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Abstract: 

We have investigated potential transfer trajectories from NRHO to orbits in vicinity 

of triangular Lagrange points with aim being to find efficient trajectory, both in time of 

flight and ∆𝑣 needed for maneuvers. We attempted to use already available solutions 

found within circular restricted three-body problem in our ephemeris simulation using 

GMAT. From our simulations we have found multiple potentially promising orbits around 

L5 with decreasing stability as shortest distance to Lagrange point decreases. 

Anotace:  

Prozkoumali jsme potenciální přechodové dráhy z NRHO na oběžné dráhy poblíž 

libračních bodů L4 a L5 s cílem minimalizace doby letu a nutného ∆𝑣. Pokusili jsme se použít 

již existující řešení pro kruhový omezený problém tří těles v efemerickém modelu simulace 

pomocí programu GMAT. Pomocí simulací bylo nalezeno několik slibných orbit v blízkosti 

bodu L5 se stabilitou snižující se s blízkostí průletů kolem Lagrangeova bodu. 
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1. Introduction 

While most space missions are currently focused on low Earth orbit, it is not the only 

area of interest in relatively close proximity to Earth. Thanks to planned missions to vicinity 

of Moon, namely Lunar Gateway, that promise permanent presence and frequent 

transport. This opens new opportunities to study not only the Moon itself but also Lagrange 

points around it. It is necessary to harness this potential for scientific research while 

available as this lowers the cost of these missions and for lighter payloads offers convenient 

delivery as part of resupply mission. With this in mind comes the need to design missions 

with low total Δ𝑣 and low total mass together with exploring options of transfer trajectories 

between different stable orbits in the region. 

In this paper we have explored transfer trajectories for one such mission. The mission 

being worked on is tasked with investigation of Kordylewski dust clouds that are expected 

to be present around L4 and L5. We are launching from the NRHO orbit, same type of orbit 

as Lunar Gateway will inhabit, and aiming for horseshoe or tadpole orbit. We plan to 

conserve fuel by chaining several orbits together. 
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2. Motion of bodies 

The movement of stellar bodies and man-made satellites is governed by Newton’s 

Laws of motion and conservation of energy, as dissipating effects are vastly lower than in 

atmospheric flight. Thanks to low levels of energy dissipation we can consider total energy 

of a body, the sum of kinetic and potential energy, as invariant. Another simplification is 

offered for problems concerning man-made objects, as due to their negligible mass we do 

not have to consider their effect on other bodies, in these cases we refer to this problem 

as “restricted”. [1] [2] 

2.1. The two-body problem 

The simplest of problems we can encounter in astrodynamics considers relative 

motion of two bodies. It is also the most complex problem that offers an analytical solution. 

Equations of motions have the form of 

𝒓̈𝟏 = 𝐺
𝑚2𝒓

𝑟3
 (1)  

𝒓̈𝟐 = −𝐺
𝑚1𝒓

𝑟3
 (2)  

Where 𝒓 is positional vector of body corresponding with its subscript and relative 

positional vector, and 𝑚 is mass of the body. In few steps we can get the equation of 

relative motion as [1] 

𝒓̈ = −𝜇
𝒓

𝑟3
 (3)  

𝜇 = 𝐺(𝑚1 + 𝑚2) (4)  

In many cases, especially when concerning man-made objects, one of the masses is 

several orders of magnitude lower than the other. As even the ISS, weighing over 419 tons 

[3], has negligible mass compared to Earth and Moon, we can safely assume our probe’s 

mass and its gravitational pull can be disregarded. 

Two body-problem is insufficient for our purposes as our probe orbits the moon and 

Lagrange points of Earth-Moon system. Therefore, this short explanation of two-body 

problem serves only as stepping-stone to our main theoretical topic. 

2.2. The three-body problem 

Three-body problem in its entirety is several steps more complicated than two-body 

problem, which is the reason we introduce many simplifications, the most important for us 

remaining restricted three-body problem due to low relative mass of our probe. 

The simplest variant of three-body problem is circular planar restricted three-body 

problem. Despite the level of simplification from real case, it still offers very valuable 

information. Since the bodies are restricted to movement on plane, we operate on a plane, 

commonly in inertial rotating frame, as shown in Figure 1. [1] 
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Figure 1 - Inertial rotating frame of restricted three-body problem [1] 

The center of the inertial frame is usually in the barycenter of the system, which can 

often be very close to the center of mass of primary body. To decrease number of variables 

we use so called “unit of mass” which is sum of the masses of primary and secondary body, 

then we can write mass of secondary body as 𝜇 and mass of primary as 1 − 𝜇. The distance 

of those bodies to the barycenter hosting the center of inertial frame is then inverse of the 

masses, 𝜇 for primary and 1 − 𝜇 for secondary with unit of length being distance between 

primary and secondary body. Inertial rotating frame has one major advantage in keeping 

position of primary and secondary body as constant in circular three-body problem, or their 

motion usually linear if secondary body is on elliptical trajectory. [1] 

