
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Block-Coordinate Descent and Local Consistencies

in Linear Programming

Dissertation Thesis

Ing. Tomáš Dlask

Supervisor: doc. Ing. Tomáš Werner, PhD.

Study Programme: Electrical Engineering and Information Technology
Branch of Study: Artificial Intelligence and Biocybernetics

Prague, May 2022

Abstract

Even though linear programming (LP) problems can be solved in polynomial time, solving
large-scale LP instances using off-the-shelf solvers may be difficult in practice, which cre-
ates demand for specialized scalable methods. One such method for large-scale problems
is block-coordinate descent (BCD). However, the fixed points of this method need not
be global optima even for convex optimization problems. Despite this limitation, vari-
ous BCD algorithms (also called ‘convergent message-passing algorithms’) are successfully
used for approximately solving the dual LP relaxation of the weighted constraint satisfac-
tion problem (WCSP, also known as MAP inference in graphical models) and their fixed
points can be characterized using local consistencies, typically variants of arc consistency.

In this work, we focus on optimizing linear programs by BCD or constraint propagation
and theoretically relating these approaches. To this end, we propose a general constraint-
propagation-based framework for approximate optimization of large-scale linear programs
whose applicability is evaluated on publicly available benchmarks. In detail, we employ
this approach to approximately optimize the dual LP relaxation of weighted Max-SAT and
an LP formulation of WCSP. In the latter case, we show that one can use any classical CSP
constraint propagation method in order to obtain an upper bound on the optimal value.
This is in contrast to existing methods that needed to be tailored to a specific chosen kind
of local consistency. However, the cost for this is that our approach may not preserve the
properties of the input WCSP instance, such as the set of optimal assignments, and only
provides an upper bound on its optimal value, which is nevertheless important for pruning
the search space during branch-and-bound search.

Although one can use our general framework with any constraint propagation method
in a system of linear inequalities, we identify the precise form of constraint propagation
such that the stopping points of the resulting algorithm coincide with the fixed points
of BCD. In other words, we identify the kind of local consistency that is enforced by
BCD in any linear program. Depending on the problem being solved, this condition
may be interpreted, e.g., as arc consistency or positive consistency. Thanks to these
results, we characterize linear programs that are optimally solvable by BCD by refutation-
completeness of the associated propagator (i.e., whether it can always detect infeasibility
of a certain class of systems of linear inequalities and equalities). This allows us to identify
new classes of linear programs exactly solvable by BCD, including, e.g., an LP formulation
of the maximum flow problem or LP relaxations of some combinatorial problems.

We believe that this work may initiate further research on large-scale non-smooth
constrained convex optimization problems.

Keywords: Linear Programming, Block-Coordinate Descent, Local Consistency, Con-
straint Propagation, Weighted Constraint Satisfaction Problem

i

Abstrakt

Přestože problémy lineárńıho programováńı (LP) lze řešit v polynomiálńım čase, běžné
metody nemuśı být v praxi dostatečné pro problémy velkého rozsahu, což vytvář́ı poptávku
po specializovaných škálovatelných metodách. Takovou metodou pro rozsáhlé problémy
je sestup po bloćıch souřadnic (BCD), jej́ıž fixńı body ovšem nemuśı být globálńı optima
ani pro konvexńı optimalizačńı problémy. Navzdory tomuto omezeńı jsou r̊uzné BCD
algoritmy úspěšně použ́ıvány pro přibližné řešeńı duálńı LP relaxace problému s váženými
omezeńımi (WCSP, také známého jako MAP inference v grafových modelech) a jejich fixńı
body mohou být charakterizovány pomoćı lokálńıch konzistenćı, typicky variant hranové
konzistence.

V této práci se zaměřujeme na optimalizaci lineárńıch programů pomoćı BCD nebo
propagace podmı́nek a teoreticky oba tyto př́ıstupy propojujeme. Abychom dosáhli tohoto
ćıle, navrhneme obecné schéma založené na propagaci podmı́nek pro přibližnou optimal-
izaci lineárńıch programů velkého rozsahu, jehož použitelnost vyhodnocujeme na veřejně
dostupných instanćıch. Konkrétně tento př́ıstup aplikujeme k přibližné optimalizaci duálńı
LP relaxace váženého Max-SAT problému a LP formulace WCSP. V př́ıpadě LP formulace
WCSP ukážeme, že k źıskáńı horńı meze na optimálńı hodnotu je možné použ́ıt jakoukoli
klasickou metodu propagace podmı́nek v CSP, což se lǐśı od stávaj́ıćıch metod, které bylo
nutno přizp̊usobit konkrétńımu zvolenému druhu lokálńı konzistence. Nevýhodou našeho
př́ıstupu je, že nemuśı zachovávat vlastnosti vstupńı WCSP instance, jako např́ıklad
množinu optimálńıch řešeńı, ale poskytuje pouze horńı mez na optimálńı hodnotu, která
je nicméně d̊uležitá pro prořezáváńı prohledávaného prostoru během metody větv́ı a meźı.

Ačkoli je možné použ́ıt naše obecné schéma s jakoukoli metodou propagace podmı́nek v
soustavě lineárńıch nerovnost́ı, našli jsme takový konkrétńı zp̊usob propagace, že fixńı body
výsledného algoritmu se shoduj́ı s fixńımi body BCD. Jinými slovy, našli jsme druh lokálńı
konzistence, který BCD vynucuje v jakémkoli lineárńım programu. V závislosti na řešeném
problému se tato lokálńı konzistence může interpretovat např́ıklad jako hranová konzis-
tence nebo pozitivńı konzistence. Dı́ky těmto výsledk̊um charakterizujeme lineárńı pro-
gramy, které jsou optimálně řešitelné pomoćı BCD, pomoćı úplnosti odpov́ıdaj́ıćı metody
propagace podmı́nek (tj. jestli daná metoda vždy dokáže detekovat nesplnitelnost jisté
tř́ıdy lineárńıch rovnic a nerovnic). Tyto výsledky umožňuj́ı identifikovat nové tř́ıdy
lineárńıch programů, které lze optimálně řešit pomoćı BCD. Takové lineárńı programy
zahrnuj́ı např́ıklad LP formulaci problému hledáńı maximálńıho toku v śıti nebo LP re-
laxace určitých kombinatorických problémů.

Věř́ıme, že tato práce může podńıtit daľśı výzkum v oblasti konvexńıch nehladkých
optimalizačńıch problémů velkého rozsahu s omezeńımi.

Kĺıčová slova: Lineárńı programováńı, Sestup po bloćıch souřadnic, Lokálńı konzistence,
Propagace podmı́nek, Vážené CSP

Překlad názvu: Sestup po bloćıch souřadnic a lokálńı konzistence v lineárńım pro-
gramováńı

ii

Acknowledgement

I am thankful to my supervisor Tomáš Werner for his guidance, frequent discussions,
collaboration, and useful advice during my studies. I would also like to thank Daniel
Pr̊uša and Simon de Givry for collaboration on joint papers. Furthermore, I appreciate
the possibility to discuss ongoing research with other members of the Machine Learning
group at the department. Last but not least, I wish to express my sincere gratitude to my
family and friends for their support.

The support of the Grant Agency of the Czech Technical University in Prague (grants
SGS19/170/OHK3/3T/13 and SGS22/061/OHK3/1T/13), the Czech Science Foundation
(grant 19-09967S), and OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765 is gratefully
acknowledged.

iii

Contents

Introduction 1

Structure and Contributions . 2

1 Background 6

1.1 Linear Programming and Systems of Linear Inequalities 6

1.1.1 Relative Interior and Strict Complementarity 7

1.1.2 Convex Piecewise-Affine Objective 8

1.1.3 Systems of Linear Inequalities and Linear Inference 8

1.2 Block-Coordinate Descent and Relative-Interior Rule 12

1.2.1 Relative-Interior Rule . 13

1.2.2 Convergence . 16

1.2.3 Reformulations of Problems . 17

1.3 Partially Ordered Sets . 19

1.3.1 Lattices . 19

1.3.2 (Dual) Closure Operators and Chaotic Iterations 20

1.4 Constraint Satisfaction Problem and Local Consistencies 23

1.4.1 Local Consistencies and Constraint Propagation 25

1.5 Weighted CSP and LP-Based Bounds . 31

1.5.1 Linearity and Marginal Polytope . 32

1.5.2 Active Tuples and Upper Bound . 32

1.5.3 Reparametrizations and LP Relaxation 34

1.5.4 Methods for Obtaining Bounds Using Reparametrizations 35

1.5.5 Super-Reparametrizations . 38

2 Bounds on Large-Scale Linear Programs Using Constraint Propagation 40

2.1 Constraint Propagation for Linear Inequalities 40

2.1.1 Computing Certificate of Infeasibility 42

2.2 Bounding the Optimal Value of Linear Programs 42

2.2.1 Finiteness and Capacity Scaling . 45

2.3 Example: Basic LP Relaxation and Arc Consistency 47

2.4 Example: LP Relaxation of Weighted Max-SAT 50

2.4.1 Employing Constraint Propagation 52

2.4.2 Finding Step Size by Approximate Line Search 54

2.4.3 Algorithm Overview and Implementation Details 56

2.4.4 Experimental Results . 57

2.4.5 Tightness of the Bound on Tractable Max-SAT Classes 59

2.5 Discussion . 59

iv

3 Bounds on Weighted CSP Using Constraint Propagation and Super-
Reparametrizations 61

3.1 Notation and Optimality Conditions . 62

3.2 Iterative Method to Improve the Bound . 63

3.2.1 Outline of the Method . 64

3.2.2 Certificates of Unsatisfiability of CSP 68

3.2.3 Line Search . 74

3.2.4 Final Algorithm . 76

3.2.5 Experimental Results . 78

3.3 Additional Properties of Super-Reparametrizations 81

3.3.1 Minimal CSP . 81

3.3.2 Optimal Assignments of Optimal Super-Reparametrizations 83

3.3.3 General Super-Reparametrizations 85

3.4 Hardness Results . 86

3.5 Discussion . 88

4 Relation Between BCD and Local Consistencies 89

4.1 Propagation Rule and Local Consistency Condition 89

4.2 Relation Between the Approaches . 94

4.2.1 Connection Between the Propagators and BCD Updates 96

4.2.2 Pre-interior Local Minima and Overview of Results 98

4.3 Other Forms of Linear Programs . 99

4.3.1 Inequalities and Non-negative Variables 99

4.3.2 Inequalities and Real-Valued Variables 100

4.4 Discussion . 101

4.4.1 Weighted CSP . 101

4.4.2 SAT Problem . 102

4.4.3 Weighted Max-SAT . 103

5 Linear Programs Optimally Solvable by BCD 105

5.1 Refutation-Completeness and Optimality of BCD 105

5.2 Solving Weighted CSP by BCD . 106

5.2.1 Optimality of BCD . 108

5.2.2 Enforcing Positive Consistency . 109

5.2.3 Coordinate-Wise Updates: Convergence and Hardness 111

5.3 Two More Classes of Linear Programs Solvable by BCD 113

5.3.1 Proof of Theorem 5.4 . 115

5.3.2 Applications . 119

5.4 Reformulations and Optimality of BCD . 121

5.4.1 Example: Vertex Cover . 121

5.4.2 Example: Maximum Flow . 123

5.4.3 Example: WCSP with Potts Interactions 126

5.5 Discussion . 128

v

Conclusion 130
Contributions . 130
Further Development . 131

Appendix

List of Publications 134

List of Abbreviations 136

Overview of Notation 137

Bibliography 140

vi

Introduction

Optimization is nowadays ubiquitous in machine learning, computer vision, and artificial
intelligence in general. Optimization problems also frequently emerge in industrial ap-
plications and, in the era of big data, may feature a very large number of variables and
constraints. Even if the constraints are sparse, using classical off-the-shelf solvers is usu-
ally not suitable in practice which results in demand for specialized algorithms that could
tackle such large-scale problems by utilizing their (usually regular) structure and sparsity.

To illustrate this, despite linear programming (LP) problems are solvable in polynomial
time, even verifying feasibility of LP relaxations of some hard combinatorial problems may
take significant amount of time, maybe even exceed the overall time limit for solving the
original (non-relaxed) problem [47, §3.2]. As another example, LP instances originating
in computer vision may have millions of constraints and variables [154, 119, Example 4.2].
Off-the-shelf LP solvers typically cannot be applied to such large instances [154, 129, 128,
73, 114] due to their super-linear time and/or space complexity. Since LP relaxations
of many classical NP-hard problems are as hard to solve as any linear program [114],
designing more efficient exact methods for these relaxations may result in improving upon
the best known general-purpose LP solvers, which is unlikely.

One of scalable methods is block-coordinate descent (BCD, a.k.a. block-coordinate
minimization). This is an iterative method for (approximate 1) optimization of a multi-
variate function which, in each iteration, chooses a subset (also called a block) of variables
and optimally solves the problem over this subset of variables while keeping the other vari-
ables constant. By repeating this iteration for different blocks, the method can eventually
converge to a ‘local’ minimum (understood w.r.t. block-coordinate moves) which is optimal
w.r.t. all blocks of variables, or even a global minimum. In the simplest setting, the blocks
correspond to single variables, which is usually called coordinate-wise minimization. In
this case, the optimization subproblems are univariate and can be easily solved, sometimes
even in closed-form, which results in simple and efficient algorithms.

BCD has been successfully applied to a number of optimization problems, such as
support vector machine training [77, 112], non-negative least squares [60], non-negative
matrix factorization [78], regression [152, 63], or semidefinite programs with diagonal
constraints [143, 144].

However, except for special cases [155, 15, §2.7, 12, 137], BCD may not even converge to
the set of global minima for general constrained or non-differentiable convex optimization
problems and the BCD local minima may be arbitrarily far from global minima. Despite
this fundamental limitation, BCD (a.k.a. convergent message passing in this context) is a
powerful heuristic to approximately optimize unconstrained convex piecewise-affine (hence
non-differentiable) functions emerging as various forms of the dual LP relaxation of the
weighted constraint satisfaction problem (WCSP) [65, 134, 88, 87, 135]. These methods
have been generalized and applied to LP relaxations of other large-scale combinatorial
problems, such as minimum cost multicut problem [128] or graph matching [130], within

1Throughout the thesis, whenever we write ‘approximately optimize’, we mean ‘attempt to find some
(hopefully good) solution that can be however arbitrarily bad in theory’, i.e., there are no formal guarantees
on its quality.

1

a general framework of BCD applied to a Lagrange dual decomposition of combinatorial
problems [129]. Other related approaches are [73] and [97].

Let us now return to the WCSP. The WCSP is a combinatorial NP-hard optimiza-
tion problem where the task is to maximize a function of many discrete variables that is
expressed as the sum of weight functions where each weight function depends only on a
(small) subset of the variables. Its dual LP relaxation can be interpreted as minimizing
an upper bound on the optimal value of a WCSP over a subset of its reparametrizations
(i.e., WCSPs with the same objective value for all assignments) and the fixed points of
various BCD methods applied to this linear program can be characterized by certain local
consistencies. On the other hand, there are also methods that (approximately) optimize
this dual LP relaxation by directly enforcing (possibly soft) local consistencies [43, 98,
33, 107, 95] and, in case of [33, 95], attain fixed points of the same nature as the BCD
algorithms mentioned above. Although these algorithms may not solve the LP relaxation
exactly, they provide a bound on its optimal value which is essential for pruning the search
space during branch-and-bound search which is the usually accepted method for optimally
solving WCSPs.

A similar connection between coordinate-wise minimization and local consistencies was
identified in [148] for general unconstrained convex piecewise-affine functions. In detail,
[148] found a connection between a certain local consistency condition and fixed points of
coordinate-wise minimization with a special update rule. This was further developed in
the author’s master thesis [48a].

The above-mentioned update rule from [148] is in fact a special case of the relative-
interior rule, which was proposed in [150, 151a] and is one of the baselines for this work. To
motivate this rule, realize that the set of block-minimizers in BCD may generally contain
multiple elements and, in such case, one has to choose a single element from this set to
perform the BCD update. The relative-interior rule [150, 151a] additionally requires that
the minimizer is chosen from the relative interior of the set of block-minimizers. Although
this rule is not worse than any other update rule for choosing non-unique block-minimizers,
the local minima of BCD following this rule can still be arbitrarily bad.

In this dissertation, we aim to extend the aforementioned constraint-propagation-based
methods to the more general setting of optimizing arbitrary LP problems, investigate
applicability of BCD to linear programs, and, still focusing on linear programs, link theory
of BCD to constraint programming.

Structure and Contributions

Let us now overview the structure and aims of the thesis which is divided into five main
chapters:

• §1: We begin with providing an overview of the necessary background and related
work that spans over five areas:

◦ §1.1: Linear programs and inference in systems of linear inequalities and equalities.

◦ §1.2: BCD applied to convex optimization problems with focus on linear programs,
relative-interior rule, properties of BCD, and types of local minima occurring in
BCD.

◦ §1.3: Order theory which forms the theoretical basis for constraint propagation.

2

◦ §1.4: Constraint satisfaction problem (CSP), local consistencies, and their enforc-
ing by propagators.

◦ §1.5: WCSP and LP-based methods for bounding its optimal value.

• §2: Using constraint propagation to optimize linear programs (or even other convex
optimization problems) is rare aside from the aforesaid approaches for bounding the
optimal value of the WCSP. We propose a theoretical framework for (approximate)
optimization of large-scale linear programs using constraint propagation, which gen-
eralizes the previously mentioned approaches. In this framework, we assume that an
initial feasible point is available which we then try to improve, ideally make it opti-
mal. We apply this framework to approximately optimize the dual LP relaxation of
weighted Max-SAT and experimentally verify the quality of its stopping points.

This part follows the explanation given by Dlask and Werner in the conference
paper [52a] with some new insights.

• §3: It is usually not easy to generalize local consistencies from ordinary CSPs to
WCSPs so that their enforcing by reparametrizing the WCSP improves the bound on
its optimal value. Such a generalization may be even impossible because the level of
local consistency that can be achieved via reparametrizations without introducing new
weight functions (likely of higher arity) is limited. In cases when this is possible, the
method for enforcing a (possibly soft) local consistency in the WCSP typically needs
to be tailored to the particular chosen kind of local consistency.

In contrast, we propose a method that is able to improve the bound on the
WCSP optimal value using any kind of constraint propagation without introducing
new weight functions. For this, we use an LP formulation (i.e., not a relaxation) of
the WCSP which can be interpreted as minimizing an upper bound over its super-
reparametrizations (i.e., WCSPs whose objective value is the same or greater for all
assignments). Although this formulation was already proposed [92], we newly show
that it can be approximately optimized using any method that can (at least some-
times) detect unsatisfiability of a CSP. The resulting algorithm can be seen as an
instance of the general framework for optimizing large-scale linear programs (in this
case, with an exponential number of constraints) by constraint propagation from §2.

The properties of this optimization problem and of super-reparametrizations have
not been thoroughly studied in the literature and we aim to fill in this gap. As
already mentioned, one of the benefits of this optimization problem is that it allows
us to enforce arbitrarily strong local consistencies without introducing higher-arity
weight functions, thus saving memory. The cost for this is that our method provides
only a bound on the optimal value but may not preserve other properties of the input
WCSP, such as the objective value for the individual assignments or the set of optimal
assignments.

Our results in §3 are based on the journal submission [56a] which is an improved
version of the conference paper [55a], both authored by Dlask, Werner, and de Givry.

• §4: Seeing that the stopping points of some constraint-propagation-based algorithms
for bounding the WCSP optimal value are related to the fixed points of several BCD
algorithms (applied to its dual LP relaxation), we explain this connection and gener-
alize it to arbitrary linear programs with any blocks of variables. As a by-product,
we characterize the types of local minima encountered in BCD by local consistency
conditions, thus link BCD to constraint propagation.

3

More generally, we define a class of optimization methods based on enforcing a
suitable local consistency whose stopping points are related to fixed points of BCD
in an analogous way. In other words, we identify the precise constraint propagation
rule that corresponds to BCD. Depending on the problem being optimized, this can
be interpreted, e.g., as enforcing arc consistency or performing unit propagation.

The results described in §4 are an improved version of the conference paper [54a]
by Dlask and Werner.

• §5: The classes of convex optimization problems for which the BCD fixed points
are global optima are currently not much broader than unconstrained smooth convex
functions. Such classes also include the dual LP relaxation of acyclic, supermodular,
or pairwise Boolean WCSPs.

Focusing on linear programs, we identify new classes of such problems. In fact,
we even provide a characterization of linear programs that are optimally solvable by
BCD in terms of constraint propagation. To be precise, the question of optimality
of BCD fixed points for linear programs can be translated to the question whether a
precisely defined constraint propagation rule can always detect infeasibility of a certain
class of systems of linear inequalities and equalities. The newly identified classes of
linear programs include, e.g., a suitable formulation of the maximum flow problem, LP
relaxations of certain combinatorial problems, or the aforementioned LP formulation
of a WCSP. Finally, we also explain why applicability of BCD depends on the precise
formulation of the optimization problem and exemplify this phenomenon on non-trivial
optimization problems, namely maximum flow, LP relaxation of weighted vertex cover,
and a special LP relaxation of pairwise WCSP with Potts interactions.

This chapter is mainly based on the results of Dlask and Werner in the journal
paper [53a] (which is an improved version of the conference paper [51a] by the same
authors) combined with a few insights from the conference papers [54a] (by Dlask and
Werner) and [151a] (by Werner, Pr̊uša, and Dlask), and some new parts.

We conclude the thesis by summarizing the achieved results and discussing possible
directions for future research. The diagram on the next page visualizes the dependencies
among sections in §1 and subsequent chapters in the body of the thesis.

Let us have a few remarks on the style of the presentation. Our contributions (in §2-
§5) are organized in a ‘method-oriented’ (rather than ‘application-oriented’) manner: an
idea/approach is always first explained for the case of general linear programs and, after
that, we exemplify how it manifests itself in specific applications. The applications include
not only linear programs connected to the WCSP but also LP relaxations/formulations
of other problems. This implies that we may encounter the same optimization problem
multiple times throughout the thesis, each time seen from a different perspective.

Finally, let us note that the topic of this dissertation is interdisciplinary – we base our
research on local consistencies from the field of constraint programming, BCD methods
from optimization, and message-passing algorithms from computer vision and machine
learning. This implies that there are typically multiple options for notation, nomenclature
etc. that were developed independently in different fields. Therefore, e.g., a reader com-
ing from the field of optimization may find some notation from constraint programming
unusual and vice versa. We provide an overview of our notation and used abbreviations
in the appendix.

4

§1.1 Linear
Programming and
Systems of Linear
Inequalities

§1.2 Block-Coordinate
Descent and
Relative-Interior Rule

§1.3 Partially Ordered
Sets

§1.4 Constraint
Satisfaction Problem
and Local Consistencies

§1.5 Weighted CSP and
LP-Based Bounds

§2 Bounds on
Large-Scale Linear
Programs Using
Constraint Propagation

§3 Bounds on Weighted
CSP Using Constraint
Propagation and Super-
Reparametrizations

§4 Relation Between
BCD and Local
Consistencies

§5 Linear Programs
Optimally Solvable by
BCD

Dependencies among the sections in §1 and subsequent chapters. Black arrows indicate that a section/chapter significantly depends
on another whereas gray arrow is only a slight dependence. The full set of dependencies is obtained as the transitive closure of this
diagram.

