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Abstract
Featureless environments represent a ma-

jor challenge for deploying LiDAR-based
Simultaneous localisation and mapping
(SLAM) systems. These systems, often re-
lying on the Iterative closest point (ICP)
algorithm, are vulnerable to failures caused
by the lack of constraints in 3D point
clouds. Furthermore, the increasing number
of points produced by today's LiDARs is no
longer suitable for practical applications and
must often be reduced. However, the point
cloud sampling operation inevitably erases
geometric relations that might otherwise be
critical for a correct convergence of the ICP
algorithm. We argue that many uncon-
strained environments are often not wholly
featureless, containing cables, lights and
other equipment. The e�ect of these small
objects on localisation quality is reduced
since, after sampling, they become unrecog-
nisable. In this work, we evaluate sampling
methods in the context of LiDAR-based
SLAM in an underconstrained environment.
Several open-source sampling �lters are �rst
analysed and the �lters are classi�ed with
a proposed taxonomy. Then, we investi-
gate the representation of thin structures
in point clouds recorded with four LiDAR
sensors. We evaluate the sampling meth-
ods employing three datasets with varying
feature complexity, ranging from an empty
to a fully constrained tunnel. The methods
are evaluated on diverse point cloud com-
pression rates and with a precise total sta-
tion ground truth trajectory. We show that
octree-based space subdivision methods are
superior to other sampling strategies, but
the experiments highlight that no state-of-
the-art �lter achieves a reliable localisation
in an environment constrained only by thin
structures.

Keywords: Iterative closest point (ICP),
point cloud, sampling, 3D mapping, SLAM,
LiDAR, unconstrained environment, mobile
robotics

Supervisor: François Pomerleau, Dr., Pr.,
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Abstrakt
Prost°edí bez výrazných struktur p°edsta-
vuje zásadní výzvu pro systémy Simultánní
lokalizace a mapování (SLAM) vyuºívající
LiDARy. Tyto systémy, £asto spoléhající
na Iterative closest point (ICP) algoritmus,
jsou náchylné k selháním zp·sobeném nedo-
state£nou komplexitou prost°edí. Neustále
se zvy²ující mnoºství bod· generovaných
sou£asnými LiDARy také není vhodné pro
nasazení v reálných aplikacích. Na mraky
bod· proto musí být aplikovány �ltry pro
redukci po£tu bod·. Aplikace t¥chto �ltr·
nicmén¥ nevyhnuteln¥ odstra¬uje geome-
trické vztahy mezi body, které by jinak
mohly mít kritický efekt pro správnou kon-
vergenci lokaliza£ního algoritmu. Mnohá ge-
ometricky nepodmín¥ná prost°edí nicmén¥
nejsou prázdná, ale obsahují kabely, sv¥tla a
dal²í vybavení. Efekt t¥chto malých objekt·
na lokalizaci je ale limitovaný, jelikoº se po
�ltraci mohou stát nerozli²itelnými. Tato
diplomová práce vyhodnocuje �ltry reduku-
jící po£et bod· v kontextu SLAM s daty z
LiDARu v nepodmín¥ném prost°edí. V její
první £ásti nejprve analyzuji implementaci
n¥kolika open-source �ltr· a �ltry následn¥
rozt°ídím pomocí navrºené taxonomie. Poté
zkoumám reprezentaci tenkých objekt· v
mracích bod·, zaznamenaných £ty°mi Li-
DARy. Filtry jsou vyhodnoceny na t°ech
datasetech s r·znou sloºitostí prost°edí, od
prázdného po kompletn¥ podmín¥ný tunel.
Metody jsou porovnány na rozli£ných pom¥-
rech komprese a za pomoci p°esné referen£ní
trajektorie, získané z totální stanice. A£ko-
liv metody zaloºené na rozd¥lení prostoru
pomocí oktálového stromu dosahují lep²ích
výsledk· neº ostatní metody, experimenty
zárove¬ zvýraznily fakt, ºe ºádná sou£asná
metoda nedosahuje spolehlivé lokalizace v
prost°edí podmín¥ném pouze tenkými ob-
jekty.

Klí£ová slova: Iterative closest point
(ICP), mrak bod·, komprese, 3D mapování,
SLAM, LiDAR, geometricky nepodmín¥né
prost°edí, mobilní robotika

P°eklad názvu: Rekonstrukce
trojrozm¥rných mrak· bod· v prost°edí s
tenkými objekty
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Chapter 1
Introduction

The recent rapid advancement in Light Detection and Ranging (LiDAR ) technology found
its application in many �elds, such as building reconstruction, medical imaging, augmented
and virtual reality (AR, VR), object reconstruction, inspection, robotics and others. LiDAR
sensors typically produce data in the form of raw point clouds, which are sets of points of x, y,
and z coordinates, representing the recorded scene. They may also provide additional values
such as the intensity, describing the strength of the re�ection of the particular ray from the ob-
ject's surface. Other attributes can be derived from a point cloud, such as surface normals or
observation directions. These can �nd their use in improved performance of the downstream
task. However, unlike the attributes provided directly from the sensor, they come with an ad-
ditional cost in terms of computation time. Although goals of the downstream applications
may di�er signi�cantly, from quality control [1] to the creation of 3D reconstructions of entire
cities [2], there are similarities that each application needs to address.

Firstly, the recorded point clouds may be subject to noise and outliers [3]. The noise can
either be an internal characteristic of the employed sensor or caused by externalities, such as
direct sunlight or partial re�ection of the laser ray from the edge of an object. Any employed
�ltering technique should aim at preserving �ne details of the point cloud. With the ever-
growing complexity of point clouds and more demanding downstream tasks, the problem
of raw 3D point cloud �ltering remains a challenge.

Secondly, since point clouds are unordered sets of points and therefore lack any topological
ordering, it is unclear how to segment, classify, or detect objects easily. The decades of research
in image processing techniques cannot be simply transferred to point clouds, which, unlike
images, are not row-columns indexed. Attempts to rasterise point clouds into regular grids
su�er from low data density. Consequently, the attention has recently shifted towards working
directly on unstructured data.

Last but not least, the current generation of LiDAR instruments has seen considerable
improvements in all their parameters. Better precision, range, density and higher data rate
allow for uses in previously unfeasible domains. Furthermore, some systems are nowadays
equipped with multiple LiDAR sensors, observing di�erent directions. The ability to produce
millions of points per second causes signi�cant demands on point cloud processing that can get
lengthy or even downright impossible. Also, raw point clouds can overload the communication
network or quickly occupy a considerable storage space of the computer. The common
approach to handle this is to subsample, or simplify, the given point cloud. Naturally, we
would like this sampling strategy to preserve important features of the original data, either
the shape of objects in the case of 3D reconstruction or minor defects on the examined surface
in case of quality control. At the same time, the number of remaining points needs to be taken
into account. While too many points cause high computational time, excessive sampling may
lead to inaccurate results. Even though the goal is the same for most domains, the actual
implementation may strongly depend on the speci�c downstream task we have in mind when
constructing the pipeline.

