
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Measurement
Master’s programme: Cybernetics and Robotics

Testing and Interfacing
Environment for Point Machine

Simulators

Prostředí pro testování a připojení
simulátorů výhybek

MASTER’S THESIS

Author: Bc. Alisa Pavlova
Supervisor: Prof. Ing. Jan Holub, Ph.D.

August 2022

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

453105Personal ID number:Pavlova AlisaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Testing and Interfacing Environment for Point Machine Simulators

Master’s thesis title in Czech:

Prostředí pro testování a připojení simulátoru výhybek

Guidelines:

Develop and implement PC SW application (GUI, backend) for controlling of various point machine simulators and data
logging from interfaces of various point machine simulators. Perform testing of this application as an example of EN50128
development (functional testing, static analysis, code coverage). The application shall be compatible with Windows OS,
Linux OS compatibility is optional. Perform factory (assembly) testing of the 7-wire “point machine simulators” and document
on this example the product development process according to EN 50129 (requirements definition, requirement tests).

Bibliography / sources:

[1] - CENELEC standard EN 50128: Railway applications – Software for railway control and protection systems, 2011-06
[2] - CENELEC standard EN 50129: Railway applications - Communications, signaling and processing systems - Safety
related electronic systems for signalling, 2018-11
[3] – Python manual, https://docs.python.org/3/

Name and workplace of master’s thesis supervisor:

prof. Ing. Jan Holub, Ph.D. Department of Measurement FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 15.08.2022Date of master’s thesis assignment: 31.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureprof. Ing. Jan Holub, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodi-
cal instructions for observing the ethical principles in the preparation of university
theses.

Prague, August 2022 ..
Bc. Alisa Pavlova

Acknowledgement

I would like to thank my supervisor Prof. Ing. Jan Holub, Ph.D., for his guidance
throughout this project. I also would like to thank my family and partner for moral
support and my colleagues for their professional recommendations.

Bc. Alisa Pavlova

Testing and Interfacing Environment for Point Machine Simulators

Abstract: The master’s thesis deals with the following processes: development and
implementation of a software application for controlling various point machine simu-
lators and data logging from their interfaces; performance of the application testing
according to EN 50128 ; performance of the seven-wire point machine simulator test-
ing according to EN 50129. The thesis describes the creation of the application and
its documentation (including a user manual) based on information from the sim-
ulators’ manuals. The implemented application is then checked for problems and
errors via testing according to the chosen methods from EN 50128. These methods,
their techniques, and created testing software tool are also presented in the thesis.
EN 50129 is used to test the seven-wire point machine simulator and to document
detected issues. The testing part of the thesis also contains a description of the
testing hardware tool assembly. The final test results are analyzed and discussed. In
conclusion, the project run is summarized, and future steps are defined.

Key words: CENELEC, EN 50128, EN 50129, development process, product
requirements, verification

Prostředí pro testování a připojení simulátorů výhybek

Abstrakt: Tato diplomová práce se zabývá následujícími procesy: vývojem a im-
plementací softwarové aplikace pro řízení různých simulátorů výhybek a logování
dat z jejich rozhrání; provedením testování této aplikace podle EN 50128 ; prove-
dením testování simulátoru výhybky se sedmi vodiči podle EN 50129. Práce popisuje
tvorbu aplikace a dokumentace (včetně uživatelské příručky) na základě informací
z manuálů k simulátorům. Implementovaná aplikace je následně zkontrolována na
problémy a chyby s pomocí testovaní podle zvolených metod z EN 50128. Tyto
metody, jejich techniky a vytvořený testovací softwarový nástroj jsou také prezen-
továny v práci. EN 50129 se používá k testování simulátoru výhybky se sedmi vodiči
a k dokumentování nalezených problémů. Testovací část práce obsahuje také popis
sestavy testovacího hardwarového nástroje. Konečné výsledky testů jsou analyzovány
a diskutovány. Na závěr je shrnut průběh projektu a jsou definovány budoucí kroky.

Klíčová slova: CENELEC, EN 50128, EN 50129, vývojový proces, požadavky na
produkt, verifikace

Contents

List of Acronyms ix

List of Figures xi

List of Tables xiii

Introduction 1

1 Point operating system 3
1.1 Architecture . 3

1.1.1 Interlocking . 3
1.1.2 Point driver . 4
1.1.3 Point machine . 4

2 Point Machine Simulator 5
2.1 2PMS-3P4W . 5

2.1.1 Specifications . 5
2.2 2PMS-1P3P7W . 10

2.2.1 Specifications . 10

3 Application design and development 15
3.1 Requirements . 15

3.1.1 Backend . 15
3.1.2 Frontend . 15
3.1.3 Communication protocol . 16

3.2 Implementation . 18
3.2.1 Software tools and libraries . 18
3.2.2 Architecture . 19
3.2.3 GUI and manual . 21

3.3 Summary . 25

4 System testing 27
4.1 CENELEC . 27

4.1.1 EN 50128 . 28
4.1.2 EN 50129 . 30

4.2 Application testing . 31
4.2.1 Boundary value analysis . 31
4.2.2 Equivalence class and input partition testing 32
4.2.3 Process simulation . 33
4.2.4 Code Review . 36
4.2.5 Structure-based testing . 38
4.2.6 Summary . 41

4.3 Manual Point Driver . 41

vii

viii Contents

4.3.1 Requirements . 41
4.3.2 Functionality . 42
4.3.3 Components . 44
4.3.4 Realization and testing . 48

4.4 2PMS-1P3P7W testing . 50
4.4.1 Functional testing and verification . 50
4.4.2 Summary . 53

Conclusion 55

Bibliography 57

Attachments 61
A Modbus TCP mapping . 61

A.1 2PMS-3P4W . 61
A.2 2PMS-1P3P7W . 62

B Directory tree . 64

List of Acronyms

PMSs Point Machine Simulators 1
PMs point machines . 1
GUI graphical user interface . 1
SW software . 1
HW hardware . 29
EP end position . 6
1P one phase . 5
3Ps three phases . 5
4Ws four wires . 5
7Ws seven wires . 5
TCP/IP Transmission Control Protocol/Internet Protocol 17
I/O input/output . 6
EN European norms . 27
BVA Boundary value analysis 28
ECIPT equivalence class and input partition testing 28
PS process simulation . 29
TCC Test coverage for code . 29
MPD Manual Point Driver . 41
FEPL Force end position left . 7
FEPR Force end position right . 7
CVCU Control Voltage Connector Unplugging 7
ELT Earth Leakage Test . 7
EPR End position right . 7
EPL End position left . 7
COVP Control voltage presence . 7
MRPO Moving right phase order 7
MLPO Moving left phase order . 7
POS point operating system . 1
SWTI switching time . 7

ix

x List of Acronyms

EPRED end position reaching delay 7
PDOVRD Position detectors override 11
OVS2P Connect S2 to positive . 11
OVS2M Connect S2 to negative . 11
OVS1P Connect S1 to positive . 11
OVS1M Connect S1 to negative . 11
ShuntL2L3 Shunt L2-L3 if 1P 7W . 11
ShuntedL1L2 L1 and L2 are shunted . 12
ShuntedL2L3 L2 and L3 are shunted . 12
LoadL1 L1 is connected to the load 12
LoadL2 L2 is connected to the load 12
LoadL3 L3 is connected to the load 12
LoadN N is connected to the load 12
S2P S2 is connected to the positive detection voltage 12
S2N S2 is connected to the negative detection voltage 12
S1N S1 is connected to the negative detection voltage 12
S1P S1 is connected to the positive detection voltage 12
SILs safety integrity levels . 28
is7W 7W simulator indication . 12
is1P7W 1P 7W is configured . 12
NC normally closed . 44
NO normally open . 44

List of Figures

1.1 Point operating system . 3
1.2 S 700 K point machine [4] . 4

2.1 2PMS-3P4W [6] . 5
2.2 3P switching process diagram (adapted from [7]) 8
2.3 Jamming process diagram (adapted from [7]) 8
2.4 Trailing process diagram (adapted from [6]) 9
2.5 Forcing EP process diagram (adapted from [6]) 9
2.6 Control voltage connector . 9
2.7 1P switching process diagram (adapted from [7]) 12
2.8 Invalid position setting process diagram 13

3.1 Observer tab of the application . 16
3.2 Modbus TCP Client/Server model (adapted from [8]) 16
3.3 Setup tab of the application . 17
3.4 Modbus TCP Client/Server communication 19
3.5 PMS Control Application code structure 20
3.6 PMS Control Application shortcut . 21
3.7 PMS Control Application Welcome Window 22
3.8 PMS Control Application Observer tab 22
3.9 PMS Control Application Setup tab 23
3.10 Exported .log files . 23
3.11 PMS Control Application Logger tab 24
3.12 PMS Control Application error message 24
3.13 PMS Control Application Test tab . 25

4.1 Scope of the main CENELEC railway applications standards [15] . . 27
4.2 Product development life cycle (adapted from [16]) 30
4.3 pms.py 7W PMS type window . 34
4.4 pms.py GUI . 35
4.5 MPD and 7W PMS connection . 41
4.6 3P 7W/4W MDP wiring diagram (adapted from [23]) 42
4.7 1P 7W MPD wiring diagram (adapted from [24]) 43
4.8 Contactor LC1D12P7 [25] . 44
4.9 Residual-current circuit breaker EX9L-N [26] 45
4.10 Circuit breaker A9F06310 [27] . 45
4.11 Fuse OMEGA CF520310 [28] . 46
4.12 Push-button switches . 47
4.13 Input (right side) and output (left side) MPD cables 47
4.14 Panel 3959 AcquaCOMBI IP65 [33] 48
4.15 3P 4W/7W MPD wiring . 49

xi

xii List of Figures

4.16 1P 7W MPD control panel . 49
4.17 1P 7W MPD (left side) and 3P 4W/7W MPD (right side) 50

List of Tables

2.1 2PMS-3P4W indicated positions and corresponding relay states [6] . 6
2.2 2PMS-3P4W pulse inputs [6] . 7
2.3 2PMS-3P4W switch inputs [6] . 7
2.4 2PMS-1P3P7W indicated positions and corresponding relay states [7] 10
2.5 2PMS-1P3P7W pulse inputs [7] . 11
2.6 2PMS-1P3P7W switch inputs [7] . 11

3.1 Primary tables of Modbus data model [8] 18

4.1 Code coverage issues for pms_control_app.py 39
4.2 Code coverage issues for tools.py . 40
4.3 Contactor LC1D12P7 parameters [25] 44
4.4 Residual-current circuit breaker EX9L-N parameters [26] 45
4.5 Circuit breaker A9F06310 parameters [27] 46
4.6 Fuse OMEGA CF520310 parameters [28] 46
4.7 Push-button switches parameters [29] [30] 46
4.8 Plug and socket parameters [31] [32] 48
4.9 2PMS-1P3P7W test cases . 51
4.10 Modbus TCP replacements . 53
11 2PMS-3P4W Modbus TCP mapping [6] 61
12 2PMS-1P3P7W Modbus TCP mapping [7] 62

xiii

Introduction

The rail industry consists of manufacturing, selling, and operating railway tech-
nologies. The purpose of railway systems manufacturing is to create a reliable and
high-quality product that would ensure flawless operation in the railway transport
area. In order to achieve this purpose, there must be such steps as

• studies and design,

• hardware and software development,

• verification, tests, integration, and validation.

