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which should allow for a straight forward integration into

numerous multi-body dynamics libraries. Also a method of

solving what would constitute the inverse dynamics prob-

lem for these structures is proposed, which can be for exam-

ple used in conjunction with computed torques controllers.
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modelováńı interakce mezi kladkami a poddajnými lany.
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Introduction

The term tensegrity, coined by Buckminister Fuller, is a conjunction of the two words

tension and integrity [1]. Structures described by this term have distinct compressive

and tensile parts to which we will refer to as struts and cables. Traditionally struts

are connected to each other by cables never coming directly into contact (figure 0.1).

In [2] such systems are classified as class 1 tensegrity structures with higher classes

being distinguished by the number of struts in contact with each other. For example

a tensegrity structure with at most two struts in contact can be referred to as a class

2 tensegrity structure (figure 0.2b). While they were originally intended for use in

architecture [1], the lightweight nature of tensegrities has motivated the exploration

of their potential for locomotion [3] and manipulation [4].

Figure 0.1: tensegrity structure - Jan Marcus

http://www.tensegriteit.nl/e-well-known.html
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(a) class 1 tensegrity (b) class 2 tensegrity

Figure 0.2: tensegrity classes shown on 2D tensegrity structures [5]

Almost universally, models of tensegrity structures are significantly simplified with

all cables attached to the end of a strut intersecting in a single point [5], [4], [3],

[6]. While this is acceptable for basic forms of analysis in physical realizations

multiple cables cannot be anchored to the same exact point (see figure 0.1) resulting

in inaccuracies of the model. This problem is accentuated if the structure’s shape

is modified by winding cables onto pulleys as will be done in this thesis. Each of

these pulleys also has to be mounted in a block which rotates around an axis skew

to that of the pulley’s rotation in order to track the movement of the cable’s anchor

point (such assembly in can be seen in figure 0.3) introducing additional bodies.

Figure 0.3: pulley assembly of a cable-robot demonstrator [7]
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The resulting structure can be viewed as a system of rigid bodies with certain

peculiarities. Firstly, kinematically it is a closed loop system. Secondly, for the

purposes of modal analysis is it essential that its cables are modelled as compliant.

Lastly, if we were to disregard the cables’ compliance the system would have more

actuators than degrees of freedom. Most libraries for multi-body dynamics (such

as simscape multibody [8]) are not equipped to model and control systems with

these characteristics. For this reason the open-source library RigidBodyDynamics.jl

(RBD.jl) [9] was chosen for the development of necessary approaches as it is also

quite well documented and the julia programming language [10], in which it is

written, is conductive to fast prototyping. Additionally RBD.jl, similarly to many

other libraries (e.g. [11], [12]), references Roy Featherstone’s algorithms his most

complete work being [13].

Objectives of this thesis can be stated as follows. Gain an understanding of how

equations of motion of a closed-loop system can be algorithmically constructed.

Use this understanding to develop a method for modelling the interactions between

pulleys and compliant cables. Create a model of a tensegrity manipulator including

the aforementioned interactions. Develop an approach to acquiring a solution to

what would be the inverse dynamics problem if the manipulator’s cables were rigid.

We will divide this thesis into five chapters, first of which will review Roy Feath-

erstone’s approaches to constructing the equations of motion of rigid body systems

detailed in [13] with a focus on systems with kinematic loops. In chapter two we

will overview forms of constrained optimization problems and how they can be used

for determining the optimal input when controlling rigid body systems. In chapter

three we will build upon concepts from the previous chapters, developing approaches

to modelling cable-driven manipulators with compliant cables and solving what in

their case approximates to the inverse dynamics problem. Chapter four will devi-

ate from the theme of rigid body dynamics by focusing on cubic Hermite splines

which will be used later in sections 5.3 and 5.4. Finally in chapter five approaches

described in chapter three will be applied to modelling and controlling tensegrity

structures.



Chapter 1

Rigid Body Dynamics
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1.1 Topology of a Rigid Body System

In its most basic form, the topology of a system of rigid bodies can be represented

by a graph where rigid bodies (vertices) are connected by joints (edges), each joint

j defining motion constraints between a predecessor p(j) and successor s(j) frame

of reference embedded in the two bodies the joint connects.

A frame of reference, commonly represented by an origin point and a right-handed

orthogonal unitary basis, is a purely kinematic device that serves as a standard

relative to which motion can be measured. For a dynamical account of motion an

inertial frame defined in [14] as a “reference-frame with a time-scale, relative to

which the motion of a body not subject to forces is always rectilinear and uniform,

accelerations are always proportional to and in the direction of applied forces, and

applied forces are always met with equal and opposite reactions” must be present

in the system. We will define a single inertial frame for the system, referred to as

the world frame, which will be embedded in a body referred to as the systems base.

An open-loop system can be described using a kinematic tree starting at the base

where each body i is connected to its parent λ(i) by joint i. It is also connected to

it’s children j ∈ µ(i) by joints j. For each joint i we may identify its subtree set of

bodies ν(i), that is the set of bodies in the subtree that is supported by joint i. For

bodies i we may identify their support set of joints κ(i) that are between it and the

base of the system.

A closed-loop systems can then be described as an open-loop system with additional

loop-joints connecting bodies of otherwise independent branches of the kinematic

tree.
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1.2 EoM closed-loop system

Using spatial vectors detailed in chapter two of [13] which centers around the use of

6D motion and force vectors we may write equations of motion for a system of NB

rigid bodies conected by NJ joints in the general form

Iiai + vi ×∗ Iivi =
iX∗

0f
x
i + eij

iX∗
s(j)fj

i=1,...,NB
j=1,...,NJ

(1.2.1)

where

Ii spatial inertia of body i

ai acceleration of body i

vi velocity of body i
BX∗

A transformation of a force vector from frame A to frame B

fx
i external force (if any) acting on body i

fj force transmited across joint j

and

eij =


1 if i = s(j)

−1 if i = p(j)

0 otherwise

(1.2.2)

In equation 1.2.1 ×∗ signifies the cross product between a motion and force vector

whereas × would be the same operator between two motion vectors. Similarly BXA

transforms motion vectors as opossed to BX∗
A which transforms force vectors.

Taking into account the structure of the kinematic tree where joint i connects the

body i to its parent we may manipulate the equation 1.2.1 for that single body into

the form

Iiai + vi ×∗ Iivi =
iX∗

0f
x
i + fi − iX∗

j fj + eil
iX∗

l fl
i=1,...,NB
j∈µ(i)
l=NB+1,...,NJ

(1.2.3)

where fi is the force transmited from body λ(i) to body i across tree-joint i, fj the

force transmited from body i to body j ∈ µ(i) across tree-joint j and fl the force

transmited across loop-joint l.
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1.2.1 Joint Models

Force fJ transmitted across a joint can be separated into two components active

force fa = Taτ resulting from a vector of joint torques τ ∈ RN−NC of an external

(actuators) or internal (springs, dampers, friction) origin and constraint force fc =

Tcλ removing the system’s degrees of freedom, each DoF removed corresponding

to an element of the vector of constraint forces variables λ ∈ RNC where N is the

number of DoF of an unconstrained rigid body and NC the number of constraints

imposed by a joint. We will refer to matrices Ta and Tc as the active and constraint

force subspace respectively, together spanning RN .

fJ = Taτ + Tcλ (1.2.4)

Joudrain’s principle of power states: “The constraint force delivers zero power along

every direction of velocity freedom that is compatible with the motion constraints”

[13]. Let vJ be the joint velocity, that is the body’s relative velocity to the pre-

decessor of the joint, we may write Jourdain’s principle of power in the algebraic

form

fc · vJ = 0 (1.2.5)

As it must hold for all values of λ it is apparent that

T T
c vJ

!
= 0 (1.2.6)

for motion constraints to be satisfied. Equation 1.2.6 constitutes the joint’s implicit

motion constraints which are enforced by parameters λ also referred to as Lagrangian

multipliers.