One such demanding task is the localisation withLiDAR sensors and point clouds. Although
digital cameras are getting ground in robot position estimation, the recent Darpa Subterranean
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1. Introduction ...........................................
Challenge1 and Hilti Slam Challenge2 competitions show that a LiDAR -based solutions still
have a �rm ground in robot localisation in the Global Navigation Satellite System ( GNSS)
denied environment. Indeed, at Hilti Slam Challenge, 25 �rst teams all used a combination
of a LiDAR and an Inertial Measurement Unit (IMU ), with some also embracing cameras.
The best four teams were then relying exclusively on LiDAR and IMU sensors.

The LiDAR -based localisation can be formulated as the problem of aligning two point
clouds. The �rst point cloud, often called sensor reading (or simply reading), is the point
cloud being aligned to the second point cloud, the reference. The reference can be, for
example, a reading point cloud recorded earlier or a static map point cloud generated o�ine.
Common solutions, such as the Iterative closest point (ICP) algorithm, align the reading
to the reference using either raw points or derived features. One situation when point
cloud-based localisation techniques fail is in a degenerate environment [4]. An easy example
of such an environment in two dimensions is a robot situated in the middle of a circle. Any
rotation around the robot's z-axis leads to the same reading, with di�erences coming only
from the sensor's noise. Therefore, the localisation algorithm will report any rotation as
an admissible solution. A human-made, real environments carrying similar properties are
tunnels or long corridors, which typically lack enough features to constrain the algorithm
in one translational Degree-of-freedom (DOF). However, it rarely happens that tunnel's walls
are entirely smooth and plain. Indeed, the facades are often equipped with lights, pipes,
electricity cables and other thin and small objects. Their in�uence on the localisation results
is nevertheless limited. They may be �ltered out as outliers, are too sparse to overweight
noise present in the point cloud, or the sampling algorithm does not emphasise their possible
contribution to the localisation.

In this work, we will focus on the in�uence of small structures on the performance of theICP
algorithm. After a brief introduction of the LiDAR sensor modelling and theICP, we will
present the state-of-the-art methods for point cloud sampling. We will also mention the existing
methods emphasising thin objects in point clouds. Then, we will describe two point cloud
processing libraries and selected subsampling techniques in more detail. Additionally, we will
classify these techniques with a taxonomy based on several derived mathematical properties.
We will investigate the representation of thin structures in point clouds recorded with four
LiDAR sensors. Finally, we will present a detailed comparison of the performance of six
sampling strategies with a localisation task in an underconstrained tunnel environment.

1https://www.darpa.mil/program/darpa-subterranean-challenge
2https://www.hilti-challenge.com/index.html
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Chapter 2
State of the art

In its �rst part, this chapter provides a background on the LiDAR technology, introducing
di�erent types, working principles and important parameters of these active sensors. Then,
the problem of aligning two point clouds is formulated with a focus on a popular algorithm for
point cloud registration, the ICP. Next, we present the state-of-the-art techniques for point
cloud sampling. After highlighting the similarities between mesh and point cloud simpli�cation,
we further concentrate on spatial-based and local methods of the latter. Additionally, we
brie�y mention an emerging class of methods employing Neural networks (NNs). In the last
section of this chapter, we name several works that emphasise thin objects in 3D point clouds.

2.1 LiDAR technology

LiDAR s are optical remote sensors that measure a distance to an object or possibly other
properties of the object's surface. As an active sensor, aLiDAR measures the distance by
emitting a beam of modulated laser light and detecting the light re�ected from the object's
surface. Assuming an invariable environment and a static speed of light, the distance
to the object can be calculated in two ways, as depicted in Figure 2.1. The �rst option
is to consider the LiDAR as a Time of �ight ( TOF ) sensor [5]. For this type of sensors,
the distance is computed as the half travelled distanced = t �c

2 , where t is the time between
emission and detection andc is the speed of light in the environment. The second option
is to determine the distance from the phase shift between the transmitted and re�ected
signals [6]. For this to work, the emitted signal is amplitude modulated. The advantage
of the TOF scanners is the longer range, which makes them bene�cial in terrestrial applications.
On the other hand, phase shift sensors have a better range accuracy and higher measurement
speeds [7].

Figure 2.1: Two types of LiDAR sensors. Time of �ight (left) and the Phase-shift (right).

By directing the laser beam either by rotating the whole device or by adding a rotating mirror,
we get a 2DLiDAR . The output of such a device is no longer a single number, i.e., the distance,
but an array of recordings situated on a plane. After conversion from polar to Cartesian
coordinates, we get a point cloud. By employing multiple emitters, often called channels, each
aiming at a di�erent vertical angle, we get multiple lines around the sensor. A conversion from
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2. State of the art..........................................
spherical to Cartesian coordinates gives us a 3D point cloud. Modern 3DLiDAR s usually have
the number of channels in multiples of 2, e.g., 16, 32, 64 or even 128 channels. Together with
the ability to identify multiple returns per pulse, the �nal representation of the environment is
even denser. Microelectromechanical systems (MEMS) LiDAR s are another category gaining
ground in 3D scanning. Unlike their motorised counterparts,MEMS LiDAR s steer the laser
beam without moving any optical components.

We will now describe several essential parameters of a 3DLiDAR sensor. Lidar beams do
not move as straight lines through the surroundings, but are modelled as cones [8]. Beam
divergence is the opening angle of the beam cone. The value is usually expressed in millidegrees
or milliradians. Beam divergence impacts scanning of large distances because the total amount
of pulse energy is constant, and the signal-to-noise ratio is therefore lower. For example,
the Velodyne VLP-16 LiDAR used in the experimental section of this work has a horizontal
divergence value of3:0 mrad [9]. This divergence value creates, over the distance of100 m,
a circle with approximately 0:3 m in diameter. Accuracy and precision are standard observation
errors described in a sensor's datasheet. The �rst describes how close the measurements are
to the actual value. The second describes the distribution of measurements after repeated
experiments. For LiDAR s, we distinguish two resolution types. Range resolution describes
the smallest distance between two objects to di�erentiate them in a scan. Angular resolution
is the smallest angle di�erence between two objects to di�erentiate them in a scan. The scan
rate describes how many points the sensor produces per unit of time. The current generation
of 128-channel LiDARs generates millions of points per second.

In the context of Simultaneous localisation and mapping (SLAM), there are two more
important characteristics of data recorded by aLiDAR sensor. Firstly, the platform the LiDAR
is equipped to may be subject to a movement. Even though indoor mobile robots usually
move at relatively low speeds of at most units of meters per second, the movements still play
a role for sensors with low scan rates. To compensate for the scan distortion, Deschêneset
al. [10] proposed a deskewing preprocessing step which is applied to the reading, exploiting
the high data rate of IMU s. Secondly, the incidence angle of aLiDAR beam has an e�ect
on the reported distance of the laser beam re�ection. A high incidence angle creates a bias
of up to 20 cm, bending the map to the site where the wall is closer to the sensor, as shown
by Laconte et al. [11]. After the introduction of the LiDAR sensors, their modelling and
characteristics, we will further focus on one speci�c application for the data they provide,
the ICP algorithm.

