Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Autonomous vehicle position data fusion

Faze senzorickych dat polohy pro autonomni vozidla

Bc. Tomas Twardzik

Supervisor: doc. Ing. Tomas Hanis Ph.D.
Field of study: Control Engineering
August 2022

ii

Acknowledgments

Thinking back, I have to give large props
to my family. Raising and educating me
must have been hard on its own, yet they
managed to do that masterfully without
ever dulling my natural curiosity, which
eventually allowed me to thrive while
studying at this very university. Further-
more, without their mental and material
support, this work would not have seen
the light of the day.

Secondly, I must thank my dear friends
and coworkers Marek Bohac¢, Adam
Konopisky and Jan Svancer, with whom
I have shared many hardships, victories
and even defeats along our way to becom-
ing engineers. Most importantly, we have
created a terrific team together that has
made all the time I spent at university
that much more enjoyable. T would also
like to express my gratitude to them for
all of those insightful lessons into "obecna
¢estina" and its unjustified usage in every-
day life, table football, dedication, hard
work and C++ runtime superiority.
Presently, I would like to forward my deep
gratitude to my supervisor, doc. Ing.
Tomas Hanis Ph.D., for his excellent men-
toring, feedback and lengthy offtopic, how-
ever very interesting and pleasing conver-
sations.

Lastly, I wish to convey my appreciation
and love to my girlfriend Jekatérina, who
stuck with me through thick and thin and
supported me all along, helping and guid-
ing me on my way to becoming a better
man, not just an engineer.

iii

Declaration

I declare that I wrote the presented thesis
on my own and that I cited all the used in-
formation sources in compliance with the
Methodical instructions about the ethical
principles for writing an academic thesis.

In Prague, 14. August 2022

Abstract

My Master’s thesis is dedicated to data
fusion-based autonomous vehicle localiza-
tion. The theoretical part covers a broad
spectrum of available technologies and
methods for autonomous vehicle position-
ing, and summarizes them into a com-
pact review. My practical work was cen-
tered around the Toyota Mini project, for
which I was to deliver a robust and accu-
rate positioning solution. The review of
possible solutions led me to the applica-
tion of a Real-Time-Kinematics enabled
differential GNSS solution with my own
correction base station. For this system,
I have designed and 3D printed enclo-
sure boxes and mounting solutions for the
ToMi2 platform, configured a complete
DGNSS system and successfully deployed
it. Furthermore, I have devised a visual
odometry testing tool, based on which I
have guided the choice of the selected vi-
sual odometry algorithm for the platform.
Lastly, I have completed an EKF data fu-
sion vehicle localization script, which op-
erates with data gathered from the ToMi2
platform during its operation. Data fu-
sion harnesses data of four modalities:
GNSS, visual odometry, odometry model
and inertial measurement unit. Validity
of implementation was tested in several
simulated scenarios with real-world data,
where select measurement was missing or
dropped out for a brief time period. My
proposed solution sustained all the chal-
lenges and maintained acceptable estima-
tion accuracy.

Keywords: data fusion, Extended
Kalman filter, vehicle odometry, visual
odometry, GNSS, differential GNSS,
RTK, IMU

Abstrakt

Magisterska prace se vénuje tématu fuze
dat pro lokalizaci autonomnich vozidel.
V teoretické ¢asti jsem zmapoval Siroké
spektrum soucasnych technologii pouziva-
nych pro lokalizaci autonomnich vozidel
a vytvoril jsem kompaktni shrnuti této
problematiky. Prakticka ¢dst se odvijela
od mé prace na projektu Toyota Mini,
kde jsem mél za tkol vyresit tikol robust-
niho a pfesného pozicovani. Z reserse jsem
zvolil vyuziti RTK diferen¢nich GNSS s
mou vlastni korekéni stanici. Pro GNSS
systém jsem navrhnul nékolik 3D tisk,
které slouzi jako krabicky pro elektroniku
nebo jako drzaky a kotvy antén na plat-
formé ToMi2. Mimo jiné jsem pripravil
skript pro testovani presnosti algoritmu vi-
zualni odometrie, dle jehoz vysledku jsem
nasledné zvolil nejlepsi algoritmus pro da-
tovou fuzi, ktery jsem integroval do ROS2
systému vozu. V neposledni radé jsem pak
implementoval samotnou datovou fizi po-
stavenou na Extended Kalmanovée Filtru,
ktery pracuje s daty sbiranymi béhem real-
ného provozu ToMi2 vozidla. Datova fize
vyuzivd data Ctyf modalit, a to GNSS,
vizualni odometrie, vysledky kinematic-
kého odometrického modelu a gyroskopu.
Funkénost lokaliza¢niho odhadovace jsem
overil v nékolika simulovanych scénarich
postavenych na nasbiranych datech, kde
cilené doslo k vypadkiim méfeni. Mé te-
Seni zachovalo funk¢nost i pfes ztratu ab-
solutnich lokalizac¢nich dat a udrzelo si
prijatelnou presnost i v takto naroénych
podminkéach.

Klicova slova: fuze dat, Extended
Kalmanuv filtr, odometrie vozu, vizualni
odometrie, Globalni navigac¢ni systémy,
diferen¢ni GNSS, RTK, IMU

Contents 3.3 Visual-Inertial Odometry and

Simultaneous Localization and

Mapping. ...t
Project Specification 1]

3.3.1 Algorithm division
Most relevant acronyms 3

3.3.2 Structure of visual SLAM . ..
1 Introduction

4 Data fusion

1.1 My contribution

4.1 Kalman Filter

Theoretical part 4.1.1 Kalman Filter Algorithm ...

2 Taxonomy 15| 4.2 Extended Kalman Filter
2.1 Localization taxonomy 4.3 Complementary Filter

3 Localization methods and sensors .
Practical part

3.1 Exteroceptive sensors
5 ToMi platform
311GNSS 20
5.1 Computer architecture and
framework
3.1.2LIDAR 130l
o 5.2 Localization sensors
3.1.3 Vision sensors 136/
3.2 Proprioceptive sensors......... 6 DGNSS integration
321IMUand INS.............. 6.1 DGNSS system design and
modules
3.2.2 Encoders and odometers [49
6.2 Rover modules
3.2.3 Dead reckoning

7 Visual Odometry integration 93

7.1 VO parameter tuning

7.2 Logging, data visualization and

performance analysis
8 Data fusion implementation 99
8.1 Kinematic model 101
8.2 Dynamic model.............. 102
8.3 Measurement models 106!
8.4 Implementation specifics 111

8.5 Tuning and self-tuning of EKF [113

8.6 Results and experiments 114

8.7 Future work. 120

9 Conclusion 123
Appendices

A History of mapping and

localization 127
B Additional images 133
C Bibliography [135|

vi

Fi gures 2.; T.his'. figure shows a ‘p.robal')ilistic
epiction of robot position given

measurement uncertainty. We can see
that at each measurement time, the
distribution of positions expands,
speaking to the additive nature of
measurement noise propagation. This
highlights the need for a method to
localize more accurately than just
with a motion model because for

|§| longer sessions, it is not sufficient.

1.1 Standard ADAS sensor suite,
commonly available with new
premium vehicles. Radar, LIDAR
and cameras are pivotal sensors for
autonomous driving; ultrasound
sensors, mostly due to their limited
range, are only suitable for parking
assistance. [I9]

1.2 List of different autonomous
system levels, with their respective
description and capabilities. [19] ...

2.2 Passive localization setup, where
the localization algorithm does not
influence the robot’s motion. [21] .

1.3 A schematic of subsystems that are
responsible for autonomous driving.
Pink rounded boxes symbolize
physical elements and blue boxes
represent subsystems necessary for
autonomous vehicles. 8

2.3 Active localization algorithm
controls the motion of a robot to
better localize itself and direct itself
to the goal position [2I]

3.1 A diagram displaying GNSS
technology segments.
Communication between the space
and control segments is duplex, with
the control segment attempting to
enhance the accuracy of calculated
solutions by precise control of the
satellites and satellites reporting data
on their orbital movement. On the
other hand, the data flow from the
space segment to the user segment is
simplex, as the user segment receives

............................ 1
7 GNSS signals from satellites. [39] .

1.4 Waymo’s local localization and
planning for their autonomous
vehicle. We can see that the car
distinguishes different types of
obstacles and correctly plans its
course to avoid a collision. [§] 9

1.5 A global localization plan of a path
between CTU FEE Karlovo namésti
and CTU FEE Technickd campuses.

3.2 The GNSS signal is created first by
combining C/A and the navigation
message, then by modulating the
summed signal to a carrier wave of a
particular frequency (L1, L2 or L5

band). [39]..........

vii

3.3 A streamlined version of C/A code
synchronization that is used to
determine the ToF from a satellite to
a receiver. It shows a receiver, with a
synchronized clock and a C/A
sequence, receiving a delayed C/A
code from a satellite. The receiver
then determines the corresponding
bit shift, caused by ToF delay.
Interestingly, a one-bit shift pertains
to approximately 300 meters worth of
distance traveled by the GNSS signal,
as the C/A code is broadcasted at

1.023 Mb/s. [29]

3.4 The green, orange and black
spheres, representing satellites’
positions in their origins and distance
measured to the receiver as their
respective radii, cross to form red
points A and B. These points are
solutions to a simple trilateration
process. It is clear that only one of
those points lies near the Earth’s
surface. Consequently, adding
another satellite leads to one
intersection, point B, although the
necessity for the fourth satellite is
due to measurement time
synchronization rather than range

detection. [40]

3.5 Differential GNSS setup uses a
plain GNSS signal, identically to the
SPS, to determine corrections, which
are subsequently fed to user
equipment (rovers) for precise local
positioning. Users have the option of
using a single base station, likely
their own, or base station networks,

typically as a paid service. [39] . ..

3.6 The RTK technology has a similar
layout as the DGNSS and also works
with a network of base stations. The
difference lies within the computation
algorithms where RTK computes
carrier phase solution, whereas SPS
uses pseudo-range computations.

3.7 SBAS system provides centrally
computed corrections from a network
of base stations. Corrections are
provided with over geostationary
satellites, which are managed by a
maintainer of a local SBAS system.

It is worth mentioning, that not
every receiver can acquire SBAS
signals and thus cannot leverage
augmentation capabilities. [39] ...

3.8 The PPP system can distribute its
correction either via satellites or
directly to the receiver over the
internet. Later option can help with
the initial positioning fix of PPP,
which has always been one of the
PPP’s downsides, with over 20
minutes long convergence. The layout
of PPP and SBAS look alike,
nevertheless, PPP uses precise orbit
data from the control segment and
not the positioning solutions at the
base station as a source for
corrections. [39]

3.9 A simplified graphic displaying
differences between accuracy,
precision and resolution of a LiDaR

scan. [65] ...

3.10 Basic time of flight principle,
where the round-trip time of the
backscattered signal is measured by
very precise timing tools. [65]

3.11 The AMCW system uses a
pattern of amplitude modulated
signal. It is received in two
integration bins, phase 1 and phase 2,
where the ratio of integrated received
signals in particular bins determines

the ToF. [65]

3.12 Frequency chirp-up modulation
enables to determine the ToF, based
on frequency shift between received
and transmitted signal. [65]

3.13 A commercial Valeo Scala 2
LiDaR with a rotating mirror used
for beam steering. [68]

3.14 OPA phase array LiDaR principle.
Directed light beams are achieved
with controlled phase shifts at
individual transmitters. [65]......

3.15 Tesla vision suite.

3.16 A figure of a pinhole camera
model. Rays are artificially colored to
clarify the reflective nature of the
camera projection. [71]

3.17 Implementation of color detection
in image sensors. 40|

ix

3.18 Apollo mission INS system. In
the center, there is an IMU unit with
accelerometers and gyroscopes, which
control the rotation of servo motors
to keep the accelerometers perfectly
aligned with respect to inertial space.
This system suffered in open space
from a drift of 1- 1073 rad/hour,
posing a need for periodical
realignment by star observation. [42]

3.19 IMU mounting solutions.

3.20 Incremental addition of noised
measurements leads to position
estimate variance growth. This fact
highlights the reason why extremely
precise accelerometers are vital for
high-grade INS solutions; although
no INS solution can suffice
indefinitely on its own, eventually the
position must be reset with other
localization techniques. [52]

3.21 Simplified MEMS accelerometer.
The orange block consists of a core
body in the middle, with springs
attached to its ends and small fins
acting as capacitor plates. The
second part of the capacitor is
constructed by fixed plates, depicted
in light green. If the proof mass is
displaced, fins of the proof-mass get
closer to static plats of capacitors in
the direction of force applied to the
mass, and retract from the
condensers on the opposite side,
leading to a difference in respective
capacitances C1 and C2. [55].....

3.22 The blue blocks oscillate the
yellow gyroscope plate in a periodic
vibration pattern along the driving
direction, introducing constant speed
at the time of measurement sample.
If the rotation is present, the induced
Coriolis force pushes the orange
proof-mass to the side, creating a
capacitance differential between
individual fins and static capacitor
plates, colored in blue. This change
of capacitance is directly proportional
to the angular velocity applied. [55]

3.23 The tuning fork MEMS gyroscope
design widely used for its natural
rejection of linear accelerations in the
sensitivity axis. [B5]

3.24 A principle and an example of
optical gyroscopes.

3.25 Hall sensors principle schematic
and AMR resistance curve........ [0

3.26 Rotation encoders based on Hall
SEIISOTS. « « o v e e e et e L1l

3.27 Rotation encoders with two Hall
SEISOTS. « v v v e et e e e 02

3.28 Incremental and absolute optical
encoders. 53l

3.29 A schematic showing major
families of SLAM approaches. [4] .

3.30 A diagram of the vSLAM pipeline
structure associated with related
keywords. 4]

3.31 A comparison between sparsely
(subfigure a) and densely (subfigure
b) mapped points. You can see that
dense mapping carries more
information and the mapped surfaces
are more smooth and solid. [75] ..

3.32 A figure displaying the
contribution of loop closure in drift
removal and thereby accurate
positioning. The robot’s path is
depicted with the green line, black
dots represent older mapped
measurements, while red dots
represent current measurements. On
the left, there is a situation right
before the loop closure takes place
where the robot’s tracking system
clearly accumulated significant drift.
After the loop closure is completed,
not only the path but also all
measurements are again consistent
with the true properties of the
environment. [76]

4.1 One iteration of Kalman Filter
algorithm, executing time update
step first, followed up by data update

step. [21] ...t

4.2 Mlustration of one-dimensional
state estimation. On the x-axis are
values of the estimated state and on
the y-axis is the probability of that
estimation. (a) represents initial
belief, (b) a measurement (in bold)
with measurement uncertainty, (c)
measurement incorporated with
previous belief (in bold), (d) belief
after time step propagation (in bold),
(e) new measurement with its
uncertainty, (f) measurement
propagation to belief estimate. [21]

4.3 One iteration of Extended Kalman
Filter algorithm, executing time
update step first, followed up by data

update step. [21]

4.4 A basic complementary filter where
G(s) and I — G(s) blocks represent
low-pass and high-pass filters

respectively. [77]................

4.5 Subfigure (A) depicts
straightforward two-branch filtering
with high-pass and low-pass branches
to obtain velocity estimate from
acceleration and velocity
measurement. Subfigure (B)
showcases an equivalent filter,
although different in realization, that
highlights an interesting property of
a complementary filter: low-pass
filtration is effectively a high-pass
filtration of an integrated signal.

4.6 Schematic highlighting
complementary filter estimation of
velocity (subfigure A) and position
(subfigure B) from acceleration and
position measurements. [77]

5.1 Toyota Mini 2 RC overactuated
platform, with an old Sterolabs Zed 1
camera and a single band GNSS

TECCIVEL. . . v v et 76l

5.2 A schematic showing data flow
between distributed units. Blue
arrows highlight the UART
communication protocol with its
information flow direction, whereas
the red arrow depicts the Ethernet
data interface...................

Xi

5.3 StereoLabs Zed2 stereo-camera
bolted to a new mount for camera
and DGNSS antenna, which I have

created(paragraph 6.2)...........

6.1 Three GNSS modules setup, which
enables measuring of precise position,
motion and body heading. SB means
Static Base, MB is moving base and

HM stands for Heading Module. . .

6.2 The 3D model of the static base
station box. It closes off the
electronics, protecting it from mild
rain and makes it convenient for
manipulation between experimental
Sites. ...

84

6.3 A picture of final Base Station
printed out and planted with
Raspberry Pi, U-Blox ZED F9P, USB
internet modem and power bank. On
the left finds itself a multi-band
antenna with a steel disk similar to
the one used at the ToMi2 platform.

6.4 3D printed models holding dual
antenna setup on the ToMi2 vehicle.

6.5 3D models accommodating GNSS
antennas on the ToMi2 rover.

6.6 A 3D model encapsulating two
U-Blox Zed F9P modules. It has
outlets for antennas and USB-C
interfaces and UART RX and TX to
feed RTCM correction from SB to
MYV. Inside the box, there are cables
connecting the UART interfaces of
MYV and HM to facilitate precise
measurement of heading..........

6.7 Detailed architecture of DGNSS 8.1 A schematic displaying coordinate

setup with a base station. Arrows transformation between a NED plane
denote the direction of specific with origin in point O and a vehicle
information flows between the devices coordinate system centered in point c,
and computing units. The bottom which coincides with the vehicle’s
purple arrow represents RTCM center of gravity (COG). NED
corrections transmitted by the USB heading angle 1 is positive in a
modems, the remaining two are clockwise direction and, it defines
facilitated by UART interface. rotation between the two coordinate

systems. L. [100]|

6.8 A set of figures produced by the
python visualization tool. 8.2 Single track depiction inspired by
Ing. Denis Efremov............. 101

7.1 Data flow structured in VO 8.3 Comparison of the kinematic

algorithms. The physical hardware, model GNSS data. Heading injection
Zed2 camera and its drivers are helps to mitigate major drifting
represented by the red box, and the errors in vehicle orientation. 103
raw data (magenta arrow) is read
directly by the ROS2 Zed wrapper.
The blue boxes depict ROS2 nodes 8.4 Graphs depicting dynamics model
running the VO algorithms, while the simulation..................... 107
green arrows highlight ROS2 message
communication.
8.5 An illustration showing NED, VO
initial body and incremental-body
7.2 RVIZ visualization of two coordinate frames. The car moves
independent visual odometry along the state trajectory 7, and
transformation trees and visual three specific time instances are
odometry frames. highlighted, the initial time and two
successive time slices defined by VO
measurement frequency. 109
7.3 A set of visual and metric
comparisons between GNSS
trajectories and VO pose tracking for 8.6 A display of EKF performance with
individual algorithms and all data measurement modalities. [115

configurations...................

8.7 EKF performance without GNSS
and both GNSS and VO data. ... [116

8.8 Results of GNSS outage
experiment. [117|

Xii

8.9 Autocorrelation test of GNSS A.5 The 2005 winning car, Stanley,

measurements. The figure shows based on the VW Tuareg platform.
innovation of 3, ¥, z, y and ||v|| in The vehicle was equipped with a
this specific order. 118 series of LiDaRs on the roof, GNSS

suite, accelerometers, odometers and
a front-facing camera for localization

8.10 Autocorrelation test of VO and drive-by-wire executed Stanley

measurements. The figure shows the control law for driving. [23] 132
innovation of 3, ¥, x, y and ||v|| in
this specific order. 119
B.1 Measurement accuracy drop due
8.11 Autocorrelation test of the to RTK correction loss. The size of
kinematic model measurements. The scatter plot markers determines the
figure shows the innovation of 3, 1 accuracy of measurement, while the
and [[v. ... 120 black markers illustrate RTK-less
solutions. 134
8.12 Autocorrelation test of IMU
measurements. The figure shows the B.2 On the left, a histogram graph
innovation pertaining to 120 shows the relative distance of two

antennas, which can be used as a
solution verification. RTK fix and no
fix data are distinguished by color.

On the right, the progression of
heading in time is shown. 134

A.2 A display of measurement
properties available in medieval
times. i 129

A.4 This figure shows a Kalman Filter
localization scheme. The rover
position is represented with grey
ellipses, defining the mean and
covariance of the Gaussian
distribution that represents the
rover’s position. Landmarks are
depicted as black dots and red
ellipses are measurements. Note, how
each landmark is represented with
two new states and their inaccuracies,
defined by the mean and covariance
of the probability distribution
respectively. [21I]............... 131

xiii

Tables

6.1 A table displaying general
properties of U-Blox Zed FIP and
Neo M8N modules............... 82

Xiv

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 R
Student's name: Twardzik Tomas Personal ID number: 474711

Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering
Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics

Il. Master’s thesis details

Master’s thesis title in English:

Autonomous vehicle position data fusion

Master’s thesis title in Czech:

Flze senzorickych dat polohy pro autonomni vozidla

Guidelines:

The primary objective of this thesis is to study vehicle positioning system and sensors. The main drawback of absolute
positioning systems, like GPS, is its unreliability in dense urban environments. Relative sensors like IMU and vehicle
odometry suffer from bias and position drifting in larger time scales. Therefore, the thesis will propose vehicle position
determination algorithms benefiting from heterogenous sensors measurement principles.

1) Review of vehicle position sensors (visual, relative, absolute) and date fusion algorithms.

2) Integration of selected vehicle position sensors (GPS, IMU, odometry, camera) to sub-scale demonstration platform.
3) Implementation of sensor data fusion for vehicle position.

4) Algorithm real world data testing and verification.

Bibliography / sources:

[1] Lewis, F. L., L. Xie, D. Popa: Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, CRC
Press, 2005. ISBN 978-1-4200-0829-6

[2] Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, 2006, ISBN:
978-0-471-70858-2

[3] Dieter Schramm, Manfred Hiller, Roberto Bardini — Vehicle Dynamics — Duisburg 2014

[4] Myriam Serviéres , Valérie Renaudin, Alexis Dupuis, Nicolas Antigny, Visual and Visual-Inertial SLAM: State of the Art,
Classification, and Experimental Benchmarking, Journal of Sensors, Volume 2021, Article ID 2054828,
https://doi.org/10.1155/2021/2054828

[5] Taihu Pire, Thomas Fischer, Gaston Castro, Pablo De Crist6foris, Javier Civera, Julio Jacobo Berlles,S-PTAM: Stereo
Parallel Tracking and Mapping, Robotics and Autonomous Systems, Volume 93, 2017, Pages 27-42, ISSN 0921-8890,
https://doi.org/10.1016/j.robot.2017.03.019.

Name and workplace of master’s thesis supervisor:

doc. Ing. Tomas Hanis, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 28.01.2022 Deadline for master's thesis submission: 15.08.2022

Assignment valid until:
by the end of summer semester 2022/2023

doc. Ing. Tomas Hanis, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean'’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Most relevant acronyms

ADAS
DL
EKF
GLONASS
GNSS
GPS
IMU
INS
I/0
KF
MEMS
PC
RTK
SAE
SLAM
SNR
ToF
VIO
VO

Advanced Driver Assistance Systems
Deep Learning

Extended Kalman Filter

Global Orbiting Navigation System
Global Navigation Satellite Systems
Global Positioning System

Inertial Measurement Unit

Inertial Navigation System
Input-Output

Kalman Filter

Micro Electro Mechanical Systems
Point Cloud

Real-Time Kinematics

Society of Automotive Engineers

Simultaneous Localization And Mapping

Signal-to-Noise Ratio
Time of Flight
Visual-Inertial Odometry
Visual Odometry

Chapter 1

Introduction

For many decades now, the car manufacturing business is one of, if not the
most competitive field on the market. In the past, the pressures were twofold,
prices and functionality. With the recent crises, the COVID restrictions,
supply chain related issues, chip shortage, power electricity and raw materials
expenses soaring, the prices went up everywhere, not excluding any car
manufacturer. As a result, the competition is nowadays centered mostly
around functionality, because higher sales margins allow not only to avoid
bankruptcy but also to remedy the lost earnings. Unlike earlier decades,
when the primary focus was on automobile design, drivetrain, and motors,
we now see the majority of effort directed into infotainment, smart driving
technologies, and assistants such as the Advanced Driver Assistance System
(ADAS). These technologies require the addition of new sensors, completely
unrelated to the core utility of the vehicle, such as radars, ultrasound sensors,
cameras, LIDARs and Global Navigation Satellite System (GNSS) modules
(Figure 1.1).

These sensors’ purpose is to monitor the environment around the vehicle
and alert the driver to unexpected and potentially dangerous events e.g., a car
in a rear mirror’s blind spot, a fast-approaching obstacle ahead of the vehicle;
or performing some minor corrective actions, usually in conjunction with an
already present electronic power steering unit, such as lane assist autonomous
parking maneuvers, or adjusting speed in cruise control mode. All these
support systems can be considered the SAE level 2 autonomous, meaning that
the vehicle can execute steering and acceleration or deceleration commands
on its own; nevertheless, the human driver must be entirely engaged in the
driving and be able to overrule the action at any given moment. The eventual
responsibility also lies with the driver, not the manufacturing company. For

1. Introduction

Blind Surround view Traffic sign
epot recognition
detection

Park . Radar/LIDAR
assist Adaptive
cruise . Camera

Surround ' l y : Collision avo -: control . Ultrasound

view

Rear
collision .
warning Surround view

Lane departure
warning

Figure 1.1: Standard ADAS sensor suite, commonly available with new premium
vehicles. Radar, LIDAR and cameras are pivotal sensors for autonomous driving;
ultrasound sensors, mostly due to their limited range, are only suitable for
parking assistance. [19]

completeness, highlights the full list of automation levels that SAE
distinguishes. [20]

For some time now, owing to Tesla, the automotive industry’s holy grail
has been autonomous driving; specifically, level 5 SAE International certified
autonomous driving. The idea is supported by relentless and immense progress
in computer vision field in the last decade, partially thanks to the advent
of convolutional neural networks and advancements in the available imaging
hardware available. On top of it, all of the brand-new premium vehicles
made have the important sensor suite already on board. With no additional
costs in manufacturing, materials and chips consumed, it may seem very
tempting for a car maker to explore the promising path of autonomous driving.
Undoubtedly, success in this field, bringing a first full operational self-driving
vehicle, would make for a great financial benefit and could cause a major shift
in car manufacturer stock evaluation, as we see with Tesla, despite the fact
that their Full Self Driving (FSD) system is not finalized and their marketing
in this department is highly misleading.

As of late, the very first successful level 3 autonomous vehicles hit the
market. The car in question is the new Mercedes-Benz S Class, which has
been approved by European Union regulatory bodies for autonomous driving
at speeds up to 60 km/h on 13 000 kilometers of German highways. This
appears to be quite restrictive; nevertheless, keep in mind that Mercedes-Benz

e

1. Introduction

LEVELS OF DRIVING AUTOMATION

9

J

3

7

o
™

NO
AUTOMATION

DRIVER
ASSISTANCE

The vehicle features a

PARTIAL
AUTOMATION

ADAS. The vehicle can

CONDITIONAL
AUTOMATION

HIGH
AUTOMATION

FULL
AUTOMATION

rol. The Environmental detection
al wehi

ehicle

The vehicle performs all
! al

ering,
aocoeleration, braking,
ete).

uman override is still
required

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

THE HUMAN MONITORS THE DRIVING ENVIRONMENT

Figure 1.2: List of different autonomous system levels, with their respective
description and capabilities. [19]

is legally liable for any car accidents caused by the system during normal
operation, which has never been done before. On the contrary, despite the
tremendous buzz around the brand’s autonomous driving system, Tesla’s
FSD Beta is just SAE level 2 and is not even permitted in the EU.

Moving on to the inner workings of an autonomous vehicle, one of the key
challenges we face today is reliable localization within the environment. The
problem formulation comes from the field of mobile robotics, where if we
wish to perform any informed useful task, there is a high probability, that we
need to know the state of the robot in the operational space perfectly. These
tasks can be, for example, moving an object with a gripper from place A to
place B or translating the robot itself to a different position. In the case of
car manufacturing, the robot takes a form of a vehicle, with states describing
its position, orientation and dynamics, and the operational space becomes a
road system.

If we have a look at an autonomous driving pipeline we can
see four major components, namely sensor suite, localization system, data
processing and extraction system, motion planning algorithms and control
law, which guide the car. Looking closer at these segments, the sensors suite’s
only purpose is to gather information about the vehicle’s state, that is, its
longitudinal /lateral /total velocity, accelerations, motor and braking torques,
heading angle and motion heading, GNSS position, angular velocity of the
wheels and steering angles.