Motion can also be constrained explicitly by expressing vJ as a function of joint

parameters q ∈ RN−NC and their derivatives in time.

vJ = Sq̇ (1.2.7)

where S is the motion subspace. Using q we may also determine the joint’s trans-

formation sXp and given the second derivative in time its acceleration

aJ = Sq̈ + cJ , cJ = Ṡq̇ (1.2.8)
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where cJ is the acceleration bias term.

Having defined the joint velocity using the motion subspace we may substitute it

into the algebraic form of the Jourdain’s principle of virtual power along with the

constraint force defined through the use of the constraint force subspace to attain

STTc = 0 (1.2.9)

as it must hold for all values of q̇ and λ. For practical reasons we may choose Ta

such that

STTa = 1 (1.2.10)

these become apparent if we then premultiply the equation 1.2.4 by ST resulting in

STfJ = τ (1.2.11)

Similarly to how joint acceleration aJ was obtained we may differentiate equation

1.2.6 in time resulting in

T T
c aJ = −Ṫ T

c vJ (1.2.12)

Together Ta, Tc, Ṫc constitute quantities that must be defined for every joint in

order to apply implicit motion constraints whereas S, cJ and sXp are necessary for

explicit motion constraints to be applied. As a side note all of the aforementioned

quantities are typically expressed in the coordinates of the successor frame of the

joint.

1.2.2 Applying Motion Constraints

Using explicit motion constraints velocity of the i-th body vi can be expressed

recursively as

vi =
iXλ(i)vλ(i) +

iXs(i)vJi , vJi = Siq̇i (1.2.13)

and its acceleration ai as the sum of an acceleration aap
i and velocity avp

i product

ai = a
ap
i + avp

i (1.2.14)
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both of which can also be expressed recursively

aap
i = iXλ(i)a

ap
λ(i) + Siq̈i (aap

0 = 0) (1.2.15)

avp
i = iXλ(i)a

vp
λ(i) + cJi + vi × vJi (avp

0 = −ag) (1.2.16)

In addition the acceleration product can be written as

aap
i = iXs(j)Sjq̈j j ∈ κ(i) (1.2.17)

Now we may apply explicit motion constraints to the equations of motion by con-

sequently substituting equations 1.2.14 and 1.2.17 into 1.2.1 the result being

Ii
iXs(j)Sjq̈j + Iia

vp
i + vi ×∗ Iivi =

iX∗
0f

x
i + eil

iX∗
s(l)fl

i=1,...,NB
j∈κ(i)
l=1,...,NJ

(1.2.18)

where

fl = Talτl + Tclλl (1.2.19)

Superfluous constraint forces transmitted across tree-joints can then be eliminated

by pre-multiply 1.2.18 with

ST
k

s(k)X∗
i k ∈ ν(i) (1.2.20)

The result can be written as

Mkjq̈j + ck =Wkif
x
i + τk +Lklτl +Kklλl

i=1,...,NB
j,k∈κ(i)
l=NB+1,...,NJ

(1.2.21)

where

Mkj = S
T
k

s(k)X∗
i Ii

iXs(j)Sj (1.2.22)

ck = S
T
k

s(k)X∗
i (Iia

vp
i + vi ×∗ Iivi) (1.2.23)

Wki = S
T
k

s(k)X∗
0 (1.2.24)

Lkl = eklS
T
k

s(k)X∗
s(l)Tal (1.2.25)

Kkl = eklS
T
k

s(k)X∗
s(l)Tcl (1.2.26)

The remaining constraint forces λl must be supplemented with implicit motion

constraints which take the form

elkT
T
cl

s(l)Xs(k)Sk︸ ︷︷ ︸
Klk

q̈k = −elkṪ T
cl

s(l)Xs(k)Skq̇k︸ ︷︷ ︸
kk

l=NB+1,...,NJ
k∈κ(i) (1.2.27)
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1.2.3 Joint Space Equations of Motion

Dropping the indices we can write equations 1.2.21 and 1.2.27 together as

Mq̈ + c =Wf + τ +Lτ l +KTλ (1.2.28)

Kq̈ = k (1.2.29)

where

M mass matrix of the system’s kinematic tree

q̈ vector of tree-joint accelerations

c vector of bias terms

W wrench jacobian matrix

f vector of external forces

τ vector of tree-joint torques

L torque jacobian matrix

τ l vector of loop-joint torques

K constraint jacobian matrix

λ vector of constraint forces variables

k vector of constraint bias terms

which can also be written as a system of linear equations[
M −KT

K 0

][
q̈

λ

]
=

[
Wf + τ +Lτ l

k

]
(1.2.30)

who’s solution constitutes the solution to the forward dynamics problem.
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1.2.4 Transformation into Independent Coordinates

By transforming the EoM of a closed-loop system into independent coordinates we

may obtain a canonically identical form to that of system without kinematic loops

Mq̈ + c =Wf + τ (1.2.31)

In order to do so we must eliminate implicit motion constraints. This can be done

by calculating what we will refer to as the independency jacobian matrix G and

independency bias g which satisfy

q̈ = Gÿ + g (1.2.32)

Kg = k (1.2.33)

KG = 0 (1.2.34)

then we may pre multiply equation 1.2.28 by GT and apply the substitution in

equation 1.2.32 producing.

M̃ÿ + c̃ = W̃f + τ̃ (1.2.35)

where

M̃ = GTMG , c̃ = GT(Mg+ c) , W̃ = GTW , τ̃ = GT(τ +Lτ l) (1.2.36)

If we apply both 1.2.32 and 1.2.33 to equation 1.2.29 terms on both sides cancel each

other out, therefore equation 1.2.35 completely describes the dynamics of closed-loop

system.

Let n be the number of joint parameters, nc the number of constraints and ni the

number of independent joint parameters. This transformation not only reduces the

number of equations from n+ nc to ni = n− nc at the cost of additional operations

but also allows us to apply algorithms derived further in the thesis for both open

and closed loop systems. Notably for open loop systems n = ni.
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1.2.5 Actuation

We will differentiate between passive joint torques p and torques resulting a vector

of inputs u ∈ Rna being applied using the manipulator matrix B ∈ Rn×na

τ = p+Bu (1.2.37)

where na is the number of actuated joint parameters. Similarly we may decompose

the vector of loop-joint torques allowing us to write

τ̃ = p̃+ B̃u (1.2.38)

where

p̃ = GT (p+Lpl) , B̃ = GT (B +LBl) , B̃ ∈ Rni×na (1.2.39)

Substituting equation 1.2.38 into 1.2.35 we attain

M̃ÿ + c̃ = W̃f + p̃+ B̃u (1.2.40)

which has the same canonical form as the equations of motion resulting from sub-

stituting 1.2.37 into 1.2.31

Mq̈ + c =Wf + p+Bu (1.2.41)

where both q̈ and ÿ are generalized acceleration coordinates.