The master’s thesis deals with the testing part of railway system manufacturing.
More precisely, it works with components used for testing systems for control-
ling railway points and derailleurs. These components are Point Machine Simu-
lators (PMSs), which perform the functions of real point machines (PMs). More
details about them are in Chapter 1.

The goal of the thesis is to design and implement a software (SW) application
with a graphical user interface (GUI) for controlling various PMSs and data logging
from their interfaces. The proper functioning of the developed application must be
verified with the help of the particular norm described in Section 4.1.1. Also, fac-
tory testing of one PMS type must be provided according to the norm described in
Section 4.1.2

The master’s thesis is divided into the following chapters:

• Point operating system architecture
This chapter briefly describes the basic principles of point operating system
(POS) functionality. This theory is needed for a better understanding of the
master’s thesis motivation.

• Point Machine Simulator
The chapter contains specifications of PMSs that were used during work on
the thesis.

• Application design and development
This part of the thesis documents the development process of the application
for interaction with PMSs.

• System testing
This chapter describes the testing of the developed application and the PMS
prototype. It also includes a description of the tools used during the testing.

1

Chapter 1

Point operating system

POS is a complex of devices intended for point blades control. The point blades
(points) are mobile rails directing the railway transport towards the straight or the
diverging track [1]. This chapter briefly describes the parts of POS driving the points.

1.1 Architecture
The devices composing POS are shown in Figure 1.1. The system consists of in-
terlocking, point driver, and switch motors (PMs). The interlocking communicates
and interchanges information with PMs through the point driver. Their cooperation
ensures safe railway processes [2].

Figure 1.1: Point operating system

1.1.1 Interlocking
Railway interlocking serves to prevent conflicting or unsafe situations between trains
by regulating such track devices as derailments, junctions, and crossings [3].

When the train receives a signal to move along the established route, all movable
components on the train’s path are set to the locked position. The components re-
main in this position until the train receives a signal to cancel the movement or until
it leaves the area belonging to the route [3].

The aims of interlocking are the following [3]:

3

4 Chapter 1. Point operating system

• to provide details about movement requests, velocities of trains, and workloads
on railway sections;

• to provide and maintain trains routes safety;

• to make sure that the system will end in a safe state in case of failure.

1.1.2 Point driver
This part of POS serves as an intermediary between the interlocking and PMs. The
driver collects and transmits information to control the points’ behavior and ensure
the system’s safety [2].

1.1.3 Point machine
Effective throwing of points is needed to ensure operational safety and high train
throughput. PMs are the way to achieve these goals. These devices provide the func-
tion of locking/unlocking and operating the point switches [4]. Figure 1.2 shows the
S 700 K PM from Siemens Mobility s.r.o.

Current PMs contain an electric motor. Its torque is converted into the throw-

Figure 1.2: S 700 K point machine [4]

ing force: the rotary motion is transformed into the linear motion necessary for the
point switching [5].

Chapter 2

Point Machine Simulator

This chapter explains the principles of PMS functionality.

PMS is an internal Siemens product used for testing point controllers. It performs
the functionality of PM: each PMS represents two independent PMs. Two PMS
types are considered in this thesis:

• 2PMS-3P4W with three phases and four wires (4Ws);

• 2PMS-1P3P7W with one phase (1P)/three phases (3Ps) and seven wires
(7Ws).

Their specifications are described in the following sections.

2.1 2PMS-3P4W
This section is based on the PMS documentation 2PMS-3P4W Design Specification
and Manual [6].

2PMS-3P4W is used for simulation of PMs with 3P and 4W [6]. Figure 2.1 rep-
resents what its front panel looks like.

Figure 2.1: 2PMS-3P4W [6]

2.1.1 Specifications
This subsection contains specifications and characteristics of 3P 4W PMS.

5

6 Chapter 2. Point Machine Simulator

Functions & requirements

PMS has to provide the following functions [6]:

• simulation of throwing to the right/left end position (EP) depending on the
phases’ order;

• simulation of throwing to the reverse direction;

• simulation of the point trailed event;

• simulation of the situation, when the trailed point ends in the opposite direc-
tion;

• simulation of the situation, when the trailed point ends in the same direction
after some delay;

• simulation of the point jammed event;

• simulation of the situation, when the jammed point starts to move after some
delay;

• simulation of two independent points;

• remotely setting of throwing time;

• available communication via Modbus TCP;

• available 24V parallel input/output (I/O) interface.

Position sensing

PM EP and the switching direction can be detected via special relays inside PMS.
Table 2.1 shows the relation between relay states and indicated positions. 1 repre-
sents closed relay, and 0 represents opened relay [6].

Table 2.1: 2PMS-3P4W indicated positions and
corresponding relay states [6]

Position L1-N L2-N L1-L3 L2-L3
Unplugged 0 0 0 0
Middle 0 0 1 1
Left 0 1 1 0
Right 1 0 0 1
Invalid 1 1 0 0

Motor phase orders

• L1-L2-L3 - Moving LEFT [6].

• L2-L3-L2 - Moving RIGHT [6].

2.1. 2PMS-3P4W 7

Inputs and outputs

Each simulated PM operates with inputs and outputs described in this section.
The tables below describe the inputs’ functions: Table 2.3 contains definitions of
24 V pulse inputs reacting on rising edge; Table 2.2 has definitions of 24 V switch
continuous inputs (their high level represents an active state) [6].

Table 2.2: 2PMS-3P4W pulse inputs [6]

Signal name Description and restrictions

Force end position left (FEPL)
This input sets PMS EP to the left without
delay. The control voltage must be discon-
nected.

Force end position right (FEPR)
This input sets PMS EP to the right with-
out delay. The control voltage must be dis-
connected.

Trail This input sets the PMS position to the
middle without delay. The control voltage
must be disconnected.

Table 2.3: 2PMS-3P4W switch inputs [6]

Signal name Description and restrictions

Earth Leakage Test (ELT)
This input simulates earth leakage.

Control Voltage Connector Un-
plugging (CVCU)

This input simulates unplugging the control
voltage. The control voltage must be discon-
nected. Unplugging cannot be done while
PM changes its position.

Jamm This input prolongs the switching time.
PMS remains in the middle position if the
control voltage is not present. If it is, PMS
is switched to the required EP.

There is also the possibility of setting PMS time parameters [6]:
• switching time (SWTI);

• end position reaching delay (EPRED).
Their range is from 0 to 32767 ms [6].

The following list contains 24 V switch outputs of each PM [6]:
• End position right (EPR);

• End position left (EPL);

• Control voltage presence (COVP);

• Moving right phase order (MRPO);

• Moving left phase order (MLPO).

8 Chapter 2. Point Machine Simulator

Logic

This subsection describes the logic of 4W PMS, which is similar to the real PM
behavior.

The diagram shown in Figure 2.2 demonstrates the basic switching logic. EP depends
on the phase order [6]:

• L1-L2-L3 (MLPO) - LEFT EP;

• L1-L3-L2 (MRPO) - RIGHT EP.

Figure 2.2: 3P switching process diagram (adapted from [7])

The switching diagram with simulated Jamming is in Figure 2.3. Figure 2.4 shows
the PMS reaction to trailed pulse. Forcing EP process diagram is shown in Figure
2.5 [6]:

• EPL forces LEFT EP;

• EPR forces RIGHT EP.

Timeout on all the diagrams represents throwing time equal to the sum of SWTI
and double EPRED [6].

Figure 2.3: Jamming process diagram (adapted from [7])

2.1. 2PMS-3P4W 9

Figure 2.4: Trailing process diagram (adapted from [6])

Figure 2.5: Forcing EP process diagram (adapted from [6])

Interfaces

3P 4W PMS has three primary interfaces. They are described in the following list.

• User interface
Figure 2.1 shows the front panel of 3P 4W PMS. Via the round buttons, the
user can send the following inputs: FEPL, FEPR, Trail, Jamm. The square
buttons allow setting such parameter as SWTI and EPRED. The display shares
information about PMs’ states [6].

• Test automation interface
This interface contains a power connector for PMS consumption (230V/16A),
two five-pin plugs for control voltage connection (400V/16A, Fig. 2.6), an
Ethernet connector, and 24 V input described below [6].

– 24 V interface
The interface contains one I/O connector for each PM. The following
signals can be transmitted through it: EPR, EPL, COVP, MRPO, MLPO,
Trail, Jamm, FEPR, FEPL, CVCU, ELT [6].

• Modbus TCP interface
Modbus TCP inside the device allows setting inputs and holding registers
(SWTI and EPRED) and reading out outputs [6]. The Modbus mapping table
can be found in Appendix A.1.

Figure 2.6: Control voltage connector

10 Chapter 2. Point Machine Simulator

2.2 2PMS-1P3P7W
This section cites the 7W PMS documentation Manual for Point Machine Simulator
[7].

2PMS-1P3P7W is a 7W expanded version of 2PMS-3P4W and keeps most of its
functionality [7].

2.2.1 Specifications
This subsection contains specifications and characteristics of 1P/3P 7W PMS.

Functions & requirements

The list of the required functions was expanded by the following points [7]:

• updated physical interface and logic for the 1P 7W and 3P 7W PM simulation;

• possibility to configure the PMS power interface (1P/3P) by the user;

• backward compatibility of the Modbus and configuration interfaces with 2PMS-
3P4W ;

• reduced 24 V parallel I/O interface: only power interface selection (1P/3P)
available.

Position sensing

The position detection circuitry of 7W PMS is separated from power lines. The
detection signals are the following [7]:

• Positive voltage output,

• Negative voltage output,

• Detector 1,

• Detector 2.

The voltage outputs are shunted to the detectors according to the point position.
Table 2.4 shows their functional logic. S1 and S2 are detector relays; the sign +/- rep-
resents positive/negative voltage; 1 represents closed relay, and 0 represents opened
relay [7].

Table 2.4: 2PMS-1P3P7W indicated po-
sitions and corresponding relay states [7]

Position S2+ S2- S1- S1+
Unplugged 0 0 0 0
Middle 0 0 0 0
Left 0 1 0 1
Right 1 0 1 0
Invalid 0 1 1 0

2.2. 2PMS-1P3P7W 11

Motor phase orders and switching direction sensing

Motor phase orders for the 3P 7W power interface are the same as for 4W PMS [7]:

• L1-L2-L3 - Moving LEFT,

• L1-L3-L2 - Moving RIGHT.

The logic of sensing the switching direction for the 1P 7W power interface is the
following [7]:

• Moving LEFT is simulated in case of detected voltage on L1 if the current EP
is not left;

• Moving RIGHT is simulated in case of detected voltage on L2 if the current
EP is not right.

Inputs and outputs

Most of the 7W PMS inputs and outputs are the same as for 3P 4W PMS. The
following tables demonstrate the differences: Table 2.5 describes pulse input changes,
Table 2.6 shows changes in switch inputs.