5

Chapter 1

Background

In this chapter, we provide the necessary background for linear programming, systems of
linear inequalities, block-coordinate descent, partially ordered sets, and constraint satisfac-
tion problems. We also review the weighted constraint satisfaction problem and approaches
that are used for obtaining an upper bound on its optimal value. Up to a few minor in-
sights, we do not present any novel results in this chapter but only overview already known
pieces of knowledge which also help us introduce and exemplify our notation.

1.1 Linear Programming and Systems of Linear Inequalities

Linear programming is well known and finds its use in various applications [103, 24,
§4.3.1]. In general, a linear program seeks to minimize or maximize a linear objective
function of a finite number of variables over a set determined by a finite number of linear
inequalities and equalities (i.e., a polyhedron). To each linear program, one can write its
dual linear program and these optimization problems are connected by duality theorems.
This construction is symmetric, so we can talk about being mutually dual.

Although linear programs come in various forms (e.g., containing both inequalities and
equalities, non-negative and real-valued variables etc.), we consider the following form of
a primal-dual pair

max c>x min b>y (1.1a)

Ax = b y ∈ Rm (1.1b)

x ≥ 0 A>y ≥ c (1.1c)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are constants and x ∈ Rn, y ∈ Rm are variables. We
denote by xj the j-th component of vector x (similarly for y, b, c) and by Ai and Aj the
i-th row and j-th column of A where i ∈ [m] = {1, . . . ,m} and j ∈ [n] = {1, . . . , n},
respectively. A> is the transpose of A. We will refer to the left-hand problem (1.1) as the
primal and to the right-hand problem (1.1) as the dual.

Any linear program can be easily transformed into the form of the primal or the
dual (1.1) (see [103, §1.1 and §4.1]). We note that whenever we write a pair of mutu-
ally dual linear programs, we always write a constraint and the corresponding Lagrange
multiplier on the same line, as in (1.1). For any primal-dual pair, strong duality holds:

Theorem 1.1 (Strong duality [123, §7.4, 103, §6.1]). For any primal-dual pair, only one
of the following cases can happen:

(a) Both the primal and the dual are feasible and their optimal values coincide.

(b) Both the primal and the dual are infeasible.

(c) The primal is unbounded and the dual is infeasible or vice versa.

6

Optimality conditions for feasible solutions of linear programs are given by the well-
known complementary slackness conditions that are stated in the following theorem.

Theorem 1.2 (Complementary slackness [103, 110]). Let x ∈ Rn and y ∈ Rm be feasible
for the primal and the dual (1.1), respectively. The following are equivalent:

(a) x and y are optimal for the primal and the dual, respectively,

(b) ∀j ∈ [n] : xj(A
>
j y − cj) = 0, i.e., ∀j ∈ [n] : (xj = 0) ∨ (A>j y = cj).

For brevity of notation, we define the mappings σ : Rn → 2[n] and τ : Rm → 2[n] by

σ(x) = {j ∈ [n] | xj = 0} (1.2a)

τ(y) = {j ∈ [n] | A>j y = cj}, (1.2b)

so that σ(x) is the index set of the primal constraints (1.1c) that are active (i.e., satisfied
with equality 2) at x. Similarly, τ(y) is the index set of the dual constraints (1.1c) that
are active at y. Using this notation, statement (b) in Theorem 1.2 can be expressed
as τ(y) ∪ σ(x) = [n].

1.1.1 Relative Interior and Strict Complementarity

In the sequel, we will frequently utilize the notion of relative interior of a convex set. We
now recall its definition and important properties.

Definition 1.1 ([100, Definition 2.1.1]). Let S ⊆ Rn be a convex set. The relative interior
of S, denoted by riS, is the topological interior of S relative to the affine hull of S, i.e.,

riS = {x ∈ S | ∃r > 0: Br(x) ∩ aff S ⊆ S} (1.3)

where Br(x) = {y ∈ Rn | ‖x− y‖ ≤ r} is the ball centered at x with radius r > 0 and aff S
is the affine hull of S.

Example 1.1 ([100, Table 2.1.1, 150, §4, 151a, §3]). Let x, x′ ∈ Rn. We have that ri {x} =
{x}, i.e., the relative interior of a singleton set is the set itself. Furthermore, if x 6= x′,
then ri [x, x′] = [x, x′] − {x, x′} where [x, x′] = {αx + (1 − α)x′ | 0 ≤ α ≤ 1} is the line
segment between x and x′. 4

It follows directly from Definition 1.1 that, for a convex set S, riS ⊆ S, and it is
known [100, Theorem 2.1.3] that riS = ∅ if and only if S = ∅.

Consequently, since the set of optimal solutions of a linear program is always a convex
set, its non-emptiness is equivalent to non-empty relative interior. The strict complemen-
tary slackness condition can be used to determine whether a primal solution x and a dual
solution y lie in the relative interior of the set of optimal solutions of a primal and a dual
linear program, respectively.

Theorem 1.3 (Strict complementary slackness [66, 80, 69, 158]). Let x ∈ Rn and
y ∈ Rm be feasible for the primal and the dual (1.1), respectively. The following are equiv-
alent:

2In general, an inequality c>x ≥ d is called active for some x if c>x = d [122, §5.5, 62, 24, §4.1.1].

7

(a) x and y are in the relative interior of the set of optimizers of the primal and the dual,
respectively,

(b) {σ(x), τ(y)} is a partition of [n], i.e., ∀j ∈ [n] : (xj = 0)⊕(A>j y = cj) where ⊕ denotes
exclusive disjunction.

As a corollary, for any x and y in the relative interior of the set of optimal solutions
of the primal and the dual, respectively, the partition {σ(x), τ(y)} is the same and is
typically referred to as the optimal partition of [n] [80, 4, 69, 104].

1.1.2 Convex Piecewise-Affine Objective

In multiple places throughout this thesis, we will utilize the well-known trick [16, §1.3, 24,
§4.3.1] that allows us to formulate the problem of minimizing a convex piecewise-affine
function over a polyhedron as a linear program and vice versa.

Formally, we address the optimization problem

min
∑
k∈K

max
l∈Lk

(c>k,lx+ dk,l) (1.4a)

x ∈ X (1.4b)

where X ⊆ Rn is a polyhedron, K is a finite set, Lk a finite non-empty set for each k ∈ K,
and ck,l ∈ Rn and dk,l ∈ R are given vectors and real numbers for each k ∈ K, l ∈ Lk.
The objective (1.4a) is a convex piecewise-affine 3 function of x.

It is easy to see that (1.4) can be reformulated as the linear program

min
∑
k∈K

zk (1.5a)

zk ≥ c>k,lx+ dk,l ∀k ∈ K, l ∈ Lk (1.5b)

x ∈ X (1.5c)

z ∈ RK (1.5d)

where we introduced auxiliary variables z ∈ RK . The reason is that for any x ∈ X, we
can define

zk = max
l∈Lk

(c>k,lx+ dk,l) ∀k ∈ K (1.6)

so that (x, z) is feasible for (1.5) and the objective values for both (1.4) and (1.5) coincide.
On the other hand, for any (x, z) feasible for (1.5), x is also feasible for (1.4) and the
objective (1.4a) is lower than or equal to the objective (1.5a) due to zk ≥ maxl∈Lk(c>k,lx+
dk,l) for all k ∈ K by (1.5b). Consequently, the optimal values of (1.4) and (1.5) are equal.

1.1.3 Systems of Linear Inequalities and Linear Inference

Let us now point our attention to the logical view of linear inequalities. We briefly overview
the basic properties of inference in a system of linear inequalities (and possibly equalities)
and Farkas’ lemma.

3This is called piecewise-linear in [16, §1.3]. However, the terminology is not unified [24, Example 3.5]
as a linear function may not contain a constant term in some formalisms, so we use the unambiguous term
piecewise-affine, as in [148, 48a].

8

In the sequel, we will call a system of linear inequalities (and equalities) feasible if it
has a solution (i.e., the polyhedron defined by this system is non-empty). Otherwise, it is
infeasible.

Moreover, for A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R, we will say that a system
Ax ≥ b implies c>x ≥ d if ∀x ∈ Rn : Ax ≥ b =⇒ c>x ≥ d (i.e., if c>x ≥ d holds
for all x ∈ Rn satisfying Ax ≥ b). Analogously, a system Ax ≥ b implies c>x = d if
∀x ∈ Rn : Ax ≥ b =⇒ c>x = d. 4

As we will discuss, the logic of linear inequalities is simple in the sense that any
implied inequality can be derived as a suitable combination of the existing inequalities
(up to certain technical details). In particular, a contradictory inequality can be derived
from any infeasible system in this way [76, §17.2-§17.3, 103, §6.4]. In contrast to the
discrete setting of constraint propagation, which is considered later in §1.4.1, deciding
whether a system of linear inequalities implies another given linear inequality is solvable
in polynomial time by posing the problem as a linear program.

Formally, the logic of linear inequalities is described by the affine form of Farkas’
lemma:

Theorem 1.4 (Affine form of Farkas’ lemma [123, §7.6]). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn,
and d ∈ R. The following are equivalent:

(a) Ax ≥ b implies c>x ≥ d,

(b) Ax ≥ b is infeasible or there is y ≥ 0 such that A>y = c and b>y ≥ d.

Proof. Direction (b) =⇒ (a) is immediate: for y satisfying (b) and any x satisfying Ax ≥ b,
we have c>x = y>Ax ≥ y>b ≥ d.

The other direction (a) =⇒ (b) follows from 5 strong duality applied to the primal-dual
pair (1.1) after changing A to A>, interchanging b with c and x with y. In particular, if
A>y ≥ c implies b>y ≥ d, then the dual (1.1) is infeasible or it is feasible and bounded
and its optimal value is at least d. If it is feasible and bounded, the primal is too, and its
optimal solution x satisfies Ax = b, x ≥ 0 and c>x ≥ d.

Clearly, c>x ≥ d′ implies c>x ≥ d if and only if d′ ≥ d (or if c>x ≥ d′ is infeasible).
Thus, one can interpret Theorem 1.4 as follows: a feasible system Ax ≥ b implies c>x ≥ d if
and only if a non-negative combination of the inequalities in Ax ≥ b implies c>x ≥ d (where
the non-negative combination of inequalities is c>x ≥ d′ where c = A>y and d′ = b>y).
The vector y from Theorem 1.4 contains the coefficients of the non-negative combination
and thus stores how the implied inequality was derived. Therefore, such a vector y can be
called the certificate or the cause vector of the implied inequality.

Example 1.2. Let the system Ax ≥ b be given by the constraints

2x1 + x2 ≥ 0 (1.7a)

x2 ≥ 2 (1.7b)

−x1 + x2 ≥ 1. (1.7c)

4For completeness, we note that Ax ≥ b does not imply c>x ≥ d if ∃x ∈ Rn such that Ax ≥ b and
c>x < d. Also, Ax ≥ b does not imply c>x = d if ∃x ∈ Rn such that Ax ≥ b and c>x 6= d.

5Conversely, Theorem 1.4 can be used to prove strong duality in linear programming [76, §17.3.1].

9

x1

x2

x2 ≥ 2

2x
1
+
x
2 ≥

0

−x
1
+
x 2
≥

1

2x
1 +

2x
2 ≥
−
2

2x
1 +

2x
2 ≥

2

−x1
+ 2x2

≥ 2

Figure 1.1: Illustration to Example 1.2. The half-planes determined by the con-
straints (1.7) are indicated by full lines with arrows and their intersection is shaded. The
half-planes determined by the three implied inequalities from Example 1.2 are indicated
by dashed lines with arrows.

This system implies −x1 + 2x2 ≥ 2, i.e., c>x ≥ d for c = (−1, 2) and d = 2 because
for y = (1

4 ,
1
4 ,

3
2), we have that A>y = (−1, 2) = c and b>y = 2 = d. Symbolically, this can

be expressed as

1
4 · (2x1 + x2 ≥ 0) + 1

4 · (x2 ≥ 2) + 3
2 · (−x1 + x2 ≥ 1) = (−x1 + 2x2 ≥ 2). (1.8)

Another implied inequality is, e.g., 2x1 + 2x2 ≥ 2 whose cause vector is y′ = (1, 1, 0).
In detail, we have A>y′ = (2, 2) and b>y′ = 2. Thus, (1.7) also implies 2x1 + 2x2 ≥ d for
any d ≤ 2 (e.g., d = −2) because for the same y′, we have A>y′ = (2, 2) and b>y′ = 2 ≥ d.

The set defined by (1.7) along with the three mentioned implied inequalities is depicted
in Figure 1.1. 4

The famous Farkas’ lemma can be obtained as a corollary of Theorem 1.4:

Corollary 1.1 (Farkas’ lemma [123, §7.3, 103, §6.4]). Let A ∈ Rm×n and b ∈ Rm. Exactly
one of the following systems is feasible:

(a) Ax ≥ b,
(b) y ≥ 0, A>y = 0, b>y > 0.

Proof. We proceed analogously to the proof in [76, Corollary 62]. Let us define u ∈ Rm
by ui = 1 for all i ∈ [m] (so that vector u contains only ones as its components). First,
note that the system Ax + tu ≥ b (with an additional variable t ∈ R) is always feasible
because t can be set large enough. Second, it is easy to see that Ax ≥ b is infeasible if and
only if Ax+ tu ≥ b implies t ≥ d for any d > 0. Applying Theorem 1.4 to this implication
yields that Ax+ tu ≥ b implies t ≥ d if and only if there is y satisfying

y ≥ 0, A>y = 0, u>y = 1, b>y ≥ d. (1.9)

10

Since d > 0 can be chosen small enough, system (b) in the corollary and system (1.9)
are equisatisfiable (i.e., both systems are feasible or both are infeasible). In detail, any y
satisfying (1.9) with d > 0 also satisfies system (b) and any y satisfying system (b) can be
scaled to satisfy (1.9) for some d > 0.

See that any y satisfying system (b) in Corollary 1.1 is a cause vector of inequal-
ity 0>x ≥ d with d = b>y > 0 which is clearly infeasible. Thus, one can interpret Farkas’
lemma as follows: system Ax ≥ b is infeasible if and only if a non-negative combination
of the linear inequalities in Ax ≥ b is infeasible (i.e., if the system implies an infeasible in-
equality). Thus, any y satisfying system (b) in Corollary 1.1 is a certificate of infeasibility
of system (a). System (b) is called the Farkas alternative to system (a).

There exist several variants of Farkas’ lemma and its affine form, each corresponding
to a different form of the system, possibly including also equality constraints or non-
negative variables [123, §7.3, 103, §6.4]. For each such system, there is a corresponding
Farkas alternative system enjoying the same properties as in Corollary 1.1. 6 We show an
example below for the system

Ax = b (1.10a)

x ≥ 0. (1.10b)

Theorem 1.5. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. The following are equivalent:

(a) Ax = b, x ≥ 0 implies c>x ≥ d,

(b) Ax = b, x ≥ 0 is infeasible or there is y ∈ Rm such that b>y ≥ d and A>y ≤ c.

In case that (1.10) is feasible and implies c>x ≥ d, any y satisfying the conditions in
statement (b) in Theorem 1.5 is a cause vector of c>x ≥ d and it encodes how this inequal-
ity can be obtained from the original system (1.10). Indeed, y contains the coefficients with
which the equalities in (1.10a) can be combined to obtain the equality (y>A)x = y>b. By
non-negativity of x, we have c>x ≥ (y>A)x due to c ≥ A>y, so c>x ≥ (y>A)x = y>b ≥ d
holds for any x feasible for (1.10). The corresponding form of Farkas’ lemma for sys-
tem (1.10) is the following:

Corollary 1.2 ([123, Corollary 7.1d, 103, Proposition 6.4.1]). Let A ∈ Rm×n and b ∈ Rm.
Exactly one of the following systems is feasible:

(a) Ax = b, x ≥ 0,

(b) A>y ≥ 0, b>y < 0.

Consequently, any y satisfying system (b) in Corollary 1.2 is a certificate of infeasibility
of system (a). Note, such y encodes an equality in the form (y>A)x = y>b where the
left-hand side is a non-negative sum of non-negative variables but the right-hand side is
negative. Finally, system (b) in Corollary 1.2 is called the Farkas alternative to system (a).

Remark 1.1. Theorem 1.5 and Corollary 1.2 apply to the system (1.10) which is the set of
feasible solutions of the primal (1.1). We chose to present Theorem 1.4 and Corollary 1.1
(which consider a system in the form of the dual constraints (1.1b)-(1.1c)) earlier because
the aforementioned concepts are easier to illustrate for such a form.

6This is analogous to the fact that (strong) duality, complementary slackness etc. in linear programming
hold for problems in any form (e.g., including both equalities and inequalities, non-negative and real-valued
variables etc.) even though we presented the theory only for the particular case of (1.1).

11

1.1.3.1 Always-Active Inequalities

For some systems of linear inequalities, it may happen that an inequality constraint is
active for any solution of the system, i.e., it always holds as an equality constraint. Such
constraints are called always active [62] (a.k.a. implied equalities [68] or implicit equali-
ties [131, 123, §8.1, 122, §5.6]). A formal definition is given below.

Definition 1.2. Let A ∈ Rm×n, b ∈ Rm, and i ∈ [m]. The inequality Aix ≥ bi is always
active within the system Ax ≥ b if Ax ≥ b implies Aix = bi.

All always-active inequalities in a system of linear inequalities (and possibly equalities)
can be characterized using relative interior. We present this result for systems in the
form Ax = b, x ≥ 0 and Ax ≥ b in Theorem 1.6 and Theorem 1.7, respectively.

Theorem 1.6 (cf. [68, Theorem 8]). Let A ∈ Rm×n, b ∈ Rm, j ∈ [n], and 7

x∗ ∈ ri {x ∈ Rn | Ax = b, x ≥ 0 }. (1.11)

System Ax = b, x ≥ 0 implies xj = 0 if and only if j ∈ σ(x∗), i.e., x∗j = 0.

Proof. Consider the primal-dual pair (1.1) with c = 0, i.e., zero objective function in the
primal. Trivially, feasibility is equivalent to optimality for the primal, so the primal (and
hence also the dual) is feasible and bounded.

Let y∗ be from the relative interior of optimizers of the dual (1.1). Any x feasible
for the primal necessarily satisfies complementary slackness with dual-optimal y∗, i.e.,
τ(y∗) ∪ σ(x) = [n]. Therefore, the system implies xj = 0 for all j ∈ [n] − τ(y∗) = σ(x∗)
where the set equality [n] − τ(y∗) = σ(x∗) is given by strict complementary slackness.
Since x∗ satisfies Ax∗ = b, x∗ ≥ 0 and x∗j > 0 for all j ∈ [n]− σ(x∗), the inequality xj ≥ 0
for j ∈ [n]− σ(x∗) is not always active.

Theorem 1.7 ([68, Theorem 8]). Let A ∈ Rm×n, b ∈ Rm, x∗ ∈ ri {x ∈ Rn | Ax ≥ b}, and
i ∈ [m]. System Ax ≥ b implies Aix = bi if and only if Aix∗ = bi.

Proof. Analogous to Theorem 1.6.

1.2 Block-Coordinate Descent and Relative-Interior Rule

In this section, we will formally define block-coordinate descent (BCD) 8, state some of
its properties, and pay particular attention to the relative-interior rule that was proposed
in [150] and later developed in [151a]. Some parts of this section are based on the review
that was given in [54a].

For the purposes of the sequel, we define new notation. For B = {i1, ..., i|B|} ⊆ [m]
and y ∈ Rm, y|B stands for the restriction of y onto the set B, i.e., y|B = (yi1 , ..., yi|B|)
where the order of the components is defined by the total order on B inherited from the
natural total order on [m] given by ≤.

7By assuming the existence of such x∗, we implicitly assume that Ax = b, x ≥ 0 is feasible.
8Also called block-coordinate minimization. In case that the objective is to be maximized, one usually

speaks about block-coordinate ascent.

12

Suppose we minimize a continuous convex function f : Y → R on a non-empty closed
convex set Y ⊆ Rm. Here, we assume for simplicity that the set argminy∈Y f(y) is non-
empty, hence f is bounded from below on Y . For brevity of notation, we formulate this
optimization problem as the unconstrained minimization of the extended-valued func-
tion f̄ : Rm → R+∞ (where R+∞ = R ∪ {+∞}) defined by

f̄(y) =

{
f(y) if y ∈ Y
+∞ if y /∈ Y

. (1.12)

Furthermore, it is assumed that a set B ⊆ 2[m] of blocks of variables and an initial
feasible solution y1 ∈ Y are provided. BCD in each iteration chooses a single block B ∈ B
and minimizes the function f̄ over variables y|B while keeping the remaining variables

y|[m]−B fixed, i.e., updates yk to some yk+1 satisfying

yk+1|B ∈ argmin
y′∈RB

f̄
(
y′, yk|[m]−B

)
(1.13a)

yk+1
i = yki ∀i ∈ [m]−B. (1.13b)

By repeatedly performing updates (1.13) with different blocks B ∈ B, the points yk remain
in the feasible set Y and the sequence of objective values f(yk) is non-increasing.

Remark 1.2. To avoid any ambiguity, let us comment on a slight abuse of notation
in (1.13a). There, we have a vector y′ ∈ RB and a vector yk|[m]−B ∈ R[m]−B. The

components of these vectors can be arranged into a single vector y∗ ∈ Rm = R[m] and(
y′, yk|[m]−B

)
then corresponds to y∗. For example, if m = 5 and B = {2, 3}, we have

y′ = (y′2, y
′
3), yk|[m]−B = (yk1 , y

k
4 , y

k
5), and y∗ =

(
y′, yk|[m]−B

)
= (yk1 , y

′
2, y
′
3, y

k
4 , y

k
5).

Example 1.3. To illustrate the iterations (1.13), let f(y) = 5y1 + 2y2 + y3, B = {{1},
{2, 3}}, Y = {y ∈ R3 | y1 ≥ 0, y2 ≥ 2, y2 + y3 = 1}, and y1 = (4, 7,−6) ∈ Y . In
the first iteration, we update along B = {1} which means that we optimize over y1 while
keeping y|{2,3} (i.e., y2 and y3) constant. This yields the updated point y2 = (0, 7,−6)

(which satisfies (1.13) for k = 1 and B = {1}). In the second iteration, we update
along B = {2, 3}, i.e., we optimize over y|{2,3} and keep y1 constant which results in the

updated point y3 = (0, 2,−1) (which satisfies (1.13) for k = 2 and B = {2, 3}). 4

The class of convex optimization problems for which BCD provably converges to global
minima (or where the fixed points are global minima) is currently quite narrow, includ-
ing, e.g., unconstrained continuously differentiable convex functions with unique univari-
ate minima [15, §2.7], unconstrained differentiable pseudoconvex functions [155], or con-
tinuously differentiable functions with a single linear equality constraint and box con-
straints [12]. For other examples, we refer to [137] and references therein. For general
convex non-differentiable or constrained functions, the fixed points of this approach may
not be global minima.