For better visual clarity in consequent chapters of this thesis we will drop tildes from

matrices in equation 1.2.40 giving us the form

Mÿ + c =Wf + p+Bu (1.2.42)

where

M mass matrix

ÿ vector of independent accelerations

c vector of bias terms

W wrench jacobian matrix

f vector of external forces

p passive joint torques

B manipulator matrix

u vector of inputs



Chapter 2

Input Optimization

When solving the inverse dynamics problem, assuming B ∈ Rni×na is full rank we

may distinguish three general cases

1. rank(B) = na < ni the system is under actuated : it has more motion freedoms

than the actuators can control.

2. rank(B) = ni = na. In this case, the system is properly actuated : there is a

unique solution to the inverse dynamics problem.

3. rank(B) = ni < na. In this case, the system is redundantly actuated : in-

finitely many different values of u will produce the same acceleration.

In the case of redundantly actuated systems we are presented with the opportunity

of optimizing the values of u. These optimization problems typically fall into the

category of constrained optimization problems (COPs).

17



CHAPTER 2. INPUT OPTIMIZATION 18

2.1 Constrained Optimization Problems

A constrained optimization problem can be written as

minimize: f(x) (2.1.1)

subject to: g(x) = e , h(x) ≥ f (2.1.2)

where x is the vector of optimized parameters. COPs can be generally separated

into problems of

• Linear programing (LP) where f(x), g(x) and h(x) are linear functions

• Non-linear programing (NLP) where f(x), g(x) and h(x) are non-linear func-

tions

[15]

Quadratic Programming Problems

A subset of NLP problems are quadratic programing (QP) problems in which the

objective function is quadratic and the constraints are formulated as non-strict linear

equalities

minimize:
1

2
xTPx+ qTx (2.1.3)

subject to: a ≤ Ax ≤ b (2.1.4)

[16]. Specialized algorithms have been developed for solving such problems signifi-

cantly outperforming generalized NLP algorithms if applicable.

2.2 Inverse dynamics of an over-actuated system

Let us suppose we are attempting to solve the inverse dynamics problem of an

over-actuated system who’s dynamics are described by equations of motion in the
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form

Mÿ + c =Wf + p+Bu (1.2.42)

Input optimization generally desirable for such systems is that of minimizing the

input vector’s norm ∥u∥2 which is also subject to the constraint ∀i : |ui| ≤ uMAX

while also having to satisfying the aforementioned equations of motion.

2.2.1 NLP formulation

In this case the COP can be formulated as being solved for x ≡ u, having an

objective function

f(u) = uTu (2.2.1)

equality constraints

g(u) ≡ Bu , e ≡Mÿ + c−Wf − p (2.2.2)

and inequality constraints

h(u) ≡

[
u

−u

]
, f ≡

[
uMAX

−uMAX

]
(2.2.3)

2.2.2 Direct QP formulation

It is important to note that the objective function f(u) is quadratic while the

constraints are linear meaning the problem can be reformulated as a QP problem.

We may do so directly optimizing for x ≡ u with objective function’s terms

P ≡ 1 , q = 0 (2.2.4)

and constraints’ terms

a =

[
Mÿ + c−Wf − p

uMIN

]
, A =

[
B

1

]
, b =

[
Mÿ + c−Wf − p

uMAX

]
(2.2.5)
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2.2.3 Nullspace QP formulation

Alternatively we may decrease the number of elements in the vector of optimized

parameters by first calculating a solution that satisfies the equations of motion u0

and the null matrix of B

∀z ∈ Rna−ni : BNz = 0 ⇔ N = Null(B) (2.2.6)

This allows us to search for a final solution to the inverse dynamics problem in

the form u = u0 +Nz which satisfies the equations of motion for all z ∈ Rna−ni ,

meaning we are free to optimize x ≡ z only for the constraint

uMIN ≤ u0 +Nz ≤ uMAX (2.2.7)

the objective function being expressed as a function of z

f(z) = uT
0u0 + 2uT

0Nz + zTNTNz (2.2.8)

where u0 can be any solution to the inverse dynamics problem that will serve as the

starting point of the optimization. An intuitive choice for u0 is the the least square

solution to the equations of motion

u0 = B
+(Mÿ + c−Wf − p) (2.2.9)

which means that if uMIN ≤ u0 ≤ uMAX it is by itself the problem’s solution.

The terms of the objective function will then take the form

P ≡NTN , q ≡ 2NTu0 (2.2.10)

and constraints’ terms

a ≡ uMIN − u0 , A ≡N , b ≡ uMAX − u0 (2.2.11)



Chapter 3

Dynamics of Tensegrity Structures

21
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In order to simulate and control tensegrity structures we will develop a suitable

method for modelling the cable-pulley interaction as well as cable elasticity within

the confines of rigid-body dynamics. We will do so by deriving an involute joint

which will mimic the behaviour of an axially rigid cable (does not elongate) wrapping

around a pulley. We will also describe several variants of a compliant involute joint,

with a suitably chosen and applied internal torque model, accounting for elasticity,

damping and general uni-directionality of the cable.

In our model the successors of the involute joints will be cable-end bodies. We will

have the option of connecting them to other bodies using various joints (not only

a spherical joint) with properties of their own allowing for greater freedom when

describing how the cable is attached. Although it is not required in RBD.jl the

cable-end itself can poses inertial properties, which can be for example prescribed as

those of a length of cable which we assume to be always unwound. If the accuracy

of such a model would still be unsatisfactory, there is a possibility of creating bodies

with state dependent mass and spacial inertia, although this approach would not

fall under rigid-body dynamics.

Consequently we will describe an approach to approximating the inverse dynamics

of a system with compliant cables partially overcoming the challenges associated

with controlling an under actuated system.

In section 3.1 different variants of the compliant involute joint as well as the approx-

imation of the inverse dynamics problem will be tested on a simple class 2 tensegrity

consisting of a strut connected to the base of the system using a universal joint with

three cables attached to its free end.
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3.1 Involute Joint

The kinematics of an involute joint closely resemble those of a circle’s involute.

Origin of the frame preceding the joint P coincides with the circle’s centre while the

succeeding frame’s origin S is located at the end of the string (figure 3.1). Given

the evolute’s radius r the relative position and orientation of the succeeding frame

can be described by the angle of unwrapping ϕ and the taught length of the string l.

If the string is modelled as axially rigid l = rϕ but for an axially compliant cable

l = rϕ(1+ε) meaning the unwound length of the string is described as having a free

length l0 = rϕ and strain (proportional deformation) ε.

ϕ

r

l

xP

yP

P

xSyS

S

Figure 3.1: involute Joint
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3.1.1 Kinematics

Let us then define the vector p as
−→
PS, expressed in Fs coordinates

sp = ȷ̂r + ı̂l (3.1.1)

and E as the rotation matrix that transforms 3D vectors from Fp to Fs coordinates

E = R−1
z (ϕ) , Rz(ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (3.1.2)

where ı̂, ȷ̂ and k̂ are unit vectors

ı̂ =

10
0

 , ȷ̂ =

01
0

 , k̂ =

00
1

 (3.1.3)

The transformation sXp between Fp and Fs can then be described as consisting of

a rotation followed by a translation characterized by E and sp respectively

sXp =

[
1 0

−sp× 1

][
E 0

0 E

]
=

[
E 0

−sp×E E

]
(3.1.4)

(see section 2.8 of [13]). Such transformation corresponds with a joint velocity vJ

in the form

vJ =

[
sω
sv

]
=

[
ω

ω × sp+ sṗ

]
(3.1.5)