Table 2.5: 2PMS-1P3P7W pulse inputs [7]

Signal name Description and restrictions
Invalid end position This input is a combination of the pressed

Jamm and Trail buttons.

Table 2.6: 2PMS-1P3P7W switch inputs [7]

Signal name Description and restrictions

Position detectors over-
ride (PDOVRD)

High level of this input enables to override
the position detectors.

Connect S2 to positive (OVS2P)
This input connects the relay S2 to the pos-
itive voltage.

Connect S2 to negative (OVS2M)
This input connects the relay S2 to the neg-
ative voltage.

Connect S1 to negative (OVS1M)
This input connects the relay S1 to the neg-
ative voltage.

Connect S1 to positive (OVS1P)
This input connects the relay S1 to the pos-
itive voltage.

Shunt L2-L3 if 1P 7W
(ShuntL2L3)

The input connects the third resistor if the
PM type is 1P 7W.

ELT The input is no more available.

12 Chapter 2. Point Machine Simulator

The possibility of setting PMS time parameters is retained.

The 7W version of PMS also has some extra outputs [7]:

• 7W simulator indication (is7W);

• 1P 7W is configured (is1P7W);

• L1 and L2 are shunted (ShuntedL1L2);

• L2 and L3 are shunted (ShuntedL2L3);

• L1 is connected to the load (LoadL1);

• L2 is connected to the load (LoadL2);

• L3 is connected to the load (LoadL3);

• N is connected to the load (LoadN);

• S2 is connected to the positive detection voltage (S2P);

• S2 is connected to the negative detection voltage (S2N);

• S1 is connected to the negative detection voltage (S1N);

• S1 is connected to the positive detection voltage (S1P).

Logic

The trailing, jamming and forcing EP diagrams for 7W PMS are the same as for 4W
PMS (Fig. 2.4, 2.3, 2.5). The switching diagram shown in Figure 2.2 is also valid for
the 3P 7W PMS switching. The diagram for the 1P 7W PMS switching is similar
to Figure 2.7. The only difference is that EP depends on the phase voltage presence
relays, not on the phase orders [7]:

• L1 voltage is present - LEFT EP;

• L2 voltage is present - RIGHT EP.

Figure 2.7: 1P switching process diagram (adapted from [7])

2.2. 2PMS-1P3P7W 13

Figure 2.8 shows setting the INVALID position (both detectors are connected to
the negative voltage) by pressing the Jamm and Trail buttons simultaneously [7].

Figure 2.8: Invalid position
setting process diagram

The 7W PMS also has the possibility to override the position detector interface and
set the PM position manually [7]:

• the PDOVRD coil must be set to True;

• the detector outputs are set by the corresponding OVS input signals;

• the final position is then detected according to Table 2.4.

Interfaces

• Power interface
The power interface can be configured for simulation 1P 7W or 3P 7W PM
[7].

• User interface
The functionality of the user interface is adapted to the 7W PMS inputs and
outputs [7].

• Test automation interface
The test automation interface was expanded by two detector connectors with
the following pins [7]:

– positive detection voltage;
– negative detection voltage;
– S1;
– S2.

• 24 V interface
The 24 V interface is reduced to perform only the function of selecting PM
type [7]:

– if the voltage is present, the 1P mode is selected;
– if the voltage is not present, the 3P mode is selected.

• Modbus TCP interface
The Modbus interface mapping also was expanded. It can be found in Ap-
pendix (A.2).

Chapter 3

Application design and
development

One of the master’s thesis aims is to create an application for communication and
interaction with available PMS types. The application will be used as a testing
and interfacing environment within Siemens Mobility s.r.o. This chapter is about
application development and implementation.

3.1 Requirements
Requirements for the application are described in the current section.

3.1.1 Backend
The requirements for the application backend are the following:

• multiple instances (up to six) connection possible;

• communication with PMSs via Modbus TCP;

• support for the Modbus-driven simulators 2PMS-3P4W and 2PMS-1P3P7W ;

• logging of the PMSs behavior;

• possibility to export logs to files;

• possibility to combine logs of each PMS to one file;

• possibility to setup parameters for the given type of PM;

• the application shall be compatible with Windows;
compatibility with Linux is optional.

3.1.2 Frontend
The application should have a user-friendly GUI meeting the requirements described
below.

15

16 Chapter 3. Application design and development

Observer tab

The first tab should contain a visualization of PMs movements. Figure 3.1 shows
the example of what it can look like.

Figure 3.1: Observer tab of the application

Setup tab

The second tab is intended for PMSs’ parameters setting (Fig. 3.3).

Logger tab

The Logger tab should create and display logs in a bash style for each PM.

3.1.3 Communication protocol
Modbus TCP should be used for the communication between the application and
PMSs.

Figure 3.2: Modbus TCP Client/Server model (adapted from [8])

3.1. Requirements 17

Figure 3.3: Setup tab of the application

Modbus TCP is a protocol from the application layer of the open systems inter-
connection model, which is used by devices connected to an Ethernet Transmission
Control Protocol/Internet Protocol (TCP/IP) network for client-server communica-
tion. It can operate with four types of messages (Fig. 3.4) [8]:

• Request;

• Indication;

• Response;

• Confirmation.

The principle of the model functionality is the following [8]:

1. The client sends the Request message to the server for initiation of a transac-
tion;

2. Indication is the Request message received by the server;

3. The server sends the Response message to the client;

4. Confirmation is the Response message received by the client.

Table 3.1 contains four primary data model tables on which the Modbus protocol is
based [8].

PMS’s logical inputs and outputs can be set and read out via Modbus TCP [7]. I
will use the standard RJ-45 connector for the Modbus TCP interface accessing.

18 Chapter 3. Application design and development

Table 3.1: Primary tables of Modbus data model [8]

Primary tables Object type Type of
Discrete inputs Single bit Read-Only
Coils Single bit Read-Write
Input Registers 16-bit word Read-Only
Holding registers 16-bit word Read-Write

3.2 Implementation
This section contains an explanation of the application functionality, a description
of the tools used during the application implementation, and the application user
manual. The name of the application is PMS Control Application.

3.2.1 Software tools and libraries
A programming language chosen for the application implementation is Python. It
is convenient for creating applications with GUI, where it is necessary to combine
backend and frontend implementation.

This subsection describes some tools and Python libraries that were used for the
application development.

Pymodbus

Pymodbus is a Python implementation of the Modbus protocol. It enables [9]

• Modbus server-client connection,

• reading from coils and registers,

• writing to coils and registers.

In our case, the application is considered as a client, and PMSs are servers. The
protocol uses port 502 as a default local port of the Modbus server [8].

Tkinter & Pygubu

Tkinter is a Python GUI cross-platform (supported by both Windows and Linux)
framework. It is a good tool for creating a convenient and user-friendly interface.
This framework was used for the implementation of application’s GUI [10].

Some parts of GUI were designed with the help of Pygubu. Pygubu is a rapid appli-
cation development tool for the Tkinter module used for fast and easy GUI creation
[11].

Doxygen

Doxygen is a tool used to generate documentation from a set of source files, in-
cluding files with source code. This tool supports Python and allows the generation

3.2. Implementation 19

of different documentation kinds [12]. Online documentation in hypertext markup
language format was created with the help of Doxygen.

Pyinstaller

Pyinstaller is a Python package used for creating an executable file from a Python
script [13].

3.2.2 Architecture
As it is defined in the requirements for the backend, communication between the
application and PMSs should be provided via Modbus TCP (Fig. 3.4). The appli-
cation acts as a client: it send requests to PMS (server), receive responses from the
server, and analyze them. PMS’s Modbus coils and registers, and their numbers, can
be found in Appendix A.

Figure 3.4: Modbus TCP Client/Server communication

Functionality

The application code structure is shown in Figure 3.5. Two Python modules were
created:

• tools.py is a module containing classes needed for the proper functionality of
the created Modbus client and some tools used by pms_control_app.py. It
consists of two classes: WelcomeWindow and MainWindow.

• pms_control_app.py is a module ensuring that the application functions ac-
cording to the requirements by the appropriate connection of the backend and
frontend. It contains the following classes: PMStypes, Timer, Client, Registers
and Logs.

WelcomeWindow class is responsible for starting the application. It creates the win-
dow shown in Figure 3.7 with the help of Tkinter module, processes entered infor-
mation and starts the MainWindow class object.

MainWindow class creates the main window of the application (Fig. 3.8) with all the
tabs described in the requirements. With the help of specific modules, it also ensures
the tabs’ functionality (including sending particular Modbus messages) and definite
reactions to received Modbus messages. Furthermore, the class provides possible

20 Chapter 3. Application design and development

error prevention and controls all the frontend features such as animation, popup
windows, and logging.

Logs is a class used by MainWindow for the Logger tab (Fig. 3.11) and proba-
ble warnings (Fig. 3.13) and error messages (Fig. 3.12). It contains all the possible
announcements that could appear during the application run.

Timer is also used for the proper functionality of the Logger tab. It aims to count
time and convert it to the correct format for logging.

PMStypes is a small enumeration class used by MainWindow and Client to dis-
tinguish different PMS types.

Registers class consists of Modbus register definitions for possible PMS types. It
also has some functions facilitating working with the registers for Client.

Client is a class actively working with the Pymodbus library. It enables connection
to the Modbus servers and communication with them. It also contains an additional
function used for basic testing PMSs, which is partly described in Section 4.4.

Figure 3.5: PMS Control Application code structure

3.2. Implementation 21

Multithreading

The application has GUI consisting of several tabs and also has the possibility to
connect multiply Modbus servers, which should be processed in parallel. That is why
thread-based parallelism is needed for the correct functionality of the application.

The Python library named Threading was used to realize it. This module allows
running different parts of the program concurrently [14].

All the threads start in the MainWindow class. The count of running threads de-
pends on the number of connected PMSs. Three of them are started every time:

• one for logging,

• one for changing the rails’ color (animation),

• a Tkinter main loop.

Each of the rest threads is started as many times as there is the value of calculated
PMs. Their main functions are the following:

• updating positions of the PM rectangles in the Observer tab (animation);

• updating states of the input buttons in the Setup tab.

3.2.3 GUI and manual
The user has the possibility to create a shortcut shown in Figure 3.6 via the attached
Python script makeShotcut.py.

After starting the application by double clicking on the shortcut or the executable

Figure 3.6: PMS Control Application shortcut

file, the user will see a window shown in Figure 3.7. He will enter the IP addresses of
all the PMSs that should be connected and click Ok then. The first PM of the first
PMS will be considered as a master. The main window with four tabs will be opened.

What each tab looks like depends on the number and the type of the connected PMs.
It also can be automatically changed with a physically changed PM type (1P/3P
for 7W PMS).

22 Chapter 3. Application design and development

Figure 3.7: PMS Control Application Welcome Window

The Observer tab (Fig. 3.8) shows PMs’ and the rails’ states graphically and some
information about PMSs (IP address of each PMS and throwing time of each PM).
Every change in PMSs’ states is shown in this tab as an animation in real-time.