Hamiltonian equation [1] in this inertial frame is 

𝐻 =
1

2
(𝑃𝜉

2 + 𝑃𝜂
2) + 𝑃𝜉𝜂 + 𝑃𝜂𝜉 −

1 − 𝜇

𝜌1
−

𝜇

𝜌2
 (5)  

 

From which we can, after several steps, get equations of motion [1] as 

𝜉̈ − 2𝜂̇ =
𝜕Ω

𝜕𝜉
 (6)  

𝜂̈ + 2𝜉̇ =
𝜕Ω

𝜕𝜂
 (7)  

With Ω being an effective potential of our particle. [1] 

Ω =
1

2
(𝜉2 + 𝜂2) +

1 − 𝜇

𝜌1
+

𝜇

𝜌2
 (8)  
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From the equations of motion, we can compute some of the crucial constants of our 

system, by expanding motion equations with 𝜉̇ and 𝜂̇ respectively [1] 

𝜉̈𝜉̇ − 2𝜂̇𝜉̇ =
𝜕Ω

𝜕𝜉
𝜉̇ (9)  

𝜂̈𝜂̇ + 2𝜉̇𝜂̇ =
𝜕Ω

𝜕𝜂
𝜂̇ (10)  

Then we add these equations together [1] 

𝜉̈𝜉̇ + 𝜂̈𝜂̇ =
𝜕Ω

𝜕𝜉
𝜉̇ +

𝜕Ω

𝜕𝜂
𝜂̇ (11)  

𝑑𝜉̇

𝑑𝑡
𝜉̇ +

𝑑𝜂̇

𝑑𝑡
𝜂̇ =

𝜕Ω

𝜕𝜉

𝑑𝜉

𝑑𝑡
+

𝜕Ω

𝜕𝜂

𝑑𝜂

𝑑𝑡
 (12)  

𝑑

𝑑𝑡
(𝜉̇2 + 𝜂̇2) = 2

𝑑Ω

𝑑𝑡
 (13)  

By integrating this equation, we get [1] [2] 

𝜉̇2 + 𝜂̇2 = 𝑣2 = 2Ω − 𝐶 (14)  

Where 𝐶 is a constant called the Jacobi integral [1] and since 𝑣2 can’t be negative, 

we can write inequation 

2Ω − 𝐶 ≥ 0 (15)  

Or 

Ω ≥
𝐶

2
 (16)  

And since the Jacobi integral is constant, we can evaluate it if we know position and 

velocity for any moment of flight of the particle. Further, Ω is only a function of its position, 

so we can compute what position the particle can assume without violating the inequation. 

[1] [2] 
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2.2.1. Lagrange points 

With inequation mentioned previously, we can chart areas that the particle can’t 

occupy with given value of Jacoby integral [1] 

 

Figure 2 - Forbidden zone (grey) depending on value of the Jacobi integral for 𝜇 = 0.3 [1] 

We can see in Figure 2 that for high values of 𝐶 the particle can enter area close to 

the primary and secondary body or circular area far away from both. Depending on 𝜇 and 

𝐶, these areas can also show us where two-body problem is sufficiently accurate, either 

due to being close enough to one of the bodies to be able disregard effects of the other, or 
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far enough to view the two bodies as one entity. We also can safely say that the orbit of 

the body is stable if it is within one of the two inner areas as it can never escape from the 

system. With dropping value of the Jacobi integral we see the two roughly circular areas 

deform and connect, with first point of contact between two inner accessible areas being 

labeled L1. This new internal area means that primary and secondary can trade satellites. 

[1] [2] 

As we further decrease 𝐶 we see the outer area connect with inner on in point labeled 

L2. Leaving the forbidden zone in roughly horseshoe shape until it becomes cut into two 

pieces as internal allowed area expands to contact the external one at point L3. Then with 

further decrease in the Jacobi constant the two remaining areas shrink into tadpole or 

kidney shaped areas until only points L4 and L5 remain. [1] [2] 

So what are those points and why are they of such interest to us? By looking at the 

gray forbidden zone we can see that these points are most definitely local extremes of 

effective potential function Ω of which we know the previously mentioned inequality (16). 

This paired with the fact that Ω achieves maximal values in infinite distance from both 

objects and at the point masses used to represent our primary and secondary, means that 

the points we are seeing are saddle points, in case of L1, L2, and L3, and global minima for 

L4 and L5. This means all of these points allow for equilibrium to be reached and particle 

suspended at them to remain stationary in relation to primary and secondary body within 

inertial rotating frame, there is still question of stability of this equilibrium. [1] [2] 

For L1, L2, and L3, the saddle points, it has been mathematically proven that they are 

unstable equilibrium points [1], as could be expected from saddle points. It is more 

interesting for global minima in points L4 and L5, as the stability of those depends on value 

of 𝜇 [1], for those points to be stable inequality that needs to be satisfied is 

𝜇 <
1

2
− √

23

108
≈ 0.0385 (17)  

 

As the Earth-Moon system is of interest to us we can quickly check if L4 and L5 of this 

system are stable within our simplified example, where 𝜇 represents relative mass of Moon 

to the whole system, therefore 

𝜇 =
𝑚𝑀

𝑚𝐸 + 𝑚𝑀
=

7.348 ∙ 1022

5.972 ∙ 1024 + 7.348 ∙ 1022
≈ 0.0122 (18)  

