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February 2022



Supervisor:
Prof. Ing. Radislav Šmı́d, Ph.D.
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Abstract

Fault detection and diagnostic are essential components of monitoring systems. Their main
task is to increase safety and reliability by observing specific devices and distinguishing
unusual behaviour. In recent decades, significant effort has been paid to developing fault
detection methods for electromechanical actuators (EMA). One of the causes is the current
trend in aviation, which aims to replace hydraulic, mechanical and pneumatic systems with
electrical ones. However, implementing fault detection techniques may be associated with
some issues, such as the need for intervention in the actuator by installing additional
sensors, cabling, and supporting elements.

This thesis aims to eliminate some of these problems utilising the non-intrusive ap-
proach. Diagnostics performed by electrical measurements or Non-intrusive Load Monit-
oring (NILM) techniques bring benefits in the form of the absence of additional sensors,
easy implementation and portability, lowering weight, costs, and complexity. In order to
use this approach, it is first necessary to analyse the possibilities of its application in the
EMAs, design and implement methods for fault detection and conduct adequate testing.

The proposed thesis is focused on fault detection methods for an EMA with a brushed
DC motor. The jam and winding short faults as the most prominent EMA faults are
considered. The fault detection is based on evaluating the properties of the motor current,
taking into account the basic electromechanical parameters of EMA. The main advantages
of the presented approach are utilising a commonly accessible measured quantity, easy
applicability, and the ability to detect faults under varying operation modes of EMA,
including changes of speed, load, or movement profiles. The proposed methods have been
evaluated on the custom testing system. The results have proven the performance of the
proposed approach to detect faults under varying operating conditions that could occur
when used in industrial applications.

Keywords: Electro-mechanical Actuator (EMA), Fault Detection and Diagnostics (FDD),
jam fault, winding short fault
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Abstrakt

Detekce a diagnostika závad jsou d̊uležitými prvky monitorovaćıch systémů. Jejich hlavńım
úkolem je zvýšit bezpečnost a spolehlivost sledovaného zař́ızeńı a včasně vyhodnotit jeho
neobvyklé chováńı. V posledńıch desetilet́ıch bylo věnováno značné úsiĺı vývoji metod pro
detekci poruch u elektromechanických aktuátor̊u (EMA). Jedńım z d̊uvod̊u je současný
trend v letectv́ı, který si klade za ćıl nahradit hydraulické, mechanické a pneumatické
systémy elektrickými. Implementace technik pro detekci závad bývá spojována s určitými
problémy, jako je nutnost zasahovat do akčńıho členu kv̊uli instalaci př́ıdavných senzor̊u,
kabeláže a podp̊urných prvk̊u.

Tato teze si klade za ćıl odstranit některé z těchto problémů pomoćı neintruzivńıho
př́ıstupu. Diagnostika prováděná měřeńım elektrických veličin nebo technikami založenými
na neintruzivńım sledováńı zátěže (NILM) přináš́ı výhody v podobě absence př́ıdavných
senzor̊u, snadné implementace a přenositelnosti a také sńıžeńı hmotnosti, náklad̊u a složitosti.
Aby bylo možné tento př́ıstup použ́ıt, je nejprve nutné analyzovat možnosti jeho aplikace
na EMA, dále navrhnout a implementovat metody pro detekci závad a provést odpov́ıdaj́ıćı
testováńı.

Předložená teze je zaměřena na metody detekce poruch u EMA s kartáčovaným stejno-
směrným motorem. Konkrétně se jedná o závažné poruchy v podobě zaseknut́ı aktuátoru
a zkratu vnitřńıho vinut́ı motoru. Detekce poruch je založena na vyhodnoceńı vlastnost́ı
proudu motoru s využit́ım základńıch elektromechanickým parametr̊um EMA. Hlavńımi
výhodami metod je, že k detekci závad využ́ıvaj́ı pouze jednu snadno měřitelnou veličinu,
jsou jednoduše aplikovatelné a schopné detekovat poruchy v r̊uzných provozńıch režimech
EMA, zahrnuj́ıćıch náhlé změny rychlosti, zat́ıžeńı nebo profil̊u pohybu. Navržené met-
ody byly testovány a ověřovány na speciálně sestaveném testovaćım systému. Výsledky
prokázaly, že navrhovaný př́ıstup je účinný při detekci závad, za r̊uzných provozńıch
podmı́nek, které by mohly nastat při použ́ıváńı v pr̊umyslových aplikaćıch.

Kĺıčová slova: Elektromechanický aktuátor (EMA), Detekce závad a diagnostika (FDD),
závada zaseknut́ı, závada zkratu vinut́ı

ix





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State-of-the-Art 7
2.1 Fault detection methods for EMA . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Review of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Model-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Data-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Aims of the doctoral thesis 15
3.1 Specific aims of doctoral thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Analysis of EMA faults 17
4.1 Construction of EMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Standard EMA blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Connectors and cables . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Mechanical transmission . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Leading-screw and nut . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Actuator body/housing . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.7 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.8 Position sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Additional actuator blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 Force sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Angle sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



4.3.4 Temperature sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Analysis of relative probability and criticality of faults . . . . . . . . . . . 26
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Design of FDD methods 29
5.1 Defect selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Jam fault description . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Winding short fault description . . . . . . . . . . . . . . . . . . . . 32

5.2 Design of jam detection method . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Design of winding short detection method . . . . . . . . . . . . . . . . . . 36
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Testing system 41
6.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.2 Motor power driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Mechanical construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Data evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Results of methods testing 53
7.1 Testing of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Testing of jam method . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.2 Testing of winding short method . . . . . . . . . . . . . . . . . . . 55

7.2 Evaluating of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.1 Evaluating of jam method . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Evaluating of winding short method . . . . . . . . . . . . . . . . . . 64

7.3 Comparison with existing methods . . . . . . . . . . . . . . . . . . . . . . 67
7.4 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4.1 Fault detection ability . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.2 The speed of detection . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4.3 Sensitivity to input parameters . . . . . . . . . . . . . . . . . . . . 69
7.4.4 Sensitivity to noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Conclusions 71
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Accomplishment of Thesis specific aims . . . . . . . . . . . . . . . . . . . . 71
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



Bibliography 75

A List of Publications 79
A.1 Publications in Journals with Impact Factor Relevant to the Thesis . . . . 79
A.2 International Conference Proceedings Relevant to the Thesis . . . . . . . . 79
A.3 Other Publications in Journals with Impact Factor . . . . . . . . . . . . . 79
A.4 Other International Conference Proceedings . . . . . . . . . . . . . . . . . 80

B Additional images 81
B.1 Conditioning circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



List of Figures

1.1 Power systems of conventional aircraft (according [13]) . . . . . . . . . . . . . 2
1.2 787 No-Bleed systems architecture (according [13]) . . . . . . . . . . . . . . . 3

4.1 Linear electromechanical actuator with brushed DC motor . . . . . . . . . . . 17
4.2 Block layout of EMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Opened motor housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Opened EMA gearbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Nut (yellow-green) in the actuator housing . . . . . . . . . . . . . . . . . . . . 23
4.6 Dangerous short-circuits of the H-bridge . . . . . . . . . . . . . . . . . . . . . 25

5.1 Electric current during the controlled run-up of EMA . . . . . . . . . . . . . . 30
5.2 Inrush current during the motor run-up . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Current measured on balanced and defect winding . . . . . . . . . . . . . . . . 33
5.4 Block diagram of the jam detection algorithm . . . . . . . . . . . . . . . . . . 34
5.5 Block diagram of the winding short detection algorithm . . . . . . . . . . . . . 36

6.1 Block diagram of the testing system . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Sensors used in testing system . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Conditioning block circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 The mechanical construction of the testing system with the DSZY1 actuator . 46
6.5 The detail of linear guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 The detail of the damping spring made of PLA . . . . . . . . . . . . . . . . . 47
6.7 Signal from IRC sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.8 Detail of artefact caused by the indirect recordings . . . . . . . . . . . . . . . 51
6.9 The comparison of relative position with reference . . . . . . . . . . . . . . . . 51

7.1 Calculated components of electric current during the jam of EMA . . . . . . . 54
7.2 Jam fault detection: a) hard stop, b) soft stop . . . . . . . . . . . . . . . . . . 55
7.3 Rotor winding - a) intact winding, b) detail of Fault 1, c) detail of Fault 2 . . 56
7.4 The example of data selection based on indicating signal . . . . . . . . . . . . 57

xiv



7.5 The amplitude spectrum analysis . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6 Example of outcomes from winding short detection algorithm . . . . . . . . . 59
7.7 Confusion matrices for jam detection . . . . . . . . . . . . . . . . . . . . . . . 61
7.8 Influence of input parameters of the jam detection method . . . . . . . . . . . 61
7.9 Comparison of the nominal and noisy signal during jam fault . . . . . . . . . . 62
7.10 Disturbing signal at 50 Hz during jam fault . . . . . . . . . . . . . . . . . . . 63
7.11 Confusion matrices for winding short detection . . . . . . . . . . . . . . . . . 64
7.12 Influence of input parameter of the winding short detection method . . . . . . 65
7.13 Comparison of the nominal and noisy signal during short fault . . . . . . . . . 65
7.14 Comparison of the nominal and noisy spectrum during short fault . . . . . . . 66
7.15 Disturbing signal at 800 Hz during short winding fault . . . . . . . . . . . . . 67

B.1 Conditioning circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Schematic of conditioning circuit . . . . . . . . . . . . . . . . . . . . . . . . . 82

xv



List of Tables

4.1 Analysis of relative probability and criticality of faults . . . . . . . . . . . . . 27

6.1 Parameters of sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Parameters of tested EMAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Various operating conditions of EMA . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Resistivity and inductance change measured on the commutator segments . . . 56
7.3 Levels of disturbing signals for the jam detection method . . . . . . . . . . . . 63
7.4 Levels of disturbing signals for the winding short detection method . . . . . . 66

xvi



Nomenclature

APU Auxiliary Power Unit

BDC Brushed DC

BLDC Brushless DC

COT Computed Order Technique

ECU Electronic Control Unit

EMA Electromechanical actuators

FDD Fault Detection and Diagnosis

FFT Fast Fourier transform

HVDC High Voltage DC

IGD Integrated Drive Generator

IRC Incremental Rotary enCoder

MEA More Electric Aircraft

NILM Non-intrusive Load Monitoring

PHM Prognostic Health Management/Monitoring

PPR Pulses Per Revolution

RMS Root Mean Square

RPM Revolutions Per Minute

RTD Resistance Temperature Detector

TTL Transistor-Transistor-Logic

xvii





Chapter 1

Introduction

1.1 Motivation

Fault detection and diagnostics (FDD) are key components of many monitoring systems.
The main priorities of these systems are distinguishing symptoms of unusual behaviour,
identifying failure and determining a type of failure and location where the failure has
occurred.

Monitoring systems can be found in many areas of industry, and the aviation industry is
one of them. Commercial aircraft are sophisticated machines composed of a vast number of
components. Such a complex system has to be constantly monitored and regularly checked
in order to ensure high reliability and safety. Since the price of electronic components
and computer systems is decreasing, it is convenient to use additional hardware for system
health monitoring. On the other hand, the increasing complexity of aircraft systems makes
this task more difficult [5].

For several decades great effort has been devoted to designing systems for aircraft health
monitoring. Commercial aviation organisations invested many funds in health monitoring
technologies to reduce maintenance costs, increase reliability, and improve efficiency. The
current trend in aviation is to apply more electronic systems instead of mechanical. This
trend is based on the More Electric Aircraft (MEA) concept, which has been known for
decades but has only been partly implemented in recent years with the latest generations
of commercial aircraft. The main obstacles of innovations are, in particular, the gradual
implementation of new technologies, their thorough testing and, most importantly, lengthy
certification.

The fundamental idea of the MEA concept is to replace pneumatic, hydraulic and semi-
mechanical systems with electrical ones. This innovation reduces the aircraft’s weight,
which leads to lower fuel consumption and emissions of air pollutant gases. Moreover, the
MEA concept brings other advantages such as optimizing the aircraft performance and
decreasing the operation and maintenance costs [14].

The aircraft systems are driven from the different sources of power. The architecture
of conventional aircraft is displayed in Figure 1.1.
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Landing gear
Breaks

Fuel pumps

Air conditioning

Pneumatic power

Mechanical power

Hydraulic power

Electrical power

Cabine de-icing

In-flight entertainment 
Commercial loads

Figure 1.1: Power systems of conventional aircraft (according [13])

The pneumatic system uses high-pressure air, called bleed air, obtained from the en-
gine’s compressor. Controlled air leakage from the compressor produces enough energy
for the pneumatic systems such as environmental control systems, the wing ice protection
system, or engine startup, but it causes a decrease in the engine’s efficiency.

The electrical grid of the aircraft is powered by several sources of electric energy. The
primary energy sources are electric generators placed on each main engine. Another source
is the auxiliary power unit (APU) that provides electric energy before the main engines
are turned on. APU is started by the electric engine powered by batteries, and some
aircraft are equipped with the ram air turbine, which is usually used in an emergency. The
electrical system provides energy for commercial loads, avionics systems or eventually for
weapon systems. The electric grid of commercial aircraft is usually composed of 115 V 400
Hz AC and 24 V and 28V DC power sources. According to [12], the gradual transition
to the ±270 (HVDC, high voltage DC) is expected in the future because it should bring
many benefits. The hydraulic system is used for the flight control actuators and landing
gear, and it is powered by the mechanical system. The mechanical system uses mechanical
power extracted from the engines by a shaft. This power drives hydraulic or fuel pumps
and electric generators directly from the engine gearbox. The leading goal for the MEA is
to remove the hydraulic and pneumatic system and reduce the mechanical system as much
as possible. The hydraulic and pneumatic systems have o lot of common drawbacks. Both
systems are costly, large, heavy and prone to leakage and contamination problems. Their
replacement by electric engines and actuators would increase aircraft reliability, decrease
weight, installation and operation costs and facilitate maintenance. Moreover, the electric
system is easier to control and monitor. On the other hand, the MEA concept brings many
challenges in areas of power generation and handling, power distribution, reliability and
fault tolerance [13], [14].

Over the last few decades, there have been fundamental changes in the development of

2



new aircraft. Some parts of subsystems have been significantly reduced or even directly
replaced by electrical systems. For instance, the Boeing 787 utilises electric-driven com-
pressors for conditioning and pressurising the cabin instead of using bleed air taken from
the engine compressor. Another change is eliminating an integrated drive generator (IGD)
in some types of aircraft. IGD’s shaft delivers constant speed despite the varying speed
of a jet engine; therefore, it can provide constant voltage and frequency. Instead, Airbus
A380, A350 and Boeing 787 use a more efficient generator coupled directly to a jet engine
that provides a constant voltage with a variable frequency [22].

Bleedless aircraft is the aircraft type that does not use the bleed air from the main
engine. The 787 No-Bleed system architecture, presented by Boeing, is currently the
closest approach to the MEA concept. Boeing replaced most of the pneumatic systems
with electrical to reach greater efficiency. Predicted savings of the fuel are about 3% [4].
No-Bleed architecture is significantly different from traditional aircraft’s architecture is
shown in Figure 1.1.

Pneumatic power

Mechanical power

Hydraulic power

Electrical power

De-icing

Landing gear
Breaks

Bleedless Air conditioning
In-flight entertainment 

Commercial loads

Figure 1.2: 787 No-Bleed systems architecture (according [13])

The pneumatic system was substantially reduced. The bleed air is used only for engine
cowl ice protection and pressurization of hydraulic reservoirs, but the rest of the pneumatic
system was replaced with electrical systems. The engines provide more electric power via
shaft-driven generators. The APU now generates only the electric power, distributed to
the engine generators that can also work as synchronous starting motors.