The Setup tab (Fig. 3.9) can be used for sending commands to PMSs via Mod-
bus TCP. Buttons and entries also react to PMSs’ state changes, for example, if
commands were sent to some PMS out of the application.

Figure 3.8: PMS Control Application Observer tab

The user can follow the PMSs behavior as logs with time stamps in the Logger tab
(Fig. 3.11). There is always some basic information about each PM at the beginning
of the log. Then Logger reacts to every change in PMSs’ states. The log can be

3.2. Implementation 23

Figure 3.9: PMS Control Application Setup tab

exported to the user’s device in the .log format. One overall log file and one file
for each PM will be created (Fig. 3.10). Before exporting, logging must be stopped
via the Stop button. After pressing Export... the user should choose the directory
where logs will be stored. The folder logs with all the .log files will be created in this
directory. In case of the existence of a folder with the same name, files inside will
be rewritten.

The Test tab (Fig. 3.13) is intended for testing the basic functions of all the con-
nected PMSs’ Modbus interfaces. After pressing the Test button, the user will wait
until all of them have been tested. The other tabs will be disabled during the process.

Figure 3.10: Exported .log files

24 Chapter 3. Application design and development

The numbers of tests for one PM are the following:

• 3P 4W PM: 8;

• 3P 7W PM: 15;

• 1P 7W PM: 16.

Figure 3.11: PMS Control Application Logger tab

The application also ensures certain communication with the user through warnings
(Fig. 3.13) and error messages (Fig. 3.12).

Figure 3.12: PMS
Control Application
error message

3.3. Summary 25

3.3 Summary
The created PMS Control Application is used for both-side communication with the
different types of PMS. The communication is provided via Modbus TCP. Two PMS
types are supported:

• 2PMS-3P4W,

• 2PMS-1P3P4W.

Figure 3.13: PMS Control Application Test tab

The application provides the following functions:
• Observation of the PMS set (up to six) behavior. The set can contain a com-

bination of different PMS types.

• Sending commands to PMSs, receiving signals from PMSs, and updating their
virtual states.

• Logging of the PMSs’ behavior with the possibility of export (.log file format,
one common file, one file for each connected PM).

• Testing the basic PMSs’ Modbus interface functionality. This possibility is
out of the requirements. It was implemented as part of the 7W PMS testing
described in Section 4.4 and expanded for 4W PMS.

The whole application was created and tested in Windows with the help of tools
also supported by Linux.

Software testing and verification are described in Section 4.2.

Chapter 4

System testing

This chapter describes the testing part of the project. It contains
• theoretical information about the standards according to which tests were

provided (Section 4.1);

• description of creating necessary testing tools (Sections 4.2.3, 4.3);

• description of SW and HW testing processes themselves (Section 4.2, 4.4).

4.1 CENELEC
CENELEC means European Committee for Electrotechnical Standardization. It
deals with the creation of European norms (EN) for standardization in all areas
of the electrical engineering. These standards also guides SW and HW development

Figure 4.1: Scope of the main CENELEC railway applications standards [15]

for the railway industry. In Figure 4.1, there is a relationship between CENELEC
standards for the railway applications [15]. As part of this work, I used two of them:

• EN 50128 - to test the developed SW application for communication with
PMS;

• EN 50129 - to test 7W PMS.

27

28 Chapter 4. System testing

4.1.1 EN 50128
Information in this section has been taken from the document EN 50128 [15].

EN 50128 is a European standard containing requirements for any safety-related
railway control and protection of an application lifecycle. This standard is not suit-
able for SW, which behavior cannot affect the system’s safety. It is intended solely
for SW and its relation with the system of which it is part, including [15]

• operating systems,

• firmware,

• support tools,

• application programming containing high/low-level programming and special-
purpose programming.

Standard also deals with the use of SW, which already exists [15].

ENs deal with five SW safety integrity levels (SILs): the lowest is SIL 0, the highest
is SIL 4. Each of them has its own required measures and techniques. SIL of SW
should be defined based on several factors [15]:

• SIL of the system,

• risks arising from the use of this software in this system,

• social factors,

• economic factors.

The software developed as a part of the master’s thesis is an application with GUI for
dealing with some railway devices. Testing of this application is performed according
to CENELEC standard EN 50128 as for SW with SIL 0. The following subsections
describe some methods that can be used for application testing.

Functional testing

Functional (black box) testing is a method for analyzing the functionality of the SW
application. It does not require information about the product’s internal structure.
The method’s techniques are described below.

• Boundary value analysis (BVA) aims to detect and eliminate errors that
might appear at parameter limits or boundaries. Every program has a set
of possible inputs called an input domain. According to this technique, the
input domain should be divided into several classes. Realized test cases should
cover their extremes and boundaries, forcing the output values to their limits.
Particular attention should be paid to zero values used as zero-divisors, null
matrix, and non-printing control characters. They might be error-prone [15].

• The equivalence class and input partition testing (ECIPT) purpose is
sufficient SW testing with a minimum of test data. As in the previous tech-
nique, the input domain should be partitioned into classes. There are two basic
ways [15]:

4.1. CENELEC 29

– Equivalence classes defined on the specifications:
∗ input-oriented - the same operations with the selected values;
∗ output-oriented - the same functional result for the selected values.

– Equivalence classes defined on the internal program structure:
∗ the class results are specified by static analysis of SW - the same way

of execution for the selected values.

• The process simulation (PS) goal is to test the SW operation together with
its interface. It is performed with the help of a testing method that simulates
the behavior of the real system, driven by the system under test. This method
may consist of SW only or SW and hardware (HW) combination. The following
features should be simulated [15]:

– all existing inputs for the system under test available after its installation;
– responses to the system outputs corresponding with true reactions of the

controlled system;
– the possibility of some input perturbations, which the system under test

has to be able to deal with.

Static analysis

Static analysis is a testing method for examining a program without executing it.

• Walkthrough is a technique used to detect errors in the system as soon as
possible at the lowest cost. A small set of test cases representing the program’s
inputs and corresponding outputs is selected for Walkthrough. This test data
is then manually traced through the program logic [15].

• Design and code reviews aim to check if the reviewed product fulfills the
requirements and standards [15].

Test coverage for code

Test coverage for code (TCC) is used for the dynamic analysis associated with the
program execution. Test coverage is a measure of the executed code lines amount.
It is calculated during a run of the set of tests.

• Structure based testing aims to apply tests that exercise the specific pro-
gram structure subsets. A set of input data is selected in such a way that a
significant part of chosen program elements is exercised. These program ele-
ments can differ depending on the required severity level [15]:

– the statement coverage is the least strict test: all statements of the
source code can be executed without exercising two conditional statement
branches;

– the branch coverage should check both sides of every branch so that all
possible outcomes are executed at least once for each condition;

– the compound conditions coverage test executes each condition of a
branch linked by operators and/or ;

30 Chapter 4. System testing

– a linear code sequence and jump is a part of the SW program con-
taining a linear sequence of code statements terminated by a jump;

– the data flow coverage is based on the definition and usage of data - for
each variable used in a statement, all possible execution paths where the
variable was defined should be found;

– a call graph is a tree of program subroutine invocations - designed tests
should cover all of them.

– an entire path means that all potential program paths should be ex-
ecuted. Total entire path testing is usually unattainable because of the
large number of possible paths.

4.1.2 EN 50129
This section is based on the document EN 50129 [16].

EN 50129 describes requirements for the approval of safety-related electronic sys-
tems, subsystems, and tools for railway signaling applications. Besides generic sys-
tems, it can also be applied to specific applications. The standard cannot be used
for any security aspects other than the functional safety of systems. It is intended
for all safety-related electronic system life cycle phases (Fig. 4.2) [16].

Figure 4.2: Product development life cycle (adapted from [16])

In this thesis, the norm is used for the factory testing of 7W PMS and documenting
the product development process. The techniques needed for achieving the goals are
listed below. They all belong to the testing part of the product development life
cycle [16].

• Design review aims to check if the product complies with the input require-
ments for the development.

4.2. Application testing 31

– The purpose of functional testing and formal verification of the
system is to control if the product conforms to the specifications and
safety requirements. The results should answer the question: "Has the
product been developed correctly?" [16].

• Test facilities and simulation method includes the creation of test equip-
ment to simulate some functions of the system under test or associated with
it wares [16].

4.2 Application testing
The created application was tested according to EN 50128. General principles of
the tests are explained in Section 4.1. The current section describes the process of
testing the developed SW and the test results.

4.2.1 Boundary value analysis
BVA implies the separation of an input domain of the program into classes with
clear boundaries [15]. Classes’ boundary values are used as test inputs. The program
can get non-standard inputs from the user via GUI or from the server in the form
of Modbus messages. A set of tests was created and provided manually from the
server/user side. The details are in the following subsections.

Welcome Window functionality: IP fields and Ok button

• Classes:

– Numbers of entered valid IP addresses from 1 to 6 (6 is the number of
the Welcome Window fields);
Empty sequence.

∗ Precondition: six available Modbus servers.
∗ Inputs: six entered IP addresses; an empty input.

• Issues:

– The empty input raises a ValueError.
∗ Expected behavior: the application should be closed after the

Modbus error notifying.

Setup tab functionality: input fields and corresponding Set buttons

• Classes:

– Integer numbers from 0 to 32767 (lower and upper limits for the SWTI
and EPRED registers);
Integer numbers from −∞ to −1;
Integer numbers from 32768 to ∞.

∗ Precondition: at least one connected valid Modbus server.
∗ Test inputs: −1; 0; 32767; 32768.

32 Chapter 4. System testing

• Issues:

– The inputs −1 and 32768 do not cause any error, but they are invalid.
The application does not prevent sending invalid values to the server.

∗ Expected behavior: the program should notify attempts to send
an invalid value and prevent it.

4.2.2 Equivalence class and input partition testing
ECIPT also includes dividing the input domain into classes. In this case, clear bound-
aries are unnecessary because any value from each class can be used [15]. Tests were
provided manually from the server/user side, as it was done for BVA. The test
descriptions are in the lists below.

Welcome Window functionality: IP fields and Ok button

• Classes:

– Available IP addresses in the correct format;
Unavailable IP addresses in the correct format;
Random symbols;
Enormously long sequences.

∗ Precondition: 10.1.255.101 : 502 is an available Modbus server.
∗ Test inputs: 10.1.255.101 : 502; 10.1.255.102 : 502; 𝑎𝑠.2.𝑑𝑒4._12 :,′;

a million symbols long sequence generated in Python terminal.

• Issues:

– Enormously long input leads to a failure: the application does not re-
spond.

∗ Expected behavior: the program should generate the error message
for the user and continue to work or prevent entering such a long
sequence.

Setup tab functionality: input fields and corresponding Set buttons

• Classes:

– Integer numbers from 0 to 32767;
Integer numbers from −∞ to −1;
Integer numbers from 32768 to ∞;
Real numbers from 0 to 32767;
Real numbers less than 0;
Real numbers from greater than 32767;
Random symbols;
Enormously long sequences;
No symbols.

∗ Precondition: at least one connected valid Modbus server.
∗ Test inputs: 1234; −1234; 54321; 1234.5; −1234.5; 54321.5; 𝑎12ℎ𝑗𝑑𝑘ℎ𝑎;

a million symbols long sequence; empty input.