2.2 Iterative closest point algorithm

Having two point clouds, a referenceBQ in the reference frameB and a readingA P in the read-
ing frame A, the registration task is introduced as the problem of �nding the transforma-
tion B

A T , which best aligns the reading to the reference [12]. Finding the best transformationT �

is formalised as the optimisation problem

B
A T � = arg min

T
(error(T (P); Q)) : (2.1)

The error function is calculated on tuples of reading points and theirk closest neighbours
in the reference. The match function

M = match(P; Q) = f (p; q i ); p 2 P ; q i 2 Q ; i 2 [1: : : k]g (2.2)

returns a set M , which consists of a point p 2 P and its k nearest matches fromQ, indexed
with the index i . Outliers may be removed fromM in order to improve performance. This
can be done through weights

W = outlier(M ) = f w(p; q i ); 8(p; q i ) 2 Mg : (2.3)
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.................................. 2.2. Iterative closest point algorithm

Knowing the associated points, the error functionerror(�) can be further expressed as the dis-
tance d(�)

error(P; Q) =
X

( p ;q i )2M

d(p; q i ) ; (2.4)

and after adding the weights w(p; q i )

error(P; Q) =
X

( p ;q i )2M

w(p; q i )d(p; q i ) : (2.5)

From now on, we will assumek = 1 for brevity.
As the name suggests, the main idea of theICP algorithm is that it performs the optimisation

step in Equation 2.1 iteratively [13], [14]. The initial misalignment of point clouds Q and P
may not lead to a perfect association returned from the match function, which in turn may
not lead to the best possible alignment of the point clouds. However, even an imperfect
association in the iteration t gives us a better estimate for the next iterationt +1 . By building
a sequence of transformationstt � 1T and applying it to the reading P, a new set of matchesM t

is obtained. These matches are then used in the successive iteration to gett+1
t T :

t+1
t T  arg min

T

�
error

�
T

�
i P0

�
; Q0

��
: (2.6)

Finally, we obtain the �nal transformation as

B
A T � = B

t T � � � � � 2
1T � 1

0T � 0
A T init ; (2.7)

where� is the symbol of the transformation composition,t is the number of iteration and 0
A T init

is the initial transformation. This iteratively improving process can be eventually stopped
with a convergence criterion, e.g., when the maximal number of iterations or the distance
between two successive iterations is reached. The procedure is summarised in Algorithm 1.

Algorithmus 1 Iterative closest point algorithm

Require: A P . Reading point cloud
Require: BQ . Reference point cloud
Require: 0

A T init . Initial transformation
1: t � 1P0  A P
2: Q0  BQ
3: t

t � 1T  0
A T init

4: while not convergedo
5: t P0  t

t � 1T (t � 1P0)
6: M t  match(t P0; Q0)
7: Wt  outlier(M i )
8: t+1

t T  arg min
T

�
error

� t P0; Q0��

9: end while
10: return B

A T � = B
t T � � � � � 2

1T � 1
0T � 0

A T init

We will now introduce several popular distance functions d(p; q i ). We can arrange
the output of the matching function match(A P; BQ) as matricesP 2 R4� n and Q 2 R4� n

of points p j 2 R4 and q j 2 R4 in homogeneous coordinates withj 2 [1: : : n]. In the context
of robotics, we usually assumeBA T to be rigid T (t ; R ) with translation parameters t 2 R3

and rotation parameters R 2 SO(3). Employing transformation matrices and homogeneous
coordinates, the transformation composition� becomes matrix multiplication, which we can
apply on points p j and q j . The point-to-point error function is then de�ned as the sum
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of Euclidean distances between point cloudBQ and A P [13]. The optimal transformation can
be found as

B
A T � = argmin

T

nX

j =1

jj (q j � Tp j )jj2 : (2.8)

Equation 2.8 has a closed form solution using the centroids of the point clouds and the Singular
value decomposition (SVD) of their covariance matrix [15].

Another commonly used distance function is the point-to-plane error [14]. Here the error
represents the distance between a reading point and a reference plane, where the plane is
de�ned by a point in the reference point cloud Q and a unit normal vector n associated to it

error(P; Q) =
nX

j =1

k(q j � Tp j ) � n j k2 : (2.9)

The optimal transformation can be found as

B
A T � = argmin

T

nX

j =1

jj (( q j � Tp j ) � n j )jj2 ; (2.10)

relying on the linearization of the rotation matrix R using small angles [14]. In structured
environments, point-to-plane generally outperforms point-to-point [16]. Segalet al. [17]
proposed a generalised version of theICP, assuming the existence of sets of point̂P = f p̂ j g
and Q̂ = f q̂ j g that generate P and Q. Points p j � N (p̂ j ; CP

j ) and q j � N (q̂ j ; CQ
j ) are

draw from multivariate normal distributions with CP
j and CQ

j being covariance matrices.
The optimal transformation can be found using the Maximum likelihood estimation (MLE ) as

B
A T � = argmin

T

nX

j =1

(q j � Tp j )T (CQ
j + TC P

j T T ) � 1(q j � Tp j ) : (2.11)

The point-to-point, point-to-plane and plane-to-plane errors can be seen as special cases
of the covariance matricesCP

j and CQ
j .

The domain of the ICP error metric is still a subject of active research. Recently Kubelka
et al. [18] proposed to reduce the 6DOF to 4DOF by constraining the roll and pitch angles
to be aligned with the gravity vector.

The matching function match(P; Q) requires an e�cient way to look up the closest point
of p in Q. The naive implementation of the Nearest neighbour search (NNSearch) problem
has a computational complexity O(nm), with n = jPj and m = jQj being the number of points
in the reading and the reference point clouds, respectively. A more e�cient data structure
to do this look-up is the k-d tree [19]. In 3D, each node that is not a leaf represents a plane
dividing the space into two parts. The axis with the highest variance is chosen for the space
division. Each node contains the median used for splitting, together with the axis along which
it was split. By partitioning the data in space this way, we get a search complexityO(n log(m))
with a construction phase of O(m log(m)) .

In the context of robotics, we usually assume a LiDAR sensor feeding data to the localisation
pipeline at a �xed rate. Ideally, we would like to keep the localisation rate as close as possible
to the rate of the LiDAR. This requirement becomes highly important for vehicles travelling
at greater speeds or when the vehicle rapidly explores a new environment e.g., a robot
going through a door without any prior knowledge of what is behind. The standard option
to increase the rate of theICP is to subsample the reading point cloud. However, since
the numbers of points in today's maps have not reached the asymptotic properties of the bigO
function, limiting the number of points in Q also plays a role, especially when theICP
performs multiple iterations of point cloud matching and alignment. Furthermore, a carefully
chosen subsampling strategy can improve the quality of the results [20]. In the following
section, we will analyse the methods to reduce the number of points in a point cloud.

8
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2.3 Point cloud sampling

Point cloud sampling has been widely studied in the past decades. Many solutions focus
on dense, low-noise data, such as those used for object reconstruction. In these applications,
the goal is, broadly speaking, to reconstruct the object's surface as close to the original model as
possible. They are generally evaluated on well-described 3D model classi�cation benchmarks,
such as ModelNet40 [21]. The experiments are usually not evaluated in terms of speed, as
real-time solutions are not required, and other tasks related to object reconstruction may be
more time-demanding, e.g., surface reconstruction.

Three-dimensional point clouds, used for retrospective processing of large urban envi-
ronments, can contain billions of points [2]. Subsequent 3D models could enable better
city planning, public facility inspection, virtual tourism, and more. Localisation of objects
of interest, segmentation, and following classi�cation can take tens of hours of computations.
Even though there are heavy requirements for storage space, the system obviously does not
require any real-time capabilities.