 

From this we see that our L4 and L5 should be stable, which is supported by 

observation of Kordylewski dust clouds. These dust clouds have been observed at both L4 

and L5 with more observations happening around L5. [4] 
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2.3. Types and families of orbits 

As orbits that are solution to three-body problem are often very different to simple 

circular or elliptical trajectory, they have been categorized into groups based on various 

parameters, usually related to nearby Lagrange points and bodies. While there is very large 

number of such categories, we will focus on the ones that are or have been of interest to 

us. [5] [6] 

2.3.1. Distant retrograde orbit 

These orbits are coplanar to the Moon’s orbit around Earth. These orbits are 

exceptionally stable and can reach far beyond L1 and L2, even going close to Earth. This 

offers great diversity of coordinates that can be reached on these orbits. [5] 

 

Figure 3 - Distant retrograde orbits of Moon, color denoting value of the Jacobi constant [5] 

As we can see in Figure 3, the area which is covered by trajectories of distant 

retrograde orbits is considerable. Their main disadvantage is that being coplanar with 

Moon’s orbit around Earth satellites can find themselves not only entering shadow of the 

Moon, it can also find itself in Earth’s shadow and as these orbits have long periods it might 

lead to extended time spent without power being generated via solar panels. As this 

disadvantage can be solved with proper planning, the exceptional stability and transfer 

options outweigh it. 
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Figure 4 - Stability indices for distant retrograde orbits depending on value of the Jacobi constant 
[5] 

As can be seen in Figure 4, the trajectory is stable for 𝐶 > ~2.369, with planar 

stability (𝜐1) being especially good, and slightly more sensitivity to out of plane 

disturbances. [5] 

On example of distant retrograde orbit, we will also explain how families of orbits are 

found and described, as it can be easily explained on it. We start with initial conditions of 

[𝑥0, 0, 0, 0, 𝑦0̇, 0]𝑇 where 𝑦0̇ is varied until our particle perpendicularly crosses x-axis on 

the other side of the Moon. Then for the next orbit in the family we use the solution of 𝑦0̇ 

as initial guess and small variation to 𝑥0. Similar methods are used for all other families of 

orbits with variation of what parameters are being used and what are criteria for such 

orbits. [5] 

2.3.2. Near rectilinear halo orbit 

Halo orbits were first described in 70s as an option for translunar coverage without 

being obstructed by the Moon. Nowadays we can speak of three main types of halo orbits 

that are in separated by being in vicinity of different Lagrange points, L1, L2, and L3. Of 

interest to us are only the L1 and L2 families. These are present near the Moon and are 

interesting due to offering relatively easy transfer from Earth and transfer to other orbits. 

From halo orbits a specific family can separated, near-rectilinear halo orbits. These orbits 

come close to Moon on either the north or the south pole, above which their periapsis is 

located. [5] 
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Figure 5 - Southern L2 near-rectilinear halo orbit used for simulations in this paper, Earth in 
direction of negative X axis [7] 

Further, we can see in Figure 5 that the trajectory slightly curves towards the L2 point, 

but remains almost perpendicular to Moon’s orbital plane, which makes its trajectory 

resemble an ellipse. That is a characteristic separating NRHOs from other halo orbits. [6] 

The stability of these orbits has been studied within circular restricted three-body 

problem, where it has been found that some of L2 halo orbits can be stable as seen in Figure 

6. [5] 

 

Figure 6 - Stability indices for L2 halo orbits, for stability both indices need to have absolute value 
of less than 1 [5] 

Since L2 near rectilinear halo orbits are characterized by periapsis, in our case 

perilune, ranging from 1850 km to 17350 km and periods from roughly 6 to 10 days, we can 

see that within this simplified three-body problem they can be stable. The upside to NRHO 
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even outside of marginally stable ones is that divergence rate is significantly slower than 

when compared to other orbits. [6] 

As has later shown in simulations, since most of the sources use circular restricted 

three-body problem, the accuracy of prediction of stability of our particular orbit seems to 

differ from results of the simulation. This can be attributed to both movement of Moon as 

well as Lagrange points. It is possible that this could be partially rectified by some 

appropriate changes to velocity vector of our probe. [5] [6] 

For us Southern L2 near-rectilinear halo orbit presents ideal position to start our 

mission, as thanks to such orbit soon housing space station Lunar Gateway, we can expect 

many flights towards its orbit. Furthermore, halo orbits in general offer a good opportunity 

for transfer to many of the nearby orbits. 