4.2. Application testing 33

• Issues:

– The inputs less than 0 and greater than 32767 do not cause any error, but
they are invalid. The application does not prevent sending invalid values
to the server.

∗ Expected behavior: the program should notify attempts to send
an invalid value and prevent it.

– The application stops answering because of enormously long input.
∗ Expected behavior: the program should generate the error message

for the user and continue to work or prevent entering such a long
sequence.

– The Logger tab reacts to setting random symbols.
∗ Expected behavior: Logger should ignore attempts to set an invalid

value.

Observer, Setup and Logger tabs functionality: changing coils values

• Classes:

– Boolean values True and False;
Numbers 0 and 1;
Numbers from −∞ to −1;
Numbers from 2 to ∞;
Random symbols;
Empty sequence.

∗ Precondition: at least one available Modbus server.
∗ Test inputs: 𝐹𝑎𝑙𝑠𝑒, 1, −123, 123, ”𝑡”, ””.

• Issues:

– There are no problems. The application behaves as expected.

BVA and ECIPT test methods have definite restrictions that significantly reduce
the number of possible test cases. Despite this fact, provided tests were able to find
several SW problems.

4.2.3 Process simulation
PS testing requires a tool able to simulate the behavior of a system driven by SW
under test [15]. A Python module pms.py simulating the behavior of both PMS
types was implemented to meet this condition.

Test software

pms.py was designed and implemented according to the PMSs’ logic described in
Chapter 2. So, it can be used as a virtual PMS to demonstrate the PMS Control
Application functionality or for its manual testing. The module’s code contains two
classes:

34 Chapter 4. System testing

• Server, ensuring the communication via Modbus and simulating PMSs behav-
ior (2PMS-3P4W /2PMS-1P3P4W.);

• MainApp, connecting the server functionality with GUI.

(a) pms.py 4W PMS type (b) pms.py 7W PMS type

Figure 4.3: pms.py 7W PMS type window

The application provides the following functions:

• simulation of the PMSs’ interfaces (Fig. 4.4a) including choice of a PMS type
(Fig. 4.3);

• simulation of the PMSs’ functionality;

• communication via Modbus TCP;

• demonstration of the PMS outputs (Fig. 4.4b).

The pms.py functionality must not meet the requirements for a properly functioning
PMSs because of intentionally added reaction perturbations. The purpose of the
application is to simulate possible inputs to PMS Control Application and possible
PMSs’ reactions.

Testing process

All tests were provided manually with the help of the developed PS SW. Its Output
interface (Fig. 4.4b) was checked and compared with the interfaces of PMS Control
Application during every running test.

The testing was divided into several parts described in the following list.

• Observer tab, Setup tab, and Logger tab functionalities were tested for the
following simulations of PMS:

– 2PMS-3P4W :
∗ two 3P PMs.

– 2PMS-1P3P7W :
∗ two 3P PMs;

4.2. Application testing 35

(a) pms.py Inputs tab (b) pms.py Outputs tab

Figure 4.4: pms.py GUI

∗ two 1P PMs;
∗ the first PM is 3P, the second PM is 1P;
∗ the first PM is 1P, the second PM is 3P.

Tests were provided according to the PMSs requirements described in the
simulators’ specifications (Chapter 2).

• After that, the export of logs and the Test tab were tested.

• The final testing part was closely related to the TCC described in Subsection
4.2.5. The simulations of different processes were being created until all lines of
the code that could have been covered were covered. The PS SW functionality
was changed when needed, for example, for error issues creation.

Problems and errors revealed during PS testing are listed below.

36 Chapter 4. System testing

• If a new number is entered in some field of the Setup tab (Fig 3.9), Logger logs
it no matter if the Set button was pushed or not. The log should be created
only after pushing the button.

• If some connected PM is 3P, the L2L3_Shunt buttons are blocked for all PMs.
The buttons should be blocked for 3P PMs only.

• There are no logs about disconnecting the position detectors of 7W PMS.

• The Modbus error appears when switching the power interface (1P/3P) for
7W PMS.

• The ELT buttons are blocked for all present PMs if at least one 7W PMS is
also connected.

• The Logger tab does not react to external changes (provided on the server’s
side) in JAMM coil and SWTI and EPRED registers.

• The Modbus error appears if the connection between the server and the client
is lost.

The PS testing supported by the TCC control has benefited the code. The tests
have helped to find several substantial bugs influencing some basic functions of the
program.

4.2.4 Code Review
A design review is recommended for SW with SIL 0 [15], but it is irrelevant if the
SW developer does the review of their own code. For this reason, the testing was
provided by one of my colleagues from Siemens Mobility s.r.o. His goal was to check
that the coding standards are met and that the code has an adequate structure.
The reviewer was not directly involved in the SW design. He is a Python expert,
sufficiently qualified to review and comment on the design. This type of review is
formal [17]. The repository with the source code and the documentation were given
to the reviewer.

The summary of the received review and my comments on it are in the following
lists. The reviewer has divided his comments into general and specific.

General comments

• Pylint and Black should be used.

Pylint is a static Python code analyzer that goes through the code without
running it. The analyzer inspects the code for the presence of errors and coding
standards compliance. It also can recommend how to refactor the code better
[18].

Black is a tool for Python code formatting. The tool can reformat the code to
make it more readable [19].

4.2. Application testing 37

• A gitignore file should be created in the repository to filter such unnecessary
files as .pyd, .dll.

gitignore defines intentionally untracked files that should be ignored by Git
[20].

• It is recommended to avoid wildcard imports due to the obscurity of which
names are in the namespace.

Example from the code:
from t o o l s import ∗

Possible solution:
import t o o l s

• Constants for some numbers used in the code are missing.

Constants are more readable and convenient than numbers, and their names
often explain their intentions.

Example from the code:
s e l f . testWin . d e l e t e (1 0 . 0 , tk .END)

Possible solution:
ROW_NUMBER = 10.0
. . .
s e l f . testWin . d e l e t e (ROW_NUMBER, tk .END)

• It would be better to separate the logic from the GUI.

Currently, the pms_control_app.py combines the backend with the frontend.
The solution is to divide the modules’ classes into more specific functional
object constructors and improve them so that the backend part of the code
would be entirely independent of the frontend. In this case, the user would be
able to use the application’s abridged version via the command line without
GUI.

• Lower letters should be used for variable naming.

According to the Python programming language style guide, lowercase with
words separated by underscores is used for variables for better readability.
Functions follow the same convention [21].

Example from the code:
s e l f . stopTabs = False

Possible solution:
s e l f . stop_tabs = False

38 Chapter 4. System testing

• It is recommended to reduce the code to smaller blocks.

The solution is to create more classes and functions focused on more specific
processes.

Specific comments

• The parameter is_server of pms_control_app.py WelcomeWindow class does
not seem to be used. It is also not in the class description.

The parameter should be described in the comments or removed from the
code.

• The function testModbusInterface() from tools.py is too long and should be
divided into several subroutines. Comments should be expanded.

The function consists of the code block that repeatedly occurs with differ-
ent arguments. So, this block could be transformed into a particular function,
which would be used by testModbusInterface(). It improves the code readabil-
ity.

• The function logger() from pms_control_app.py has the same problem as one
described in the previous item. However, it has not a repeatedly occurred block
of the code.

The solution is to divide the function into several different, more specific sub-
routines.

The resulting review consists of some recommendations and comments for the code
improvement, not indications of big mistakes. The whole review was analyzed and
commented on. The results will be used for the improvement of the code.

4.2.5 Structure-based testing
EN 50128 has no recommendation for or against structure-based testing for systems
with SIL 0 [15], but it was provided for improving the code quality and the effec-
tiveness of tests. The branch TCC method was chosen due to its adequate difficulty
and efficiency.

For the measuring code coverage of the program, a Python tool Coverage.py was
used. The tool monitored the program while providing each test. It noted parts of
the code that was not executed, when they could be, and calculated the coverage of
the code in percent [22].

Coverage.py monitored the code during the run of every test described in the previ-
ous subsections. The combination of the real PMSs performance and the PS testing
has covered most of the code. However, it has been found out that some parts of
the code cannot be covered at all. These parts should be removed from the pro-
gram because they do not affect its functionality. Several errors also were revealed.
The details about the arisen issues are in the tables 4.1 and 4.2. The rest of the

4.2. Application testing 39

code was covered. Line numbers in the tables correspond to code lines in attached
files pms_control_app_py.html and tools_py.html (example of the Coverage.py out-
puts), not in the Python files with the source code themselves. The Python files were
edited after the testing, so they may not match the data in the tables.

Table 4.1: Code coverage issues for pms_control_app.py

Line numbers Description

431-432 Problem
672-673 The lines are else parts of the if-else blocks. Their functionality

is to assign the name XPXW to some graphical objects in the
case when the connected PMS type is neither 7W nor 4W.
Getting into this elses is impossible because the class Client
always assigns one of these two types to PMS.

Solution
The first possible solution is to remove these non-covered parts
of the code. The second solution is to fix the Client class so it
could assign more types to PMS.

840-842 Problem
852-853 The lines are elif parts of the if-else blocks. They are respon-
866-868 sible for the switching buttons in the Setup tab. After starting

the application, these lines change the buttons’ states to Not
pressed in case of the negative value of the corresponding Mod-
bus coil. This functionality is useless because the original state
of the buttons is automatically set to Not pressed.

Solution
The solution is to remove these lines.

913-914 Problem
1038-1039 The lines are except parts of the try-except blocks. They should
1107-1108 ensure the safe stop of the program in cases of such issues as
1132-1333 unexpected disconnection of the PMS Modbus interface. The
1299-1301 problem is that the program sometimes does not catch excep-
1352-1354 tions and ends with an error.

Solution
The solution is to analyze the problem and reimplement the
safe stop of the program in a different way.

40 Chapter 4. System testing

Table 4.1: Code coverage issues for pms_control_app.py
Line numbers Description

1209-1216 Problem
This part of the code was planned to be removed during the
implementation. However, it was revealed only while the TCC
testing.

Solution
The lines should be entirely removed from the code.

As a result, pms_control_app.py has eight hundred thirty-six statement runs. Twenty-
seven of them were missed (not covered) during the testing. From nine hundred
ninety-six statement runs of tools.py, eight were missed. The calculated coverage of
the code is ninety-eight percent. This result can be improved if the recommended
solutions from Table 4.1 and Table 4.2 are performed.

Table 4.2: Code coverage issues for tools.py

Line numbers Description

146-147 The listed lines have the same problem and solution as lines
161-162 913-914 of pms_control_app.py (Table 4.1).
177-178
192-193

1518 Problem
This line is an else statement of the Timer class’s if-else block.
Its functionality is to assign a zero value to the variable ze-
roNumber. This variable represents a number of zeros for the
Logger timing. It is needed for the right time stamp format
creation: time should be in microseconds, and notation should
contain eleven or more symbols, for example, 00000031715. The
if-else block calculates a number of zeros at the beginning of
the notation. The considered line was not covered during any
test because assigning a zero value to the variable zeroNumber
would mean expiring a considerable amount of time from start-
ing the application (almost three hours).