The hydraulic system comprises three independent systems - left, centre and right.
These systems are usually driven by the engine-driven pumps mounted on the engine
gearbox. In the No-Bleed architecture, the engine-driven pumps of the centre section were
replaced with two powerful electric-motor-driven hydraulic pumps. This solution enables
the aircraft to use hydraulic components which are smaller and lighter.

The environmental control system was significantly modified. Electrically driven com-
pressors are used for cabin pressurisation since the main engines do not provide high-

3



pressure air. This concept is way more effective than the traditional bleed system because
it does not require pre-coolers and modulating valves.

The no-bleed architecture does not use hot bleed air to de-icing the wing leading edge.
The anti-icing and de-icing function is achieved by an electro-thermal ice protection scheme.
This scheme brings higher efficiency because no excess energy is exhausted. Moreover,
aeroplane drag and community noise are improved because exhaust holes are no longer
needed.

The concept of a bleedless aircraft brings many advantages such as improved fuel con-
sumption due to a more efficient secondary power extraction, lower maintenance costs
due to removal of the bleed system, lower weight due to elimination of pneumatic system
components and other subsystems and improved aircraft reliability.

Another possible improvement lies in the electrification of hydraulic systems. In tradi-
tional aircraft, hydraulic systems drive or move mechanical components such as primary
and secondary control surfaces, braking, landing gear and many others. These systems
are usually driven by mechanical actuators, but the current trend is to replace them with
electromechanical actuators (EMAs) or electro-hydraulic actuators (EHAs). Electrically
driven actuators’ employment instead of hydraulic actuation can decrease maintenance
costs, reduce weight, and increase system efficiency [8], [22].

The More Electric Aircraft concept brings a lot of innovative elements that are key to the
future of the aviation industry. The application of elements from this concept should bring
many benefits such as increased safety and reliability and reduced components, weight and
operating and maintenance costs. However, all new technologies must first be thoroughly
tested and certified. This process is time-consuming and costly, which is also why individual
technologies are gradually being introduced over a long time.

1.2 Problem Statement

Electromechanical actuators are a great way to meet the goals of the MEA concept. Com-
pared to the hydraulic systems they should replace, their most significant advantages are
low weight, reliability, low maintenance, scalability, easy to implement self-test and mon-
itoring and high efficiency. In addition to replacing hydraulic systems, they can be used in
low-power applications thanks to their easy controllability and compact designs.

The most desired objective is to use EMAs to control primary and secondary flight
surfaces. However, this promising and ambitious goal has not yet been fully met. In
order to prove the long term reliability of EMA, complex testing of partial components is
needed. Pros and cons and reasons why these solutions have not spread rapidly enough are
explained in [32], [42]. Currently, EMAs are used on a smaller scale in some subsystems of
commercial aircraft and dedicated experimental systems. For example, EMAs are used for
the nose wheel steering system of F-16 [27], A380 and A350 utilise EMA technologies for
thrust reverser application [23] or Boeing 787 using EMAs for breaking, spoiler actuation,
and horizon stabiliser trim [27].
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The involvement of EMAs is significant not only for aerospace but also for other in-
dustrial applications. The possibilities for EMA’s employment in various systems and
subsystems are considerable. They can be used in multiple transient or pulsed actuation
functions such as door manipulation, extension/retraction, locks, steering, braking, open-
ing and closing valves, positioning of flaps, fins and so on [9], [16], [32].

However, innovative systems such as EMA bring new challenges, especially in the area
of safety and reliability. The are as well as any electromechanical device prone to failures.
Undetected failures and degradations can have a negative effect on actuator operation,
leading to an increase in maintenance and costs, and could be potentially dangerous, espe-
cially in safety-critical applications. Although EMA are widely used in industry, and their
parameters are well known from the functional point of view, it is first necessary to examine
various fault modes of their components [6]. In order to fulfil strict safety requirements,
EMAs must be equipped with a sophisticated system of self-monitoring. A smart actuator
should have integrated equipment to detect faults and degradations or prognostics and
health management system [6], [8].

The main benefit of monitoring systems is that they can be used to observe the condition
of the equipment and detect faults at an early stage of development. In addition, predictive
algorithms can be implemented to estimate the remaining life of the actuator or to monitor
the occurrence and development of degradation. Monitoring systems use combinations of
information from various sources, such as data from sensor networks, inputs and outputs
of the control unit or data based on system model simulations. The typical quantities used
for EMA diagnostic are electric current, voltage, temperature, position, force, vibration or
rotation angle, which are usually measured by sensors. These devices represent additive
hardware that requires power supplies, takes space, complicates handling, and increases
complexity and costs. In addition, installing some sensor types requires intervention in
the actuator by adding mounting elements, cabling for power and data transmission, or
equipment for signal conditioning, amplification, and processing. Such modifications can
increase the weight, overall price or maintenance costs.

A non-intrusive monitoring approach is a great tool to eliminate some of the prob-
lems mentioned above. Diagnostics utilising electrical measurements or NILM-based (Non-
intrusive Load Monitoring) techniques benefit from the absence of additional sensors, easy
implementation and portability, low weight, costs, and complexity. As a result, there is
no need to interfere with the actuator, and diagnostics can be performed at the level of
the control power unit. Moreover, no additional wiring is needed because it is measured
directly on the cables that supply EMA. Diagnosis based on these principles is the focus
of this dissertation thesis.
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Chapter 2

State-of-the-Art

2.1 Fault detection methods for EMA

Fault detection and diagnostic and condition monitoring are an integral part of machine
diagnostics. Electromechanical actuators (EMA) are very well-tested devices. Although
these are generally very reliable machines, their failure modes or the mechanisms that lead
to their defects have not yet been adequately tested. One of the major problems is the great
variety of possible mechanical arrangements. Actuators are usually assembled in various
combinations using different electric drives, mechanical transmissions, or design solutions
depending on the required application. AC and DC motors, such as brushed DC (BDC)
or brushless DC (BLDC), induction AC, permanent magnet synchronous or stepper, are
often used as electric drives. This variety also leads to a considerable range of parameters
such as force, stroke length (in the case of linear actuators) or rotation angle (in the case
of rotary actuators), movement speed, duty cycle or operating voltages and currents.

EMAs have become widespread in recent decades, and their gradual implementation
into critical applications is beginning to be considered. First of all, however, it is necessary
to sufficiently test them and develop methods for fault detection and systems for condition
monitoring that helps to predict failures in time before they occur. EMA fault diagnosis
poses an interesting research problem as it is composed of electrical, electronic, and mech-
anical subsystems, which results in intricate failure modes and effects [6]. In recent years,
significant efforts have been made to develop similar systems and methods.

2.2 Review of methods

Fault detection, diagnosis and monitoring methods can be divided based on the used ap-
proach. Model-based approaches typically involve the creation of an accurate mathematical
model to predict the outputs to a set of inputs for assessing health. The noted benefit of
the model-based approach is that failure modes are traced back to model parameters to
provide insight into fault diagnosis failure. The drawback of the model-based approach
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is that models are often complex and must be validated. As such, the models are then
dedicated to the specific application, and new models must be created and validated for
each new application. Also, implementing this type of scheme in an EMA controller, for
instance, would require a significant amount of processing capability when added to the
standard control and management schemes typically employed for flight control actuators.
Unlike model-based techniques, data-based approaches operate directly on signal data, us-
ing signal processing techniques and “black box” models to expose patterns/signatures in
signal data that give insight into machine conditions [17].

This part of the thesis summarises scientific works dealing with the topic. The over-
view contains a description of the main ideas of individual research and the means and
procedures by which they were achieved.

2.2.1 Model-based methods

The work described in [29] presents the model-based monitoring concept of a primary flight
control system comprising two electromechanical actuators. The article includes a com-
prehensive description of all models of the actuation system such as permanent magnet
synchronous motor with three-phase inverter, reduction stage - gearbox, roller screw, actu-
ation system-aileron coupling, Stribeck’s friction, backslash, and non-linear servo-control
loop. The study examines relationships among process variables that indicate the pres-
ence of a specific fault and suggests a few monitoring methods. The goal of monitoring
methods is the detection and isolation of a fault. Proposed methods are primarily based
on the evaluation of discrepancy between the position being commanded and the actual
position of some part of the system or the difference between actual positions of two-part
of the system. The evaluation processes consider the information from the control systems,
sensors, time dependencies of specific actions and results of voting algorithms of redundant
parts of the system.

The authors of the study used the model of the system for the definition of detection
thresholds for monitoring functions. The signal and time thresholds are obtained based on
uncertainty and reachability analysis. Experimental and virtual verification is employed
to test the efficiency of the developed monitoring functions. The faults that do not re-
quire hardware intrusion are experimentally verified on the test rig, and faults that cannot
be non-intrusively emulated were verified through simulation. Four critical faults are ex-
amined in the study: loss of one linear variable differential transformer (LVDT) signal,
mechanical blocking in one actuator, single electrical power loss, and loss of one load cell
signal.

The research described in [35] demonstrates the model-based Prognostic Health Man-
agement (PHM) algorithm for the identification of the mechanical transmission freeplay
(backlash) of electromechanical flight actuators. The proposed algorithm uses prognostic
models generated from a high-fidelity model of the actuator, in which increasing values of
freeplay are imposed. The functionality is demonstrated on a system which is composed of
a 3-phase brushless DC motor, a mechanical transmission with a spur reduction gearbox, a
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four-bar linkage connecting the EMA output lever to the flight control, a power electronics
bridge with six MOSFET driven by Space-Vector PWM technique (i.e. via Clark trans-
forms) and sensors such as Rotary Variable Differential Transformer (RVDT), a resolver
measuring the motor shaft rotation, three current sensors. The system model developed
in Matlab-Simulink includes simulations of 3-phase brushless DC motor dynamics, mech-
anical transmission vibrational dynamics, mechanical nonlinearities (efficiency loss, sliding
friction, and four-bar linkage kinematics), freeplay, sensors’ dynamics and errors and digital
signal processing of the closed-loop controls. The basic idea of the proposed PHM is that
freeplay in flight control electromechanical actuators (EMAa) implies the onset of limit
cycle oscillations, with amplitude and frequency that depends on the freeplay size. The
PHM algorithm is designed to be used during maintenance. It collects the time histories of
the actuator sensors during position tracking tests capable of inducing freeplay-related limit
cycles, and operates a signals’ treatment (Fast Fourier Transform), normalisation, amp-
lification, filtering) aiming to valorise the limit cycle content concerning high-frequency
disturbances and low-frequency dynamics. The Maintenance Built-In Test (MBIT) has
been simulated on each prognostic model to create a PHM database. The amplitude and
the frequency of the measured limit cycle oscillation are then compared with the database
by generating a freeplay estimation and a remaining useful life prediction. The algorithm
uses (FFT) and postprocessing to process data from sensors (resolver, RVDT, currents).
The data are analysed in the expected frequency range for the limit cycle onset (from 0.3
to 1Hz), by searching the peak of the distribution. The measured amplitude and frequency
are compared with the PHM database. The accuracy of the proposed PHM algorithm has
been characterised by repeating the simulation of the MBIT with different values of EMA
freeplay, by evaluating the effects of model uncertainties on the PHM outputs.

The follow-up research [21] and [34] deals with stress factors affecting the lifespan of
insulation materials of devices such s EMA motors in aerospace applications. The effect
of electrical faults of stator or rotor winding are examined, and four significant sources of
stress in winding insulation are described [6]. The sources of stress are summarized into
groups as electrical: voltage, transients and frequency affecting adjacent turns, ambient:
pressure and humidity, thermal: oxidation chemical reaction caused by a change of tem-
perature and thermo-mechanical: thermal cycling of coils.

The multi-stress lifetime model of the winding insulation of electrical machines is pro-
posed [7]. The ageing process is described as repeatedly breaking the chemical and physical
bonds between the atoms of the substance that are reorganized and reformed in new con-
figurations. Based on this definition, two models are presented: the statistical model
comprising thermal and electrical stress and the physical model. The authors further in-
vestigate the hybrid approach, which includes the Crines model and the Lewis model and
the procedure of multi-factor modelling, which combines previous life models.

The experiment which investigates the dependency between the air pressure and is
partial discharge is presented. The results showed that partial discharge inception voltage
decreases when the atmospheric pressure decreases.
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The work described in [31] deals with the development and the performance character-
isation of two health-monitoring algorithms for electromechanical flight control actuators.
Both algorithms are based on dynamic position predictors and detect a malfunction when
the actual feedback deviates from the prediction for a predefined threshold. The tested
electromechanical actuator system is composed of an actuator control unit, a 3-phase per-
manent magnet synchronous motor with sinusoidal modulation, and a mechanical trans-
mission made of a two-stage gearbox and a screw jack. The sensor architecture contains
a supply voltage sensor, temperature sensor, six current sensors, three voltage sensors, a
resolver, and two LVDT transducers.

Both proposed position tracking monitors (PTM) use time-discrete dynamic predictors
estimating the electromechanical actuator System (EMAS) position. The inputs of the
PTM have been limited to position demand, LVDT sensor for monitoring loop position
feedback and voltage supply level. The first-order and second-order position predictors are
presented. The fault-detector logic (FLD) uses the normalised output from predictors and
evaluates the fault using the decision tree and fault counters.

The two versions of the PTM have been compared in terms of fault detection capabilit-
ies by using a high-fidelity model of the EMAS, which is stimulated by the time history of
a light military jet trainer elevator during severe pull-up/pulldown manoeuvres in normal
conditions and with different types of faults (motor coil faults, motor magnet degrada-
tion, voltage supply decrease). The two algorithms show similar performances for false
alarms rejection, detection of motor coil faults and abrupt voltage decrease, but only the
algorithm with a more accurate speed predictor can detect magnet degradation phenomena.

In [28], the researchers present the approach of how to model a three-phase brushless
DC motor (BLDCM) for an electromechanical actuator. The Simulink model is based on
the voltage equation, torque equation and motion equation of the BLDCM and simplifying
assumptions. The work is primarily focused on winding defects since it is considered the
most susceptible component of the motor. The faults of EMA such as phase turnoff, phase
short fault or inverter short are analysed and simulated.

In [33], fault detection in airliner electromechanical actuators via hybrid particle filter-
ing has been introduced. In work, the test rig of the actuator of primary flight surfaces of
a wide-body airliner has been designed.

The test rig has been used to simulate fault scenarios related to sphere damage, par-
ticularly steel ball spalling. Data were collected from the test bench, and a model was
identified for each of the four-fault conditions. The OTPF (Observation and Transition
Particle Filter) and the EKF (Extended Kalman Filter) were used to compare non-linear
filtering techniques regarding fault detection capability.

Both techniques were evaluated using the data from four different models. They
provided promising results even when Gaussian noise was added; however, when a non-
gaussian noise was introduced, the OTPF method clearly won. Experiments suggest
that the particle filter algorithm can benefit non-standard disturbances and strong non-
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linearities.

The research [7] describes a design of an experimental test stand utilising electromech-
anical actuator. The test stand was used to develop the model-based PHM of aircraft
EMA systems using a hybrid (virtual sensor) approach.