2.3.3. Orbits around L4 and L5 

These orbits are related to triangular Lagrange points, L4 and L5. Tadpole orbits, 

named for their shape, stay in neighborhood of one Lagrange point, while horseshoe orbits 

travel between L4 and L5 over L3. [8] 

First, we will look at families of planar horseshoe orbits. These orbits exist with the 

Jacobi constant allowing escape of particle to outer plane. In Figures 7, 8, and 9 we can see 

examples of three families of horseshoe orbits. For clarity only half of the symmetrical orbit 

is shown. [8] 

 

Figure 7 - Examples of "A" family of horseshoe orbits [8] 

 

Figure 8 - Examples of "B" family of horseshoe orbits [8] 
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Figure 9 - Examples of "C" family of horseshoe orbits [8] 

As we can see, objects on these orbits will spend most of the time far away from L4 

and L5, which makes these orbits less desirable for us. The upside is stability of those orbits 

which, in scope of circular restricted three-body problem, is good. But even improved 

orbital stability doesn’t make up for far too long periods, sometimes even several decades, 

especially in “A” family. [8] 

For us far more interesting are orbits that stay close to one of the Lagrange points 

without excessive time spend in flight between L4 and L5. This means we will be considering 

orbits closer to those of Trojans and Greeks. Orbits around L4 and L5 can be split between 

Short period orbits and Long period orbits as depicted in Figure 10. [5] 

 

Figure 10 - Shape, energy, and stability of various short (upper) and long (lower) period orbits [5] 
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As can be seen, short period orbits increase in energy as they get further away from 

Lagrange points, while long period orbits increase in energy with proximity to them. In 

addition, all of the shown short period orbits are stable, as stability indices stay within 

acceptable absolute value (dotted line in the graph), while long period orbits appear to lose 

stability when they get too far from the Lagrange point. [5] 

Stability of Short Period Orbit together with its short period that ensures that even if 

part of orbit is too far from the Lagrange point we will still be able to achieve reasonable 

portion of time spent close to our target location. 

2.4. Orbit chaining 

When choosing a transfer trajectory to our target orbit we should also investigate 

options of chaining several changes of orbit together. This allows us to utilize our probe’s 

energy better. We can both save fuel and time by choosing correct intermediate trajectory. 

To help us determine beneficial choices for chaining orbits we can use the Jacobi constant 

since it is an energy-like constant. We know that the probe must pass through all the values 

of 𝐶 between the initial 𝐶0 and the final 𝐶𝑓. The Jacobi constant is function of position and 

velocity with it being constant on every orbit. This means we can utilize orbits with clues of 

the Jacobi constant in-between our initial and final value. Therefore, the first step to 

creating a working orbit chain is investigating the Jacobi constants of our orbits and 

searching out orbits with the Jacobi constant between our launch and target orbits. [9] 

Once we assemble our chain of orbits we can then focus on choosing optimal 

transfers both from perspective of time and energy cost. This is very complicated, as 

determining the optimal transfer is not possible with every set of initial values, which leads 

to creation of families of transfer trajectories. Further, some transfers are available only 

under certain relative positions of probe to primary and secondary. While there is no upper 

limit to number of intermediate orbits, and often there can be a large number of them, we 

will take look at short three-link orbit chains as examples in Table 1. [9] 

Table 1 - Time of flight, change in velocity and mass, and mass fraction for spacecraft with initial 
mass of 1 ton and specific impulse of 2000 seconds [9] 

 

We can see that correct choice of intermediate orbit is crucial for optimal transfer 

and that decrease in time of flight doesn’t always correspond with increase in Δ𝑣. And the 

complexity rises with each added link to our orbit chain, so while there is no theoretical 

upper limit to amount of orbits that can be chained together, we will quickly run into one 
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caused by time and computing capacity. Further, we are also heavily limited by our own 

knowledge of orbits and good initial values for transfers between them. This means that 

experience and intuition are still very much a crucial part of trajectory design despite many 

attempts at finding ways to bridge this gap. [9] 

2.5. Transfer Network 

As was said in the previous chapter there is never one single solution to transfer 

between two orbits, even without chaining orbits together. This is due to the same reasons 

why we have many orbits that can differ wildly. Therefore, transfers are grouped into 

families just like orbits are. This is the reason why correct initial guess is critical when not 

using well mapped transfer network, as we can find ourselves with suboptimal solutions, 

especially in cases when there is lack of experience with such transfer trajectory designs. 

[5] 

Transfer networks are usually created between set orbits, therefore the first step in 

creation of such transfer network is choosing which orbits we want to connect, because 

while it is safe to assume that similar enough orbits will have relatively similar transfer 

trajectories, transfer networks attempt to provide an exact solution, and even when we 

remain in same family of orbits, the optimal transfer trajectory might shift outside of the 

vicinity of the initial guess provided as solution in transfer network. [5] 

Transfer networks are a powerful tool for simplifying both transfer between orbits 

and their chaining and making transfer design more accessible by partially removing the 

hurdle in the form of the initial guess of position and velocity [9]. In theory if we have an 

expansive and complex enough transfer network, we might be able to create ideal transfers 

between two orbits in three-body problem. Regrettably, such a complex transfer network 

is, at least at the moment, not available. 
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3. Development of transfer trajectory 

We have set NRHO as our starting orbit with aim of achieving SPO around one of the 

triangular Lagrange points. Our aim was to achieve the lowest possible Δ𝑣 while 

maintaining transfer time below a thousand days. Our aim was to achieve ∆𝑣 < 500 m s−1. 

Our target orbit has to pass closer than twenty thousand kilometers away from either of 

the triangular Lagrange points, L4 and L5, ideally be captured within such distance for the 

entire time. 