1.2.1 Relative-Interior Rule

The set argminy′∈RB f̄
(
y′, yk|[m]−B

)
of block-wise minimizers from (1.13a) is a non-empty

convex set that may in general contain more than one element. In practical implementa-
tions, one needs to choose a single element from this set.

13

It was proposed in [150, 151a] to additionally require that yk+1|B is chosen from the
relative interior of this set, i.e.,

yk+1|B ∈ ri argmin
y′∈RB

f̄
(
y′, yk|[m]−B

)
(1.14a)

yk+1
i = yki ∀i ∈ [m]−B. (1.14b)

As discussed previously in §1.1.1, the relative interior of a non-empty convex set is non-
empty, so an update satisfying (1.14) is always possible.

We will now summarize the main results of [150, 151a].

Definition 1.3 ([150, 151a]). A point y ∈ Y is

• a local minimum (LM) of f on Y w.r.t. B if

y|B ∈ argmin
y′∈RB

f̄
(
y′, y|[m]−B

)
(1.15)

(i.e., (1.13) for yk+1 = yk = y) holds for all B ∈ B,

• an interior local minimum (ILM) of f on Y w.r.t. B if

y|B ∈ ri argmin
y′∈RB

f̄
(
y′, y|[m]−B

)
(1.16)

(i.e., (1.14) for yk+1 = yk = y) holds for all B ∈ B,

• a pre-interior local minimum (pre-ILM) of f on Y w.r.t. B if 9 there is an ILM y′ of f
on Y w.r.t. B such that y is in a face of the set Y containing y′ in its relative interior.

For brevity, when f , Y , or B is known from context, we omit ‘of f on Y ’ or ‘w.r.t. B’.
In §5.4, we will also address maximization problems where the analogous terms local
maximum, interior local maximum, and pre-interior local maximum are used. In case
of coordinate-wise minimization, i.e., when B = {{i} | i ∈ [m]}, we say that we opti-
mize miny∈Y f(y) coordinate-wise and simply write, e.g., ‘ILM w.r.t. individual variables’
instead of ‘ILM w.r.t. B = {{i} | i ∈ [m]}’. By a minimum/maximum without adjectives,
we always mean global minimum/maximum.

Clearly, the fixed points of BCD algorithm following the updates (1.13) are local min-
ima. We emphasise that this is different from the usual notion of a local minimum: here
(by Definition 1.3), the objective in a local minimum cannot be improved by any single
update (1.13) instead of an arbitrary update within some neighborhood. The fixed points
of BCD with the relative-interior rule (1.14) are interior local minima.

Note, every ILM is a pre-ILM and every pre-ILM is an LM [150, 151a]. Crucial
properties of BCD with and without the relative-interior rule are given below.

Theorem 1.8 ([150, 151a]). Let (Bk)
∞
k=1 be a sequence of blocks Bk ∈ B that contains

each element of B an infinite number of times. Let (yk)∞k=1 be a sequence produced by the
BCD method, where the blocks are visited in the order given by (Bk)

∞
k=1.

(a) If (yk)∞k=1 satisfies (1.14) and y1 is an ILM, then yk is an ILM for all k.

9As in [150, 151a], this definition of a pre-ILM applies only when f is linear. Nevertheless, as we do
not use the definition of a pre-ILM explicitly, we omit a general definition of a pre-ILM. Instead, we will
rely on the characterization of pre-ILMs that is given by Theorem 1.8 stated later.

14

(b) If (yk)∞k=1 satisfies (1.14) and y1 is a pre-ILM, then yk is an ILM for some k.

(c) If (yk)∞k=1 satisfies (1.13) and y1 is a pre-ILM, then f(yk) = f(y1) for all k.

(d) If (yk)∞k=1 satisfies (1.14) and y1 is not a pre-ILM, then f(yk) < f(y1) for some k.

By Theorem 1.8c, if y1 is a pre-ILM, the objective cannot be improved by any further
BCD iterations (1.13), even with the relative-interior rule (1.14). On the other hand, if y1 is
not a pre-ILM, BCD with the relative-interior rule (1.14) inevitably improves the objective
after a finite number of iterations by Theorem 1.8d. In this sense, the relative-interior rule
is not worse than any other update rule for choosing non-unique block-minimizers.

Even with the relative-interior rule, the fixed points of BCD need not be global minima,
as the following example shows.

Example 1.4 (cf. [148, Example 2, 119, Figure 7.3, 63, Figure 4]). Let Y = R2 and f : Y →
R+ be defined by f(y1, y2) = max{2y2 − y1, 2y1 − y2, 0}. Even though f is convex, any
point y ∈ R2 satisfying y1 = y2 > 0 is an ILM w.r.t. individual variables (i.e., w.r.t. B =
{{1}, {2}}) but not a global minimum. Figure 1.2a depicts several contours of f and also a
non-optimal ILM. Indeed, the highlighted point is an ILM w.r.t. individual variables because
any movement from this point along any single coordinate increases the objective. 4

Example 1.5 (cf. [150, §2, 151a, §2]). Let Y = {y ∈ [0, 2]2 | y1+y2 ≥ 1} and f(y1, y2) = y2.
Suppose that we initialize BCD with point y1, as indicated in Figure 1.2b, and optimize it
coordinate-wise, i.e., we apply BCD with blocks B = {{1}, {2}}.

First, we update y1 to y2 by decreasing coordinate y2 to improve the objective and
attain the unique coordinate-wise optimum. Point y2 is a local minimum because both
components are coordinate-wise optimal. However, the choice for the optimizer w.r.t.
coordinate y1 is not unique and y2

1 is not in the relative interior of optimizers, so we
change the y1 coordinate of y2 and move from y2 to y3. Now, coordinate y2 can be again
decreased to improve the objective. After two similar iterations, we attain the point y6

which is an ILM w.r.t. individual variables and also a global minimum.
Denoting by [y, y′] the line segment between y and y′ (as in Example 1.1), the set of

all LMs of f on Y w.r.t. individual variables is [(0, 1), (1, 0)]∪ [(1, 0), (2, 0)]. Pre-ILMs are
[(1, 0), (2, 0)] and ILMs are ri [(1, 0), (2, 0)]. Global minima coincide with pre-ILMs. 4

Although the following corollary was not explicitly stated in [150, 151a], it is an im-
mediate consequence of Theorem 1.8.

Corollary 1.3. The following are equivalent:

(a) every ILM of f on Y w.r.t. B is a global minimum,

(b) every pre-ILM of f on Y w.r.t. B is a global minimum.

Moreover, if these statements hold, then the set of global minima (i.e., argminy∈Y f(y))
coincides with the set of pre-ILMs of f on Y w.r.t. B.

Proof. The implication (b) =⇒ (a) is clear because every ILM is also a pre-ILM. For
the other direction, let y1 be a pre-ILM. By Theorem 1.8b and 1.8c, after performing a
finite number of relative-interior updates (1.14) from y, we attain an ILM with the same
objective.

One inclusion in the last statement follows already from (b). We prove the remaining
part by contradiction: if a global minimum is not a pre-ILM, then, by Theorem 1.8d, the
objective must improve after a finite number of updates, which is impossible.

15

y2

y1

(a) Contours of function f from Exam-
ple 1.4. The set of optimizers is shaded in
gray and a non-optimal ILM is highlighted.

y2

y1

y1

y2
y3

y4

y5

y6

(0, 1)

(2, 0)(1, 0)

(b) Five iterations of coordinate-wise mini-
mization with the relative-interior rule start-
ing from the initial point y1.

Figure 1.2: Illustrations to Examples 1.4 and 1.5.

As a consequence of Corollary 1.3, we will be able to say that ‘(pre-)ILMs of f on Y
w.r.t. B are global minima’.

Remark 1.3. The version of BCD considered in [150, 151a] is more general. In detail,
one has a set I of subspaces of Rm and instead of (1.13), the updates are formulated as

yk+1 ∈ argmin{f(y′) | y′ ∈ (yk + I) ∩ Y } (1.17)

where I ∈ I is a chosen subspace along which we update and yk + I = {yk + y′ | y′ ∈ I}.
This subsumes not only the previously described block-coordinate formulation but also op-
timization along a set of directions (i.e., when all subspaces from I have dimension 1).
For our purposes, we do not need such a general formalism.

1.2.2 Convergence

The convergence properties of BCD with the relative-interior rule were discussed and
analyzed in [150, §4.3, 151a, §5.2]. Here, we overview the parts that are most important
for the sequel.

Formally, suppose that the block-coordinate updates (1.14) are determined by some
mappings uB : Y → Y for each B ∈ B, i.e., for any B ∈ B and y ∈ Y ,

uB(y)|B ∈ ri argmin
y′∈RB

f̄
(
y′, y|[m]−B

)
(1.18a)

uB(y)i = yi ∀i ∈ [m]−B. (1.18b)

In other words, the update of yk ∈ Y along a block of variables B ∈ B satisfying the
relative-interior rule yields a point yk+1 = uB(yk) that satisfies (1.14).

16

Furthermore, let us fix an ordering on the elements of B so that B = {B1, . . . , Bn} and
define the composed mapping U : Y → Y by

U =

a single cycle of updates (1.14) in the specified order︷ ︸︸ ︷
(uBn ◦ . . . ◦ uB1) ◦ . . . ◦ (uBn ◦ . . . ◦ uB1)︸ ︷︷ ︸

m+1 cycles of updates

. (1.19)

The mapping U performs m + 1 cycles of updates along individual blocks from B in the
specified order. For this setting, we have the following results from [150, 151a]:

Theorem 1.9 ([150, Theorem 18, 151a, Theorem 20]). Let y ∈ Y and B ⊆ 2[m].
If f(U(y)) = f(y), then y is a pre-ILM of f on Y w.r.t. B and U(y) is an ILM of f
on Y w.r.t. B.

Theorem 1.10 ([150, Corollary 25, 151a, Corollary 22]). Let the mappings uB, B ∈ B be
continuous, Y ∗ be the set of pre-ILMs of f on Y w.r.t. B, y1 ∈ Y , and the sequence (yk)∞k=1

be defined by yk+1 = U(yk), k ∈ N. If the sequence (yk)∞k=1 is bounded, then

lim
k→∞

d(Y ∗, yk) = 0 (1.20)

where d(Y ∗, yk) = infy∗∈Y ∗ d(y∗, yk) is the distance of yk to the set Y ∗ w.r.t. any met-
ric d : Y × Y → R+. I.e., the sequence (yk)∞k=1 converges to the set of pre-ILMs.

1.2.3 Reformulations of Problems

It is known that optimization problems come in different forms that are equivalent in
the sense that a solution of one formulation can be easily constructed from the solution
of a different formulation [24, §4.1.3] (precisely, they can be reduced to each other in
linear time). Such changes may include, e.g., a reformulation of constraints or a change
of variables. One such transformation was already shown in §1.1.2.

Although this was not explicitly mentioned in the literature before, it is easy to see
that the quality of fixed points of BCD highly depends not only on the choice of blocks
of variables, but also on the precise formulation of the optimization problem [51a, 53a].
This phenomenon is illustrated by the following examples.

Example 1.6 ([53a, Example 2]). The linear program min{y1 + y2 | y1, y2 ≥ 0} has
one ILM w.r.t. individual variables which coincides with the unique global minimum,
namely (y1, y2) = (0, 0). If the redundant constraint y1 = y2 is added to the linear program,
then any feasible point becomes an ILM w.r.t. individual variables because the redundant
constraint blocks changing the variable y1 without changing y2 and vice versa. 4

Example 1.7. Let f and Y be as in Example 1.4 and g : R2 → R2 be the bijection
defined by g(y1, y2) = (y1 + 2y2, 2y1 + y2). After transforming the variables by g, we
obtain f(g(y1, y2)) = max{3y1, 3y2, 0}. Several contours of function f ◦ g are shown in
Figure 1.3a.

Any point y ∈ Y = R2 with y1 = y2 > 0 is a local minimum of f ◦ g on Y w.r.t.
individual variables, but no longer an ILM because the components of such points are not
in the relative interior of coordinate-wise optimizers. In fact, any ILM of f ◦g on Y w.r.t.
individual variables is a global minimum. 10 4

10Optimizing f ◦ g coordinate-wise is in correspondence with optimizing f along subspaces span{(1, 2)}
and span{(2, 1)} (recall Remark 1.3) which follows from the definition of g.

17

y2

y1

(a) Contours of function f ◦ g from Exam-
ple 1.7. The set of optimizers is shaded.

y2

y1

(0, 1)

(2, 0)(1, 0)

(b) Feasible region Y ′ of the problem defined
in Example 1.8.

Figure 1.3: Illustrations to Examples 1.7 and 1.8.

Example 1.8 (cf. [150, §2, 151a, §2]). Let f and Y be as in Example 1.5. Adding the
redundant constraint y1 + 2y2 ≤ 2 reduces the feasible set to Y ′ = {y ∈ Y | y1 + 2y2 ≤ 2},
which is depicted in Figure 1.3b. This change preserves the set of global minima, but the set
of pre-ILMs and ILMs is extended by a non-optimal point (0, 1) where no coordinate-wise
moves within the feasible set Y ′ are possible. 4

Example 1.9 (cf. [53a, Example 3]). Finally, we analyze the transformation from §1.1.2.
Suppose that we minimize the unconstrained univariate convex piecewise-affine function
f(x1) = max{x1, 0}+max{−2x1,−2}. When optimizing in the form (1.4), any ILM w.r.t.
individual variables is trivially a global minimum. However, in the LP formulation (1.5),
there are ILMs w.r.t. individual variables that are not globally optimal, such as x1 = z1 =
z2 = 0. 4

Fact 1.1 ([53a, Example 3]). Optimizing (1.4) coordinate-wise (i.e., applying BCD along
individual variables) is in a precise sense equivalent to BCD applied to (1.5) along blocks
of variables, each containing a single xi variable and all the z variables. Formally, any
ILM x of (1.4) w.r.t. individual variables yields an ILM (x, z) of (1.5) w.r.t. the above-
defined blocks where z is defined by (1.6). On the other hand, for any ILM (x, z) of (1.5)
w.r.t. the above-defined blocks, x is an ILM of (1.4) w.r.t. individual variables. We will
use this property multiple times in the sequel.

This was discussed for the special case of |K| = 1 in [150, §5, 151a, §2]. However,
if |K| = 1, coordinate-wise minimization of (1.4) is equivalent to coordinate-wise mini-
mization of (1.5) and one need not consider blocks of variables in (1.5).

18

1.3 Partially Ordered Sets

Let us review the basic concepts of order theory in this section. We begin by recalling
the notion of a lattice, semilattice, and complete lattice. Then, we focus on the connec-
tion between complete lattices and closure operators. We conclude by analyzing iterative
applications of isotone and intensive mappings. This part is based mainly on [22] and [42].

Let S be a set and � be a partial order on S, i.e., � is a binary relation on S that is
reflexive, anti-symmetric, and transitive. Firstly, recall the duality principle in partially
ordered sets [22, §1, 42, §1.20]: for any property that concerns the partially ordered
set (S,�), there is a corresponding property that concerns its dual ordered set (S,�)
where � is the inverse order (a.k.a. dual order), i.e., s1 � s2 ⇐⇒ s2 � s1 for all s1, s2 ∈ S.
The corresponding dual property is obtained by replacing all (both explicit and implicit)
occurrences of � in the property by �.

Inspired by the notation in [22], for Q ⊆ S, we define

Q↑S = {s ∈ S | ∀q ∈ Q : q � s} (1.21a)

Q↓S = {s ∈ S | ∀q ∈ Q : s � q} (1.21b)

where Q↑S and Q↓S denote the set of all upper bounds and lower bounds on Q in S, respec-
tively.

Furthermore, if q∗ ∈ Q↑S satisfies q∗ � q for all q ∈ Q↑S , then it is called the least upper

bound on Q in S and we denote it by q∗ =
∨
S Q. Analogously, if q∗ ∈ Q↓S satisfies q∗ � q

for all q ∈ Q↓S , then it is called the greatest lower bound on Q in S and is denoted
by q∗ =

∧
S Q. The operations

∨
S and

∧
S are called the join and the meet , respectively.

We emphasise that, in general, a partially ordered set need not have the least upper bound
or greatest lower bound for each of its subsets.

For convenience, for two-element sets Q = {q1, q2}, we may write q1 ∨S q2 instead
of
∨
S {q1, q2} and q1 ∧S q2 instead of

∧
S {q1, q2}.

In particular, we have that S↑S is either empty or a singleton set because if s1, s2 ∈ S↑S ,

then, by definition (1.21a), s1 � s2 and s2 � s1, hence s1 = s2 by anti-symmetry. If S↑S is

non-empty, then S↑S = {>} where > =
∨
S S ∈ S is the top element of S. By the duality

principle, S↓S is also either empty or a singleton set. If S↓S = {⊥}, then ⊥ =
∧
S S ∈ S is

the bottom element of S. 11 Again, a partially ordered set need not contain the top or the
bottom element in general.

In the sequel, we simplify our notation as follows: if the set S w.r.t. which the upper
bounds, lower bounds, joins, and meets are taken is clear from context, then we omit the
subscript S, i.e., we simplify Q↑S , Q↓S ,

∨
S , and

∧
S to Q↑, Q↓,

∨
, and

∧
.

1.3.1 Lattices

Definition 1.4. A partially ordered set (S,�) is:

• a meet-semilattice if for any s1, s2 ∈ S, s1 ∧ s2 exists in S,

• a join-semilattice if for any s1, s2 ∈ S, s1 ∨ s2 exists in S,

• a lattice if it is a meet-semilattice and a join-semilattice,

11For the top and the bottom element, we adopt notation from [42, §1.21] to avoid using 0 and 1 which
we reserve for their numerical meaning.

19

• a complete lattice if for any Q ⊆ S, both
∧
Q and

∨
Q exist in S.

It is easily shown by induction [42, §2.11] that for a meet-semilattice (S,�) and any
non-empty finite Q ⊆ S,

∧
Q exists in S. Consequently, any non-empty finite meet-

semilattice (S,�) has a bottom element, namely
∧
S. By the duality principle, for any

join-semilattice (S,�) and any non-empty finite Q ⊆ S,
∨
Q exists in S. In particular,

any non-empty finite join-semilattice (S,�) has a top element,
∨
S. A complete lattice

always has both the top and the bottom element [22, Theorem 2.10].

Lemma 1.1 ([106, Theorem 2.5, 22, Theorem 2.11, 42, Theorem 2.31]). Let (S,�) be a
partially ordered set. The following are equivalent:

(a)
∧
Q exists in S for any non-empty Q ⊆ S and (S,�) has a top element >,

(b)
∨
Q exists in S for any non-empty Q ⊆ S and (S,�) has a bottom element ⊥,

(c) (S,�) is a complete lattice.

Proof. The implication (c) =⇒ (a) is clear, so we proceed to prove (a) =⇒ (c). Since
(S,�) has top element >, we have that

∧
∅ = >. Consequently, for any Q ⊆ S,

∧
Q

exists in S.

Now, it remains to show that
∨
Q exists in S for any Q ⊆ S. We define q∗ =

∧
Q↑

and claim that q∗ =
∨
Q. First, notice that q1 � q2 for all q1 ∈ Q and all q2 ∈ Q↑ (by

definition of an upper bound). Consequently, q1 �
∧
Q↑ = q∗ holds for all q1 ∈ Q, so q∗ is

an upper bound on Q. By definition of
∧

, q∗ is the least upper bound on Q in S.

The equivalence (b)⇐⇒ (c) is obtained dually.

Theorem 1.11 ([106, Theorem 2.4, 42, Corollary 2.25]). Let (S,�) be a non-empty finite
partially ordered set. The following are equivalent:

(a) (S,�) is a meet-semilattice with top element >,

(b) (S,�) is a join-semilattice with bottom element ⊥,

(c) (S,�) is a complete lattice,

(d) (S,�) is a lattice.

Proof. Together with the previously stated facts, Lemma 1.1 yields (a) ⇐⇒ (b) ⇐⇒ (c).
The implication (c) =⇒ (d) is clear by definition of a complete lattice. To prove (d) =⇒
(a), notice that any finite lattice has the top element

∨
S and is also a meet-semilattice.

By Theorem 1.11, it is possible to augment any finite meet-semilattice by introducing
a new artificial top element to obtain a complete lattice. Dually, one can include a bottom
element in a finite join-semilattice which is known as the lifting operation [42, §1.22].

1.3.2 (Dual) Closure Operators and Chaotic Iterations

Let us now recall the connection between closure operators and complete lattices. In
detail, any closure operator defined on a complete lattice defines its subset which is also
a complete lattice and, under additional assumptions, such a subset defines a closure
operator.

Before we state these results formally, we overview useful properties of mappings on
partially ordered sets in Definition 1.5.

20

Definition 1.5 ([22, §1.4]). Let (S,�) be a partially ordered set. Mapping f : S → S is

• extensive if ∀s ∈ S: s � f(s),

• intensive if ∀s ∈ S: f(s) � s,
• idempotent if ∀s ∈ S: f(s) = f(f(s)),

• isotone if ∀s1, s2 ∈ S: s1 � s2 =⇒ f(s1) � f(s2),

• a closure operator if it is extensive, idempotent, and isotone,

• a dual closure operator if it is intensive, idempotent, and isotone.

Let us denote the image of a mapping f : S → S by

im f = {f(s) | s ∈ S}. (1.22)

Notice that it follows directly from Definition 1.5 that the set of fixed points of an idem-
potent mapping f coincides with its image, i.e., {s ∈ S | f(s) = s} = im f . In detail,
inclusion in the ⊇ direction follows from idempotence and the other direction is clear from
the definition of a fixed point [22, §1.4]. In particular, this holds for any (dual) closure
operator f .

For the purpose of the following theorem, we need to present an auxiliary lemma and
also introduce additional terminology: for complete lattices (S,�) and (Q,�) with Q ⊆ S,
we say that their meet operations coincide if for any Q′ ⊆ Q, we have

∧
S Q
′ =

∧
QQ

′. In
words, this is the case if for any Q′ ⊆ Q, the greatest lower bound on Q′ in S is the same
as the greatest lower bound on Q′ in Q. Analogously, their join operations coincide if for
any Q′ ⊆ Q, we have

∨
S Q
′ =

∨
QQ

′.

Lemma 1.2 ([42, Lemma 2.22(v)]). Let (S,�) be a complete lattice and S1 ⊆ S2 ⊆ S.
Then,

∧
S1 �

∧
S2 and

∨
S2 �

∨
S1.

Proof. The first claim follows from the fact that
∧
S2 =

∧
S1 ∧

∧
(S2 − S1) is a lower

bound on
∧
S1. The second claim follows from the duality principle.

Theorem 1.12 (cf. [42, Theorem 7.3]). Let (S,�) and (Q,�) be complete lattices such
that Q ⊆ S.

(a) If the meet operations in (S,�) and (Q,�) coincide, then the mapping f : S → Q

defined by f(s) =
∧
{s}↑Q is a closure operator.

(b) If the join operations in (S,�) and (Q,�) coincide, then the mapping g : S → Q

defined by g(s) =
∨
{s}↓Q is a dual closure operator.