The model-based approach to PHM applies physical modelling and advanced parametric
identification techniques. The approach employs a dynamic mathematical model of the
system that is directly tied to the physical processes that drive the component’s health.
The model is identified by simulations with the expected responses. The difference between
the simulated and actual response is used to estimate system parameters (e.g., efficiency,
friction factors, etc.). The model is then used for simulations of faults. These faults were
injected as gain, bias, and/or noise blocks on various parameters and signals within the
model. The system’s response to various simulated faults, such as loss of power to the
motor, winding short and position sensor fault, was analysed and verified. Fault diagnoses
for HPM were achieved by deriving features from the actuator signals and correlating these
features to fault severity levels. Also, the simulation of all three faults simultaneously was
performed. The derived features can reliably separate these faults for the most part, with
brief inaccuracies manifesting when the level of the simulated fault abruptly changes.

2.2.2 Data-based methods

The researchers in [6] present an analysis of critical fault modes for EMAs and describe an
approach to detecting them using artificial neural networks.

The most significant contribution of this study is a comprehensive fault analysis of
electromechanical actuators. This analysis is often cited in other research and serves as
a basis for assessing defects from the frequency of occurrence and criticality. The EMA
faults are divided into four general categories: sensor, mechanical or structural, motor, and
power or electrical. Failure Modes and Criticality Analysis (FMECA) references, literature
reviews, and accessible industry experiences have been utilized to create a list of failures. A
subset of faults (return channel jam, spalling, sensor bias, sensor drift, and sensor scaling)
was then selected for a more detailed study.

Experiments on selected faults have been performed using an electromechanical actu-
ator test stand. The data (temperature and vibrations) obtained in these experiments
were used to test the neural network-based diagnostics system. The system results are
described using the percentage of false positive, false negative and misclassification rates.
The authors admit that if there are significant changes in load characteristics, which result
in a difference in baseline conditions, a classifier that is not appropriately trained cannot
work correctly under these conditions.

The research described in [17] investigates a data-driven approach for condition mon-
itoring consisting of feature extraction and fault classification. The proposed approach is
based on assigning a class that relates to the condition of the EMA based on the sensor
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measurement. The feature extraction aims to expose faults that produce signatures in the
frequency domain that are synchronous with the motor position.

This method is composed of several steps. Sampled data of measured signals are res-
ampled to the position domain. Position domain is more suitable for EMA because fault
signatures are periodic with the motor position. Resampled data are then transformed
into the frequency domain by computing the power spectral density (PSD). The power
spectral density data are filtered, converted to energy bins, and reduced by a feature space
transformation process.

The health status is classified based on the Bayesian classification, which has been
trained on known data. The method is demonstrated on simulated data and a real exper-
iment. It utilises vibrations from an accelerometer and electric current measured as input
to detect the ball bearing defect (BBD) and ball screw defect (BSD). The ball bearing
defect can be detected using both signals; however, the measured current was not efficient
in the case of the ball screw defect. The authors concluded that vibration measurements
are more suitable for fault detection based on experiments.

The research in [37] explores data-based monitoring methods that can be applied to
different types of EMA. The methods are based on the automated extraction and the
analysis of signal features such as steady value, overshoot, settling time, or presence of
unexpected peaks that characterise the system’s dynamic behaviour.

The study is focused on feature extraction, primarily from the current and position
measurement. The Principal Component Analysis has been used to decrease data redund-
ancy.

The instrumented test rig has been built to evaluate the performance of the proposed
algorithm. The test rig is composed of two EMAs connected to the linear guides. One
actuator serves as a load to the tested actuator.

The data has been collected under nominal operating conditions (absence of faults) and
after introducing the typical faults such as lack of lubrication, spalling and backlash. Two
presented methods collect and evaluate features such as steady value, overshoot, settling
time, unexpected peaks and standard deviation of a measured entity. The algorithm can
detect the faults introduced, although detection in the early stages of degradation was not
always possible.

The research presented in [26] deals with hybrid vibration-based fault detection and
classification for EMAs. The paper investigates a technique for the early detection of latent
faults in EMA ballscrews. The two faults considered in the study are a partial jam and a
spall (i.e. metal flaking) in the actuator ballscrew mechanism.

The concept of using ballscrew kinematics for estimating the health condition of an ac-
tuator is based on the characterization of the interaction between the balls in the ballscrew
mechanism and the fault region.

The Computed Order Technique (COT) has been used to transform transient vibrations
measured during variable speed motion into ordered vibrations.
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Vibration signatures are characterized by their frequencies. The ball-passing frequency
concerning a fixed point on the nut, the ball passing frequency concerning a point fixed
on the screw and amplitudes of these frequencies are used for fault classification. The
theoretical concept has been tested and evaluated on the data from the real test stand
composed of three different actuators: one nominal, one injected with faults, and the third
providing dynamic load.

The health monitoring method of the electromechanical actuator using the Σ feature
has been proposed in [36]. The method is based on evaluating the root mean square
(RMS) of three phases currents. The method has been focused on an electromechanical
actuator specifically designed for aircraft, and it is equipped with an Electronic Control
Unit (ECU). The unit is directly assembled on the actuator, where all the control systems
(current, speed and position control) are implemented. The ECU operates through a 28
Vdc power supply and controls the three-phase electric motor.

Many sinusoidal position cycles with an external load greater than the nominal one have
been performed. During experiments, the fault was injected by gradually eliminating the
lubricant. The proposed health monitoring method has been applied to the data measured
and evaluated results. The Σ feature proved to be a valuable parameter for the health
monitoring method, which uses historical data.

2.3 Summary

Methods for condition monitoring, diagnostic and detection of faults and degradation can
be divided into two groups.

Model-based approaches require creating an accurate mathematical model that simu-
lates a given device. The advantage is that it is possible to monitor individual states of
the model, which can be used for diagnostic. The disadvantages are that the accuracy
of the simulations depends on the specific implementation of the model and also that the
simulations can be computationally intensive. In addition, such models are designed for
only one application, and if they are to be used elsewhere, the model must be modified,
re-validated and device parameters re-identified.

In contrast, data-based approaches use sensor networks that provide data for diagnostic
purposes. The system is viewed as a black box, and only its output parameters are mon-
itored. The advantages of this approach are better portability and usability in other
applications. The disadvantage is the need for interventions in the monitored equipment
by installing sensors, cabling, power supplies, and units for data collection, processing and
evaluation.

Methods for fault detection and diagnosis are important elements that can increase
safety reliability and help reduce operating and maintenance costs. However, their imple-
mentation is associated with many problems. The fault detection approaches described in
section 2.2 often rely on systems that require additional elements, including power supplies,
cabling, additional sensors or computing and signal processing units for proper operation.
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These components not only increase weight, complexity and price but also complicate
the installation and handling. In addition, the implementation of such a system requires
modifications and interventions in the actuator in order to attach additional elements and
cabling.
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Chapter 3

Aims of the doctoral thesis

This work aims to propose diagnostic methods for electromechanical actuators. The main
goal is to eliminate some problems of conventional methods described in section 2.3, such
as the need for intervention in the actuator by installing additional sensors, cabling, and
supporting elements. The presented solution lies in the use of a non-intrusive approach.
The thesis is focused on the diagnostics of electromechanical actuators with brush DC
motors that are still often used in industry due to their low price and easy controllability.
They are usually utilised in low power applications for positioning valves, doors, dampers,
or locks [9], [16].

3.1 Specific aims of doctoral thesis

This thesis aims to design, test and evaluate methods for detection of faults and degrad-
ations in EMA using a non-intrusive approach. To achieve this goal, it is necessary to
accomplish several steps:

• Analysis of specific EMA faults: Linear electromechanical actuators typically
consist of a motor, gearbox, lead screw, movable rod and body. Each of these com-
ponents is prone to a different type of failure with a different probability of occurrence.
The aim is to analyse the individual components in order to clarify the mechanisms
that lead to failures or degradations. This analysis is used to select defects that are
monitorable using a non-intrusive approach.

• Design of fault detection methods: The main goal is to design methods for
EMA fault detection with a brushed DC motor. Emphasis is placed on a non-
intrusive approach, easy portability, simple implementation and low computational
complexity.

• Design of testing system for EMA: To perform experiments with electromech-
anical actuators, creating an automated test system is necessary. Its main task is to
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automatically conduct experiments according to predefined parameters and collect
and process the tested actuator’s data.

• Testing of proposed methods: The proposed solutions must be comprehensively
tested to verify fault detection abilities in various operating conditions, including
variable speeds and loads during different motion profiles.

• Evaluation of method properties: The reliability and durability of the presented
methods must be evaluated. Experiments are needed to help identify situations with
risks of failure and propose a procedure to minimize these risks.
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Chapter 4

Analysis of EMA faults

4.1 Construction of EMA

The linear electromechanical actuator is an actuator that converts the rotary motion of
a motor into a linear displacement. A typical actuator with a DC motor is shown in the
Figure 4.1.

Figure 4.1: Linear electromechanical actuator with brushed DC motor [source:
www.firgelliauto.com], 1 - DC motor, 2 - Gearing, 3 - Lead-scew, 4 - Nut, 5 - Rod, 6 -
Housing, 7 - Limit switches
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The EMA consists of a brushed DC motor attached to the gearbox. The gearbox with
reducing gears drives the lead-screw on which the nut moves. The nut is equipped with
a pin that slides in the housing groove and prevents the nut from turning. A lifting rod
transmitting the linear movement of the actuator is attached to the nut. The actuator can
be equipped with limit switches triggered when the nut is in one of the extreme positions.
The control unit can use the provided information to stop the movement in a given direction
in order not to damage the actuator.

R
O

D
H

O
U

S
IN

G

GEAR BOX

M
O

T
O

R

POWER
DRIVE

ELECTRONICS

POSITION
SENSOR

ACTUATOR
CONTROL

ELECTRONICS

ELECTRICAL
POWER

INPUT
COMMANDS

EMA
POWER

ELECTRONICS
CONTROL

Figure 4.2: Block layout of EMA

The block diagram of the electromechanical actuator with control elements is shown
in Figure 4.2. The actuator itself consists of a motor, a gearbox, a housing, a lifting rod
and a position sensor. The gearbox is typically consisted of reducing transmission on the
leading-screw shaft, either by gears or a belt drive. The actuator is controlled by control
electronics, consisting of power drive electronics and an actuator control electronics using
information from the feedback sensor. The controller compares the position data with the
required input parameters and creates a control action for the power drive electronics. The
power drive electronics composed by the H-bridge then supplies the motor.
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4.2 Standard EMA blocks

4.2.1 Motor

The motor of the electromechanical actuator produces a rotary motion, which is then
converted to linear, most often employing gears and a screw rod. The classic brushed DC
motor consists of a stator, rotor, commutator, supply cables and cover. Motor faults are
among the most common actuator faults [6]. The leading cause is the mechanical stress
when working at high speeds, which leads to considerable heating in their housing. The
preview of the open engine is in the image 4.3.

Figure 4.3: Opened motor housing

4.2.1.1 Rotor

The rotor is a rotating part of the motor, consisting of a shaft, coils and a commutator. The
rotor is one of the most mechanically stressed parts of the engine. Rotor faults are primarily
associated with coil winding [21]. These defects are mainly caused by the thermal stress of
the winding. Typical faults include winding faults (short circuit and open winding, which
are closely examined in section 5.1.3), commutator related faults, and rotor imbalance.

Commutator The commutator is a mechanical rotary rectifier that switches the current
to the stator coils. It is located on the motor rotor and is supported by graphite brushes
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located on the stator. High currents pass through the commutator, which makes it a
highly stressed part of the DC motor. The operation of the commutator is accompanied
by unwanted sparking caused by air gaps between the commutator blades and the graphite
brushes. During operation, there is gradual wear of both the commutator and graphite
brushes, which is the most common source of failure of these machines.

The commutators exhibit defects such as blackening or burning of the slats (commutator
segments), copper gathering, vibration, corrosion or breakage of the slats. Common causes
of these faults are overloading, imperfect contact between the commutator and the brush,
uneven brush pressure, brush jams in the dirt grooves or loose commutator blades.

Commutator faults can cause reduced motor power, increased vibration, sparking, or
overheating of the motor.

Imbalance Balancing issues are discussed in [18]. Motor imbalance is caused by uneven
mass distribution in the rotor. The centrifugal force caused by the unbalanced mass is
transmitted to the bearings at each revolution and results in motor vibrations that negat-
ively affect the support structures. As the speed increases, so does the vibration generated
by the centrifugal force, as the centrifugal force increases with the square of the speed.

The most common source of inadequate balance is poor production processes. In addi-
tion, imbalances can also occur as a result of operation over time. Thermal loading during
operation can result in an uneven expansion of the material and thus a shift in the centre
axis of inertia, which also contributes to poor balance.

Engine balance or vibration can be monitored using accelerometers. Imbalance detec-
tion could be based on monitoring the increase in vibration associated with engine rotation
during nominal operation.

4.2.1.2 Stator

The stator of a brushed DC motor with permanent magnets consists of a housing in which
the magnets and commutator brushes are mounted. Thanks to the simple concept of this
type of engine, it is not an overloaded part of the engine. There is a risk of malfunction if
one of the permanent magnets is released or shifted. In such a case, the stator magnetic
field would be disturbed, or the neutral plane would shift. Disruption of the stator magnetic
field reduces motor efficiency, a shift of the neutral axis to higher commutator sparking,
and greater heating.

As the operating temperature increases, the magnetic induction decreases, which changes
the electromagnetic constant of the motor. At higher temperatures, irreversible changes
may occur depending on the type of magnetic material, and after exceeding the Curie
point, magnetisation is lost [3]. The maximum operating temperature is 300 ◦C in the case
of SmCo and 150 ◦C in the case of NdFeB magnets.
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4.2.2 Connectors and cables

The supply cables are usually firmly connected to the control unit, either by soldering or
using connectors. They can be mechanically damaged if they are exposed to vibration,
mechanical stress or excessive temperatures. These phenomena can lead to disconnection
of the connectors or, in the case of cables, to a short circuit, which will cause the actuator
to lose functionality. Excessive stress can also occur if the current-carrying capacity is
exceeded. In this case, temperatures will rise, which could damage the cable insulation
or damage the contacts. Poor contact is characterised by increased transient resistance,
limiting the current to the actuator and thus reducing its performance.

4.2.3 Mechanical transmission

The mechanical transmission between the motor and the actuator leading-screw consists
of a set of reducing gears in a gearbox. Diagnosis of gearbox problems could be based on
vibration, temperature, or acoustic emission measurements. The gearbox is in the picture
4.4.

Figure 4.4: Opened EMA gearbox
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4.2.3.1 Gears

Gear transmissions are prone to defects associated with tooth surface damage and tooth
breakage damage. The surface of the teeth can be damaged by abrasive wear (particles in
the lubrication), adhesive wear (seizing at the head of the teeth), permanent deformation
(plastic, pitting, corrugation, grooving, burrs) or peeling of flat parts. Furthermore, surface
fatigue of the teeth is caused by the propagation of subsurface cracks arising from cyclic
surface stress and manifests itself as pitting. Damage due to tooth breakage is caused
by a sudden overload above the strength limit or a manufacturing failure of the material.
Another cause may be fatigue fracture of the teeth caused by cyclic overloading above the
material’s fatigue or time strength limit.

4.2.3.2 Bearings

The rotating parts of the actuator use plain bearings, both at the actuator bolt and at the
gears. Plain bearings suffer from interrelated problems associated, in particular with lub-
rication, backlash, stability and wear. Their issues are described in detail in [10]. Typical
plain bearing failures are dry friction problems, oil instability, grooving (circumferential
grooves from abrasive particles/dirt), fatigue cracks in the composition (excessive dynamic
stress), corrosion (for lead compositions due to acidic oxidising components of the oil),
cavitation vibrations, and erosive wear or pitting from electric shocks (ungrounded rotor).
These faults, which lead to bearing instability, are most often manifested by heating, vibra-
tion and deterioration of rotation. The resulting instability of the bearing then represents
a state in which self-excited vibrations occur due to various circumstances.