3.1. First transfer chain proposition 

Initially we have been searching for already tried and tested solutions, or already fully 

explored ones. We found a promising transfer network [5] utilizing DRO as central hub for 

transfers to and from all other orbits. For us, the transfers from NRHO and to SPO at vicinity 

of L4 and L5 were crucial. 

 

Figure 11 - Transfer options from L2 NRHO to DRO [5] 

First, we investigated our options for transfer to DRO from NRHO. As can be seen in 

Figure 11, we have multiple options and all of the transfers are well within acceptable time 

of flight. This means we choose the transfer trajectory labeled as 16. This transfer takes 

slightly over 30 days [5] to reach its target trajectory at cost Δ𝑣 = 402.62 m s−1[5]. When 

looking at the trajectories as shown in the next figures, chosen as extreme examples of 

transfer trajectory, comparing the most energy efficient trajectory 16, Figure 12, that we 
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chose with the least effective trajectory 6, Figure 13. We can clearly see reason for the 

better energy efficiency of our chosen transfer. The direction of velocity the probe 

possesses aligns much better in our chosen transfer than in transfer 6, where only a fraction 

of the velocity compounds beneficially with the target velocity after the maneuver. This is 

not surprising, as this can be observed even in simple Hohmann transfer and is principally 

why change in orbital inclination can be considered the worst maneuver energetically. 

From this, we determined that if we have to develop our own transfer trajectories, we 

should always attempt to use velocity changes that are as close as possible to the direction 

of our current velocity vector. [5] 

 

Figure 12 - Flight path of transfer 16 [5] 
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Figure 13 - Flight path of transfer 6 [5] 

The second transfer would be from DRO to SPO. We had the option of choosing 

between L4 and L5. As there is no major difference for us in either of those locations, we 

opted to decide depending on the transfer availability and the Δ𝑣 needed. 

 

Figure 14 - Graph of needed change in velocity based on time of flight of transfer trajectories 
between DRO and L4 SPO [5] 
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First, we look at transfers between DRO and L4 SPO which have their time of flight 

and Δ𝑣 shown in Figure 14. We can see that flight time is much more considerable for these 

transfers, but the needed change in velocity is much lower than for transfer from NRHO to 

DRO. We have chosen transfer I18, which takes approximately 247 days with Δ𝑣 =

42 m s−1. [5] 

 

Figure 15 - Graph of needed change in velocity based on time of flight of transfer trajectories 
between DRO and L5 SPO [5] 

When we look at transfers between DRO and L5 SPO, we notice that optimal transfers 

to L5 SPO take longer than to L4 SPO. From the transfer options shown in Figure 15, T34 

appears to be the best when it comes to needed velocity adjustment at Δ𝑣 = 47.5 m s−1 

and requiring 317 days. [5] 

While these transfers are close in their monitored parameters, transferring to L4 SPO 

appeared to be better choice due to both being lower in Δ𝑣 and requiring less time. 
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Figure 16 - Trajectory of chosen transfer between DRO and L4 SPO [5] 

As this transfer is planar, we can see it in its entirety in Figure 16. After the initial 

maneuver, the probe slowly drifts out of DRO followed by fly-by of L5 and L3 before the 

trajectory aligns very closely with L4 SPO and allows achieving that orbit with minimal 

expense of fuel. [5] 

In total, these transfers chaining NRHO-DRO-L4 SPO, would cost Δ𝑣 = 444.62 m s−1, 

which would satisfy our initial aim of less than Δ𝑣 < 500 m s−1 and transfer time should 

also be satisfactory, since periods of NRHO and DRO are not long enough to greatly affect 

length of the transfer and transfers themselves add up to 345 days. 

This initial proposition has several problems. First the target orbit is not optimal for 

us and we would need to adjust it closer to L4, but this pales in comparison to the fact that 

this transfer network has been designed in circular restricted three-body problem, which 

means that accuracy of these predictions for non-circular three-body problem is not 

guaranteed. 

While this plan was ultimately found less viable it has been an important stepping-

stone in development of our final trajectory. 

3.2. General mission analysis tool 

Before talking about the simulations themselves, we need to talk about the software 

used for them. We were using General Mission Analysis Tool (GMAT) developed by NASA. 

It is being used widely within industry by government agencies, universities, and private 
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companies. GMAT is available as open-source software making it ideal for academic 

applications. [10] 

As the name suggests, GMAT is software for mission analysis. This means that we can 

use it to inspect the trajectory of our probe and plan our maneuvers. The level of detail of 

the simulation can be adjusted, with option of selecting which bodies’ gravitational effect 

is to be taken into account as well as solar radiation pressure. This allows optimizing which 

parameters have big enough effects on our mission. GMAT also offers a range of solvers to 

help with creating transfer trajectories and other optimization tasks. Trajectories of 

celestial bodies are modeled using ephemerides, giving GMAT the greater accuracy it needs 

over circular three-body problem solution that might be used otherwise. [10] 

In our simulations we are using a rotating frame with its center corresponding to the 

Earth’s center of mass. 