Solution
It is sufficiently clear that the line would be covered if the
above-described condition was met. If complete testing is re-
quired, the solution is to give the program enough time to run.

4.3. Manual Point Driver 41

TCC testing has helped to find unnecessary parts of the code and some weak points
and errors. Beyond the effectiveness of the code, this test method can improve the
code structure and appearance. A significant amount of problems were found dur-
ing the testing. All substantial errors that could influence the essential application
functionality were fixed.

The next step is processing the rest of the issues. Some of them already have devised
solutions, and some need to be analyzed more particularly.

4.2.6 Summary
A combination of the chosen test techniques found a set of SW issues and indicated
the code disadvantages. Most of the problems were fixed right after testing. The rest
of them will also be fixed according to the recommendations and solutions described
in this section.

4.3 Manual Point Driver
This section describes the implementation of the Manual Point Driver (MPD), a
HW tool needed for providing tests associated with starting the 7W PMS’s engines.
It is a forward-reverse motor starter created in two versions: the first one is for the
3P motors, and the second one is for the 1P motors. The device’s purpose is to start
a motor inside the connected PMS with the possibility of changing the direction of
rotation. Basically, MPD provides one of the point driver’s functions.

4.3.1 Requirements
The device must meet the following requirements:

• rotation to the right should be possible;

• rotation to the left should be possible;

• electrical circuit protection must be provided;

• the device must be compatible with the 7W PMS (Fig. 4.5);

• a user interface for manual control must be present.

Figure 4.5: MPD and 7W PMS connection

42 Chapter 4. System testing

4.3.2 Functionality
Figures 4.6 and 4.7 show MPD circuits for the different motor types. Each circuit
can be logically divided into two parts:

• the protective part containing a residual-current circuit breaker (Q1), a circuit
breaker (Q2), and fuses (F1, F2);

• the control part containing two contactors (Q3, Q4) and three push buttons
(PB1, PB2, PB3).

3P 7W/4W Manual Point Driver

The direction of the 3P motor rotation depends on its phase order. In the manual
for 2PMS-1P3P7W, the Moving LEFT phase order is defined as the primary order
L1-L2-L3, and the Moving RIGHT phase order is defined as L1-L3-L2. The control
voltage must be present in both cases [6].

Figure 4.6: 3P 7W/4W MDP wiring diagram (adapted from [23])

The user can control the circuit and so the motor behavior via three push buttons
[23]:

• Pressing the LEFT button activates the Q3 coil contactor, so the Q3 phase
contacts are connected in the Moving LEFT order.

• Pressing the RIGHT button activates the Q4 coil contactor, so the Q4 phase
contacts are connected in the Moving RIGHT order.

4.3. Manual Point Driver 43

• Pressing the STOP button breaks the connection with the Q3 and Q4 coils,
so all contacts are returned to their original positions. The rotation stops.

Prevention against the contactors’ simultaneous connection is ensured by means of
their normally closed auxiliary contacts. So, the reverse rotation may be started only
after pressing the STOP button [23].

1P 7W Manual Point Driver

The 1P 7W MDP wiring diagram is similar to 3P 7W/4W MDP. The circuit func-
tionality is the same. There are some differences in wire connections. The reasons
are the following:

• The direction of the 1P motor rotation depends on which phase of the output
plug (P2) is connected to the input phase P1:L1. According to the 1P/3P 7W
PMS manual, voltage presence on the P2:L1 means Moving LEFT and voltage
presence on the P2:L2 means Moving RIGHT [7].

• The manual also states that the input N should be connected to the output
P2:L3 [7].

• The inputs L2 and L3 are not needed for the circuit functionality.

Figure 4.7: 1P 7W MPD wiring diagram (adapted from [24])

The functionality of each protective component used in the circuits is described in
the subsection 4.3.3.

44 Chapter 4. System testing

4.3.3 Components
The components described below were chosen for the device assembly.

Contactor

A contactor is used for switching an electrical power circuit. Since one MPD type
should deal with the 3P motor, the contactor should contain minimally three poles.
According to the schemes (Fig. 4.6, 4.7), it also should have one normally closed (NC)
and one normally open (NO) contacts (Fig. 4.8b). The appropriate device is shown
in Figure 4.8a. In the table 4.3 there are its parameters.

(a) LC1D12P7 look (b) LC1D12P7 wiring

Figure 4.8: Contactor LC1D12P7 [25]

Table 4.3: Contactor
LC1D12P7 parameters [25]

Parameter Value
Numbers of poles 3
Auxiliary contacts NC, NO
Rated current 12 A
Coil voltage 230 V

Residual-current circuit breaker

A residual-current circuit breaker serves to protect the electrical circuit. The circuit
will be disconnected in case part of the incoming current leaks out of it. The chosen
breaker is 3P. It is shown in Figure 4.12 and its parameters are in Table 4.4.

4.3. Manual Point Driver 45

(a) EX9L-N look (b) EX9L-N wiring

Figure 4.9: Residual-current circuit breaker EX9L-N [26]

Table 4.4: Residual-current
circuit breaker EX9L-N pa-
rameters [26]

Parameter Value
Numbers of poles 4
Rated voltage 400 V
Rated current 16 A
Frequency 50 Hz

Circuit breaker

A circuit breaker is a device providing protection against an overcurrent. In case of
an overcurrent, the breaker will disconnect the circuit and protect it from damage.
The appropriate 3P circuit breaker is shown in Figure 4.10. Its parameters are in
Table 4.5

Figure 4.10: Circuit breaker
A9F06310 [27]

46 Chapter 4. System testing

Table 4.5: Circuit breaker
A9F06310 parameters [27]

Parameter Value
Numbers of poles 3
Rated current 10 A
Tripping characteristic B
short circuit resistance 10 kA 240/415V

Fuses

Fuses were used as an additional overcurrent protection of the electrical circuit. They
contain a fusible wire heated up when current flows through it. An overcurrent will
remelt the wire, and the circuit will be interrupted. The chosen fuse is in Figure
4.11, and its characteristics are in Table 4.6.

Figure 4.11: Fuse
OMEGA CF520310 [28]

Table 4.6: Fuse OMEGA
CF520310 parameters [28]

Parameter Value
Rated current 10 A
Characteristics F (Flink)
Fuse body Glass

Buttons

Both circuits contain three push-button switches: two with an NO contact to start
rotation to the left/right (Fig. 4.12a) and one with an NC contact to stop the
rotation (Fig. 4.12b). Their electrical characteristics are in Table 4.7.

Table 4.7: Push-button
switches parameters [29] [30]

Parameter Value
Operating voltage 400 V
Switching current 10 A

4.3. Manual Point Driver 47

(a) Green push button HBY5-10/G [29] (b) Red push button HBY5-
01M/R 40mm [30]

Figure 4.12: Push-button switches

Cables

The device is powered by a three-phase 400 VAC socket, and its output goes to the
input plug of the simulator. So, I have mounted a plug on the end of the MPD input
cable and the socket on the end of the MPD output cable (Fig. 4.13). Parameters
of the chosen plug and socket are in Table 4.8.

Figure 4.13: Input (right side) and output (left side)
MPD cables

48 Chapter 4. System testing

Table 4.8: Plug and socket
parameters [31] [32]

Parameter Value
Number of poles 5
Rated voltage 400 V
Rated current 16 A

Housing

The plastic panel shown in Figure 4.14 was chosen as housing for the components and
wiring. It contains a mounting rail and a terminal block. The panel can withstand
heat up to 85∘C [33]. Fuse holders for a panel and cable glands were also acquired.

Figure 4.14: Panel 3959 AcquaCOMBI IP65 [33]

4.3.4 Realization and testing
All the described components were placed in a box in such a way as shown in Figure
4.15. The circuit breakers are located on the mounting rail under the plastic window,
so their switches are available for the users. The contactors are on the additional
mounting rail, which I have installed in the panel. Both rails were grounded. For
the buttons, fuses, and cables, I have drilled holes in the box and installed the com-
ponents there (Fig. 4.16). Wiring was provided according to the schemes in Figures
4.6, 4.7.

After the complete assemblage of both MPDs (Fig. 4.17), revision and testing were
provided for each device. The PMS reaction to pushing the LEFT/RIGHT button

4.3. Manual Point Driver 49

Figure 4.15: 3P 4W/7W MPD wiring

Figure 4.16: 1P 7W MPD control panel

corresponds to the expected behavior. Rotation stops after pushing the STOP but-
ton. Pushing a direction button during rotation does nothing. Reverse rotation is
possible after pushing the STOP button only. Devices meet all the safety and func-
tionality requirements described in Subsection 4.3.1. The MPD for the 3P motor is
also compatible with 2PMS-3P4W.

50 Chapter 4. System testing

Figure 4.17: 1P 7W MPD (left side) and 3P 4W/7W MPD (right side)

4.4 2PMS-1P3P7W testing
This section documents and summarizes such phases of the product development
process as testing and verification for 2PMS-1P3P7W.

4.4.1 Functional testing and verification
MPD described in the previous subsection has been created for the 7W PMS testing.
The device serves to simulate the function of the point controller connected to PMS.
MPD was used for providing some functional tests.

The developed application PMS Control Application described in Chapter 3 was
also used for the testing:

• the Setup tab - for sending Modbus messages to tested PMS;

• the Observer and Logger tabs - for control of the PMS Modbus outputs.

For the verification of requirements fulfillment, all functional tests were directly
mapped to the tested product specifications described in Section 2.2. For safety, all
tests results were always checked at two interfaces:

• manually at the user interface;

• semi-automatically at the Modbus interface via PMS Control Application.

Test cases that use only the Modbus TCP interface were automatized and added to
PMS Control Application as an additional Test tab (Fig. 3.13). They automatically
provide a check of the Modbus expected results.

4.4. 2PMS-1P3P7W testing 51

The set of tests was created and applied to different configurations of 7W PMS:

• 1P mode:

– the first PM;
– the second PM.

• 3P mode:

– the first PM;
– the second PM.

Preconditions and expected results were defined for each test case.

This subsection contains the summarized set of test cases (Table 4.9) and de-
scribes issues that appeared during testing. The details are in the attached file
7w_pms_tests.xlsx.