4.2.4 Leading-screw and nut

The actuator leading-screw, which is attached to the gearbox’s output, consists of a
threaded metal rod and, together with the movable nut, serves to convert the rotary mo-
tion into a linear one. The preview of the matrix in the open actuator is in the picture 4.5.
4.5.

The mechanical defects arising in these two components are similar in nature and
interact. Defects such as insufficient lubrication, spalling or backlash are typical examples
[37].

Insufficient or poor lubrication leads to excessive friction and increases temperatures
at the point of contact of these components and their subsequent wear. In a critical case,
a complete jam may occur, and thus the actuator may lose functionality.

If the materials wear out, small pieces may start to peel off (crumbling), further de-
grading their surface. The result is permanent damage, which leads to a deterioration in
the actuator’s smoothness of movement and performance.

The backlash caused by the wear of these two components results in kickbacks. If
they occur, the smooth running of the actuator is disturbed, which is loaded by excessive
shocks. These faults manifest as a continuous or sudden increase in the actuator load. Their
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Figure 4.5: Nut (yellow-green) in the actuator housing

detection could be based on measuring the temperature of those components, monitoring
the trend of increasing peaks in the current taken or monitoring increased vibrations.

4.2.5 Actuator body/housing

The actuator housing is a durable component, which can be expected to have a low defect
rate. Defects of housing are most often associated with poor design, poor production
process or used material. Housing main task is to connect the entire actuator structure
and prevent dirt from entering.

4.2.6 Power supply

The power supply must be powerful enough to provide the necessary power. Inrush currents
at motor run-up can be several times higher than the maximum continuous current at full
load. The power supply must therefore be able to cover these spikes without voltage drop.
Faults of power supplies are usually caused by the degradation of loaded components. The
most critical components of switching power supplies are electrolytic capacitors, power
MOSFETs and diodes [15].
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The main cause of degradation of electrolytic capacitors is the evaporation/drying of
the electrolyte, which leads to an increase in series resistance and a decrease in capacity.
At constant temperature, there is a linear loss of capacity over time and an exponential
increase in the series resistance described in equations 4.1 and 4.2.

ESR(t) = A1e
B1t (4.1)

C(t) = A2 +B2t (4.2)

where A1, A2, B1, B1 are coefficients of specific capacitors and t is time. Fast Schottky
diodes, which are used in switched power supplies, degrade by loading with high currents,
voltages and temperatures on the contact interface of metal and semiconductor. The
degradation results in a significant increase in current in the reverse direction. This process
can be described using the Arrhenius model as

∆IR
IR

= Ae(−
Q
kT

)t (4.3)

where IR is reverse leakage current, A the constant for a particular diode, Q the activation
energy, k the Boltzmann constant and T the absolute temperature.

Degradation of power MOSFETs is caused by mechanisms such as hot carrier injection
(HCI), bias temperature instability (BTI), time-dependent dielectric breakdown (TDDB)
or metal electro-migration. MOSFETs are electrically and thermally stressed, which can
be described by the model in the equation.

∆XR

X
= AeV

m

e(−
Q
kT

)t (4.4)

where X are the temperature sensitive electrical parameters, A is the transistor coeffi-
cient, V is the voltage, m is the constant, Q is the activation energy, k is the Boltzmann
constant and T is the absolute temperature.

4.2.7 Control unit

The control unit consists of a power H-bridge powered by the power supply and driven
by signals from the controller. The H-bridge is an integrated semiconductor device that
must sufficiently handle the power spikes of the actuator. If the bridge is overloaded, one
of the power transistors could be damaged due to the degradations described in the 4.2.6
chapter. The damaged transistor ceases to be controllable, and it is stuck in a close or open
state. If one transistor is permanently open, the actuator’s controllability is lost. The fault
manifests in zero current when running in one direction. When multiple transistors are
open, there may be a complete loss of control. If the damaged transistor is permanently
close, when the second transistor on the same branch is switched on, the source is loaded
with very little resistance (typically tens to hundreds of mΩ), and the bridge behaves like
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an electrical short circuit (shown in the Figure 4.6). This condition is hazardous because
it exposes the circuit to high currents. Faults in the switching transistors can be detected
by measuring the direction and magnitude of the current flowing through the bridge and
comparing these ranks with the control signals. Problems can also occur in the case of
poor control when two transistors on the same branch are closed at the same time. Modern
integrated bridges contain safety features that try to prevent similar conditions.

4.2.8 Position sensor

The position sensor is a critical component for actuator control. It provides information
for the controller, which uses it to create an action for the control circuit. In the event
of a sensor fault, the actuator could be overloaded or damaged by the control unit, which
would try to drive to the incorrectly measured position. Depending on the sensor type,
common problems such as offset, drift, nonlinearity, gain error, hysteresis and noise [6],
[25].

4.3 Additional actuator blocks

Some actuators may be equipped with supplementary sensors that can be used for control
purposes and FDD or condition monitoring.

4.3.1 Force sensor

The force sensor is usually designed as a flexible member with a foil strain gauge bridge.
The life of the strain gauge is determined by how much stress it is stressed. In general,
lower cyclic loading amplitudes lead to longer sensor life. A sensor fault can occur if the
maximum permissible load is exceeded. It will cause an overrun from the elastic area to
the plastic area and cause irreversible damage to the sensor. If the sensor is stressed to
the point of plastic deformation, permanent damage can occur, manifesting an imbalance
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of the bridge in the idle position. The detection of these faults can be based on measuring
the bridge balance, measuring the change in resistance or monitoring signal losses/failures
under cyclic loading caused by cracks in the strain gauge.

4.3.2 Angle sensor

The angle sensor in the form of an incremental rotary encoder (IRC) is prone to defects
associated with the degradation of the light source and the sensing element. Faults such as
extended sensor pulses, jitter (deviation from true periodicity), encoder stepped pulses, low
output pulse levels, extended rising and falling edge duration of pulses or flicker (irregular
pulse shape) can occur.

4.3.3 Accelerometers

Accelerometers used to measure vibrations suffer from degradations associated with offset
change and gain error [24]. The accelerometer offset does not affect the vibration meas-
urement because it is a DC component. The problem caused by gain error manifests as
a change in the amplitude of the measured vibrations. Another problem may be the at-
tachment of the accelerometer to the structure. In the case of loosening, reflected by the
change in the stiffness of the accelerometer-object connection, the frequency response and
sensitivity change fundamentally.

4.3.4 Temperature sensors

Temperature sensors are prone to degradation, especially related to thermal stress and
material ageing. These degradations are most commonly manifested as sensor offset and
gain error, and some sensor types may also exhibit hysteresis and linearity problems. For
temperature sensors, the response speed is also important, which can deteriorate in poor
sensor attachment due to, for example, vibration or thermal expansion of the material.

4.4 Analysis of relative probability and criticality of faults

The fault analysis of the electromechanical actuator is based on the article [6]. The in-
formation from the article has been modified and supplemented to meet the needs of an
EMA with a brushed DC motor. The outcome of the analysis is shown in the Table 4.1.
The Table contains information on the frequency of faults, which is defined as the relative
probability of occurrence, and the relative criticality of faults. Parameters range from 1
for low to 10 for high.
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Component Failure Probability Criticality

Motor

Rotor - winding short 5 5
Rotor - open winding 4 4
Rotor - imbalance 3 6
Commutator - wear 4 8
Stator - complete magnet separation 2 10

Connectors
and cables

Short circuit 5 10
Intermittent contact 5 10
Insulation damage 5 8
Fault on soldered joints 5 8

Mechanical
transmission

Bearings - spalling 5 3
Bearings - binding/sticking 2 4
Bearings - corroded 2 5
Bearings - backlash 7 3
Gears 2 6

Leading-screw
Spalling 5 3
Excessive wear (backlash) 7 3

Nut

Spalling 5 3
Excessive wear (backlash) 7 3
Binding/sticking 5 3
Bent/dented/warped 1 5

Body/housing
piston/rod - crack(s) 1 10
Mountings - crack(s) 1 7

Power supply
and control
unit

Cables - short/open circuit 5 10
Intermittent performance 5 8
Thermal overload - dielectrics breakdown 6 10
Degradation of capacitors 4 8
Degradation of transistors 2 8

Table 4.1: Analysis of relative probability and criticality of faults

4.5 Summary

A typical linear electromechanical actuator consists of a motor, gearbox, lead screw, nut,
cover, supply cables and additional components such as a control unit, power electronics
and sensors. Each of these components is prone to failure in different ways, and the
frequency and probability of occurrence vary.

This chapter contains a detailed analysis of the EMA with a brushed DC motor. The
analysis describes the individual elements of the actuator and its components. For each
part, the faults that may occur in a given element and the mechanisms leading to these
faults are described. In addition, the analysis is supplemented with information about the
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possibilities of monitoring potential defects and degradations. The analysis ends with a
Table summarising the relative probability and criticality of faults. This Table was created
based on the available literature and has been modified to meet the needs of EMA with a
brush DC motor.

Based on the analysis presented in this chapter and the requirements of a non-intrusive
approach, specific faults further investigated in the presented thesis are selected.
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Chapter 5

Design of FDD methods

5.1 Defect selection

The current trend in the fault detection and diagnostics of electromechanical actuators
is leaning toward decentralised solutions [8], [19], [36]. The high degree of integration
and good availability of components suitable for measurement and data processing allows
performing diagnostics directly on the actuator. This solution, sometimes called a smart or
intelligent actuator, comprises an actuator with a dedicated unit responsible for integrated
monitoring, controlling, and evaluating health status [8]. Outputs of the local diagnostics
are represented by individual indicators; their values are then passed to superior systems,
which evaluate the overall operability. The FDD of EMA presented in this thesis follows
idea of distributed dedicated monitoring.

The key principle of proposed fault detection for EMA with brushed DC motor is
the non-intrusive approach. The main goal is to design fault detection methods that do
not require additional components, EMA modifications, unique installations, sensors or
sources of information. A suitable solution that withstands listed requirements lies in
the use of motor current measurement. The main advantage of this approach is that it
does not require intervention in the actuator. The current can be measured either with
current clamps on the supply cables or using the control unit. In addition to the standard
protection elements, highly integrated control units are usually equipped with the current
senors. In the case of devices driven by PWM, such as brushed DC motors, the control
unit may provide measurements of the current flowing through the H-bridge transistors.

The unique features of the brushed DC motor current signal can be utilised for fault
FDD. However, the amount of information contained in the signal is limited, and therefore
such defects must be selected, the detection of which is unambiguous and unmistakable.
The selection of specific faults is based on the analysis of EMA faults described in chapter
4. This analysis provides information about the effects of individual failures and their
relative probability and criticality. These criteria were taken into account to select defects:

• Selected defects are reliably detectable in the motor current: The mani-
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festation of different defects can vary significantly. Some may not be detectable, and
others may be hidden in the signal. It is necessary to focus on such faults, which are
detectable in the signal in all operating modes of the actuator.

• They have a high level of probability of occurrence and criticality: The
level of both values can vary for each type of failure. The most worrying defects are
those for which none of the parameters is low. By comparing the multiple of both
parameters, it is possible to obtain information about the severity of individual faults
(see Table 4.1).

• The manifestation of them is similar for a variety of brushed DC motors:
Brushed DC motors can vary in many parameters such as maximum power, nominal
current, torque, maximum speed, number of winding coils, or commutator segments.
The effect of selected faults should manifest in the same way regardless of parameter
composition.

The specific defects are selected considering the above mentioned criteria and charac-
teristics of current signal.

5.1.1 Signal description

The fault detection methods can be based on evaluating the features of electric current
specific for EMA with brushed DC motor. The typical current waveform, influenced by
mechanical and electrical properties of the actuator, can be seen in Figure 5.1.

Figure 5.1: Electric current during the controlled run-up of EMA with zoomed detail of
switching effect

A PWM control of motor speed causes the high-frequency component in the raw current.
The current switching is driven by a PWM signal, defined by the frequency fP and duty
cycle D expressed in percentage. The frequency of PWM (fP ) should be high enough to
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have the switching period lower than the time constant of the motor coils. The effect of
switching is more noticeable at lower values of D and completely disappear at D =100%.
It can be seen in Figure 5.1 during the motor run-up. The D is about 50% at the beginning
to decrease the inrush current. It increases up to 100% with the rise of the motor speed,
and the effect of switching disappears.

The low-frequency oscillations in the waveform are caused by commutation spikes,
which occur when the brush breaks the contact with the commutator sector connected to
the energized winding. Figure 5.1 shows the filtered signal where the switching effect was
suppressed, while commutation spikes are still visible. Commutation spikes are directly
related to motor rotation, and therefore, this information might be used to detect actuator
jams. In addition, the electrical imbalance of commutation spikes can be used to monitor
windings conditions. Based on these findings, the thesis further elaborates methods for
detecting EMA jams and winding shorts of motor.

5.1.2 Jam fault description

The actuator jam is caused by a fatal failure of its components. There are a number of
mechanisms that can lead to jams as a result. The most common factors are excessive
overload or wear, insufficient lubrication of moving parts, mechanical damage or thermal
stress, manufacturing defects or poor maintenance. The analysis in chapter 4 points to
several specific faults causing the jam of the actuator, such as loose magnets due to thermal
stress, fatal damage of the mechanical transmission due to severe overload, insufficient
lubrication of moving parts (screw, nut, bearings or mechanical transmission), permanent
deformation of some actuator parts or excessive external load. As a result, the jammed
actuator cannot move, which causes further overloading and the possible extent of the
damage.

The jam of the actuator results in increased currents. The overcurrent protection might
be used as a countermeasure against the jam; however, it is not efficient for all modes of
operation. The first problem is the high inrush current that must be considered. The
inrush current manifests by a high current spike, which disappears when the winding is
magnetised during the motor run-up. This phenomenon usually takes tens of milliseconds,
but the peak value may overcome the nominal current multiple times. An example of an
inrush current can be seen in Figure 5.2. This example shows that the actuator with the
maximum rated load of 2 A may have more than three times higher current spike. The
overcurrent protection should be set close to the maximum rated load, but at the same
time, its reaction must not be too fast. Otherwise, it would switch off the motor during
each uncontrolled run-up.

The second issue is that the magnitude of the current during a jam depends on the
specific operating conditions. The actuator can be deliberately controlled at lower power
ratings, for example when controlled by a force sensor that limits the maximum available
force. Under these conditions, the actuator is operated at low PWM values, which results
in a lower motor current. If a jam occurs, the maximum current value may not exceed
the rated current of the actuator at all. However, this condition is still severe because
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Figure 5.2: Inrush current during the motor run-up

the actuator cannot move under the given conditions. A similar situation can occur if
the motor’s voltage is intentionally reduced to reduce the overall power. Simple current
protection would be unsatisfactory in these cases, and no jamming would be detected.

Actuator jamming is a serious problem that requires considerable attention. In this
thesis, a method for jam detection for electromechanical actuators with a brush DC motor
is designed and validated.