Presently, the captured data is used either for localization, which is mostly

1. Introduction

Autonomous vehicle system

—I—) Localization —L’
External ’) Motion > Control Vehicle
[environment Sensors | » planning system _)@

A Data A
processing

Figure 1.3: A schematic of subsystems that are responsible for autonomous
driving. Pink rounded boxes symbolize physical elements and blue boxes represent
subsystems necessary for autonomous vehicles.

tackled with GNSS, IMUs and odometry data, or forwarded to a data process-
ing unit to extract other vital features, such as road signs, road parameters or
the SOC unit. Then, based on the known absolute position and local barriers,
we employ localization data to design the car’s subsequent trajectory on both
a global and a local scale. With the motion trajectory plan and vehicle states
measured, comes the control system, which produces a control signal to safely
guide the vehicle along the planned path. To maintain a reliable autonomous
operation of a vehicle, we need to ensure that all of the present subsystems
work flawlessly or at least can recover from failures in a timely fashion so that
the system as a whole does not stop functioning. That means, for example, if
a road sign detection system misclassifies anything, then it needs to come up
with the correct classification as soon as possible, otherwise, we might ignore
the decrease of the speed limit and endanger the safety of passengers and
others around. If we consider all of the systems involved in an autonomous
vehicle, dealing with such problems can be extremely difficult. Every year,
automobile makers make bold boasts about self-driving vehicles, but reality
demonstrates that this task is exceptionally hard to accomplish.

In fact, the problem of localization can be divided into three categories.
Localization of a vehicle in a global, absolute map, which is usually useful
for planning a path from point A to point B. The second type of localization
is Simultaneous Localization and Mapping, also known as SLAM, which
is a vehicle localization in a local, dynamic environment map that informs
driving intelligence about possible obstacles and dangers in the imminent
future. The third type is relative localization, which can support both of the
previous methods, making them more robust, accurate and responsive. In this
work, I will often refer to global localization as absolute localization with the
help of relative measurements, and by local localization, I will mean SLAM
with supportive relative measurements. Neither local nor global localization
is sufficient to tackle the problem of autonomous driving alone and they

1. Introduction

Figure 1.4: Waymo’s local localization and planning for their autonomous vehicle.
We can see that the car distinguishes different types of obstacles and correctly
plans its course to avoid a collision. [§]

are intended to work together in unison. To demonstrate a need for such
duplicity, let us consider a situation where we lack a global positioning system.
Theoretically, If we had flawless local localization and control logic, our car
would properly traverse its surroundings without causing any damage to

property or harm to humans (Figure 1.4).

However, the vehicle would be unable to direct itself towards the desired
goal, the target location of our road trip, as it would have no information
about our current whereabouts and the specific location of the destination.
On the other hand, if we consider a system equipped only with a global
positioning system, we would sooner or later run into an accident with an
unmapped obstacle. Even with the most accurate maps and cutting-edge
GNSS solutions, collisions could not be avoided, partly due to changes in the
environment, such as fallen trees or pedestrians crossing the road, and partly
due to technological limitations, such as GNSS signal inference, multipath
and signal loss in urban corridorﬂ or green tunnel&ﬂ let alone the complete
loss of signal. A demonstration of differences can be seen in Figures 1.4 and
Clearly, there is an advantage to mixing both approaches to combat their
respective vices and strengthen their virtues. Furthermore, local localization
enables us to maintain a track of global position when signal loss would
otherwise occur, such as in tunnels, indoor parking lots and city centers.

Let me now briefly describe the layout of this document. Firstly, I will

!Problematic environment for GNSS localization, due to the multipath and low accessi-
bility of satellites in areas with high building density

2Challenging environment for GNSS location due to signal attenuation while passing
greenery of trees in the neighborhood of roads

9

1. Introduction

\BuEENEi

5

M7
Studentsky
dam Y

— i Bl e 7 S

o2
o

RoOseveltova

Nérodn technicka

Knihovna /
\/\rDer:’kéV[}eJVi‘kﬁ,

kurova
Opeiropeka

mean

Radnice Prafia e ara
6 T OOuSt

‘\ ko Hradcanska
N Praha-| De}vncefeé'. Fer e

aghrabu e
Mw(\e
Pradny most#&er
~ P
Vozouna Stiesovice

Nabrezi

Kralovsky letohradek’

T raddy
orusnicrusnice geoi PrASKY brad et oy

5
‘KM_

Pravnické fakulta Dlouhi tfida

S ?
er stoela Pre D\ouh€ tFida™
2 OSEFOV a
/ HRADCANY /J g Namésti R
adkov . i po Repumu
o= Malostranské namesti G o
Pohofelec
o8 % Sorkova Marianské /
namest
Hellichova
Jinc
s Karlovy lazn&
G, Hellichova
S
Ujezd = ‘, s
g petfin ek | gt /" Vaclavské Ramesti
5 Ojezd . oo NATOTNI tHida '
=z " ni divadio’ ;
5 most Legi i
s c i
; Nérodni divadio . : Th
by i Lazarsks Vodickéva N
%2 Koleje Strahov
2% /
3vandovg divadio 5 b
Myslikwa 5
Stadion Strahov @ e : <
Na Hrebeniach & 3
oyl

s LS
Nmost

~ 3 e] T ——
Upalay P <y I Jiraskovo/namesti Qlovonamesu Zitng
) Arbesovg namésti
%,
/ PN iy $ ssiioe §Lepanska
% 7

Figure 1.5: A global localization plan of a path between CTU FEE Karlovo
ndmésti and CTU FEE Technickd campuses. [7]

shortly speak about the history of mapping and localization in general, then
I will outline a plentiful of localization techniques, with their pros, cons and
principles. Presently, I will cover our testing platform ToMi2, describing
design choices, sensors available and its function as a whole. Afterwards, I
will detail DGNSS and visual odometry systems added to this platform for
the purpose of better localization. Lastly, there will be a section reflecting
sensor data fusion with the Kalman filter, as well as results and conclusions.

10

1.1. My contribution

B 11 My contribution

My work revolves around Toyota Mini (ToMi) project under the TRACE
Lab and Smart Driving Solutions group at CTU FEE, where the team is
building an autonomous vehicle dynamics demonstrator on a RC platform
(more detail in |chapter 5)). The contribution of my diploma thesis to ToMi2
project is four-fold. Firstly, the theoretical part of my work summarizes
localization techniques and sensors, and it can serve as an introduction to
the localization field and related underlying topics. Secondly, I have created
physical 3D models that facilitate new sensors used in the ToMi2 project and
in fact they will find their use in the next generation of the ToMi RC platform.
During my work, I have touched and familiarized myself with a multitude
of technologies, such as 3D modeling, leading to the creation of 6 models
in Fusion360, and their subsequent printing with Prusa Printers. Besides
that, I have constructed a docker image for the Nvidia Xavier platform,
which supports ROS2, Pytorch, StereoLabs ZED2 SDK and enables an easy
transfer of the ToMi2 codebase to different computer hardware. Thirdly, 1
have designed and constructed a reliable and easy-to-use mobile Real-Time
Kinematics base station to facilitate high-precision absolute localization along
with visualization scripts to verify its functionality. Also, I presented a basic
system that can benchmark visual odometry tracking performance based on
ground truth GNSS data. Results of this system led to the choice of the
best-performing visual odometry implementation, which was further leveraged
in data fusion localization. Lastly, a kinematic odometry model and, most
importantly, an Extended Kalman Filter was implemented, which utilizes
data fusion of GNSS, visual odometry, IMU and odometry measurements in
order to grant higher robustness and tracking performance. Finally, the code
was tested on real environment data from the ToMi2 platform, concluding
the list of requirements for my diploma thesis. As a side note, I would like to
point out that during my work, I spotted a bug in StereoLab’s ROS2 GitHub
repository, which was, based on my suggestion, later fixed and is currently in
the repository main line.

11

12

Theoretical part

13

14

Chapter 2

Taxonomy

B 2.1 Localization taxonomy

So far, I have tossed around the term localization with adjectives like "global",
"local", "absolute" and "relative" without giving no interpretation and detail.
This is, however, key information to understand what I am referring to with
these terms so let me remedy this mishap at once. The later listed definitions
are inspired by the book Probabilistic Robotics [21] by Sebastian Thrun with
some added clarifications, although I would like to point out that definitions
may be on the vague end of the spectrum. It is also vital to ask ourselves
why we need localization in the first place. Even in the situation when
we have a perfect odometry model, actuators rarely ever perform actions
precisely, either due to nonlinearities, external conditions or manufacturing
flaws. Furthermore, we must account for measurement noise and inaccuracies,

which generally accumulate over time, as shown in

Definition 2.1. Localization is the task of estimating a position of an agent
within a known coordinate system/map.

Next, we can focus on some key distinctions within the localization field.
Firstly, let’s have a look at global versus local localization.

Definition 2.2. Local localization, also known as position tracking, is, as
the name suggests, a method to track position within an environment. This
requires knowing the agent’s initial position on the map, which is commonly
a local map created with LiDaR or cameras combined with computer vision
techniques. The word local pertains to the fact that the localization takes place

15

2. Taxonomy

Start

]
-

10 meters

Figure 2.1: This figure shows a probabilistic depiction of robot position given
measurement uncertainty. We can see that at each measurement time, the
distribution of positions expands, speaking to the additive nature of measurement
noise propagation. This highlights the need for a method to localize more
accurately than just with a motion model because for longer sessions, it is not
sufficient. [21]

in a local reference frame/map, and all measurements that take part in it are
conditioned by the local neighborhood or the agent’s state. Local localization
is mostly used as a complementary source of information about locomotion,
balancing out errors in odometry, due to noises, modeling imperfections, etc.

Definition 2.3. Global localization, or absolute localization, unlike its local
counterpart, has no knowledge of its initial position, and so there exists no
bound on localization error. Global localization has the same purpose as
local localization in that it provides a position on a known map, and thus it
subsumes local localization, but it is a more difficult task to fulfill. It relies
on absolute position measurements, determined by its position rather than
its state or vicinity.

Definition 2.4. The Kidnapped robot problem is a more difficult ex-
tension of the global localization problem. In this scenario, the robot may
be abducted and teleported/transferred without being informed of its new
location. This creates an issue when the agent is unaware that it is elsewhere
than where it assumed to be before. Even though this minor change in setting
seems almost irrelevant, and what is more, non-sensual, the problem of the
kidnapped robot proved to be a good benchmark for system recovery from
global localization failures.

16

2.1. Localization taxonomy

Goal |

True Path
o m——1 } = ——

Figure 2.2: Passive localization setup, where the localization algorithm does not
influence the robot’s motion. [21]

Another factor to consider is the environment, namely, whether it is static
or dynamic. This distinction is pivotal for choices of localization algorithms,
as some do not support dynamic changes in the map/environment, despite the
fact that real-world scenarios are rarely ever static. Notably, the algorithms
that can tackle dynamic settings can clearly deal with static ones as well,
making them superior in usability, but they usually carry a drawback in
complexity and efficiency.

Definition 2.5. Static environments are those environments in which the
agent’s position is the sole variable. Other features and objects remain in
their place permanently.

Definition 2.6. Dynamic environments are characteristic of the fact that
all object’s positions may vary over time. Localization techniques must adapt
to changes by removing localized features that are no longer at their presumed
location.

Lastly, we distinguish between passive and active localization approaches,
as seen in Figures 2.2 and 2.3, respectively. The difference is made by the
ability of the localization algorithm to control the agent’s motion.

Definition 2.7. Passive localization is constrained to only observing the
robot’s mission; it does not intervene with or guide the robot’s motion to
facilitate better localization.

Definition 2.8. Active localization is localization with the aim to minimize

17

2. Taxonomy

Figure 2.3: Active localization algorithm controls the motion of a robot to better
localize itself and direct itself to the goal position [21]

localization error. The algorithm controls the robot in a way that aids its
task, which is usually a desirable practice in high-stakes missions or hazardous
environments.

Active localization techniques outperform passive in the majority of scenar-
ios and also help to determine the position in a symmetries-affected setting,
such as long symmetric hallways, when only after the robot sensors reliably
measure the end of the hallway, can the agent resolve its positioning ambiguity.
On the other hand, the agent might have other tasks to perform apart from
localizing itself, and therefore there is always a demand for passive approaches.
In times of need, the robot may temporarily switch to an active technique to
re-localize itself before carrying out its intended missions.

18

Chapter 3

Localization methods and sensors

The following section will take a deeper dive into specific localization tech-
niques and sensors. Localization can be achieved by many sensors and
instruments, although unimodal solutions usually lack desired reliability, per-
formance, precision and robustness. To fight these problems, it is usually a
good practice to fuse available sensory data, making up for individual sensor
shortcomings, such as GNSS signal outage, accelerometer noise, etc.

We distinguish two major groups of sensors, exteroceptive and propriocep-
tive.

B 31 Exteroceptive sensors

As the name itself hints (the prefix "extero" refers to the world outside of
an object, "ceptive' is a core of word perceptive), this family of sensors
gathers information about the external environment of the agent. It comes
with no surprise that these sensors are used to orient in close vicinity to
the autonomous vehicle and are mostly relative methods in nature. On the
other hand, exteroceptive sensors also include the only absolute and global
localization approaches we know. [25]

19

3. Localization methods and sensors

B 3.1.1 GNSS

The abbreviation GNSS stands for Global Navigation Satellite System, which
is historically the most important positioning technology ever introduced. This
technology promises a global and absolute solution (the result of positioning
algorithms) almost anywhere in the world in a matter of seconds. The first
GNSS system was the American GPS (Global Positioning System), which
deployed its first orbiting satellite in 1978, and the complete constellation of
24 operational satellites was concluded in 1995. The technology was initially
intended only for the American military and civil sector, however, it was made
globally available in 1984. Given the military funding, the technology was
leveraged during armed conflicts in the Kargin war and the Gulf war, where
accuracy for enemy forces was reduced and offsets in navigation solutions
were introduced, leading to extended tactical advantage on the battlefield.
This incident highlighted the need for other countries to develop their satellite
positioning systems. As a result, new satellite constellations were deployed:
Russian GLONASS in the mid-2000s, China’s BeiDou in 2018, EU’s Galileo
in 2016, India’s NavIC and Japanese QZSS, albeit the last two systems
mentioned provide only local coverage spanning their respective owners. [20]

B Principle

GNSS technology can be crudely divided into three segments: space segment,
control segment and user segment, all of which carry out distinct tasks.
The space section is comprised of satellite constellations. Each satellite has
multiple extremely precise atomic clocks on board, which is pivotal for the
precision of the final solutions computed because even the slightest clock
synchronization imperfections can lead to extensive positioning errors. To
illustrate this, consider even a minuscule 10 ns error in clock synchronization,
which conversely corresponds to a distance computation error of approxi-
mately 3 meters. Satellite broadcasts encoded messages on carrier waves in
three separate bands: L1 (1575.42 MHz), L2 (1227.60 MHz) and the most
recent L5 (1176.45 MHz) supported only by the recent satellites. [28]

The second segment is concerned with maintaining satellite constellations,
synchronizing individual atomic clocks in satellites, issuing orbit corrections
in the event of any deviation and monitoring signal quality.

The last section is the user segment with all user GNSS applications. With
the exception of Galileo’s emergency Signal-of-Life message, this sector con-
tains no active transmitters. GNSS users merely receive provided signals
with antennas and then compute positioning solutions. Here, the benefit of
multiple frequency bands and constellations come to fruition, as redundancy,
reliability and solution convergence speed increases with the number of signals

20

3.1. Exteroceptive sensors

Control signals:
orbit adjustments,
clock synchronizations,

health monitoring... \\’ . GNSS signal =

N\
- -

(@) = <

CONTROL SEGMENT USER SEGMENT

Figure 3.1: A diagram displaying GNSS technology segments. Communication
between the space and control segments is duplex, with the control segment
attempting to enhance the accuracy of calculated solutions by precise control of
the satellites and satellites reporting data on their orbital movement. On the
other hand, the data flow from the space segment to the user segment is simplex,
as the user segment receives GNSS signals from satellites. [39]

G
e

§

available, provided that your antenna and receiver can utilize a multitude of
constellations. [28]

A schematic in depicts GNSS system partitions and their informa-
tion exchanges.

B GPS signal

The solution in the GNSS application is computed based on signals received
via an antenna. Let me now shortly elaborate on the signal composition, using
the GPS signal for reference. The GPS signal contains embedded signals,
C/A (coarse/acquisition) code, military encrypted P (Precision) code and
navigation message, all modulated upon carrier waves.

User applications were originally intended for much lower accuracy than
the military ones, hence the encrypted P-code, which enables more accurate
solution computation. Thanks to ingenious engineering, the precision limits
posed by P-code encryption were bypassed and I cover this technique later.
Unlike the other codes, the P-code is modulated onto L2 band signals only.
The C/A code holds crucial information, which endows the module with
the ability to precisely detect the distance between the antenna and the
transmitting satellite. Each satellite has its own, unique, 1023-bit long buffer
of PRN (pseudo-random noise), which is transmitted periodically with a
period of 1ms. Interestingly, the PRN signal has a specific property, that is if
we were to match two identical C/A sequences with a bit offset, there is only
one exact position, where the bit buffers overlap with no mismatch. This
can assist us in determining the accurate ToF (Time of Flight) of the GNSS
signal as it travels from the transmitter to the receiver.

21

3. Localization methods and sensors

\.

The modulated
output signal
Figure 3.2: The GNSS signal is created first by combining C/A and the navi-

gation message, then by modulating the summed signal to a carrier wave of a
particular frequency (L1, L2 or L5 band). [39]

Lastly, let us focus on the navigation message. Unlike the C/A code, this mes-
sage contains numerous data concerning the satellite’s exact orbit (ephemeris),
orbital parameters, clock corrections, ToE (Time of Ephemeris, similar to
a timestamp of transmission) health, ionospheric model and approximate
orbits of all satellites within its constellation, called almanac. Because the
navigation message is long and the transmission speed is poor, it can take up
to 12.5 minutes to download it completely, reducing the start-up convergence
of positioning solutions. [30] [32]

An infographic in [Figure 3.2| shows the construction of the final GNSS signal.

B Satellite localization

Presently, I will describe how does GNSS system locate its satellites. Upon
power-up, the receiver module looks into its memory for approximate satellite
data. In the memory is stored the almanac, which is a regularly updated
digital schedule of satellite orbit parameters, with the sole purpose of aiding
the initial solution convergence following device start-up. For all satellites
in the constellation, it stores coarse orbit data (not as precise as ephemeris
data), time corrections and crude ionosphere models. From current time
and almanac data, the receiver can determine the visibility of satellites, thus
leading to a "warm-start". The warm-start converges to a precise solution
substantially faster than the "cold-start", which requires the receiver to first
acquire new almanac data. The almanac is valid for about 6 months, although
if the receiver is shifted significantly, it needs to be re-downloaded as well.
Following that, the receiver begins a two-dimensional frequency and C/A code
search to determine where visible satellites emit their signals from. Once the

22

3.1. Exteroceptive sensors

Synchronized time instance

Receiver synchronized
C/A code] I |_| |_| \—I U I—l |—|

Received C/A code from
a satellite l I | I

«~— shifted

Bit shifted C/A code to —I_I_Lru—‘—]_U_L
measure ToF of the signal

Figure 3.3: A streamlined version of C/A code synchronization that is used
to determine the ToF from a satellite to a receiver. It shows a receiver, with a
synchronized clock and a C/A sequence, receiving a delayed C/A code from a
satellite. The receiver then determines the corresponding bit shift, caused by
ToF delay. Interestingly, a one-bit shift pertains to approximately 300 meters
worth of distance traveled by the GNSS signal, as the C/A code is broadcasted
at 1.023 Mb/s. [29]

receiver locates the data signal, it performs Phase Loop Lock on the carrier
frequency and Code Loop Lock on C/A code and finally, it can demodulate
and parse the data. [31] [32]

B Range computation

The PRS of C/A is the key information carrier for non-military applications.
Both the satellite and the receiver have a copy of the identical sequence
synchronized by the satellite clock. However, after the sequence is sent by
satellite, it propagates through the atmosphere at the speed of light and
arrives at the receiver with a minuscule delay. shows how this delay
manifests itself as a bit shift in the C/A code sequence. The receiver can
roughly infer the satellite’s position using the ephemeris data and synchronized
clock. To further refine the approximation and calculate the precise distance
to the source satellite, the receiver employs the time offset determined from
the bit shift. [29]

23

3. Localization methods and sensors

B Trilateration

With the distance data computed and the known position of their respective
source satellites, the receiver begins the process of trilateration. Let us
consider two intersecting spheres with a radius given by distance to satellite
the respective satellite. Place the center of these spheres at the know position
of the satellites. The resulting intersection is a circle. If we add one more
satellite, we obtain an intersection of only two points representing the position
of the receiver while still adhering to the distance constraints, as seen in
Figure 3.4, In order to narrow the number of intersection points down to
just one, we would need to add another satellite measurement; however, one
of these points can be disregarded, as its intersection is located far off the
Earth’s surface. On the other hand, the receiver needs four satellites to rectify
their respective internal clock inaccuracies. It’s interesting to note that the
design of satellites’ orbits is optimized such that there always are at least
six satellites visible above 30° from the ground anywhere in the world, given
a clear sky view. Furthermore, having an antenna and receiver that can
utilize multiple constellations, makes a limitation to satellite numbers almost
negligible for a majority of real-life situations. [34]

B Standard Positioning Service and major error sources

The aforementioned computation of solution is called Standard Positioning
Service, SPS for short, and it is the most barebone type of positioning solution
one can obtain. The SPS evaluates the position of its receiver using only
4+ satellites, C/A code and ephemeris data while achieving an accuracy of
about 2 to 10 meters. Since SPS cannot reliably detect even driving lanes,
its accuracy is insufficient for any autonomous applications. In fact, this
performance is just unsatisfactory for many real-life applications, including
those in the automotive, agricultural, geodetic positioning and other fields.
The reasons for considerably poor performance are many: multipath, C/A
code maximum precision, orbital errors of satellites, satellites’ clock imperfect
synchronization, the weather and humidity in the atmosphere, but primarily
the ionosphere errors, where signals bend and change their speed, resulting
in different distance traveled and thus erroneous time of flight estimation.
As a result, the computed intersection of trilateration spheres is not perfect,
and more often than not, the solution is merely an approximation called
pseudo-range measurement. Although we cannot overcome P-code encryption,
nor command the weather, there are still some aces left up in our sleeves.
Firstly, with the use of multi-band antennas, one can compensate for a portion
of ionosphere errors while also benefiting from faster cold-start convergence.
Secondly, the synchronization and orbiting errors are constantly monitored by

24

3.1. Exteroceptive sensors

(RS
IR

(2

u"ﬂlﬁﬁ

/'.

Figure 3.4: The green, orange and black spheres, representing satellites’ positions
in their origins and distance measured to the receiver as their respective radii,
cross to form red points A and B. These points are solutions to a simple
trilateration process. It is clear that only one of those points lies near the Earth’s
surface. Consequently, adding another satellite leads to one intersection, point
B, although the necessity for the fourth satellite is due to measurement time
synchronization rather than range detection. [40]

a GNSS control segment and new clock and orbit corrections are computed
and distributed in the ephemeris data. Lastly, there is an option to use
multiple receivers to complement each other (DGNSS) and compensate for
local errors or to use other known correction services available. [33]

Il DGNSS and correction services

As I have already mentioned, one of the possible and simpler paths to reduce
GNSS error is to use more than one receiver. To deploy Differential GNSS
(DGNSS), we require a minimum of one additional receiver with a known, and
preferably very accurate, position. This receiver is known as a base station.
The principle of the DGNSS lies in the computation of local timing corrections
that are conditioned by the signal propagation errors for an area around the

25

3. Localization methods and sensors

base. The base obtains its positioning solution as usual, but it notes the error
of positioning with respect to its known position and derives clock alteration
for satellites it used to compute the positioning solution (that better match its
known position). Afterward, the base station sends the derived corrections to
other receivers, known as rovers. The corrections modify individual satellite’s
timing offsets based on the base station’s suggestions. [Figure 3.5 depicts
the DGNSS configuration in broad strokes. Even though the receiver uses
ionospheric models from ephemeris data, it does not provide the level of
accuracy DGNSS has, due to the fact that DGNSS adjustments are exact
corrections that precisely match the ionosphere-related errors that apply to
the local area of the receiver. Furthermore, the base station need not be
stationary, although stationary positioned base stations yield considerably
more accurate solutions. Any GNSS system, however, has a clear limitation:
since it derives corrections from a particular receiver, the corrections are only
valid within a radius of roughly 10 to 20 kilometers. [35]

GNSS
Satellites
-, E-QE\
’,
Satellite - R N
signals _, ~ I \
-, N
, | N
4 | \
/
| \
\

I N
}

EE

et . \\\\ |
~ \\E))/) ‘\\\E/))
& O Y 0Q \"ﬁ”{\\g/é/

User Equipment Base Station Base Station
Network

O

Figure 3.5: Differential GNSS setup uses a plain GNSS signal, identically to the
SPS, to determine corrections, which are subsequently fed to user equipment
(rovers) for precise local positioning. Users have the option of using a single base
station, likely their own, or base station networks, typically as a paid service.
[39]

Another popular option for minimizing ionosphere-induced errors is the
correction services, for example, RTK, PPP or SBAS, to name a few.

Real-Time-Kinematics. The RTK (Real-Time-Kinematics) is the most
accurate available correction service on the market with the added benefit of

26

3.1. Exteroceptive sensors

GNSS
Satellites
-
o -~

/ ~ Satellite

7/ ~ :
P ~ o Signals

/ G
/ e

s RN O‘Ed‘
Y/) \'R"/) ﬁ\
Vi A

i RTK Enabled
RTK Base Radio _
: Internet Receivers
Station (Rover)

Figure 3.6: The RTK technology has a similar layout as the DGNSS and also
works with a network of base stations. The difference lies within the computation
algorithms where RTK computes carrier phase solution, whereas SPS uses pseudo-
range computations. [39]

real-time performance. The corrections are transmitted through the RTCM
protocol. The solution distance is computed based on the carrier wave
number between the receiver and the satellite. An incomplete wave manifests
itself as a phase angle between the received carrier wave and the phase of
the oscillator in the receiver, which is then further leveraged to improve
localization accuracy. As a result, this method increases the accuracy down
to a centimeter-level, which is similar to solutions computed with encrypted,
military P-code, although it needs at least 4 satellites and a base station to
function. The RTK technology distinguishes two distinct fix types, "float"
and "fix", obtained by two different algorithms running in parallel. The
"float" state is computed using statistical methods, finding the most probable
position in a radius around the DGNSS solution. On the other hand, the "fix"
state resolves its position with carrier waves computations, solving the carrier
ambiguity problem. An illustration of RTK configuration is in [Figure 3.6, In
contrast to the "fix" state, which reduces errors to a centimeter-level, "float"
reaches an accuracy of about a decimeter. RTK corrections are exceptionally
useful in local applications, like automated agriculture, where precision and
repeatability outperform any comparable product.[36] [39]

SBAS. Another option is the SBAS (Satellite Based Augmentation System).
As the name suggests, this system provides its corrections via satellites. The
technology operates as follows: firstly, a network of precisely positioned base
stations receive GNSS signals. Presently, the stations send the data to a

27

3. Localization methods and sensors

SBAS
SGtlets) Satellite
atellites /
b NS senss

- atellites
\ ’
\ /
b \ Satellite // Satellite
\ Signals / Signals
N ’

= G
\ 2) S
\\%ﬁ@ E

\\\EU/ Master

Station SBAS-enabled
Reference B aivers

Station Network

\

N

Figure 3.7: SBAS system provides centrally computed corrections from a
network of base stations. Corrections are provided with over geostationary
satellites, which are managed by a maintainer of a local SBAS system. It is
worth mentioning, that not every receiver can acquire SBAS signals and thus
cannot leverage augmentation capabilities. [39)]

master station, where the data are centrally processed and corrections for
specific locations are derived. These corrections are subsequently transmitted
to a network of geostationary satellites and distributed to receivers. Errors
are reduced to around a meter level with this technology. [39]

Precise Point Positioning. The next and last major family of corrections
is called PPP (Precise Point Positioning). The PPP seeks to enhance the
initial estimate of the satellite’s position, its orbit error, clock synchronization
imperfections and ionospheric models with far more accurate data supplied
by the control segment of the GNSS provider, rather than limited precision.
Another upside of this system is that the user does not need a personal
base station and that the PPP solution works globally. There are numerous
potential PPP data sources, each with their respective accuracy and delivery
speeds. Post Processed PPP provides corrections in three distinct periods:
Ultra-Rapid (four times a day), Rapid (once every seventeen to forty-one
hours) and final (once every twelve to eighteen days). On the other hand, there
exists Real-time Service for PPP (RTS-PPP), with a period of only 25 seconds,
although its accuracy suffers in comparison with PP methods. Naturally,
the precision of corrections increases with the delivery time, reaching a
centimeter-level with the final PP-PPP. Admittedly, the PPP technique
poses some disadvantages as well, such as longer convergence times for RTS-
PPP, or no real-time measurement at all in the case of PP-PPP. Also, since
this technology does not rely on base stations, it cannot suppress signal
propagation errors as effectively and the only and less effective way to reduce
ionosphere errors is to use multi-band antennas. A principal schematic of a
PPP system is in |Figure 3.8, [37]

28

3.1. Exteroceptive sensors

GNSS
Satellites
%@ GNSS ez -
> L-Band
> Satellites Satellite ' !