These capabilities are nevertheless crucial for navigation and mapping of unknown envi-
ronments, search and rescue missions and mobile robot localisation. Another example from
mobile robotics is collision avoidance, where we must recognise and avoid close and dangerous
objects in the robot's surroundings. Clearly, no other than real-time solutions are admissible.
A loss of an important yet small part of the original point cloud during sampling could lead
to severe consequences for both the robot and the environment it is moving in.

In this section, we �rst de�ne the problem of point cloud subsampling. Then, we present
an overview of di�erent sampling strategies.

2.3.1 Problem de�nition

Given an unordered point cloudP with jPj = n points, each point is represented as a vectorx 2
Rd, with d being the number of dimensions. In our case,d = 3 and x = [ x; y; z]T describes
the coordinates in the Euclidean space. The goal of sampling is to generate a setP0 of n0 < n
points that preserves geometrical and other features ofP. The reduction ratio is then given
as � = 100 n0

n and the Compression ratio (CR) is de�ned as CR = 100 � � . Note that in some
cases, the resulting point cloudP0 is not a subset ofP. Depending on the application, a post-
processing neighbour search in the original cloud may be then performed [22]. Naturally,
down-sampling preserves data structure and thus can be incorporated as a preprocessing step
into any point cloud pipeline. After sampling, part of the original point cloud information is
lost irretrievably.

2.3.2 Mesh-based methods

Point cloud simpli�cation is closely related to the mesh simpli�cation problem, which is
usually discussed in the context of computer graphics, solid modelling, reverse engineering,
video gaming, 3D animation and others. The motivations to simplify large, complex meshes
are based not only on the need to simplify rendering on less-powerful devices but also to allow
fast transmission rates and e�ciently store large numbers of 3D models of, for example, scans
of cultural heritage.

A review and comparison of �ve mesh simpli�cation algorithms are presented in [23].
The employed taxonomy distinguishes seven di�erent simpli�cation approaches. The �rst
approach is the coplanar facets merging, where coplanar areas of the mesh are merged into
larger polygons. In controlled voxel, edge or face decimation, the geometric shapes are
removed iteratively. The next approach is re-tiling, where new vertices are inserted in speci�c
locations and the original vertices are removed. Energy function optimisation uses a function
describing the mesh quality. The mesh simpli�cation is formalised as an optimisation problem
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and the function value is maximised. In vertex clustering, several vertices are grouped
and then replaced by a single vertex. Wavelet-based simpli�cation approximates the mesh
with a multi-resolution version of the surface. And �nally, simpli�cation via intermediate
hierarchical representation uses an octree as an intermediate step.

Mesh-based methods are implemented in both open-source and commercial 3D tools.
Ucchedduet al. [24] compared several such tools in terms of noise robustness and stability,
motivated by 3D Watermarking. The mesh simpli�cation algorithm provides a coarse mesh,
which is then used to hide some secret information describing copyright protection. Even
today, mesh simpli�cation is a subject of active research. Asgharianet al. [25] presented
a novel approach based on the Nyquist theorem and adaptive sampling strategy. Liet al. [26]
employed mesh �ltering to generate a compact version of building models.

A possible solution to the point cloud simpli�cation problem could thus be to generate a 3D
mesh from a point cloud, process it and turn the resulting vertices back into a point cloud.
However, the construction of polygonal mesh is computationally expensive since it requires
a large amount of geometric information about the points relations. Also, some methods do not
preserve the original mesh topology, such as mesh decimation. Mesh simpli�cation methods
are mostly tested on uniform, low noise, and small individual objects with no background
and hence are not suitable for our task.

2.3.3 Mesh-free methods

Already in 2001, Pauly et al. [27] noticed the shift from mesh-based to point-based methods.
Since then, the algorithms working directly on point clouds have seen rapid development.
The most widely used taxonomy distinguishes two classes, global and local methods. On the one
hand, global methods work on the whole point cloud and do not need any information about
a particular point's neighbourhood. Uniform random sampling may be the simplest example,
where a �xed number of points is selected randomly from the input point cloud. An alternative
is to subdivide space into a grid and choose the most representative sample from each cell.
Other example is the work of Bªaszczak-B¡ket al. [28]. The Optimum Dataset (OptD ) [29]
method was used to extract o�-road objects, classi�ed into four categories: tra�c signs, light
poles, trees and power lines.OptD divides the point cloud area into strips, which are processed
separately. On the other hand, local methods require the computation of geometric features
of individual points, leading to the need for a nearest neighbours search. As discussed earlier,
the search has a complexityO(m log(m)) , with m being the number of points in the point
cloud. The adjoining points can enhance the point cloud with descriptors, such as normals,
which can then be used for more informed sampling.

We will also brie�y mention two more classes: Iteration-based and Formulation-based
methods. As an example of the former, we can use a criterion to �nd the least important
point, remove it and simplify the point cloud iteratively. Farthest point sampling ( FPS) works
similarly. As a greedy algorithm, it iteratively selects a subset of points that are the farthest
apart from each other, starting from a random sample [30], [31]. A batch version ofFPS
allows for a parallel implementation1 which makes it a popular choice for use with methods
employing NNs. The latter methods opt for a more mathematically rigorous approach and
desire point cloud sampling with a clear proof of optimality [32].

Although most NNs need either a nearest neighbour computation to process geometric
information or a preliminary rasterization step to process the point cloud, Nezhadarya
et al. [22] presented a method for deterministic sub-sampling of unordered point clouds
using the proposed Critical Points Layer. Even though they argue that the motivation
for sub-sampling arises from a large number of points generated from nowadays LiDAR
sensors, in the experiment section, they start with only 1024 points sampled from each 3D
model of the used dataset. Another option forNN deployment on point clouds is to project

1https://github.com/open-mmlab/OpenPCDet
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the 3D point cloud onto a 2D image and process it using a standard 2D Convolution
neural network (CNN), as in the work of Nubert et al. [33]. The employedNN computes
the transformation T directly, without the need for a separate registration calculation. It
works on raw point clouds, thus entirely omitting the sub-sampling step. The network is
based on unsupervised learning and requires nearest neighbour search only during an o�ine
training phase. The results reported on three datasets captured by three di�erent sensors
on three distinct platforms show state-of-the-art results and a real-time processing time.

We will further study three categories - Clustering-based, Geometric andNN-based methods.

2.3.4 Spatial-based methods

Methods based on the subdivision of space are a subset of global methods. The idea of these
methods, sometimes also called volumetric-based or clustering-based, is to portion the points
into cells aligned with the xyz-basis of a de�ned coordinate frame. One or several points from
each cell is then selected as a representative sample. This saves the need for nearest neighbour
computation but at the same time creates quantization artefacts and ignores inter-point
features. The number of output points and level of detail can be controlled only indirectly
through the grid resolution. Nevertheless, the strictly structured output of clustering-based
methods was widely used as a pre-step for applying CNN on point clouds [34].

In Uniform grid sampling, points are projected onto a uniform grid plane, and one point is
selected based on a median-�ltering rule [35]. Leeet al. [36] extended the idea to Non-uniform
grid sampling, where the grid size is not constant and may vary based on the object shape.