5.1.3 Winding short fault description

Electrical faults in motors are among the most common faults in electromechanical ac-
tuators [6]. The rotor winding shorts arise in the case of insulation failure between coil
turns. The most critical are shorts between the individual coils of the rotor [25]. It is
usually caused by the degradation of the insulation due to thermal effects, contamination
or centrifugal force (the more detailed overview of winding short causes is provided in [1]):

• Thermal effects - thermal damage of the most commonly used insulating varnishes
manifests in an oxidative chemical reaction. The bonds in the organic parts of the
insulation can break at sufficiently high temperatures. Thermally-induced vibrations
can cause chemical bonds breakage. The degraded material is more brittle and has
lower mechanical strength. Thermal damage is caused by overloading, poor engine
design, poor production, insufficient maintenance or pollution. Manifestations of
thermal overload depend on the type of insulation and are characterised by peeling,
cracks, leakage or discolouration of the insulation.

• Repeated overvoltage - high peak voltage applied to the coil can cause a partial
discharge in places where the wire is not well insulated (e.g. air gap). Repeated
partial discharge can break the insulation in points or reduce its insulation properties.
This phenomenon depends on the size of the voltage peaks and manifests itself only
at higher values. It is unique in machines operating at low voltage, but it can occur
during transients caused by fault conditions.
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• Contamination - contamination of the windings leads to many problems, includ-
ing increased thermal damage (due to blocked air ventilation) or chemical damage,
where degradation of the insulation materials can occur. Dust, iron dust from other
components, fly ash, oil leaking from the bearings, moisture from the atmosphere or
other chemicals attacking the insulation materials can be considered as sources of
pollution. Another problem is the ingress of particles that have an abrasive effect.
Such particles can mechanically damage the winding insulation to the point where it
is completely exposed and therefore prone to short circuits. Signs of the contamina-
tion may appear as greasy or wet films on the engine and may also be accompanied
by dark carbonised marks.

• Centrifugal force - the centrifugal force acting on the components of the rotor
winding insulation system tends to deform the coil conductors and disrupt the coil
insulation. If this system is released, vibrations may occur, which will cause the
insulation to abrade. These phenomena occur when the rotor coils are incorrectly
attached. Attachment failure can be caused by mechanical stress, poor construction
or material defects. Unbalanced rotor, frequent turning and braking or exceeding the
maximum speed can have a similar effect. Deformations caused by centrifugal force
can manifest as increased engine vibrations.

The defect of shorted winding causes a reduction in torque, which usually does not lead
to a complete loss of EMA function. This defect is exhibited by a change in resistivity,
inductance, and the back electromotive force’s magnitude. The extent of these changes
depends on the number of shorted turns and arranging the winding [25]. The effect of
winding short can be seen in Figure 5.3. The motor’s electrical imbalances, caused by
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Figure 5.3: Relative current measured during one revolution of the motor with 8 commut-
ator segments: a) electrically balanced winding, b) winding affected by a short

winding short, can result in decreased motor efficiency, weakening magnetic fields, increas-
ing current, overheating, and vibrations.
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Due to the severity and high probability of a winding short, a new fault detection
method is presented in this thesis. This method is designed dedicatedly for electromech-
anical actuators with a DC card motor.

5.2 Design of jam detection method

The algorithm of jam detection method is depicted in Figure 5.4. Raw sampled data from

Figure 5.4: Block diagram of the jam detection algorithm

the block ”Data acquisition” are first filtered in two branches in order to get rid of specific
components contained in the signal (see section 5.1.1). The first block, called ”Suppression
of switching”, suppresses high-frequency components caused by PWM motor control. The
output from this block still contains commutation spikes that provide information about
the motor’s movement. The effect of PWM switching and its suppression can be seen in
the zoomed detail of Figure 5.1. The second filtering block, called ”Suppression of spikes”,
aims to eliminate both high-frequency PWM switching components and low-frequency
commutator oscillations. The output represents averaged motor current over time and
gives the information on whether the motor is under load.

Standard digital filters (FIR/IIR) can be computationally intensive; in this paper,
a different approach was chosen. The filtration has been done by averaging data with
different windows length without overlap. This approach worse resolution in time but
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reduces computational complexity. Since the size of filtering windows is derived from the
EMA parameters, the data produced by filters are still suitable for fault detection, despite
the degraded time resolution.

The length of the window for suppression of switching is based on the sampling fre-
quency fS and PWM switching frequency fP as

Nwp = a · fS/fP (5.1)

where Nwp is the length of the window, a is the factor that extends averaging over multiple
periods, and the fP is the lowest PWM switching frequency.

The suppression of commutation spikes is based on the EMA’s lowest speed of a motion.
The length of the window for suppression of commutation spikes is calculated as

Nwc = fS · Tmax (5.2)

where Nwc is the window’s length, fS is the sampling frequency, and Tmax is the longest
time of commutation spike measured during the slowest possible movement of EMA without
load.

The filtered data with the commutation oscillations are used to detect movement, while
the filtered data without oscillations are related to load. The proposed algorithm measures
a peak-to-peak (pp) value of the signal with commutations for motion detection. This
value is calculated using the window with a length equal to Nwc. This parameter is also
computed without overlap to reduce computational complexity.

The last part of the algorithm is the fault detection and evaluation that process peak-
to-peak and averaged signals. The presence of significant values of the peak-to-peak signal
represents the rotation of the motor. In contrast, low values mean that the motor is not
moving. The Xpp threshold is used to distinguish these two states. In the case when the
motor is not moving, it can be either jammed or stopped. The averaged current is used to
assess these situations by comparison with the Xa threshold. If the average current is above
the Xa and at the same time the peak-to-peak signal is below Xpp, a fault is detected. The
peak-to-peak signal and averaged current values can substantially vary during operation,
mainly due to the change in load, movement speed, and operating regimes. Thresholds
must be set accordingly to cover all possible states. They can be determined from the
measurements on EMA without any load at the lowest possible speed. Values of peak-to-
peak signal and averaged current are minimal in this condition compared to all possible
states during the nominal operation of EMA. The proposed method uses thresholds that
are established as 50% of these minimal measured values to ensure acceptable margins.
This selection covers all possible regimes of EMA operation, and therefore it is applicable
for fault detection.

When a fault is detected, it is acknowledged by the duration of occurrence. It is assumed
that the jammed actuator remains in this state for some time. The acknowledgement pro-
cedure prevents incorrect identification of faults that may occur during the slow movement
of the actuator. A necessary condition is that evaluation time To is always higher than
Tmax.
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5.3 Design of winding short detection method

During the operation of the brushed DC motor, the damaged winding is energised twice
in one revolution, every time with opposite polarity. Thus, the increased current’s elec-
trical imbalance should be noticeable at twice the motor’s speed. The motor current signal
analysis shows that the commutation peaks’ dominant frequency is a multiple of the mo-
tor’s speed. The relation between the motor speed expressed as motor frequency fM ,
fundamental commutation frequency fC and frequency of winding short fault fws can be
described by the following equations

fC = NC · fM (5.3)

fws = 2 · fC/NC = 2 · fM (5.4)

where NC is number of commutator segments given by commutator arrangement.
The algorithm for winding short detection is depicted in Figure 5.5; it comprises four

parts; data sampling, data selection, spectrum analysis and fault evaluation.

Figure 5.5: Block diagram of the winding short detection algorithm

The sampled data are processed in windows of the length based on the system’s para-
meters, such as the maximal speed of rotation and number of measured rotations. The
measured time interval should be short of catching the motor’s steady operation but with
reasonable resolution in the frequency spectrum. Also, it should be long enough to capture
periodicity in the measured signal. Therefore it is preferable to perform the detection at
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higher motor speeds. The measured time interval is established for 50% of motors speed
as

Td = r · 60/(vmax · 0.5) (5.5)

where r is a number of revolutions required for analysis and vmax is the maximal rotation
speed of the tested motor in RPM (Revolutions Per Minute). The resolution in the fre-
quency spectrum is directly related to the measured time interval, and it is described as

f∆ = fS/NW = fS/(fS · Td) = 1/Td (5.6)

where fS is the sampling frequency and NW is the length of the window. Ten per cent or
lower values of the lowest frequency of interest should be sufficient resolution for spectrum
analysis.

The electromechanical actuators can be controlled to a specific position, to required
motion profiles or other desired parameters based on the particular use case. Rapid control
actions of the controller cause dynamic changes in the EMA’s speed and direction of
movement that are also reflected in the measured current. The proposed method brings a
novel approach to dealing with the dynamic changes of EMA behaviour during control; the
fault detection is provided in short time segments where the signal is near a steady state.
The kurtosis is used to assess steady state; outliers primarily determine its value [20]. It
reaches highs when the signal is not regular, and conversely, lows indicate a steady state.
The motor current signal can also vary with the speed and load; the coefficient of variation
is used to compensate for these fluctuations. Multiplying these parameters produces an
indicating signal that is calculated over the Td period as

Is = k · ĉv =

1
n

n∑
i=1

(xi − x)4(
1
n

n∑
i=1

(xi − x)2
)2 · s

x
(5.7)

where k is kurtosis, ĉv is coefficient of variation, n is number of samples, x is mean and s
is standard deviation. The minimum in every ten samples of the indicating signal is used
to select data that are suitable for subsequent analysis.

The detection of a winding short fault is based on the Motor Current Signature Analysis
(MCSA) [40], [41] using amplitude spectrum. Spectrum analysis is performed only on the
block of data that the data selection procedure provided. The length of the window for
analysis given by the Td is therefore always the same. The main goal of this analysis
is to identify fC and then search winding short fault represented by fws. The spectrum
is gradually analysed in different ranges depending on the maximum engine speed. The
border frequencies of desired range can be expressed by the fC as

fC = DM ·NC · vmax/(60 · 100) (5.8)

where DM is the desired percentage of maximum motor speed.
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The first step of the algorithm is to find a significant peak (fi). The spectrum is
analysed at a narrower frequency range corresponding to 50 to 100% of maximum motor
speed at first. Only the fundamental frequency of fC or its second harmonics f2C should be
present within this range. When no significant frequencies are found, the range is extended
to 25 to 125%, and the process is repeated. This wider range is beneficial in cases when
the motor is rotating faster than maximal RPM given by the manufacturer (actual fC is
higher than maximal expected fC refer to 5.8) or slower than 50% when the peak of second
harmonic is insignificant. However, the analysis in the narrower frequency range must
always be performed first to prevent confusion of higher harmonics of fC with fundamental
in the broader range. The required range of the spectrum is always searched in descending
order until a peak is found. If no significant peaks are found, the tested block of data is
discarded. Otherwise, the amplitude of the founded peak is compared to the mean value
in this range. The low ratio between them indicates the changing motor speed (smeared
peak), and the data block is also excluded from the analysis. The peak with a high ratio
is further investigated. The threshold for this step (Xsr) can be determined based on
measurements conducted during nominal operation at the 25% of speed and without load,
because the amplitude of fC reaches the lowest values acceptable for analysis. It might be
established as a multiple of mean value that is still lower than the amplitude of fC at this
speed.

The next step is to verify whether the frequency of the investigated peak (fi) is the
fundamental commutation frequency (fC). The amplitudes at fi and fi/2 are compared.
If the amplitude of fi/2 is higher than amplitude at fi, it means that fi/2 is fundamental
commutation frequency (fC). Otherwise, fi is the fundamental commutation frequency.
Founded fC is used for fault detection. The detection is based on searching for the signi-
ficant amplitude at twice fM (refer to (5.4)). The height of the peak fws reflects the extent
of the fault, which allows degradation monitoring. The Xws threshold defining the fault
can be established by comparing amplitudes of fws and fc.

The fault evaluation is used to suppress unwanted false-positive results by the fail-
ure/pass counting. Identified failures increment error value faster than passes that decre-
ment error value. When the error value overcome the preset threshold, the motor’s fault
is indicated.

5.4 Summary

Diagnostics based on measuring the current flowing through the actuator motor is an ideal
means of meeting the requirements of the non-intrusive approach. The thesis deals with
the faults of the electromechanical actuator with a brushed DC motor. Detection methods
were designed for actuator jam and winding short faults, which were selected based on the
proposed analysis and unique features of the current signal.

Several mechanisms can lead to the jam of the actuator. The most common factors are
excessive overload or wear, insufficient lubrication of moving parts, mechanical damage or
thermal stress, manufacturing defects or poor maintenance. Detection of this fault is based
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on monitoring the commutator spikes in the current signal. These spikes are obtained from
the signal by filtering data windows with a predefined length. Windows without overlapping
are used in data processing, which reduces computational complexity. The presence of
spikes in the signal indicates motor rotation. This indicator is compared with the average
current flowing through the motor, which reflects the activity of the actuator. The absence
of commutator spikes combined with large average currents indicates an actuator jam. A
jam alert is reported if such a condition is detected and persists. Detection thresholds are
derived from the basic electromechanical properties of the actuator.

The detection of a winding short circuit is based on the assumption that damage to
the winding cause an electrical imbalance. It is manifested by an increase in the current
of the commutation spike, twice per revolution. The fault can thus be detected as a signal
with frequency at twice the motor speed. However, the dynamic behaviour of the actu-
ator does not allow to perform such an analysis directly. First, selecting the time blocks
in which the motor speed is constant is necessary. For this purpose, a unique procedure
was designed, which uses the kurtosis and the coefficient of variance to process the signal
and select blocks with no abrupt changes. This selection produces blocks of data that are
further processed in spectral analysis. The first step is to identify commutation frequency,
which directly corresponds to the motor speed. The signal with the frequency correspond-
ing to fault is then searched in the spectrum based on commutation frequency. If a fault
is identified, multiple acknowledgements are awaited. This verification principle increases
detection validity and reduces the chances of false identifications. In addition, the method
is equipped with mechanisms that evaluate the validity of the processed data and elim-
inate inappropriate samples. These mechanisms contribute to decreasing computational
complexity and improving overall reliability.
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Chapter 6

Testing system

The proposed methods must first be tested and verified by experiments. For this purpose,
an automated test system was designed and constructed.

6.1 Block diagram

The block diagram describing the connections of the individual parts of the system is
shown in Figure 6.1. The system is controlled from a computer connected to two NI
cDAQ - 9174 via USBs. Both units are equipped with three plug-in modules and are
controlled by a program from LabView. The upper NI cDAQ - 9174 chassis serves as the
primary unit for controlling the rig and the elementary data collection. It includes the
NI 9401 module, which provides two-way digital communication with eight digital I/O
connectors. It is used to control the actuator motor’s direction of rotation and generate a
PWM signal. NI 9222 and NI 9215 modules are used to measure a voltage with a resolution
of 16 bits. The NI 9222 allows synchronous measurements of up to 500 kS per channel,
and it is used for a high-speed recording of the current and voltage waveforms. The motor
current is measured on the output pin of the control unit, whose voltage corresponds to
the current flowing through the bridge. The motor voltage is measured on the voltage
divider connected directly to the power output of the control unit. The NI 9215 allows
synchronous measurements up to 100 kS per channel, and It is used to measure slowly
changing signals such as position and force.

The secondary NI cDAQ - 9174 chassis include modules for additional measurements.
The NI 9234 measures signals from two integrated electronic accelerometers (A1, A2) with
the sampling rate up to 51.2 kHz. Additionally, each module channel is equipped with anti-
aliasing filters that automatically adjust to your sample rate. The NI 9217 is a resistance
temperature detector (RTD) module that provides per channel current excitation. Up to
four sensors can be connected to the module with the sampling rate up to 400Hz between
all channels. The NI 9401 in the secondary chassis is used to process TTL signals from
Incremental Rotary enCoder (IRC). All additional sensors can be placed anywhere on the
test system as needed. The basic configuration for one actuator includes measurement of
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Figure 6.1: Block diagram of the testing system

ambient temperature, the temperature of motor cover, gearbox and casing of rod, vibrations
of motor and gearbox and revolutions of the motor.

The diagram also includes power blocks with 5, 12 and 24V power supplies.