3.3. Launch orbit 

When our first attempts at creating the models within GMAT were made we quickly 

discovered that solutions available for stable near-rectilinear halo orbits that are available 

as solution for circular three-body problem are not viable in ephemeris model used by 

GMAT as can be seen in Figure 17. 

 

Figure 17 - Flight path of probe without correcting its orbit for Moon's eliptical orbit 

We believe the reason was that the Moon was not static and was moving along the 

x-axis to and from Earth which introduced disturbances to our NRHO orbit. We have tested 

several of the solutions stable in circular restricted three-body problem, and none of the 

attempts were successful. Which led to needing to stabilize the orbit first. We have 
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attempted to stabilize several of the orbits. We were the most successful in the case of 

orbit seen in Figure 5. This orbit has its aposelene at 72 820 kilometers away from the Moon 

and comes as close as 3 625 kilometers in its periselene, with period of 6.8 days. 

To stabilize the orbit, we decided to use impulse maneuver, which we prescribe Δ𝑣 

for braking maneuver, negative y-axis. This has proven to be a fast and successful approach. 

Because due to nature of “Target” function we were unsuccessful in creating parameters 

within which solver would successfully converge giving us stable, or temporarily stable 

orbit, we had to use manual iterations, which have ultimately landed us on Δ𝑣 =

74.15 m s−1. With that we have managed to successfully stabilize the orbit for roughly 35 

days before it diverges too far and we lose orbit around the Moon. This can be seen in 

Figure 18, showing that the probe first completed about 5 revolutions around the Moon 

before it lost orbit as the Moon started to move towards Earth after passing its apogee. 

 

Figure 18 - Stabilized NRHO around the Moon in restricted three-body problem plotted using 
GMAT 

We have deemed this stability satisfactory for transfer maneuvers within the first two 

orbital periods and we proceeded with attempts to reach DRO. Of note is that the orbit we 

managed to stabilize is different to the orbit that was used in the transfer network we were 

using as source for our maneuvers meaning we were already expecting to have to optimize 

our transfers. 

3.4. Leaving NRHO 

While our orbit has changed slightly in comparison to the one used in the transfer 

network and we were certain that effects of the Moon’s movement relative to Earth had 

much larger effect than anticipated, we were still attempting to preserve the initial plan of 

chaining orbits in NRHO-DRO-L4 SPO chain. 

First, we had to determine the optimal location for the impulse burn which we have 

attempted to position similarly to the transfer network. But we noticed that instead of 

flying towards a DRO, most of our attempts tended to fly towards the L5 and we decided 

to study this avenue further. This led to more changes to position of our maneuver and its 

Δ𝑣. We kept decreasing Δ𝑣 to achieve successful capture into an orbit around L5. This was 
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best achieved by one impulse burn accelerating the probe by Δ𝑣 = 150 m s−1 as it 

approaches the midpoint between aposelene and periselene. This allowed the probe to be 

captured near the L5 into a horseshoe orbit where it remained stable for over half a year. 

The trajectory of the orbit can be seen in Figure 19 

One thing that was detected is that successfully reaching target orbit is heavily 

dependent on timing of the maneuver. This shows that the trajectory is highly dependent 

on position of Moon on its trajectory, possibly compounding with its speed relative to 

Earth. 

 

 

Figure 19 - Direct single-impulse transfer from NRHO to DRO, yellow curve shows trajectory of 
probe after passing periselene 
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The yellow curve in Figure 19 is the trajectory of the probe for 160 days after passing 

periselene and we can clearly see some form of horseshoe orbit which most likely is not 

very stable. Which is not a problem for us as achieving this orbit only means we can achieve 

different orbits by adding more impulse maneuvers and altering the current ones. 

3.5. Final orbit 

As our aim is to spend as much time as possible in the vicinity of L4 or L5 and our 

current transfer trajectory was taking us into the vicinity of L5, we have decided to aim for 

an orbit around this point. Our first aim was finding a solution for stable or partially stable 

orbit around the L5 from which we could attempt to alter the maneuvers in such a way as 

to obtain a satisfactory orbit. We decided on using intermediate maneuver after passing 

periselene and optimized position of this maneuver to obtain the closest fly-by of the L5 

that we could achieve by varying this factor. We have found during the simulations that we 

can maintain a considerable level of stability of our solution while moving the maneuver 

around if we keep the Δ𝑣 constant. 

Our first successful and stable orbit was achieved with two braking burns after leaving 

the orbit of the Moon. The first braking maneuver happens 10 days after leaving periselene 

and has Δ𝑣 = −50 m s−1. The second braking maneuver happens when the probe reaches 

maximum height over the Moon’s orbital plane as this point coincides with what could be 

related to as one of the apsides. When reaching this point the probe performed another 

braking maneuver with same Δ𝑣 as the previous one. This appears to land us on very stable 

orbit around the L5 as shown in Figure 20. 