Table 4.9: 2PMS-1P3P7W test cases

Test case Test interfaces Test tools
Force EPL/EPR Modbus TCP, PMS Control Application

User interface
Trail from EPL/EPR Modbus TCP, PMS Control Application

User interface
Throw from EPL to
EPR/from EPR to
EPL

Test automation interface
(control voltage connector)

MPD

Throw from EPL to Test automation interface: MPD,
EPR/from EPR to control voltage connector, PMS Control Application
EPL with Jamm Modbus TCP,

User interface
Set valid/invalid User interface, PMS Control Application
SWTI/EPRED Modbus TCP
Set CVCU to Modbus TCP PMS Control Application
True/False
Switch PMS mode to User interface, Voltage source
1P/3P Test automation interface:

24 V interface
Set PDOVRD to Modbus TCP PMS Control Application
True/False
With PDOVRD on set
S2+/S2-/S1-/S1+ to
True/False

Modbus TCP PMS Control Application

With PDOVRD on set
S2- and S1+ to True,
S2+ and S1- to False

Modbus TCP PMS Control Application

52 Chapter 4. System testing

Table 4.9: 2PMS-1P3P7W test cases
Test case Test interfaces Test tools

With PDOVRD on set
S2-, S1+, S2+ and S1-
to False

Modbus TCP PMS Control Application

With PDOVRD on set
S2- and S1- to True,
S2+ and S1+ to False

Modbus TCP PMS Control Application

Set PDOVRD to True,
force EPL/EPR, set
PDOVRD to False

Modbus TCP PMS Control Application

Set PDOVRD to True,
Trail, set PDOVRD to
False

Modbus TCP PMS Control Application

Set Jamm and Trail to
True

Modbus TCP PMS Control Application

Check 7W indication - -
Check 1P indication - -
Check reduced 24 V Test automation interface: Voltage source
interface 24 V interface
Backwards compatibil-
ity of the Modbus and
configuration interfaces
with 2PMS-3P4W

- -

Issues

• Set invalid SWTI/EPRED
The valid SWTI/EPRED values range is from 0 to 32767 ms. The test con-
sisted of two test cases for each of these parameters: set a value less than 0; set
the value greater than 32767. The 7W PMS manual does not describe an exact
reaction to attempts to set invalid SWTI/EPRED values. So, I considered the
absence of a reaction (keeping an old valid value) as a proper PMS behavior.
However, the Modbus holding registers were rewritten to the entered invalid
values. The user interface showed other invalid values less than 0. The test
failed for all the PMS configurations.

• Switch PMS mode to 1P/3P
This test has passed for all the PMS configurations with the following com-
ments:

– When PM is booted in the 1P mode, the user interface parameter is1P is
False. So, it is impossible to switch the PM mode to 3P without setting
this parameter to True before the switching.

– Modbus TCP interface detects the 1P mode immediately with no prob-
lems.

4.4. 2PMS-1P3P7W testing 53

• Backwards compatibility of the Modbus and configuration interfaces
with 2PMS-3P4W
A comparison of the mapped Modbus signals stated in Table 11 and Table
12 has indicated that not all the signal values of 7W PMS correspond to the
values of 4W PMS. The changes are shown in Table 4.10.

Table 4.10: Modbus TCP replacements

2PMS-3P4W value 2PMS-1P3P7W value Signal name
8204 8265 Point 1, EPR
8205 8266 Point 1, EPL
8206 8268 Point 2, EPR
8207 8269 Point 2, EPL
8208 8264 Point 1, COVP
8209 8267 Point 2, COVP
1 2 Point 2, SWTI
2 4 Point 1, EPRED
3 6 Point 2, EPRED

4.4.2 Summary
The testing of 7W PMS has turned out in the following way:

• Several problems were found and documented.

• Some expected states were defined by the tester because they have no exact
definitions in the documentation.

• Documentation was also updated by the developers during the testing after
noticing some errors.

The next step is discussing test results with the development team and creating a
plan to improve the product and its documentation.

Conclusion

The main master’s thesis goal was to demonstrate some phases of the product de-
velopment lifecycle on two examples:

• the SW application (product definition, implementation, and tests);

• the device simulating PM (system tests).

The first step to achieving this goal was to collect and examine the necessary docu-
mentation:

• PMS manuals explaining the principles of the product’s functionality;

• CENELEC standards for the safe development and testing of the products.

After studying the materials and extracting all the needed information, the prac-
tice part of the project started. The first purpose was to develop the application
(PMS Control Application) with GUI for the interaction with PMSs of two types
(2PMS-3P4W and 2PMS-1P3P7W) communicating with them by Modbus TCP.
The requirements were defined by my colleagues from Siemens Mobility s.r.o. The
application was then implemented according to them and expanded by adding the
further functionality of testing the PMSs’ Modbus interfaces. The created docu-
mentation and user manual contain all information necessary for working with the
application.

The next step was to test the application according to one of the studied CEN-
ELEC norms - EN 50128. Several techniques were chosen from the following test
methods:

• functional testing;

• static analysis;

• test coverage for code.

One technique required a tool simulating the behavior of a system driven by SW
under test. So, the application reproducing the PMS functions was implemented
and used for the testing. The chosen combination of techniques detected several SW
problems. Some of them were fixed, and the rest were analyzed.

The last part of the project was to provide requirement testing of 7W PMS ac-
cording to EN 50129. For convenient testing, the driving PMS HW tool (MPD) was
created. This tool was used for the tests associated with starting the PMS’s motors.
Besides MPD, PMS interfaces and PMS Control Application were used for the test-
ing, including the check of test results. All the detected problems were documented.

55

56 Conclusion

All the test results obtained while working on this master’s thesis will be used
to improve the tested products:

• PMS Control Application problems will be fixed by me;

• 7W PMS documented issues will be discussed with the development team.

Bibliography

1. Rail Switch Makes Trains Change Tracks Safely | Railway Turnout Frog. Anyang
General International Co., Ltd. [online]. 2022. Copyright © [cit. 29.06.2022].
Available also from: http : / / www . railroad - fasteners . com / railroad -
switch.html.

2. Point operating systems. Siemens Mobility. [online]. 2022. Copyright © [cit.
29.06.2022]. Available also from: https : / / www . mobility . siemens . com /
ch/en/portfolio/rail/automation/wayside-crossing-and-on-board-
products/point-operating-systems.html.

3. Railway Interlocking: how does it work? railwaysignalling.eu | walk the rail
talk. [online]. 2014. Copyright © [cit. 29.06.2022]. Available also from: https:
//www.railwaysignalling.eu/railway-interlocking-principles.

4. S 700 K point machine. Siemens AG. [online]. 2008. Copyright © [cit. 29.06.2022].
Available also from: https://assets.new.siemens.com/siemens/assets/
api/uuid:a0351b96-65f9-43c8-b976-45eee5d9d1d5/s-700-k.pdf.

5. Maintenance Instructions for Electric Point Machine. Centre for Advanced
Maintenance Technology. [online]. 2020. Copyright © [cit. 29.06.2022]. Avail-
able also from: https://rdso.indianrailways.gov.in/works/uploads/
File/Maintenance%5C%20Instructions%5C%20for%5C%20Electric%5C%
20Point%5C%20Machine_March%5C%202020.pdf.

6. 2PMS-3P4W Design Specification and Manual. Siemens s.r.o. 2020.
7. Manual for Point Machine Simulator. Siemens Mobility GmbH. 2022.
8. MODBUS Messaging on TCP/IP Implementation Guide V1.0b. Modbus Orga-

nization. [online]. 2006, 2–8. Copyright © [cit. 20.02.2022]. Available also from:
https : / / www . modbus . org / docs / Modbus _ Messaging _ Implementation _
Guide_V1_0b.pdf.

9. PyModbus - A Python Modbus Stack. Sanjay Revision. [online]. 2017. Avail-
able also from: https://pymodbus.readthedocs.io/en/latest/readme.
html.

10. tkinter — Python interface to Tcl/Tk. Python Software Foundation. [online].
2022. Copyright © [cit. 01.03.2022]. Available also from: https : / / docs .
python.org/3/library/tkinter.html.

11. AUTALAN, Alejandro. Welcome to Pygubu! GitHub, Inc. [online]. 2016. Copy-
right © [cit. 01.03.2022]. Available also from: https://github.com/alejandroautalan/
pygubu.

12. HEESCH, Dimitri van. Doxygen. Doxygen. [online]. 2022. Copyright © [cit.
01.03.2022]. Available also from: https://www.doxygen.nl/index.html.

57

http://www.railroad-fasteners.com/railroad-switch.html
http://www.railroad-fasteners.com/railroad-switch.html
https://www.mobility.siemens.com/ch/en/portfolio/rail/automation/wayside-crossing-and-on-board-products/point-operating-systems.html
https://www.mobility.siemens.com/ch/en/portfolio/rail/automation/wayside-crossing-and-on-board-products/point-operating-systems.html
https://www.mobility.siemens.com/ch/en/portfolio/rail/automation/wayside-crossing-and-on-board-products/point-operating-systems.html
https://www.railwaysignalling.eu/railway-interlocking-principles
https://www.railwaysignalling.eu/railway-interlocking-principles
https://assets.new.siemens.com/siemens/assets/api/uuid:a0351b96-65f9-43c8-b976-45eee5d9d1d5/s-700-k.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:a0351b96-65f9-43c8-b976-45eee5d9d1d5/s-700-k.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Maintenance%5C%20Instructions%5C%20for%5C%20Electric%5C%20Point%5C%20Machine_March%5C%202020.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Maintenance%5C%20Instructions%5C%20for%5C%20Electric%5C%20Point%5C%20Machine_March%5C%202020.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Maintenance%5C%20Instructions%5C%20for%5C%20Electric%5C%20Point%5C%20Machine_March%5C%202020.pdf
https://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://pymodbus.readthedocs.io/en/latest/readme.html
https://pymodbus.readthedocs.io/en/latest/readme.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://github.com/alejandroautalan/pygubu
https://github.com/alejandroautalan/pygubu
https://www.doxygen.nl/index.html

58 Bibliography

13. DAVID CORTESI based on structure by Giovanni Bajo William Caban, based
on Gordon McMillan’s manual. PyInstaller Manual. PyInstaller. [online]. 2022.
Copyright © [cit. 01.03.2022]. Available also from: https://www.doxygen.nl/
index.html.

14. threading — Thread-based parallelism. Python Software Foundation. [online].
2022. Copyright © [cit. 01.03.2022]. Available also from: https : / / docs .
python.org/3/library/threading.html.

15. EN 50128. Railway applications - Gommunication, signalling and processing
systems - Software for railway control and protection systems. 2011, 130p.

16. EN 50129. Railway applications - Communication, signalling and processing
systems - Safety related electronic systems for signalling. 2018, 154p.

17. Review objectives Formal design reviews. Pearson Education Limited. [on-
line]. 2004. . Copyright © [cit. 15.05.2022]. Available also from: https : / /
slidetodoc.com/oht-8-1-review-objectives-formal-design-reviews/.

18. pylint 2.14.5. The Python Package Index. [online]. 2022. Copyright © [cit.
16.07.2022]. Available also from: https://pypi.org/project/pylint/.

19. Black | Improve Your Code with Pylint and Black. Adafruit Learning System.
[online]. 2022. Copyright © [cit. 16.07.2022]. Available also from: https://
learn.adafruit.com/improve-your-code-with-pylint/black.

20. Git - gitignore Documentation. Git. [online]. 2021. Copyright © [cit. 16.07.2022].
Available also from: https://git-scm.com/docs/gitignore.

21. GUIDO VAN ROSSUM Barry Warsaw, Nick Coghlan. PEP 8 – Style Guide
for Python Code. Python Enhancement Proposals. [online]. 2013. Copyright ©
[cit. 16.07.2022]. Available also from: https://peps.python.org/pep-0008/.