Allowing for the more general case where l = rϕ(1 + ε) we will define both the

angle of unwrapping and unwound length as functions of joint parameters ϕ = ϕ(q),

l = l(q) where q = [q1] for the rigid variant and q = [q1 q2]
T for the remaining

compliant variants. Such definition allows us to derive the the motion subspace S

of each variant using the same formula

S =
∂vJ
∂q̇

(3.1.6)
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To completely describe each variant we will also provide the acceleration bias term

cJ(q, q̇) which appear as a term in the joint acceleration

aJ = Sq̈ + cJ , cJ = Ṡq̇ (3.1.7)

3.1.2 Internal Dynamics

In the case of one dimensional tension the total strain energy accumulated within a

deformed body can be expressed as an integral functional of strain energy density

Λ over its volume before deformation V0

U =

∫
V0

Λ(ξ, u(ξ))dξ , Λ =
1

2
ε · σ (3.1.8)

where ξ is the body coordinate, u displacement, ε strain and σ tension. We may

determine the internal deformation force F by varying U

δU =
∂U

∂u
δu = Fδu (3.1.9)

after substituting

σ = Eε , ε =
u

l0
(3.1.10)

into equation 3.1.8. The undeformed volume of the unwound cable being

V0 = Al0 ; A = πρ2 , l0 = rϕ (3.1.11)

where E is Young’s module of elasticity and ρ the cable’s radius the result of 3.1.9

yields

δU = AEεδu (3.1.12)

from which we may determine the internal force F to be

F = AEε (3.1.13)

As we have chosen to work in the realm of linear deformation, it is impossible for

us to model buckling and thus the cable’s behaviour under compression must be

significantly simplified. As we will always attempt to maintain the cable under ten-

sion it is acceptable for us to work with a model where the cable offers no resistance
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to compression which can be implemented by premultiplying F with a unit step

function

H(ε) =

1, ε > 0

0, ε ≤ 0
(3.1.14)

As internal dynamics of the joint must relate to parameters q we will define a vector

of elasticity torques e as

e · δq = H(ε)Fδu (3.1.15)

After applying the parametrization of ε = ε(q) and u = u(q) specific to each variant

of the joint we may simply express the e from the right side of the equation 3.1.15

as

e = H(ε)F
∂u

∂q
, F = AEε (3.1.16)

due to the fact that δu = ∂u
∂q
δq.

We may similarly derive a vector of damping torques d by substituting tension in

3.1.8 for σ = µε̇ where µ is the damping coefficient. Performing manipulations

identical to those when deriving the vector of elasticity torques we then attain

d = H(ε)F
∂u

∂q
, F = Aµε̇ (3.1.17)
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3.1.3 Individual Variants of the Involute Joint

We will derive four variants of the joint in total, first of which will be the rigid (non-

compliant) variant requiring only a single joint parameter and no internal torques.

The remaining three compliant variants will differ in their parametrizations of l, u,

ε which will determine the form of internal torques e and d. This will also effect

how the joint model can be implemented and which control strategies are applicable

to the resulting system.

We will distinguish between the compliant variants by which quantity is represented

by the the joint’s second parameter, e.g. “ε variant” will have q2 = ε.

rigid variant

In it’s most basic non-compliant form the vector of joint parameters has a single

element q = [q1] with no strain or internal torque being inherently calculated. There-

fore the variant is completely described by its motion subspace and acceleration bias

term.

• motion subspace

S =

[
k̂

ȷ̂rq

]
(3.1.18)

• acceleration bias term

cJ =

[
0

ȷ̂rq̇2

]
(3.1.19)

u variant

In the first of the compliant variants q2 is equivalent to u. Here we will use the

alternate definition of the unwound cable’s deformed length l = l0 + u to derive the

necessary quantities.
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• substitutions

u = q2, ε =
q2
rq1

, l = rq1 + q2 (3.1.20)

• motion subspace

S =

[
k̂ 0

ȷ̂(rq1 + q2) ı̂

]
(3.1.21)

• acceleration bias term

cJ =

[
0

ȷ̂q̇1(rq̇1 + q̇2)

]
(3.1.22)

• vector of elasticity torques

e = H(q2)AE
q2
rq1

[
0

1

]
(3.1.23)

• vector of damping torques

d = H(q2)Aµ
q1q̇2 − q̇1q2

rq21

[
0

1

]
(3.1.24)

ε variant

In this variant q2 is chosen as equivalent to the ε. This makes it suitable for a form

of a system’s reduction where ε is approximated as constant.

• substitutions

u = rq1q2, ε = q2, l = rq1(1 + q2) (3.1.25)

• motion subspace

S =

[
k̂ 0

ȷ̂rq1(1 + q2) + ı̂rq2 ı̂rq1

]
(3.1.26)

• acceleration bias term

cJ =

[
0

ȷ̂r(1 + q2)q̇
2
1 + ȷ̂rq1q̇1q̇2 + 2ı̂rq̇1q̇2

]
(3.1.27)
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• vector of elasticity torques

e = H(q2)AEq2

[
rq2

rq1

]
(3.1.28)

• vector of damping torques

d = H(q2)Aµq̇2

[
rq2

rq1

]
(3.1.29)

l variant

Another approach is to express the angle and length using two independent variables

ϕ = q1, l = q2. Then the joints transformation can be characterized as a rotation

around the z-axis by q1 succeeded by a rigid translation in the direction of the

y-axis by r followed by a translation along the x-axis by q2. This allows us to

create a compliant involute joint from a revolute and prismatic joint with externally

calculated torques in software such as simscape multibody (see section 5.1.4).

• substitution

u = q2 − rq1, ε =
q2 − rq1
rq1

, l = q2 (3.1.30)

• motion subspace

S =

[
k̂ 0

ȷ̂q2 − ı̂r ı̂

]
(3.1.31)

• acceleration bias term

cJ =

[
0

ȷ̂q̇1q̇2

]
(3.1.32)

• vector of elasticity torques

e = H(q2 − rq1)AE
q2 − rq1
rq1

[
−r
1

]
(3.1.33)

• vector of damping torques

d = H(q2 − rq1)Aµ
q1q̇2 − q̇1q2

rq21

[
−r
1

]
(3.1.34)
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3.2 Approximation of Inverse Dynamics

Including cable compliance transforms what would be an over-actuated system if the

cables were rigid to an under-actuated system. While the system remains control-

lable if kept under tension the end-effector’s acceleration is not directly dependent

on the input torques which means the inverse dynamics problem is unsolvable.

Thankfully it is generally desirable for the cables to be as stiff as possible allowing us

to approximate the cables as rigid at every discrete step of input torques’ calculation,

invalidating the equations of motion. We may restore their equality by introducing

fictitious internal joint torques which correspond to the expected deformation. We

will use this expected deformation to maintain a certain degree of pre-tension within

the cables and therefore controllability of the entire system.

For this method of control to work properly, we will have to use the ε variant of the

compliant involute for which we may write the vector of elasticity torques as

e = Aq (3.2.1)

where A is the accumulation Jacobian

A = H(q2)EA

[
0 rq2

0 rq1

]
(3.2.2)
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We will differentiate between desired accelerations ÿd present in the system without

accounting for cable elasticity and superfluous accelerations ÿs = q̈s corresponding

to e = Asqs. The modified equations of motion can then be written as

Mdÿd +Msÿs︸ ︷︷ ︸
0

+c =Wf + p+As∆qs +Bu (3.2.3)

where ∆qs are the aforementioned expected changes in deformation. In addition we

will subject qs +∆qs to the constraint

qsmin
≤ qs +∆qs ≤ qsmax (3.2.4)

so that a certain degree of pre-tension can be expected.