 

Figure 20 - Our first simulated stable orbit around L5 

From this orbit we iterate searching for the optimal time for first braking burn and 

through several iteration it was brought to 6.5 days after passing the periselene. Further 

optimization after this required a change in approach. More and more, the movement 

outside of Moon’s orbital plane was affecting the distance to the L5, therefore we had to 

change the orbital plane at which our probe orbits. While we were attempting to avoid this 
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maneuver as it is very costly from Δ𝑣 perspective, it has become necessary to achieve our 

goals. This also led to lowering Δ𝑣 of other maneuvers as we need to keep kinetic energy 

high enough so that curves of zero velocity are close enough to the L5 or non-existent in 

the vicinity of the L5. We manage to achieve close enough proximity to the L5 at increased 

Δ𝑣 cost and loss of stability of our solution, which can be seen in Figure 21. 

 

Figure 21 - Unstable orbit around L5 with close fly-bys, change in color of trajectory denotes 
impulse maneuver, blue between maneuvers 1 and 2, cyan between 2 and 3, green between 3 and 

4, red between 4 and 5, white between 5 and 6, and orange after maneuver no. 6 

Table 2 - Table of maneuvers used to achieve close fly-bys of L5 

No. Name Time elapsed ∆𝒗 

1 Departure from NRHO 9 days 150 m/s in direction of +Z 

2 Circumlunar braking 16.5 days 40 m/s against direction of velocity vector 

3 Aligning plane of orbit 26.5 days 150 m/s in direction of -Z 

4 Braking for capture near L5 35 days 30 m/s against direction of velocity vector 

5 Stabilization burn for close fly-bys 76.75 days 74.15 m/s roughly in direction of +Y 

6 First correction burn 157 days 20 m/s in direction of +X 

   Total ∆𝑣 is 464.15 m/s 

Probe deorbits after about three months without a correction burn, performing two 

close fly-bys of L5. These close fly-bys destabilize the orbit and cause the probe to enter a 

horseshoe orbit with long period. Even on its own this orbit is not ideal as majority of the 

time is spend far away from the L5 and the correction maneuvers are frequently needed. 
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3.6. Results 

We have created and optimized a transfer trajectory between NRHO and orbit 

around the L5. There have been several noteworthy results, especially due to their stability 

with such an inherently unstable system. There was no stable solution found for orbits that 

venture close enough to the L5 to fulfill mission demands, therefore we had to settle for 

an unstable solutions with frequent corrections if we are to fulfill the assignment. On the 

graph we can see distance between probe and L5. Probe first reaches the distance of 20 000 

kilometers to the L5 after 66 days in transfer, as shown in Figure 22. The problem with this 

orbit is that it spends only 3.3% of the time in the vicinity of the L5, but for such close fly-

bys no alternative was discovered. As can be seen on the graph, the probe performs several 

distant orbits before re-entering the neighborhood of the L5. The last third entry just barely 

misses the needed distance to the L5 meaning that a correction burn will be needed to 

perform close pass. The relative speed is in low hundreds of meters per second during the 

fly-bys, as can be seen in Figure 23 and Figure 24. As the specifics of the detection 

equipment are not available, evaluation of this parameter is not possible. But as far as 

relative velocities in space go, these are rather low, therefore we can talk about low-speed 

fly-bys. 

 

Figure 22 - Graph of distance between probe and L5 on unstable close orbit 
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Figure 23 – Graph of relative velocity during first approach of probe to L5 

 
Figure 24 – Graph of relative velocity during second approach of probe to L5 

As the mission of the probe is to detect and observe the Kordylewski clouds, we might 

be interested in other orbits too. From ground-based observations the Kordylewski clouds 

appear to span area bigger than 100 000 by 70 000 kilometers around the triangular points. 

[11] Which is a looser limit than 20 000 kilometers specified in this assignment. While some 

of the more stable orbits come close to those distances none of the orbits discovered in 

our simulations manages to reach these distances reliably, it might be possible that there 

could be stable solution for these upper bounds of the Kordylewski clouds theoretically 

achieving higher percentage of measurement time but none of the solutions we discovered 

so far achieves that with stable orbits usually normalizing at slightly over 50 000 kilometers 

in distance from a Lagrange point. But since we didn’t explore this option as extensively 

due to focus on 20 000-kilometer constraint, there might be a yet-undiscovered stable 

solution that would be viable for the loosened constraints. Our possibly most successful 
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attempt at such stable orbit can be seen in Figure 25. The distance of the probe to L5 is 

plotted in Figure 26. The maneuvers used to achieve this orbit can be seen in Table 3. We 

can also see in Figure 27 that the relative velocity oscillates between 200 m/s and 600 m/s, 

which is still relatively low velocity. 