Proof. We show only (a) since (b) then follows from the duality principle. Notice that we

do not need to distinguish
∧
S and

∧
Q in the definition of f because {s}↑Q is a subset

of Q and the meet operations coincide.
We begin by extensivity: for s ∈ S, s ∈ {s}↑S holds by reflexivity of � and also

{s}↑Q ⊆ {s}
↑
S due to Q ⊆ S. Lemma 1.2 yields f(s) =

∧
{s}↑Q �

∧
{s}↑S = s.

For isotony, let s1, s2 ∈ S such that s1 � s2. Then, {s1}↑Q ⊇ {s2}↑Q by transitivity of �
and we obtain f(s1) =

∧
{s1}↑Q �

∧
{s2}↑Q = f(s2) by Lemma 1.2.

Finally, to prove idempotency, we have that f(s) ∈ {f(s)}↑Q, which yields f(f(s)) =∧
{f(s)}↑Q = f(s).

21

inputs: partially ordered set (S,�), initial element s ∈ S, isotone and intensive
mappings f1, ..., fn : S → S.

1 s′ := s
2 while ∃i ∈ [n] : fi(s

′) 6= s′ do
3 Find such i.
4 s′ := fi(s

′)

5 return s′

Algorithm 1.1: Iterations of a given set of mappings applied to an initial ele-
ment s ∈ S of a partially ordered set (S,�).

Focusing on the definition of f and g in Theorem 1.12, for any s ∈ S, we have that
f(s) is the least upper bound on s in Q and g(s) is the greatest lower bound on s in Q.
Theorem 1.12 has the following practical corollary.

Corollary 1.4. Let (S,�) and (Q,�) be complete lattices with Q ⊆ S. Define the map-

pings f, g : S → Q by f(s) =
∧
Q {s}

↑
Q and g(s) =

∨
Q {s}

↓
Q. For any s ∈ S, it holds that

s ∈ Q ⇐⇒ f(s) = s ⇐⇒ g(s) = s.

Proof. If s ∈ Q, s ∈ {s}↑Q and s � q holds for any q ∈ {s}↑Q by definition, so s =
∧
Q {s}

↑
Q =

f(s). If s /∈ Q, f(s) 6= s due to im f = Q. The part with g is obtained dually.

Remark 1.4. The converse connection between (dual) closure operators and complete
lattices also holds. In detail, for any complete lattice (S,�) and any (dual) closure opera-
tor f : S → S, (im f,�) is a complete lattice [22, Theorem 2.14, 42, §7].

Finally, suppose that we are given a set of isotone and intensive mappings on some
finite partially ordered set (S,�) and an element s ∈ S. To find the greatest common fixed
point s′ of these mappings such that s′ � s, one can use Algorithm 1.1 whose correctness
is given by Theorem 1.13.

Theorem 1.13 (cf. [6, Theorem 1]). Let (S,�) be a finite partially ordered set, s ∈ S,
and f1, ..., fn : S → S be isotone and intensive mappings. Algorithm 1.1 terminates in a
finite number of steps and returns the greatest common fixed point s′ of mappings f1, ..., fn
that satisfies s′ � s.

Proof. In each iteration of the algorithm, the current s′ strictly decreases w.r.t. � by
intensivity of fi. This implies that s′ � s and, by finiteness of S, that the algorithm
terminates after a finite number of iterations. The fact that s′ is a common fixed point of
all the mappings fi follows directly from the condition on line 2 of the algorithm.

To prove that s′ is the greatest common fixed point, we proceed by induction. In
detail, we show that s∗ � s′ holds during the whole run of the algorithm for any common
fixed point s∗ ∈ S such that s∗ � s. The base case is clear: s∗ � s = s′. For the inductive
step, it follows from isotony of fi that s∗ = fi(s

∗) � fi(s
′) where the equality is given by

s∗ being a common fixed point.

Note that, by Theorem 1.13, the value returned by Algorithm 1.1 is independent of
the way of choosing i on line 3. Similar algorithms are known as chaotic iterations [5, §2].

22

1.4 Constraint Satisfaction Problem and Local Consisten-
cies

In this section, we recall the constraint satisfaction problem (CSP), the notion of local
consistency, and constraint propagation. Furthermore, we also revisit the connection be-
tween local consistencies, closure operators, and iterations of propagators. Throughout
the thesis, we follow our notation for CSPs from [55a, 56a] and we reuse some parts of
these papers to define the notation and well-known terms in the beginning of this section.

The structure of a CSP is defined by a triple (V,D,C) where V is a finite set of
variables, D is a common finite domain of each variable, and C ⊆ 2V is a non-empty set
of non-empty scopes of constraints so that (V,C) can be interpreted as a hypergraph. The
structure (V,D,C) gives rise to the set of all tuples

T = { (S, k) | S ∈ C, k ∈ DS }, (1.23)

which can be naturally partitioned into the sets

TS = { (S, k) | k ∈ DS } (1.24)

for each S ∈ C.
In machine learning, hypergraphs are often equivalently represented by so-called factor

graphs which is convenient as it allows us to avoid the more complex hypergraph termi-
nology. In analogy to [83], the factor graph of a hypergraph (V,C) (or, factor graph of a
CSP with a set of variables V and constraint scopes C) is the bipartite graph whose nodes
correspond to variables in V and scopes in C. The factor graph contains an edge between
a variable node i ∈ V and a scope node S ∈ C if i ∈ S. 12 We show an example of a factor
graph in Figure 1.4.

Even though most of the results in the thesis do not rely on this, we will for simplicity
of presentation generally assume that {i} ∈ C for each i ∈ V and that the factor graph
of (V,C) is connected (unless specified otherwise). We also implicitly assume that there
is at most one constraint with each scope because C is a set (instead of a multiset).

An instance of the constraint satisfaction problem (CSP) is defined by the quadru-
ple (V,D,C,A) where (V,D,C) is the structure and A ⊆ T is the set of allowed tuples
(while the tuples T − A are forbidden). In the sequel, we will not need to change the
structure (V,D,C) of the CSP, so we will refer to CSP instances only as A for brevity. In
other words, we identify CSP instances with subsets of T .

In analogy to §1.2, for an assignment 13 x ∈ DV and S ⊆ V , x|S stands for the

restriction of x onto the set S, i.e., for S = {i1, ..., i|S|} we have x|S = (xi1 , ..., xi|S|) ∈ DS

(where the order of the components is defined by the total order on S inherited from
some arbitrary fixed total order on V). An assignment x ∈ DV uses a tuple (S, k) ∈ T
if x|S = k. An assignment x ∈ DV is a solution to CSP A if it uses only allowed tuples,

12The factor graph is isomorphic to the primal constraint graph [46, §2.1.3] of the hidden transfor-
mation [8, Definition 7] of the CSP. Also recall that a sequence (i1, S1, i2, S2, . . . , Sn, in+1) with n ≥ 2
and i1 = in+1 is a Berge cycle [14, §17] of a hypergraph (V,C) if i1, . . . , in are distinct vertices from V ,
S1, . . . , Sn are distinct scopes from C, and ik, ik+1 ∈ Sk holds for all k ∈ [n]. A hypergraph is Berge-acyclic
if it does not contain a Berge cycle. It is easy to see that the factor graph of (V,C) is acyclic if and only
if the hypergraph (V,C) is Berge-acyclic.

13As usual, DV denotes the set of all mappings from V to D, so x ∈ DV is the same as x : V → D.

23

1 2 3 4

{1} {2} {2, 3} {1, 4} {2, 3, 4}

Figure 1.4: Factor graph of the hypergraph (V,C) where V = {1, 2, 3, 4} and C = {{1},
{2}, {2, 3}, {1, 4}, {2, 3, 4}}. The factor graph contains 5 nodes corresponding to elements
of C (shown as rectangles), 4 nodes corresponding to elements of V (shown as circles),
and 9 edges in total.

i.e.,
(
S, x|S

)
∈ A for all S ∈ C. Note that each assignment x ∈ DV uses exactly one tuple

from each TS , S ∈ C.

As usual [5, 17, 81, 46, 67], the solution set of a CSP A is denoted by SOL(A) ⊆ DV .
We say that CSPs A, A′ ⊆ T are equivalent if SOL(A) = SOL(A′) [5, 6, 105]. CSP A is
satisfiable if SOL(A) 6= ∅ and unsatisfiable otherwise. The problem of deciding whether a
CSP is satisfiable is NP-complete (e.g., by reduction from 3-coloring [116, §8.6.1, 84]).

Note that one can interpret SOL as a mapping SOL: 2T → 2(DV). Since allowing more
tuples does not make the solution set smaller, the mapping SOL is isotone, i.e., A ⊆ A′

implies SOL(A) ⊆ SOL(A′).

To avoid any ambiguity, we define a CSP to be Boolean if |D| = 2. On the other hand,
a CSP is pairwise if |S| ≤ 2 for all S ∈ C. 14 Finally, we define C≥2 = {S ∈ C | |S| ≥ 2}
to be the set of all non-unary scopes.

Example 1.10 (cf. [56a, Example 2]). Let V = {1, 2}, D = {a, b}, and C = {{1}, {2},
{1, 2}}. For this structure, the set of tuples is

T = {({1}, a), ({1}, b), ({2}, a), ({2}, b),

({1, 2}, (a, a)), ({1, 2}, (a, b)), ({1, 2}, (b, a)), ({1, 2}, (b, b))},
(1.25)

i.e., T = T{1} ∪ T{2} ∪ T{1,2} where, e.g., T{2} = {({2}, a), ({2}, b)}.
The assignment x = (a, b) ∈ DV (i.e., x1 = a, x2 = b) uses tuples ({1}, a), ({2}, b),

and ({1, 2}, (a, b)). CSP A1 from Figure 1.5a is defined by

A1 = { ({1}, a), ({1}, b), ({2}, b), ({1, 2}, (a, b)), ({1, 2}, (b, b)) } ⊆ T (1.26)

and is equivalent to A2 in Figure 1.5b since SOL(A1) = SOL(A2) = {(a, b), (b, b)}.
CSPs A3 and A4 in Figures 1.5c and 1.5d are both unsatisfiable (and therefore equiv-

alent). Since the structure of all these CSPs is the same, they are all Boolean and pair-
wise. 4

14We intentionally avoid the term ‘binary’ that sometimes refers to ‘Boolean’ whereas in other works it
means ‘pairwise’.

24

value a

value b

variable 1 variable 2

(a) CSP A1

value a

value b

variable 1 variable 2

(b) CSP A2

value a

value b

variable 1 variable 2

(c) CSP A3

value a

value b

variable 1 variable 2

(d) CSP A4

Figure 1.5: Visualisations of four CSPs with the same structure. Variables (elements of V)
are depicted as rounded rectangles, tuples (elements of T) as circles and line segments.
Black circles and full lines indicate allowed tuples, whereas white nodes and dashed lines
indicate forbidden tuples. Our visualisation convention for (W)CSPs is similar to the
ones considered in [149, 146, 134, 119, 92, 46] 15– for CSPs, this in fact depicts its micro-
structure [82].

1.4.1 Local Consistencies and Constraint Propagation

Let us now focus on the connection of local consistencies, consistency closures, and prop-
agators. Local consistencies are a key concept in the constraint programming community
that is typically used to prune the search space when searching for a solution of a CSP.
The topic of local consistencies is broad and well-studied [17, 46, §3, 99, §3-§7].

A local consistency is a (usually simple) condition that is necessary for allowed tuples
of a CSP to be used by (some of) its solutions. Enforcing a local consistency means finding
an equivalent CSP that satisfies the given condition. For this, constraint propagation is
used. In general, constraint propagation explicitly infers some knowledge that was only
implicit before. This could mean, e.g., forbidding tuples that are not used by any solution
or introducing new constraints that are satisfied by all solutions. In the sequel, we focus
only on the former case, i.e., reducing the constraints while maintaining equivalence which
is known as constraint reduction process [5, §3.2]. In other words, we develop formalism
only for a subset of local consistencies that preserve the structure of a CSP and are applied
to constraints that are given in extension (i.e., by enumerating the allowed tuples).

In this part, we first formally define the properties of local consistencies sufficient for
defining the associated (dual) closure operators. Then, we point our attention to how this
closure can be obtained using a set of propagators and exemplify the shown notions on
arc consistency. Finally, we discuss that some classes of CSPs can be solved by enforcing
local consistencies without any search. We base our description mainly on [5] and [17].

15On the other hand, our convention is in contrast to some other papers, such as [136, 107, 98, 43, 33,
70] where forbidden non-unary tuples are emphasised whereas we emphasise the allowed tuples.

25

Remark 1.5. In some formalisms, e.g., [17, 5, 8, 99], the domains of the individual
variables are explicitly reduced during constraint propagation, i.e., the set D is different
for each variable and is gradually made smaller. However, we do not reduce the domains
of individual variables explicitly in our notation and set D is kept unchanged. Instead, we
expect that there is a unary constraint on each variable and removing value k ∈ D from the
domain of variable i ∈ V is performed by forbidding the tuple ({i}, k). Both approaches
are semantically equivalent [17, §3.1].

To be more formal, consider a local consistency Φ and the following properties.

Property 1.1 ([17]). If CSPs A and A′ are Φ-consistent, A ∪A′ is also Φ-consistent.

Property 1.2 ([17]). CSP ∅ is Φ-consistent.

Property 1.3. If a CSP A satisfies that for all (S, k) ∈ A there exists x ∈ SOL(A) such
that x|S = k, then A is Φ-consistent.

Property 1.1 is called stability under union (cf. [17, Definition 3.17]) and is satisfied by
typical local consistencies 16. Property 1.2 can be assumed by convention, as stated in [17,
Theorem 3.19]. Property 1.3 is a formalization of the statement that Φ is a necessary
condition for the allowed tuples to be extendable to a solution, i.e., we should not forbid
tuples if such an action changes the solution set. Note, Property 1.3 implies Property 1.2. 17

For now, we analyze the implications of the first two properties and we will focus on the
importance of Property 1.3 later.

For a local consistency Φ satisfying Properties 1.1 and 1.2, the set of all Φ-consistent
CSPs (with the fixed structure (V,D,C)) equipped by the partial order given by the set
inclusion is by Theorem 1.11 a complete lattice since it contains the bottom element ∅ and
its join operation is the set union. By Theorem 1.12b 18, this gives rise to a dual closure
operator CΦ : 2T → 2T defined by

CΦ(A) =
⋃
{A′ ⊆ A | A′ is Φ-consistent} (1.27)

which is the greatest Φ-consistent CSP that is a subset of A. In addition, Corollary 1.4
yields that CSP A is Φ-consistent if and only if CΦ(A) = A.

Remark 1.6. Although (1.27) is sometimes only referred to as a closure (e.g., as in arc
consistency closure [8, 33, 17]), it is indeed a dual closure in the sense of §1.3.2 because
it is intensive, i.e., it reduces the set of allowed tuples. This distinction is only technical
as it can be easily corrected by either considering the dual setting (as in [5]) where the
ordering is formally reversed, or by defining the CSP by the set of forbidden (rather than
allowed) tuples. To be consistent with the literature, we will sometimes omit ‘dual’ and
say, e.g., ‘arc consistency closure’ instead of ‘arc consistency dual closure’.

16For an example of a local consistency that is not stable under union, see [17, Example 3.18].
17On the other hand, Property 1.3 is not implied by Properties 1.1 and 1.2. As an example, if ∅ is

the only Φ-consistent CSP, then this notion of Φ-consistency satisfies Properties 1.1 and 1.2 but does not
satisfy Property 1.3.

18In more detail, the set of Φ-consistent CSPs is a subset of 2T which is also partially ordered by the set
inclusion and (2T ,⊆) is a complete lattice. Both of these complete lattices have the same join operation,
namely the set union ∪.

26

We emphasise that, for the partially ordered set of Φ-consistent CSPs to be a complete
lattice, we required only Properties 1.1 and 1.2, not Property 1.3. The same holds for the
existence of the dual closure operator CΦ. However, we will show that if a local consis-
tency Φ does not satisfy Property 1.3, then the corresponding dual closure operator CΦ

may not return an equivalent CSP.

To concisely describe this result, let us recall positive consistency [7, §III, 20, Defini-
tion 3] (related terms are minimal network and minimal CSP from [105, §3, 46, §2.3.2,
101, §7.4, 57, Definition 2, 67, §1.1]).

Definition 1.6 ([7, 20]). A CSP A is positively consistent if for all (S, k) ∈ A, there
is x ∈ SOL(A) such that x|S = k.

It is easy to see that forbidding any tuple in a positively consistent CSP changes its
solution set. This new notion allows us to restate Property 1.3 equivalently as follows:
any positively consistent CSP is also Φ-consistent . Clearly, positive consistency is stable
under union (i.e., satisfies Property 1.1) and CSP ∅ is positively consistent, hence the
corresponding dual closure operator (1.27) is defined and will be denoted by Cpos. The
following proposition states an expected property of the mapping Cpos.

Proposition 1.1. Let A ⊆ T . SOL(A) = SOL(Cpos(A)).

Proof. Let A′ = A − {(S, k) ∈ T | ∀x ∈ SOL(A) : x|S 6= k}. CSP A′ is clearly positively
consistent and A′ ⊆ A, so A′ ⊆ Cpos(A) ⊆ A. Moreover, SOL(A′) = SOL(A) holds by
definition of A′. Applying isotony of SOL results in SOL(A′) ⊆ SOL(Cpos(A)) ⊆ SOL(A),
hence SOL(Cpos(A)) = SOL(A).

Using Proposition 1.1, we are now in position to formalize the importance of Prop-
erty 1.3 in Theorem 1.14.

Theorem 1.14. Let Φ be a local consistency satisfying Properties 1.1 and 1.2. The
following are equivalent:

(a) Φ-consistency satisfies Property 1.3,

(b) ∀A ⊆ T : SOL(CΦ(A)) = SOL(A).

Proof. (a) =⇒ (b): Since Cpos(A) is Φ-consistent and Cpos(A) ⊆ A, it follows that
Cpos(A) ⊆ CΦ(A) by definition of CΦ in (1.27). Proposition 1.1 yields SOL(Cpos(A)) =
SOL(A). Combining this with Cpos(A) ⊆ CΦ(A) ⊆ A (where we used intensivity of CΦ)
and isotony of SOL, we obtain SOL(CΦ(A)) = SOL(A) analogously to the proof of Propo-
sition 1.1.

(b) =⇒ (a): By contrapositive: let Property 1.3 not be satisfied and let A be the
positively consistent CSP that is not Φ-consistent. Since A is not Φ-consistent, we have
CΦ(A) 6= A and thus CΦ(A) (A by intensivity of CΦ. This implies SOL(CΦ(A)) (
SOL(A) because forbidding any tuple in a positively consistent CSP changes its solution
set.

To summarize, if a local consistency Φ satisfies Properties 1.1 and 1.3 (and thus also
satisfies Property 1.2), then CΦ is a dual closure operator and for any CSP A, CΦ(A) and A
are equivalent, i.e., SOL(A) = SOL(CΦ(A)). In the following parts, we will assume that
Φ satisfies these properties.

27

inputs: CSP A, local consistency Φ.
1 A′ := A
2 while A′ is not Φ-consistent do
3 Find R ⊆ A′, such that R 6= ∅ and SOL(A′ −R) = SOL(A′).
4 A′ := A′ −R
5 return A′

Algorithm 1.2: Propagation algorithm enforcing Φ-consistency of CSP A.

1.4.1.1 Propagation Algorithm and Propagators

In practice, the dual closure (1.27) is not computed in a single step, but instead by
iteratively applying multiple propagators [17, §3.7]. Typically, there is a propagation
algorithm that gradually forbids some tuples that are identified to be inconsistent (which
implies that they are not used by any solution). After these tuples are forbidden, the
algorithm may detect that other tuples became inconsistent and thus, forbids them too.
The algorithm eventually stops when it is unable to forbid any other tuples, i.e., the
instance satisfies the local consistency condition.

This is the principle of constraint propagation applied to a CSP that we (for now
slightly informally) outline in Algorithm 1.2. The input of the propagation algorithm is
a CSP A and a local consistency Φ. First, the algorithm initializes A′ := A and then,
in each iteration, the algorithm finds a non-empty subset R of allowed tuples in A′ that
were identified not to be used by any solution of the CSP by the local consistency Φ
and forbids them. 19 Note that such a subset always exists by Property 1.3: if a CSP
is not Φ-consistent, then there exists at least one allowed tuple that is not used by any
solution. Such updates are repeated until A′ becomes Φ-consistent. Note that the returned
CSP A′ is equivalent to the input CSP A. In particular, if CSP A′ is empty, then the
input CSP A is unsatisfiable.

We will now show an alternative formalism for enforcing a local consistency that is
based on propagators. Let pi, i ∈ P be propagators indexed by a finite set P, i.e.,
for all i ∈ P, pi : 2T → 2T is an isotone and intensive mapping such that SOL(A) =
SOL(pi(A)) holds for all A ⊆ T . 20 Suppose that we repeatedly apply these propagators
to an input CSP, as outlined in Algorithm 1.3. Clearly, this algorithm is an instantiation
of Algorithm 1.1, so, by Theorem 1.13, the output of Algorithm 1.3 is the greatest CSP
(w.r.t. ⊆) that is a subset of A and a fixed point of all propagators pi, i ∈ P.

Typically [6], the set of propagators is defined so that their common fixed points
characterize the desired local consistency Φ, i.e., for all A ⊆ T , we have that

A is Φ-consistent ⇐⇒ ∀i ∈ P : pi(A) = A. (1.28)

In such case, Algorithm 1.3 computes CΦ(A) and is a more formal version of the previously
shown Algorithm 1.2. In detail, the conditions on line 2 of both algorithms become equiva-
lent due to (1.28). Also, the task of finding a non-empty subset R of Φ-inconsistent tuples

19As stated in [99, §3.2], usual local consistencies Φ are nogood-identifying, i.e., whenever a CSP is not
Φ-consistent, it is because at least one allowed tuple is found not to be used by any solution of the CSP
by the local consistency Φ. Such tuples are called Φ-inconsistent [99, Definition 3.12].

20Up to the requirement of isotony, this is a constraint reduction function [5, Definition 3.5].

28

inputs: CSP A, set of propagators pi, i ∈ P, i.e., each pi : 2T → 2T is an isotone
and intensive mapping satisfying ∀A′ ⊆ T : SOL(A′) = SOL(pi(A

′)).
1 A′ := A
2 while ∃i ∈ P : pi(A

′) 6= A′ do
3 Find such i.
4 A′ := pi(A

′)

5 return A′

Algorithm 1.3: Propagation algorithm based on application of individual propa-
gators to the input CSP.

from A′ boils down to finding i ∈ P such that pi(A) (A. If such a propagator pi exists,
the set R = A′− pi(A′) satisfies the required conditions stated on line 3 of Algorithm 1.2.

1.4.1.2 Example: Arc Consistency

We now exemplify the previously discussed concepts on arc consistency (AC). Recall that
a CSP A is (generalized 21) arc consistent [149, §4.1, 146, §3, 119, §6.2.2] if

({i}, k) ∈ A ⇐⇒ ∃(S, `) ∈ A : `i = k (1.29)

holds for all S ∈ C≥2, i ∈ S, and k ∈ D. It is readily verified that AC satisfies Proper-
ties 1.1 and 1.3.