7/ Satellite
, Signals
\ ’
‘' sateliite I ; d
Signals

I’4
~ e
\\\ﬁ))) : ' 9 I Receivers

Network

\Q)))
\ \
\ E / \\\EU) Control Centre

Reference
Station Network

Internet

\
\
\

Figure 3.8: The PPP system can distribute its correction either via satellites or
directly to the receiver over the internet. Later option can help with the initial
positioning fix of PPP, which has always been one of the PPP’s downsides, with
over 20 minutes long convergence. The layout of PPP and SBAS look alike,
nevertheless, PPP uses precise orbit data from the control segment and not the
positioning solutions at the base station as a source for corrections. [39]

B Limitations

Some limitations of GNSS systems were mentioned in previous sections, such
as limited availability in urban corridors, tunnels or indoors, low refresh
rate, multi-paths and reliability. In the case of signal availability, nothing
can be done to solve this problem. Geometric shadows, multi-paths and
challenging environments will always pose problems to GNSS technology.
In order to increase reliability and refresh rate, one may introduce inertial
measurement or odometry fusion within the positioning algorithm, further
refining resolution and enabling the system to sustain accurate localization
even in short signal outages. [3§]

29

3. Localization methods and sensors

Bl 3.1.2 LIDAR

One of the most prominent localization sensors, LiDaR, has witnessed a
significant boost in performance as a direct result of growing interest and
investments in the field of autonomous driving. In the 1960s, LiDaR was an
abbreviation for Light Radar, although, after the invention of the laser, the
name was changed to Light Detection and Ranging. Early applications of
LiDaR technology focused on atmospheric research and aerospace altimeters;
despite these use cases being still valid, the present-day applications gravitate
towards autonomous robotics, notably automobiles. The first wave of interest
in this technology in the automotive industry surged/erupted after the 2005
Darpa Challenge, in which the Stanley vehicle successfully completed the 214
km long course in the desert while using a multitude of LiDaRs as part of its
collision avoidance system. [23] [65]

LiDaR device construction can be usually divided into two segments,
transmitter and receiver. The transmitter commonly consists of a laser source
with a narrow frequency spectrum, optics and some laser beam directing
mechanism, such as a motorized mirror called the scanner. The receiver
contains frequency filters/optical analyzers to mitigate the influence of other
light sources, a photodetector to quantify incoming signals and a processing
unit to process the data. Furthermore, the receiver unit also uses the scanner
and optics, most often shared with the transmitter. [66] [67]

B Basic concept

At its core, LiDaR operates similarly to any laser rangefinder device, except
that instead of measuring the distance to a single point at a time, like a
rangefinder does, LiDaR measures up to millions of points, producing a scan
of the environment known as the point cloud, or PC for short. A single
measurement of LiDaR is based on a ToF principle, measuring the round-trip
travel time of a laser signal from the transmitter to a target and back to the
receiver. The distance is calculated by the formula:

1
R = icAT s (31)

where R is the distance to the target, ¢ stands for the speed of light in air and
AT represents the time elapsed between the light being projected from the
laser to the detection in the receiver. Analogously to the laser range finders,

30

3.1. Exteroceptive sensors

one can also use intensity or frequency modulation to work out the signal’s
round-trip time. [66]

Since the LiDaRs gained in popularity, numerous manufacturers are engaged
in fierce competition with one another over important technological factors
including measurement frequency and accuracy, as well as device size and
power consumption. These key parameters are:

® Range — Defines the farthest distance, where we can reliably detect
targets. It is closely related to the power of a laser emitted from the
transmitter, as high-powered lasers can produce signals with stronger
reflection, making them detectable at bigger distances. Additionally, as
the range increases, the detecting process takes longer, thus affecting the
maximum achievable frame rate.

B Laser power and frequency — LiDaRs must comply with regulations
regarding eye-sight safety. This poses limits on maximum laser energy,
length of light pulses, pulse repetition range and used wavelengths.
Predominantly, 905 nm and 1550 nm wavelengths are used, with the
latter having an edge over the former, due to the natural absorption
of wavelengths above 1400 nm in the outer layers of the human eye.
Consequently, this makes 1550 nm lasers safer and allows them to use
higher energy than lower wavelengths counterparts.

B FOV — Field of View describes an angle at which the LiDaR both emits
and receives signals. Usually, manufacturers distinguish vertical and
horizontal FOV. Some LiDaRs provide dynamic FOV adjustments while
maintaining the same total number of measurements, which can alter
the resolution of taken point cloud scans.

B Precision, Accuracy — Attributes precision and deviation account for
the quality of measurements. The accuracy refers to the deviation of
measurement from the ground truth value, while precision quantifies the
variance of a measured value for repeated measurements.

® Resolution — Resolution defines the smallest angular or linear separation
that can be resolved by the LiDaR.

B Rates — The pulse rate determines how frequently the measurement
pulses are transmitted. A greater pulse rate translates to denser scans
since there is a smaller time difference between two sequential measure-
ment locations. The scan rate is similar to FPS in video recordings, and
it defines how many complete scans the device acquires in a second.

31

3. Localization methods and sensors

L4

Accuracy3Z Resolution
Precision 3¢ Low

Figure 3.9: A simplified graphic displaying differences between accuracy, preci-
sion and resolution of a LiDaR scan. [65]

B Measurement Principles

In [subsubsection 3.1.2, I have hinted that there are three possible approaches,
which yield the distance between the LiDaR and the target. These are
Pulsed ToF, Amplitude Modulated Continuous Wave (AMCW) and Frequency
Modulated Continuous Wave (FMCW). Let me introduce them in more detail.
The simplified LiDaR measuring principle is depicted in Figures

and 512, 67

Pulsed ToF. Pulsed TOF utilizes very short pulses, akin to a binary rectangu-
lar signal. Based solely on ToF, this measurement is the simplest in principle.
ToF poses strict requirements on precise measurement of time elapsed be-
tween transmission and reception, either with precise, high-frequency timers
or time-to-digital circuits. With a less complicated emitter, receiver, and
optics, this approach also excels in terms of size and manufacturing costs. The
simplicity of the solution, however, brings drawbacks in performance, espe-
cially in signal-to-noise ratio (SNR) and with that associated range detection
flickering.

Amplitude Modulated Continuous Wave. Amplitude Modulated Contin-
uous Wave method is similar to the Pulsed ToF, although instead of short
bursts of light, it uses a continuous signal which is modulated in intensity to
a specific pattern. The detection works with the integration time bins, the
first one starts and ends synchronously with the transmission. Presently, the
second integration window starts. The ratio of integrated signal between these
two bins is used to work out the time of flight and conversely the distance
to the target. Sensors based on this technology are limited in range, due to
laser energy limitations for continuous laser sources.

32

3.1. Exteroceptive sensors

Emitted
signal

Received
signal

ToF

Figure 3.10: Basic time of flight principle, where the round-trip time of the
backscattered signal is measured by very precise timing tools. [65]

Emitted
signal

Phase ®1

Phase ¢2

Received : : ;
signal : . .

e

h] H _
ToF ToF

Figure 3.11: The AMCW system uses a pattern of amplitude modulated signal.
It is received in two integration bins, phase 1 and phase 2, where the ratio of
integrated received signals in particular bins determines the ToF. [65]

Frequency Modulated Continuous Wave. The final here listed method is
Frequency Modulated Continuous Wave, which employs a frequency chirp
laser signal with a known, specified rate of change. The knowledge of the
chirp frequency rate of change is essential because once the backscattered
light reaches the sensor, it can compute ToF by comparing the received
frequency to the local oscillator’s frequency, which defines the laser’s current
transmission frequency. This method is restricted in range by the period of
the chirp signal. Frequency Modulated Continuous Wave technology offers
the best SNR, accuracy and robustness to external light sources, although
brings higher complexity in instrumentation, mostly in a tunable, narrow
spectrum laser source.

33

3. Localization methods and sensors

>

c f

O |ocoooo-- D £ e e e e e e e e e
3

o .

o Emitted

L Signal

>

Time

S L

Figure 3.12: Frequency chirp-up modulation enables to determine the ToF,
based on frequency shift between received and transmitted signal. [65]

B LiDaR imaging systems

So far, only a single measurement principle was covered. However, knowing
how all measurements are retrieved is just as important. Evidently, the
system needs to direct its light source and detection pipeline to the reflection
anywhere within the FOV and it needs to do it fast and in a very precise
manner. There presently exist three main philosophies in LiDaR imaging
design. Firstly, beam steering sensors with rotor-based mechanism, secondly,
solid-state beam steering and lastly full solid-state. [65] [66]

Beam steering with a mechanical rotor. This technology is the most mature
of the three listed here. It usually uses a rotating head to direct emitted
light in the FOV. Some designs even enable the acquisition of complete 360°
scans. The horizontal resolution is usually limited to several planar detection
zones called channels. This sensor’s rotating head makes it heavy, large, and
scan-rate constrained. A prime example of this technology is a Scala LiDaR
from Valeo, which is SAE autonomous level 3 certified and is deployed on the
first level 3 autonomous vehicle Mercedes-Benz Class S (Figure 3.13)).

Solid-state beam steering. The beam steering in solid-state technology is
accomplished in one of two ways: either with MEMS mirrors or an Optical
Phase Array (OPA). The MEMS technology uses a static laser paired with
electro-mechanical mirrors that can alter their tilt angle in response to applied
pull-in voltage. MEMS systems can only be used for short- to medium-range
applications since they are susceptible to both vibrations and high-energy

34

3.1. Exteroceptive sensors

Figure 3.13: A commercial Valeo Scala 2 LiDaR with a rotating mirror used for
beam steering. [68]

lasers. The other option is OPA, which is similar to Phase Array radars
(Figure 3.14)). This technology uses phase modulators to optically direct
emitting light. A similar approach is used for detection, where the controlled
delay and phase in receivers enable detection sensitivity only in a specific
direction, helping with the rejection of unwanted reflections. Given no moving
part in this design, high scan rates should be possible once all individual
components mature in their development.

Phase

Shifter Transmitter

29%7

7

Figure 3.14: OPA phase array LiDaR principle. Directed light beams are
achieved with controlled phase shifts at individual transmitters. [65]

Full Solid-state. As the name suggests, LiDaRs based on Full Solid-state
technology have no moving parts at all. They are sometimes referred to
as 'flash radars" since they illuminate the entire scene at once, much like a

35

3. Localization methods and sensors

camera flash. All of the points are captured in one moment and the receiver
must differentiate between individual reflections and their correspondences to
measured points in space. Usually, this is done with photodetector arrays,
which are very pricy for high resolution and can detect only short ranges,
due to illumination power limits. Flash LiDaRs are used for example in the
Apple iPhone and iPad Pro series.

B Advantages and limitations

As far as autonomous driving is concerned, LiDaR is currently the single
most capable detection system available. Unlike cameras, they are active
sensors, making them more robust in the majority of weather conditions
and, more critically, light conditions, when cameras may entirely malfunction
owing to overexposure. Omn the other hand, this technology poses very
high demands on computation time, with millions of points perceived every
second. Furthermore, despite a significant price reduction over the past
ten years, LiDaRs are still costly. Although LiDaR’s accuracy in 3D space
representation may give a false impression that it may serve as a single
detecting sensor for autonomous vehicles, this technology doesn’t provide
information regarding traffic signs or lanes. As a consequence, it is clear that
data fusion is necessary for autonomous driving even in systems that leverage
advanced LiDaR technology.

B 3.1.3 Vision sensors

Similar to LiDaR technology, vision sensors have seen a surge in popularity
in recent years. This outburst is mostly caused by advancements in smaller
imaging sensors and optics, as well as an immense interest in Deep Learning
(DL) approaches in the computer vision field and Al alike. Furthermore,
vision sensors provide otherwise unobtainable colored environment images,
which can be exploited for road signs, driving lanes and traffic lights detection.
These functions cannot be reliably maintained without a front-facing camera
system, thus making it one of the key ADAS sensors nowadays. Also, using
multiple viewpoints or a stereo camera rig (Figure 3.15b)), vision sensors with
the application of 3D computer vision algorithms can retrieve information
about the depth of the captured scene, making it a compelling alternative to
still considerably pricy, although more accurate and reliable LiDaR sensors.
The range and quality of obtained depth maps are extremely dependent upon
the quality of optics, sensors, baseline distance (the distance between cameras

36

3.1. Exteroceptive sensors

Wide Forward Camera Main Forward Camera Narr
Max distance 60m Max distance 150m

Forward Looking Side Cameras
fax distance 80m

Radar
Max distance 160m

(a) : A depiction of the individual camera’s FOV on a Tesla vehicle. There is a
total of eight cameras; three of them look directly ahead of the vehicle, four map
the space to the side and one monitors the rear. [70]

(b) : The Tesla triple front-facing camera setup, placed above the rear mirror.
The cameras on the sides combine to form a calibrated stereo pair to create a 3D
depth representation of the space in front of the vehicle. The central camera with
magnifying optics serves for long-range detection purposes. [70]

Figure 3.15: Tesla vision suite.

in a stereo pair rig) and most importantly, precise stereo calibration, which
determines the position and orientation between the two cameras. [4]

Computer vision depth maps are considerably computationally demanding,
especially in scenarios when real-time performance is required. In fact, it is so
demanding that Tesla, whose autonomous driving systems solely rely on the
eight cameras on board , created its own graphical accelerator
to facilitate its FSD system. Staying with Tesla for a brief moment, the
philosophy of their design is that since humans use only vision to navigate
their surroundings, then neural networks with enough high-quality data
should be able to handle autonomous driving as well. On the other hand,
other players in the autonomous driving space, such as Waymo, center their

37

3. Localization methods and sensors

systems mostly around LiDaR technology or a combination of both LiDaR
and camera systems. A major advantage of camera systems over the LiDaR
is that the data is gathered in a resolution higher than the resolution of
LiDaR point clouds, let alone the fact that LiDaRs cannot capture color and
thus facilitate color-based detections, such as the previously mentioned road
signs. In addition, with the very large datasets from front-facing car cameras
available, DL applications can further enhance depth sensing from stereo
computer vision and improve other typical computer vision applications like
image segmentation, object detection and tracking, camera position tracking
and mapping. [25]

There are several downsides to visual sensors. First of all, their performance
is highly reliant on the weather and light conditions. Heavy rain, snow, fog or
camera overexposure due to direct sunlight can partially or completely ruin
captured images, thus making computer vision depth computation impossible.
Another shortcoming is in FOV. Even though omnidirectional cameras do
exist, obtaining depth images with them is significantly harder, whereas
LiDaR can provide 360° scans with relative ease. Lastly, the difficulty of
precise calibration is still present, and if done poorly, can diminish the quality
of any subsequent image processing technique. [25]

B Imaging principle and 3D-2D perspective

A principle of the camera can be described with a pinhole camera model
depicted in [Figure 3.16| This model assumes a closed box with a small,
pinhole-sized cutout on one side and a photosensitive element on the opposite
side. In addition, it assumes that all objects in the camera’s field of view
are sufficiently illuminated, that is they radiate backscattered light rays
into the small pinhole opening. The model departs from actual cameras in
this instance because real cameras use lenses to replace the hole and an iris
diaphragm to control the quantity of light passing through the lens. If the
hole was to be bigger, more light would be able to come through, however,
the final image would become blurry as a side effect. The pinhole is called a
center of projection, or an optical center, and it is the point, through which
all incoming light lines pass. Due to the small size of the hole, the image is
focused on the back side (image plane) of the camera upside down. [25]

With this model, we can introduce mapping of the 3-D world coordinates
into a 2-D image plane by the following equation in homogeneous coordinates:

38

3.1. Exteroceptive sensors

Photosensitive film Light rays

Aperture
(center of projection)

Figure 3.16: A figure of a pinhole camera model. Rays are artificially colored to
clarify the reflective nature of the camera projection. [71]

yn Ju a pu Pa
p= —+[r {|P= 0, pfj L I e IR CE)
R P p

extrinsic parameters 1

intrinsic parameters

where p denotes a position of the point on the image plane in uv coordinate
system, P defines a position in the 3D zyz world coordinates. The skew
parameter « is nonzero only for non-rectangular pixels. Focal lengths in
horizontal and vertical image plane directions are f,, and f,, respectively. The
center point in the image plane is represented by p,, and p,,. The rotation
R and translation ¢t map the 3-D world into the camera frame.

B Construction

A camera is built up of three parts: a mechanical body, an optical system
and a photosensitive element.

The mechanical frame is an enclosure that holds the rest of the camera parts
in a precise and rigid position relative to one another, as any deviation from
the intended position may cause imperfect image focus. The optical system
consists of lenses and, potentially, mirrors, some of which can be motorized.
The purpose of an optical system is to redirect the highest possible amount
of light in focus onto the photosensor while maintaining minimal optical
distortions, such as color shifts or fish-eye effects. Typically, lenses are

39

3. Localization methods and sensors

manufactured of either optical grade plastic or glass, with glass having an
edge over its plastic counterpart in image quality. Interestingly, the first
images were produced with cameras similar to the pinhole model, and one
picture took six hours to make due to the lack of an optical system and
insufficient illumination onto the photosensitive element.

Lastly, the part where all the magic happens is a photosensitive element. In
the past it used to be a light-sensitive chemical compound; however, while
some professional photographers still use films, the vast majority of the market
has migrated to digital cameras. At the core of a digital camera usually sits a
CMOS chip arrange in a matrix of photosensitive bins. These bins resemble
solar panels in their principle, as whenever a photon hits the photo-element
in the bin, its energy is converted into an electric charge. These bins are
organized in a matrix, with each bin representing a single pixel. When the
picture is taken, the light is directed to this matrix, creating a charge in
individual bins based on the intensity of the light. Then the control circuitry
measures particular charges and discretizes them into a specific number of bits,
defining the color bit depth of an image. Because photoelements are not color
sensitive, a color filter is placed in front of them to produce the recognizable
RGB triplet. Due to the fact that the human eye is more sensitive to green
color, the filter usually consists of more green pixels than the other two colors.
The Bayer filter, shown in is one of the most prevalent filter
patterns. The final RGB values are acquired by sliding a 2 by 2 window
kernel with the stride of one over an image and extracting red, green and

blue values from pixels enclosed by this kernel (Figure 3.17b). [25] [69]

(b) : A schematic showing how 9 differ-
(a) : Bayer filter pattern with intermit- ent pixels are obtained from a 4x4 pixel
tent green-red and green-blue rows.[69] matrix. [69]

Figure 3.17: Implementation of color detection in image sensors.

40

3.2. Proprioceptive sensors

B 32 Proprioceptive sensors

On the other side of the coin, proprioceptive sensors, unlike exteroceptive ones,
measure the internal properties of the vehicle, typically variables describing
motion, such as accelerations, displacements and velocities. None of these
sensors is endowed with the ability of absolute localization or the localization
of extraneous objects. In spite of this, they can be a great help for self-
localization and, when combined with other absolute localization methods,
can act as a reliable dead reckoning backup. [25]

B 3.2.1 IMU and INS

The Inertial Navigation System, INS for short, is a standalone device capable
of tracking its own position, velocity and attitude with respect to an initial
frame of reference. The initial frame of reference is a known position and
orientation of the INS device prior to measurement. As a result, it is evident
that this system cannot localize globally; it requires previous knowledge
of its state to make sense of its newly acquired data points, making it a
relative measurement technique. An INS consists of two major components:
an Inertial Measurement Unit and a computation unit, which processes
measurements from IMU, typically through Kalman or Extended Kalman
filtering. [42] [46]

Furthermore, we can distinguish two types of INS mounting. The first type
is a stabilized platform, where the measuring equipment is mounted on a
plate, which hangs on a series of mechanical gimbals, effectively mitigating
the impact of rotation on the plate and thereby the measurement equipment
(Figure 3.19a)). This solution is significantly less popular due to its spatial
and mechanical complexity, as well as the issue of gimbal lockd!| The second
possibility is a strap-down method, where the measuring IMU is directly
bound to the physical construction of the device to be tracked (Figure 3.19b)).
An advantage of this design is the size of the INS and the simplicity and
robustness of the mounting solution. On the other hand, the fixed mounting
also brings an overhead in computation, as we have to transform all the data
to the navigation frame of reference, most frequently represented by the initial
frame of reference. [48] [47]

The history of the INS system dates back to the 1930s when Robert Goddart

LA situation where two gimbal axes align as a result of rotation, effectively reducing
Degrees of Freedom to two instead of three.

41

3. Localization methods and sensors

Figure 3.18: Apollo mission INS system. In the center, there is an IMU unit
with accelerometers and gyroscopes, which control the rotation of servo motors
to keep the accelerometers perfectly aligned with respect to inertial space. This
system suffered in open space from a drift of 1-10~3 rad/hour, posing a need
for periodical realignment by star observation. [42] [53]

experimented with the first rudimentary inertial navigations for rockets. His
work was adopted by Wernher von Braun, one of the main engineers of V2
rockets, where one linear accelerometer and two gyroscopes with an analog
computer-controlled rockets azimuth in a closed-loop control design. Since
then, INS systems improved in accuracy, added a three-dimensional sensor
triad to track all possible motions and spread widely through aerospace,
naval, automotive and consumer electronics fields. A famous example of high
precision INS system was the Apollo mission’s primary guidance, navigation,
and control system (PGNCS), which relied on precision INS (Figure 3.18)) to
keep track of the lunar module’s position in space. [54] [53]

H Mmu

As it was stated before, the inertial measurement unit is a core piece of INS,
which provides measurement data for further processing. In the past, there
used to be solutions with just one or two accelerometers and gyroscopes, how-
ever, in the present, the vast majority of designs include three accelerometers
and three gyroscopes (sensors of angular velocity), all mounted perpendic-
ularly with respect to one another. This setting allows for the tracking of
arbitrary complex motion in 3-D space. The attitude (orientation of the body

42

3.2. Proprioceptive sensors

---------.. torque motors

... stable platform

" gimbals

® &

- ... angle pick-offs ayro accelerometer

gyro accelerometer

(b) : The strap-down design dominates
the vast majority of applications, espe-
cially those, where size requirements are
(a) : The complex stabilizing platform of utmost importance. The advent of

design finds its place in high precision these solutions came with advancements
applications in aerospace, mapping, naval of MEMS accelerometers and gyroscopes.
or military. [47] [T

Figure 3.19: IMU mounting solutions.

link, where the IMU is affixed) is computed by an integral of angular velocity
measurements to the attitude of an initial reference frame. Similarly, the
measured acceleration data is integrated once or twice to compute velocity or
position, respectively. Undoubtedly, this discrete integration scheme requires
a high sensor measurement rate, which in some special cases can be as high as
1 MHz, although more moderate sensors can measure somewhere in the range
between 300 Hz to 10 kHz. It is important to pay attention to a subtraction
of pseudo-acceleration, which is a portion of measurement data caused by
gravity force. To achieve this, we need to precisely know the attitude of the

sensor and the computation is shown in [Equation 3.3

0
a= _)meas - Ratt 0 ; (33)
)
where @ is true acceleration, @eqs is measured acceleration, g is gravity
constant and Rg; represents the rotation matrix between current sensor
position and initial reference frame rotation, which for simplicity here is an
identity matrix.

Even though the IMU units have dramatically improved in recent years,
INS navigations still suffer from errors in sensor bias, noise and mount
misalignments, although the most problematic is the dependence of motion
estimate on precise attitude and drift. If the current estimate of orientation

43

3. Localization methods and sensors

Update 4 ==
= Position estimate
— Accuracy
Update 3 —— \
Each update contains uncertainties that are added to
previous uncertainties. In this way an un-aided INS
becomes less accurate with time.
Update 2 ==
Update 1 ==
—
Start =i

Figure 3.20: Incremental addition of noised measurements leads to position
estimate variance growth. This fact highlights the reason why extremely precise
accelerometers are vital for high-grade INS solutions; although no INS solution
can suffice indefinitely on its own, eventually the position must be reset with
other localization techniques. [52]

in the space is false, any acceleration measured will further increase position
error. This fact is also connected to the drift problem, which usually appears
in recursive measurement schemes. In recursive schemes, the measurement
noise or bias adds up to the state estimation from previous steps, which
in prolonged sessions causes an unbounded drift to occur. Furthermore,
the variance of the state measurement degrades over time, due to the noise
variation being added to the state variance in a state estimator .
From the nature of computation and inner workings of this sensor, it is clear
that without periodic realignment with data from other sensors, the resulting
un-aided INS data will degrade beyond trustworthiness. As a result, INS
localization is usually paired with an absolute localization technique, such as
GNSS, and when used in unison, these localizations become more robust and
responsive, due to the high refresh rate of INS. [41] [47]

44

3.2. Proprioceptive sensors

MEMS Accelerometer

Figure 3.21: Simplified MEMS accelerometer. The orange block consists of a
core body in the middle, with springs attached to its ends and small fins acting as
capacitor plates. The second part of the capacitor is constructed by fixed plates,
depicted in light green. If the proof mass is displaced, fins of the proof-mass get
closer to static plats of capacitors in the direction of force applied to the mass,
and retract from the condensers on the opposite side, leading to a difference in
respective capacitances C1 and C2. [55]

B Accelerometers

Naturally, accelerometers measure the acceleration of an object in the direc-
tion of the sensor’s sensitivity axis. Initially created for military usage, this
technology was exceedingly expensive; nevertheless, as MEMS accelerometers
improved, their use grew in miscellaneous applications ranging from aerospace
and UAVs (Unmanned Aerial Vehicles), all the way to airbag deployment in
passenger cars. There exist a multitude of technologies such as mechanical
accelerometers with a damped proof-mass, electromechanical with servo mo-
tors and piezo-accelerometers using measuring polarization caused by piezo
crystal deformation; however, the most important family of sensors is based
on MEMS capacity measurement.

MEMS accelerometers behave as a mass on a spring, as can be seen in
Whenever an acceleration is applied to the sensor, the proof-mass is
displaced from its stationary position in the middle, where all capacities be-
tween individual capacitors are balanced. As a result, a change of capacitance
between individual fins of proof-mass and fixed fins occurs, thereby making
the acceleration measurable. In order to improve measurement precision,
the differential between capacitance C1 and C2 is taken for each fin on the
proof-mass.

From the design, it is clear, that the acceleration in the vertical Z-axis is
equal to zero during a freefall, as there is no force applied to the proof-mass

45

3. Localization methods and sensors

with respect to the rest of the sensor. On the other hand, if the sensor is
stationary, gravity pulls the mass down, giving a sensory read equal to the
gravity constant. Hence, there is a fraction of the measurement pertaining
to the gravity pull on the mass, which must be deducted, as stands in
Equation 3.3, [49] [25] [41] [43]

B Gyroscopes

The second and ever so important part of an IMU system are gyroscopes.
Similar to accelerometers, most of the current designs include gyroscopes in
all three orthogonal axes, providing complete information about the rotary
velocities of a reference body. The precision of gyroscopes is of utmost
importance, given the aforementioned reasons in |subsubsection 3.2.1. There
are various gyroscope measurement principles, for example, MEMS Coriolis
force gyroscopes, affordable and small-sized solutions, or a Fiber Optic
Gyroscope, a very precise although more delicate alternative. Let us have a
look at the principles of these measuring methods in more detail.

The MEMS technology leverages the change in capacitance between electrodes,
exactly like accelerometers do. However, with gyroscopes, the driving force
that introduces displacements is a Coriolis force rather than acceleration on
proof mass. The Coriolis force is present if a body moves in a linear motion
along an arbitrary axis ¢ and angular velocity around an axis non-parallel to
the axis of motion a is applied to the same body. This force can be computed
by a formula:

Fror = 2miiy X @ , (3.4)

where m is the mass of the body, ¥, is its speed along axis a and &, represents
its angular velocity along axis b.