Table 3 - Table of maneuvers used to achieve a stable orbit of L5 

No. Name Time elapsed ∆𝒗 

1 Departure from NRHO 9 days 150 m/s in direction of +Z 

2 Circumlunar braking 16.5 days 40 m/s against direction of velocity vector 

3 Aligning plane of orbit 26.5 days 150 m/s in direction of -Z 

4 Braking for capture near L5 35 days 40 m/s against direction of velocity vector 

   Total ∆𝑣 is 380 m/s 

 

 
Figure 25 - Stable orbit around L5, the change in color of trajectory denotes impulse maneuver, 

blue is between maneuvers 1 and 2, red between 2 and 3, green between 3 and 4, and yellow after 
maneuver 4 
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Figure 26 - Graph of distance between probe and L5 on long-term stable orbit 

 

Figure 27 - Relative velocity between L5 and the probe on stable orbit 

While outside the scope of original assignment, it is worth noting that all stable orbits 

found were safely outside of the Kordylewski dust cloud and therefore wouldn’t suffer any 

effects the dust particles could have on them, from loss of kinetic energy due to impacts, 

to the abrasion of solar panel surfaces. While this observation is detrimental to our mission, 

it is at the same time dispelling some of the concerns about the dust clouds affecting the 

viability of the orbits about the triangular points. [4]  
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4. Discussion 

While the accuracy of our simulation is greater than of the predictions made based 

on circular restricted three-body problem, there can be further disturbances if we look for 

solution in n-body problem or include solar radiation pressure. While we do not believe the 

changes will be significant, they might require minor changes to the maneuvers employed. 

While there are other options for visiting vicinity of L4 and L5, these options have 

mostly already been explored in other works. Especially when it comes to transfers from 

LEO to triangular points, where studies have shown that by traveling close to the Moon 

such maneuvers can decrease fuel necessary to perform them. As these transfers have 

already been explored in-depth, we decided to explore other avenues that could lead to 

new more beneficial flightpaths being found. The same decision was made regarding the 

orbit used by satellite Hiten. [12] 

We have discovered that circular approximation of the three-body problem is not 

viable for translation into more realistic scenarios using the ephemeris model. This has led 

to need for correction on NRHO to even achieve temporarily stable orbit and made transfer 

to DRO or L5 SPO impossible using the maneuvers as outlined in the used transfer network. 

This meant we had to develop completely new maneuvers that are viable in the ephemeris 

model used by GMAT. This effectively led to having to rely on the multiple shooting method 

and slow iterative approach where we manually evaluated every result for its viability. [5] 

While in the circular restricted three-body problem there appear to be stable orbits 

even very close to L4 and L5, we were not able to achieve any such orbit in our simulations. 

While it is possible that such orbits exist, it appears that the motion of the triangular points 

introduces disturbances to these orbits. This effect is stronger the closer the probe is to the 

Lagrange point and as our target distance is 20 000 kilometers, while the linear movement 

of the Lagrange points is 40 000 kilometers, the effects seem significant. The orbits with 

better stability managed to only reach a distance of roughly 38 000 km meaning they are 

not satisfactory for this assignment. Which could still be close enough to detect the 

Kordylewski dust cloud as those reach over 50 000 kilometers away from the triangular 

points according to the observations. 

The motion also means that epoch of our arrival to the orbit is crucial too, which 

paired with maneuver to leave NRHO being heavily dependent on epoch too introduces 

more challenges for the optimization of our transfer. 
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5. Future plans 

While theoretically fulfilling the assignment in its current form, practicality of this 

solution is dubious at best and therefore more investigation needs to be put into finding 

viable orbits with high ratio of measurement time. This investigation should consist of 

creating a script to search for viable orbits around L5 and L4 without regard to their 

availability from NRHO or LEO. After confirming the existence of stable viable orbits with 

acceptable measurement time ratio, we will then investigate options of transferring to 

those specific orbits with respect to launch and arrival epoch. 
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6. Conclusion 

We started with plan on chaining several orbits together using already explored 

transfer network [5] connecting NRHO to DRO and to L4 SPO. This plan didn’t come to 

fruition as moving from the circular restricted three-body problem into ephemeris model 

introduced far too many disturbances to achieve the same results as were explored in other 

papers using circular three-body problem. Therefore, we had to look for our own solutions. 

We have discovered and explored transfer possibilities from NRHO to orbits around 

L5 and found promising transfers and orbits. The total ∆𝑣 cost of our maneuvers to achieve 

target orbit is 464.15 m s−1, which is lower than the original estimate using transfer 

network chaining NRHO-DRO-L5 SPO. We have found unstable orbit achieving close fly-bys 

of the L5 and stable orbits in greater distance. The time from first maneuver to achieving 

target distance from the L5 is roughly 66 days, which is more than satisfactory, but the ∆𝑣 

cost is rather high, and the orbit has very poor ratio of measurement time to total time of 

flight, only 3.3% of the time is spent within close enough proximity. This means that while 

our investigation found promising candidate, we need to investigate its viability and 

potential improvements over it. We have also found stable orbit on the edge of the 

Kordylewski dust cloud at the L5 that needs total ∆𝑣 of only 380 m s−1 and is stable for 

almost a year without any correction burns. Regrettably this orbit only skims over the outer 

edge of expected span of the Kordylewski dust cloud making this solution less viable. 

But the conclusions are not all negative. Some of the positive conclusions are that our 

simulations confirmed existence of very stable orbits around the L5 within the restricted 

three-body problem using ephemeris model of Lunar orbit. These orbits remain stable in 

excess of a year without any need for further correction burns, presenting an interesting 

parking orbit. Further, these orbits should be safely outside of the Kordylewski dust cloud 

and therefore safe from any negative effects of the dust particles. 
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