6.1.1 Sensors

The system is equipped with four primary sensors that monitor the position of EMA, the
load applied to EMA, the electric current flowing through the actuator’s motor, and the
voltage at the motor’s input.

The position sensor is mainly used as feedback of the control loop of the controller. The
test system uses Honeywell’s SPS-L225-HALS sensor. This magnetic sensor with analogue
output measures non-contact position using a permanent magnet attached to the moving
part of the structure. The sensor range is 225mm, with a resolution of 0.05mm.

A bidirectional force sensor is installed between the actuator mount and the moving
part of the structure. The sensor is used both to measure the actuator force applying on
the structure’s moving part and as feedback for the control loop. The system uses sensor
151 S-Beam Load Cells from manufacturer Honeywell with a range of ±500N.

The motor’s electric current is usually measured at the motor power driver’s output,
which contains a current to voltage converter. The output voltage corresponds to the
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Table 6.1: Parameters of sensors

Measurement Range Sample rate

Force ±500N 1 kHz

Position 225mm 1kHz

Motor current 15A 200 kHz

Motor voltage ±32V 200 kHz

Temperature -30/200 ◦C 100Hz

Vibrations peak 60 g, 0.3-6000Hz 51.2 kHz

Motor rotation 200PPR up to 20 kHz

current flowing through the H-bridge. The alternative option is the use of the active current
clamp with voltage output. The system is equipped with the Fluke i30s, the AC/DC
current clamp based on Hall Effect technology. The main advantage of measurement with
this sensor is the high-frequency range from DC up to 100 kHz, suitable for transient effects
measurements.

The voltage on the motor of the actuator is measured using the voltage divider, which
is connected between the output of the H-bridge and the motor’s input. The divider was
designed that it is possible to measure up to ±32 V. In this range, the output of the divider
stays under the 10 V, which is the limit for the differential analogue input of IN 9222.

The system is equipped with additional sensors such as temperature sensors, vibration
sensors, and incremental rotary encoder. These sensors can be placed in the system as
needed.

There are four miniature Pt100 4-wire RTD (NB-PTCO-155) sensors that can be at-
tached to any part of the system. The range of temperature sensors is -30 to 200 ◦C. For
the vibration measurement, there are two Bruel&Kjaer 4507-B-004 accelerometers that
have vibrations range 0.3 to 6000Hz up to peak 70 g. Additionally, these sensors are also
TEDS (Transducer Electronic Data Sheet) compatible. For the measurement of the motor
revolution, there is an Incremental Rotary enCoder. The used HEDR-5421-EP111 is the
two-channel optical incremental housed encoder that has a resolution of 200 PPR (Pulses
Per Revolution) per channel.

The operating ranges and sample rates of all sensors are summarised in Table 6.1 and
pictures are in Figure 6.2.

6.1.1.1 Conditioning circuit

The force sensor uses a conditioning circuit responsible for generating stabilised voltage
and amplifying the output signal level.

The conditioning block circuit is depicted in Figure 6.3. The circuit comprises a 12V
power supply that powers two low-dropout (LDO) linear voltage regulators and voltage
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Figure 6.2: Sensors used in testing system: a) position, b) force, c) current clamp, d)
temperature, e) vibrations, f) IRC

follower. The linear voltage regulators are responsible for providing stabilised voltage.
The stability of the voltage is essential, especially for the force sensor. The force sensor
comprises a strain gauge with the output rated at 2mV/V of full scale. Consequently,
with the 10 V input, the sensor’s output is 20mV under full load. This voltage value
is too low and can be easily affected by noise. Therefore, the signal must be amplified
appropriately and cleared of noise. The output of the strain gauge is amplified by the
rail-to-rail precision instrumentation amplifier. This type of amplifier has a high common-
mode rejection ratio (CMRR) of about 115 dB, which is indispensable for common-mode
noise reduction. The amplifier is powered by the 7 V output from the second linear voltage
regulator. The output signal from the amplifier is then filtered by the first-order RC low
pass filter. Parameters of the filter can be changed by the replacement of the R or C
component as needed. The basic configuration of the filter has a cut off frequency of about
500Hz. The output of the filter is connected to the voltage follower to prevent excessive
loading of the filter. The circuit is placed in the metal box, and all cables of the entire
system are shielded adequately in order to suppress noise as much as possible. Photo and
complete schematic of the circuit can be found in appendix B.1.

12 to 10 V

LDO

LIN. REG.

12 V

POWER

SUPPLY

OUTIN

12 to 7 V

LDO

LIN. REG.

IN

IN
OUT

OUT

Figure 6.3: Conditioning block circuit
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Table 6.2: Parameters of tested EMAs

Parameter DSZY1 TA 2 Unit

Motor voltage 24 24 V

Maximum load 150 120 N

Maximum speed at 24 V 40 to 45 33 to 44 mm/s

Motor speed at 24 V 6000 4000 RPM

Rod stroke 200 150 mm

Gear ratio 5:1 5:1 -

Typical current 2 1.2 A

6.1.2 Motor power driver

One or two EMAs are connected to their power control driver in the form of a fully
integrated H-bridge. The driver uses as input PWM signal defining the power applied to
the motor and signals that determine the direction of engine rotation and braking. The
unit operates in the 4 – 28V range and can provide an output current up to 15A at a
maximum PWM speed of 20 kHz. The power transistors have a very low on-state resistance
of 70mΩ. The unit is also equipped with protection elements such as overvoltage, short-
circuit protection, thermal fuse, current and power protection or inductive voltage diodes.

6.1.3 Actuators

Two types of actuators with similar characteristics have been used during experiments The
TA 2 actuators manufactured by Timotion and the DSZY1 manufactured by the Drive-
Systems Europe Ltd. Each actuator consists of a DC motor with the commutator and
permanent magnets, speed reducer gearbox and actuator housing with a rod that uses
screw and nut to transform rotary to linear motion. The parameters of tested actuators
are in Table 6.2.

6.2 Mechanical construction

The mechanical construction of the testing system, which is depicted in Figure 6.4, consists
of a frame, a linear guide and mounting parts of individual components such as actuat-
ors and sensors. The structure is designed so that it can be changed depending on the
requirements of the tested objects.

The frame is composed of lightweight aluminium sections, which have in cross-section
of 40×40mm. The construction itself has the shape of a cuboid with dimensions of
680×488×560mm, and it is crossed by a bulkhead used for mounting the linear guide
and mechanical connector of an EMA. The linear guide is intended to ensure the linear
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Figure 6.4: The mechanical construction of the testing system with the DSZY1 actuator

movement of the actuator. It consists of two cylindrical rods, on which the trolley fixed
by an aluminium profile moves. The guide length is 600mm, and the carriage height is
120mm, which allows a range of movement of almost 480mm. The detail of the linear
guide with a trolley is depicted in Figure 6.5.

The construction allows two types of stressing of EMAs. The first is with the static
weight. In this case, the weight is placed on the top of the movable part of the construction.
The load is scalable thanks to the different weights of the metal blocks that can be placed
on each other. The static weight represents load in a constant direction. The actuator is
stressed when pushing the load and relieved when pulling. The holder for the static weight
can be seen as an upright rod attached to the carriage at the top of Figure 6.5.

The second type is the controlled load achieved by the secondary actuator. In this
case, a secondary actuator is controlled based on the pressure sensor and creates artificial
weight for a tested actuator. This arrangement allows stressing the tested actuator in both
directions. The force is also scalable based on secondary actuator performance.

The proper operation of the artificial load has been achieved thanks to a flexible element
that is placed between the load actuator and the construction. This element is necessary
for suppressing shocks that are caused by the rigidness of the construction and actuators.
A bidirectional damping spring has been designed for this purpose. The spring is made of
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Figure 6.5: The detail of linear guide

polylactic acid (PLA) plastic and printed on the Prusa 3D printer. The damping spring is
depicted in Figure 6.6.

Figure 6.6: The detail of the damping spring made of PLA
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6.3 Software

The test device is controlled by a program designed in LabView. The program allows
working with actuators in three different modes of operation: basic motion, position control
and load control. Depending on the mode of operation, it is possible to set the duration
of operation and PWM frequency. The basic motion mode allows selecting the actuator,
the direction of movement and the duty cycle of the PWM. In the position control mode,
which uses information from the position sensor, it is possible to select the actuator and
use the function generator to define the motion profile, period length, and motion range
limits. There are four profiles to choose from: sine, rectangular, triangular and saw. The
movement is controlled by a software PID controller. In load control mode, the position
control mode is extended by another adjustable PID controller that simulates a load using
the force sensor information using a second actuator. In this way, it is possible to execute a
predefined motion profile by one EMA, which second EMA will load. The program allows
data acquisition from all inputs from the NI 9222, NI 9215, NI 9234, NI 9217 and NI 9401
modules, which it stores in a predefined location with a timestamp indicating the date and
time of recording.

6.3.1 Data processing

The data acquired by the testing system must be post-processed for later analysis. Some
data can be obtained in the correct format using the settings directly in Labview. These
measurements include the voltage, temperatures and vibrations. The voltages are dir-
ectly measured with the synchronous, high sample rate, 16-bit ADCs (analogue to digital
converters). Temperatures are averaged during measurement for maximum possible noise
suppression. Averaging reduces the sampling rate to the order of sample units per second,
but this rate is also sufficient due to the slow development of temperatures. The vibra-
tion measurement includes the calibration coefficients of the accelerometers used, and the
output values are directly in predefined units such as g or m/s2.

The rest of the measured values must be recalculated or further processed to obtain the
desired quantities. These measurements include the current, voltage across the divider,
position, force, and motor speed. According to specific constants, the electric current
and voltage are later recalculated from direct voltage measurements. The position and
force are measured using the low sampling rate voltage measurement. Acquired values are
recalculated to desired quantities based on the conversion characteristics of the sensors
used.

Measuring rotation speed with IRC requires an entirely different approach. The NI
hardware and Labview software provide direct angular velocity measurement, but the test-
ing system modules are not equipped with this feature. Based on available equipment, the
approach that utilises the measurement of signal pulses duration was chosen.

The typical signal from the IRC is shown in Figure 6.7. It comprises two channels (A
and B) that provide TTL (Transistor-Transistor-Logic) pulses during the motor rotation.
The signals of channels are shifted by 90◦ to determine the direction of motor rotation. The
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number of pulses of one revolution depends on the sensor used. IRC sensor with 200PPR
per channel was used during experiments. The upper part of Figure 6.7 also shows the
measurement of the time period. The duration of one pulse is established as the number
of internal timebase clock oscillations (see bottom of Figure 6.7.), and it directly depends
on the rotation speed. The equipment utilised in the testing system has only one counter
that can be used for time measurements. The counter is used for channel A only. Channel
B is ignored, and therefore it is impossible to distinguish the direction of rotation directly.

Figure 6.7: Signal from IRC sensor

One of the testing system requirements was to measure the motor speed with the highest
possible accuracy considering the available components. Motor speed can be expressed in
the frequency of rotation. The precision of frequency measurement depends on the internal
timebase frequency and the speed of rotation. The module’s internal timebase frequency
is 80MHz, and the highest speed of motor rotation is 6000RPM. The worst resolution in
frequency can be determinate at the highest speed of motor rotation. First, the number of
counter increments must be calculated as follows:

NT = TMFC =
FC

ωR

60
CP

=
80 · 106
6000
60

· 200
= 4000 (6.1)

where NT is the number of counter increment, TM is the minimal time period of IRC pulse
at given motor speed, FC is frequency of time base, ωR is the maximum motor speed in
RPM and CP is the IRC resolution in PPR. Assuming that the resolution step is given
by the increment of the counter by one (NT1 = 4001), the resolution in frequency at a
maximum speed of rotation for one pulse is:

∆FR = FT − Fτ1 =
FC

NT

− FC

Nτ1

=
80 · 106

4000
− 80 · 106

4001
≈ 20000− 19995 = 5Hz (6.2)

This resolution applies to a 1.8◦ rotation of the motor shaft. It is significantly im-
proved when considering one whole revolution of the motor. In this case, the resolution in
frequency will be no worse than ∆FR ≈ 0.025Hz.

The output of the measurements is the series of timestamps that corresponds to the
speed of rotation. For each one rotation of the motor shaft, 200 samples are obtained.
These data are non-uniformly sampled in time. The sampling is triggered by the motor
shaft’s angular motion, and therefore measured data are in the angular position domain.
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This feature can be used in data analysis because rotary equipment’s mechanical and
electrical fault signatures are synchronised with the motor’s angular position [17]. Since
the measured data already contains time information, it is possible to create a time vector
of measurement. The sequential addition of measured timestamps creates this vector. It
can be used to display the motor frequency’s evolution over time and to resample the signal
to a time domain with a fixed-rate where it can be subjected to other types of analysis.

This approach’s main advantages are single-channel measurement, high resolution in
frequency, and the possibility of analysis in both time and angular domain. The disad-
vantage is that the information about the direction of rotation is missing. For this reason,
the internal recording of the direction of the motor rotation has been added. The direction
readings are taken from the software controller that drives the movement of the actuator.
This indirect method introduces an error in the measurement when the controller requires
an immediate change of direction, but the motor has not changed the original direction.
This behaviour is caused by the inertia of the actuator that cannot change movement im-
mediately. However, the controller’s dynamics, especially the integral component, suppress
this error significantly. Furthermore, the gear ratio and insignificant moment of inertia of
the rotor compared to the entire actuator’s stiffness cause the motor reacts responsively.

The information about the direction complements the angular based measurement of
motor speed. It is used for the relative determination of the actuator’s rod position. Each
motor speed data sample expresses the time it takes to rotate the motor shaft about 1.8
degrees. The actuator’s rod relative position can be determined based on the direction of
rotation and the rotation to translation ratio.

6.3.2 Data evaluation

Readings from IRC in form angular sampled periods are recalculated to several entities
such as instantaneous motor frequency, motor frequency averaged over one revolution,
motor speed (in RPM), relative shaft angle and relative position (actuator displacement).
Most complex data processing is devoted to calculating the relative position; therefore,
this quantity is used for data evaluation. The artefacts caused by the indirect recordings
of the direction rotation are shown in Figure 6.8.

This indirect method causes a sharp transition, which introduces an error in relative
position. This error is caused by the different timing between the control unit’s command
and the actual change of direction. The generated time difference is about 15 ms, and
the introduced error is about 1 mm. Figure 6.8 shows the worst-case scenario that can
occur. This case was stimulated by the sudden change in direction, which was forced at the
actuator’s full speed. In regular use, such a drastic change does not occur. The integral
component of the controller makes a smoother transition that suppresses this artefact.

Figure 6.9 is attached for comparison. The relative position is compared to the data
obtained from the absolute position sensor. The data from the absolute position sensor are
considered as the reference. Since the relative position always starts at zero, the waveform
was shifted 5 mm under the reference data. In this case, the actuator was derived by
the position controller. The triangle path was chosen because it contains sudden changes

50



0 20 40 60 80 100

Time [ms]

0

1

2

3

R
e
la

ti
v
e
 p

o
s
it
io

n
 [
m

m
]

Relative position error

Correct path

Processed path

Figure 6.8: The zoomed detail of artefact caused by the indirect recordings of the relative
direction
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Figure 6.9: The comparison of relative position with reference. The processed waveform
was shifted 5 mm under the reference data

in direction. It can be seen that even though the waveform from the IRC contains the
transition artefacts, the recorded path profile corresponds to the reference. Measurements
have shown that the processed data from IRC can be used to diagnose and analyse EMA.