Adding the usual constraints on inputs u we may write the QP problem of approx-

imating inverse dynamics while maintaining tension within the cables as optimizing

parameters

x =

[
u

∆qs

]
(3.2.5)

with objective function terms

P =

[
1 0

0 0

]
, q = 0 (3.2.6)

and constraints’ terms

a =

 τeq

umin

qsmin
− qs

 , A =

B As

1 0

0 1

 , b =

 τeq

umax

qsmax − qs

 (3.2.7)

where

τeq =Mdÿd + c−Wf − p (3.2.8)

which most resembles the problem described in section 2.2.2.



Chapter 4

Cubic Hermite Splines

When approximating inverse dynamics of cable driven manipulators we will be using

Hermite C1 continuous splines as desired trajectories. Segments of these splines are

cubic Hermite curves defined by the function value P and its first derivative Ṗ at

both ends of the segments. For the resulting splines to be C1 continuous adjacent

segment must share not only the function value but also the first derivative [17].

32
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4.1 Uniform Curves

Let P (t) , t ∈ ⟨0, 1⟩ be a cubic Hermite curve defined by control values P0, Ṗ0, P1,

Ṗ1 where P (t) must satisfy

P0 = P (0) , Ṗ0 = Ṗ (0) , P1 = P (1) , Ṗ1 = Ṗ (1) (4.1.1)

Such curve can be written in the form

P (t) = CMHϕ(t) , t ∈ ⟨0, 1⟩ (4.1.2)

where C is the control matrix

C =
[
P0 Ṗ0 P1 Ṗ1

]
(4.1.3)

MH the basis matrix and ϕ(t) the basis polynomial. Unlike in [17] where ϕ(t) is is

chosen as the monomial basis ϕ(t) = [ 1 t t2 t3 ]T we will use a basis which can be

expressed in the summation form as

ϕk(t) =
tk

k!
, k ∈ ⟨0, 3⟩ , k ∈ N (4.1.4)

its l-th derivative being

dlϕk

dtl
(t) =

 tk−l

(k−l)!
, k ≥ l

0, k < l
(4.1.5)

To determine the values of MH we must solve the system of equations 4.1.1 which

can be written in matrix form as[
P0 Ṗ0 P1 Ṗ1

]
︸ ︷︷ ︸

C

= CMH

[
ϕ(0) ϕ̇(0) ϕ(1) ϕ̇(1)

]
︸ ︷︷ ︸

ΦC

(4.1.6)

from equation 4.1.6 it is evident that MH must satisfy MH = Φ−1
C , therefore

MH =


1 0 −6 12

0 1 −4 6

0 0 6 −12

0 0 −2 6

 (4.1.7)
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4.2 Non-Uniform Curves

Non-uniform cubic Hermite curves P (t) , t ∈ ⟨t0, t1⟩ , (t0, t1) ∈ R2 are a generalized

variant of the previously derived uniform curves which we will also define using

control values P0, Ṗ0, P1, Ṗ1 where P (t) must satisfy

P0 = P (t0) , Ṗ0 = Ṗ (t0) , P1 = P (t1) , Ṗ1 = Ṗ (t1) (4.2.1)

We will re-use matrices C and MH when defining the form of non-uniform cubic

Hermite curves while introducing the normalization matrix D and selecting a new

polynomial basis ψ that is beside t also a dependent on constants t0 and t1

P (t) = CD(t0, t1)MHψ(t0, t1, t) , t ∈ ⟨t0, t1⟩ (4.2.2)

where the form of D = D(t0, t1) is yet to be determined and ψ(t0, t1, t) can be

written in summation form as

ψk(t0, t1, t) = ϕk

(
t− t0
t1 − t0

)
=

(t− t0)
k

k! (t1 − t0)k
(4.2.3)

Although l-th derivative of ψ(t0, t1, t) can be derived directly as

dlψk

dtl
(t0, t1, t) =


(t−t0)k−l

(k−l)! (t1−t0)k
, k ≥ l

0, k < l
(4.2.4)

for the purpose of determining the form of D(t0, t1) we will also express it using the

l-th derivate of ϕ(t)

dlψk

dtl
(t0, t1, t) =


1

(t1−t0)l
dlϕk

dtl

(
t−t0
t1−t0

)
, k ≥ l

0 , k < l
(4.2.5)
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System of equations 4.2.1 defining the curve can then be written in matrix form as[
P0 Ṗ0 P1 Ṗ1

]
︸ ︷︷ ︸

C

= CDMH

[
ψ(t0) ψ̇(t0) ψ(t1) ψ̇(t1)

]
︸ ︷︷ ︸

ΨC

(4.2.6)

If we define D(t0, t1) so that ΨC = ΦCD
−1 equation 4.2.6 will be satisfied as from

section 4.2 we know that MH = Φ−1
C . From equation 4.2.5 it can then be derived

that

D =


1 0 0 0

0 t1 − t0 0 0

0 0 1 0

0 0 0 t1 − t0

 (4.2.7)

4.3 Splines

A C1 continuous cubic Hermite spline can be created by defining values

Pi = P (ti) , Ṗi = Ṗ (ti) , i ∈ {0, . . . , N} (4.3.1)

and constructing N non-uniform cubic Hermite curves

Pi−1,i(t) =
[
Pi−1 Ṗi−1 Pi Ṗi

]
MHD(ti−1, ti)ψ(ti−1, ti, t) (4.3.2)

for

t ∈ ⟨ti−1, ti⟩ , i ∈ {1, . . . , N} (4.3.3)

where their l-th derivate can be simply obtained by substituting ψ(ti−1, ti, t) for
dlψ
dtl

(ti−1, ti, t).
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In figure 4.1a we may see an example of suchC1 continuous spline P (t) = [ x(t) y(t) ]T

defined by control values in table 4.1

ti x(ti) y(ti) ẋ(ti) ẏ(ti)

0 0 0 0 0

2 4 0 0 0

4 0 3 0 0

6 0 0 0 0

Table 4.1: control values for the spline in figure 4.1

(a) x(t)− y(t) (b) t− P (t), Ṗ (t)

Figure 4.1: example of a cubic Hermite spline
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Application on Tensegrity

Structures

37
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5.1 Modelled Tensegrity Structures

For the purposes of this thesis two class 2 tensegrity structures were modelled in

RBD.jl their bodies being generated using geometric primitives. To keep the de-

scriptions of the structures concise a table of bodies including their name, primitive

type and dimensions will be provided for each model. Table 5.1 contains all prim-

itive types used throughout this section with their dimensions written in a specific

order.

type dimensions

cylinder radius, height

cube side

tube outer diameter, inner diameter, length

box side a, side b, side c

Table 5.1: types and properties of used geometric primitives

One way to view table 5.1 is to imagine that each row corresponds to the signature

of a constructor function, for example Cylinder(height,diameter) for each rigid

body, hence the specific order.