Remark 1.7. In constraint programming [17, 141, 8, 101, 46, 99], a more common
definition requires

({i}, k) ∈ A =⇒ ∃(S, `) ∈ A : (`i = k ∧ ∀j ∈ S : ({j}, `j) ∈ A) (1.30)

instead of (1.29). To enforce AC in this sense, it is not necessary to forbid tuples cor-
responding to non-unary constraints. Both definitions are equivalent in terms of the for-
bidden unary tuples (i.e., the reduced domains) and have the same strength. In detail,
any CSP that is arc consistent in the sense of (1.29) is also arc consistent in the sense
of (1.30) (e.g., CSP in Figure 1.5a). Moreover, it can be easily shown that for any CSP A
that is arc consistent in the sense of (1.30) (e.g., CSP in Figure 1.5b), the CSP

A′ = A− { (S, k) ∈ A | S ∈ C≥2, ∃i ∈ S : ({i}, ki) /∈ A } (1.31)

is arc consistent in the sense of (1.29). Note that we only forbid some tuples of the
non-unary constraints in (1.31).

To obtain the AC closure, one uses AC propagators. Formally, for S ∈ C≥2, i ∈ S,
and k ∈ D, we define the propagator pS,i,k : 2T → 2T by

pS,i,k(A) =


A if (1.29) is satisfied

A− {({i}, k)} if (1.29) is not satisfied and ({i}, k) ∈ A
A− {(S, `) ∈ TS | `i = k} if (1.29) is not satisfied and ({i}, k) /∈ A

.

(1.32)

21Sometimes [17, §3.3, 33] (but not always), arc consistency for CSPs with higher-order constraints
is called generalized arc consistency. We do not use this name in the thesis and simply call the local
consistency ‘arc consistency’.

29

Clearly, A ⊆ T is arc consistent if and only if pS,i,k(A) = A holds for all such triples (S, i, k).
Moreover, the propagators always return an equivalent CSP and are intensive, isotone, and
even idempotent.

Also, for any S ∈ C≥2, i ∈ S, k ∈ D, and A ⊆ T , it is easy to verify that the
CSP pS,i,k(A) satisfies (1.29) for this triple (S, i, k). By repeated application of different
propagators pS,i,k, as in Algorithm 1.3, more and more tuples become forbidden. Even-
tually, when pS,i,k(A) = A holds for all triples (S, i, k), CSP A is arc consistent and this
result coincides with the AC closure of the initial CSP.

1.4.1.3 CSPs Solved by Enforcing Local Consistencies

In general, a local consistency Φ is neither a necessary nor a sufficient condition of satis-
fiability [5, 8] – e.g., an arc consistent CSP need not be satisfiable, but a CSP that is not
arc consistent may be satisfiable.

For a local consistency Φ satisfying the properties from §1.4.1 and A ⊆ T , if CΦ(A) is
empty, then CSP A is unsatisfiable because an empty CSP is unsatisfiable and SOL(A) =
SOL(CΦ(A)). On the other hand, non-emptiness of CΦ(A) does not in general imply
that A is satisfiable.

However, for some CSP instances, enforcing a local consistency is sufficient to decide
whether they are satisfiable (or even find a solution). Formally, we say that a local
consistency Φ is refutation complete for a class of CSPs A if for any A ∈ A with non-
empty CΦ(A), A is satisfiable. 22 Otherwise, we say that the local consistency is refutation
incomplete (for some class of CSPs).

Example 1.11. Restricting ourselves to pairwise CSPs, it is well known [61] that AC
is refutation complete for CSPs where the graph (V,C≥2) is a tree (or, more generally, a
forest). For CSPs with higher-order constraints, AC is refutation complete if the factor
graph of this CSP is acyclic (i.e., if the hypergraph is Berge-acyclic) and this is the only
structural restriction where AC is refutation complete [31, Theorem 1].

Recall that a CSP A with a total order � on its domain D is max-closed [81, Defini-
tion 2.5] if for each scope S ∈ C, (S, k) ∈ A and (S, `) ∈ A implies (S, k ∨ `) ∈ A where
k ∨ ` ∈ DS contains the element-wise maximal elements of k and ` w.r.t. the total order
given by �. Enforcing AC is refutation complete for max-closed CSPs [30, Example 6.39].
The same results also hold for min-closed CSPs that are defined dually.

For other classes and more details, we refer the interested reader to [31, 161, 30] and
references therein. 4

Example 1.12. Positive consistency is refutation complete for all CSPs. Indeed, by
Definition 1.6, we have that Cpos(A) is non-empty if and only if A is satisfiable. However,
enforcing positive consistency, deciding whether a CSP is positively consistent, or even
finding a solution to a positively consistent CSP is likely intractable [67, 20, 57]. 4

22Synonymous terms are that enforcing Φ is a decision procedure for CSPs from A [33, 161, 133] or
that Φ decides CSPs from A [31, Definition 2]. Alternatively, one can say that enforcing Φ is a complete
refutation method [76, §3.2.1] (for a class of problems).

30

1.5 Weighted CSP and LP-Based Bounds

In this part, we formally define the weighted constraint satisfaction problem (WCSP) 23

which is an NP-hard combinatorial optimization problem [146]. Although there exist also
other approaches [74], successful exact WCSP solvers usually rely on branch-and-bound
search [136] which creates demand for good upper bounds that could efficiently prune the
search space. Thus, we also give an overview of LP-based methods that can be used for
obtaining such bounds. Throughout this section, we generally follow the notation that we
used in [55a] or [56a] and also reuse certain parts of these papers.

The structure of a WCSP is the same as of a CSP, i.e., a triple (V,D,C). Similarly as
with CSPs, we will assume that the structure is fixed and a WCSP is thus defined only by
a collection of its weight functions gS : DS → R, S ∈ C. The task is to find an assignment
x ∈ DV maximizing the objective function

F (x |g) =
∑
S∈C

gS
(
x|S
)
, (1.33)

or to find the optimal value of WCSP g, i.e., maxx∈DV F (x |g).

Notice that the weights of all the weight functions can be stacked into a single real-
valued vector g ∈ RT where T is the set of all tuples, as defined in (1.23). Analogously to
CSPs, we will identify WCSP instances with vectors from RT . The components of g ∈ RT
can thus be indexed by t ∈ T , e.g., gt = gS(k) if t = (S, k).

Example 1.13 ([56a, Example 1]). Let V = {1, 2, 3, 4}, D = {a, b}, and C = {{1}, {2},
{2, 3}, {1, 4}, {2, 3, 4}}. In such a setting, we want to maximize the expression

g{1}(x1) + g{2}(x2) + g{2,3}(x2, x3) + g{1,4}(x1, x4) + g{2,3,4}(x2, x3, x4)

over x1, x2, x3, x4 ∈ {a, b}. In analogy to CSP terminology introduced in §1.4, this WCSP
is Boolean but not pairwise. The factor graph of this WCSP is depicted in Figure 1.4. 4

Remark 1.8. In some formalisms, the objective (1.33) is minimized. For our purposes,
these settings are equivalent as one can invert the sign of all weights and maximize instead.

We emphasise that we make no assumption on the sign of the weights, as opposed to,
e.g., [33, §7, 107, §2, 133, §II, 36, §3] where minimization and non-negative weights are
assumed. When only non-negative weights are allowed, it is usual to assume that ∅ ∈ C
since the weight g∅ then constitutes a bound on the optimal value. In contrast, we will
need both positive and negative weights later in §3, so we require ∅ /∈ C for simplicity of
notation (the empty scope would not yield any bound by itself anyway).

In more general setting, hard constraints can be introduced by allowing g ∈ RT−∞
where R−∞ = R ∪ {−∞}. We remark (without proof) that we see no obstacle to gen-
eralizing our results from later chapters to WCSPs with such constraints but we do not
allow hard constraints for the sake of simplicity.

23This problem is also known as finite-valued CSP [132, 133], partial CSP [94], discrete energy minimiza-
tion [88, 83, 119, 74, 135], max-sum (or min-sum) labeling problem [146, 120], or maximum a posteriori
inference in graphical models (or Markov random fields) [125, 139, 146, 119, 134, 135, 87, 74]. It is also
the main task in cost function networks [39]. Some of these formalisms however also allow infinite weights
(i.e., hard constraints).

31

1.5.1 Linearity and Marginal Polytope

The objective (1.33) is linear in the weight vector g, i.e., for any f, g ∈ RT and any α, β ∈ R,
we have F (x |αf + βg) = αF (x |f) + βF (x |g) for all x ∈ DV . This is made explicit by
using a different notation for the WCSP objective that is common in machine learning [140,
§3, 119, §4, 88, §2, 139, §1.1]. We introduce this notation only for the purposes of this
subsection, Example 1.14, and Remark 3.1 given later.

Let us define an indicator map φ : DV → {0, 1}T by

φ(x)t = Jx|S = kK ∀t = (S, k) ∈ T (1.34)

where J·K denotes the Iverson bracket which equals 1 if the logical expression in the bracket
is true and 0 if it is false. In other words, for any x ∈ DV , we have that φ(x)t = 1 if and
only if x uses tuple t ∈ T .

The WCSP objective (1.33) can be written as the dot product of vectors g, φ(x) ∈ RT ,
namely

F (x |g) =
∑
S∈C

gS
(
x|S
)

=
∑
t∈T

gtφ(x)t = g>φ(x) (1.35)

which makes explicit that the objective (1.33) is linear in the weight vector g. The optimal
value of a WCSP can be thus also expressed as

max
x∈DV

F (x |g) = max
x∈DV

g>φ(x) = max
µ∈M

g>µ = max
µ∈convM

g>µ (1.36)

where conv denotes the convex hull operator [24, §2.1.4, 10, §1] and

M = {φ(x) | x ∈ DV } ⊆ {0, 1}T . (1.37)

The last equality in (1.36) follows from the well-known fact that a linear function on a
polytope attains its maximum in at least one vertex of the polytope [119, §3.3].

Note that M is defined only by the structure (V,D,C). The set convM ⊆ [0, 1]T is
known as the marginal polytope and has the central role in approaches to WCSP based on
linear programming (see [139, 119, 127, 140, 142] and references therein).

1.5.2 Active Tuples and Upper Bound

A tuple t = (S, k) ∈ T is active for WCSP g ∈ RT if

gS(k) = max
`∈DS

gS(`), i.e., gt = max
t′∈TS

gt′ (1.38)

and is inactive otherwise. The set of all active tuples for g will be denoted 24 by A∗(g).
Since A∗(g) ⊆ T , A∗(g) will be interpreted as a CSP (the active-tuple CSP).

We can define a tractable upper bound B : RT → R on the optimal value of a WCSP g
by

B(g) =
∑
S∈C

max
k∈DS

gS(k) =
∑
S∈C

max
t∈TS

gt (1.39)

24The characteristic vector of the set A∗(·) is denoted by ·̄ in [134, 146], by d·e in [149], and by mi[·]
in [119]. CSP A∗(·) is analogous to CSP Bool(·) in [33, 107, 136].

32

3 6
-2

1
-4

4 2

1
value a

value b

variable 1 variable 2

(a) WCSP g

2 0
-2

-3
-5

0 3

0
value a

value b

variable 1 variable 2

(b) WCSP f

Figure 1.6: Visualisations of two WCSPs g and f with structure as in Examples 1.10
and 1.14. We depict WCSPs in analogy to CSPs: the active tuples are shown as black
circles and full lines (because they are allowed in the active-tuple CSP) whereas inactive
tuples are shown as white circles and dashed lines (because they are forbidden in the active-
tuple CSP). The weights gt (and ft) are written next to the circles and line segments.

which is a convex piecewise-affine function. Notice that the maxima in (1.39) are attained
precisely by the active tuples 25 t ∈ A∗(g). The properties that link function B to the set
of active tuples are stated formally in the next theorem and corollary.

Theorem 1.15 ([146, §4, 149, Theorem 2]). Let g ∈ RT . For any x ∈ DV , we have that

(a) B(g) ≥ F (x |g),

(b) B(g) = F (x |g) if and only if x ∈ SOL(A∗(g)).

Proof. Statement (a) is immediate after comparing expressions (1.33) and (1.39). State-
ment (b) follows from the definition of an active tuple and a solution of a CSP.

Corollary 1.5 ([146, 33]). Let g ∈ RT . The upper bound is tight, i.e., maxx∈DV F (x |g) =
B(g), if and only if A∗(g) is satisfiable.

Proof. By Theorem 1.15, we have that B(g) ≥ maxx∈DV F (x |g) which holds as equality
if and only if ∃x ∈ DV : x ∈ SOL(A∗(g)), which means that A∗(g) is satisfiable.

Example 1.14. Recall the structure V = {1, 2}, D = {a, b}, and C = {{1}, {2}, {1, 2}}
from Example 1.10.

An example of a WCSP g with this structure is shown in Figure 1.6a. The weight vector
reads g = (3, 4, 6, 2,−2,−4, 1, 1) ∈ RT where the order of the tuples is given by (1.25). The
objective value of WCSP g for x = (a, b) is F (x |g) = 3+2−4 = 1 that can be also expressed
as g>φ(x) = 1 where φ(x) = (1, 0, 0, 1, 0, 1, 0, 0) ∈ {0, 1}T (and the order of the tuples is
again given by (1.25)).

The upper bound equals B(g) = 4 + 6 + 1 = 11 and is tight because CSP A∗(g) is satis-
fiable. In particular, F ((b, a) |g) = 11. On the other hand, for WCSP f from Figure 1.6b,
A∗(f) is unsatisfiable, so the upper bound B(f) = 2 + 0 + 3 = 5 is not tight. 4

25 The term ‘active tuple’ thus comes from the term ‘active inequality’ (Footnote 2). Following §1.1.2,
(1.39) can be calculated as the minimum of

∑
S∈C zS subject to zS ≥ gt ∀S ∈ C, t ∈ TS . At optimum, we

have zS = maxt∈TS gt and an inequality zS ≥ gt is active if and only if tuple t is active.

33

1.5.3 Reparametrizations and LP Relaxation

Definition 1.7 ([88, 87, 136, 117, 91]). Let f, g ∈ RT . WCSP f is a reparametrization
of WCSP g if F (x |f) = F (x |g) for all x ∈ DV . 26

The binary relation ‘is a reparametrization of’ on the set RT is an equivalence, i.e., it
is symmetric, reflexive, and transitive. It is easy to see that if f is a reparametrization
of g, then B(f) is not only an upper bound on the optimal value of f , but also on
the optimal value of g. This suggests minimizing the upper bound on WCSP g over its
reparametrizations, i.e.,

minB(f) (1.40a)

F (x |f) = F (x |g) ∀x ∈ DV (1.40b)

f ∈ RT . (1.40c)

Although this optimization problem has an exponential number of constraints (1.40b),
these constraints are linear in f by §1.5.1, hence the set of feasible solutions to (1.40) is
an affine subspace of RT .

We will now briefly focus on describing the set of all reparametrizations of a WCSP.
Let g ∈ RT and ϕS,i(k) ∈ R for each S ∈ C≥2, i ∈ S, and k ∈ D. WCSP gϕ ∈ RT defined
by

gϕ{i}(k) = g{i}(k)−
∑

S∈C≥2

i∈S

ϕS,i(k) ∀i ∈ V, k ∈ D (1.41a)

gϕS(k) = gS(k) +
∑
i∈S

ϕS,i(ki) ∀S ∈ C≥2, k ∈ DS (1.41b)

is a reparametrization of g [149, §3.2]. 27 If the WCSP is pairwise and the graph (V,C≥2)
is connected, one can obtain any reparametrization of g by an appropriate choice of ϕ [146,
88, 120]. In general, if the graph is not connected or the WCSP is not pairwise, not every
reparametrization of g can be obtained by some choice of ϕ in (1.41).

Remark 1.9. There exist larger subsets of reparametrizations that can be described by
means of a coupling scheme [149, §3] which is a subset S ⊆ { (S, S′) | S, S′ ∈ C, S) S′ }.
For a coupling scheme S , let ϕS,S′(k) ∈ R be scalars for each (S, S′) ∈ S and k ∈ DS′.
Then, WCSP f ∈ RT defined by 28

fS(k) = gS(k)−
∑

(S′,S)∈S

ϕS′,S(k) +
∑

(S,S′)∈S

ϕS,S′
(
k|S′

)
∀S ∈ C, k ∈ DS (1.42)

is a reparametrization of g ∈ RT [149, §3.2]. See that the transformation (1.41) is a special
case of (1.42) for the coupling scheme S = { (S, {i}) | S ∈ C≥2, i ∈ S }.

26It is also often said that f is equivalent to g [107, 134, 33, 135, 149, 146, 136, 36, 120, 98, 108]. Other
related terms are that f is an equivalence-preserving (or equivalent) transformation of g.

27Especially in machine learning, variables ϕ are sometimes referred to as ‘messages’ [146, 88, 125, 149].
28We will not define a specific notation for WCSPs obtained using (1.42) as we use only the (simpler

and less general) transformation (1.41) in the sequel.

34

Replacing variables f in (1.40) by gϕ from (1.41) while introducing ϕ as variables results
in the optimization problem minϕB(gϕ) which can be interpreted as an unconstrained
minimization of a convex piecewise-affine function. Written explicitly, this is

min
∑
i∈V

max
k∈D

(
g{i}(k)−

∑
S∈C≥2

i∈S

ϕS,i(k)
)

+
∑

S∈C≥2

max
k∈DS

(
gS(k) +

∑
i∈S

ϕS,i(ki)
)

(1.43a)

ϕS,i(k) ∈ R ∀S ∈ C≥2, i ∈ S, k ∈ D, (1.43b)

which can be formulated as a linear program, as discussed in §1.1.2.

The dual linear program corresponds to the basic LP relaxation of the WCSP g [146]
that can be stated as 29

max
∑
S∈C

∑
k∈DS

gS(k)µS(k) (1.44a)

∑
`∈DS
`i=k

µS(`) = µ{i}(k) ∀S ∈ C≥2, i ∈ S, k ∈ D (1.44b)

∑
k∈D

µ{i}(k) = 1 ∀i ∈ V (1.44c)

µS(k) ≥ 0 ∀(S, k) ∈ T. (1.44d)

Indeed, this is an LP relaxation of WCSP g since there is a bijection between assign-
ments x ∈ DV and the integral vectors µ feasible for (1.44). This LP relaxation was
proposed independently a number of times [121, 94, 28, 139, 38] and it is a powerful tool
in the sense that it solves all WCSPs defined by a tractable constraint language (i.e., the
set of allowed weight functions) [132].

Remark 1.10. In more detail, depending on the set of allowed weight functions, the
resulting class of WCSPs can be either NP-hard or polynomially solvable [132]. 30 In the
latter case, the optimal value of the basic LP relaxation of g coincides with the optimal
value of WCSP g [132].

If the WCSP is Boolean and pairwise, the LP relaxation (1.44) is half-integral and can
be reduced to the minimum st-cut problem [119, §12, 117, 23, 146]. On the other hand,
even for pairwise structure with |D| ≥ 3, solving the problem (1.44) (or (1.43)) is as hard
as solving a general linear program [115].

1.5.4 Methods for Obtaining Bounds Using Reparametrizations

Although linear programs can be solved in polynomial time, our ability to find optimal
solutions is limited by the fact that the time complexity of current off-the-shelf LP solvers
is super-linear which makes them impractical for large-scale instances which occur, e.g.,

29Formally, there should also be the constraint
∑
k∈DS µS(k) = 1 for each S ∈ C≥2 but these con-

straints are already implied by (1.44b) together with (1.44c) and are typically not included in the basic
LP relaxation [133, 132, §3.1].

30An analogous statement (the Feder-Vardi conjecture [58]) was proved for CSPs independently in [159]
and [27]. As stated in [89], this implies that general-valued CSPs (i.e., WCSPs that additionally allow −∞
weights) also exhibit a dichotomy.

35

in computer vision [154, 88, 127, 134, 115]. We will now give an overview of methods
for bounding the optimal value of (1.43) – such methods were developed, to some extent
independently, in computer vision/machine learning and constraint programming commu-
nities.

1.5.4.1 Methods Based on BCD / Message Passing

To obtain good upper bounds while avoiding solving the LP relaxation to optimality, a
competitive approach is to apply BCD (in this context also called ‘message passing’) to
the problem (1.43). There exists a wide class of convergent message-passing algorithms
that optimize different forms of a dual LP relaxation of WCSP by BCD. This family of
algorithms originates from the field of computer vision.

For pairwise WCSPs, such algorithms include, e.g., MPLP [65], max-sum diffusion [96,
146], MPLP++ [134], or SPAM [135]. The fixed points of these methods are related to
non-empty AC closure 31 of A∗(gϕ). To be more precise, if the current solution is ϕ and
the AC closure of A∗(gϕ) is non-empty, then the aforementioned algorithms will not be
able to improve the objective further. On the other hand, if the AC closure of A∗(gϕ) is
empty, the objective will be improved after a finite number of BCD iterations.

For instances with weight functions of higher arity, there exist specialized algorithms,
such as [87, 149] whose stopping conditions are also based on local consistencies.

Since the optimized objective is a convex piecewise-affine function, the fixed points of
these algorithms need not be global minima. Indeed, non-empty AC closure of A∗(gϕ) is
only a necessary condition for optimality of ϕ for (1.43) (or optimality of f = gϕ for (1.40))
but not sufficient in general [146].

Fact 1.2. Consider any algorithm for (approximate) optimization of (1.43) that returns
points ϕ such that A∗(gϕ) has non-empty AC closure. If, upon termination, A∗(gϕ) is
in some class of CSPs for which AC is refutation complete (recall Example 1.11), then
A∗(gϕ) is satisfiable and B(gϕ) is the optimal value of WCSP g by Corollary 1.5 [33, §10].

This is the case, e.g., when the factor graph of the WCSP is acyclic. Another example
are instances where each gS, S ∈ C is supermodular because then A∗(gϕ) is both max-
closed and min-closed [33, §10, 149, §7] and AC is in such case refutation complete. Note
that the transformation (1.41) preserves supermodularity [36, §4, 149, §7, 120, §2.3]. We
also remark that pairwise WCSPs with supermodular weight functions can be solved by a
reduction to minimum st-cut [29, 120, 119, §11].

Fact 1.3. In Boolean pairwise WCSPs, non-empty AC closure of A∗(gϕ) is a sufficient
condition for optimality of ϕ for (1.43) [146] and the optimal value of the LP relax-
ation (1.43) can be computed by reduction to minimum st-cut [119, §12, 117, 23, 146]
(also see [91]). However, the LP relaxation need not be tight.

Since non-empty AC closure of the active-tuple CSP need not be sufficient for its sat-
isfiability (hence optimality of the obtained bound by Corollary 1.5), one can include zero
weight functions of higher arity to improve the bound even further, as it is done in [127,
11, 149, 147, 126] and corresponds to a fine-grained version of the Sherali-Adams hierar-
chy [124] for WCSP. Even though adding such factors can strengthen the LP relaxation

31Called node-edge agreement in [119, 134] and non-empty kernel in [146].