Another option is to divide the environment into a grid of cubes of equal size, called
voxels. In the case of sparse data from laser scanners, grids are memory ine�cient since most
voxels are empty. Furthermore, the bounding box of the environment needs to be known
in advance. Otherwise a costly expansion operation needs to be computed [37]. From each
voxel, a representative point can be selected as the sample [38]. Common choices include
the voxel centre, the closest point to the cell centre, the centroid or medoid of all points falling
into the voxel, a random or the �rst point from all points falling into the voxel or a simple
binary value to model a Boolean property, usually the occupancy of the given voxel.

An alternative, more memory and computation-e�cient approach in 2D is the quadtree, or
its 3D variant, the octree [39]. Figure 2.2 shows an example of the octree, a tree structure
where the �rst node is assumed non-empty and subdivided into eight octans. An octan is then
recursively subdivided until the desired depth is reached, or based on the number of points
in the octan. The representative point can be chosen similarly to the voxel grid. The apparent
advantage of using octrees is the memory e�ciency. E�cient octree implementations for point
cloud compression and processing were presented in [40], [41]. Probabilistic occupancy octrees
were used in the 3D mapping framework of [37].

2.3.5 Local methods

Methods based on geometric features pro�t from the geometric information encoded in individ-
ual points' neighbourhoods. The analysis of distinct geometric features decides which points
are worth preserving. At the same time, the nearest neighbour search is computationally
expensive. Therefore, some sources include this computation in preprocessing steps. This
section will present several works related to local or geometry-based point sampling.

Pauly et al. [27] presented a framework to process point clouds with normals through spectral
methods by extending windowed Fourier transforms to geometry. Experiments on 3D models
were presented together with computation time for di�erent pipeline stages. Rusinkiewicz
et al. [42] also used normals. Their Normal space sampling (NSS) deals with translation
uncertainty in registration. The method chooses points uniformly to their normal orientation.
The work of Gelfand et al. [4] extendedNSSand presents an algorithm capable of handling
both translation and rotation uncertainty. They describe a greedy algorithm that selects

11



2. State of the art..........................................

Figure 2.2: The concept of an octree. Top: The space is recursively divided into octans. Bottom:
The graph of the corresponding octree.

points for ICP registration to limit uncertainty in the pose. The unstable transformations
are avoided by evaluating the covariance matrixC, which indicates the presence of sliding,
e.g., the situation when the transform T is not constrained in one direction. The evaluation
is conducted on two types of synthetic and real-world data against uniform and normal
space samplings. Kwoket al. [43] further developed the idea of Covariance sampling. They
argue that to constrain the rotation, it is necessary to have a correct estimate of its centre.
Therefore, they propose a two-phase algorithm that addresses this nonlinear optimisation
problem. Kwok [44] extended the idea ofNSS to Dual normal space sampling (DNSS). He
rede�nes the normal space as not only the space of translational normalsn, but also rotational
normals, de�ned as the cross productp � n, where p is a sampling point. The DNSS has
the same complexity as theNSS, but unlike the NSS, it can achieve a convergence even from
an orthogonal initial position.

Golovinskiy et al. [2] examined a pipeline for object detection in urban environments,
composed of four steps: localisation, segmentation, characterisation and clustering. To
subsample the point cloud, they �rst �lter out points estimated to be on the ground through
the iterative plane �tting. After removing isolated points, they �lter out the remaining large
connected components assumed to be part of buildings. The method is evaluated on a large
urban dataset containing approximately 100 million points.

Weber et al. [45] showed a new Gauss map-based method for sharp feature detection
in point clouds. In subsequent work, Weberet al. [46] presented an overview of methods
for feature detection in point clouds but do not compare the presented Gauss map-based
method to others. The method looks for k nearest neighbours of each pointp, creates a setT
of triangles betweenp and two of its neighbours, computes the triangle's normal and projects
it onto the Gaussian sphere. Since di�erent geometric features lead to di�erent Gauss map
patterns, the method can detect lines and corners.

Qi et al. [32] argued that sampling is a trade-o� between uniformity and sharp feature
preservation. The proposed graph-based sampling solution is visually evaluated with a reg-
istration downstream task. Their method aims to enhance contours but also to maintain
uniform density, based on a user-de�ned parameter. The task is formulated as graph signal
processing, where the assumed undirected graphG is a K-NN graph with an adjacency matrix
W . The de�ned objective function combines loss in feature with loss in density uniformity and
can be, after relaxation, solved with existing optimisation algorithms. The whole point cloud
is divided into cubes to accelerate the computation, and each cube is processed separately.
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Experiments compare the proposed method to three others on four 3D models. However,
no time results are provided. Similarly, Chen et al. [47] also interpreted raw point clouds
as graphs (Figure 2.3), which they construct similarly. They subsample the original point
cloud randomly but using a non-uniform distribution. This optimal resampling strategy is
introduced individually for three �lter types. An all-pass �lter assumes uniform importance
of all points in the point cloud. A high-pass �lter extracts contours and a low-pass �lter
removes noise. Experimental validation is given for the proposed �lters. The high-pass �lter
is evaluated on a downstream registration task but is compared only to uniform sampling,
and no time results are presented. Wuet al. [48] extended this graph-based approach with a
strategy to handle point clouds with more than 100 million points, inspired by the divide and
conquer philosophy. The point cloud is decomposed into smaller subsets based on natural
neighbours and processed separately. As part of the evaluation, they test their approach
on one scene from an urban dataset [49].

Figure 2.3: Graph-based methods exploit the decades of research on graph theory. The graph is
�rst constructed with nodes representing 3D points. Features are extracted from the edges and
neighbour nodes. Nodes are then discarded or preserved based on these features.

Zhang et al. [50] presented Feature-preserved point cloud simpli�cation (FPPS). Natural
quadric surface is used as a simpli�cation model of the geometric in each key point's neigh-
bourhood. The key points are found using three entropies: scale-keeping, pro�le-keeping and
curve-keeping simpli�cation entropies. The results are evaluated on 3D models, compared
to Uniform, Grid and Curvature based samplings and shown together with the running time
and memory usage statistics.

Labussièreet al. [20] presented a sampling algorithm created in the context ofICP and
robotics applications called Spectral Decomposition Filter (SpDF). The tensor voting frame-
work [51] was used to identify basic geometric features and their saliencies. The method then
iteratively subsamples each geometric feature until the density is lower than the desired one.
The method, which is compared to seven others, has an error within the LiDAR sensor's
range accuracy for97 % compression ratio. For a compression ratio of95 %, the calculation
takes about 500 ms.

In the work of Gong et al. [52], each point's local geometry is represented as a Delaunay
neighbourhood. The extracted feature points are joined with the rest of the point cloud,
uniformly sampled. The method is evaluated on four 3D models against Grid and Curvature
based simpli�cation and an algorithm based on conformal geometric algebra [53].