The design introduced in [Figure 3.22 has one major flaw and that is when
the linear acceleration is applied in the sensitivity direction, the gyroscope
would detect parasitic angular velocity. Therefore, the tuning-fork design is
used (Figure 3.23), where two proof masses oscillate in opposite directions.
The principle of measurement is identical, but because of the fork’s opposite
vibrational motion, when linear acceleration occurs, the capacitance difference
between its two masses cancels out. If we look again at [Figure 3.23| and
remove rotation velocity w and consider acceleration in the Y direction, we
can see that the force applied to both masses is equal and the difference of
capacitance between the capacitors is thus equal to zero. [50] [43]

46

3.2. Proprioceptive sensors

<
oo
"9‘3@’@ i

Figure 3.22: The blue blocks oscillate the yellow gyroscope plate in a periodic
vibration pattern along the driving direction, introducing constant speed at the
time of measurement sample. If the rotation is present, the induced Coriolis
force pushes the orange proof-mass to the side, creating a capacitance differential
between individual fins and static capacitor plates, colored in blue. This change
of capacitance is directly proportional to the angular velocity applied. [55]

High-precision gyroscopes often use the Sagnac effect (Figure 3.24a) to
determine the angular rate with the utmost precision and minimal drift. I
will now shortly outline the previously mentioned FOG system .
A splitter divides a laser beam into two, which are subsequently injected in
opposition into the optic fiber coil. These beams arrive at the end with a
mutual delay, caused by the Sagnac effect. This delay induces a phase shift
between the split laser beams, which can be observed with an interferometer,
deriving the angular velocity of the motion. A great advantage over MEMS
technology, or any mechanical technology for that matter is a lack of cross-
axis sensitivity to vibration, motion or inertial resistance to movement of
proof-mass. Furthermore, FOG measurements are known for very high
resolution and low drift over time, which predestines them in military and

space applications. [44] [57]

B Magnetometer

IMUs may also optionally use magnetometers to assist with attitude measure-
ment. A magnetometer measures the strength and direction of a magnetic
field and similarly to both accelerometers and gyroscopes, we use them in a
tri-axis setup. As with every mature technology, there exist many possible
methods to measure the magnetic field, but in MEMS technologies, Hall effect
sensors or anisotropic magneto-resistance sensors are most common.

47

3. Localization methods and sensors

Figure 3.23: The tuning fork MEMS gyroscope design widely used for its natural
rejection of linear accelerations in the sensitivity axis. [55]

The Hall effect, a core principle of a Hall sensor, is a consequence of the
Lorentz force exerted on a moving charged particle in a magnetic field given

by [Equation 3.5

F,=qE+7xB), (3.5)

where F,, defines Lorentz force, g stands for a charge, E is the electric field
v refers to the velocity of the charged particle and B represents the mag-
netic field. The Hall sensor consists of a metal strip that lies perpendicular
to the sensitivity axis of magnetic field B as shown in The
constant current is then applied through the strip and as a consequence
of Lorentz’s force, electrons are pushed towards one side of the strip, cre-
ating a small Hall voltage between two sides of the strip. The questioned
magnetic field is proportional to the size of the Hall voltage measured. [43] [25]

Alternatively, the anisotropic magneto-resistance sensors use a reaction
of Permalloy (FeNi alloy) material to the exposure of the magnetic field.
If we apply a constant electric current to the Permalloy strip and measure
the resistance of the material, we can observe a chart similar to one in
which shows a decrease in the resistance due to the polarization
of magnetic domains within a Permalloy layer. The strength of the magneto-
resistive effect is dependent on the angle between the electric current and the
direction of magnetization. The change ranges between 2-3% of the original
non-magnetized value, and unlike the Hall sensors, its sensitivity is in the
direction of flowing current. On top of it, AMR sensors are more sensitive,
than their Hall effect counterparts. [43] [25]

Unfortunately, many electronic devices, such as controllers, antennas, in-
vertors or electric motors induce considerably strong magnetic fields, which

48

START

(a) : A simplified depiction of the Sagnac
effect, where due to angular rate w, the
light beams traveling opposite to the ro-
tation reach the end sooner, than their
counterparts. Due to this effect, one can
observe an interference pattern at the end
of the optical channel. [44]

3.2. Proprioceptive sensors

Left-handed light
i

~\, Optical

"X fiber coil
Spectroscope k

Light source[]

/
Receiver[] Polarizer

Light interface

Right-handed light

0 Rotation speed

(b) : A simplified schematic of a FOG de-
vice. Interestingly, the FOG systems use
an optic fiber coil of lengths in an order of
hundreds of meters to kilometers, just to
enforce stronger Sagnac effect influence
and thus better measurement accuracy.

[56]

Figure 3.24: A principle and an example of optical gyroscopes.

transversely can affect and possibly even overshadow Earth’s magnetic field,
yielding magnetometers completely useless. [43] [25]

B 3.2.2 Encoders and odometers

Another very useful set of tools to estimate vehicle state is position encoders
and their extension in odometers or speedometers. These technologies quantify
the distance traveled, cruising speed or steering angle of a vehicle, all of
which are essential data for motion tracking. At the core of this measurement,
technique lies encoders. Historically, mechanical encoders were used, although
their use decayed over time, mainly due to their mechanical complexity,
resolution and hard integrability into modern ECU (Electronic Control Unit).
The mechanical encoders were replaced by sensors, which leverage optical
and magnetic domains to sense rotary motion. [25]

49

3. Localization methods and sensors

AMR of Permal
N
1.020
- 284
g 10157 / ,I \\ m283 o
© ! =
= \ 282 o
= 1010 / / o
o \ \ Logq ©
1.005 j/ \\/ \ - 28.0
1.000 17 | i ; . | — 279
(a) : A simplified schematic of -100 0 100
a Hall sensor. Depicted physi- Angle [
cal quantities are, Hall voltage (b) : A chart of the progression of magneto-
Un, speed of electron v, electric resistance in relation to the angle of the magnetic
current I, magnetic induction B, field applied to the Permalloy layer. As can be seen,
electric field intensity E, and Ex AMR sensors exhibit reduced resistance where the
stands for intensity of electric angles of magnetization align with the current flow-
field caused by Hall effect. ing through them. [58§]

Figure 3.25: Hall sensors principle schematic and AMR resistance curve.

B Encoders

Firstly, let us delve deeper into magnetic encoders based on Hall effect sensors.
From the previous jsubsubsection 3.2.1| about magnetometers, we know how
magnetic induction B changes the direction of electrons moving in the metal
strip, causing a Hall voltage to appear. To measure a rotary motion, we
have to mount a magnetic multi-pole circle to the rotation shaft and place
the Hall sensor so it can measure the peaks of the magnetic field during the
revolutions and the relative position is determined by the number of peaks
detected (Figure 3.26a).

Usually, the signal is thresholded by a comparator to shape it into pulses of
ones and zeros. The resolution of such a sensor is dependent on the number of
poles on the magnet ring and by the nature of the design, it produces relative
measurement only. This sensor, however, lacks the ability to measure rotation
direction, nevertheless, this drawback can be mitigated, by the addition of the
second Hall sensor, which is placed evenly between two poles of the magnetic
ring, when one of the poles is directly under the first sensor. The effects are
two-fold; firstly, we increase the resolution two times and secondly, now the
director of revolutions can be determined by which of the signals step jump
comes first. [59] [61] [60]

The application of Hall sensors in cars for odometry is similar, but instead of
measuring a magnetic field induced by magnetic rings, it measures a magnetic
field from the permanent bias magnet, strengthened by ferromagnetic gears
in the gearbox, just as in [Figure 3.26b.

50

3.2. Proprioceptive sensors

Magnetic h
rotor HALL EFFECT SENSOR

/

Trigger
Wheel

Permanent
Mot et
Hall- Sensor
\ sensor \

/

(b) : A Hall sensor with a bias permanent
magnet. The magnet induces a magnetic
(a) : A schematic of a multi-pole mag- field, which is strengthened by a tooth of

netic disk mounted on top of the rotation the gear in the gearbox, making the sensor
shaft. The Hall sensor peaks above each peak and register the rotating tooth of a
pole of the magnet disc. [59] gear. [61]

Figure 3.26: Rotation encoders based on Hall sensors.

The second key principle used in rotation encoders is optical detectors. A
light beam is emitted from the source and shines onto the encoder disk with
slits in it. Through these slits passes the light through the aperture and is
detected on the light intensity detector . The relative position
is computed by the summation of intensity peaks detected. Despite optical
encoders being very similar to magnetic ones, they possess an improved design
for absolute position measurement. The absolute position uses a Gray code
encoder disk , with cutouts representing n-binary channels
at different diameters on the disk. At each channel, we can have either a
cutout, letting the light pass through or the material blocking it at a given
position. This creates 2™ positions on the disk, determining the encoder’s
resolution. On the other side of the disk, there are n light detectors, each for
its respective channel. The Gray code has one specialty, which is that only
one value between the two adjacent positions changes at a crossing. [62] [59]

B Odometers and speedometers

Digital odometers and speedometers operate almost identically. The odometer
counts the number of pulses provided by its encoders and calculates the
distance, to which this number of pulses pertains. This is possible only with
the knowledge of wheel circumference and the outcome is obtained by an
equation:

o1

3. Localization methods and sensors

sensor 1 Sensor 1

@ ay
e il

Sensor 2 Sensor 2

spacing = 'z pole + 1 pole

(a) : On the left, we can see an incorrect placement of the
second Hall sensor, resulting in a synchronized signal with no
additional information value, whereas on the right there is a
correctly spaced second hall sensor precisely n + half width of
magnetic poles, enhancing applications resolution and enabling
revolution direction determination. [60]

Sensor 1 output | | ' | ‘

i
i
Sensor 2 output | J | L ‘ |
counterclockwise ! clockwise
(b) : These signals represent thresholded binary values and
pulses, pertaining to individual magnetic poles sensed by Hall
sensors. If the sensors are correctly spaced, we can determine

the revolution direction by the succession of pulses from both
channels. [60]

Figure 3.27: Rotation encoders with two Hall sensors.

S = m, (3.6)

where S is computed r is the wheel’s radius, /N is the number of magnetic
poles or slits in the encoder disk and lastly, n represents the number of
pulses accounted for. Analogously, we can compute the speed for revolution,
by taking the number of peaks passed in a unit of time. Placing relative
encoders on every wheel and an absolute angle encoder on the steering shaft
can give us valuable information about the vehicle’s motion, which can be
further processed by a method called a dead reckoning, further refining our
estimate of the vehicle’s position. On a side note, it is assumed that the first-
ever sophisticated odometer date back to the 3rd century BC, when Roman
bematists (specialists in measuring distances by pacing) measured distances
between cities with deviation consistently lower than 3%. By comparison, a
present-day car’s odometer guarantees a 2% deviation in distance estimate.
The sources of odometry errors are various, from wheel misalignment, tire
skid or different wheel circumference, due to tire inflation or rubber wear.

52

3.2. Proprioceptive sensors

Chrome structured C) photo-elements
encoder disk Aperture capture-plate G

|/

Light Detector

source

it

lightsources
shaft

code-disc

(a) : Optical encoder with a rotating disk ~ (b) : A disk with the Gray code cutouts,
with slit cutouts representing individual encoding absolute position of rotation
increments of the encoder. [59] axle. [61]

Figure 3.28: Incremental and absolute optical encoders.

Bl 3.2.3 Dead reckoning

Dead reckoning is a computational process, which obtains the position and
orientation of a given object, based on measured data and initial know
attitude and location. The technique was hinted at in the aforementioned
sections about odometry and INS, both are being practically used in real-life
applications, such as cars, robotics, UAVs and many others. This technique
leverages models of motion and fuses data available, for example in cars,
accelerations, wheel revolution speed, steering wheel position and gyroscopes
are used, to maintain as a reliable estimate of position as possible. Despite
being a good compensation for the loss of GNSS signal in tunnels and
subterranean garages, it still suffers from drifts and initial position errors. In
constrained navigation, such as in the case of cars, we can also use roadmaps
as a constraint on the motion, limiting the drift errors naturally present
in dead reckoning relative localization recurse computation scheme. The
computation itself is usually based on discrete kinematic models or more
advanced implementations that utilize Kalman filters at their core paired up
with nonlinear dynamics models. [25] [51] [45]

53

3. Localization methods and sensors

B 3.3 Visuallnertial Odometry and Simultaneous
Localization and Mapping

After the formulation of the localization problem for mobile robots in the 1980s,
it immediately became one of the most in-depth research topics, producing an
extensive line of incremental and revolutionary ideas, which converged into
what we today know as Visual Odometry (VO) and Simultaneous Localization
and Mapping (SLAM). Both VO and SLAM are very alike in their goal, as
they strive to achieve a consistent estimate of the robot’s path, although
SLAM methods, as the name might suggest, map the environment in the
process. A typical SLAM algorithm is composed of two major parts, position
tracking and mapping. The position tracking segment can be achieved with
VO, hence we can view VO as a sub-task of SLAM and in fact, some SLAM
algorithms use VO as their building block. Generally, VO operates in a
sequential framework, processing frame after frame, in real-time to provide
local, relative estimates of position. It uses no prior map and all by itself,
works as a relative position sensor, with measurement referenced to the
initial position. This is where the second part of the SLAM algorithm
comes in. During the motion of the robot, SLAM builds its own map, based
on measurements from LiDaR, RGBD, Stereo or Mono camera, sometimes
even with help of an IMU. With the map constructed, localization takes an
extra step where previous localization solutions are recomputed based on the
loop closure detection, helping to reduce accumulated drift between relative
measurements. VO cannot perform loop closures, because it does not keep
track of preceding positions and mapped features in space. This inherently
makes SLAM approaches more accurate and robust, especially in prolonged
sessions, or scenarios in which the robot repeatedly visits the same position
multiple times. On the other hand, SLAM places very high computational
demands, not only on CPU or GPU computation but also on memory, as
it needs to maintain a list of visited keyframes and landmarks on the map
to perform loop closures. Real-time implementation of this can prove to be
quite challenging, especially for lengthy sessions when the landmark /keypoint
similarity search can gradually take longer until the algorithm becomes unable
to keep up with time demands. [4] [25]

When talking about VO and SLAMs, we are primarily concerned with
localization and mapping precision, but we also have to pay attention to
a select few criteria, which reflect how well certain algorithms operate in
real-world scenarios. Those criteria are:

® Lifelong performance — Gathering new keyframes or states in the esti-
mation vector with filters leads to an increase in time complexity. This

o4

3.3. Visual-Inertial Odometry and Simultaneous Localization and Mapping

can be tackled with a well-tuned keyframe selection policy in parallel
applications.

® Large-scale performance — Efficient loop closure detection and feature
matching are crucial with the growing map size, due to a large number
of keyframes and landmarks to search for similarities in loop closing
detection and position tracking.

® Low-textured environment — Visual odometry and SLAM alike use
visual features to detect motion between successive images. Removing
visual cues and textures makes reliable and robust tracking challenging
or altogether impossible. The solution for this issue is to endow only
visual approaches with an IMU unit, which guides motion estimates in
visually problematic environments.

8 Qutdoor conditions — Unlike indoors, warehouses or manufacturing
factories, outdoors pose unique and variable conditions such as light
intensity changes, sharp shadows, weather or season changes. To tackle
these inconveniences, one needs to select suitable features to extract from
the picture.

® Movement issues — For mobile robotics, the ability of algorithms to
handle motion blur is essential. Furthermore, moving objects in the FOV
of the camera need to be disregarded from feature matching since they
may mislead the algorithm regarding the motion of the camera itself.

In the following sections, I will, out of all possible SLAM versions, only
discuss the visual SLAM (using purely cameras). The visual odometry will
be covered as a segment of the complete SLAM pipeline.

B 3.3.1 Algorithm division

There are two major families of SLAM techniques, called Filter methods
and Keyframe-Based methods, and their division is graphically depicted in
Figure 3.29.

Historically, the first working SLAM solutions were based on Filter design.
Classically, filter designs estimate the position of the camera and located
landmarks and, then aggregate its solutions in a state vector. This family is
characteristic of lower complexity and with it severely smaller requirements
on computational hardware, nevertheless, this is bought out by lower accu-
racy of computed positions. Furthermore, these methods cannot loop close

55

3. Localization methods and sensors

Filter-based, Parallel,
incremental, multithread,
single-thread keyframe-based
MSCKEF, EKFE, RBPFE Windowed optimization Global optimization

% >

Figure 3.29: A schematic showing major families of SLAM approaches. [4]

and usually have memory problems while mapping large environments, as
each new landmark is represented by two states in the filter. This leads to
exponential growth in time complexity for some mathematical operations,
although this issue can be partially remedied by culling off old and presumably
least relevant landmarks from the map. Some notable implementations are
the following: MonoSlam, using a mono-lens camera with Extended Kalman
Filter (EKF) for mapping and localization, FastSLAM, which employs a
Particle Filter to mitigate computation time explosion with long sessions, or
MSCKEF algorithm, which stands for Multistate Constraint Kalman Filter.

The second family of SLAM is called Parallel or keyframe-based methods.
These methods originated with the now famous Parallel Tracking and Mapping
(PTAM) [6]. The keyframe technique uses significant tracked positions called
keyframes. Detected features are then parametrized with respect to the closest
keyframe. This enables mapping and tracking tasks to run in parallel, hence
the name parallel methods. The optimization-based approach is yet another
generic term that is often used in connection with parallel approaches. This is
the major advantage over filter design, as keyframes and their related mapped
features can be globally optimized in a process called bundle adjustment
(BA). Bundle adjustments are invoked after loop closure is detected and
it can modify the position of multiple keyframes to improve the match of
the last measurement. To summarize, new keyframes are added based on
local optimization like in VO, but whenever loop closure is detected, global
optimization takes place. Global optimization is very important as it reduces
accumulated drift, which is one of the major issues in VO.

56

3.3. Visual-Inertial Odometry and Simultaneous Localization and Mapping

N N

Pose tracking:
Input search: (i) Geometric (2D-2D, 2D-3D)
(i) Direct/indirect input

2 (ii) Photometric (direct image
(ii) Dense/sparse output

alignment)
(iii) Iterative closest point

< .
Mapping: 4)

Loop-closure:

(i) Points parametrization (i) Detect: b ¢ d
(i) Detect: bag-of-words...
e (ii) Close: bundle-adjustment

. J

Figure 3.30: A diagram of the vSLAM pipeline structure associated with related
keywords. [4]

(ii) Backprojected rays
(iii) Occupancy mapping Y,

B 3.3.2 Structure of visual SLAM

Most of the visual-SLAM (vSLAM) applications can be decomposed into four
standalone segments: Input Search, Pose tracking, Mapping and Loop-closure

as seen in [Figure 3.30

B Input search

Input search is the first stage in the SLAM pipeline. It is executed on the
most recently captured image from a camera, in an effort to gather crucial
information/important data for the ensuing pose tracking stage. In input
search, we further distinguish two types of input spaces (define what is the
carrier of the relevant information in the picture) and two types of output
spaces (define the representation of extracted data). Direct input methods
operate, as one might expect, directly with the intensity of individual pixels.
Alternatively, indirect input methods use feature extraction well established
in the computer vision field. It selects easily distinguishable points based
on selected feature descriptors, e.g., Harris [72], SIFT [73], ORB [74] to
name a few, or it can recognize lines or curve segments. The output space is
divided between sparse and dense maps. displays a UAV mapped
environment represented with a sparse map on the left and a dense map on
the right. Sparse maps are usually more suited for applications where pose
tracking is of the utmost impotence, whereas dense maps contain more detail
about the environment and are therefore better for realistic, high-fidelity

o7

3. Localization methods and sensors

Figure 3.31: A comparison between sparsely (subfigure a) and densely (subfigure
b) mapped points. You can see that dense mapping carries more information
and the mapped surfaces are more smooth and solid. [75]

mapping. The difference is obvious, sparse maps consist of a cloud of sparsely
mapped features, while dense maps use data from all pixels to enhance detail

quality. [4]

Generally, the combination of indirect/sparse methods is the most common,
for reasons such as computational complexity, the sophistication of cameras
used and robustness to noise, and is usually well suited for position tracking.
Direct/dense methods are also common, although their use cases center more
around mapping.

B Pose tracking

The pose tracking segment performs the second part of what we consider
to be a VO sub-task of SLAM. It estimates the relative motion between
two successive image frames, based on one of three different correspondence
frameworks. These frameworks are 2D-2D, 2D-3D or 3D-3D alignment. This
naming scheme defines first the dimensionality of input space in which we
search for correspondences, while the second part is related to the dimen-
sionality of already mapped space. Significant tracked positions, keyframes,
are added to a pose graph, a graph that binds sequential keyframes by their
relative position. [25] [4]

o8

3.3. Visual-Inertial Odometry and Simultaneous Localization and Mapping

® 2D-2D — Correspondences are being matched directly between two
consecutive images. This is the simplest solution, leveraging no other
data apart from those two frames, making it a common solution for pure
VO applications. The solution of a 2D-2D problem with known corre-
spondences can be solved with 5-point or 8-point algorithms, where we
can decompose the essential matrix in rotation matrix R and translation
vector t, which directly represent frame-to-frame transformation.

®m 2D-3D — This alignment uses a set of n 3D mapped points (from
previous images) reprojected into the 2D image plane of the new frame.
These projected points serve as correspondences to estimate the motion.
VO applications using 2D-3D alignment are restricted to only a set of
memorized landmarks, whereas complete vSLAMs can exploit an entire
map of landmarks for reprojected correspondences. 2D-3D problem is
usually solved with an optimization task (Equation 3.7), which minimizes
the reprojection error of n 3D landmarks into the new 2D frame. Out of
all three methods listed here, this one is used in a majority of situations,
due to its robustness and accuracy.

8 3D-3D — Features mapped in 3D can be directly obtained from stereo
cameras, which consequently leads to a 3D-3D alignment problem. The
solution of 3D-3D alignment can be achieved with the Iterative Closest
Point algorithm (ICP), although it works best only on dense 3D maps.

The optimization task to minimize reprojection error of 2D-3D alignment
problem:

arg min > vk = prall? (3.7)
k i

where T}, is the motion-induced transformation we want to obtain, pf€ is a 2D
point in the new image and pj, is its corresponding reprojected point from
3D.

[| Mapping

Mapping is an act in which a newly observed feature is positioned inside the 3D
map of the environment. In order to situate a landmark in the map, we need to
parametrize its position, which can be easily achieved in Cartesian coordinates
(XYZ) or by other advanced methods, such as anchored homogeneous points
or inverse-depth parametrization. Feature-based mapping of a landmark into
the 3D map is usually done by triangulation of back-projected rays from
2D image correspondences of at least two frames. This creates a 3D point,
however, only if the back projecting rays intersect, which is possible if the

99

3. Localization methods and sensors

position changes significantly between the two original images. In the case of
direct methods, mapping is different, as the maps are not a set of features, but
rather depth maps. To add newly mapped pixels we firstly need to compute
their depth. The computed depth map is then fused with the rest to create a
3D model of the environment. [4]

B Loop Closure

The Loop Closure is the last key backbone building block of a SLAM system.
It enables SLAM methods to separate its pose tracking performance from
simpler VO approaches, through the removal of accumulated drift, that is
inherent to any relative measurement techniques. Loop closing reconnects the
current pose with previously visited locations. This reconnection propagates
back through the pose graph, adjusting the position of all keyframes within
the closed loop, effectively mitigating accumulated drift within the loop. This
correction of pose estimates is called bundle adjustment (BA). The effect of
the loop closing method can be seen in [Figure 3.32

Loop closing has two phases. Firstly, the loop detection algorithm checks if
the new keyframe resembles any of the previously mapped keyframes in the
pose graph. Once the potential match has been identified, robust verification
procedures are carried out since any false positive in the loop closing detection
would render position tracking utterly counterproductive. Secondly, after the
loop is detected and verified, correction of mapped landmarks and keyframes
is performed. The corrections needed to loop close are distributed along the
entire pose graph, keeping a consistent path estimate without abrupt jumps.
Even though BA is computationally heavy, it is possible to exploit the parallel
nature of keyframe-based algorithms and run BA in its own thread. [4]

Looking at real-life applications in autonomous vehicles, loop closure does
not seem to be as compelling as it is in autonomous warehouse robots, where
visiting the same doorways or intersections is far more probable than in
the case of cars. However, this does not negate the fact that vehicles can
benefit greatly from loop closing. Loop close can be used with ideas of
Landmark-based navigation, where the location of an agent is derived from
a measurement of a significant, unique landmark. This can be especially
interesting for modern vehicles, which are constantly connected to the internet.
A car could automatically download a list of unique landmarks along its user-
defined path, and it could loop close to those preloaded landmarks once it
detects them with its sensors.

60

3.3. Visual-Inertial Odometry and Simultaneous Localization and Mapping

Figure 3.32: A figure displaying the contribution of loop closure in drift removal
and thereby accurate positioning. The robot’s path is depicted with the green line,
black dots represent older mapped measurements, while red dots represent current
measurements. On the left, there is a situation right before the loop closure takes
place where the robot’s tracking system clearly accumulated significant drift.
After the loop closure is completed, not only the path but also all measurements
are again consistent with the true properties of the environment. [76]

B Disadvantages and shortcomings

Visual SLAM systems usually fail, whenever data source cameras produce low
information quality pictures. There could be several reasons for that, such
as over-exposure from direct sunlight, heavy rain or snow, or low-textured
environments such as straight highways with no distinct details or tunnels.
Also, unless the loop closure is detected, SLAM algorithms suffer from drift
just like VO. On the other hand, loop closure can be somewhat problematic
if we anticipate continuity in SLAM pose estimation, as once the loop closure
happens, the position estimate can abruptly and significantly shift.

61

62

Chapter 4

Data fusion

Running a state estimation of a complex system just on one sensor data
can be impossible, let alone something as critical as vehicle localization for
autonomous vehicles. Every sensory modality has its vices and virtues, and
all of them fall short in certain conditions or scenarios. On top of it, cars
operate mostly outdoors, under everchanging weather and light conditions,
at different speeds and in various surroundings. The enormous span of
conditions in which localization must reliably work poses strict requirements
on the robustness of positioning solution, while also maintaining a high
level of accuracy. In the previous Chapter [3| I have listed potential issues
with the most commonly used vehicle localization techniques. It is obvious
that none of the modalities can manage localization by themselves, hence
data fusion algorithms are required. In addition to enhancing accuracy and
responsiveness (measurement rate), data fusion can also cover for downtimes
of individual sensors, for example, GNSS signal outages. In upcoming pages,
I will shortly present two well-established data fusion methods, Kalman
filtering and Complementary filtering. This chapter is mostly inspired by the
description of Kalman Filters and their use in localization from Sebastian
Thrun’s book Probabilistic Robotics [2I]. For this reason, I will exclusively
adhere to notaion used in that book, which might be confusing for some readers.
Apart from the discussed techniques, there are several unlisted methods such
as Unscented Kalman Filter, Iterative Extended Kalman Filtering, Particle
Filtering and many more.

63

4. Data fusion

. 4.1 Kalman Filter

Kalman Filters, named after their inventor Rudolph Emil Kalman, are prob-
ably the most studied and deployed state estimation technique for linear
continuous systems. Kalman’s greatest strength lies in the utilization of
system dynamics to track states. As a testament to this fact, my supervisor
likes to say: "Kalman Filter does not filter model to data, but it fits data
to the model." The filter represents states and variance of the estimation by
Gaussian distributions, defined at time ¢ by a mean of the estimate p; and its
covariance matrix ;. The estimation posteriors maintain Gaussian property
given the following three properties hold:

B The state transition equation must be a linear function in its arguments
with additive Gaussian noise. It means that the next state probability
p(x¢|xi—1,us) is defined by a Linear time-varying system equation:

Ty = Atﬂft_l + Btut + € (41)
€t = N(O, Rt) 5 (42)

where A; is the state dynamics matrix, B; matrix defines input coupling,
x; and x;_1 are state vectors at their respective times and w; is the
control vector. Lastly, ¢; represents an additive white noise vector that
models randomness in state transitions, with zero mean and covariance
R;. Linear transformation of Gaussian distribution maintains their
Gaussian property and additive Gaussian white noise only affects the
size of covariance of the Gaussian. Therefore, an estimate of a new state
maintains a Gaussian form.

® Analogously to the state transition model, also the measurement model
p(zt|x¢) must be linear in its arguments with additive Gaussian noise. It
is defined by the equation:

2zt = Cyxy + Dyug + 0y (4.3)
5t = N(O7 Qt)) (44)

where matrix C; defines the relation between measured value and states
and matrix D; maps inputs to measurements. Additive noise d; is
Gaussian with zero mean and covariance ; and it is uncorrelated with
model transition noise €;. Given the linearity of the measurement model,
the measurement probability also adheres to the Gaussian form.

® Lastly, the initial belief bel(zg) of the state xy must be normally dis-
tributed, with covariance ¥y and mean py.