36

or improve the fixed points of BCD algorithms [127, 149, 11, 126], this approach may
significantly increase the memory requirements of the method.

Aside from the previously mentioned algorithms, there are also approaches that op-
timize an LP relaxation based on acyclic decompositions. However, the optimal value
of such a relaxation is the same as of (1.43) [119, 93, 88]. This is, e.g., the TRW-S
algorithm [88] whose fixed points satisfy a local consistency condition called weak tree
agreement . Moreover, any feasible solution satisfying weak tree agreement cannot be im-
proved by subsequent iterations of TRW-S. Based on the study [83], TRW-S is typically
the fastest method for (approximately) optimizing the LP relaxation but seems to be
recently surpassed by SPAM [135].

Remark 1.11. For pairwise WCSPs, the formulation (1.43) can be interpreted as a de-
composition based on individual vertices and edges of the graph (V,C≥2) and non-empty
AC closure is then a special case of weak tree agreement [134]. Moreover, the weak tree
agreement condition is in a precise sense equivalent to non-empty AC closure (up to re-
formulation) [119, 88] (also mentioned in [146]). In [129], several BCD algorithms were
presented in a unified view within the framework of Lagrange dual decomposition of com-
binatorial problems and the fixed point conditions of this approach generalize both arc
consistency and weak tree agreement.

The connections among different formulations of (1.43) along with a BCD method on
trees is given in [125]. Some of the mentioned BCD methods are also studied in a common
framework in [142]. A more recent overview and taxonomy is presented in [135].

1.5.4.2 Methods Based on Enforcing (Soft) Local Consistencies

A different class of algorithms for obtaining an upper bound is based on enforcing (soft)
local consistencies (instead of performing BCD). Such algorithms generally originated in
the constraint programming community.

This is, e.g., the Virtual Arc Consistency (VAC) algorithm [33] that enforces non-
empty AC closure of the active-tuple CSP and if the AC closure is found to be empty,
the algorithm traces the operations of the AC propagator in anti-chronological order to
find a reparametrization with a better bound. VAC algorithm is closely related to the
Augmenting DAG algorithm [95, 146] that also enforces non-empty AC closure but was
defined only for pairwise WCSPs. Because the terminating condition of VAC is non-empty
AC closure of the active-tuple CSP, Facts 1.2 and 1.3 are also applicable.

Aside from VAC, there are also other methods based on arc consistency, such as
EDAC [43], FDAC, or DAC [37, 98], which are faster at the cost of weaker bounds in
general. A stronger local consistency is Optimal Soft Arc Consistency (OSAC) [38, 33]
that is (by definition) satisfied by gϕ where ϕ is an optimal solution of (1.43). 32 OSAC is
however limited to preprocessing, as it is too expensive to be maintained during search [33].
Higher-order consistencies for weighted CSP have been also studied in the constraint pro-
gramming community, e.g., in [35].

However, it is known that for a given WCSP, there need not exist its reparametrization
(with the same structure) such that its active-tuple CSP satisfies a given local consistency.
Thus, stronger local consistencies (and thus better bounds) can be again obtained at the

32Assuming that there is only a single weight function for each scope, (dual of) the basic LP relaxation
coincides with the OSAC formulation. In more general settings, this need not hold [90, Footnote 1, 133].

37

cost of introducing weight functions of higher arity (if such weight functions were not
already present in the problem), e.g., these are ternary weight functions if one wants to
enforce triangle-based consistencies, as it is done in [107].

Remark 1.12. As a technical note, the aforementioned algorithms based on enforcing local
consistencies do not obtain a reparametrization using (1.41) explicitly. Instead, the weights
are shifted between the individual weight functions by applying the operations project and
extend [98, 43, 33, 108]. However, for soft arc consistencies, these operations are in one-
to-one correspondence with increasing or decreasing individual values of ϕ in (1.41). In
more general settings, the relation is analogous except that one uses a different coupling
scheme (recall Remark 1.9) between the weight functions.

1.5.4.3 Applications of Reparametrizations and Approximate Solutions

The listed algorithms are not only useful for pruning the search space in branch-and-bound
search by providing upper bounds, but can also provide heuristics on which variables to
branch (see, e.g., [136]). An alternative approach for reducing the search space is to divide
the initial problem into two parts: a ‘hard’ part that is solved by an exact solver and
an ‘easy’ part where the LP relaxation (1.43) is tight [74]. This reduces the size of the
problem that needs to be solved by a combinatorial algorithm. Moreover, to solve the
‘easy’ part, it is not necessary to rely on an exact LP solver, but one can instead utilize
the approximate approaches based on BCD or enforcing local consistencies [74].

Aside from exact solving, one can also use the reparametrized instance to obtain so-
lutions that are acceptable in practice. As an example of such a primal heuristic, one can
define an arbitrary total order on the variables V and then, in this order, choose for each
variable such a value from D so that the objective (1.33) (where we sum only over the
scopes whose variables are already instantiated) is the greatest. This greedy technique
was proposed in [88, §4.3] and used in many computer vision applications [93, §4.2, 83,
§4.5, 134, Equation (6), 129, §4.2, 92, §3.1], possibly with slight modifications.

1.5.5 Super-Reparametrizations

We now point our attention to the approach from [92] where super-reparametrizations 33

were introduced in order to reach tighter upper bounds on the WCSP optimal value.

Definition 1.8 ([92]). Let f, g ∈ RT . WCSP f is a super-reparametrization of WCSP g
if F (x |f) ≥ F (x |g) for all x ∈ DV .

In analogy to (1.40), it was proposed in [92, §2] to minimize the upper bound (1.39)
over super-reparametrizations, i.e.,

minB(f) (1.45a)

F (x |f) ≥ F (x |g) ∀x ∈ DV (1.45b)

f ∈ RT . (1.45c)

We note that this formulation does not belong to the classical hierarchy of LP relaxations
based on introducing additional weight functions of higher arity, mentioned in §1.5.4.

33Originally, super-reparametrizations were called virtual potentials in [92] and sup-reparametrizations
in [125]. We introduced the more descriptive term super-reparametrization in [55a].

38

Also, in contrast to (1.40), it is unlikely that there is a compact (i.e., polynomially sized)
representation of the optimization problem (1.45) since its optimal value coincides with
the optimal value of WCSP g, as given by the following theorem.

Theorem 1.16 ([92, Theorem 1, 125]). The optimal value of (1.45) is maxx∈DV F (x |g).

Proof. We have that B(f) ≥ F (x |f) ≥ F (x |g) for any x ∈ DV , so B(f) ≥ maxx F (x |f) ≥
maxx F (x |g). Consequently, the optimal value of (1.45) is at least m = maxx F (x |g).

To show that this value is attained, define f by

ft = m/|C| ∀t ∈ T. (1.46)

It can be checked from (1.33) and (1.39) that B(f) = F (x |f) = m for all x ∈ DV . Due
to m ≥ F (x |g) for all x ∈ DV by definition of m, f is feasible and optimal.

To approximately solve (1.45), iterations of Augmenting DAG algorithm were inter-
leaved with a so-called cycle-repair procedure in [92]. In detail, this procedure found
inconsistent cycles (i.e., cycles that do not allow an assignment satisfying all constraints
in the cycle) in the CSP A∗(f) and, if such an inconsistent cycle was found, the weights
of the tuples along the edges in this cycle were manipulated so that some of the tuples be-
came inactive and the bound could be improved by Augmenting DAG algorithm. We note
that this approach was defined only for pairwise WCSPs and its extension to higher-order
WCSPs or other notions of local consistencies is not straightforward.

For certain instances, this method was able to obtain bounds superior to TRW-S and
in some cases reported reaching optimal value of the original WCSP.

To the best of our knowledge, super-reparametrizations were not utilized nor analyzed
except for [92] and [125]. However, [125] focuses almost solely on the relation between
different formulations of reparametrizations, instead of super-reparametrizations.

39

Chapter 2

Bounds on Large-Scale Linear Programs Using

Constraint Propagation

Although linear programs are solvable in polynomial time, solving very large sparse in-
stances can be challenging in practice. Such linear programs occur in many areas, a
prominent example being the computation of bounds in branch-and-bound search by LP
relaxation. In such a setting, the applicability of classical off-the-shelf LP solvers is lim-
ited [154, 129, 128, 73, 47] which calls for the development of specialized (possibly approx-
imate) methods. In this chapter, we present and exemplify our approach to approximately
solving large-scale linear programs that we originally proposed in [52a].

Based on §1.1, we start in §2.1 by explaining how to practically perform constraint
propagation (in this case, infer new implied inequalities) in a system of linear inequalities.
Then, we review our general framework for approximate optimization of linear programs
using constraint propagation, including a variant of capacity scaling that ensures its finite-
ness. Furthermore, we show that the VAC algorithm [33] can be (up to technical details)
interpreted as an algorithm belonging to this framework. Finally, we exemplify this ap-
proach on the LP relaxation of weighted Max-SAT.

Some of our motivations for this approach were the logic-theoretic view on LP du-
ality [103, §6] and the concept of inference duality [76, §17]. However, our approach is
not a straightforward application of inference duality as we put inference into an iterative
optimization scheme and do it in a refutation-incomplete way. Some parts of this chapter
were published in [52a].

Here, we broaden the notion of refutation-completeness so that it can be applied to set-
tings where we try to detect infeasibility of a system of linear inequalities and equalities by
specific constraint propagation rules. Thus, we will more generally say that a propagation
method is refutation complete for a given class of problems if it detects a contradiction in
any infeasible/unsatisfiable problem from the class and is refutation incomplete otherwise.

2.1 Constraint Propagation for Linear Inequalities

Inference in a system of linear inequalities (and equalities) was discussed in §1.1.3. Here,
we would like to determine whether such a system is feasible or not using constraint
propagation. 34 Suppose that a fixed set of inference rules is at our disposal. Using these
rules (which are problem-dependent), we generate new linear inequalities until either no
new inequality can be generated or a contradiction (e.g., the inequality 0 ≥ 1) is found.

34As mentioned in §1.4.1, constraint propagation can be also seen as inference of new constraints. In this
part, we consider adding implied constraints (i.e., implied inequalities) to the system instead of tightening
the original constraints (which was discussed in §1.4.1 for the CSP). We analyze a possible analogy of
constraint tightening in §4. However, tightening a constraint Aix ≤ bi to Aix = bi is in correspondence to
inferring that Aix ≥ bi.

40

1

1

1

1
1

2
3

1

1

1

1

ψ1 : 3x1 + x2 ≥ 2

ψ2 : x3 ≥ −1

ψ3 : −x1 − 2x3 ≥ 0

ψ4 : x1 + x4 ≥ −1

ψ5 : −x2 − x4 ≥ 9

ψ6 : −x1 ≥ −2

ψ7 : x2 ≥ −4

ψ8 : x4 ≥ −3

ψ9 : −x1 + x2 ≥ −6

ψ10 : 0 ≥ 2

Figure 2.1: Propagation in a system of linear inequalities. The inequalities are indexed
by 1–10. Inequalities 1–5 are initial, inequalities 6–10 are inferred. Edge weights indicate
the coefficients of non-negative combinations.

Each time a new inequality is generated, its cause vector is stored, encoding how the
inequality was obtained from the existing inequalities. In detail, the cause vector is given
by the affine form of Farkas’ lemma (Theorem 1.4) and contains the coefficients with which
the original inequalities were combined to obtain the new inequality, as discussed in §1.1.3.
When a contradiction is found, a certificate of infeasibility (i.e., a vector satisfying the
Farkas alternative system) corresponds to its cause vector. However, as we will discuss
next, one need not store all the cause vectors explicitly because, if a contradiction is found,
the certificate of infeasibility can be computed efficiently by tracking the newly generated
inequalities back to the original system.

Remark 2.1. The procedure explained above is independent of the specific form of the
system to which it is applied. In the rest of this section, we choose to exemplify it on
a system in the form Ax ≥ b. Although any system of linear inequalities (and possibly
equalities) can be transformed to this form in linear time, such a transformation is not
needed as one can always use the appropriate version of affine Farkas’ lemma to derive
new inequalities. E.g., we showed Farkas’ lemma and its affine form for a system in the
form Ax = b, x ≥ 0 in Corollary 1.2 and Theorem 1.5, respectively.

Let us focus on obtaining the certificate of infeasibility. As a running example, con-
sider the system Ax ≥ b of m = 5 initial inequalities on the left in Figure 2.1. From
inequalities ψ2 and ψ3, we infer inequality ψ6 = 2ψ2 + ψ3. 35 Next, we gradually infer
inequalities ψ7 = ψ1 + 3ψ6, ψ8 = ψ4 + ψ6, ψ9 = ψ6 + ψ7, and finally ψ10 = ψ5 + ψ7 + ψ8.
Since ψ10 reads 0 ≥ 2, the initial system ψ1, . . . , ψ5 is infeasible.

The history of propagation is represented by a directed acyclic graph (DAG) (V,E)
where V is the set of all (initial and inferred) inequalities and E ⊆ V × V is a set of
directed edges with weights w : E → R+ so that each inferred inequality is given by
ψi =

∑
j∈N+

i
wijψj where N+

i = { j ∈ V | (i, j) ∈ E }. By composing the inferences, each

inequality ψi can be expressed in terms of the initial inequalities as ψi =
∑m

j=1 y
i
jψj where

35As in Example 1.2, we ‘sum’ inequalities in the following informal (yet natural) way: 2 · (x3 ≥ −1) +
(−x1 − 2x3 ≥ 0) = (−x1 ≥ −2).

41

yi = (yi1, . . . , y
i
m) ∈ Rm+ is the cause vector of ψi. For i ≤ m, we have yi = ei where ei is

the i-th standard-basis vector of Rm. For i > m, we have

yi =
∑
j∈N+

i

N+
j =∅

wije
j +

∑
j∈N+

i

N+
j 6=∅

wijy
j . (2.1)

Note that N+
j = ∅ holds only for the initial inequalities ψj , j ≤ m.

In the example, V = {1, . . . , 10}, y6 = 2e2 + e3 = (0, 2, 1, 0, 0), y7 = e1 + 3y6, y8 =
e4 + y6, y9 = y6 + y7, and y10 = e5 + y7 + y8 = (1, 8, 4, 1, 1). Since b>y10 = 2 and
A>y10 = 0, vector y10 is a certificate of infeasibility of the system Ax ≥ b by Farkas’
lemma (Corollary 1.1).

More generally, the cause vector yi ∈ Rm+ for inequality ψi given by (ci)>x ≥ di satisfies
A>yi = ci and b>yi ≥ di (recall Theorem 1.4).

2.1.1 Computing Certificate of Infeasibility

As we need the cause vector only for the final (contradictory) inequality (ψ10 in the
example), storing all cause vectors explicitly in the memory is wasteful. In addition,
some inferred inequalities may not be needed for the proof of infeasibility (ψ9 in the
example). We show that any single cause vector can be computed more efficiently by
dynamic programming.

Let ψi, i ∈ [m] be an initial inequality and ψk, k > m be an inferred inequality. Then,
yki is the sum of weight-products 36 of all directed paths from node k to node i in the DAG.
Suppose we want to compute yk for some single k. We can consider only the subgraph of
the DAG reachable from node k along directed paths. We introduce auxiliary variables zj ,
which are to equal the sum of weight-products of all directed paths from node k to node j.
Initially, we set yk = 0, zk = 1, and zj = 0 for all j 6= k. Then, we process the nodes i
of the subgraph in a topological order as follows: if N+

i = ∅ then set yki := zi, otherwise
update zj := zj + wijzi for all j ∈ N+

i . Eventually, we have yki = zi for all i ∈ [m]. The
time and space complexity of this algorithm is linear in the size of the graph.

2.2 Bounding the Optimal Value of Linear Programs

In §2.1, we explained how constraint propagation in a system of linear inequalities can
be performed and, if infeasibility is detected, how to compute a certificate of infeasibility.
Here, we will show how constraint propagation can be used to improve a non-optimal
solution of a linear program.

For this, suppose that we have a primal-dual pair of linear programs and a dual-
feasible solution y. For this fixed y, we construct the complementary slackness conditions
in terms of the primal variables, which is a system of linear inequalities and equalities
that is feasible if and only if y is optimal for the dual. We will show that, if infeasibility
of the complementary slackness conditions is detected, then any certificate of infeasibility
constitutes a dual-improving direction that can be used to improve the current dual-
feasible y.

36We define the weight-product of a path to be the product of all edge weights along the path.

42

In the sequel, we show this approach for the primal-dual pair in the form (1.1). 37

To this end, suppose that we have a feasible solution y of the dual (1.1) (by which we
implicitly assume that the dual is feasible). We would like to determine whether it is
optimal and, if it is not optimal, find a dual-feasible solution with an improved objective.

By Theorem 1.2 (complementary slackness), a feasible y ∈ Rm is optimal for the
dual (1.1) if and only if there exists x ∈ Rn feasible for the primal (1.1) that satisfies
complementary slackness conditions with y, i.e., if

Ax = b (2.2a)

xj ≥ 0 ∀j ∈ J (2.2b)

xj = 0 ∀j ∈ [n]− J (2.2c)

with J = τ(y) (defined in (1.2b)) is feasible. By Farkas’ lemma (recall Corollary 1.2),
system (2.2) is infeasible if and only if system

b>ȳ < 0 (2.3a)

A>j ȳ ≥ 0 ∀j ∈ J (2.3b)

is feasible. Any vector ȳ satisfying (2.3) is a certificate of infeasibility for (2.2). Note, the
set of ȳ feasible for (2.3) is a convex cone.

Moreover, it is easy to verify that any ȳ feasible for (2.3) with J = τ(y) constitutes
a dual-improving direction from y, i.e., one can update y := y + αȳ for a suitable step
size α > 0 and improve the dual objective, as shown in Proposition 2.1.

Proposition 2.1 (cf. [110, Theorem 5.2]). Let y be feasible for the dual (1.1), ȳ sat-
isfy (2.3) for J = τ(y), and

α∗ = min
j∈[n]

A>j ȳ<0

cj −A>j y
A>j ȳ

> 0. (2.4)

Then, y′ = y + αȳ is feasible for the dual (1.1) and b>y > b>y′ if and only if 0 < α ≤ α∗.

Proof. First, note that α∗ > 0 which follows from the fact that if A>j ȳ < 0, then j /∈
J = τ(y) by (2.3b), hence cj − A>j y < 0 by definition of τ(y) in (1.2b). This together

with A>j ȳ < 0 in (2.4) implies that each term in the minimum (2.4) is positive. 38

We begin by the ‘if’ direction. To prove feasibility of y′, i.e., A>j y
′ ≥ cj for all j ∈ [n],

we consider two cases. If A>j ȳ ≥ 0, then A>j y
′ = A>j y + αA>j ȳ ≥ A>j y ≥ cj where we

used α > 0 and the assumption that y is feasible. If A>j ȳ < 0, then α ≤ (cj − A>j y)/A>j ȳ

by definition of α, which is equivalent to A>j y
′ = A>j y + αA>j ȳ ≥ cj . Also, b>y′ =

b>y + αb>ȳ < b>y due to (2.3a) and α > 0.
For the ‘only if’ direction: if α ≤ 0, we have b>y ≤ b>y′. If α > α∗, then there is j ∈ [n]

such that A>j ȳ < 0 and (cj − A>j y)/A>j ȳ < α. This implies A>j y
′ = A>j y + αA>j ȳ < cj ,

i.e., y′ is infeasible.

37In analogy to Remark 2.1, such an approach is applicable to a primal-dual pair in any form. The
differences again lie only in the form of the complementary slackness conditions that determines the form
of the certificate of infeasibility (i.e., improving direction).

38If there is no j ∈ [n] with A>j ȳ < 0, the dual (1.1) is unbounded and α can be chosen arbitrarily large.

43

inputs: instance of problem (1.1), dual-feasible solution y, constraint
propagation rules for (2.2).

1 repeat
2 Compute J = τ(y).
3 Try to detect infeasibility of (2.2) by constraint propagation.
4 if (2.2) is proved to be infeasible then
5 Find an improving direction ȳ satisfying (2.3).
6 Compute (possibly non-optimal) step size α > 0 so that y + αȳ is feasible.
7 Update y := y + αȳ.

8 else
9 return y (At this point, we are unable to prove that (2.2) is infeasible.)

Algorithm 2.1: Iterative scheme for approximate optimization of the dual (1.1).

Remark 2.2. Step size α∗ given by (2.4) is optimal in the sense that, for the fixed im-
proving direction ȳ, it provides the largest possible improvement of the dual objective.

These properties can be used to iteratively optimize a linear program if an initial
dual-feasible solution y is provided. In detail, one can construct system (2.2) and, if it is
infeasible, find an improving direction ȳ satisfying (2.3), update y := y+αȳ using Proposi-
tion 2.1, and improve the current objective while maintaining feasibility. By repeating this
iteration, one obtains a better and better bound on the common optimal value of (1.1).
Eventually, if (2.2) with J = τ(y) becomes feasible for current y, y is optimal for the
dual. Note that, even though the dual objective improves after each iteration, this general
scheme need not terminate in a finite number of steps or even converge to an optimal
solution.

Remark 2.3. This optimization scheme is related to the primal-dual 39 algorithm [110,
§5] (referred to as primal-dual method in [103, §7]) where complementary slackness con-
ditions are not enforced strictly, but their violation is minimized instead. This change
ensures convergence and finiteness of the algorithm. Practical algorithms for solving cer-
tain combinatorial problems that can be formulated as linear programs (e.g., shortest path
problem or maximum flow) can be seen as instantiations of the primal-dual algorithm [110,
103].

However, since determining feasibility of (2.2) is in general as hard as solving a linear
program, we propose to do it in a refutation-incomplete way by constraint propagation
that may detect infeasibility only sometimes. In other words, we propose to apply some
(problem-dependent) constraint propagation rules to the complementary slackness condi-
tions (2.2) and, whenever infeasibility is detected, construct the certificate of infeasibility
that turns out to be a dual-improving direction. The iterative scheme based on con-
straint propagation is outlined in Algorithm 2.1. In analogy to the primal-dual algorithm
(Remark 2.3), we called this iterative scheme primal-dual approach in [54a].

We emphasise that points y returned by Algorithm 2.1 need not be optimal since one
may not detect infeasibility of (2.2) even if (2.2) is infeasible. However, even non-optimal
solutions can be useful in practice. As an example, if the primal (1.1) is an LP relaxation

39As remarked in [110, §5.2], this is a misnomer because only a dual-feasible solution is maintained.

44

of a hard combinatorial problem (which is to be maximized), then any solution feasible for
the dual (1.1) provides an upper bound on the optimal value of the original combinatorial
problem. As we discussed earlier, such bounds can be used in branch-and-bound search
where it may not be necessary or efficient to solve the LP relaxation to optimality as there
is a trade-off between the time spent in computing the bound and the time spent in search.

2.2.1 Finiteness and Capacity Scaling

As already indicated, Algorithm 2.1 need not generally terminate in a finite number of
iterations. In this section, we state sufficient conditions for its finiteness.