By convention the mass of all elements coloured red or grey in figures will be omitted

while the remaining bodies will share a common density ρ its value defined on a per-

model basis. The structures’ cables will be characterized by their Young’s module

of elasticity E, damping coefficient µ and radius r from which their cross sections’

area can be derived as A = πr2. As E and µ greatly influence the behaviour of a

system they will be defined separately for each simulation. All remaining values of

properties describing a structure will be listed in a table.
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5.1.1 Single Strut Tensegrity

Figure 5.1: single-strut tensegrity

body/bodies primitive type dimensions

strut cylinder D/2, l

pulleys cylinder R, h

blocks cube Q

Table 5.2: bodies of the single strut tensegrity

The single strut tensegrity captured in figure 5.1 can be described as consisting of

a single strut connected to the base of the system by an universal joint (in RBD.jl

implemented as a massless cross shaft and two revolute joints) and three branches

each containing a block, pulley and cable where Q =
√
2R. The revolute joints’

axis, by which the blocks are connected to the base of the system are arranged

symmetrically around the universal joint at the distance of a = l −Q so that if the

strut is vertical the structure’s cables are at a 45◦ angle.
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property value

ρ 2.7× 103 kgm−3

l 1m

D 0.04m

R 0.07m

h 0.01m

r 1× 10−3m

Table 5.3: properties of the single strut tensegrity

The resulting mechanism has five degrees of freedom, captured by angles φ, ψ of

the universal joint and one superfluous degree of freedom for every cable.

5.1.2 Tensegrity Manipulator

Figure 5.2: tensegrity manipulator
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body/bodies primitive type dimensions

strut tube D, d, l

pulleys cylinder R, 2h

blocks box 3h, 2Q, Q

Table 5.4: bodies of the tensegrity manipulator

Second model created for this thesis was that of a tensegrity manipulator which

takes the form of a three strut tensegrity simplex (figure 5.3) with additional struts,

attached those of the simplex using spherical joints, intersecting in a point to which

we will refer to as the end-effector. The simplex itself is connected to the base of

the system using the spherical joints placed in the shape of an equilateral triangle

its sides being of length a. The six cables of the system are wound upon pulleys

each connected to a block that rotates around the axis of the strut it is connected

to.

Figure 5.3: three strut tensegrity simplex

https://publish.illinois.edu/tie4rhino/what-is-tie-for-rhino/

https://publish.illinois.edu/tie4rhino/what-is-tie-for-rhino/
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dimension value

ρ 2.7× 103 kgm−3

l 1m

a
√
2
2
l m

R 0.05m

h 0.01m

D 0.035m

d 0.032m

Q
√
2R m

r 1× 10−3m

Table 5.5: properties of the tensegrity manipulator

The resulting mechanism has twelve degrees of freedom, six degrees of freedom one

per each pulley and further six due to the cables’ compliance.
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5.1.3 Topology in RigidBodyDynamics.jl

In RBD.jl the mechanism’s topology is determined by the order in which its joints

are included. First bodies are attached using tree-joints to the existing mecha-

nism, creating a kinematic tree with loop-joints being included last. The creation of

branches and closing of loops can be done within for loops, simplifying the process.

The resulting topologies, corresponding to scripts SingleStrut/SingleStrut.jl and

TensegrityManipulator/TensegrityManipulator.jl in the appendix, can be seen in

listings 5.1 and 5.2.

Spanning tree:

Vertex: world (root)

Vertex: cross -shaft , Edge: x-revoluteJt

Vertex: strut , Edge: y-revoluteJt

Vertex: B1 -block , Edge: B1 -blockJt

Vertex: B1 -pulley , Edge: B1 -pulleyJt

Vertex: B1 -cable , Edge: B1 -involuteJt

Vertex: B2 -block , Edge: B2 -blockJt

Vertex: B2 -pulley , Edge: B2 -pulleyJt

Vertex: B2 -cable , Edge: B2 -involuteJt

Vertex: B3 -block , Edge: B3 -blockJt

Vertex: B3 -pulley , Edge: B3 -pulleyJt

Vertex: B3 -cable , Edge: B3 -involuteJt

Non -tree joints:

B1-loopJt , predecessor: strut , successor: B1-cable

B2-loopJt , predecessor: strut , successor: B2-cable

B3-loopJt , predecessor: strut , successor: B3-cable

Listing 5.1: topology of the single strut tensegrity in RBD.jl
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Spanning tree:

Vertex: world (root)

Vertex: end -effector , Edge: floatingJt

Vertex: B1 -link , Edge: B1 -linkJt

Vertex: B2 -link , Edge: B2 -linkJt

Vertex: B3 -link , Edge: B3 -linkJt

Vertex: B1 -dummy , Edge: B1 -dummyJt

Vertex: B1 -strut , Edge: B1 -strutJt

Vertex: B1 -top -block , Edge: B1 -top -blockJt

Vertex: B1 -top -pulley , Edge: B1 -top -revoluteJt

Vertex: B1-top -cable , Edge: B1 -top -involuteJt

Vertex: B1 -bot -block , Edge: B1 -bot -blockJt

Vertex: B1 -bot -pulley , Edge: B1 -bot -revoluteJt

Vertex: B1-bot -cable , Edge: B1 -bot -involuteJt

Vertex: B2 -dummy , Edge: B2 -dummyJt

Vertex: B2 -strut , Edge: B2 -strutJt

Vertex: B2 -top -block , Edge: B2 -top -blockJt

Vertex: B2 -top -pulley , Edge: B2 -top -revoluteJt

Vertex: B2-top -cable , Edge: B2 -top -involuteJt

Vertex: B2 -bot -block , Edge: B2 -bot -blockJt

Vertex: B2 -bot -pulley , Edge: B2 -bot -revoluteJt

Vertex: B2-bot -cable , Edge: B2 -bot -involuteJt

Vertex: B3 -dummy , Edge: B3 -dummyJt

Vertex: B3 -strut , Edge: B3 -strutJt

Vertex: B3 -top -block , Edge: B3 -top -blockJt

Vertex: B3 -top -pulley , Edge: B3 -top -revoluteJt

Vertex: B3-top -cable , Edge: B3 -top -involuteJt

Vertex: B3 -bot -block , Edge: B3 -bot -blockJt

Vertex: B3 -bot -pulley , Edge: B3 -bot -revoluteJt

Vertex: B3-bot -cable , Edge: B3 -bot -involuteJt

Non -tree joints:

B1 -top -loopJt , predecessor: B3-strut , successor: B1-top -cable

B1 -bot -loopJt , predecessor: B3-strut , successor: B1-bot -cable

B2 -top -loopJt , predecessor: B1-strut , successor: B2-top -cable

B2 -bot -loopJt , predecessor: B1-strut , successor: B2-bot -cable

B3 -top -loopJt , predecessor: B2-strut , successor: B3-top -cable

B3 -bot -loopJt , predecessor: B2-strut , successor: B3-bot -cable

B1 -level -loopJt , predecessor: B3-strut , successor: B1-link

B2 -level -loopJt , predecessor: B1-strut , successor: B2-link

B3 -level -loopJt , predecessor: B2-strut , successor: B3-link

Listing 5.2: topology of the tensegrity manipulator in RBD.jl
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5.1.4 Topology in Simscape Multibody

The single strut tensegrity was also modelled in simscape multibody where mech-

anisms are described using block diagrams a completely different approach to

RBD.jl. Here I made the use of subsystems, first creating a subsystem of the

compliant involute joint’s l variant (section 3.1.3) which I embedded within a

subsystem of the branch. The main system then includes three instances of the

branch in addition to other blocks (figure 5.4 and folder SingleStrut-Simscape of

the appendix).

(a) main system

(b) sub-system of the branch

(c) sub-system of the compliant involute joint

Figure 5.4: simscape multibody model of the single-strut tensegrity
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5.2 Comparison of Involute Joint’s Variants

All three variants of the compliant involute joint were implemented in RBD.jl. In

addition to creating the joint’s variants, support for internal joint torques had to

be added to the library, directly modifying its source code in the process. Without

going into greater detail we will simply refer to the folder RBD-Modifications in the

appendix which contains diffs between the upstream of RBD.jl and branches of the

fork created for this thesis, each corresponding to one variant of the joint.