The main advantage of the relative position obtained from the IRC is that it is not
affected by the noise compared to the absolute position sensor. The data from the absolute
position sensor are sampled at 1 kHz and averaged by a window of 20 samples in order to
get rid of 50 Hz noise. Despite considerable signal smoothing, it is possible to encounter
sudden deviations (see Figure 6.9 - Reference path, about 8 s). In contrast, a position from
IRC does not contain any unwanted noise peaks. The smooth character of this signal can
be beneficial in the case of control, especially for the derivative action.

51



6.4 Summary

This chapter introduces an automated system for testing electromechanical actuators. The
testing system was designed for the development of fault detection and diagnostics methods.
The system allows testing various types of linear actuators, measuring parameters during
their operation, introducing artificial faults, analysing fault modes, and designing and
testing methods for fault detection and diagnosis.

The mechanical construction of the system consists of an aluminium frame, a linear
guide and mounting parts of individual components such as actuators and sensors. The
structure is designed so that it can be changed depending on the requirements of the tested
objects.

The tested actuators are driven by power control units in the form of H-bridges us-
ing PWM pulses generated according to the requirements of the control software in the
LabView environment.

The system offers automated controlling of the movement of two actuators along pre-
defined paths. The position, force applied to the actuator, the current flowing through the
actuator motor, and the voltage at the motor’s input are recorded during the tests. Also,
secondary parameters such as vibration, temperature, and motor revolutions can be added
to the measurement. Data from the IRC sensor that provides a measurement of motor
revolution can be used as additional information about relative position.

The actuators can be stressed with the static load, or it is possible to use the second
actuator as an artificial load. This configuration makes it possible to run the stress tests
under conditions that the actuator would be subjected to regular operation.
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Chapter 7

Results of methods testing

7.1 Testing of methods

Both proposed methods were tested over a set of experiments during which various op-
erating conditions were applied. Table 7.1 shows a collection of all operating conditions
and their ranges. For each method tested, different combinations were selected to cover
all possible operating situations. It is worth mentioning that the measured current is pro-
cessed in absolute value, and therefore the direction of movement is not apparent from the
collected data.

Table 7.1: Various operating conditions of EMA

Variable conditions Used in case of Type or range

Duty cycle Jam 20% ≤ D ≤ 100%

Speed of movement Both methods 0% ≤ v ≤ 100%

Load Both methods 20% ≤ F ≤ 120%

Motion profile Winding short

Sinusoidal

Rectangular

Triangular

Injected fault Winding short
Short within one coil

Short between different coils

Mechanical barrier Jam
Hard barrier

Resilient barrier
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7.1.1 Testing of jam method

The algorithm for jam detection was verified by a series of experiments. Testing was
performed for different working conditions, including the various duty cycles, movement
speeds, and loads. Conditions during experiments were determined as follows: fS =
200 kHz, fP = 16 kHz, a = 3, Nwp = 38 refer to (5.1) and the longest time of com-
mutation spike was measured as Tmax = 67.6 ms, therefore Nwc = 13520 refer to (5.2).
This period corresponds to the rod’s movement at a rate of vmin = 0.8 mm/s, which is
about 1.7% of maximum speed. The fault detection thresholds are determined from the
measurements concluded on EMA without any load at the lowest speed. Values of com-
mutation spikes span and averaged current are minimal in this measurement compared to
all possible states during the nominal operation of EMA. Therefore, thresholds are estab-
lished as 50% of these values to ensure acceptable margins. The resulting thresholds came
out as Xpp = 50mA and Xa = 65mA.

The jam fault was simulated using a solid mechanical barrier in the path of the actuator
rod. The rod impact into the barrier was either direct (hard stop) or gradual using a
resilient insert (soft stop). The example of current change measured during the jam fault
is depicted in Figure 7.1. The Figure illustrates the course of averaged and peak-to-peak
signals that the algorithm uses for fault detection.

Figure 7.1: The example of calculated components of electric current during the jam of
EMA

Two outcomes from method testing are shown in Figure 7.2. The experiment in Figure
7.2 a) was performed with the duty cycle D = 100% and the evaluation time set to
To = 0.1 s. The nominal operation can be seen at the beginning of the experiment. After
about 500ms the load is so high then the motor cannot move anymore, and the algorithm
detects the fault which is highlighted in the frame called ”Fault detection” (values 1 or
0). The detected state is evaluated after the set time has elapsed as a jam fault. This
experiment shows the case of a hard stop at the full speed of the actuator. The raw data
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Figure 7.2: Jam fault detection: a) hard stop, b) soft stop

are fully overlapped by filtered data in this case, as explained in section 5.1.1. Figure
7.2 b) shows a situation where the actuator was driven slowly (D = 20%) to a soft stop.
Oscillations between 3 s to 4.5 s seconds in the filtered signal demonstrate the deformation
of resilient material before the jam.

It can be seen from Figure 7.2 a) and b) that by setting a longer time to acknowledge
the fault, false positive detection can be prevented.

Figure 7.2 b) also demonstrates that simple overcurrent current protection would be
not sufficient. When EMA is driven using low duty cycles, the averaged current is within
the nominal range even when the actuator is jammed.

7.1.2 Testing of winding short method

The winding short detection method was tested during the DSZY1 actuators’ faulty and
nominal operation. During tests, the actuator was autonomously driven by a controller
that moved the rod along predefined trajectories. The function generator produced the
position set-point, which formed sinusoidal, triangular and rectangular motion profiles.
The EMAs were exposed to loads 20%, 53%, 100%, and 120% of the nominal load for each
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Table 7.2: Resistivity and inductance change measured on the commutator segments of
the EMA motor

Commutation
segments

No defect Fault 1 Fault 2

1 kHz 10 kHz 1 kHz 10 kHz 1 kHz 10 kHz

1, 5
2.7 Ω 13 Ω 2.5 Ω 12 Ω 3.7 Ω 10.4 Ω

1.8 mH 1.7 mH 1.64 mH 1.54 mH 1.15 mH 0.95 mH

2, 6
2.7 Ω 13.1 Ω 3.2 Ω 9.7 Ω 3.8 Ω 10.2 Ω

1.77 mH 1.67 mH 1.07 mH 0.94 mH 1.09 mH 0.89 mH

3, 7
2.7 Ω 13.1 Ω 3.3 Ω 9.9 Ω 2.7 Ω 12 Ω

1.78 mH 1.68 mH 1.08 mH 0.95 mH 1.6 mH 1.5 mH

4, 8
2.7 Ω 13.4 Ω 2.5 Ω 12.1 Ω 2.7 Ω 12.3 Ω

1.8 mH 1.7 mH 1.64 mH 1.54 mH 1.65 mH 1.55 mH

motion profile during experiments. Two faults were injected by artificially shortening the
two nearest turns of the rotor coil. In the case of Fault 1, two turns of the same coil were
shorted, and in the case of Fault 2, two turns of different coils were shorted. The artificial
faults are shown in Figure 7.3.

Figure 7.3: Rotor winding - a) intact winding, b) detail of Fault 1, c) detail of Fault 2

The effect of electrical imbalances of motor winding (measured with the precision RLC
meter LCR-6020 at 1k Hz and 10 kHz) can be seen in Table 7.2, where the most significant
changes are highlighted. Each parameter was measured between two commutator segments.

Conditions during the experiments were determined as follows: vmax = 6000 RPM ,
r = 10 thus Td = 0.2s refer to (5.5), fS = 200 kHz and f∆ = 5 Hz refer to (5.6). The
following examples illustrate the function of the proposed method’s data selection and
spectrum analysis blocks.
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The example of data selection is shown in Figure 7.4. The sinusoidal motion profile,
which includes various motor speeds, was applied during the experiment.

Figure 7.4 shows time marks at the end of selected data segments. The amplitude of
the indicating signal is multiplied by two for better visibility. Notice that indicating signal
is high after rapid changes in current and low when the signal is uniform; selected areas
were used for spectrum analysis.

Figure 7.4: The example of data selection based on indicating signal

The example of analysis with three different cases is depicted in Figure 7.5. The ”Low
speed” case shows a situation where the frequency found in the required range is, in fact,
the second harmonic commutation frequency. Therefore, the algorithm continuously checks
whether the significant peak is at half the value of the found peak to detect the fundamental
commutation frequency correctly. Winding short detection is based on searching for the
significant amplitude at twice fM . Figure 7.5 shows the case of winding short where the
significant amplitude should be at frequency fws = 2 · fC/NC = 2 · 430/8, thus fws =
107.5 Hz. The peak at 105 Hz reveals the winding short. The threshold defining fault
was set at amplitude as Xws = X(fc/2). The height of fws is three times more than fc,
indicating the distinctive extent of the damage. The amplitude of fws is an important
diagnostic parameter. Even if the defined threshold is not exceeded, the fault amplitude
can be used to monitor gradual degradations. The ”No defect” case shows no significant
peak lower than commutation frequency, which means no fault is present. The algorithm
also excludes inappropriate data from analysis when the speed of the motor varies. Varying
speed is exhibited by the low amplitude and smeared peak of examined frequency. The
measurements showed that a sharp peak during nominal operation is usually more than
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Figure 7.5: The amplitude spectrum analysis where fC are fundamental commutation
frequencies, f2C is second harmonic of fC and fws is winding short fault. The area between
dashed lines represents the required speed range (50-100% in this case) for which calculated
Xsr thresholds are displayed. Xws threshold is defined as half of the fC amplitude

ten times higher than the mean value; therefore, the threshold Xsr was set to quintuple of
the mean value. Thresholds are always calculated for each case individually, which can be
seen in Figure 7.5.

Three outcomes from method testing are shown in Figure 7.6. This example shows
one period of rectangular, sinusoidal and triangular motion profiles. Green, red or grey
highlighted stripes are areas selected by the data selection algorithm. Green areas are eval-
uated as nominal, red areas are assessed as faulty, and grey regions contain data that has
been excluded from fault detection due to the low or unstable speed of the motor. Figure
7.6 a) shows the output of the detection method during nominal operation. The rectan-
gular motion profile, which includes areas where the actuator holds the target position,
was applied during the experiment. These areas are not suitable for fault detection, and
therefore they have been automatically excluded from the processing. The relevant areas
are evaluated as nominal. Figure 7.6 b) and c) show examples of sinusoidal and triangular
movement with winding short faults ( a) Fault 2, b) Fault 1). After three positive fault
indications, the winding short failures are acknowledged in both cases.
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Figure 7.6: Example of outcomes from winding short detection algorithm (a, b, c) and
position of actuator’s rod recorded during these experiments (d). Highlighted stripes rep-
resent the data blocks selected for spectrum analysis, and their colour indicates results:
green - no fault detected, red - winding short detected, grey - data excluded from fault
detection analysis (low or changing motor speed), red dashed stripe - fault confirmed
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7.2 Evaluating of methods

The proposed methods were consistently tested to verify reliability and durability. Each
method was tested for the reliability of the fault detection, the sensitivity to input para-
meters and resistance against noise and disturbing signals.

Since the presented approach is based on detecting commutation spikes in the electric
current signal, interference of this signal component can cause significant issues. Because
each of the methods processes the data differently, it is possible to expect a different impact
of the interference on the detection capabilities.

The introduction of an interfering signal is derived from the amplitude of the commut-
ation spikes, which can take on different values depending on the operating conditions and
the actuator’s load. In order to cover all operating modes of the actuator, it is necessary to
add interference accordingly. The interfering signal is derived from the minimum value of
the commutation spikes described in section 5.2. The shape of the commutation spikes can
be approximated as a sinusoidal waveform with a fixed RMS value. An interfering signal
with various RMS values is added to the current signal. The ratio between RMS of min-
imum commutation spikes and interference signals is expressed in percentage. The specific
values are related to the parameter Xpp (Xpp is 50% of minimum commoutatuion spikes,
see section 7.1.1), which corresponds to 2 ·XppRMS = 70.7mA. Thus, for example, if 50% of
the interference signal is applied, it means that an interference signal of IRMS = 35.35mA
has been added to the current signal. This procedure is applied both in the case of white
noise and the disturbing signal.

7.2.1 Evaluating of jam method

7.2.1.1 Test of fault detection capabilities

The proposed method was tested and evaluated using 35 records of nominal (no fault
injected) operation and 34 records containing jam fault. Each test was performed under
different operating conditions. The duration of the jam fault was higher than 500 ms in
31 records, two had jam shorter than 300 ms, and one had jam fault between 300 and 500
ms. The confusion matrices in Figure 7.7 summarise the ability of the presented method
to detect faults.

7.2.1.2 Sensitivity to input parameters

The method uses three measured motor parameters that could vary for individual motors
piece by piece. The effect of variability Tmax and minimal of peak-to-peak and averaged
current were tested. The experiments were performed for each of the tested parameters
separately. Individual parameters were examined in the range of 5 to 195% of the correct
measured value. Testing was conducted for a set of 32 nominal records and 32 records
with jam fault. The set of records was selected to be always correctly evaluated at 100%
of the tested parameter. All experiments were conducted for To = 0.3s. The results from
the experiments are shown in Figure 7.8.
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Figure 7.7: Confusion matrices for jam detection with different evaluation times: a) 0.5
seconds, b) 0.3 seconds, c) 0.1 seconds

Figure 7.8: Influence of input parameters of the jam detection method
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7.2.1.3 Influence of noise

The jam detection method uses the oscillation of the commutation spikes to evaluate the
movement of the motor. If the measured current is loaded with noise, a jam fault may stay
undetected. The presented detection method uses averaging elements, which can partially
suppress the effect of noise, but it can be assumed that at high values, averaging will no
longer be sufficient. Therefore, white Gaussian noise was added to the measured signal,
and its efficient value was gradually increased to the point where detection failed. The
experiment was performed on a data set as described in section 7.2.1.2. The experiments
showed that the detection starts to fail if the RMS noise values are higher than 56%. An
example of a signal with noise is shown in Figure 7.9.

Figure 7.9: Comparison of the nominal and noisy signal during jam fault

The depicted example shows a case where the noise was at 56%, which is the maximum
allowable noise value at which the algorithm could work reliably. The high noise amplitudes
in the picture indicate an extreme case that should not occur in a real environment. Adding
noise to the signal can cause that jam faults may be undetected, but it does not cause false
alarms during nominal operation.

7.2.1.4 Influence of disturbing signal

The presence of a disturbing signal can fundamentally affect detecting faults. As with white
noise, a disturbing signal can affect the commutation spike signal, making it impossible to
detect a jam fault. Unlike white noise, the disturbing signal can suppress the commutation
spike if it has the same amplitude and frequency but the opposite phase. In this rare case,
false alarms could occur during the nominal operation of the actuator.

The block diagram in Figure 5.2 and equation (5.1) described in section 5.2 indicate
that the jam failure detection algorithm can withstand disturbance signals with a frequency
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equal to and higher than fP thanks to averaging. The main concerns are frequencies lower
than fP , and therefore their effect was examined. Disturbing sine signals with a specific
frequency and gradually increasing amplitude were added to the measured signal to find
the threshold where fault detection fails. The results are summarised in Table 7.3.