64

4.1. Kalman Filter

I: Algorithm Kalman filter(jiy 1, 2¢ 1, us, 2¢):
2: fiy = Ay piy 1+ By uy

3: it:At Zt_]_ A?—FRt

4: K =% CT(C 8 CT + Q)1

5: e = iy + Kz — Gy fig)

6: Y, =T —-K;Cy) %

7: return fig, ¥

Figure 4.1: One iteration of Kalman Filter algorithm, executing time update
step first, followed up by data update step. [21]

With these three assumptions met, it is ensured that the posterior belief
bel(x:) always preserves a Gaussian form for any time instance t. [21]

B 4.1.1 Kalman Filter Algorithm

Figure 4.1 shows a single step of the Kalman filter method. It takes previous
state belief bel(xy—1) in form of mean state estimate p;—1, covariance ¥;_1,
current input u; and measurement z; as an input and produces a new updated
belief bel(z;). Every KF step can be decomposed into two parts, the time
update step and the data update step. The time update is exhibited on
lines 2 and 3 in [Figure 4.1}, and it predicts state evolution since the last KF
algorithm prediction. Generally, it computes state progression and enlarges
the estimation’s covariance by the noise covariance term. Rows 4, 5 and 6
compute the data update step, which leverages measurement to reduce the
estimate covariance (line 6) and improve the accuracy of measurement (line 5).
On line 4, the Kalman gain K is computed, which specifies to which degree
the measurement is incorporated into the updated state estimate. Data fusion
of multiple measurement modalities is executed through the C}y matrix, where
only the entries that are pertinent to a given measurement are filled with
non-zero elements

An illustration of belief evolution in robot localization is shown in [Figure 4.2,
The robot’s position is on the x-axis, and the probability of the respective
position is on the y-axis. In subfigure (a) we can see the gaussian prior
belief. Subsequently, the robot acquires a new position measurement with its
associated uncertainty (subfigure (b)) and incorporates the data in the KF
data step. Take note of how the posterior belief(bold line in (c)) is narrower
and centered between its two predecessors. Afterwards,the time step (d) is
performed, which moves the robot along the x-axis, while the covariance
spreads due to noise and system dynamics. Subfigures (e) and (f) begin the

65

4. Data fusion

= E (P)

(b)

(@)

®

Figure 4.2: Illustration of one-dimensional state estimation. On the x-axis
are values of the estimated state and on the y-axis is the probability of that
(a) represents initial belief, (b) a measurement (in bold) with
measurement uncertainty, (¢) measurement incorporated with previous belief
(in bold), (d) belief after time step propagation (in bold), (e) new measurement

estimation.

with its uncertainty, (f) measurement propagation to belief estimate. [21]

next step of KF estimation and can be described analogously.

. 4.2 Extended Kalman Filter

The Kalman Filter at its core brings one serious limitation: linear dynamics
and measurement of the estimated system. Since these conditions are rarely
met in real-world applications, a generalization in form of the Extended
Kalman Filter can be used. The EKF defines the state transition equation and
measurement model with arbitrary non-linear equations g and h, respectively.

66

4.2. Extended Kalman Filter

Tt = g(ﬂﬁt—l, Ut, Gt) (4-5)
= h(‘rhuh 5t) ; (46)

where ¢; and §; are both Gaussian additive noises with the same properties
as in the KF. State, input and measurement vectors are defined identically to
KF as well. However, EKF generalization with arbitrary functions g and h
violates linearity assumptions of KF, meaning that newly computed posterior
beliefs will not take shape of Gaussians, even if the previous belief was nor-
mally distributed. As a consequence, belief updates do not have closed-form
solutions or become borderline computationally intractable. The solution
to this problem is to linearize the nonlinear transition and measurement
models using Taylor Expansion. This action again reestablishes linearity in
parameters, and EKF can be computed in a closed-form solution with the me-
chanics of the computation identical to conventional KF'. This action, however,
creates an approximation of belief updates and with that maximum likelihood
property of the estimate, which KF boasts about, is lost. Furthermore, if
the arbitrary functions are severely nonlinear in certain neighborhoods, the
update may be dramatically incorrect, breaking the estimator altogether.
Linearization looks as follows:

0g(z,u,€)
Gi=d'(v,y,6) = 222 4.7
t=9(z,y,€) s (4.7)
h 0
H; = h/(CC,y, 6) = 8(52’1”) (48)
€z r=x¢,u=ut,0=0

and the resulting evaluated Jacobians create matrices that take up similar
roles as A; and C} in Kalman Filtering. The next state transition equation
and measurement model equations after the linearization look as follows:

= g(pe—1,u(t),0) + Ge(zi—1 — pe—1) + € (4.9)
2t = h(,ut,l, u(t), 0) + Ht(ZL‘t — ,ut,l) + ¢ (410)

The resulting EKF algorithm is depicted in [Figure 4.3

Clearly, the algorithm is very similar, since EKF uses Jacobins G; and H;
as a replacement for linear system matrices Ay, B; and Cy. [21]

67

4. Data fusion

l: Algorithm Extended_Kalman filter(pis_1, X1, ug, 2¢):
2: fir = g, fte—1)

3: Zt = (Et Et,j_ (??_‘F Bt

4: I{t = Zt H?(Ht Et H;T -+ Qt)_l

5: pe = iy + Ki(zp — h(fiy))

6: Zt = (I — I‘yt Hr‘,) Ei

7: return fiz, 2t

Figure 4.3: One iteration of Extended Kalman Filter algorithm, executing time
update step first, followed up by data update step. [21]

B a3 Complementary Filter

The last data fusion method listed here is the Complementary filter. The
Complementary filter, unlike Kalman Filtering methods, does not explicitly
define the system’s dynamics model or its measurement model. The distinc-
tions persist, as a Complementary filter is designed in the frequency domain
rather than the time domain as KF is, although it is possible to show that
complementary filters are, in fact, just a special case of Kalman Filters. A
characteristic feature of Complementary filters is that they handle measure-
ments in separate branches and apply complementary filtering operations so
that the total transfer from all branches adds up to one.

Complementary filters are excellent for data fusion of signals with opposite
dominant noise frequencies. That is, when one of the fused signals has high-
frequency noise, for example, accelerometers, and the other has noise in low
frequencies, such as constant bias in gyroscopes. This scenario invites to
filter out problematic frequencies in both signals with appropriate lowpass
filter G(s) and high-pass filter I — G(s). A simple complementary filtering
scenario is shown in [Figure 4.4 We want to obtain an estimate Z of signal z,
from two noisy measurements z and y. The measurement x is burdened with
high-frequency noise, whereas the measurement y has noise predominantly
in lower frequencies. Also, note that both measurements are in identical
units and scales. The low-pass filter G(s) filters high-frequency noise from
the signal x, while the high-pass complementary filter I — G(s) attenuates
low-frequency noise from the measurement y. Clearly, ||G(s) +1 — G(s)|| =1
and, therefore, in case of noiseless measurements, is signal estimated perfectly
as: 2 =z[l — G(s)] + 2G(s) = .

68

4.3. Complementary Filter

> |- G(S)

——» G(S)

Figure 4.4: A basic complementary filter where G(s) and I — G(s) blocks
represent low-pass and high-pass filters respectively. [77]

Typical low-pass and high-pass filters in this order are the following:

Gls) = Tsl+ 1 (4.11)
I—G(s) = % , (4.12)

where 7 defines the time constant of the filter and s denotes frequency. In
addition, complementary filters can easily handle different derivation orders of
the same signal. Proof of this can be seen in [Figure 4.5, where estimation of
velocity from acceleration and velocity signals is computed. The acceleration
branch is firstly integrated, producing the velocity signal. Afterwards, both
branches are properly filtered withAcomplementary filters and summed up to

create an estimate of the velocity h. Interestingly, in subfigure (B) we could
derive that even though the signal h, was high-pass filtered in figure (A), it
is lowpass filtered if the filter realization changes. It is important to note,
that both of these filter designs are equivalent. [77]

Complementary filters are not limited to integration operation only, they
can also use signal derivatives. Let me demonstrate this on an example with
position and velocity estimate, given acceleration and position measurements
(Figure 4.6)). In order to comply with the filter complementarity condition, we
need to apply second-order filters for low and high-pass filtrations. Otherwise,
this CF framework looks identically to the scenario with no derivatives. It is
also possible to use more than just two branches with filters, nevertheless, the
filter design then changes to low-pass, band-pass and high-pass, with their
respective cut-off frequencies perfectly aligned with respect to each other.

69

4. Data fusion

h h =x
a 1 a’l,] Ts
— s " T+ A
+ h
: +
hb I
TS+
(A)
(B)
:
O.> T
h/,\
t I
. J:} " T
h
b

Al | .
h++h +h

A
h=- bt Ny

L
T

Figure 4.5: Subfigure (A) depicts straightforward two-branch filtering with
high-pass and low-pass branches to obtain velocity estimate from acceleration
and velocity measurement. Subfigure (B) showcases an equivalent filter, although
different in realization, that highlights an interesting property of a complementary
filter: low-pass filtration is effectively a high-pass filtration of an integrated signal.
7]

70

4.3. Complementary Filter

i(:I 1 xd
— 1-§(s)
¥ X
Xp Xp
—p S GI(S)
b 52
G(S)= ——2— I-6s)- 3-+aS
S +aS+b S
(A} a +aS+b
(B)
X, | X5 I X = Xq
— < 3 I-648)
A
+ X
+
Xp
62(8)
1-GAS)= __252_ G,(S)= #_
S+aS+b S +aS+b

Figure 4.6: Schematic highlighting complementary filter estimation of velocity
(subfigure A) and position (subfigure B) from acceleration and position measure-
ments. [T7]

71

72

Practical part

73

74

Chapter 5

ToMi platform

The practical part of my work is centered around the Toyota Mini 2 (ToMi2)
experimental platform project (Figure 5.1). This project is funded by Toyota
Trace-lab and the supervisors are Toma$ Hanis and Jan Cech.

The motivation of this project is to demonstrate the added benefit of drive-
by-wire systems for autonomous vehicle safety and maneuverability. The
drive-by-wire conception applies for both autonomous and human-operated
driving alike, making it a great stepping stone and maybe even forgotten
stepping stone along the way to a driver-less future. In order to make this
system work, we divided the work with my colleagues, each of us being
responsible for one part: Adam took visual sensors pipelines, and Marek
build on top of his work and created a path planner. The computed paths
are used as reference trajectories for control systems, which are Jan’s domain.
My work in localization overlaps with all three already mentioned fields, as
everyone can benefit from better knowledge of the current vehicle’s state,
especially the planning and control segments.

ToMi2 is built on top of the Losi Desert Buggy E-XL 2 RC model, with
physical alterations done by Tomas Rutrle [78]. These alterations were mostly
focused on the rear axle, which was replaced by an axle with two steering
assemblies, one for each wheel. As a result, an overactuated test platform
was created with all four wheels independently steered. Furthermore, the
RC car was endowed with an ability to measure wheel revelation speed,
accelerations and angular velocities in all three axes and was equipped with
an elementary GNSS module and antenna. Computations were handled by
an Intel NUC PC and Raspberry Pi with Emlid Navio2 hat. The entire
framework initially operated with Matlab/Simulink Environment. From

75

5. ToMi platform

Figure 5.1: Toyota Mini 2 RC overactuated platform, with an old Sterolabs Zed
1 camera and a single band GNSS receiver.

that point on, a new group of students joined the project, namely Adam
Konopisky, Jan Svancar, Marek Boha¢ and myself, Tomas Twardzik. The
project underwent significant change after that, and in upcoming chapters,
I am going to describe the physical platform, computation equipment and
sensors deployed on the vehicle.

B 51 Computer architecture and framework

The ToMi2 platform includes several computational units. The overview of
the architecture can be seen in For description, we will proceed
top down, from the most high-level units to the low-level peripheral units.
Firstly, the Nvidia Xavier AGX graphical accelerator is the highest-performing
computer on board. At the moment, it serves the dual purposes of path
planning and computer vision jobs. The primary workflow carried out by
this computer entails the segmentation of drivable surfaces and subsequent
planning of feasible trajectories. Captured images from StereoLabs Zed2
camera are transformed into the bird-eye view, then the Neural Network
ensemble detects the drivable surface in from of the vehicle and forwards its
output to the path planning pipeline. Afterward, the path planning RRT*
algorithm constructs a feasible trajectory, based on global map goals, seg-
mented drivable surface and vehicle’s dynamic state provided by the main
control computer, Raspberry Pi 4.

76

5.2. Localization sensors

The control computer can be viewed as a low-level control conductor. It
gathers data from peripheral units, processes them and estimates the vehi-
cle’s state and position. Furthermore, it computes control signals based on
implemented Stanley control law [23] and Model Predictive Control (MPC).
Raspberry PI collects data from three other units: Arduino Micro, STM L432
board and another Raspberry Pi, although this one is enhanced by Emlid
Navio2 hat and thus I will further refer to it just as Navio2. The frequency
of all incoming data to the control computer is 100 Hz. Given the central
position within the computational units, Raspberry Pi also serves as the main
data logger.

Arduino Micro facilitates the reception of radio commands from the hand-
held radio transmitter, mostly used to set the reference signals. Above that,
it reads accelerometer data from the front and read axis and performs a
watchdog function over the safety flag switch on the radio controller. In the
case of an emergency, Micro sends a signal to a hardware safety circuit that
immediately cuts off the throttle and initiates a full braking sequence. The
unit which serves most of the vital vehicle dynamics measures is STM 1432.
It measures angular rates on all wheels and the traction motor angular rate.
Last but not least, the Navio2 module aggregates computed GNSS solutions
from two U-Blox modules, along with data from three orthogonal accelerome-
ters and gyroscopes. Apart from that, Navio2 also reads radio protocol S.Bus
and forwards read data to the control computer to act as inputs for dynamics
simulations. Navio2 serves as a PWM generator for steering servo motors
and the traction BLDC motor, executing control commands issued from the
control computer. Vehicle speed is inferred from the wheel revolution rate by
the formula v = wr. Despite this RC model being originally 4WD, nowadays
is the platform only rear-wheel driven, as the revolution speed measurements
were extremely noisy on driven axles and the rear-wheel drive setup allows to
conduct improved measurements on the front wheels.

. 5.2 Localization sensors

The sensor suite on the ToMi2 platform progressed a lot over the years. At this
point, it comprises a stereo camera, DGNSS, accelerometers and gyroscopes,
and current sensors for torque measurement. Unfortunately, wheel steering
sensors are missing, and therefore, a direct map from control signal PWM to
angle is employed, which in situations, when extreme load forces are applied
on the wheel during cornering, may introduce an error between the desired
reference value and actual displacement of the wheel.

77

5. ToMi platform

Raspberry Pi 4 — control computer Arduino Micro
+ Control law ¢ Axle accelerometers

* Positioning + Radio SBUS e
* Datalogging C

@ ol

{
UART — 100Hz [
D
y 2

7 Raspberry Pi3+

7 Emlid Navio2 STM L432

+ DGNSS * Wheel speed
* Motortorque

UART — 100Hz

Nvidia Jetson Xavier AGX
* Road detection
* Path planning

* Accelerometers
« PWM generator

Figure 5.2: A schematic showing data flow between distributed units. Blue
arrows highlight the UART communication protocol with its information flow
direction, whereas the red arrow depicts the Ethernet data interface.

Camera. Vision sensors are represented by the StereoLabs Zed2 camera
. It is a camera with a 12 cm baseline, with FOV of 110° and
70° in horizontal and vertical directions respectively, capable to capture up
to 100 fps at VGA resolution or 15 fps in 2K. It is also packed with extra
software for object detection, floor plane detection and SLAM. Additionally,
the camera is equipped with an IMU unit, a barometer and a magnetometer,
which all improve pose tracking in SLAM or VO applications. Initially, the
Zed2 camera served as a source of data for Al road parameter prediction
systems. As a team, we have submitted 2 conference papers (IEEE IV and
IEEE ITCS) on this topic [79] [80], where I took a lead in developing the
learning pipeline and the architecture of the neural network used.

In this work, I have utilized provided SteroLabs SLAM algorithm along with
Nvidia’s Elbrus Visual SLAM algorithm to add an extra data modality to
my data for Kalman Filter data fusion.

Wheel encoders. As was already mentioned, each wheel of the ToMi2
platform has its own revolution speed sensor. It is based on the principle
described in [subsection 3.2.2l A disc with 8 magnets is glued to the driveshaft
and a singular Hall sensor counts the total number of pulses detected over a
period of time. Since this setup does not employ two sensors, it is limited
only to the speed signal and provides no information about the direction of
revolution. However, the vehicle is limited to only forward motion, which
makes this limit negligible.

78

5.2. Localization sensors

Figure 5.3: StereoLabs Zed2 stereo-camera bolted to a new mount for camera
and DGNSS antenna, which I have created(paragraph 6.2).

IMU. After the upgrade to the second generation of StereoLabs Zed camera,
the platform was endowed with a dual IMU system, one in Navio2 and the
second in the camera itself. Even though the system has IMU redundancy,
only Navio2 IMU is being processed further in algorithms, whereas camera
IMU is used solely for VO purposes. The Navio2 module IMU system
is constructed out of two 9 Degrees of Freedom IMUs: MPU 9250 and
LSM9DS1. Additionally, a barometer unit MS5611 is also included for
altitude measurement. Delving deeper into included IMUs, we can see that
both MPU 9250 and LSM9DS1 are practically identical in their capabilities
and are really added just for redundancy. Both IMUs have accelerometers
with a measurement range maximum scaled between 2 to 16 g with sampling
rates from 4 Hz to 4 kHz. Their respective gyroscopes are also similar, having
adjustable maximum between 250-2000 °/s with sampling rates between 4
Hz to 8 kHz.

GNSS. T have replaced the former U-Blox M8N module and a single band
antenna with two U-Blox Zed F9P modules in the DGNSS setup, with
a multi-band (L1, L2, L5) antennas. Modules are connected in a mobile
base-station/heading module scheme, where one of the modules provides an
accurate measurement of heading, taking RT'CM corrections from the second
module. This system is Real-Time-Kinematics ready and even without the
RTCM correction, its accuracy reaches in good conditions 70 cm instead of
the previous 1.5 m on U-Blox M8N module. RTCM corrections further reduce
the inaccuracies to less than a decimeter.

Deeper dive into implemented setup can be found in

LiDaR. For the purpose of safe autonomous driving, the ToMi2 platform
was endowed with a planar, single channel Hokuyo URG-04LX LiDaR. The
key properties of this device are 240° FOV, 0.352° angular resolution and

79

5. ToMi platform

accuracy of £30 mm or +3 % of distance measured above 1000 mm, with
max measurement distance ceiled at 4095 mm. Given its rotary motorized
head and at this point already outdated technology (production date 2007),
the scan rate achieved is merely 10 Hz. This LidaR is not utilized in the
localization process and serves solely as a high-level obstacle detector for the
path planner algorithm, helping to mitigate collisions with objects that are
falsely considered drivable surfaces.

80

Chapter 6

DGNSS integration

Prior to my Master’s thesis, the ToMi platform used a single entry-level
U-Blox Neo M9N, with 72 L1 band reception channels [81]. This module
had a measurement rate cap of 10 Hz, with horizontal positioning accuracy
exceeding 2 meters even with SBAS corrections, having no option to use
advanced RTK enhanced solutions. This accuracy is insufficient for a full-sized
car’s autonomous guiding because it is unable to estimate the position of a
lane in ideal circumstances, let alone in contested or challenging environments
such as urban corridors. Taking into account the limited size of the ToMi
platform and positioning inaccuracies much larger than the physical properties
of that car, I concluded that U-Blox M8N is simply inadequate and therefore,
I had to find an alternative GNSS solution.

B 6.1 DGNSS system design and modules

My task was to find a system with sufficient accuracy, and repeatability that
also provides accurate motion and body heading. This set of requirements
is mostly met by RTK-enabled systems, predominantly used in agricultural
applications, where autonomous harvesters and mowers are operated in fixed
environments with large open skyline views. These conditions are bestowing
RTK-based solutions with supreme accuracy and very small deviation between
individual repetitions. This perfectly complies with the selection criteria,
although it is important to note, that RTK systems are not ideal for real
vehicles, due to the fact, that corrections are only local (reliable in a circle
with a radius of 10 km) and need to be provided with a different infrastruc-

81

6. DGNSS integration

Attribute Zed FOP Neo M8N
Max constellations tracked 4 2
simultaneously GPS, GLO, GAL, BDS | GPS, GLO
Horizontal accuracy [m)] 1.5 2.5
with SBAS 1 2
with RTK 0.01 -
Navigation rate [Hz] 20 10
+multi constellation 10 5
Motion heading accuracy [°] 0.3 0.3
Signal Bands L1, L2, L5 L1

Table 6.1: A table displaying general properties of U-Blox Zed F9P and Neo
MS8N modules.

ture than the GNSS module itself. These issues are not problematic in an
experimental and controlled context such as the one I am using for testing
my positioning data fusion solutions, but they may become problematic in
real-world applications, where RTK fixed state might be impossible to achieve
due to challenging settings. For an in-depth description of RTK technology,
head to the subsubsection 3.1.1l

On the GNSS module market, a number of major companies, including ST,
Novatel/Hexagon, Quectel, and the aforementioned U-Blox, can offer adequate
RTK-enabled receivers. Despite a large variety of choices, the decision was
made based mostly on the availability of modules since delivery times for some
of them were in the range of months. Luckily, the Department of Control
Engineering already purchased high-precision U-Blox Zed F9P modules with
all the desired features, therefore I decided to proceed with these modules
However, it should be mentioned that U-Blox also manufactures modules that
incorporate integrated INS and odometry models for the automotive industry
with dead-reckoning algorithms. These modules were not available at the
time and thus I have not used them, even though they would serve as a great

benchmark for the data fusion solution I have implemented. The comparison
between U-Blox Zed FIP and Neo MS8N is listed in Table 6.1. [82]

To summarise, RTK technology requires at least two GNSS modules, one
for the base station (BS), and the second for the rover. Apart from the high
accuracy of positioning, the new system should also be capable of measuring
precise heading. In a single GNSS rover module application, the heading
is estimated from the displacement of two consecutive measurements. As a
result, this method only computes motion heading and not the required body
heading. In order to facilitate the acquisition of all requested data, a second
rover module called the heading module (HM) must be introduced. This
module accepts RTCM corrections from the rover module, thereby computing

82

6.1. DGNSS system design and modules

Figure 6.1: Three GNSS modules setup, which enables measuring of precise
position, motion and body heading. SB means Static Base, MB is moving base
and HM stands for Heading Module.

precision location with respect to it. This type of operation makes the rover
module a moving base (MB), which unlike the static base does not provide
identically high-quality corrections, due to inaccuracy of position estimation.
Nevertheless, this link between MB and HM enables precise body heading
estimation and still considerably improves positioning solutions. Body heading
is then easily obtained from the discrepancy between positioning solutions of
the rover and the heading module. The setup is depicted in In
this configuration, the RT'CM corrections are flowing from SB to MB, helping
to precisely locate the rover’s position. Furthermore, RTCM corrections from
the MB module are going to HM providing a precise position of HM and the
accurate measurement of NEDE| heading angle .

Base station 3D model design. As was already mentioned, one of the GNSS
modules is assigned to a static base station. The BS I have designed consists
of a Raspberry Pi 4 computing unit, U-Blox Zed F9P, U-Blox ANN-MB
multi-band antenna, a power bank and last but not least, an internet modem
for communication with the MB module. The components are encapsulated

in a 3D printed box I have modeled in Fusion360 (Figure 6.2).

The final product looks as in Notice that under the antenna,
there is a metal disk, 10 cm wide in diameter, which increases the receptive
field.

!North-East-Down orientation. The heading is zero at the North and is positive turning
towards the East.

83

6. DGNSS integration

Figure 6.2: The 3D model of the static base station box. It closes off the
electronics, protecting it from mild rain and makes it convenient for manipulation
between experimental sites.

U-Blox module configuration. Before one can harness the advantages of the
centimeter accuracy, all GNSS modules must be properly configured. In the
case of the base station module, this includes a constellation, measurement
rate, I/O interfaces and message types to send. To maintain the 10 Hz
measurement rate, only GPS, GLONASS and Galileo satellite constellations
are used, with all three bands L1, L2 and L5. The module outputs all pivotal
RTCM 3 protocol messages into the USB interface along with proprietary
U-Blox messages with the current position and Survey-In data. The configu-
ration itself can be done by U-Blox u-Center software for Windows PCs, for
which I have prepared a set of configuration text files, that adjusts the setting
to the aforementioned setup automatically. Also, I have created python
scripts based on the pyubx2 library, which directly access modules memory
and apply changes specified in a JSON config file. These scripts can be used
cross-platform and, unlike u-Center, are not locked up only to Windows OS.
As was discussed in the section about the RTK technology
, the base station module needs to know its exact position to
produce corrections. The quality of correction is determined by the accuracy
to which is base station localized. There are several methods for localiza-
tion of the base station. Firstly, one can pay for very accurate localization.
Secondly, one can also record a prolonged session of raw data (RINEX) and
then post-process it. Recommended duration for this method is above two
days. Thirdly, one may find coordinates in open street maps. This method is
the fastest and allows to relocate to different test locations without the need
for prolonged surveying of bases station. Despite this approach being less
elaborate and scientific, it can still be quite accurate if one can select a distinct
point on the map to then place the GNSS antenna. To prove the validity of

84

6.1. DGNSS system design and modules

J 8

Figure 6.3: A picture of final Base Station printed out and planted with
Raspberry Pi, U-Blox ZED F9P, USB internet modem and power bank. On the
left finds itself a multi-band antenna with a steel disk similar to the one used at
the ToMi2 platform.

this method, I averaged the values of the SPS (Standard Positioning Solution)
over 2 hours, and the average matched my selected position of a base station
on the map with an error lesser than 2 m.

Raspberry Pi configuration. The U-Blox module is connected via USB to
the Raspberry Pi 4, creating a serial connection. For consistency, I have
implemented a symbolic link, that detects the base station configured module
and assigns a unique teletypewriter (tty) device name. Furthermore, I have
set up the Raspberry Pi to act as a WIFI access point, forwarding the internet
connection provided by a USB internet modem. This arrangement proves
useful as now a user can access the internet wherever the experiment is taking
place. In order to stream RTCM messages, I have installed an open-source
library for GNSS signal processing called RTKLIB [83], available on
The RTKLIB provides a plethora of tools; for visualization and analysis of
received signals, as well as its own positioning solution computation engine.
It also includes "str2str", a small program for streaming standardized GNSS
messages. It creates a TCP/IP server at the base station’s IP address, creating
a publicly accessible RTCM correction source. For convenience, the launching
script of the str2str program was added to system services to run on the boot
sequence automatically, after the internet connection is established.

85

https://github.com/rtklibexplorer/RTKLIB

6. DGNSS integration

W o pw

“‘

\{\‘\7 Wi
A
N

\ { - X 0
’ 4 | A A A\ 1 an
o TR A A 4 i
%t : / £ \ AR =
k ' . Bog
: % o ; . A K ¥ -
& G > Ax ~!' ‘l | e ¥
:) o . (1 4
x 7 ’ N B N
) / s \
A AN T !
7 j) %) 3 [
4 i [\ 3
< i y ¢ A ¥
0 W Fi
/» / Ly Y L
far i £ 7 U 1 LA VY 2 i ;-

V
(e

b4l
A

N

L

Figure 6.4: 3D printed models holding dual antenna setup on the ToMi2 vehicle.

. 6.2 Rover modules

With the base station portion of the system covered, let us focus our attention
on two rover modules and their integration onto the ToMi2 platform. Firstly, I
will cover physical design alterations, including four 3D models I have designed,
followed up by U-Blox module configurations, Navio2 reconfiguration and
code improvements.

Physical changes and 3D models. The old ToMi2 platform, as seen in
had only one GNSS antenna on the elevated aluminum plate, towards
the rear of the vehicle. The newly designed system needs to accommodate
two antennas with the greatest possible distance between them, despite the
Tomi platform having less than one meter in length. As a result, I had to
replace the former antenna pole and create two new mounting designs, one
placed on the rear spoiler and the second above the roof, as can be seen in
Figure 6.4

This design gives a 50cm distance between the antennas, still considerably
small, therefore several measures had to be implemented to increase the
quality of positioning solutions. First and foremost, both antennas have steel

86

6.2. Rover modules

and aluminum grounded disks installed beneath them, helping with signal
reception as well as shielding from motor controller and internet modem
interferences. It is important to center the antennas perfectly in the middle
of the plates, ensuring no phase shift distortions. Last but not least, both
antennas are at the same horizontal plane, aligned in the same direction.

The designed mounting solutions were, similarly to the base station box,
modeled in Fusion 360, and then printed with PETG material. The models
created can be seen in [Figure 6.5 The first three pictures [6.54) [6.5b and [6.5¢
depict the bottom foot and top hat of the mounting pole, facilitating the MB
antenna. The pole itself is cut out of a PVC sanitary tube with a 100 mm
diameter. The previously mentioned metal disks are screwed in on top of
the mount hat piece. The HM antenna mount replaces the old Zed2 camera
holder, now housing two-fold functionality, a new camera and a GNSS mount.
Its model can be seen in |[Figure 6.5dl

Furthermore, In order to prevent the U-Blox Zed F9P modules from laying
inside the ToMi2 platform loosely and to enable robust interconnection via
their respective UART interfaces, I have also created a compact enclosure for
the modules. [Figure 6.6/ shows the model in question.

