
group_name = groups[strateg_id]

Create
t, y, u = higher_simulator(simulation_time, sampling_period, sampling_duration,␣
↪→frequency, coef,

[strategies[strateg_id]], input_id)

#Visualise
plt.figure(figsize=(15,5))
plt.plot(y[:,0])
plt.plot(u[:])
plt.show()

25

Simulation completed

[]: #Create dataframe
data = pd.DataFrame({'timestamp':t, 'signal':u, 'weight':burden_weight,␣
↪→'position': y[:,0], 'velocity': y[:,1]})

data

[]: timestamp signal weight position velocity
0 1.640992e+09 -0.998221 10 0.000000 0.000000
1 1.640992e+09 -0.973596 10 -0.000002 -0.013148
2 1.640992e+09 -0.991718 10 -0.000017 -0.052184
3 1.640992e+09 -1.005101 10 -0.000059 -0.117131
4 1.640992e+09 -1.002746 10 -0.000139 -0.208028
… … … … … …
1079995 1.640992e+09 0.230857 10 -11.415573 25.062190
1079996 1.640992e+09 0.226976 10 -11.403038 25.076487
1079997 1.640992e+09 0.225463 10 -11.390497 25.090761
1079998 1.640992e+09 0.217203 10 -11.377948 25.104915
1079999 1.640992e+09 0.232354 10 -11.365392 25.118845

[1080000 rows x 5 columns]

[]: #Save
save_it(data, file_name, group_name)

Data ks_freq_sigmoid_20 are saved.

1.6 Overall conclusion
This work brings to the main thesis data generator by State Space model that is based on a physical
model. The generator is equipped with the option to change inputs and the option to create complex
aging strategies of one or more parameters. For further testing purposes, 8 signals are generated
and saved as large data format .h5 for simpler loading of longer signals in the future. With this
sentence, all of the requirements are completed.

26

	Model for further simulation
	MatLab model
	Physical model
	Models comparation
	Conclusion

	Signal generation
	Data generation
	Generator
	Data saving
	Generate and save

	Overall conclusion