2.3.6 Methods employing Neural networks

The �rst NN working directly on unstructured point clouds, called PointNet, was presented
in [54]. The inherent point cloud's lack of structure was solved using a max-pooling layer.
According to the presented experiments, the network is robust to noise and outliers. It was
capable of processing up to 1 million points per second with a linear space and time complexity
in the number of points in the input point cloud. The network was designed to segment
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and classify 3D objects, and the set of optimisation functions it learns leads to the selection
of the most critical points for these two tasks. These points, called critical points, correspond
to the skeleton of the object's shape. A follow-up improvement of PointNet, PointNet++,
was presented in [55]. Unlike the original network, the improvement can learn local features
by applying PointNet recursively on nested parts of the original point cloud. The point
cloud is �rst sampled using FPS. A grouping area created from neighbours of the samples
is encoded into feature vectors by a PointNet layer. They also propose a method to deal
with non-uniform sampling density, so the proposed network is more robust to local density
variations. The network is evaluated on four 2D and 3D object datasets based on classi�cation
and segmentation tasks. Similarly, Shenet al. [56] introduced changes to PointNet for e�cient
representation of local structures, called KCNet. However, they argue that PointNet++ leads
to a complicated architecture and instead proposes treating a point's surrounding, which
they call a kernel, as the source of local geometric information. The kernel correlation is let
to adjust freely through backward propagation. The learning process �nds the best point
encodings for the most valuable local geometric structures. KCNet was evaluated on both 2D
shape and 3D model datasets.

He et al. [57] presented the combination of PointNet++ and ICP as a new registration
method. The idea is to let PointNet++ �nd multiple feature identi�ers and feed the points
corresponding to those multidimensional features intoICP instead of the whole or sampled
point cloud. For the experiments, they trained PointNet++ on a large dataset of 3D models,
ModelNet40 [21]. The pipeline was evaluated on the registration task using the testing part
of ModelNet40, ScanNet [58] and KITTI [59] datasets. The results showed Mean square
error (MSE) lower than 10� 4 m for both ModelNet40 and ScanNet. For the KITTI dataset,
which contains sparse outdoor data captured on a mobile platform, theMSE is 5:83 cm, and
the pipeline performs more than 30 times faster than a stand-alone ICP.

Lang et al. [60] proposed omitting the widely popular FPS and instead provided subsamples
as an approximation of points in the original point cloud. Performance of the proposed
network, SampleNet is presented on the classi�cation, reconstruction and registration of objects
in the ModelNet40 dataset [21]. Unlike [57], where the network was trained strictly on point
clouds to learn their most important features, the training also includes the registration task.
No translation is considered between the two scans, and the performance is evaluated only
in terms of Mean rotation error (MRE). SampleNet outperformsICP with FPS and Random
sampling as the sub-sampling methods in this metric.

Recently, He et al. [61] stored information about the local density in a point feature and
proposed a method for point cloud compression employing an autoencoder. The encoder
subsamples the point cloud, learning a density, a local position and an ancestor embedding.
These embeddings are meant to store the geometry and density of the removed points. Finally,
the encoder compresses the per-point features and quantises the point cloud. An adaptive
module e�ciently decoding the compressed point cloud is also proposed. More detailed
surveys on deep learning on 3D point clouds can be found in the reviews of Belloet al. [62]
and Guo et al. [63].

The operation of point cloud sampling has an impact on every imaginable downstream
task. From localisation to path planning, the tasks would not be possible without a genuine
reconstruction of the scanned environment. The reconstruction may be harder for objects
whose size is close to the accuracy of the sensor or whose dimensions are minor compared to
other present objects such as walls. In the next section, we will examine related works done
on the topic of thin structures in 3D point clouds.
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2.4 Thin structures

The study of thin structures in point clouds primarily focuses on classi�cation, segmentation
and object detection for autonomous cars. Since road-based vehicles typically have access
to GNSS data and the surrounding environment has enough features, the detection of small
structures is mostly focused on safety, obstacle and collision avoidance. In the context of these
applications, typical small structures present in the labelled data are pedestrians, cyclists, poles
and tra�c signs [64]. For example, Ye et al. [65] presented a solution to voxel grid rasterisation
artefacts in the form of a special detector layer called Hybrid Voxel Feature Extractor.
The results are evaluated on the classi�cation task of the KITTI dataset. Alternative use
of LiDAR data on roads is for quality inspection and infrastructure inventory. Ma et al. [66]
presented a review on the detection and extraction of road objects using mobile laser scanning
devices. Their possible employments go from detecting cracks and utility holes to quality
control of road markings and driving lines. Interestingly, all except one of the reviewed surface
extraction methods simpli�ed the acquired point cloud with a voxel grid, with the remaining
one employing a Random sampling consensus (RANSAC) algorithm for plane �tting.

One more type of thin object often occurring in point clouds captured by road vehicles are
trees. Trees are a common sight along many roads and can signi�cantly a�ect road safety.
Zhong et al. [67] presented a system for street tree inventory from point cloud data. Tree
trunk and foliage are extracted to estimate its height, Diameter at breast height (DBH) or
crown width. The minimal tree trunk diameter in the showed results was 0:121 m. Tremblay
et al. [68] also describe tree trunk diameter estimation, but in the context of forestry. Even
though trees with DBH of less than10 cm were segmented and measured, most of them were
not included in the �nal evaluation. The reason for this is the low signal-to-noise ratio [69].
A typical forest is not an environment lacking features. However, monitoring young trees
and avoiding branch-like obstacles requires a correct representation of the environment. We
see that although the objective of the above methods is to recognise and label small objects
correctly, the goal is typically not to improve localisation performance.

Another category of literature discussing small objects is the modelling-based approach.
The critical property of a LiDAR beam concerning thin structures is its sparseness. While
interpolating missing points to achieve a more dense resolution can be feasible on smooth
surfaces, it does not help detect object boundaries. Longet al. [70] proposed a model forLiDAR
beam divergence and a calibration method for divergence angle estimation, together with
an explication of the e�ects on dilation and erosion. Dilation and erosion are the consequences
of width measurements computed as the distance between the two farthest points on a row.
Dilation, caused by the �nite beam width, is caused by the beam centre located outside
of the object but still producing a return. Erosion, on the other hand, is related to azimuth
sampling. The beam centres are, in this case, inside the true object's boundaries. For
experiments, they used cylinders with a width of5:08, 7:62 and 10:16 cm and street lamps,
together with a moving platform.
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Chapter 3
Analysis of �ltering algorithms for 3D localisation
and mapping

After the broad review, we will introduce two open-source libraries employed in this work.
After that, we will formulate several mathematical properties of a subsampling �ltering
strategy. Finally, we will use these properties to present a classi�cation of subsampling
strategies available in thelibpointmatcher 1 library.

3.1 Libpointmatcher

The libpointmatcher is an open-source library for point cloud matching [16]. Written
in C++11 and con�gurable at runtime using YAML text �les, every part of the ICP chain
is fast and parameterised.libpointmatcher thus allows for an easy comparison of di�erent
strategies of each part of theICP pipeline. Di�erent modules, or processing blocks, are available
for each part of the chain. Figure 3.1 shows the processing blocks of thelibpointmatcher
library. The chain takes two point clouds on the input. Data �lters are applied to the input

Figure 3.1: Processing chain of thelibpointmatcher library. Data �lters, depicted in orange apply
sampling and descriptor augmenting �lters to the point clouds. Trans. stands for transformation,
with the purple block transforming the reading point cloud. Processing blocks marked in green
are part of the ICP algorithm, de�ned in Algorithm 1.

point clouds before starting the ICP loop. There are two types of these �lters: Down-
sampling and Descriptor augmenting. The e�ect of the �rst is that they reduce the number
of points in the point cloud. However, some of them also add descriptors, such as normals,
to the remaining points. The goal of the descriptor �lters is, on the other hand, to augment
the data with additional information. The data �lters are applied directly to the point cloud.
Some assume that the sensor capturing the point cloud is located in the origin of the point
cloud coordinate frame. The fact that the location of the origin of the coordinate frame
of the point cloud matters is apparent for uncomplicated �lters. For example, the bounding
box �lter simply removes points from inside or outside of a rectangular region. However, we

1https://github.com/ethz-asl/libpointmatcher
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will later see that the origin's location is important even for more complex down-sampling
�lters.