Apart from 3D printed models, I was compelled to install two powered USB
breakout hubs with another power bank, due to the large power consumption
of the ethernet modem and two GNSS modules. Neither the ethernet modem
nor the GNSS modules can be simply connected to Raspberry Pi, as Pi’s
source input allows only 2.1 A current, out of which 1.4 A is consumed by the
board computer itself. The remaining 0.7 A is weak and unstable to supply
the necessary power to run the aforementioned peripherals reliably.

U-Blox modules configuration. The configuration of the rover modules
is slightly more sophisticated than that of SB, as the MB needs to accept
RTCM corrections from SB, whilst also providing RT'CM corrections of its
own to the HM. I have configured both modules to accept the same three
constellations as the base station, that is the GPS, GLONASS and Galileo
and adjust their measurement rate to 10 Hz. The MB 1/0 is set up so that
it receives RTCM messages over UART1 and sends RTCM corrections over
UART?2 to the HM, which accepts them over the UART1 interface. Both MB
and HM output their measurements through USB into the Navio2 Raspberry
Pi. Required messages are high-precision LLH, relative position in relation
to their respective base stations, velocity in NED coordinate system, and
measurement covariances. The MV also outputs RTCM messages similarly
to the BS, with one additional message type only reserved for moving base
applications.

87

6. DGNSS integration

(a) : A bottom foot of the MB mounting pole,
which is screwed into the rear spoiler and PVC
pipe is inserted in the hole on top.

(b) : A top hat of the MB mounting (c) : A top hat of MB mounting pole.
pole. This point of view shows extru- This point of view shows screw holes
sion for PVC pipe to stuff in. for metal disk fastening.

(d) : A front mount for HM GNSS module. The
bottom alcove holds the StareoLabs Zed2 camera,
replacing an older mount.

Figure 6.5: 3D models accommodating GNSS antennas on the ToMi2 rover.

88

6.2. Rover modules

Figure 6.6: A 3D model encapsulating two U-Blox Zed F9P modules. It has
outlets for antennas and USB-C interfaces and UART RX and TX to feed RTCM
correction from SB to MV. Inside the box, there are cables connecting the UART
interfaces of MV and HM to facilitate precise measurement of heading.

Control computer and Navio computer modifications. Several adjustments
had to be made to integrate two new GNSS modules and allow the system
to receive corrections from SB. depicts the architecture of GNSS
module integration and their respective data flows.

G

o\\)’(‘o“s

Control computer

Figure 6.7: Detailed architecture of DGNSS setup with a base station. Arrows
denote the direction of specific information flows between the devices and com-
puting units. The bottom purple arrow represents RTCM corrections transmitted
by the USB modems, the remaining two are facilitated by UART interface.

Initially, RTCM corrections from the base station are sent over the internet
to the control computer, which redirects them to the UART interface of
the MB module. The MB module outputs positioning data to the Navio2
computer and RTCM data to the HM. Similarly, HM provides data to
Navio2. Note that entities with the small lightning symbol next to them in
have their power supplied through the newly added externally
powered hubs. These are both GNSS modules, a UART interface between

89

6. DGNSS integration

the control computer and MB, and an internet modem connected to the
control computer. For ease of use, analogously to the static base station,
a system service is deployed on the control computer to start a TCP/IP
client of the RTKLIB’s str2str application, which automatically connects to
the base station correction stream. On top of it, the control computer was
reconfigured to forward the internet to all devices connected to its network,
that is the Xavier main computer and any device connected to its Wireless
AP. Also, symlinks are created for individual GNSS modules, so that they can
be distinguished and their data does not mix up. Furthermore, the original
Navio2 python script for data reading was modified to accommodate both
GNSS devices, leveraging the previously referred to pyubx2 library.

Communication link. For RTCM correction distribution, one can use a
multitude of methods. Typically, radio communication is utilized for shorter
distances, but signal occlusion makes this option impractical for autonomous
vehicles. Another standard method is to use NTRIP servers. With this
technique, users can choose from a list of local public RTCM correction
sources that are already operational or they can join the network and install
their own base stations for use by other users. NTRIP method requires
internet access, which is very common for modern higher-end vehicles. Lastly,
this is the option I have opted for, is to create your private correction data
stream. To do this, one needs either two internet modems with public static
IP addresses and interconnect them via str2str application from RTKLIB,
or one can use one static IP address on the server and two regular modems
with Wireguard VPN. Both of these methods were implemented, however,
Wireguard was abandoned since it added an additional 30 milliseconds of
RTCM data streaming delay. USB modems needed to be configured properly,
DMZ disabled and Access Point Name GPRSA set to public, which sets
modems to static public IP address mode, provided the service is paid for.
With this setup prepared, now if the devices are started up in succession,
where the base station is first and Raspberry Pi control computer is second,
the str2str link for RTCM corrections should establish automatically.

Experimental data. Above all else, I have prepared logging and visualization
scripts in python, to verify functionality and highlight the effect of RTCM
corrections. The logging application consumes all raw UBX-type messages
and stores them in a CSV file. The subsequent data analysis tool parses the
CSV into pandas dataframes for individual message types for convenience.
The visualization tool can display position in LLH, NED, relative heading and
distance between two stations and highlight the impact of RTCM correction
loss. Furthermore, it can underlay Open Street Map background under the
data to increase data clarity. Some visualizations are depicted in [Figure 6.8
and in image appendices [B.1 and [B.2.

90

6.2. Rover modules

GNSS receivers position
x1075+5.0076400000 x 10!

10 [
E— ® Base station
9 I y Moving base
' Heading module
_ 8y s <
o & %
— I
¢ i] \
E \
=2 64
-
3
54 K L]
ad ™
%DQ%%)DD .ﬂ"auﬁﬂnoo
31 . ™ Dgg ®c0so0 0000000 § 4 $

0.0 0.2 0.4 0.6 0.8 1.0
x10~%+1.4418000000 x 10!
Longitude [°]

(a) : Combined visualization of position for the
base station, moving base module and heading
module. The underlying map is created automat-
ically by downloading a suitable map patch at
proper scaling.

Top down scatter plot of POSLLH data
x10~5+5.0076400000 x 10!

8.8
8.6 .,

N
o o
<D

Latitude

o
1.5 2.0 2.5 3.0 3.5
x1075+1.4418000000 x 10t
Longitude [°]

(b) : CTU FEE sign traced by an antenna with
corrections. The size of the scatter plots depicts
the accuracy of measurement.

Top down scatter plot of POSLLH data
x1077+5.0076400000 x 10*

Latitude [°]
w0
o

10 15 20 25 3.0
%10~5+1.4418000000 x 10!
Longitude [°]
(c) : CTU FEE sign traced by an antenna with-
out corrections. The size of scatter plot markers
is significantly bigger than for the data with RTK
corrections.

Figure 6.8: A set of figures produced by the python visualization tool.

91

92

Chapter 7

Visual Odometry integration

As it was mentioned in [section 5.2, the ToMi2 platform was equipped with
a competent, accurately calibrated stereo camera. Beforehand, the camera
was primarily used for Deep Learning applications, such as mentioned in our
scientific papers [79] and [80]. Naturally, having a setup of this caliber enticed
the thought to use Visual Odometry to aid with localization, along with
other, more traditional methods in automotive, such as GNSS with INS and
odometry-based dead reckoning. Even though all algorithms listed further
are, in fact, SLAM algorithms, I will be referring to them as Visual Odometry
because my interest in them lies solely in position tracking functionality rather
than mapping. One can also dispute the overall importance of loop closing
in autonomous vehicles since the main benefit of drift mitigation from loop
closing rarely ever occurs.

I have conducted extensive research into historically successful VO algo-
rithms and current state-of-the-art methods in a pursuit to find a well-suited
implementation with both high performance in real-time applications as well
as ROS2 integration. Significant help in assessing performance in realistic
conditions is the KITTI odometry challenge [86]. The KITTI challenge is a
real-world performance benchmark initially introduced by Andreas Geiger,
Philip Lenzy and Raquel Urtasun. It provides a set of captured trajectories
from roads, highways and cities, along with calibrated camera data, 360°
Velodyne radar and GPS. Based on my research and imposed limiting criteria,
three VO implementations have been selected; historic Stereo-PTAM (SP-
TAM), which is a stereo extension of the original and revolutionary PTAM [6],
and the current state-of-the-art Nvidia Isaac Elbrus algorithm [88], and last
but not least, native StereoLabs Visual odometry implementation integrated
into the StereoLabs SDK. One could argue that there are better-performing

93

7. Visual Odometry integration

algorithms now; however, their code base is not available, and thus, I would
not be able to use them.

Firstly, I have tested SPTAM implementation [87] (21st place at this mo-
ment on the KITTI leaderboard) directly on KITTT stereo dataset data. Even
though the pose estimation accuracy is sub-par compared to the current lead-
ers, it should be sufficient for data fusion algorithms, despite its 1.19 % drift
in total distance and 0.0025 deg/m deviation in heading angle. Unfortunately,
the implementation runs in python, which, even with a far more powerful
computer, could not sustain real-time demands; therefore, it could not have
been tested directly on the ToMi2 vehicle. This problem also highlights a
crucial factor of computation demands, as VO pose estimation maintains
small estimation errors only if the change of position between two consecutive
frames is minimal.

The second implementation selected, the Elbrus from Nvidia, is currently
placed 11th in KITTI, boasting with 0.94 % drift in the distance traveled and
heading angle deviation of 0.0019 deg/m. Importantly, this implementation is
developed precisely for Nvidia Xavier Agx computers, one of which we have
on board the ToMi2 vehicle, making it a perfect fit for our application. It also
guarantees up to 80 fps with low frame resolution. In addition, Elbrus provides
an estimation of linear and angular motion velocity, which are both vital data
from localization and pose tracking. I have requested further details about
the implementation on the developer blog and by email; however, to date, no
response has been given. Unfortunately, for this reason, I cannot provide any
further information about the inner working of this implementation, apart
from some general data listed on |Nvidia Isaac project web/ and official [project

GitHubl

Last but not least, the SteroLabs native Visual Odometry implementation
for ROS2. Unfortunately, no reputable performance benchmark, such as
KITTTI challenge results, is available for this algorithm, hence I need to
measure pose tracking quality myself to compare it with the Elbrus results.
To provide more details about the conceptual solution of the implementation, I
have reached out to developers, and I have been given at least some, otherwise
confidential, information. As a majority of methods, even this one uses key
points, making it an indirect method. Used key points descriptors were
undisclosed, although their strategy uses more than one descriptor at a time.
Mapping is done both sparse (form local odometry) and dense for better
loop closure detection. For pose tracking, minimization of reprojection of 3D
keypoint into 2D images is used. Loop closing optimization details are kept
private. To increase robustness, IMU measurements are integrated, although
not for the translation pose estimation, but only for camera orientation.

94

https://docs.nvidia.com/isaac/packages/visual_slam/doc/elbrus_visual_slam.html
https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam
https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam

7.1. VO parameter tuning

Stereo Images
Depth maps
Point cloud

Raw images Pose tracking
Stereolabs Zed2 IMU Map
ZED SDK ROS2 ZED wrapper

Stereo Images
IMU

Pose tracking
Point clouds

Map
Landmarks
Nvidia Isaac Elbrus

Figure 7.1: Data flow structured in VO algorithms. The physical hardware,
Zed2 camera and its drivers are represented by the red box, and the raw data
(magenta arrow) is read directly by the ROS2 Zed wrapper. The blue boxes
depict ROS2 nodes running the VO algorithms, while the green arrows highlight
ROS2 message communication.

B 71 vo parameter tuning

After the selection of algorithms is done, the second and just as important
part is tuning the algorithm’s hyperparameters to squeeze the best possible
results out of it. Here, plentiful options for tuning are available, such as
capture framerate, image resolution, depth point cloud quality, minimum
and maximum depth calculated and frequency, IMU integration, loop closing,
mapping frequency and resolution and many more. Trying all possible
configurations in an exhaustive search is infeasible, therefore, I have devised
four major ZED configuration branches, all of which I have consequently fine-
tuned for increased performance. Before I get to a description of configurations,
let me introduce the integration of the algorithms.

As was already mentioned, one of the deciding points was the support
of the ROS2 environment. ROS2 interfaces work in a publisher/subscriber
framework, where the publisher provides data at its own rate, and the
subscriber consumes it when provided. The data used for pose tracking and
their propagation are depicted in [Figure 7.1\

From the picture, it is clear that the ROS2 Zed wrapper is a mandatory
precondition for Elbrus functionality. This poses a challenge to create a
configuration of the ZED wrapper that gobbles up a minimum amount of
resources while providing stereo pictures in the highest possible framerate
and quality along with IMU raw data. As a result, two configurations for
the ZED wrapper were created, stripped of all depth, mapping and pose
localization functionalities, providing only stereo images and IMU. The only

95

7. Visual Odometry integration

ZED-VO camera frame

Elbrus VO camera frame
Elbrus VO odom

ZED VO odom Elbrus VO base link

ZED VO base link

Figure 7.2: RVIZ visualization of two independent visual odometry transforma-
tion trees and visual odometry frames.

difference between those configurations is in quality and framerate, where
the high-quality image maintains 50 fps at HD resolution and the high-speed
configuration keeps 70 fps with VGA image quality. It is important to note
that while experimenting with configuration, I have spotted a bug in the
ROS2 ZED wrapper, leading to a fix that is currently in the main line of
StereoLabs official source [GitHub. Subsequent Elbrus node configuration
is constricted to propper input signal mapping, restricting visualization for
performance boost and construction of independent ROS2 transformation
tree; nonetheless, there is no difference in Elbrus setting with respect to the
high speed/quality ZED wrapper setup. The other two ZED configurations
are focused on the maximization of tracking accuracy from the ZED wrapper
pose estimation algorithm alone. Provide mapping, depth computation and
pose tracking features are enabled, resulting in high CPU and GPU load.
Two differences are analogous to configuration for Elbrus, one path maximizes
framerate, while the other favors image quality.

.) Logging, data visualization and performance
analysis

Despite the large popularity of the ROS2 framework, it still suffers from
certain labor pains, notably erroneous rosbag functionality. When attempting
to capture data at high bandwidth, the rosbag logging system fails and records
just a subset of messages, while dramatically reducing the performance of

96

https://github.com/stereolabs/zed-ros2-wrapper

7.2. Logging, data visualization and performance analysis

the system. This behavior is unacceptable for reliably experimental data
capture, therefore, I have developed my own CPP ROS2 visual odometry
logging node. It can simultaneously log both the Elbrus and StereoLabs
odometry messages, even though this is never done due to CPU limitations,
and save them into CSV files. Alongside with logging application running on
the control computer, all sensory data for data fusion is reliably captured.

For the purpose of data verification, I have created a visualization script
that displays a comparison between visual odometry data and GNSS captured
position and orientation data (Figure 7.3). Given the fact that GNSS does
not drift and is, thanks to RTK corrections, very accurate, we can consider
GNSS solutions as the ground truth for data verification of VO accuracy. The
devised metric for accuracy comparison is RMSE, comparing the position and
heading measurements at a given time. Apart from aligned GNSS and VO
data, the tool can plot the rover’s orientation based on GNSS body heading
or VO heading estimation.

PGNSS _ TPVO
RMSE = \/ e (7.1)

where PtGN 55 — [DN, PE, Dy), vector with planar NED position and heading
angle taken by GNSS at a certain time and analogously, PtVO = [Pai> Pys» Do,
denotes position and heading with reference to initial body frame. The
transformation T aligns two measurements into the same coordinate frame,

making them directly comparable with RMSE computation.

97

yIm]

Visual Odometry integration

RTK-GNSS and ZED HD Vo comparison
RMSE error = 1.204333240142701
[Coordinate frame set in initial body frame system]

. Vo

A, GNSS_fix
10 '/ e,
fa .,
o B
- ",

' -,
H

%,

x[m]

(a) : Comparison between GNSS and high-
quality image configuration of ZED SKD VO.
With distance covered, the drift accumulation
manifests itself slightly (yellow portion of VO

data).
RTK-GNSS and Elbrus HD Vo comparison
RMSE error = 0.8601639656595498
[Coordinate frame set in initial body frame system]
.« VO
10 / GNSS_fix
4
Id
,/
7
{
o 0p £L020000000se

20 25

(c) : Comparison of GNSS and high-quality
image configuration of Nvidia Elbrus VO. The
best scoring configuration out of the four here
listed.

y [m]

RTK-GNSS and ZED VGA Vo comparison
RMSE error = 2.4288798498542055
[Coordinate frame set in initial body frame system]

. vo
GNsS_fix

5 o s 10 15
x[m]

(b) : Comparison between GNSS
and high frame rate configuration
of ZED SDK VO. A fast left turn
creates a significant heading error,
which devalues the rest of the record-

ing.

RTK-GNSS and Elbrus VGA Vo comparison
RMSE error = 1.1449797993221764
[Coordinate frame set in initial body frame system]

- W
GNsS_fix

x [m]

(d) : Comparison of GNSS and high
frame rate configuration of Nvidia
Elbrus VO. Pose tracking results are
better than with Zed.

Figure 7.3: A set of visual and metric comparisons between GNSS trajectories
and VO pose tracking for individual algorithms and configurations.

98

Chapter 8

Data fusion implementation

In [chapter 4] T have listed two main frameworks for data fusion, namely
Kalman and Complementary Filtering. Complementary filters are not en-
dowed with an ability to reflect the underlying physics which governs the
motion of the ToMi2 platform; therefore, I have decided to use more sophisti-
cated Kalman Filtering. Most often than not, complex systems cannot be
accurately described with a linear dynamics model, and the ToMi2 platform
is no exception. As a result, the mathematical model for the dynamics is non-
linear, and conversely, I had to choose Extended Kalman Filter to facilitate
the non-linear behavior of the vehicle. For increased robustness, estimation
frequency and accuracy of estimation, I have used four data measurement
modalities: GNSS, VO, gyroscopes and kinematic model. Initially, I intended
to leverage accelerometers among the other sensors, however, the mounting
solution inside the cramped ToMi2 platform has not allowed producing data
with sufficient quality. The implementation of the Kalman filter required me
to implement the kinematic model, vehicle dynamics model and measurement
models for each of the respective modalities.

First, let me introduce a set of states and parameters describing the models
presented here. The states denoted by & are the following: side slip angle
[rad], heading angle (yaw) ¢ [rad], yaw rate ¢ [rad/s], = [m] and y [m] for
North and East components of the NED coordinate system, respectively. Last
but not least, magnitude of velocity ||v|| [m/s]. Three input signals of the
system are the steering angle on the front (6 [rad]) and rear (6, [rad]) wheels,
supplemented by the motor PWM input u,- [%]. Geometric representation
of states can be found in figures and

99

8. Data fusion implementation

Figure 8.1: A schematic displaying coordinate transformation between a NED
plane with origin in point O and a vehicle coordinate system centered in point c,
which coincides with the vehicle’s center of gravity (COG). NED heading angle
1) is positive in a clockwise direction and, it defines rotation between the two
coordinate systems.

It is worth shortly describing what the states mentioned in stand
for. The most straightforward of them is the position in the NED plane with
x and y components, which alongside heading v define a transformation of
coordinates between the origin NED and car body system. Transformation is
defined as follows:

ﬁcar = R?\?ED . (ﬁNED - 8NE'D) (81)

Lear | COS(*T/J) - Sin(ﬂ/}) TNED CxnNED
- . -) (82)

Year sin(—1)) cos(—) YNED CynED
where there are two coordinate frames car and N E D, defined as in [Figure 8.1},
cnED represents the vehicle’s position in NED coordinates, R{% p is a rotation
between two respective coordinate frames car and NED, defined by the
heading angle 1. Vectors p.. and pygp point to the same point p. Naturally,

the state 1 represents the derivative of heading ¢, which is an angular rate
positive in a clockwise direction.

The remaining states 3, ||v|| are displayed in a single track outline
alongside a multitude of model parameters and inputs. Side slip g
and ||v|| states are a polar representation of lateral and longitudinal velocity
in the coordinate frame of the car. Constants {; [m] and I, [m] depicted in
a light blue measure the distance of the front and rear axle from the COG,

100

8.1. Kinematic model

Figure 8.2: Single track depiction inspired by Ing. Denis Efremov.

respectively. The red color highlights steering angles on the front 6; and
rear J, axle, both of which serve as model inputs. Under the condition of
no-slip on both wheels, define the steering angles position of osculation circle
k, in pink. The center of this circle (S) is placed at the intersection of lines
perpendicular to the respective wheel axes, and the radius (R) equals the
distance between the center S and the vehicle’s COG. From there, we can see
that if the vehicle counter steers, the radius shrinks and the car turns quickly,
whereas when the aligned steering is applied, the radius is large, resulting in
a prolonged turn.

The following sections will delve deeper into the specifics of these imple-
mentations.

. 8.1 Kinematic model

The kinematic model was adopted from the work of my colleague Jan Svan-
car. The model is derived from the geometry of the overactuated vehicles,
and inspiration was drawn from the book Vehicle dynamics [89], where the
kinematic and dynamic models are masterfully described. The model is used
as one of the data modalities for Extended Kalman Filter state estimation.

The model itself computes three key states for pose estimation, the side
slip angle 3, yaw rate ¢ and velocity magnitude ||v||. These qualities are

101

8. Data fusion implementation

calculated by equations:

v = 27rrg’—0 : (8:3)
B = atan (lr i tan(dy — d,) + tan((5r)> ; (8.4)
=0 e e
ol =oS20A) (86)

where r [m] denotes the radius of the vehicle’s wheel and w [RPM] is an
average front wheel angular velocities w.

Adding integrators to 1) and velocity vector with pertaining orientation
yields new states v, z and y, which can for a brief period after an accurate
initialization track position of a moving vehicle. Inherently, model errors and
the relative nature of these measurements will lead to a considerable drift in
time. The most problematic state is the heading v, computed as an integral
of the yaw rate. The kinematic model neglects skidding completel,y and
as a result, errors in heading proliferate into position estimation extremely
fast. However, if we inject precise measurement of heading from HM GNSS
receiver, the results of such model are surprisingly good, as showcased in
Figure 8.3/

B 8.2 Dynamic model

As I have already mentioned, complex systems, such as cars, rarely ever
adhere to linear dynamics models. Naturally, we can model complexities
by non-linear models, which deliver higher fidelity, and are pivotal for state
estimation. Still, it is worth mentioning that such models are usually very
hard to identify, especially given a platform such as ToMi2, where not all
signals are present, such as torque on wheels or accurate measurement and
control of steering angles. Steering angle deviations are very likely the most
severe limitation of the platform as it stands. Wheels are controlled by a
feed-forward controller, making them susceptible to errors while cornering
when the forces applied on the tire overpower servo motors used for steering.
These limitations led me to the choice of a simplified nonlinear model, more
specifically, a single-track model proposed by Ing. Denis Efremov ([90]),
which contracts four-wheel vehicle dynamics to only 2 wheels, also known as
a bicycle model.

102

Odometry NED position without GNSS heading injection
20
QOdometry
GNSS

20 b

=30 -

8.2. Dynamic model

Odometry heading without GNSS heading injection

heading [rad]

-40 b . .
-30 -20 40

(a) : Figure shows kinematic pose track-
ing without heading injection. In time,
the model drifts considerably.

Odometry NED position with GNSS heading injection

Odometry
GNSS

60 80 100 120
time[s]

40

(b) : Heading progression manifests sub-
stantial drift, even though it follows major
data trends well.

Odometry heading without GNSS heading injection

heading [rad]

40 b . L
-20 30 40

() : Kinematic pose tracking with an in-
jection of accurate heading measurement.
Correction of heading errors improves the
pose tracking accuracy dramatically.

60 80 100 120
time[s]

40

(d) : Kinematic integrated heading with
injection does not deviate from GNSS
values significantly, as it is expected, given
the 10 Hz measurement rate.

Figure 8.3: Comparison of the kinematic model GNSS data. Heading injection
helps to mitigate major drifting errors in vehicle orientation.

Nevertheless, the complete model on its own is not sufficient for the EKF
implementation, as the increments in time step are governed by a linear
approximation of the state transition function g(Z—1,u, ;) (section 4.2). In
his derivation of the model, Denis also provided a linearized model [91] of
the vehicle’s lateral dynamics, which I have used in my work.

The lateral and longitudinal non-linear dynamics can be described with

103

8. Data fusion implementation

the following equations:

b=+ %(cos(ﬂ)Fy _sin(B)F) (8.7)
0= %(sin(ﬁ)Fy + cos(B)Fy) (8.8)
)= }ZMZ , (8.9)

where I, [kg - m?] is a moment of inertia of the vehicle around its z-axis,
m [kg] pertains to the vehicle’s mass and v is the current vehicle’s velocity.
F, and Fy represent forces acting on the COG of the car along axes x and
y, respectively. Torque M, [Nm] is acting around the z-axis of the body.
For the purpose of linearization, certain assumptions are accepted: angles
B, 05 and 6, are small, leading to two major goniometric reductions, where
sin(z) ~ « and cos(x) ~ 1. Furthermore, if we assume velocity to be constant
at a given moment v = 0, we can take state v as a parameter based on which
we linearize the model at every iteration. This effectively decouples lateral
dynamics from the longitudinal. These assumptions lead to a simplified model
in the form of:

mo(+) = B, (8.10)

L= M, (8.11)

Very complicated tire dynamics, usually tackled by Pacejka’s Magic Formula
[92], can also be linearized, leading to a bi-linear model. Combining all

these simplifications and reductions in the model, we obtain linearized lateral
dynamics, which can be written as:

AB:—WAﬁ‘f‘(W—l) A+ Cy Abs + Cr JAY
MUop Vop MVop MUop
(8.12)
. 1,0, —1 12Cy + 120, .] 1,C,
Ai/JZMAB—) Ay + foA(Sf— ¢ Ao, . (8.13)
IZ UOpIZ Iz IZ

In the last two equations, we encounter parameters C, and Cy, which cor-
respond to cornering stiffness on rear and front wheels, respectively. The
physical interpretation of the parameter is the amount of force that the tire
can inflict upon the ground without skidding, and it replaces complicated
Pacejka’s Magic Formula. To describe the motion of the vehicle in the lon-
gitudinal direction, I needed to extend the model by a simple first-order
differential equation to model changes in the motion speed. The equation is
as follows:

ol = —allv]| + busr , (8.14)

104

8.2. Dynamic model

where « is a driving resistance coefficient and b is the parameter, which maps
throttle PWM wuyp, to the acceleration of the vehicle.

Equation 8.14/may seem in violation of the previously mentioned assumption
for lateral dynamics, where I have stated that velocity is constant. This
violation is indeed a concerning matter, however, for simplification of the
model, I have decided to act as if the dynamics are decoupled, and I use initial
velocity v as a linearization constant parameter. One could also see this as if
longitudinal dynamics were significantly slower than the lateral, therefore, it
is nearly constant for a short period of time. This setup allows the state ||v||
to evolve in time due to driving resistance and control input while remaining
in the linearization operational point neighborhood. The model itself cannot
be complete without adding the last two states (x and y), which represent the
vehicle’s COG position in NED. These states act as integrators of velocity,
and their nonlinear dynamics are defined by the following pair of equations:

i = cos(B+)]l . (8.15)
g = sin(B +)|lo]] - (8.16)

Clearly, the linearization will be done analogously to lateral dynamics, where
we would consider the values of 8 and v as constants describing the orientation
of the absolute velocity state ||v]|.

For the purpose of linearization validity, I needed to compute trimming
throttle input w-,, which after the subtraction from the control throttle
signal wup, would ensure the vehicle’s velocity remains in a steady state.
Afterwards, we used the trimmed input e, as the input signal for the
linearized deviation model (Equation 8.20).

