REVIEWER'S FORM for thesis evaluation

1. Identification of the student

Student: Emily C. Painter

Thesis: Influence of ambient conditions on building materials: study of material

degradation in the archaeological areas of Prague Castle

1st Institution: Universidade do Minho

2nd Institution: Czech Technical University in Prague

Academic year: 2021/2022

2. Identification of the reviewer

Name: Cristiana Lara Nunes

Institution: Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences

Position: Associate scientist

3. Fulfillment of thesis goals

exce	ellent ×	above aver. □	average □	below aver. □	weak \square
Comme	nts:				
The sub	ject of the the	esis is very interesting a	and has high practi	cal significance for the c	onservation of
the arch	neological site	of the Prague Castle	e. The proposed o	bjectives were successf	iully achieved,
which is	reflected in	the clear presentation	of results and res	spective discussion, as	well as in the
conclus	ions.				

REVIEWER'S FORM for thesis evaluation

4. Academic/scientific/technical quality

excellent ×	above aver. □	average □	below aver. □	weak □
Comments:				
•	and fairly well interpr		omplex processing of o	
The student clearly recrystallisation.	eveals a good unders	tanding of the mat	erials and damage mo	echanisms by salt
5. Formal arrangeme	ent of the thesis and	level of language		
excellent	above aver. ×	average □	below aver. □	weak 🗆
Comments:				
The thesis is very we	Il written, and the doc	umentation and pre	esentation of data is of	very high quality.
In general, the thesi	s is well structured, b	out there are secti	ons in the state-of-th	e-art that I would
suggest embedding in	n the methodology and	d results & discuss	ion sections, namely s	ection 4. Damage
Survey and Characte	erisation and respecti	ve sub-sections. A	annexes should be or	dered in order of
annearance in the tex	t (Anney Lie mention	ad firet in the text)		

REVIEWER'S FORM for thesis evaluation

6. Further comments

A few suggestions:

- pp. 21: there is a glossary specific for damage assessment of brick and concrete (MDCS: https://mdcs.monumentenkennis.nl/damageatlas); I also suggest finding a more suitable glossary for describing damage in archaeological wood, e.g., 10.31219/osf.io/x8m4j
- pp. 47: the water absorption by capillarity results show that the mass did not stabilize after the 2h testing period and this may be related to the short duration of the test; for how long was the test continued after the samples reached the maximum capillary moisture content? The term "hydrophobicity" is incorrectly used in this context; I suggest writing that the variations are related to the natural heterogeneity of the stone samples.
- pp. 72: I suggest calculating the drying rate for stages I and II, and the drying index (see standard EN16322: 2013) from the evaporation curves for an easier analysis and comparison of the results.
- HMC results: moisture content (MC) and hygroscopic moisture content (HMC) are expressed as weight %, therefore, the comparison of results of samples with very different water absorption behaviour (stone, mortar, brick) is very complex. I suggest focusing in comparing the HMC results (graphs) between the same types of material. I also suggest expressing the results of MC and HMC in one graph for easier interpretation of the moisture sources. Recently, a charge balance calculations toolkit for overcoming the RUNSALT program ionic balance issues has been developed and can be found here: https://zenodo.org/record/6280617#. YtgPE3bRY2x

7. Grade: A (excellent)

Use the following scale

A (excellent) B (very good) C (good) D (satisfactory) E (sufficient) F (fail)

ITAM, Prague

July 20, 2022

The Reviewer,

Cristiana Lara Paulos Nunes