First of all, notice that the improving direction ȳ generated on line 5 of Algorithm 2.1
can be chosen as any vector satisfying (2.3). To guarantee finiteness, we require a technical
assumption, namely that there exists a finite set sY such that any improving direction used
by Algorithm 2.1 is from this set. This condition is not satisfied trivially because the same
set J may be encountered repeatedly during the run of Algorithm 2.1 and, in each such an
iteration, the improving direction ȳ may be chosen as a different vector satisfying (2.3).

The following theorem shows that if the dual is in addition bounded and there exists a
positive lower bound on the step sizes used in Algorithm 2.1, then the algorithm terminates
after a finite number of iterations.

Theorem 2.1. Let the dual (1.1) be feasible and bounded. Algorithm 2.1 terminates after
a finite number of iterations (i.e., updates of y) provided that there exists αmin > 0 and a
finite set sY ⊆ Rm such that in every iteration:

(a) improving direction ȳ found on line 5 belongs to sY ,

(b) step size α computed on line 6 satisfies α ≥ αmin.

Proof. We follow a proof technique analogous to [48a, §3.2.4]: we show that there is a
value ∆ > 0 that depends only on the instance (i.e., on A, b, c) such that the dual objective
improves at least by ∆ in each iteration. Thus, if the dual has an optimal solution y∗ and
the algorithm is initialized in y, it terminates after at most b(b>y − b>y∗)/∆c iterations.

Without loss of generality, we assume that b>ȳ < 0 for each ȳ ∈ sY . If some ȳ ∈ sY
violates this property, then it can be removed from sY as it is never used by the algorithm
because it does not satisfy (2.3) for any J ⊆ [n].

With this assumption, the objective improves in each iteration at least by ∆ =
minȳ∈sY (−αminb

>ȳ) because, after any update from y to y + αȳ, b>y − b>(y + αȳ) =

−αb>ȳ ≥ −αminb
>ȳ ≥ ∆.

For completeness, if sY = ∅, ∆ is not well-defined. But, in such case, Algorithm 2.1
always terminates already with the initial point as it is not capable of providing any
improving direction.

We will now discuss how the assumptions of Theorem 2.1 can be satisfied in practice.
We begin by commenting on condition (a).

Because set [n] has only a finite number of subsets, the existence of a finite set sY
satisfying condition (a) in Theorem 2.1 is equivalent to the following: for each J ⊆ [n],
there exists a finite set sY (J) satisfying

sY (J) ⊆ { ȳ ∈ Rm |

conditions (2.3)︷ ︸︸ ︷
b>ȳ < 0, ∀j ∈ J : A>j ȳ ≥ 0 } (2.5)

45

such that, in any iteration, the improving direction chosen on line 5 in Algorithm 2.1 is from
the set sY (τ(y)) where y is the current dual-feasible solution. Note that sY (J) = ∅ if (2.2)
is feasible because then (2.3) is infeasible. Also, if we are unable to prove infeasibility
of (2.2) for some J , then one can set sY (J) = ∅.

In particular, if the way of constructing the improving direction on line 5 in Algo-
rithm 2.1 is deterministic and depends only on J , then each set sY (J) is either empty or a
singleton, so sY =

⋃
J⊆[n]

sY (J) satisfies condition (a) in Theorem 2.1.

Next, in order to guarantee the existence of a positive lower bound on the step size α, we
introduce a heuristic analogous to capacity scaling in maximum flow algorithms [102, §7.3].
This heuristic was used to guarantee finiteness of the Augmenting DAG algorithm [95, 146],
VAC algorithm [33, §11.1] 40, and later in [148, Equation (21)] and [48a, §3.1.7] in a more
general setting of minimizing unconstrained convex piecewise-affine functions.

Formally, we consider the set of dual constraints which are ‘almost’ active. For this
purpose, we define

τε(y) = { j ∈ [n] | A>j y ≤ cj + ε } (2.6)

where ε ≥ 0.

If τ(y) is replaced by τε(y) on line 2 in Algorithm 2.1, the scheme remains valid. In
detail, if (2.2) is infeasible for J = τε(y), then it is also infeasible for J = τ(y) due
to τ(y) ⊆ τε(y) for any ε ≥ 0. This is equivalent to the fact that any ȳ feasible for (2.3)
with J = τε(y) is also feasible for (2.3) with J = τ(y).

Next, we prove that, if the computed step size on line 6 of Algorithm 2.1 is optimal
and τ(y) on line 2 is replaced by τε(y) for some constant ε > 0, then there exists a positive
lower bound on the computed step sizes. Thus, condition (b) in Theorem 2.1 is implied
by the aforementioned conditions which yields the next theorem.

Theorem 2.2. Let the dual (1.1) be feasible and bounded. Algorithm 2.1 terminates after
a finite number of iterations (i.e., updates of y) provided that:

(a) there exists a finite set sY ⊆ Rm such that in every iteration, improving direction ȳ
found on line 5 belongs to sY ,

(b) τ(y) on line 2 is replaced by τε(y) where ε > 0 is a constant,

(c) the step size computed on line 6 is optimal, i.e., α = α∗ where α∗ is (2.4).

Proof. We prove that there exists αmin > 0 such that for any α computed by the algorithm
(with the modifications assumed in this theorem), it holds that α ≥ αmin. The claim will
then follow from Theorem 2.1. Analogously to the proof of Theorem 2.1, we assume
(without loss of generality) that for any ȳ ∈ sY , there exists dual-feasible y such that ȳ
satisfies (2.3) for J = τε(y).

Let us define

δ = max
ȳ∈sY

max
j∈[n]

A>j ȳ<0

−A>j ȳ (2.7)

so that δ ≥ −A>j ȳ > 0 for any ȳ used by Algorithm 2.1 and any j considered in definition
of step size (2.4). Clearly, δ is positive and well-defined because the maxima are always
taken over finite sets. The case with sY = ∅ is treated as in the proof of Theorem 2.1. On

40We comment on capacity scaling used in VAC in more detail in §2.3.

46

inputs: instance of problem (1.1), dual-feasible solution y, initial ε > 0,
constraint propagation rules for (2.2).

1 while ε is not small enough or time limit is not reached do
2 Improve y by Algorithm 2.1 with τ(y) replaced by τε(y) on line 2.
3 Decrease ε while keeping ε > 0 (e.g., ε := ε/10).

4 return y

Algorithm 2.2: Approximate optimization of the dual (1.1) with gradually de-
creasing ε.

the other hand, if sY 6= ∅, but for all ȳ ∈ sY , we have ∀j ∈ [n] : A>j ȳ ≥ 0, then the dual is
unbounded (see Footnote 38), which violates our assumption on its boundedness.

Now, we claim that αmin = ε/δ is positive (because ε > 0 and δ > 0) and constitutes
a lower bound on any step size computed by the algorithm. For this, let y be any feasible
solution for the dual and ȳ ∈ sY satisfy (2.3) for J = τε(y). We claim that α∗ ≥ αmin,
i.e., for all j ∈ [n] with A>j ȳ < 0, (cj − A>j y)/(A>j ȳ) ≥ αmin. Indeed, as discussed in the

proof of Proposition 2.1, if A>j ȳ < 0, then j /∈ J = τε(y) due to (2.3b), so A>j y− cj > ε by

definition of τε(y). Combined with δ ≥ −A>j ȳ, the claim follows.

Note, instead of using a single fixed ε > 0, one can run the iterative algorithm multiple
times, each time with a lower value of ε, thus gradually improving the current feasible
solution y even further, as it was done in [33, §11.1] or later in [48a, Algorithm 14].
In this way, we obtain an anytime algorithmic scheme outlined in Algorithm 2.2. It
is experimentally observed that this modification results in larger step sizes and faster
decrease of the objective [33, 48a], which is why it was utilized in our implementations [52a,
55a] that will be described later in §2.4 and §3.

In the following sections, we exemplify Algorithm 2.1 on LP relaxations of two com-
binatorial problems. In detail, in §2.3, we show that the VAC algorithm [33] is its special
case and, in §2.4, we newly apply the approach to the LP relaxation of weighted Max-SAT.

2.3 Example: Basic LP Relaxation and Arc Consistency

In §1.5.4.2, we mentioned the VAC algorithm. Using notation from §1.4 and §1.5, we will
focus on this algorithm here in detail and proceed to show that it is in a precise sense
subsumed by our previously outlined iterative scheme.

To this end, suppose that we aim to compute an upper bound on WCSP g ∈ RT by
approximately minimizing (1.43) over variables ϕ. Recall from §1.5.4 that non-empty AC
closure is necessary (but not sufficient) for optimality of ϕ for (1.43). Up to technical
details (see Remark 1.12), the VAC algorithm improves a current solution ϕ of (1.43) by
enforcing AC in the CSP A∗(gϕ). In detail, if the AC closure of A∗(gϕ) is empty, the
algorithm traces the AC operations in anti-chronological order and changes the values of
some components of ϕ to improve the objective. If the AC closure of A∗(gϕ) turns out to
be non-empty, the algorithm terminates.

By complementary slackness [146, 149, 119], ϕ is optimal for (1.43) if and only if there
exists µ feasible for (1.44) such that µt = 0 for all t ∈ T −A∗(gϕ). Written explicitly, this

47

is ∑
`∈DS
`i=k

µS(`)− µ{i}(k) = 0 ∀S ∈ C≥2, i ∈ S, k ∈ D (2.8a)

∑
k∈D

µ{i}(k) = 1 ∀i ∈ V (2.8b)

µt ≥ 0 ∀t ∈ A∗(gϕ) (2.8c)

µt = 0 ∀t ∈ T −A∗(gϕ) (2.8d)

which can be interpreted as an LP relaxation of CSP A∗(gϕ) [146]. For t = (S, k) ∈ T , we
write µS(k) and µt interchangeably, analogously to the notation used in §1.5.

Remark 2.4. Observe that the basic LP relaxation (1.44) is a linear program in the form
of the primal (1.1), so complementary slackness conditions (2.8) are a special case of (2.2).
The Farkas alternative system to (2.8) is therefore (2.3). Note that we changed (1.44b)
to (2.8a) so that matrix A in (2.3) and (1.1) is defined unambiguously.

We will now apply a certain propagation rule to the system (2.8), in analogy to what
was explained in §2.1. This propagation rule will be inferring zero values of the primal
variables µ in (2.8) using the marginalization constraint (2.8a). Next, we will show how
to formally infer this by deriving new equalities implied by system (2.8) and also argue
that this process is equivalent to enforcing AC in the CSP A∗(gϕ).

On a high level, proving that variable µt is zero for some t ∈ T will be done indirectly 41

by inferring an equality µt + pt = 0 where

pt =
∑
t′∈T

βt′µt′ where constants βt′ satisfy

{
βt′ ≥ 0 if t′ ∈ A∗(gϕ)

βt′ ∈ R if t′ /∈ A∗(gϕ)
. (2.9)

Due to constraints (2.8c)-(2.8d) we have pt ≥ 0, so µt+pt = 0 implies µt = 0. The equality
µt + pt = 0 will be obtained as a linear combination of the equalities (2.8a)-(2.8b) and
the coefficients of this linear combination will form its cause vector yt. Eventually, if for
some i ∈ V we infer that variables µ{i}(k) are zero for all k ∈ D, this is contradictory
with (2.8b) and we are able to construct a certificate ȳ of infeasibility of system (2.8).
Such a certificate satisfies the corresponding (recall Remark 2.4) system (2.3).

We now describe the propagation rules in detail, including the computation of cause
vectors yt. We note that all cause vectors yt have the same dimension, equal to the
number of constraints (2.8a)-(2.8b). We denote the standard-basis vector of this space
corresponding to (2.8a) and (2.8b) by eS,i,k and ei, respectively.

For t /∈ A∗(gϕ), yt is initialized to be the zero vector that thus represents equality 0 = 0;
indeed, this corresponds to the form µt + pt = 0 as one can interpret it as µt − µt = 0
where pt = −µt conforms to (2.9). If t ∈ A∗(gϕ), yt will be a non-zero vector representing
an equality µt + pt = 0, as discussed earlier. The propagation rules are as follows:

41In theory, we might infer directly µt = 0 if (1.44d) (and (2.8c)) were seen as constraints over real
variables µ (instead of interpreting (1.44d) as the definition of non-negative variables µ). This change
would introduce additional dual variables and the derivation would be slightly more technical and involved.

48

• If µ{i}(k) = 0 for some i ∈ V and k ∈ D, constraints (2.8a) (together with non-

negativity of µ variables) imply µS(`) = 0 for all S ∈ C≥2 and ` ∈ DS such that i ∈ S
and `i = k. For every such (S, `), we can infer this formally as:

equality certifying µ{i}(k) = 0︷ ︸︸ ︷(
µ{i}(k) + p{i}(k) = 0

)
+

marginalization constraint (2.8a)︷ ︸︸ ︷(∑
`∈DS
`i=k

µS(`)− µ{i}(k) = 0
)

=

new inferred equality︷ ︸︸ ︷(∑
`∈DS
`i=k

µS(`) + p{i}(k) = 0
)
.

Let us now fix a single tuple t = (S, `) satisfying the conditions above. The new
inferred equality can be simply transformed into the form µt + pt = 0 by moving
the other µ variables into the term pt. Assuming that p{i}(k) is in the form (2.9),

pt is in such a form too. The cause vector of this equality is yt = y({i},k) + eS,i,k.
Note the similarity of this inference rule to the third case in the definition of the AC
propagator (1.32).

• If for some S ∈ C≥2, i ∈ V , and k ∈ D we have µS(`) = 0 for all ` ∈ DS with `i = k,
constraint (2.8a) implies µ{i}(k) = 0. Inference in terms of equalities:

∑
`∈DS
`i=k

equality certifying µS(`) = 0︷ ︸︸ ︷(
µS(`) + pS(`) = 0

)
−

marginalization constraint (2.8a)︷ ︸︸ ︷(∑
`∈DS
`i=k

µS(`)− µ{i}(k) = 0
)

=

new inferred equality︷ ︸︸ ︷(
µ{i}(k) +

∑
`∈DS
`i=k

pS(`) = 0
)
.

The new inferred equality is clearly in the form µt + pt = 0 for t = ({i}, k) where
pt =

∑
`∈DS
`i=k

pS(`) is in the form (2.9) if this is the case for each pS(`). The cause

vector of the new inferred equality is yt =
∑

`∈DS
`i=k

y(S,`)− eS,i,k. Again, one can notice

the similarity of this inference rule to the second case in the definition of the AC
propagator (1.32).

• If for some i ∈ V we have µ{i}(k) = 0 for all k ∈ D, constraint (2.8b) is contradictory
(domain wipeout). Inference in terms of equalities:

∑
k∈D

equality certifying µ{i}(k) = 0︷ ︸︸ ︷(
µ{i}(k) + p{i}(k) = 0

)
−

simplex constraint (2.8b)︷ ︸︸ ︷(∑
k∈D

µ{i}(k) = 1
)

=

inferred contradiction︷ ︸︸ ︷(∑
k∈D

p{i}(k) = −1
)
.

The inferred equality is contradictory since every term pt in the form (2.9) is non-
negative under conditions (2.8c)-(2.8d). The cause vector of this contradictory equality
is ȳ =

∑
k∈D y

({i},k) − ei.
By properties of pt and the fact that ȳ encodes an equality in the form

∑
t∈T{i} pt = −1,

it is not hard to show that ȳ is feasible for the Farkas alternative system (2.3) (re-
call Remark 2.4). In particular, the inferred contradictory equality is

∑
t∈T βtµt = −1

where βt ≥ 0 for all t ∈ A∗(gϕ) by (2.9). Since the vector ȳ stores the coefficients with
which this equality was inferred, this inequality is in fact ȳ>Aµ = ȳ>b where ȳ>b = −1
and ȳ>A = β>.

Consequently, ȳ certifies infeasibility of (2.8) and constitutes an improving direction
for the dual linear program to (1.44). However, let us note a subtlety. Strictly speaking,

49

optimization problem (1.43) is not the dual linear program to (1.44) because it is obtained
by eliminating some of the dual variables (cf. §1.1.2), hence a subvector of ȳ (where only
the components corresponding to the ϕ variables are present 42) is an improving direction
for (1.43) from the current point ϕ.

The described algorithm is ‘almost’ equivalent to the VAC / Augmenting DAG al-
gorithm [33, 95, 146]. The stopping points of both algorithms are characterized by the
same property, namely non-empty AC closure of A∗(gϕ). However, improving directions ȳ
constructed as above are in general different from the ones in [33, 95, 146], sometimes
having larger absolute values of their components (and thus possibly allowing smaller step
size α). The reason is that our algorithm does not take into account the values of the
individual coefficients in the cause vectors yt. A finer-grained version is possible, given
that the cause vectors are computed in an anti-chronological order after the contradiction
is detected instead of fixing their values already when inferring individual equalities. Such
an approach would be analogous to what we described in [54a, Appendix B] or what will
be explained later in §3.2.2.2.

It is known [33, Appendix A] that the VAC algorithm without capacity scaling can
enter an infinite loop. In order to avoid this, it was proposed [33, §11.1] to replace the
CSP A∗(gϕ) by the CSP A∗ε (g

ϕ) formed by ‘almost’ active tuples. In our notation 43, this
reads

A∗ε (f) =
{

(S, k) ∈ T
∣∣∣ fS(k) + ε ≥ max

`∈DS
fS(`)

}
(2.10)

where ε ≥ 0.
Despite finiteness of the VAC algorithm was already ensured in [33], we would like

to point out that Theorem 2.2 is easily applicable here. First, under our assumption on
finite weights in WCSP g (see §1.5), the basic LP relaxation (1.44) is clearly feasible and
bounded. By strong duality, the dual is also feasible and bounded. Second, despite there
might be many orders in which the AC operations can be applied to the CSP A∗(gϕ), the
set of tuples T is finite, so there are only finitely many ways in which the AC operations
can be applied to each CSP. For each such order, the improving direction ȳ is constructed
deterministically (both by the VAC algorithm or by our propagation rules above). Finally,
using ε > 0 and optimal step size, both of these approaches will terminate in finite time.

Remark 2.5. Since non-empty AC closure of A∗(gϕ) is in general not sufficient for op-
timality of ϕ for (1.43) [146, §5], applying the aforementioned rules to problem (2.8) is
a refutation-incomplete method. In other words, these rules may not detect infeasibility
of (2.8) in some cases. Consequently, VAC (or the algorithm just sketched above) may
terminate in a non-optimal point ϕ.

2.4 Example: LP Relaxation of Weighted Max-SAT

In this section, we outline how the iterative scheme based on constraint propagation
from §2.2 applies to a problem different from WCSP. In particular, we focus on the

42To be precise, recall that the components of ȳ are in one-to-one correspondence with the con-
straints (2.8a)-(2.8b). Partitioning ȳ into two vectors, ϕ̄ (whose components correspond to con-
straints (2.8a)) and z̄ (whose components correspond to (2.8b)), yields the improving direction ϕ̄ for (1.43)
from the current point ϕ.

43CSP A∗ε (·) is denoted by Boolθ(·) in [33, §11.1], by Oε(·) in [134, Appendix B.1], and by miε[·] in [119,
§6.2.4].

50

weighted Max-SAT problem. We note that the symbols V and C have a different meaning
in this part than what was considered in the (W)CSP setting (in §1.4, §1.5, and §2.3).

In the weighted Max-SAT problem [138, §16, 21, §19.2], we are given a finite set V
of Boolean variables and a finite set C of clauses with positive weights w ∈ RC++. The
task is to find an assignment to the Boolean variables such that the sum of the weights
of satisfied clauses is maximized. Let V +

c and V −c denote the set of variables that occur
in clause c ∈ C non-negated and negated, respectively. Let C±i = { c ∈ C | i ∈ V ±c }
denote the set of clauses where variable i ∈ V occurs non-negated/negated. We denote
the number of negated variables in a clause c ∈ C by nc = |V −c | so that n ∈ NC0 . For any
S ⊆ V , we will use the shortcut x(S) =

∑
i∈S xi.

44

The classical LP relaxation of weighted Max-SAT [138, §16.3, 21, §19.2] is the left-hand
problem of the primal-dual pair

maxw>z min n>y + q(C) + p(V) (2.11a)

zc ≤ x(V +
c) + nc − x(V −c) yc ≥ 0 ∀c ∈ C (2.11b)

xi ≥ 0 pi − y(C+
i) + y(C−i) ≥ 0 ∀i ∈ V (2.11c)

xi ≤ 1 pi ≥ 0 ∀i ∈ V (2.11d)

zc ≥ 0 qc + yc ≥ wc ∀c ∈ C (2.11e)

zc ≤ 1 qc ≥ 0 ∀c ∈ C. (2.11f)

As with (1.1), we will refer to the left-hand problem (2.11) as primal and to the right-hand
problem (2.11) as dual. This LP relaxation was shown to be as hard to solve as any linear
program [114].

Note that the primal variables xi represent the (relaxed) original Boolean variables.
To better understand the meaning of the primal constraint (2.11b), it is easy to verify
that for any c ∈ C and x ∈ {0, 1}V , the expression

x(V +
c) + nc − x(V −c) =

∑
i∈V +

c

xi +
∑
i∈V −c

(1− xi) (2.12)

is zero if and only if clause c is not satisfied by the corresponding assignment of truth
values and is at least 1 otherwise. Thus, for any fixed assignment x ∈ {0, 1}V , setting the
auxiliary z variables as large as possible (while maintaining feasibility) results in zc = 0 if
clause c is not satisfied and zc = 1 otherwise.

Let us now point our attention to the dual (2.11). Analogously to the notation in the
primal, for any subset of clauses S ⊆ C, we use the shortcut y(S) =

∑
c∈S yc and similarly

for the other dual variables. Clearly (cf. §1.1.2), at dual optimum we have

pi = max{y(C+
i)− y(C−i), 0} ∀i ∈ V (2.13a)

qc = max{wc − yc, 0} ∀c ∈ C. (2.13b)

Substituting (2.13) into the dual objective together with n>y =
∑

i∈V y(C−i) results in a
simpler form of the dual, namely

min
∑
c∈C

max{wc − yc, 0}+
∑
i∈V

max{y(C+
i), y(C−i)} (2.14a)

yc ≥ 0 ∀c ∈ C (2.14b)

which minimizes a convex piecewise-affine function of non-negative variables.

44This shortcut will be used only in sections related to Max-SAT and SAT.

51

2.4.1 Employing Constraint Propagation

We will now show how the iterative scheme with constraint propagation from §2.2 is
applied.

We begin by stating the complementary slackness conditions in terms of the primal
variables based on fixed dual variables: a vector y ∈ RC+ is optimal for (2.14) if and only
if there exists x ∈ RV satisfying

x(V +
c) + nc − x(V −c) ≥ 1 ∀c ∈ C≥1(y) = { c ∈ C | yc = 0 } (2.15a)

x(V +
c) + nc − x(V −c) = 1 ∀c ∈ C=1(y) = { c ∈ C | 0 < yc < wc } (2.15b)

x(V +
c) + nc − x(V −c) ≤ 1 ∀c ∈ C≤1(y) = { c ∈ C | yc = wc } (2.15c)

x(V +
c) + nc − x(V −c) = 0 ∀c ∈ C=0(y) = { c ∈ C | yc > wc } (2.15d)

xi = 1 ∀i ∈ X1(y) = { i ∈ V | y(C+
i) > y(C−i) } (2.15e)

xi = 0 ∀i ∈ X0(y) = { i ∈ V | y(C+
i) < y(C−i) } (2.15f)

0 ≤ xi ≤ 1 ∀i ∈ XU (y) = { i ∈ V | y(C+
i) = y(C−i) }. (2.15g)

We note that the z variables were eliminated from system (2.15) to simplify it, which
resulted in the 4 types of constraints (2.15a)-(2.15d). Also, notice that {C≥1(y), C=1(y),
C≤1(y), C=0(y)} is a partition of C and {X1(y), X0(y), XU (y)} is a partition of V .