As mentioned before in simscape multibody only the l variant, specifically derived for

the use in closed-source multibody dynamics libraries was implemented. In contrast

to RBD.jl once derived the implementation was rather straight forward requiring

the creation of a single subsystem displayed in figure 5.4c.

The comparison was performed on a model with Young’s module of elasticity E =

5 × 101MPa and no damping coefficient by prescribing constant torques to the

revolute joints that connect pulleys to the blocks of individual branches, precisely

0.1001Nm to the first and 0.1Nm to the remaining two. This resulted in the strut

rotating around the world frame’s y-axis which was also reflected in the universal

joint’s angle ψ while φ remained constant (figure 5.5). Beside ψ and φ also strains

εi of the cables were compared as can be seen in figure 5.6 where the ε variant was

chosen a the reference. Due to how simscape multibody handles motion constraints,

for the comparison plotted separately in figure 5.7, inertial properties had to be

prescribed to the cable-ends, the model in RBD.jl also being modified.

Evaluating figure 5.6 we may conclude that the deviations of results for individual

variants implemented in RBD.jl are likely the result of numeric inaccuracies espe-

cially if we consider the fact that they accumulated across 104 steps of the simulation.

Although deviations associated with the l variant implemented in simscape multi-

body (figure 5.7) are more significant the results in general are still comparable which

is laudable considering the factors that cannot be controlled when working with a

closed-source library. Overall I would consider implementations of all the variants

equivalent in terms of forward dynamics simulations attributing the deviations to
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external factors.

(a) t - φ(t), ψ(t)

(b) t - ε1(t), ε2(t), ε3(t)

Figure 5.5: forward dynamics of the ε variant

serving as a reference for the comparison
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(a) t - ∆φ(t) (b) t - ∆ψ(t)

(c) t - ∆ε1(t)

(d) t - ∆ε2(t) (e) t - ∆ε3(t)

Figure 5.6: deviations of compliant involute joint variants

implemented in RBD.jl in comparison to the ε variant
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(a) t - ∆φ(t) (b) t - ∆ψ(t)

(c) t - ∆ε1(t)

(d) t - ∆ε2(t) (e) t - ∆ε3(t)

Figure 5.7: deviations of the compliant involute joint variant

implemented in simscape multibody in comparison to RBD.jl
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5.3 Validating the Approximation of Inverse Dy-

namics

The approach to approximating inverse dynamics in section 3.2 was also validated

using the single-strut tensegrity structure, particularly one with the ε variant of the

compliant involute joint. A series of simulations for multiple values E was performed

where the inverse dynamics were approximated for desired accelerations P̈ (t) along

a cubic Hermite spline P (t) = [φd(t) ψd(t)]
T (figure 5.8) defined by control values

in table 5.6.

ti φd(ti) ψd(ti) φ̇d(ti) ψ̇d(ti)

[s] [rad] [rad s−1]

0 0 0 0 0

1 0 0 0 0

3 0 π
4

0 0

7 π
4

0 0 0

9 0 0 0 0

Table 5.6: control values of the desired trajectory

Figure 5.8: desired trajectory
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At the start of the simulation all cables had an initial strain of ε0 = σ0

E
where

σ0 = 20MPa which also served as the lower bound for the cables’ strain throughout

the simulation while the input torques were left unbound. From the results of the

simulation, series φ(t), ψ(t), ε1(t), ε2(t) and ε3(t) were extracted. Values of φ(t) and

ψ(t) were then compared to the those on the desired trajectory where we may see the

resulting series of deviations ∆φ(t), ∆ψ(t) as well as the cables’ strains plotted in

figures 5.9, 5.10 and 5.11 for different values of E. As a quantitative representation

of how this approach performs for different values of E we extracted the maximal

deviations (in absolute values) from the desired trajectory into table 5.7. Here we

may see that the approximation’s accuracy increases with the stiffness of the cable

which is logical as to a certain degree it assumes the cable to be rigid.

E max |∆φ(t)| max |∆ψ(t)|
[MPa] [m] [m]

2e2 8.403e-3 8.293e-3

2e3 1.080e-3 8.105e-4

2e4 2.162e-4 1.330e-4

Table 5.7: overview of the simulation’s results

Two separate julia packages implementing the cubic Hermite splines as well as the

approximation of inverse dynamics were written as part of the thesis. In their

entirety they can be found in the folders Hermite3 and NearRigidControl of the

appendix.
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(a) t - ∆φ(t), ∆ψ(t) (b) t - ε1(t), ε2(t), ε3(t)

Figure 5.9: E = 2× 102MPa

(a) t - ∆φ(t), ∆ψ(t) (b) t - ε1(t), ε2(t), ε3(t)

Figure 5.10: E = 2× 103MPa

(a) t - ∆φ(t), ∆ψ(t) (b) t - ε1(t), ε2(t), ε3(t)

Figure 5.11: E = 2× 104MPa
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5.4 Extended Approach to Inverse Dynamics Ap-

proximation

As was mentioned in section 5.1.2 the modelled tensegrity manipulator has a total

of twelve degrees of freedom. A way in which we may divide the degrees of freedom

is into desired (which we will control), superfluous (due to the cables’ compliance)

and free which will be controlled indirectly. As the desired degrees of freedom we

will choose Cartesian accelerations of the end-effector ÿd = [ẍ ÿ z̈]. Then we will

have six superfluous DoF, one per each cable ÿs = [ε̈1 . . . ε̈6] dealt with similarly as

with those of the single-strut tensegrity in section 5.3. Lastly the remaining three

free degrees of freedom will be chosen algorithmically from the remaining elements

of the vector of tree-joint accelerations q̈ so that certain internal matrices remain

regular throughout the simulations. We may write the system’s equations of motion

with the newly introduced degrees of freedom as

Mdÿd +Msÿs +Mf ÿf + c =Wf + p+Bu (5.4.1)

Applying the same modifications as in equation 3.2.3 and including the vector of

free accelerations ÿf among the optimized parameters we may write the QP problem

of approximating inverse dynamics while maintaining tension within the cables as

optimizing parameters

x =

 u

∆qs

ÿf

 (5.4.2)

with objective function terms

P =

1 0 0

0 0 0

0 0 0

 , q = 0 (5.4.3)

and constraints’ terms

a =

 τeq

umin

qsmin
− qs

 , A =

B As −Mf

1 0 0

0 1 0

 , b =

 τeq

umax

qsmax − qs

 (5.4.4)
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where

τeq =Mdÿd + c−Wf − p (5.4.5)

Two simulations were performed demonstrating the approache’s ability to guide the

manipulator’s end-effector along desired trajectories in the form of C1 cubic Hermite

splines with its cables having a Young’s module of elasticity E = 2× 103MPa and

damping coefficient µ = 1 × 101MPa. The first of the two trajectories, defined by

control values in table 5.8, elicits movement along the world frame’s vertical axis

while the second (table 5.9) follows a line parallel to one of the horizontal axes

ti xd(ti) yd(ti) zd(ti) ẋd(ti) ẏd(ti) żd(ti)

[s] [m] [m s−1]

0 0 0 h0 0 0 0

5 0 0 h0 − 0.5 0 0 0

15 0 0 h0 + 0.25 0 0 0

20 0 0 h0 0 0 0

Table 5.8: control values of the desired trajectory z

ti xd(ti) yd(ti) zd(ti) ẋd(ti) ẏd(ti) żd(ti)

[s] [m] [m s−1]

0 0 0 h0 0 0 0

5 0 -0.35 h0 0 0 0

15 0 0.35 h0 0 0 0

20 0 0 h0 0 0 0

Table 5.9: control values of the desired trajectory x

where h0 = a
(
1 +

√
2
3

)
.