Table 7.3: Maximum allowable levels of disturbing signals for the jam detection method

Frequency 50 Hz 400 Hz 1 kHz 4 kHz 8 kHz 16 kHz

RMS of dist. signal 19% 16% 17% 56% 80% >1000%

The Table shows that frequencies of a periodic signals close to fP and higher (in this
case, 16 kHz) do not affect the fault detection capability. The problem occurs when the
frequency of the disturbing signal approaches the frequency range of the commutation
spikes. In this area, even low amplitudes of the disturbing sing can significantly reduce
detection reliability. This effect can be partially suppressed by changing some parameters
of the algorithm. Equations (5.1) and (5.3) show that it is possible to increase parameter
a, which is the factor that extends averaging, provided that condition 7.1 is not violated:

1

fc
>

a

fP
(7.1)

where fP is the maximum commutation frequency for specific actuator. Also, threshold
Xpp that is by default set to 50% of minimal commutation spikes (see section 5.2) can be
increased. However, disturbing signals at frequencies in the range of commutation spikes
cannot be entirely suppressed by the algorithm, and their possible occurrence must be
mitigated by proper shielding and grounding. The example of such a signal is depicted
in Figure 7.10. In this case, a 50 Hz signal was added, a typical example of power lines

Figure 7.10: Disturbing signal at 50 Hz during jam fault
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interference. The RMS of disturbing signal is only 19% of minimal commutation spikes,
which is also the highest acceptable level at which the detection procedure still works.

7.2.2 Evaluating of winding short method

7.2.2.1 Test of fault detection capabilities

The fault detection ability of the proposed method was evaluated by a set of experiments.
The set consisted of 24 nominal records, 12 with Fault 1 and 12 with Fault 2. Figure 7.11
summarises the ability to detect faults after a certain time.

Figure 7.11: Confusion matrices for winding short detection with different record lengths
used for evaluation of fault detection: a) 8 seconds, b) 11 seconds, c) 14 seconds

7.2.2.2 Sensitivity to input parameters

An essential input parameter of the method is the maximum RPM. This parameter may
vary slightly for individual motors, and therefore the influence of RPM has been further
investigated. The effect was tested on a set of 24 nominal records and 24 records containing
winding short faults. Each of the records was 44 seconds long. The parameter was placed
between 70 and 130% of the correct value during testing. The result of the experiment is
shown in Figure 7.12.

7.2.2.3 Influence of noise

The test of sensitivity to white Gaussian noise was performed in the same way as in the
case of a jam failure (see section 7.2.1.3), on the same data set as in section 7.2.2.2. The
main difference between the two methods is that while jam failure detection is performed
only in the time domain, winding short detection utilises both the time and frequency
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Figure 7.12: Influence of input parameter of the winding short detection method

domains. The white Gaussian noise affects each domain differently, as shown in Figures
7.13 and 7.14.

Figure 7.13: Comparison of the nominal and noisy signal during short fault

The experiments showed that the detection starts to fail if the RMS noise values are
higher than 540%. The figures demonstrate the different effects of noise. While the time
domain is heavily loaded with noise, no fundamental difference is seen in the frequency
domain. These findings suggest that the main reason for failure detection is selecting data
for diagnosis, which is performed in the time domain. Improperly selected data cannot be
effectively evaluated in the subsequent frequency analysis, failing the whole process. It can
be assessed that white noise does not pose a significant risk for the jam detection method,
as it only failed at very high noise levels, as shown in Figure 7.13.

7.2.2.4 Influence of disturbing signal

The presence of a disturbing signal can fundamentally affect the ability to detect a winding
short fault correctly. In addition to affecting the selection of data for analysis, such a
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Figure 7.14: Comparison of the nominal and noisy spectrum during short fault

signal can also disrupt the spectral analysis by which the fault is detected. The influence
was tested in a similar way as in section 7.2.1.4 using the data set described in section
7.2.2.2. Experiments showed that interfering frequencies located in an analysed part of the
spectrum represent a significant concern. Table 7.4 shows the frequencies and levels of the
various signals at which the fault detection failed either by the false alarm or undetected
failure.

Table 7.4: Maximum allowable levels of disturbing signals for the winding short detection
method

Frequency 50 Hz 400 Hz 800 Hz 1 kHz 4 kHz

RMS of dist. signal >1000% 160% 13% 480% >1000%

The frequency spectrum analysis takes place in the range given by the actuator para-
meters. In the specific case, it ranges from 200 Hz to 1 kHz. As can be seen from Table
7.4, the interfering frequencies tested outside this range did not affect the detection capab-
ilities of the method. During 50 Hz and 4 kHz interference, the method worked nominally
even at very high noise levels. Other disturbing signals in the defined range significantly
reduced the detection capabilities. Their occurrence in the signal causes the algorithm to
be unable to recognise individual frequencies in the spectrum correctly. An example of
such a confusion is shown in Figure 7.15. The record was measured during a sinusoidal
actuator movement, and the value of the inserted disturbing signal was set to 14%. The
disturbing signal at 800 Hz was incorrectly identified as the commutation frequency of the
motor, which led to incorrect detection of winding short fault. The effects of interfering
signals can be partially suppressed by setting higher detection thresholds (Xse and Xws),
but they cannot be eliminated. When applying the detection system in real operation, it is
necessary to ensure adequate shielding. The detection method is susceptible to disturbing
signals in the investigated region of the spectrum, the effects of which may reduce the
reliability.
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Figure 7.15: Disturbing signal at 800 Hz during short winding fault

7.3 Comparison with existing methods

The non-intrusive approach applied in this thesis brings some benefits over conventional
techniques. The presented methods can be individually compared with existing methods
in order to evaluate their properties.

Various data-based methods are dealing with the jamming of EMA. Their overview can
be seen in [39]. The main disadvantage is that they require the attachment of additional
sensors to measure parameters such as temperature, vibration or position [2], [26]. In
contrast, the proposed non-intrusive approach that utilises only the actuator’s current and
basic electromechanical properties is easy to implement because the current measurement
is available directly on the motor driver.

In the case of winding shorts, there are some methods for faults detection in EMA
with BLDC motors [11], [30]. Due to the different electrical excitation of the winding,
the manifestation of faults is entirely dissimilar, and these methods cannot be used for
EMA with brushed DC motors. For a brushed DC motor, there are some hidden Markov
Model (HMM)-based methods [38]. Unlike the proposed methods, these techniques use a
supervised learning approach, which is a significant disadvantage preventing use in industry.

The proposed methods are also able to deal with the dynamic behaviour of EMA op-
eration. The jam detection method uses dynamic changes during operation to evaluate
the movement of EMA, while the winding short fault detection method utilises a novel
approach to distinguish in which sections of the signal the analysis should be performed.
In contrast to other techniques that utilise additional sensors or procedures, such as vari-
ous order tracking or machine learning methods, the proposed approach does not require
supplementary information sources and complex implementations. Therefore it can be
implemented in embedded devices such as generic 200 MHz microcontrollers for near to
real-time fault detection.
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7.4 Summary of results

The developed methods have been tested under various conditions, including different
profiles of motion, speeds or loads. The tests included a simulation of the defects to
which the methods were exposed. The jamming methods were tested using a mechanical
stop with which it was possible to test sharp and gradual jamming. The winding short
detection method was verified by artificially introducing two different short-circuit faults
into the actuator motor rotor. The experiments aimed to check the behaviour of the
proposed methods in individual steps and evaluate their properties, which are summarised
in the following sections.

7.4.1 Fault detection ability

Both methods are equipped with fault evaluation procedures that help to avoid the incor-
rect classification. The jam detection method uses the evaluation time To. With a rising
To (see Figure 7.7 a), the method identifies nominal states correctly. However, events with
fault-like states shorter than To were not detected. An example of a fault-like state can
be the effect of static friction during the run-up at high loads. The actuator shows signs
of jamming until the static friction is overcome and this phenomenon disappears. The low
value of To helps to discover even these states, but it might cause false alarms (see Figure
7.7 c). The value of To should be set individually according to the required detection
sensitivity. The fault evaluation procedure of the winding short detection method ensures
that the method classifies nominal records correctly, but it delays the fault confirmation.
The incorrectly classified states may occur when the spectrum analysis cannot correctly
identify commutation frequency due to low or unstable motor speed. The method correctly
identified faults in 16 out of 24 records after 8 seconds, 21 records after 11 seconds and the
rest within 14 seconds. The results confirm that the ability to detect fault increases with
time.

7.4.2 The speed of detection

The speed of fault detection is different for each of the proposed methods. In the case of
jam detection, the time to detect fault is given by the evaluation time. The evaluation
time can be set individually to meet the requirements of the specific application however
it was never longer than half of a second during experiments (see Figure 7.7). In the
case of winding short detection, the time of fault detection depends on the extent of the
failure, chosen thresholds, and the most on the actuator’s operation conditions. The fault
detection is analysed once in the defined period, and the fault evaluation needs multiple
conformations. Therefore the time to detect fault can vary in the range of units to tens of
seconds (see Figure 7.11). Even though the fault may not be confirmed immediately, it is
possible to monitor its development. The amplitude in spectrum analysis that corresponds
to the winding short can be examined to assess the severity of the defects.
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The jam detection method is able to detect faults in the entire range of speeds for
the given actuator. The winding short detection works reliably for at least 25% of the
maximum motor’s speed and higher. At rates below 25%, the resolution of the individual
frequencies is not reliable; therefore, these data are excluded from the analysis.

7.4.3 Sensitivity to input parameters

The proposed methods use various electromechanical properties of actuators, which may
not be constant in real conditions. The influence of the variability of the input parameters
was verified experimentally. In the case of the jam detection method, three input para-
meters were examined. Experiments have shown that the method works correctly from 40
to 160% of all three parameters. In the case of the winding short detection method, the
maximum speed of the motor has been identified as an essential input parameter. The
method worked adequately in the range of 90 to 130%. The values under 90% represent
cases where the unloaded motor has higher RPM than expected, and the method may raise
false alarms or misidentified faults. However, the loaded actuator tends to operate slower,
and therefore this limitation is not crucial.

7.4.4 Sensitivity to noise

Interference immunity was tested using two experiments. The methods were exposed to
white Gaussian noise and disturbing signals with different frequencies. The sensitivity of
each method to different noise levels varied, which is due to distinct signal processing. It can
be concluded that methods resist white noise well, and the detection failure occurs only at
very high levels. However, they are sensitive to disturbing signals with specific frequencies.
When disturbing signal interfere commutation spikes that both methods utilise for fault
detection, the reliability decreases. Although this effect can be partially eliminated by
changing threshold parameters, it is impossible to eliminate it. Therefore, in real operation,
it would be necessary to use other means, such as adequate shielding and grounding, to
suppress the effect of disturbing signals.
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Chapter 8

Conclusions

8.1 Summary

This thesis deals with the issue of monitoring, fault of detection and degradation of elec-
tromechanical actuators. The main goal was to create diagnostic methods for an EMA with
a brush DC motor, using a non-intrusive approach. This goal was achieved by diagnostic
based on measurement of motor current. Compared to conventional methods, the main
advantage of this approach is that it does not require additional sensors attached to the
actuator, thus any unnecessary interventions. The thesis proposes methods for detecting
actuator jam and motor winding short that utilise unique properties of the current signal of
the brush DC motor. Presented methods are designed to deal with the dynamic behaviour
of EMA during various operating modes doing so without any other additional sensors
or sources of information. Thanks to the non-intrusive approach and low computational
complexity, methods are easy to implement in industrial applications utilising the EMAs.

8.2 Accomplishment of Thesis specific aims

• Analysis of specific EMA faults (more details in chapter 4): The first object-
ive was to process a detailed analysis of faults that may occur with an electromech-
anical actuator with a brush motor. The analysis focused on the actuator’s basic
building blocks and its components. Its main goal was to identify individual defects
and degradations and to investigate the mechanisms leading to failure. The most
common mechanisms, including heat effects, mechanical overload, vibration, pollu-
tion, insufficient lubrication, manufacturing defects and environmental influences,
were investigated. The effects of these mechanisms vary depending on the specific
component. Therefore, the analysis was supplemented with information about mon-
itoring possibilities of the occurrence and extent of these defects. Besides the basic
actuator blocks, additional components such as sensors and control electronics were
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also processed. The analysis includes a Table summarising the relative probability
and criticality of faults.

• Design of fault detection methods (more details in chapter 5): The main
objective was the design of fault detection methods. The thesis deals with the actu-
ator jam and winding short motor fault. Investigated faults were selected based on
the proposed analysis, the specific properties of the current signal in the brush DC
motor, and the non-intrusive approach’s requirements. Both proposed methods use
mechanisms to reduce computational complexity and increase the reliability of fault
detection. The jam detection method monitors the presence of commutation spikes
in the current signal and compares it with the average current value. Based on these
parameters, it can evaluate whether the actuator has jammed independently of the
operating conditions. The winding short detection method monitors the electrical
balance using commutation spikes. A winding short fault results in an increase in
spikes twice per engine revolution. Evaluation of this phenomenon is possible only in
the steady operation of the actuator. For this purpose, the method uses a specially
designed procedure that preprocesses the data and evaluates which blocks will be
suitable for analysis.

• Design of testing system for EMA (more details in chapter 6): The pro-
posed methods had to be tested and verified. For this purpose, an automated test
system was designed and constructed. The system consists of an aluminium frame,
a linear guide and mounting parts of individual components such as actuators and
sensors. The tested actuator can be loaded by static weights or an actively controlled
secondary actuator. An automated course of the tests is controlled using software
in the LabView environment that drives control units in the form of H-bridges by
PWM pulses. During the experiments, parameters such as absolute position, force,
voltages, currents, temperatures, vibrations and motor speed are measured. Data
provided by the system are processed and can be utilised to test and evaluate dia-
gnostics methods.

• Testing of proposed methods (more details in chapter 7.1): Both methods
have been thoroughly tested to verify their ability to detect defects under different
operating conditions. The jam failure was simulated by a mechanical obstacle in
which the actuator struck at different speeds and forces. The winding short circuit
fault was simulated by artificially introducing two types of shorts into the actuator
rotor winding. The damaged actuator was then operated with different loads in
variable operating modes. The data measured during these experiments were used
to validate and improve the performance of the proposed methods. Experiments
show that both proposed methods can reliably detect faults in different operating
conditions. The speed of fault detection was in the order of hundreds of milliseconds
in the case of the jam fault and units of seconds in the case of the winding short.
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• Evaluation of method properties (more details in chapter 7.2): The proper-
ties of the proposed methods were investigated during tests that simulated situations
in which they may fail. These tests included experiments verifying sensitivity to the
variability of input parameters and resistance to noise and disturbing signals. The
jam detection method proved to be sufficiently resistant to the variability of input
parameters and noise. The winding short detection method is also resistant to noise,
but it may fail in the unlikely event when the motor RPM is higher than anticipated.
The main concern for both methods represents the disturbing signals that may inter-
fere with commutation spikes. Their effect must be suppressed by adequate shielding
and grounding.

8.3 Future Work

Future work can go in two directions. The first direction may be the further development of
non-intrusive approaches. Measurement and processing of electrical voltage in combination
with current can significantly expand the number of detectable faults. The disadvantage
is that thanks to the control of the actuator using PWM, sampling at higher speeds than
in the current form would be required for voltage processing, which would create higher
system requirements.

The second direction could be employing sensors, which some actuators may be equipped
with. In addition to the commonly used position sensor, it would be possible to focus on
the IRC sensor. Since IRC provides information about the position of the motor’s shaft,
it is possible to use it to monitor other related parameters, such as angular velocities and
accelerations, which can be converted to the information related to the gearbox and leading
screw. In addition, IRC appears to be an ideal element helping to eliminate the problems
associated with time-domain measurements. Sampling or processing of data in the posi-
tion domain brings several advantages in various order analyses, which help suppress the
problems associated with the variability of the motor speed.

In addition to the real-time fault evaluation primarily investigated in this thesis, it is
also possible to process and compare historical data. This approach makes it possible to
monitor system degradations’ occurrence and gradual development and is an ideal source
of information for predictive systems monitoring equipment life.
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Appendix B

Additional images

B.1 Conditioning circuit

Figure B.1: Conditioning circuit
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