_ alfv]]

Utrm = b s (817)
Unew = Uthr — Utrm (818)
||v|\‘ =0 . (8.19)

U=Utrm

105

8. Data fusion implementation

The complete model linearized model looks as follows:

_ . - r C¢+Chp 1,Cr—1:Cy N
AB Sy 0 g, 1 000 0 [AB]
At 0 0 1 0 0 0 At
p L :
A | _ |GG w 0 0 0 A |
iﬁ” 0 0 0 0 0 cos(Bop + op) ﬁx
Alll] | 0 o 0 0 0 “a | LAl
(8.20)
Cf CT. O
070" o
bCr kG Ady
+ | L. T, JAN
0 0 0| |,
0 0 0
0 0 b

Given the fact that the system’s control and Kalman’s position estimation
are running on 100 Hz, the time for dynamics evolution between two con-
secutive time instants is little to none. As a result, high frequency makes
linearization hold for an almost arbitrary set of states and inputs. Despite
this, it is reasonable to try to simulate the system’s behavior in longer se-
quences to observe how well the model, even when linearized, reflects data
trends of the real system. This simulation also resembles the time step of
the Kalman Filter with continuous state models. For this purpose, I have
devised a simulation setup, where with a specific frequency the linearized
model is initialized at a particular operation point and the evolution of states
is simulated. The operation point is defined by the current state of the
nonlinear system. Results of this simulation are shown in [Figure 8.4.

. 8.3 Measurement models

With the dynamic model for the time step of EKF covered, I will presently
describe the measurement models implemented for the data steps. The
data step is an essential part of EKF, and in my case, it is the part that
performs data fusion of different types of measured data. In this work, I have
exploited data from gyroscopes, kinematic model, VO and GNSS; hence, 1
have implemented four measurement models, one for each of the respective
modalities.

In further elaborations, z; denotes the measurement model at time ¢, mostly
defined by a linear function of states at the given time.

106

8.3. Measurement models

Abs velocity time step simulation

GNSS
Kin model
sim

Position data time step simulation

-
T

Kin. model
sim

o
T

5
T

51 E.
10+ %‘ 4r
8
E-151 Y
20t .l
-25 1
ik
30
0
-35 1)))))))))
a0k . ‘ ‘ ‘ ‘ 3% 40 45 50 55 60 6 70 75
-20 -10 0 10 20 30 40 Time [s]
E . .
! (b) : Simulated speed compared with
(a) : Simultated position states with the measurements from GNSS and kinematic
kinematic model data. model.

Heading model time step sim

GNSS
Kin. mode|
sim

Heading[rad]

I 1 I 1 I 1 I I I
35 40 45 50 55 60 65 70 75
Time [s]

(c) : Simulated heading compared with GNSS heading and kinematic model.

Figure 8.4: Graphs depicting dynamics model simulation.

B GNSS measurement model

For ordinary vehicle localization, GNSS data are the most important. This is
identical in my case, as GNSS is the only source of absolute position. There
are many qualities measured by GNSS, nevertheless, I have chosen to exploit
only those measurements that are directly linked to the states of my system,
namely position in Longitude, Latitude and Height (LLH), NED position,
NED velocities, accurate body heading and motion heading.

Adhering to the notation given in |section 4.2, the measurement model h(x)

107

8. Data fusion implementation

and its linearization H (z) looks as follows:

B
(&
Zt = h(ft) = Tt (821)
Yt
[[vlls
10 00 0O
010000
H=1000100 (8.22)
000010
00 0O0O0T1

As you can see, the selection of the NED system as a primary system for
vehicle position tracking was not random, as it makes the measurement model
and its linearization straightforward.

B Visual Odometry measurement model

The Visual Odometry portion of the measurements is the trickiest one to
handle. This is done due to a changing frame of reference of the measurement
at every time instant. For an illustration, let us have a look at [Figure 8.5l In
the top left corner, there is a NED frame origin, in which EKF operates. On
the other hand, the VO relative measurements are integrated with respect
to the initial VO body frame with coordinates xy o and yy o, denoted in the
NED frame as pyo. VO frame is rotated by 180° around the x-axis, having its
z-axis pointing up and y-axis to the right if viewed from the top perspective.
Also, the VO measurement has its own heading angle ¥, which has zero
defined by the initial orientation of the vehicle ¥y o.

Visual odometry algorithms track position between two successive frames,
making them all dependent upon their predecessors. Nevertheless, it is
common that the VO algorithm’s outputs are integrated positions, and not
just the last increment, which is what I was looking for, as I already have
an absolute measurement from GNSS. As a result, I needed to subtract the
newest VO p;41 measurement from the previous p;, yielding an increment
in VO initial body frame coordinates AZ. Afterward, I transformed the
computed increment into the coordinate frame defined by the position of the
former point p;.

Analogously, I need to compute an increment in state trajectory, which
happened in the time period between the last and current VO measurement.

108

8.3. Measurement models

Figure 8.5: An illustration showing NED, VO initial body and incremental-body
coordinate frames. The car moves along the state trajectory 7, and three specific
time instances are highlighted, the initial time and two successive time slices
defined by VO measurement frequency.

Having both these increments available, I have defined the measurement
model as:

_ _AB, _
~ Aty
S o —Ay
= MART) = oy)z —sin(—p Ay | &)
— sin(——1) Az — cos(——1) Ay,
I Al 1
-1 O 0 0 0 07
0 -1 0 0 0 0
- 0 0 -1 0 0 0
Hy(7i1) = 0 0 0 cos(—y—1) —sin(——1) 0 (8.24)
0 0 0 —sin(—t¢1) —cos(—¢—1) O
0 0 o0 0 0 1]

The measurement model performs a transformation that aligns increments in
the state vector AZ with increments of VO in the frame defined by p; and
axes T, Yk-

109

8. Data fusion implementation

B Kinematic measurement model

The aforementioned kinematic model (section 8.1) was already designed with
the NED coordinate system in mind. This means that computed states
B and @ have their orientation aligned with the positive orientation of the
primary N ED system of EKF. The resulting measurement mode is defined
as:

5,
2 =hZ) = | (8.25)
o]l
100000
Hi=10 0100 0 (8.26)
000001

Unlike the kinematic pose tracking, the integrators, which accumulate
velocity to maintain an estimate of the position, are already part of EKF and
thereby would be redundant.

B Gyroscope measurement model

Unfortunately, due to the construction limits of the ToMi2 suspension system
and confined space under the hood of the model, the accelerometer’s data
are corrupted and cannot be leveraged for improvement of § and ||v|| state
estimates. This situation left me only with data from gyroscopes, one of which
aligns with the vehicle’s z-axis, and can be therefore used for the measurement
of yaw rate. Navio2 HAT for Raspberry Pi inexplicably uses a left-handed
coordinate system, hence there must be a simple transformation of direction
in the measurement model:

2= h(&) =[] (8.27)
H=[0 010 0 0 (8.28)

110

8.4. Implementation specifics

B 84 Implementation specifics

The implementation of EKF was written in MATLAB. The implementation
has two core pieces: a data sampler script, which simulates the runtime of
the EKF environment with data samples coming in asynchronously. The
second and the most important piece is the Extended Kalman Filter with
multi-modal measurement models. Unfortunately, I was not able to deliver
real-time performance in ROS2 on the ToMi2 hardware in time.

B Extended Kalman Filter

Extended Kalman Filter is a cornerstone of my work. The principle of the
algorithm was summarized in section 4.2; therefore, I will omit the description
of the principle and get straight into technicalities. Before proceeding to
the pseudocode description, I will shortly point out some general concepts
used. Firstly, I have used what I called "event-based" EKF. This means that
whenever new data measurement arrives (event), a time step is executed with
a duration defined by the time elapsed from the last completed time step until
the event was triggered. Between the individual events, all control signals are
aggregated for the purpose of time step system simulation. Secondly, my time
step is based on the continuous-time model, which leads to two implications,
such as this EKF needs to have its ODE solver for time step state evolutions
and covariance update is performed by the formula for continuous-time system
models. The code was written deliberately in a way that it can simulate
arbitrarily long sequences between two measurement events, even though
it rarely ever happens, given the high measurement rate of IMU and the
kinematic model. Thirdly, input signals for steering and z-axis gyroscope have
offsets and are corrected accordingly, but I am not mentioning such correction
in the pseudocode description, as they are not part of the EKF. Also, note
that the model described in [section 8.2 has singularities at zero speed. As a
result, the pose estimation only takes place once the vehicle reaches a speed
of 0.5 m/s and higher. This issue could be remedied by an introduction of
a second model designed for lower speed without the singularity mentioned
above, such as the kinematic model.

Algorithm [1] is the illustrative pseudocode of the EKF algorithm step,
where Z denotes the estimate of vehicle states and P represents the estimate
covariance matrix. Two essential functions of this pseudocode are EKF time
and data step. Now lets, delve deeper into the EKF time step (algorithm 2).
As was mentioned, the time step is executed with every new data measurement.

111

8. Data fusion implementation

Algorithm 1 An outline of one iteration of EKF.

Require: samples
u < samples.control > Steering control is converted to radians and the
PWM throttle signal is remapped.
t + samples.control.timestamp
Uagg, tagg < aggregate(u,t) > aggregate adds the current control signal
and time to the vector of previous inputs and timestamps.

if samples.measurements # Empty then > Checks if samples also
include measurement data.
&, P« EKF_time_step(&, P,uagg, tagq) > See algorithm 2

&, P < EKF data_step(z, P, samples.measurements, uqgg) > See
algorithm |3
Uggg < None
tagg < None
end if
tp'rev —1
return None

It predicts the evolution of states that took place from the last event, given
the linear velocity and orientation parametrized model, which was described
in lsection &.2|

Algorithm 2 EKF time step.
Require: 2, P, uqqq,tagg
dt < tagq(end) > Computes trimming throttle signal based on
Equation 8.17
Ugrm < compute_trimming_input(Z, uqgg) > Computes input deviation.
Ufinal = [u(:, 1), u(:,2),u(z, 3)] — [u(1, 1), u(1,2), ugrm) > Recomputes
linearized system matrices A and B
recompute__system_matrices(||v||, 5,)
Az = simulate_system(Z, tqgq)
T2+ Az
P« (AP + PAT + R)dt
return None

Last but not least, let me outline the implementation of the EKF data step
(algorithm (3).

B Supportive scripts

During the implementation, I developed several auxiliary scripts. First and
foremost, functions for visualization of all available data and coordinate

112

8.5. Tuning and self-tuning of EKF

Algorithm 3 EKF data step.

Require: %, P, 1,44, samples.measurement
for all samples.measurements do
y, H, hx, R = compose__measurement__model(uqqq, samples.measurement)
> Parses measurement vector y and computes measurement model output
hz, linearization H and covariance Q).
Yagg> Hagg, MTagg = aggregate _measurement(y, H, hx)
if samples.measurement == VO then
Last_V O <« samples.measurement > Save the previous VO
measurement and state for relative increment computation in next the VO
data step.
Last VO state + 2
end if
end for
L+ PHg;lg(HaggPHg;Q +Q)7! > Computes Kalman gain.
T < &+ L(Yagg — hTagg)
P« P — L(HugyPH!,, + Q)L”
return None

system transformations. These tools helped me to orient between individual
coordinate frames. Secondly, a script for symbolic derivatives of dynamics
and measurement models was very beneficial in the stage where the Kalman
time and data steps were being developed. Lastly, the main script, which
bind data_sampler.m and Kalmy.m together to work in unison.

B 85 Tuning and self-tuning of EKF

To prevent any confusion, I would like to remind that I am adhering to the
notation used in [2I], where for example process and measurement noise
covariances are unusually swopped.

Once the correct implementation was done, I had to tune the Kalman Filter
to ensure desirable performance. The tuning is done by manipulating noise
covariance matrices R (process noise) and Q (measurement noise). The
process noise matrix R was tuned manually. For the measurement noise
covariance weights, I have used gyroscope datasheets to extract an initial
guess of the noise covariance. Furthermore, GNSS and VO provide their own
measurement covariances, which I exploited as an informed starting point
for manual tweaking. I have tuned the measurement importance in order
from the most important to the least as follows: GNSS, VO, IMU, ODOM.
This ordering is based on the fact that only the GNSS is a source of absolute
positioning, and VO is the most accurate relative measurement available to
me. The kinematic model from its design inherently does not work well at
higher speeds, therefore, it has the lowest relative measurement importance,
at a given speed.

113

8. Data fusion implementation

Once I have reached a satisfying level of performance, I have added an
adaptive covariance scaling into GNSS and VO measurement models based on
their respective measurement covariance estimates. The adaptive covariance
formula looks as follows:

Oadpt = Utﬁ) (829)

On

where the final adaptive covariance is 044y, the hand-tuned covariance is
represented by oy, o, denotes a nominal value of measurement covariance in
good measurement conditions, and lastly, o, holds the value of the current
sigma estimation of VO or GNSS measurement.

The idea of adaptive scaling is to reflect changes in the environment, which
can significantly lower measurement precision. With GNSS technology, it
can be, for example, signal occlusion or geometric properties of the environ-
ment, whereas in the case of VO, problems may either arise in low textured
surroundings or when motion blur can occur at higher velocities or during
aggressive turning maneuvers.

B 86 Results and experiments

The final implementation after the tuning performs in a predictable manner.
With all available data, it tracks high precision GNSS measurements, with an
added benefit of a ten times higher refresh rate, than raw GNSS data. The
result can be seen in [Figure 8.0, where the EKF data are compared to GNSS,
which can be considered something close to the ground truth.

B Data withholding

Furthermore, the data_sampler.m allows me to withhold specific measure-
ment data from the EKF, either entirely or to simulate a data outage. A
demonstration of performance in cases of completely cut-off data can be seen
in [Figure 8.7, Withholding any data type while keeping GNSS makes very lit-
tle difference in position estimate accuracy, therefore, only more complicated
scenarios without absolute localization are shown.

The first scenario uses VO, gyroscope and kinematics while showing rela-
tively good tracking performance, where clearly, if we compare EKF results
with pure VO localization, we can see a considerable improvement in the
initial phases of the session (figures 8.7a, [8.7b). With time, VO’s lower covari-
ance overpowers other data, and its error dominates the estimation deviation.
Admittedly so, once the absolute measurements are not present, drifting error
starts to inevitably accumulate, although that is expected behavior. As a

114

Position tracking of EKF with all data available [NED]

GNSS
EKF

N [m]

-20 1

o5

30 b

=351

-40

—1‘5 —1‘0 —‘5 OI 5 16 15 2‘0 2‘5 3‘0 3‘5
E[m]

(a) : Position tracking of my EKF imple-

mentation fusing data from GNSS, VO,

IMU and the kinematic model. The data

is plotted in the NED frame and depicts

the courtyard of Karlovo namésti CTU

8.6. Results and experiments

EKF heading with all data available

GNSS
EKF

4‘0 éO éO 7‘0 BIO 9‘0 160 1 1‘ 0 1‘20
time [s]

(b) : Heading tracking of my EKF imple-

mentation fusing data from GNSS, VO,

IMU and the kinematic model. At ap-

proximately 65th second, you can see data

outage caused by unknown HM failure,

which EKF implementation sustains with-

FEE campus. out estimation break down.

Figure 8.6: A display of EKF performance with all data measurement modalities.

matter of fact, the error does not exceed more than 6 meters in an over
100-second ride with many hard turns, accelerations and decelerations. This
is especially impressive if we consider partially corrupted VO data, where the
heading v deviates from the GNSS values at the beginning of the ride.

The second and even more challenging scenario I have tested is when
both GNSS and VO data are absent (figures 8.7c and [8.7d)). This means
that only a simple kinematic model alongside one gyroscope maintains the
position and heading estimation. Surprisingly, the heading estimation still
holds on to the true DGNSS value very well. Unfortunately, this cannot be
said about the pose tracking, as it drifts immediately from the beginning
of the logging session. Despite all this, the estimate follows ground truth
data trends, proving that even crude data fusion, which can, for example, be
found in dead-reckoning algorithms of commercial GPS navigations, can be
accurate for a short period of time.

B Data outage

The second experiment was to introduce unexpected data outages. This
scenario can simulate temporary losses of GNSS signal in the city or tunnels
and demonstrate recovery of the tracker to ground truth after some relative
measurement error is accumulated. Given the nature of this experiment, only
interesting behavior can be expected if the GNSS signal is lost, as it has
the highest data value and is the only absolute measurement. The loss is

115

8. Data fusion implementation

EKF heading without GNSS

Position tracking of EKF without GNSS [NED]
51 = GNSS
- VO
EKF

N [m]
heading (rad)

=20

-25 1

=30

EKF

-35 1

0 :;0 4‘0 '3‘0 4‘0 5‘0 E;O 7‘0 E;O 9‘0 1(‘)0 11‘0 WéD
E[m] time [s]

(a) : Position tracking of my EKF im- (b) : Heading tracking of my EKF im-

plementation fusing data from VO, IMU plementation fusing data from VO, IMU

and the kinematic model. Expectedly, and the kinematic model. Heading esti-
pose estimation drift occurs, as no abso- mation seems intact, although even mi-
lute measurement is present to mitigate nor errors lead to progressively larger
this effect. pose estimation errors in time.

", . N EKF heading without GNNS and VO
Position tracking of EKF without GNSS and VO [NED]

GNSS
EKF

N [m]

-20

heading (rad)

25|

-30

EKF

=35

o —1‘ 0 (; 10 20 3‘0 4‘0 4‘0 5‘0 6‘0 7‘0 B‘O 9‘0 160 1 1‘ 0 1 ‘20
E [m] time [s]

(c) : Position tracking of my EKF im- (d) : Heading tracking of my EKF im-

plementation fusing data only from IMU plementation fusing data only from IMU

and kinematic model. and kinematic model.

Figure 8.7: EKF performance without GNSS and both GNSS and VO data.

simulated by a complete absence of data, and not data corruption of any
kind. The results of this experiment can be seen in [Figure 8.8. Previous
tests showed that heading estimate accuracy remains very high even in far
more challenging setups and the data outage thereby makes no difference.
Moving out attention to thee pose tracking, after the dropout occurs, it firstly
manifests an accumulation of error, which is afterward recovered once the
GNSS data is again available. The data drop-out takes 20 seconds, and only
after one second (10 GNSS measurements) does the pose estimation rectifies
to an unaffected state after the data is resumed. The period of time, when
the GNSS data loss took place is depicted with the black line.

116

8.6. Results and experiments

EKF heading with GNSS dropout

EKF position tracking with GNSS drop out[NED]

5h
GNsS 61
EKF with GNSS
or EKF without GNSS
e
st
10t =2
hel
g
R 50
= 3
20 g
£ 2b
o5t
30t 4r
GNSS
35t Al EKF wiith GNSS
EKF without GNSS
a0 I S | | | | | | | I I I I
45 40 5 0 5 10 15 20 25 30 35 30 40 50 80 70 80 90 100 110 120
E[m] time [s]

(a) : Position tracking of my EKF im- (b) : Heading tracking of my EKF im-
plementation with 20-second long GNSS plementation with 20-second long GNSS
data outage. data outage.

Figure 8.8: Results of GNSS outage experiment.

B EKF innovation sequence test

Under the conditions listed in [section 4.1, the innovation vector i defined as
i = y—h(x) should adhere to Gaussian white noise distribution. Consequently,
the innovation sequence autocorrelation function ought to be reminiscent of
a Dirac pulse centered at zero. The autocorrelation is defined as:

1 N—-71—1

rir)=— > wvk) vk+7), (8.30)
k=0

where N signifies the number of samples in sequence, 7 is moving offset,
and v denotes the quality tested for autocorrelation. The test passes if
95% of autocorrelation values lie beneath the 20 gate, which in this case
is defined by the number of samples as o = 1/ V/N. Autocorrelation tests
can help to verify if the implementation is correct and all major dynamics
are accounted for, although in real-world applications, these tests tend to
fail, due to model mismatches and poor system identification, rather than
implementation errors.

GNSS test. As a reminder, the GNSS measurement vector comprises 3, v,
x, y and ||v|| measurements, and thereby, the autocorrelation test has five
individual sections, each for one of the qualities (Figure 8.9)).

Admittedly, there can be seen some issues with the autocorrelation of

117

8. Data fusion implementation

Autocorrelation of GNSS innovation signal

:____|___ A R

-1000 800 500 400 200 0 200 400 600 800 1000
Offset [-]

1

Figure 8.9: Autocorrelation test of GNSS measurements. The figure shows
innovation of 3, ¥, x, y and ||v|| in this specific order.

1 and |[v||. Measurement of § is strongly reliant on 1, as is defined as
body heading 1 subtracted from motion heading. On the other hand, ||v||
is strongly correlated with position changes. Moreover, its model transition
is very crude, modeled as a first-order system, which does not reflect the
dynamics of the system sufficiently well.

VO test. Arguably the best autocorrelation results belong to Visual Odom-
etry measurements. The VO measurement vector covers the state vector
completely, and only a minor concern occurs with the velocity, which can
be attributed to the dynamics model. displays graphically test

outcomes.

118

8.6. Results and experiments

Autocorrelation of VO innovation signal

1~
~05F
oE == S - - ===
1 1 1 1 1 |
[1
-6000 -4000 -2000 0 2000 4000 6000
Offset [-]
1~
SNO5
I : - P . =i — —
-6000 -4000 -2000 0 2000 4000 6000
Offset [-]
1~
=05
D === = ==
1 1 1 1 |
-6000 -4000 -2000 0 2000 4000 6000
Offset [-]
1~
05
I . - - g
-6000 -4000 -2000 0 2000 4000 6000
Offset [-]
1
wos5F
e == = _-‘-J b e 1
-G000 -4000 -2000] 2000 4000 6000
Offset [-]
1~
005
OfF — — | | | | - 7I
-6000 4000 -2000] 2000 4000 6000
Offset [-]

Figure 8.10: Autocorrelation test of VO measurements. The figure shows the
innovation of 3, ¥, x, y and ||v|| in this specific order.

Kinematic model test. The kinematics measurement autocorrelation
D provides satisfactory results with both 5 and z/}, whereas the same
cannot be said about absolute velocity. The velocity innovation repeatedly
manifests stronger correlations, further suggesting a deficiency in the dynamics
model.

IMU test. Lastly, the sole IMU innovation signal almost perfectly complies
with the properties of white noise, as picture |8.12| suggests.

To summarize, the tests point to a possible problem with the dynamics
model of ||v|| as all autocorrelations have shown significant deviations from
white noise properties. This is likely aggravated by improper model identifica-
tion, but the ToMi2 platform is deficient in necessary sensors to improve on

119

8. Data fusion implementation

Autocorrelation of ODOM innovation signal

[x10%

Figure 8.11: Autocorrelation test of the kinematic model measurements. The
figure shows the innovation of 3, ¥ and ||v]|.

Autocorrelation of IMU innovation signal
1

. 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Offset [-] % 10%

Figure 8.12: Autocorrelation test of IMU measurements. The figure shows the

innovation pertaining to .

the current state in this regard. In the future generation of the ToMi design,
this issue will be accounted for, and the problems fixed.

. 8.7 Future work

Admittedly, my work has some limitations.

Firstly, the model of the system has a singularity at a standstill, hence the

120

8.7. Future work

pose tracking can only take place while moving. This issue can be fixed by
model switching with a complementary model for lower speeds.

Secondly, I have not presented any commercial benchmark solution to stack
up against my implementation. A perfect match for such a comparison
would be U-Blox ZED F9K, which, apart from identical GNSS capabilities,
also includes an integrated INS and the kinematic model, making it a truly
all-in-one localization package. Unfortunately, this module was not available
to me due to long delivery times.

Thirdly, due to the issues listed before, I was not able to fully harness the
power of IMU integrated on the Navio2 board, which could have been used
to improve the estimation of not only v, but also ||v]| and 3 states as well.
With legacy functionality at Navio2 Raspberry and the end-of-life cycle of the
ToMi2 platform, there was not enough time for me to completely reconstruct
the low-level control from Navio2 elsewhere and integrate better IMU with
more suitable mounting.

Furthermore, it could also be interesting to add an extra feature to detect
and mitigate the effect of flawed measurements, which would heavily disturb
the localization process. These scenarios can occur when GNSS receivers
suffer significant multipath errors or VO loses itself in mapped space and
jumps abruptly to an incorrect position.

Lastly, the data, you could see throughout this work, was primarily taken
during five test rides. In later stages of the work, unexpected failure on
the internet provider’s side meant that my RTK-based DGSS setup was
temporarily broken. Yes, the implementation was developed using data from
the real-world operation of the ToMi2 platform, nevertheless, more thorough
testing with an extensive dataset would prove its functionality beyond any
doubt.

121

122

Chapter 9

Conclusion

My work devoted to this master’s thesis mainly focused on four vital under-
lying objectives. These objectives were given in the assignment guidelines
and are conditions for the successful completion of the work itself. These
objectives were:

® Review of vehicle position sensors (visual, relative, absolute) and data
fusion algorithms.

® Integration of selected vehicle position sensors (GPS, IMU, odometry,
camera) to sub-scale demonstration platform.

® Implementation of sensor data fusion for vehicle position.

® Algorithm real-world data testing and verification.

The first goal was achieved in an extensive review of localization techniques
to which the entire theoretical part was devoted. I have covered a broad
spectrum of sensors used in the automotive industry as well as autonomous
robotics, such as encoders, LiDaRs and INS units, omitting only radars
as those function more as a safety feature rather than localization sensor.
I have also covered two visual sensor techniques, namely visual odometry
and visual SLAM, which are the bread and butter of autonomous robotics
but are yet to be utilized in the automotive industry. The theoretical part
was closed by an overview of three major data fusion algorithms: Kalman
Filter, its generalization in Extended Kalman Filter and less sophisticated
Complementary filter.

The second requirement was met by the integration of the RTK-enabled
DGNSS setup on the ToMi2 rover accompanied by the static base station.
The solution was built on top of three U-Blox ZED F9P GNSS modules with

123

9. Conclusion

multi-band antennas. The base station was designed to be mobile, based
on Raspberry Pi, USB internet modem and power bank, all enclosed in
3D printed case I have created. The remaining two modules and antennas
were included in the ToMi2 platform, modules being housed in a small
box and antennas placed onto the new elevated platforms, both of which
were 3D printed based on my models. I have also prepared a quick setup
configuration for all three GNSS modules, which enables rapid replication
of the used topology for different projects. Apart from that, I reconfigured
related computers to enable correction data streaming on startup, making
the whole RTK experience seamlessly simple. Besides the advanced GNSS,
I have integrated the state-of-the-art visual odometry algorithm, Elbrus,
into the ToMi platform core ROS2 framework, alongside my own logging
application for odometry data capturing. The selection was motivated by
experimental results based on the visual odometry accuracy verification script
I have devised. Other necessary sensors were already present on the ToMi2
platform.

The third part of the assignment was tackled by implementing an Extended
Kalman filter with four different measurement models, one for each individual
data type. Data steps are fashioned so that the highest priority is given
to GNSS signals whenever they are available. In the case of GNSS signal
dropout, the pose estimation stands on relative measurements of the visual
and vehicle odometry model, complemented by IMU gyroscope readings. The
time step state progression is governed by the continuous-time dynamics
model. The realization is designed to handle arbitrarily long time step sizes,
with individual steps triggered by the newest incoming measurement. One of
the data measurements leveraged is odometry, for which I have programmed a
simple kinematic model. My EKF algorithm runs offline, to have better control
over sensor’s data and is programmed in MATLAB; thus, I had to simulate
the realistic runtime of the algorithm. For this purpose, I have programmed
a data sampler object. On top of its basic log replaying functionality, the
data sampler can also simulate data dropouts or withhold the data altogether,
allowing me to simulate specific challenging scenarios with relative ease.

My EKF implementation was developed and tested using real-world data
gathered from the ToMi2 operation. It proved functional and stable during
long recording sessions. The algorithm was also tested in various scenarios
when GNSS or both GNSS and visual odometry data were unavailable.
Naturally, the performance degraded with a lack of absolute positioning data,
although it could maintain a relatively accurate estimate for a brief time
period. The algorithm can also swiftly recover after global positioning systems
resume their function. In addition, I have programmed an autocorrelation
innovation sequence test to verify correct functionality. Despite problematic
absolute velocity state ||v|| autocovariance results, the rest of the innovation
tests have mostly pointed towards immaculate EKF implementation.

In light of the foregoing, I believe I have completed all requested tasks to
the full extent.

124

125

9. Conclusion

Appendices

126

Appendix A

History of mapping and localization

Maps and cartography have been around for thousands of years. The oldest
maps date back to 6 thousand years BC, and more sophisticated depictions,
usually of seas and coastlines, appeared around the 6th century BC
. It is not surprising that more advanced maps came from nations
with great nautical experiences, such as Romans, ancient Greeks, Chinese,
Norse, and Indians, and yet Arabs were the most proficient in this field,
owing to their well-established long-distance trade. With his classic work,
Geographia [I5] penned in the 2nd century AD made himself the ancient
Greek philosopher Ptolemy the father of modern cartography as we know it.

The advent of cartography arose with the spread of the first reliable
measurement techniques, such as the magnetic compass, which was invented
around 290 BC in China but was adopted for navigation in the 11th century
AD. Also, the invention of a quadrant, initially proposed by Ptolemy himself,
saw massive adoption as late as in the 9th century by Arabs and in the
13th century by Middle age Europeans (Figure A.24), leading to a dramatic
improvement of maps which you can see in (Figure A.1b).