22. BATCHELDER, Ned. Coverage.py. Coverage.py 6.4.2 documentation. [online].
2022. Copyright © [cit. 17.07.2022]. Available also from: https://coverage.
readthedocs.io/en/6.4.2/.

23. RUS, Dorinel. Forward-Reverse Direct ON Line (DOL) starting. Automation-
Electric. [online]. 2016. Copyright © [cit. 24.06.2022]. Available also from:
https://automation- electric.com/pornirea- directa- rotatie- in-
ambele-sensuri/.

24. RUS, Dorinel. Forward-Reverse Single phase motor starting. Automation-Electric.
[online]. 2016. Copyright © [cit. 24.06.2022]. Available also from: https://
automation- electric.com/category/single- phase- motor- starting-
rotation-in-both-directions/.

25. Technicky list | stykac 3P(3Z) 12A AC-3 440V pomocne kontakty 1Z+1V-civka
230V 50Hz | LC1D12P7. Schneider-Electric. [online]. 2022. Copyright © [cit.
24.06.2022]. Available also from: https://www.se.com/cz/cs/product/
download-pdf/LC1D12P7.

26. Proudove chraniče Ex9L-N, 6 kA. GM electronic. [online]. 2022. Copyright ©
[cit. 24.06.2022]. Available also from: https://www.gme.cz/data/attachments/
dsh.614-193.1.pdf.

27. Technicky list | modularni jistic iC60H - 3P - 10A - charakteristika B | A9F06310.
Schneider-Electric. [online]. 2022. Copyright © [cit. 24.06.2022]. Available also
from: https://www.se.com/cz/cs/product/download-pdf/A9F06310.

https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://slidetodoc.com/oht-8-1-review-objectives-formal-design-reviews/
https://slidetodoc.com/oht-8-1-review-objectives-formal-design-reviews/
https://pypi.org/project/pylint/
https://learn.adafruit.com/improve-your-code-with-pylint/black
https://learn.adafruit.com/improve-your-code-with-pylint/black
https://git-scm.com/docs/gitignore
https://peps.python.org/pep-0008/
https://coverage.readthedocs.io/en/6.4.2/
https://coverage.readthedocs.io/en/6.4.2/
https://automation-electric.com/pornirea-directa-rotatie-in-ambele-sensuri/
https://automation-electric.com/pornirea-directa-rotatie-in-ambele-sensuri/
https://automation-electric.com/category/single-phase-motor-starting-rotation-in-both-directions/
https://automation-electric.com/category/single-phase-motor-starting-rotation-in-both-directions/
https://automation-electric.com/category/single-phase-motor-starting-rotation-in-both-directions/
https://www.se.com/cz/cs/product/download-pdf/LC1D12P7
https://www.se.com/cz/cs/product/download-pdf/LC1D12P7
https://www.gme.cz/data/attachments/dsh.614-193.1.pdf
https://www.gme.cz/data/attachments/dsh.614-193.1.pdf
https://www.se.com/cz/cs/product/download-pdf/A9F06310

Bibliography 59

28. Pojistka sklen. 5x20 10,0A F rychla, vyp.schopnost 35A/250V. VOGEL electric
s.r.o. [online]. 2022. Copyright © [cit. 24.06.2022]. Available also from: https:
//www.elektrotechnika-shop.cz/pojistka-sklen-5x20-100a-f-rychla-
vypschopnost-35a250v.

29. Tlacítkovy spínac, 1 pol, OFF-(ON), 10A/400V, zeleny HBY5-10/G. GM elec-
tronic. [online]. 2022. Copyright © [cit. 24.06.2022]. Available also from: https:
//www.gme.cz/tlacitkovy-spinac-hby5-10-g.

30. Tlacitkovy spinac, 1 pol, ON-(OFF), 10A/400V, cerveny HBY5-01M/R 40mm.
GM electronic. [online]. 2022. Copyright © [cit. 24.06.2022]. Available also from:
https://www.gme.cz/tlacitkovy-spinac-hby5-01m-r-40mm.

31. Vidlice 5P 16A 400V IP44 6h IVN 1653, sroubova. VOGEL electric s.r.o. [on-
line]. 2022. Copyright © [cit. 24.06.2022]. Available also from: https://www.
elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-
sroubova.

32. Zasuvka vestavna 23331 IP44/400V/16A/5P 6h, sikma 10° - SpeedPRO. Fa-
matel - CZ s.r.o. [online]. 2019. Copyright © [cit. 24.06.2022]. Available also
from: https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-
ip44-6h-ivn-1653-sroubova.

33. Skrin 3959 AcquaCOMBI IP65, 12 modulu, 398x266x153mm. Famatel - CZ
s.r.o. [online]. 2019. Copyright © [cit. 24.06.2022]. Available also from: https:
//www.eshop.famatel.cz/skrin-3959-acqua-combi-ip65-12-modulu-
390x265x150mm#tb1=2.

https://www.elektrotechnika-shop.cz/pojistka-sklen-5x20-100a-f-rychla-vypschopnost-35a250v
https://www.elektrotechnika-shop.cz/pojistka-sklen-5x20-100a-f-rychla-vypschopnost-35a250v
https://www.elektrotechnika-shop.cz/pojistka-sklen-5x20-100a-f-rychla-vypschopnost-35a250v
https://www.gme.cz/tlacitkovy-spinac-hby5-10-g
https://www.gme.cz/tlacitkovy-spinac-hby5-10-g
https://www.gme.cz/tlacitkovy-spinac-hby5-01m-r-40mm
https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-sroubova
https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-sroubova
https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-sroubova
https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-sroubova
https://www.elektrotechnika-shop.cz/vidlice-5p-16a-400v-ip44-6h-ivn-1653-sroubova
https://www.eshop.famatel.cz/skrin-3959-acqua-combi-ip65-12-modulu-390x265x150mm#tb1=2
https://www.eshop.famatel.cz/skrin-3959-acqua-combi-ip65-12-modulu-390x265x150mm#tb1=2
https://www.eshop.famatel.cz/skrin-3959-acqua-combi-ip65-12-modulu-390x265x150mm#tb1=2

Attachments

A Modbus TCP mapping
The Modbus TCP mapping tables (Tab. 11, 12) contain PMS signals and their
directions concerning the Modbus coil and register values.

A.1 2PMS-3P4W

Table 11: 2PMS-3P4W Modbus TCP mapping [6]

Modbus address Read/Write Signal
8308 W Point 1, Trail
8309 W Point 1, Jamm
8310 W Point 1, FEPL
8311 W Point 1, FEPL
8312 W Point 1, CVCU
8313 W Point 1, ELT
8314 W Point 2, Trail
8315 W Point 2, Jamm
8316 W Point 2, FEPL
8317 W Point 2, FEPL
8318 W Point 2, CVCU
8319 W Point 2, ELT
8204 R Point 1, EPR
8205 R Point 1, EPL
8206 R Point 2, EPR
8207 R Point 2, EPL
8208 R Point 1, COVP
8209 R Point 2, COVP
8256 R Point 1, MRPO
8257 R Point 1, MLPO
8258 R Point 2, MRPO
8259 R Point 2, MLPO
0 R/W Point 1, SWTI
1 R/W Point 2, SWTI
2 R/W Point 1, EPRED
3 R/W Point 2, EPRED

61

62 Attachments

A.2 2PMS-1P3P7W

Table 12: 2PMS-1P3P7W Modbus TCP mapping [7]

Modbus address Read/Write Signal
8256 R Point 1, MRPO
8257 R Point 1, MLPO
8258 R Point 2, MRPO
8259 R Point 2, MLPO
8160 R PMS, is7W
8261 R Point 1, is1P7W
8262 R Point 2, is1P7W
8264 R Point 1, COVP
8265 R Point 1, EPR
8266 R Point 1, EPL
8267 R Point 2, COVP
8268 R Point 2, EPR
8269 R Point 2, EPL
8298 W Point 1, PDOVRD
8299 W Point 1, OVS2P
8300 W Point 1, OVS2M
8301 W Point 1, OVS1M
8302 W Point 1, OVS1P
8303 W Point 2, PDOVRD
8304 W Point 2, OVS2P
8305 W Point 2, OVS2M
8306 W Point 2, OVS1M
8307 W Point 2, OVS1P
8308 W Point 1, Trail
8309 W Point 1, Jamm
8310 W Point 1, FEPL
8311 W Point 1, FEPL
8312 W Point 1, CVCU
8313 W Point 1, ELT
8314 W Point 2, Trail
8315 W Point 2, Jamm
8316 W Point 2, FEPL
8317 W Point 2, FEPL
8318 W Point 2, CVCU
8319 W Point 2, ShuntL2L3
8192 R Point 1, ShuntedL1L2
8193 R Point 1, ShuntedL2L3
8194 R Point 2, ShuntedL1L2
8195 R Point 2, ShuntedL2L3
8196 R Point 1, LoadL1
8197 R Point 1, LoadL2
8198 R Point 1, LoadL3

Modbus TCP mapping 63

Table 12: 2PMS-1P3P7W Modbus TCP mapping [7]
Modbus address Read/Write Signal

8199 R Point 1, LoadN
8200 R Point 1, S2P
8201 R Point 1, S2N
8202 R Point 1, S1N
8203 R Point 1, S1P
8196 R Point 2, LoadL1
8197 R Point 2, LoadL2
8198 R Point 2, LoadL3
8199 R Point 2, LoadN
8200 R Point 2, S2P
8201 R Point 2, S2N
8202 R Point 2, S1N
8203 R Point 2, S1P
0 R/W Point 1, SWTI
2 R/W Point 2, SWTI
4 R/W Point 1, EPRED
6 R/W Point 2, EPRED

64 Attachments

B Directory tree
A structure of the attached files mentioned in the thesis and their descriptions are
shown below.

bin - binary files

pms_control_app.exe - executable file

docs - PMS Control Application web documentation

index.html - main page

ico

PMSCAPP_icon.ico - PMS Control Application icon

scripts

makeShortcut.py - script for making application shortcut

src

main.py - main source file

pms.py - process simulation software

pms_control_app.py - PMS Control Application main module

tools.py - PMS Control Application tool module

tests

hw

7w_pms_tests.xlsx - table with seven-wire simulator test results

sw - example of branch coverage test results

pms_control_app_py.html

tools_py.html

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Point operating system
	Architecture
	Interlocking
	Point driver
	Point machine

	Point Machine Simulator
	2PMS-3P4W
	Specifications

	2PMS-1P3P7W
	Specifications

	Application design and development
	Requirements
	Backend
	Frontend
	Communication protocol

	Implementation
	Software tools and libraries
	Architecture
	GUI and manual

	Summary

	System testing
	CENELEC
	EN 50128
	EN 50129

	Application testing
	Boundary value analysis
	Equivalence class and input partition testing
	Process simulation
	Code Review
	Structure-based testing
	Summary

	Manual Point Driver
	Requirements
	Functionality
	Components
	Realization and testing

	2PMS-1P3P7W testing
	Functional testing and verification
	Summary

	Conclusion
	Bibliography
	Attachments
	Modbus TCP mapping
	2PMS-3P4W
	2PMS-1P3P7W

	Directory tree