Whereas in section 5.3 the simulations start with the manipulator at a user defined

initial state, the simulations of the tensegrity manipulator are preceded by a period

in which the manipulator stabilizes itself in a singular configuration while reasonably

maintaining the end-effectors position (figure 5.12).
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(a) t - ε1−6(t) (b) t - ∆x(t), ∆y(t), ∆z(t)

Figure 5.12: stabilization

As can be seen in figure 5.13 the trajectory along the vertical axis is followed with

considerable accuracy while tracking along the horizontal axis in figure 5.14 is com-

parably worse. These excesive deviations are likely tied to the free degrees of freedom

and infinitisimal mechanisms [6] of the structure as similar behaviour was not ob-

served in section 5.3 on a structure with no free degrees of freedom. An explanation

to why the movement along the vertical axis might not have been effected is the fact

that it also is the manipulator’s axis of symmetry. Regardless I would consider the

further study of this phenomenon worthwhile as it might impose severe limitations

to the accuracy of tensegrity of tensegrity manipulators’ motion.
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(a) t - x(t), y(t), z(t) (b) t - ∆x(t), ∆y(t), ∆z(t)

(c) t - ε1−6(t)

(d) manipulator a t = 5 s (e) manipulator a t = 15 s

Figure 5.13: control z
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(a) t - x(t), y(t), z(t) (b) t - ∆x(t), ∆y(t), ∆z(t)

(c) t - ε1−6(t)

(d) manipulator a t = 5 s (e) manipulator a t = 15 s

Figure 5.14: control x



Conclusion

First objective of this thesis was gaining an understanding of how equations of

motion of a closed-loop system can be algorithmically constructed. This was mainly

done by reviewing Roy Featherstone’s algorithms, synthesis of which is presented in

chapter 1. A method for modelling the interactions between pulleys and compliant

cables, which was the second objective is detailed in chapter 3.

Here three variants of what we refer to as the compliant involute joint were derived

and implemented in an extended version of the julia programming language [10]

package RigidBodyDynamics.jl [9] (its modifications are included in the appendix).

One of the variants, specifically derived for the purpose, was also implemented in

simscape multibody [8] as part of a simple tensegrity structure on which the equiva-

lence of all of the variants was validated. The third objective of creating a model of a

tensegrity manipulator including the aforementioned interactions was also achieved

using RigidBodyDynamics.jl.

The last objective of developing an approach to acquiring a solution to what would

be the inverse dynamics problem if the manipulator’s cables were rigid was also

completed, its theory detailed in section 3.2 and implemention in the package Near-

RigidControl.jl written as part of this thesis. Another package created during the

writing of this thesis was Hermite3.jl which implements cubic Hermite splines as

described in chapter 4. Both of these packages are also incluced in the appendix.

58
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While the approach to control described in section 3.2 was perfectly applicable to the

single strut tensegrity described in section 5.1.1 its extended version, derived in sec-

tion 5.4 specifically for the tensegrity manipulator, exhibited unexpected behaviour

I would consider worth studying further when eliciting motion along a trajectory

parallel to one of the horizontal axes. I would also find comparing the approach

to other methods of control such as model predictive control interesting although

they themselves would likely have to be first modified due to cables offering little

resistance to compression. Lastly I would like to create a joint that connects two

pulleys using a compliant cable which would allow the modelling of more complex

mechanisms.



Glossary

EoM equations of motion. 7, 10, 13, 30, 31, 53, 58

DoF degrees of freedom. 11, 40, 42, 53, 55, 61

frame of reference kinematic device that serves as a standard relative to which

motion can be measured. 9

inertial frame reference-frame with a time-scale, relative to which the motion of

a body not subject to forces is always rectilinear and uniform, accelerations

are always proportional to and in the direction of applied forces, and applied

forces are always met with equal and opposite reactions. 9

tree-joint joint included in the kinematic tree. 10, 43

loop-joint joint outside of the kinematic tree. 9, 10, 43

implicit motion constraints Constraints on a bodies motion through the use of

Lagrangian multipliers. 12, 13

explicit motion constraints Constraints on a bodies motion enforced by express-

ing its state using a generalized coordinate. 12, 13

COP constrained optimization problem. 7, 17, 18

LP linear programing. 18

NLP non-linear programing. 18

QP quadratic programing. 18, 31, 53

RBD.jl RigidBodyDynamics.jl. 3, 7, 22, 38, 39, 43, 45, 46, 48, 49, 58

60



Symbols

p(j) predecessor of joint j. 9, 10

s(j) successor of joint j. 9, 10

µ(i) child set of body i. 9, 10

λ(i) parent of body i. 9, 10

ν(i) subtree set of joint i. 9, 13

κ(i) support set of body i. 9, 13

NB number of rigid bodies. 10

NJ number of joints. 10

Ii spatial inertia of body i. 10

ai acceleration of body i. 10, 12

vi velocity of body i. 10, 12

fx
i external force (if any) acting on body i. 10

fj force transmited across joint j. 10

BX∗
A transformation of a force vector from frame A to frame B. 10

BXA transformation of a motion vector from frame A to frame B. 10–12, 24

N number of DoF of an unconstrained rigid body. 11
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Symbols 62

NC number of constraints imposed by a joint. 11

Ta active force subspace. 11, 12

Tc constraint force subspace. 11, 12

τ vector of joint torques. 11, 14

λ vector of constraint forces variables. 11, 12, 14

vJ joint velocity. 11, 24

q vector of joint parameters. 11, 26, 27

S motion subspace. 11, 12, 24, 27–29

aJ joint acceleration. 11, 12, 25

cJ acceleration bias term. 12, 25, 27–29

M mass matrix. 14, 16

q̈ vector of tree-joint accelerations. 14, 53

c vector of bias terms. 14, 16

W wrench jacobian matrix. 14, 16

f vector of external forces. 14, 16

L torque jacobian matrix. 14

τ l vector of loop-joint torques. 14

K constraint jacobian matrix. 14

k vector of constraint bias terms. 14

G independency jacobian matrix. 15

g independency bias. 15

p passive joint torques. 16



Symbols 63

u vector of inputs. 16, 17, 19, 20, 31

B manipulator matrix. 16, 17, 20

ÿ vector of independent accelerations. 16

n number of joint parameters. 15, 16

ni number of independent joint parameters. 15, 16

na number of actuated joint parameters. 16

nc number of constraints. 15

f objective function. 18–20, 31, 53

x vector of optimized parameters. 18–20

N null matrix. 20

ϕ angle of unwrapping. 23

l deformed length of the unwound cable. 23, 27

l0 free length of the unwound cable. 23

U total strain energy. 25

Λ strain energy density. 25

V0 volume before deformation. 25

ξ body coordinate. 25

u displacement. 25, 27

E Young’s module of elasticity. 25, 38, 46, 50, 51, 54

µ damping coefficient. 26, 38, 46, 54

ε strain. 25, 27, 28

σ tension. 25



Symbols 64

e vector of elasticity torques. 26–30

d vector of damping torques. 26–29

A accumulation Jacobian. 30

P function value of a spline or curve. 32, 34

C control matrix. 34

MH basis matrix. 33

ϕ basis polynomial of a uniform Hermite curve. 33

ψ basis polynomial of a non-uniform Hermite curve. 34

D normalization matrix. 34, 35
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