Inside the ICP loop, the reading point cloud is �rst transformed. Then, another set
of data �lters can be applied to the reading. This is useful, for example, when we want
to gradually decrease the number of points in the scan to speed up the computation or
to provide the matcher with a di�erent random subset of points in each iteration. Next,
a data association step is performed to link the points in the reading point cloud to points
in the reference. The association is done with a k-nearest neighbour matcher. Outlier �lters
add weights or altogether remove links between points in the reading and the reference.
The Error minimiser performs the optimisation step in the search for the next transformation.
Finally, multiple Transformations checkers can be used to stop theICP after a condition is
met. For example, the condition can be related to the number of iterations of theICP loop
or the matching error.

3.2 ICP Mapper

The norlab_icp_mapper 2 is a lightweight open-source package wrapping theICP functionality
and combining it with map creation. The ICP, imported from libpointmatcher , provides
the transformation between the sensor and the map frame while the mapper manages map
updates. The mapper does not contain any global optimisation, and without a loop closure, it
is, in fact, performing a lidar-odometry task. The di�culty of providing a reliable covariance
estimate is the main obstacle to revising any previous pose estimates. A missing covariance,
in turn, restricts data fusion with other pose estimation methods, such as the IMU data, in an
Extended Kalman or another Bayesian �lter [71] [72]. The mapper also provides memory
management, o�oading parts of the map that are too far from the robot. This o�oading is
parameterised with the maximal range of the sensor used. However, in our scenario, we will
not leave the circle de�ned by the radius of the sensor's range.

Figure 3.2: Processing blocks of thenorlab_icp_mapper . The reading is �rst processed in the �l-
tering block, depicted in orange. The odometry prior is used to align the �ltered reading to the map
in the ICP block. The reading is transformed using the optimal transformation and merged into
the map, which is then �ltered. The colour of the processing blocks corresponds to the blocks
used in Figure 3.1, with the reading input �lters being the �rst reading data �lter block.

Algorithm 2 contains a detailed description of a modi�ed norlab_icp_mapper while Fig-
ure 3.2 depicts a diagram of its processing blocks. We will emphasise the di�erences from
the version available online later. An o�ine version of the mapper was used. Even though
we recognise the importance of real-time solutions for robotics, our goal is to provide a fair
comparison of di�erent sampling methods. However, we will discuss the time requirements
of the individual sampling methods in the results section of this work.

The algorithm takes a list of reading point clouds and odometry poses as the input. After
setting the initial transformation to Identity and applying initial �lters to the reading, we

2https://github.com/norlab-ulaval/norlab_icp_mapper
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merge the reading into the initially empty map and apply map �lters. Unlike in the standard
version of the algorithm, where the merging and map �ltering is applied as two separate
steps, we emphasise their interconnectedness. The combinedmergeAndFilter()function has
access to the sum of the number of points of all readings until now. For simplicity, we will
assume that it stores this number in its internal memory. In the main loop, we process
the remaining readings and poses. The estimated transformation, �ltered reading and latest
map are used in Algorithm 1 to acquire a corrected transformation. This transformation is
used to transform the reading into the map frame. The reading is then merged into the map,
which is �nally �ltered. The merging into the map is conditioned by the updateMap() function.
Currently, norlab_icp_mapper o�ers three conditions for a map update: a time di�erence,
a distance di�erence and an overlap. The time di�erence takes the minimal number of seconds
between two map updates as an argument. The distance di�erence takes the minimal distance
between two map updates as an argument. The overlap condition ensures that the reading is
merged into the map only if there is enough overlap between the two. The algorithm returns
the �nal map and the trajectory.

Algorithmus 2 Norlab ICP o�ine mapping

Require: P0:t . Reading point clouds
Require: O0:t . Odometry

1: T̂ 0  1 . Initial pose
2: P̂0  inputFilters( P0) . Filter �rst reading
3: M 0  mergeAndFilter( ; ; P̂0) . Get map from the initial reading
4: while i � t do
5: T̂ i  O� 1

i � 1Oi T̂ i � 1 . Pose estimate
6: P̂i  inputFilters( Pi ) . Filter reading
7: T i  icp(P̂i ; M i � 1; T̂ i ) . Update pose estimate with ICP
8: P0

i  T i P̂i . Transform reading to the map frame
9: if updateMap() then

10: M i  mergeAndFilter(M i � 1; P0
i ) . Merge reading into map and �lter map

11: end if
12: end while
13: return map M t , trajectory T 1:t

Unlike the original version, both the inputFilters() and the mergeAndFilter()functions apply
the �lters in the frame of their input point clouds. The reading is processed in the sensor
frame and the map in the map frame whereas in the original version even the map was
processed in the frame of the sensor.

3.3 Sampling �lters

We already explained in Section 2.2 the e�ects of the number of points in the reference and
the reading point clouds on theICP performance. Furthermore, lidar point clouds are generally
sparse and incomplete, thus unsuitable to be used with advanced local �lters. The high
sparsity level makes it complicated to derive any underlying object properties or to interpret
object structure correctly. The low density is sometimes overcome with an up-sampling,
an operation inverse to sub-sampling where the number of points in the point cloud increases
[73][74]. However, interpolating between beams introduces new noise to the data.

We will, therefore, further focus on the sampling of the reference. In our scenario, the refer-
ence is the environment map, which is continuously updated as more readings are merged into
the map. Given the two libpointmatcher and norlab_icp_mapper chains we introduced
earlier in this chapter, we have two options. Either we subsample the map in theData �lters
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block of the libpointmatcher pipeline, or we subsample it as part of themergeAndFilter()
operation of the mapper. The diagram of the two variants is present in Figure 3.3.

The clear advantage of the �rst variant is that the �lter has all points from the previous
iterations accessible for feature extraction. An ideal �lter should select the most information-
dense regions, which should, in turn, lead to the bestICP performance. However, for
the �rst variant, the number of points in the map would grow rapidly without bounds. This
would not only make the kd-tree construction and the nearest neighbour lookup lengthy, but
eventually, we would run out of memory. On the other hand, the second variant �lters the map
continuously after each reading merge, and the resulting map is used in the next iteration.
This, at least for the density and spatial-based methods, e�ectively limits the maximal number
of points in the map.

Figure 3.3: Map sampling approaches. Left: The map is only �ltered before theICP chain,
and the �lter has access to points from all preceding readings. Right: The �lter is applied
continuously after each map update. The blue and orange blocks correspond to the gradient colour
margeAndFilter()of Figure 3.2.