Despite these primitive methods, local maps (Mediterranean sea, Indonesia)
dating from the 14th century look very akin to current maps, at least in
general shapes. In the second half of the 16th century, the Mercator projection
was invented. The Mercator projection maps the Earth’s geoid surface onto
a cylinder, resulting in minimal error around the equator but increasing
distortion as one moves closer to the poles . This mapping
technique has remained the most widely used to date, appearing in the
majority of educational maps, atlases, and Google maps until 2018, when

127

A. History of mapping and localization

(b) : Ortelius’s map Theatrum Orbis Terrarum is
considered the 16th century’s most advanced map.
(a) : The oldest known world This map already depicts Earth as a sphere, as
map, "Imago Mundi", dates to it was proven only at the beginning of the 16th
the 6th century BC Babylonia. century, even though the first remarks of this fact
11 are as old as the 5th century BC. [11]

Google switched to the now widely accepted and used WGS-84 standard,

which depicts the Earth as an ellipsoid (Figure A.3b) and serves as a reference
system for GPS and other GNSS systems.

Furthermore, there are many other standards and projections, most of
which are specific to a location that the cartographer wishes to depict with
the least amount of distortion; for example, for the former Czechoslovak
Republic, Krovak’s transformation produced the best results, and the Czech
geodetic institution still uses its coordinate system to this day. On the other
note, the level of detail in maps varies dramatically depending on the desired
use case of the map; however, the highest detailed maps nowadays are usually
military maps with unprecedented details, mapping individual trees, small
creeks, and every road or natural trench for strategic purposes. [9] [11] [14]

[10] [12] [13]

Turning our attention to localization, it is a problem that predates mapping
itself. People needed to understand their closest environment perfectly to
provide enough food for survival and avoid possible dangers. This could
be seen as a local localization, with a local map in their brains. The first
consistent measurements were, as previously mentioned, available around the
13th century, although the localization process itself was always done by the
human mind, regardless of the map or measurement. This had not altered for
hundreds of years, up until the first experiments with INS systems for rocket
navigation in the 1930s, followed up by the successes of Nazi V2 rockets. An
important breakthrough happened in 1993 when the GPS constellation was
set operational (the first satellite was launched in 1978), equipping mankind

128

A. History of mapping and localization

(a) : A quadrant, firstly invented for as-

tronomical purposes, was later used to (b) : The Iceland Spar also known as
measure angles of the Sun and stars in sunstone, could have been used for navi-
the night sky, allowing sailors to navigate gation purposes by Norse travelers, due
more accurately based on the knowledge to its polarization of sunlight, even in the
of star constellations’ position. [I7] case of a clouded sky. [I8] [I6]

Figure A.2: A display of measurement properties available in medieval times.

with the first technology that provided worldwide, absolute localization within
maps. Previously, one could only use odometry models for vehicles, but those
were limited to relative positioning. GPS found its use firstly in military
applications and presently spread through first responders, to other means of
transport (cars, planes, boats, agricultural devices) to consumer electronics,
such as phones, smartwatches, automatic mowers, etc. GPS and, as a matter
of fact, any GNSS positioning system has its inevitable drawbacks such as
high inconsistency and signal dropouts in problematic environments and
low refresh rate. On top of it, it conveys no information about the local
environment, which is pivotal for autonomous driving and mobile robotics in
general.

The interest in localization in a local environment sprung up in the 1980s
with the formulation of the problem and it became one of the most active
research subjects ever since. In the early days, mapping and localization
were believed to be two independent tasks, however as time went by, it was
discovered that improvements in either of the problems helped with the
other one as well, and this duality was later exploited in parallel algorithms.
First attempts in localization were based on Kalman filters, hence the name
Filter-Based methods for an entire family of SLAMming techniques. Kalman
filters were paired up with ranging devices and odometry data, with the later
refinement of nonlinear models through Extended Kalman filters. All Kalman
filter methods for mapping suffered terribly from complexity growth, where,
given a 2D world, every single additional landmark mapped increased the size
of the state and covariance matrix by two dimensions, eventually becoming
intractable for prolonged mapping sessions (Figure A.4). [4]

129

A. History of mapping and localization

BIH-Defined CTP (1984.0)

4
WGS 84
@

Figure 1.1. WGS 84 Reference Frame

: (b) : The World Geodetic System simpli-
(a) : Present-day Mercator projection fies the Earth’s complex surface to four

map of the world. Note how the rectangu- parameters describing the ellipsoid shape
lar grid is not evenly spaced and the size and the position is defined with three pa-
of the rectangles stretches towards the rameters: longitude, latitude and eleva-
poles, due to the mapping of the geoidal tion above the surface of the ellipsoid (sea
surface to a cylinder. [14] level). [13]

One of the major breakthroughs was the introduction of the Rao-Blackwellized
particle filter in 2002 in the algorithm called FastSLAM, reducing problem-
atic complexity due to its particle representation of path and independent
mapping problems represented by an EKF for each landmark observed. Next
in the evolution were the SLAM techniques using a mono-lens camera, named
MonoSLAM. It used an EKF for positioning and multiple pictures with differ-
ent camera viewpoints to construct a map. These methods later hit the wall
with computational complexity due to their sequential algorithm design. This
situation changed with the arrival of the famous PTAM (Parallel Tracking
and Mapping) algorithm, the first keyframe-based algorithm, also known
as optimization-based, where localization and mapping are decoupled into
parallel threads. This setup also introduces bundle adjustment, which is an
optimization of many previous keyframes to better reflect new measurements,
creating a more consistent, accurate and robust localization and map. On
top of it, PTAM employed loop closing to battle position drifts accumulated
over longer mapping sessions. [4]

This history review cannot be complete without mentioning the DARPA
(Defense Advanced Research Project Agency) funded Grand Challenge, a
three-round competition for academic teams to create a car with substan-
tial autonomous capabilities, firstly off-road and in later years in an urban
environment. Cars were operated by a drive-by-wire system and utilized
various localization techniques, LIDARs, GNSS, IMUs and odometry to name
a few. To illustrate the rapid and dazzling progress in this discipline, let me
showcase how the performance of participants shifted throughout the years.

130

A. History of mapping and localization

Figure A.4: This figure shows a Kalman Filter localization scheme. The rover
position is represented with grey ellipses, defining the mean and covariance
of the Gaussian distribution that represents the rover’s position. Landmarks
are depicted as black dots and red ellipses are measurements. Note, how each
landmark is represented with two new states and their inaccuracies, defined by
the mean and covariance of the probability distribution respectively. [21]

In the first year, 2004, despite arguably the easiest scenario in the off-road
desert-like environment, none of the participant teams were able to complete
the entire 240 km long track; in fact, the best team managed to cover a
little shy of 12 km, less than 5% of the entire distance. Just the next year, 5
vehicles managed to reach the goal distant 212 km, with the best time barely
below 7 hour mark, thus achieving an average speed exceeding 30 km/h. On
a minor tangent note, the winning vehicle from Stanford was named Stanley
(Figure A.5|), which transversely gave the name to the Stanley control law,
famous for its heading and cross-track error components. [24]

The next challenge was centered around urban environments, measuring
96 kilometers in length and requiring all traffic rules to be followed as well as
merging into continuous simulated traffic. Although this task was easier on the
physical construction of the vehicles, it was significantly harder on precision,
real-time behavior, responsiveness and intelligent planning of motion. To
further highlight the importance of reliable and robust localization and their
mutual relationship, we can have a look at the accident that occurred during
the 2005 challenge. Due to GPS signal interference, one of the participating
vehicles crashed into a concrete wall. This incident was triggered by an abrupt
discontinuity in a global localization frame, while all the previously measured
obstacles remained at the same global location. As a result, the obstacles
were rendered effectively out of the vehicle’s intended course and the vehicle
proceeded with its driving as if the space was safe. This shows how complex
and difficult the whole problem of autonomous, robust and safe localization
and, thereby driving, truly is. As for the DARPA Challenges, the next rounds
took place in autonomous robotics (with the honorable participation of our

131

A. History of mapping and localization

A 9127010 gl

o
AMDV]

Figure A.5: The 2005 winning car, Stanley, based on the VW Tuareg platform.
The vehicle was equipped with a series of LiDaRs on the roof, GNSS suite,
accelerometers, odometers and a front-facing camera for localization and drive-
by-wire executed Stanley control law for driving. [23]

university’s own CTU FEE CRAS team in Subterranean Challenge), military
vehicles and even satellite design. [22] [23] [24]

132

Appendix B

Additional images

133

B. Additional images

2D scatter plot of NED data

Figure B.1: Measurement accuracy drop due to RTK correction loss. The size
of scatter plot markers determines the accuracy of measurement, while the black
markers illustrate RTK-less solutions.

Relative length between antennas Relative heading between antennas (NED)
N FixOK 350 1 \]
1.0 I NoFix
300 A
0.8 1
Y . 2501
& g
= he)
3 = 200
g 067 £
= o
g i
= T 150 A
g a
£ 0.4 5
= 100 |
0.2 4
50
0.0 -1 Hx 01 T T . . T T
2 4 6 8 0 100 200 300 400 500 600
Length [m] Sample

Figure B.2: On the left, a histogram graph shows the relative distance of two
antennas, which can be used as a solution verification. RTK fix and no fix data
are distinguished by color. On the right, the progression of heading in time is
shown.

134

Appendix C
Bibliography

Lewis, F. L., L. Xie, D. Popa: Optimal and Robust Estimation: With
an Introduction to Stochastic Control Theory, CRC Press, 2005. ISBN
978-1-4200-0829-6

Simon, Dan. Optimal State Estimation: Kalman, H [Infinity] and Non-
linear Approaches. Hoboken, N.J: Wiley-Interscience, 2006.

Schramm, D., M. Hiller, and R. Bardini. Vehicle Dynam-
ics: Modeling and Simulation. Springer My Copy UK, 2014.
https://books.google.cz/books?id=Gi630AEACAAJ.

Servieres, Myriam, Valérie Renaudin, Alexis Dupuis, and Nico-
las Antigny. “Visual and Visual-Inertial SLAM: State of the Art,
Classification, and Experimental Benchmarking.” Edited by Stelios
M. Potirakis. Journal of Sensors 2021 (February 25, 2021): 1-26.
https://doi.org/10.1155 /2021 /2054828,

Pire, Taiht, Thomas Fischer, Gaston Castro, Pablo De Cristoforis, Javier
Civera, and Julio Jacobo Berlles. “S-PTAM: Stereo Parallel Tracking
and Mapping.” Robotics and Autonomous Systems 93 (July 2017): 27-42.
https://doi.org/10.1016/j.robot.2017.03.019.

Klein, Georg, and David Murray. “Parallel Tracking and Mapping for
Small AR Workspaces.” In 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, 1-10. Nara, Japan: IEEE,
2007. https://doi.org/10.1109/ISMAR.2007.4538852.

OpenStreetMap. “OpenStreetMap.” Accessed June 17, 2022.
https://www.openstreetmap.org/.

135

C. Bibliography

[8]

[12]

[13]

[14]

[15]

FutureCar Media. “Waymo Develops a Machine Learning Model to
Predict the Behavior of Other Road Users for Its Self-Driving Vehicles."
- Accessed June 17, 2022.

“Cartography.” In Wikipedia, June 5, 2022.
https://en.wikipedia.org/w/index.php?title=Cartography.

“Compass.” In Wikipedia, April 18, 2022.
https://en.wikipedia.org/w/index.php?title=Compass.

“Early World Maps” In Wikipedia, May 24, 2022.
https://en.wikipedia.org/w/index.php?title=Early _world_maps.

“Quadrant (Instrument).” In Wikipedia, May 28, 2022.
https://en.wikipedia.org/w/index.php?title=Quadrant__(instrument).

“World Geodetic System.” In Wikipedia, January 25, 2022.
https://cs.wikipedia.org/w/index.php?title=World _Geodetic_ System.

“Mercator Projection” In Wikipedia, May 25, 2022.
https://en.wikipedia.org/w/index.php?title=Mercator__projection.

Ptolemaeus, Claudius, J. L. Berggren, and Alexander Jones. Ptolemy’s
Geography: An Annotated Translation of the Theoretical Chapters.
Princeton, NJ: Princeton Univ. Press, 2002.

“Sunstone (Medieval)” In Wikipedia, April 19, 2022.
https://en.wikipedia.org/w/index.php?title=Sunstone (medieval)

“Mariner’s Quadrant | Royal Museums Greenwich.” Accessed June 17,
2022. https://www.rmg.co.uk/collections/objects/rmgc-object-43274.

“What Was A Viking Sunstone? - The Best History Encyclopedia.” Ac-
cessed June 17, 2022. https://thedetailedhistory.com/what-was-a-viking-
sunstone/.

“What Is ADAS (Advanced Driver Assistance Systems)? - Overview
of ADAS Applications | Synopsys.” Accessed June 19, 2022.
https://www.synopsys.com/automotive/what-is-adas.html.

“J3016_202104: Taxonomy and Definitions for Terms Re-
lated to Driving Automation Systems for On-Road Mo-
tor Vehicles - SAE International” Accessed June 21, 2022.
https://www.sae.org/standards/content/j3016_ 202104/.

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. Intelligent Robotics and Autonomous Agents. Cambridge,
Mass: MIT Press, 2005.

136

[22]

[31]

[32]

[33]

[34]

C. Bibliography

Moore, D.C.; A.S. Huang, M. Walter, E. Olson, L. Fletcher, J.
Leonard, and S. Teller. “Simultaneous Local and Global State Es-
timation for Robotic Navigation.” In 2009 IEEE International Con-
ference on Robotics and Automation, 3794-99. Kobe: IEEE, 2009.
https://doi.org/10.1109/ROBOT.2009.5152763.

Thrun Sebastian, Montemerlo Michael, Dahlkamp Hendrik, Stavens
David, Aron Andrei, Diebel James, Fong Philip, Gale John, Halpenny
Morgan, Hoffmann Gabriel, Lau Kenny, Oakley Celia, Palatucci Mark,
Pratt Vaughan, Stang Pascal, Strohband Sven, Dupont Cedric, Jen-
drossek Lars-Erik, Koelen Christian, Mahoney Pamela. (2006). Stanley:
The robot that won the DARPA Grand Challenge. J. Field Robotics. 23.
661-692.

“DARPA Grand Challenge.” In Wikipedia, May 2, 2022.
https://en.wikipedia.org/w/index.php?title=DARPA_ Grand_ Challenge.

Zekavat, Seyed A. REZA, and R. Michael Buehrer, eds. Handbook of
Position Location: Theory, Practice, and Advances, Second Edition.
Wiley, 2018. https://doi.org/10.1002/9781119434610.

“Satellite Navigation” In Wikipedia, June 29, 2022.
https://en.wikipedia.org/w/index.php?title=Satellite_ navigation.

OxTS. “What Is GNSS?,” October 13, 2020.
https://www.oxts.com/what-is-gnss/.

Wendy. “How Does a GNSS Receiver Work?” OxTS, October 13, 2020.
https://www.oxts.com/gnss-receiver/.

Wendy. “Working out the Range to a Satellite.” OxTS, October 13, 2020.
https://www.oxts.com/satellite-range/.

Wendy. “The GPS Signal” OxTS, October 13, 2020.
https://www.oxts.com/gps-signal/.

Wendy. “Finding Satellites.” OxTS, October 13, 2020.
https://www.oxts.com/finding-satellites/ .

“What Is a GPS Almanac? - Spirent.” Accessed June 28, 2022.
https://www.spirent.com/blogs/2011-05-12_ gps_almanac.

Wendy. “What Is SPS?” OxTS, October 13, 2020.
https://www.oxts.com/sps/.

Wendy. “Trilateration: How Distance Measurements Help to Work out Lo-
cation.” OxTS, October 13, 2020. https://www.oxts.com/trilateration/.

Wendy. “What Are Differential Corrections or DGPS?” OxTS, October
13, 2020. https://www.oxts.com/dgps/.

137

C. Bibliography

[36]

[37]

[38]

[39]

[40]

[44]

Wendy. “What Is RTK?” OxTS, October 13, 2020.
https://www.oxts.com/rtk/.

“Precise Point Positioning | GEOG 862: GPS and GNSS for
Geospatial Professionals.” Accessed June 29, 2022. https://www.e-
education.psu.edu/geog862/node/1841.

Wendy. “What Are the Limitations of GNSS?” OxTS, October 13, 2020.
https://www.oxts.com/gnss-limitations/.

“Intro to GNSS On-Demand Webinars.” Accessed June 29,
2022. https://novatel.com/tech-talk/an-introduction-to-gnss/an-intro-to-
gnss-webinars.

“GPS-Trilateration-Feature.Png” Accessed July 3, 2022.
https://gisgeography.com/wp-content /uploads/2016/11/GPS-
Trilateration-Feature.png.

“What Is an Inertial Measurement Unit? - VectorNav.” Accessed
July 5, 2022. https://www.vectornav.com/resources/inertial-navigation-
articles/what-is-an-inertial-measurement-unit-imu.

VectorNav. “What Is an Inertial Navigation System?” Accessed
July 5, 2022. https://www.vectornav.com/resources/inertial-navigation-
articles/what-is-an-ins.

“Learn about MEMS Accelerometers, Gyroscopes, and
Magnetometers . VectorNav.” Accessed July 5, 2022.
https://www.vectornav.com/resources/inertial-navigation-
primer/theory-of-operation /theory-mems.

“Understanding High-Performance Gyros and Gyro-
compassing . VectorNav.” Accessed July 9, 2022.
https://www.vectornav.com/resources/inertial-navigation-

primer /theory-of-operation/theory-gyros.

VectorNav. “Inertial Navigation Primer.” Accessed July 5, 2022.
https://www.vectornav.com/resources/inertial-navigation-primer.

Wendy. “What Is INS? / What’s an Inertial Navigation System?” OxTS,
October 5, 2020. https://www.oxts.com/what-is-an-inertial-navigation-
system/.

Wendy. “How Does an INS Actually Work?” OxTS, October 5, 2020.
https://www.oxts.com/how-does-ins-work /.

Wendy. “INS: Frames of Reference” OxTS, October 5, 2020.

https://www.oxts.com/frames-of-ref/.

Wendy. “Accelerometers.” OxTS, October 5, 2020.
https://www.oxts.com/accelerometers, .

138

[50]
[51]

[52]

[53]

[54]

[55]

[60]

C. Bibliography

Wendy. “Gyros.” OxTS, October 5, 2020. https://www.oxts.com/gyros/.

Wendy. “Inertial Navigation: Dead Reckoning.” OxTS, October 5, 2020.
https://www.oxts.com/dead-reckoning/.

Wendy. “Inertial Navigation: Drift”” OxTS, October 5, 2020.
https://www.oxts.com/ins-drift /.

“Apollo PGNCS” In Wikipedia, February 21, 2022.
https://en.wikipedia.org/w/index.php?title=Apollo_ PGNCS.

“Inertial Navigation System.” In Wikipedia, June 2, 2022.
https://en.wikipedia.org/w/index.php?title=Inertial navigation_ system.

How To Mechatronics. How MEMS Accelerometer Gy-
roscope Magnetometer Work & Arduino Tutorial, 2015.
https://www.youtube.com/watch?v=eqZgxR6eRjo.

“Neubrex Co., Ltd. - FOG Basic Principle.” Accessed July 5, 2022.
https://www.neubrex.com/htm/applications/gyro-principle.htm.

“Fibre-Optic Gyroscope.” In Wikipedia, November 26, 2021.
https://en.wikipedia.org/w/index.php?title=Fibre-optic_ gyroscope.

“Magnetoresistance.” In Wikipedia, June 6, 2022.
https://en.wikipedia.org/w/index.php?title=Magnetoresistance.

Seybold, Jonathan, André Biilau, Karl-Peter Fritz, Alexander Frank, Cor
Scherjon, Joachim Burghartz, and André Zimmermann. “Miniaturized
Optical Encoder with Micro Structured Encoder Disc.” Applied Sciences
9, no. 3 (January 29, 2019): 452. https://doi.org/10.3390/app9030452.

“3 Common Design Pitfalls When Designing with Hall-Effect
Sensors - and How to Avoid Them - Analog - Technical Ar-
ticles - TI E2E Support Forums.” Accessed July 6, 2022.
https://e2e.ti.com/blogs__/b/analogwire/posts/3-common-design-
pitfalls-when-designing-with-hall 2d00__ effect-sensors-and-how-to-
avoid-them.

“Hall Effect and Hall Effect Sensor.” 19:23:41 UTC.
https://www.slideshare.net/ADARSHARYA2/hall-effect-and-hall-
effect-sensor.

“Odometer.” In Wikipedia, May 8, 2022.
https://en.wikipedia.org/w/index.php?title=0Odometer.

“Speedometer.” In Wikipedia, May 8, 2022.
https://en.wikipedia.org/w/index.php?title=Speedometer.

“Tachometer.” In Wikipedia, July 3, 2022.
https://en.wikipedia.org/w/index.php?title=Tachometer.

139

C. Bibliography

[65]

[66]

[72]

[73]

Roriz, Ricardo, Jorge Cabral, and Tiago Gomes. “Automotive LiDAR
Technology: A Survey.” IEEE Transactions on Intelligent Transportation
Systems, 2021, 1-16. https://doi.org/10.1109/TITS.2021.3086804.

Royo, Santiago, and Maria Ballesta-Garcia. “An Overview of Lidar
Imaging Systems for Autonomous Vehicles.” Applied Sciences 9, no. 19
(September 30, 2019): 4093. https://doi.org/10.3390/app9194093.

Mehendale, Ninad, and Srushti Neoge. “Review on Lidar Technology.”
SSRN Electronic Journal, 2020. https://doi.org/10.2139/ssrn.3604309.

“VALEO SCALA Laser Scanner - PDF Free Download.” Accessed July 11,
2022. https://docplayer.net /144443298-Valeo-scala-laser-scanner.html.

“Understanding Digital Camera Sensors.” Accessed July 15, 2022.
https://www.cambridgeincolour.com/tutorials/camera-sensors.htm.

“Autopilot.” Accessed July 14, 2022. https://www.tesla.com/autopilot.

“3D Viewing: The Pinhole Camera Model (How a Pin-
hole Camera Works (Part 1)) Accessed July 15, 2022.
https://www.scratchapixel.com/lessons/3d-basic-rendering/3d-viewing-
pinhole-camera/how-pinhole-camera-works-part-1.

C. Harris and M. Stephens, “A combined corner and edge detection,”
in Proceedings of The Fourth Alvey Vision Conference, pp. 147-151,
University of Manchester, 1988.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient
alternative to SIFT or SURF,” in 2011 International Conference on
Computer Vision, pp. 2564-2571, Barcelona, Spain, November 2011.

Moreira, Julio A., Fabricia B. De Oliveira, Carlos H.R. De Oliveira,
Alvaro C. Figueiredo, Mauro C.L. Filho, and Eduardo B. Duarte.
“High-Resolution Semi-Automatic Mapping Based on an Unmanned
Aerial Vehicle (UAV) to Capture Geological Structures.” Anais
Da Academia Brasileira de Ciéncias 93, no. 3 (2021): €20191416.
https://doi.org/10.1590/0001-3765202120191416.

Bot Blog. “Orb-Slam-Loop-Closure.” Accessed July 16, 2022.
http://andrewjkramer.net/wp-content /uploads/2019/02/orb-slam-
loop-closure.png.

Higgins, Walter. “A Comparison of Complementary and Kalman Filter-
ing” IEEE Transactions on Aerospace and Electronic Systems AES-11,
no. 3 (May 1975): 321-25. https://doi.org/10.1109/TAES.1975.308081.

140

[78]

[79]

[85]

C. Bibliography

Rutrle, Tomas. "Development of verification platform for overactuated ve-
hicles." Bachelor’s Thesis at CTU FEE, Department of Control Engineer-
ing. https://dspace.cvut.cz/handle/10467/8771271ocale-attribute=en

Vosahlik, David, Jan Cech, Tomas Hanis, Adam Konopisky,
Tomas Rurtle, Jan Svancar, and Tomas Twardzik. “Self-Supervised
Learning of Camera-Based Drivable Surface Friction.” In 2021
IEEE International Intelligent Transportation Systems Confer-
ence (ITSC), 2773-80. Indianapolis, IN, USA: IEEE, 2021.
https://doi.org/10.1109/ITSC48978.2021.9564894.

Cech, Jan, Tomas Hanis, Adam Kononisky, Tomas Rurtle, Jan
Svancar, and Tomas Twardzik. “Self-Supervised Learning of Camera-
Based Drivable Surface Roughness.” In 2021 IEEE Intelligent Ve-
hicles Symposium (IV), 1319-25. Nagoya, Japan: IEEE, 2021.
https://doi.org/10.1109/1V48863.2021.9575288.

u-blox. “NEO-M8 Series,” June 25, 2015. https://www.u-
blox.com/en/product/neo-m8-series.

u-blox. “ZED-F9P Module,” April 17, 2018. https://www.u-
blox.com/en/product /zed-fip-module.

rtklibexplorer. “Rtklibexplorer.” Accessed July 23, 2022.
https://rtklibexplorer.wordpress.com/.

Utmel. “MPU-9250 - Datasheet PDF - Motion Sensors - IMUs (Inertial
Measurement Units) - TDK InvenSense - Utmel.” Accessed July 22,
2022. https://www.utmel.com/productdetail /tdkinvensense-mpu9250-
6195279.

“LSMIDSI - 9-Axis INEMO Inertial Module (IMU): 3D Magnetometer,
3D Accelerometer, 3D Gyroscope with I12C and SPI - STMicroelec-
tronics.” Accessed July 22, 2022. https://www.st.com/en/mems-and-
sensors/lsm9ds1.html.

Geiger, A, P Lenz, C Stiller, and R Urtasun. “Vision Meets
Robotics: The KITTI Dataset.” The International Journal of
Robotics Research 32, mno. 11 (September 2013): 1231-37.
https://doi.org/10.1177/0278364913491297.

Pire, Taihu, Thomas Fischer, Javier Civera, Pablo De Cristoforis, and
Julio Jacobo Berlles. “Stereo Parallel Tracking and Mapping for Robot
Localization.” In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1373-78. Hamburg, Germany: IEEE, 2015.
https://doi.org/10.1109/IROS.2015.7353546.

Howard, A. “Real-Time Stereo Visual Odometry for Autonomous
Ground Vehicles” In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3946-52. Nice: IEEE, 2008.
https://doi.org/10.1109/TR0OS.2008.4651147.

141

C. Bibliography

[89]

[90]

[92]

Jazar, Reza N. Vehicle Dynamics. Cham: Springer International Pub-
lishing, 2017. https://doi.org/10.1007/978-3-319-53441-1.

Efremov, Denis, Martin Klauco, Tomas Hanis, and Martin
Hromcik. “Driving FEnvelope Definition and Envelope Protec-
tion Using Model Predictive Control” In 2020 American Con-
trol Conference (ACC), 4875-80. Denver, CO, USA: IEEE, 2020.
https://doi.org/10.23919/ACC45564.2020.9147211.

Efremov, Denis, Yehor Zhyliaiev, Bohdan Kashel, and Tomas Ha-
nis. “Lateral Driving Envelope Protection Using Cascade Control.”
In 2021 21st International Conference on Control, Automation and
Systems (ICCAS), 1440-46. Jeju, Korea, Republic of: IEEE, 2021.
https://doi.org/10.23919/ICCAS52745.2021.9650058.

Pacejka, Hans Bastiaan, and Igo Besselink. Tire and Vehicle Dynamics.
3d edition. Oxford Waltham: Butterworth-Heinemann Elsevier, 2012.

142

	Project Specification
	Most relevant acronyms
	Introduction
	My contribution

	Theoretical part
	Taxonomy
	Localization taxonomy

	Localization methods and sensors
	Exteroceptive sensors
	GNSS
	LIDAR
	Vision sensors

	Proprioceptive sensors
	IMU and INS
	Encoders and odometers
	Dead reckoning

	Visual-Inertial Odometry and Simultaneous Localization and Mapping
	Algorithm division
	Structure of visual SLAM

	Data fusion
	Kalman Filter
	Kalman Filter Algorithm

	Extended Kalman Filter
	Complementary Filter

	Practical part
	ToMi platform
	Computer architecture and framework
	Localization sensors

	DGNSS integration
	DGNSS system design and modules
	Rover modules

	Visual Odometry integration
	VO parameter tuning
	Logging, data visualization and performance analysis

	Data fusion implementation
	Kinematic model
	Dynamic model
	Measurement models
	Implementation specifics
	Tuning and self-tuning of EKF
	Results and experiments
	Future work

	Conclusion

	Appendices
	History of mapping and localization
	Additional images
	Bibliography