3.3.1 Theory

From now on, we will use M to denote the map, a point cloud with jMj = m points.
A �lter F subsamples the map so thatjF(A; M )j � m, where A = f a1; : : : ang is a set
of optional parameters of the �lter. F(M ) will be used for a �lter with no parameters. In this
section, we will describe certain mathematical properties that we will later use in the taxonomy
of several popular sampling �lters.

In Section 2.3.1, we de�ned the Compression ratio as the fraction of the number of points
on the output and the number of points on the input of the �lter: CR = 100 � (1 � m0

m ).
Although this de�nition works well for the �rst variant of map sampling, it does not work
for the second. This is because the important property of a continuous sampling is not
the instantaneous value of the compression ratio but more the long-term behaviour of ignoring
redundant information already present in the map point cloud.

De�nition 3.3.1 Compression ratio. The updated compression ratio is given as

CRt = 100 � (1 �
jF(M t � 1 t P t )jP

t jP t j
) ; (3.1)

where t is the union operator denoting the operation of merging the reading into the map
and t is time.

We see that for growing time t, the number of points in the map jMj either converges
to a �xed value and CR! 100 %or keeps pace with the incoming points and grows inde�nitely.
This, of course, would not be a good description value for an experiment of in�nite duration
or deployment in an environment without spatial bounds. However, this de�nition allows
for a comparison between di�erent sampling methods in a bounded experimental setup.
Indeed, the former is the desired behaviour for closed static environments, where we assume
growing redundancy of information in the readings with respect to the information already
present in the map. This brings us to the �rst property, the density convergence, or simply
convergence.
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De�nition 3.3.2 Convergence. Assuming that the readings come from the same, static envi-
ronment, the number of points in the �ltered map converges to a constant numberm:

lim
t !1

jF (M t )j ! m : (3.2)

The convergence highlights the importance of keeping the number of points in a map
bounded to prevent a memory over�ow. It is thus a crucial property of any time unlimited
deployment of a robotic system in a known environment.

De�nition 3.3.3 Idempotence. Idempotence is the mathematical property describing an oper-
ation which can be applied multiple times without changing the result. In our case,

F(M ) = F(F(M )) : (3.3)

A �lter meeting this property is, for example, the voxel grid with a �xed origin. The points
in voxels are sub-sampled only once, and no subsequent application of the �lter will a�ect
them. In contrast, the random �lter is not idempotent, with each application removing more
and more points. With an idempotent �lter, we could, theoretically, unload parts of the map
already sampled and only sample the parts where the reading ends, saving computation time.

We saw earlier that some �lters approximate existing points by creating new points, for
example, centroid, while others use exclusively points already present in the point cloud. This
property is called image-inclusion.

De�nition 3.3.4 Image-inclusion. The resulting point cloud is a subset of the original point
cloud:

F(M ) � M : (3.4)

While the Image-inclusion is unsuitable for tasks like obstacle avoidance, it may be ad-
vantageous to replace a high number of points with their statistics, such as the mean and
covariance. This, however, comes at the cost of replacing points with descriptors, so the gains
in terms of saved memory can be limited. A more complex computation also takes more time.

We cannot de�ne the linearity properly since it is not clear what a scalar multiplication
of a point cloud means. Instead, we will only de�ne the additivity:

F(M t P ) = F(M ) t F(P) : (3.5)

The equation describes that the �ltering operation has the same e�ect whether applied
on the merged point clouds or on each of them individually. Together with the idempotence
(Equation 3.3), any series of readings of lengtht merged into the map can be simpli�ed as

M t = F(P0) t F(P1) t � � � t F(Pt ) : (3.6)

This assumption would have, if possible, strong consequences. Instead of applyingF on the map
and the merged readingM t P , one could simply �lter the reading. Filtering only the reading
would provide signi�cant time improvements since jM t Pj � jPj .

We can weaken the additivity by an approximation using a residual point cloud R

F(M t P ) = F(M ) t F(P) t R : (3.7)

In fact, even a simple random �lter does not hold this property. We will therefore work with
the additivity in the number of points

De�nition 3.3.5 Additivity in number of points. The number of points in a �ltered point cloud,
obtained by merging the reading and the map, is equal to the sum of numbers of points when
�ltering the reading and the map separately:

jF(M t P )j = jF(M )j + jF(P)j : (3.8)
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De�nition 3.3.6 Monotonicity. Monotonicity, here de�ned in the number of points

jF(M i t P i +1 )j � j F(M i � 1 t P i )j ; (3.9)

implies that the number of points in the map grows or stays constant over time. The mono-
tonicity property is, in fact, equal to CR � 100 %.

Controllability is a term we borrowed from the control system theory. In our case, the quan-
tity we want to control is the number of points on the output of F.

De�nition 3.3.7 Controllability. A sampling �lter is controllable if

8 l 2 h0; jMji 9 A; jF(A; M )j = l ; (3.10)

implying the existence of a set of argumentsA that allow for direct control of the number
of points l after applying the �lter. We deduce that if a �lter is controllable, an appropriate
choice of parameters makes it also monotonic. The controllability provides the user the picture
of how many points to expect and therefore additional information for system design.

Finally, some �lters, from their nature, consider the age of points.

De�nition 3.3.8 Age-biasness. In a time-limited experiment from t0 = 0 to t f , the age of a point
p is the time t when it was added into the mapM . We will call a �lter aged-biased if

9p 2 M t j 9t1; t2j t < t 1 < t 2; p(p 2 F(M t1 )) > p (p 2 F(M t2 )) ; (3.11)

with p(�) denoting the probability of a point being kept in the map after �ltering. In other
words, a �lter F is age-biased if the probability that a point is kept in the map does decrease
over time.

De�nition 3.3.9 Age-unbiasness. A �lter is age-unbiased if it is not age-biased.

We can see an example of age-biasness on simulated data in Figure 3.4. The simulation
consisted of generating readings in the form of cubes with1 m of side size and four faces.
The front and rear faces were missing to simulate a tunnel-like environment. The points
were generated randomly with a �xed seed between di�erent methods. At each iteration,
the reading was merged into the map, and then the map was �ltered. A new reading was
generated, with a displacement in the direction of the x-axis corresponding to the iteration
number. The overlap between generated point clouds was0:5 m. This way, a point cloud
of 10 m in length was created. As can be seen in the �gure, some �lters, such asRandom,
do not contain any points from the early iterations. On the other hand, density-aware
�lters are characterised by keeping a constant number of points per distance, as in the case
of Max Density.
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Figure 3.4: Age-bias e�ect of di�erent �lters. On the top: A top view of the resulting point
clouds sampled by di�erent �lters. The colour of the points corresponds to the iteration when
they were added to the map, ranging from 0 to 20. On the bottom: Point density as a function
of bins displacement in the direction of the x-axis. The x-axes of the point clouds and the �gure
are aligned.

The age-biasness property has crucial implications for many robotics applications. For
example, a teach-and-repeat scenario is a procedure where we �rst record a representation
of the environment in the form of a map, together with the robot's trajectory in a teach
task. The map and the trajectory are later used for localisation in the repeat task. Such
a scenario cannot work with age-biased �lters. Moreover, such a map could not be used for
any subsequent online or o�ine tasks, such as planning, loop closure or inspection.

We will now describe the down-sampling �lters implemented in the libpointmatcher
library based on the properties de�ned above.
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