We now define propagation rules for system (2.15). These rules set the values of
some of the undecided variables xi, i ∈ XU (y) to 0 or 1. Precisely, we iteratively visit
each constraint (2.15a)-(2.15d) and look whether with the already decided variables it
permits only a single value of some so-far undecided variable. If so, we fix the value of
this variable (i.e., make it decided). If some constraint (2.15a)-(2.15d) cannot be satisfied
by any assignment subject to the already decided variables, (2.15) is infeasible. During
propagation, we store the cause vector for each decided variable, so that if infeasibility is
detected, we are able to construct an improving direction ȳ for (2.14).

The propagation rules are listed in Table 2.1, divided into 3 groups based on the types
of constraints (2.15a)-(2.15d). For each rule, we also specify how to construct the cause
vector yi for each decided variable xi. For i ∈ X1(y)∪X0(y), we define yi = 0 so that it can
be referred to in the definition of other cause vectors yj or ȳ. To simplify the explanation
of the rules, for any c ∈ C, we define Vc = V +

c ∪ V −c . Moreover, for any c ∈ C and i ∈ Vc,
we denote

xci =

{
xi, if i ∈ V +

c ,

1− xi, if i ∈ V −c
(2.16)

so that, e.g., (2.12) can be written as
∑

i∈Vc x
c
i . Finally, we define ec ∈ RC to be the

standard-basis vector of RC with 1 in the place corresponding to clause c.

Example 2.1. To show how the rules outlined in Table 2.1 are applied, let C = {1, 2, 3, 4},
V = {1, 2, 3, 4, 5}, and system (2.15a)-(2.15d) be

x1 + (1− x2) = 0 (2.17a)

x1 + x3 ≥ 1 (2.17b)

x2 + x4 + (1− x5) ≤ 1 (2.17c)

x3 + x5 = 1 (2.17d)

52

Applicable to Rule

C≥1(y)
and

C=1(y)

A1 If there is k ∈ Vc such that xk is undecided and for all i ∈ Vc−{k},
xi is decided and satisfies xci = 0, then we set xk = Jk ∈ V +

c K and
yk = ec +

∑
i∈Vc−{k} y

i.

A2 If for all i ∈ Vc, xi is decided and satisfies xci = 0, then we obtain
a contradiction and set ȳ = ec +

∑
i∈Vc y

i.

C=1(y)
and

C≤1(y)

B1 If there is exactly one i ∈ Vc such that xi is decided and xci = 1,
then we set xk = Jk ∈ V −c K and yk = −ec + yi for all undecided
variables xk, k ∈ Vc.

B2 If there are two (or more) decided variables xi, xj for i, j ∈ Vc
with xci = xcj = 1, then we obtain a contradiction and set ȳ =

−ec + yi + yj .

C=0(y)
C1 If there is no i ∈ Vc such that xi is decided and xci = 1, then

we set xk = Jk ∈ V −c K and yk = −ec for all undecided variables
xk, k ∈ Vc.

C2 If there is i ∈ Vc such that xi is decided and xci = 1, then we
obtain a contradiction and set ȳ = −ec + yi.

Table 2.1: Propagation rules for system (2.15). The first column determines the types of
constraints to which the rule applies.

where all x variables are initially undecided, i.e., XU (y) = V .
First, it is clear that condition (2.17a) (together with x1, x2 ∈ [0, 1]) implies x1 = 0

and x2 = 1 by rule C1 and we set y1 = y2 = −e1. Second, since x1 = 0, we can apply
rule A1 to (2.17b) to infer that x3 = 1 with y3 = e2 + y1. Next, because we have x2 = 1,
applying rule B1 to (2.17c) results in x4 = 0 and x5 = 1 with y4 = y5 = −e3 +y2. Finally,
since x3 = 1 and x5 = 1, rule B2 detects that condition (2.17d) is contradictory and
sets ȳ = −e4 + y3 + y5. 4

The derivation of the inequalities corresponding to the cause vectors yi ∈ RC is tech-
nical and must be done for each rule separately. This is more complicated when compared
to the case presented in §2.3 because here we have more types of constraints (which also
include inequalities in different directions) and we set the x variables not only to 0, but
also to 1, resulting in a larger number of propagation rules.

Remark 2.6. For general weighted Max-SAT, the propagation rules listed in Table 2.1
need not always detect infeasibility of (2.15) and thus are refutation incomplete. As an
example, let V = {1, 2, 3} = XU (y) and (2.15a)-(2.15d) be

x1 + x2 + x3 = 1 (2.18a)

x1 + x2 = 1 (2.18b)

x1 + x3 = 1 (2.18c)

x2 + x3 = 1. (2.18d)

No rule from Table 2.1 is applicable, but (2.18) is infeasible.
However, for weighted Max-2SAT (i.e., instances where |Vc| ≤ 2 for all c ∈ C), the

rules are refutation complete. In particular, if no more propagation is possible and no

53

contradiction is detected, setting all undecided variables xi to 1
2 satisfies all constraints

of (2.15). This is simply verified by case analysis while assuming that none of the listed
propagation rules is applicable (cf. more general Lemma 5.7a given later).

Remark 2.7. If any of the propagation rules A1, B1, or C1 is applied to some constraint
c ∈ C from (2.15a)-(2.15d), then all variables xi, i ∈ Vc become decided and the cor-
responding constraint from (2.15a)-(2.15d) is satisfied. Thus, no rule from Table 2.1 is
applicable to this constraint anymore. Consequently, after at most |C| rules are applied,
one either detects a contradiction or finds out that no more rules are applicable.

Moreover, see that if a single rule sets the values of multiple variables at once (i.e.,
rules B1 and C1), then the cause vectors for these newly decided variables are identical.

Remark 2.8. One can ask whether it is possible to infer other values of undecided vari-
ables than 0 or 1, such as 1

2 . Assuming that inference is done only from a single con-
straint from (2.15a)-(2.15d), this is impossible because the polyhedron defined by a single
(in)equality from (2.15a)-(2.15d) subject to 0 ≤ xi ≤ 1 (where some of the variables
may be already set to 0 or 1) has integral vertices. This was proved for constraint in
the form (2.15a) in [76, Theorem 45] and the other cases (2.15b)-(2.15d) could be shown
analogously (see Lemma 5.5 given later).

2.4.2 Finding Step Size by Approximate Line Search

If a contradiction is detected in (2.15) and improving direction ȳ from the current point y
is constructed, we need to find a step size α > 0 in order to update y := y + αȳ as
in §2.2. The optimal way (exact line search) would be to minimize the univariate function
g(α) = f(y + αȳ) over α > 0 subject to y + αȳ ≥ 0 where f(y) is the objective (2.14a).
Since this is too costly for large instances, we do only approximate line search: we find the
first breakpoint α > 0 (i.e., non-differentiable point) of the univariate convex piecewise-
affine function g, i.e., the smallest α > 0 at which at least one previously inactive affine
function becomes active. 45 This value of α may be further reduced to ensure feasibility,
i.e., y + αȳ ≥ 0. More formally, such α is the maximum number satisfying the following
constraints 46:

• To stay within the feasible set, we need yc + αȳc ≥ 0, therefore α ≤ −yc/ȳc for all
c ∈ C with ȳc < 0.

• For terms max{wc−yc, 0}, if wc−yc > 0 and ȳc > 0 (or with both inequalities inverted),
then we need α ≤ (wc−yc)/ȳc where the bound is the point where wc−(yc+αȳc) = 0.
So, this is for all c ∈ C such that (wc − yc)ȳc > 0.

• For terms max{y(C+
i), y(C−i)}, if y(C+

i) > y(C−i) and ȳ(C+
i) < ȳ(C−i) (or with both

inequalities inverted), we need α ≤ (y(C+
i) − y(C−i))/(ȳ(C−i) − ȳ(C+

i)) where the
bound is the point where the terms equal, i.e., y(C+

i) + αȳ(C+
i) = y(C−i) + αȳ(C−i).

So, this is for all i ∈ V with (y(C+
i)− y(C−i))(ȳ(C−i)− ȳ(C+

i)) > 0.

By formulating the Farkas alternative system to the complementary slackness conditions
and noting the substitution (2.13), it can be shown analogously to Proposition 2.1 that
there always exists α > 0 satisfying these bounds.

45In formalism of §1.1.2, for a convex piecewise-affine function
∑
k∈K maxl∈Lk

(
c>klx+ dkl

)
, an affine

function c>kl∗x+ dkl∗ is active (for some x) if c>kl∗x+ dkl∗ = maxl∈Lk

(
c>klx+ dkl

)
, cf. Footnote 25.

46This choice of α is analogous to the first-hit strategy in [48a, §3.1.4].

54

α

g(α)

1 2 3 4 5 6

9

8

7

6

5

4

Figure 2.2: Graph of function g from Example 2.2.

Example 2.2. Let C = {1, 2, 3}, V = {1, 2}, C+
1 = {1, 2}, C−1 = ∅, C+

2 = {1}, C−2 =
{2, 3}, and w = (1, 1, 1). For this setting, the objective (2.14a) is given by

f(y) = max{1− y1, 0}+ max{1− y2, 0}+ max{1− y3, 0}
+ max{y1 + y2, 0}+ max{y1, y2 + y3}.

(2.19)

Next, let the current point be y = (0, 3, 2). So, system (2.15a)-(2.15d) reads

x1 + x2 ≥ 1 (2.20a)

x1 + (1− x2) = 0 (2.20b)

(1− x2) = 0 (2.20c)

and (2.15e)-(2.15f) sets x1 = 1 and x2 = 0. Rule C2 applied to (2.20b) detects contra-
diction and constructs the improving direction ȳ = (0,−1, 0). We will now compute step
size α according to the principle outlined above.

By the first point, we have to ensure α ≤ −y2/ȳ2 = 3 to satisfy y+αȳ ≥ 0 because ȳ2 <
0. Since ȳ1, ȳ3 ≥ 0, there are no other bounds given by the first point. Following the second
point, we need α ≤ (w2 − y2)/ȳ2 = 2 due to w2 − y2 < 0 and ȳ2 < 0. Since (w1 − y1)ȳ1 =
(w3 − y3)ȳ3 ≤ 0, no other bounds are enforced by the second point. The third point yields
conditions α ≤ 3 and α ≤ 5.

The maximum number α satisfying the above derived upper bounds is α = 2 and y is
therefore updated to y + αȳ = (0, 1, 2).

For clarity, we show the graph of

g(α) = f(y + αȳ)

= 1 + max{α− 2, 0}+ 0 + max{3− α, 0}+ max{0, 5− α}
(2.21)

in Figure 2.2. Notice that the bounds given by the second and third point, i.e., {2, 3, 5}, are
precisely the breakpoints α of function g with α > 0. Moreover, see that the chosen step
size α = 2 is the first (in increasing order) breakpoint of g with α > 0 and also the point
where the affine function α− 2 from (2.21) becomes active (while it is inactive for α < 2).

Based on Figure 2.2, the unique optimal step size is argmin0<α≤3 g(α) = {3}, so the
computed step size α = 2 is not optimal in this case. 4

55

2.4.3 Algorithm Overview and Implementation Details

Let us summarize the algorithm that follows the general iterative scheme previously shown
in Algorithm 2.1. We start with y = 0 (which is dual-feasible) and repeat the following
iteration: For the current y, construct system (2.15). Apply rules listed in Table 2.1
to fix values of undecided variables. During that, construct the DAG defining each yi

(recall §2.1) until no rule is applicable or contradiction is detected. If no contradiction
is detected, stop. If contradiction is detected, compute ȳ from the DAG, similarly as
in §2.1.1. Calculate step size α as in §2.4.2 and update y := y + αȳ.

Remark 2.9. System (2.15) can be interpreted as an LP relaxation of a CSP with Boolean
variables xi ∈ {0, 1}, i ∈ V and constraints (2.15a)-(2.15f). The propagation corresponds
to enforcing AC in this CSP (in the sense of (1.30)). The whole algorithm seeks to find
a feasible dual solution of the LP relaxation of weighted Max-SAT that enforces this CSP
to have a non-empty AC closure. Compare this with the WCSP case, where (2.8) is an
LP relaxation of the CSP formed by the active tuples and the VAC algorithm seeks to
find a reparametrization that makes this CSP have a non-empty AC closure. Note that,
in contrast to WCSP, there is no obvious analogy of reparametrizations (or equivalent
transformations) for weighted Max-SAT.

To speed up the algorithm and ensure finiteness, we use the trick similar to capacity
scaling that was introduced in §2.2.1. In particular, we redefine the sets in (2.15) up to
a tolerance ε > 0: we replace yc > 0 by yc > ε, y(C+

i) < y(C−i) by y(C+
i) + ε < y(C−i),

yc = wc by wc−ε ≤ yc ≤ wc+ε etc. We follow the general scheme outlined in Algorithm 2.2
where we initialize ε = w(C) =

∑
c∈C wc and whenever the algorithm cannot detect

infeasibility with the current ε, we keep the current y and update ε := ε/10. We continue
until ε is not very small (10−6).

All data structures used by the algorithm need space that is linear in the input size,
i.e., in the number

∑
c∈C |Vc| of non-zeros in linear program (2.11). In particular, it can

be shown that the DAG (used to calculate ȳ) can be conveniently stored as an oriented
subgraph of the clause-variable incidence graph. 47 Following Remark 2.7, it is only nec-
essary to store for each c ∈ C what rule was applied to this clause and a partition of Vc
that encodes which variables were decided before the rule was applied and which variables
were decided by the rule.

Remark 2.10. We argue that this algorithm terminates after a finite number of iterations
(recall Theorem 2.1). First, the primal (2.11) is always feasible and bounded by w(C), so
the dual (2.11) is also feasible and bounded. Second, based on Remark 2.7, there are only
finitely many options in which the rules from Table 2.1 can be applied to system (2.15)
and, for each order in which the rules were applied, the improving direction ȳ is defined
deterministically. Consequently, there exists a finite set sY of improving directions used
by the algorithm (for each instance). Finally, although the computed step size need not be
optimal (for the formulation in terms of the convex piecewise-affine function (2.14)), it can
be shown that there exists a positive lower bound on the step size by analyzing the bounds
listed in §2.4.2 and noting that ε > 0 (this is analogous to the proof of Theorem 2.2).

47The clause-variable incidence graph is the bipartite graph whose nodes correspond to variables V and
clauses C. The graph contains an edge between nodes i ∈ V and c ∈ C if i ∈ Vc. If Vc is unique for
each c ∈ C, then the clause-variable incidence graph is isomorphic to the factor graph of (V, {Vc | c ∈ C}).

56

Alternatively, one can apply Theorem 2.2 directly: if we used the dual formulation (2.11)
where variables p and q are set as in (2.13), then one could show that the computed step
size α is in fact optimal for updating (p, q, y) := (p, q, y) + α(p̄, q̄, ȳ) where the improving
direction (p̄, q̄, ȳ) for the dual (2.11) is obtained in a natural way from the already existing
improving direction ȳ.

2.4.4 Experimental Results

We compared the upper bound on the optimal value of (2.11) obtained by our algorithm
with the exact optimal value of (2.11) computed by an off-the-shelf LP solver (we used
Gurobi [72] with default parameters) on the Max-SAT Evaluations 2018 benchmark [9].
This benchmark contains 2591 instances of weighted Max-SAT. Gurobi was able to op-
timize (without memory overflow) the smallest 2100 instances, the largest of which had
up to 600 thousand clauses, 300 thousand variables and 1.6 million non-zeros. 48 The
largest instances in the benchmark have up to 27 million clauses, 19 million variables and
77 million non-zeros and were still manageable by our algorithm.

From the smallest 2100 instances, 154 instances were Max-2SAT and 91 instances did
not contain any unit clause. As discussed in Remark 2.6, our algorithm attained the exact
optimum of the LP relaxation on instances of Max-2SAT. Similarly, if an instance does
not contain any unit clause, then setting xi = 1

2 , i ∈ V and zc = 1, c ∈ C yields an optimal
solution of the primal (2.11) with objective value w(C) [76, §13.1.1]. Our algorithm also
attains optimality on these instances because y = 0 is already optimal for the dual. We
exclude these instances from further evaluation.

Each of the remaining 1855 instances contains a clause of length at least 3 and also
contains a unit clause, thus the bound provided by our algorithm is not guaranteed to
coincide with the optimum of the LP relaxation.

We measure the quality of the bound by two criteria, namely

R1 =
U − U∗

U∗
and R2 =

U − U∗

w(C)− U∗
(2.22)

where U∗ is the optimal value of (2.11) and U is the upper bound computed by our
algorithm. Both criteria are invariant to scaling the weights. Criterion R1 is the relative
difference between the optimal value and the provided upper bound whereas criterion R2

shows how tight the bound is relative to the trivial bound w(C).

The sorted numbers R1 and R2 for the 1855 instances are plotted in Figure 2.3. For
802 instances, we obtained U = U∗. Due to this, the vertical logarithmic axes in Fig-
ures 2.3a and 2.3b are trimmed, starting from 10−20. Based on the linear plots, the ob-
tained upper bound U is comparable to U∗ in at least 1000-1100 cases. In detail, R1 was
lower than 10−6 and 10−8 on 1644 and 1308 from the 1855 instances, respectively, and
was always lower than 0.029. Also, R2 was higher than 0.6 only in 35 instances.

For 152 out of the 2100 considered instances, the LP relaxation is known to be tight
(i.e., its optimal value coincides with the optimal value of the weighted Max-SAT problem).
In 133 of them, our algorithm attained this optimum. Only 2 of these were Max-2SAT
and each contained a unit clause, so optimality was not guaranteed trivially.

48By the number of non-zeros, we mean
∑
c∈C |Vc|.

57

200 400 600 800 1000 1200 1400 1600 1800

Instance

10
-20

10
-15

10
-10

10
-5

10
0

R
1

(a) R1 (log scale).

200 400 600 800 1000 1200 1400 1600 1800

Instance

10
-20

10
-15

10
-10

10
-5

10
0

R
2

(b) R2 (log scale).

200 400 600 800 1000 1200 1400 1600 1800

Instance

0

0.005

0.01

0.015

0.02

0.025

0.03

R
1

(c) R1 (linear scale).

200 400 600 800 1000 1200 1400 1600 1800

Instance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

(d) R2 (linear scale).

Figure 2.3: Sorted values of R1 (left) and R2 (right) with linear (down) and logarithmic (up) scale.

58

An unoptimized implementation of our algorithm was on average 3.3 times faster 49

than Gurobi. We believe a significant speed-up could be achieved by warm-starting. The
part of the DAG needed to explain the found contradiction (see §2.1) is usually very small.
If the DAG is built in every iteration from scratch, most of it is therefore thrown away.
Since the system (2.15) changes only slightly between consecutive updates, it makes sense
to reuse a part of the DAG in the next iteration and thus avoid repeatedly applying many
rules in the same way. Such a warm-starting was presented for the VAC algorithm in [108]
and for the Augmenting DAG algorithm in [145] with significant speed-ups.

2.4.5 Tightness of the Bound on Tractable Max-SAT Classes

We show that our constraint propagation rules in system (2.15) are refutation complete
for tractable subclasses of Max-SAT that either use tractable clause types (language)
or have acyclic structure (clause-variable incidence graph). For these instances, the LP
relaxation (2.11) is tight and any point returned by our algorithm is an optimizer of the
LP relaxation.

It was shown in [85, 41] that a subclass of generalized Max-SAT (i.e., Max-CSP with
Boolean variables) defined by restricting constraint types (language) is tractable if and
only if one of the following holds:

• All constraints are 0-valid or all are 1-valid. In this case, the optimal value is w(C),
which coincides with the optimum of the linear program and our algorithm attains
this optimum already at y = 0.

• All constraints are 2-monotone. Restricting these constraints to clauses results in
clauses with at most two literals where at most one is positive and at most one is
negative. In this case, Max-SAT can be reduced to minimum st-cut problem [85,
Lemma 3, 41] and the optimum of its LP formulation equals (up to a trivial recal-
culation) the optimum of the LP relaxation of Max-SAT which is thus tight. Since
this is an instance of Max-2SAT, any point returned by our algorithm is optimal by
Remark 2.6.

Following Remark 2.9, if we view (2.15) as the LP relaxation of a CSP with Boolean
variables, then the propagation rules in Table 2.1 enforce AC of this CSP (in the sense
of (1.30)). If the factor graph of this CSP is acyclic, AC solves this CSP exactly (recall
Example 1.11). Equivalently, if the clause-variable incidence graph (i.e., the factor graph
of this CSP) is acyclic, our constraint propagation rules are refutation complete and the
points returned by our algorithm are optimal. Additionally, if no contradiction is detected,
an integral solution to (2.15) can be constructed, so the LP relaxation is tight.

2.5 Discussion

In this chapter, we reviewed a technique that we originally proposed in [52a] to bound the
optimal value of large-scale linear programs. To summarize, given a dual-feasible solution,
infeasibility of the complementary slackness conditions (a system of linear inequalities and
equalities in the primal variables) is detected by constraint propagation. If the system

49The average speed-up of 3.3 is the overall runtime of the LP solver divided by overall runtime of our
algorithm. The geometric and arithmetic mean of speed-ups for the individual instances are 4.4 and 19.0,
respectively.

59

is proved to be infeasible, a certificate of infeasibility of this system turns out to be a
dual-improving direction that can be used to improve the current solution. In general, the
constraint propagation method may be refutation incomplete, hence the feasible solutions
returned by the algorithm may not be global optima of the linear program. We do not
solve the system given by complementary slackness exactly because this is not practical
for large instances.

Although constraint propagation for systems of constraints (here, linear inequalities
and equalities) with continuous variables has been studied [13], our novelty lies in con-
structing the infeasibility certificate which constitutes a dual-improving direction.

This technique can be seen as a generalization of the VAC / Augmenting DAG al-
gorithm [33, 95, 146] for WCSP. Newly, we applied it to the LP relaxation of weighted
Max-SAT. Recall from §1.5.4 that the main purpose of (soft) local consistencies in WCSP,
such as EDAC [43], FDAC, DAC [37, 98], or OSAC [38], is to bound the optimal value
of WCSP during search. Each local consistency has a different trade-off point between
bound tightness and computational complexity. In this view, our approach can be seen as
a (soft) local consistency technique for other problems than WCSP.

Though in principle our approach can be also applied to other linear programs (if an
initial dual-feasible solution is available), the quality of the obtained bounds depends on
the possibility to design suitable (possibly problem-dependent) propagation rules.

The propagation rules that we used in §2.3 and §2.4 can be interpreted as exam-
ples of a single general rule that infers whether some inequalities in the system given by
complementary slackness are always active (recall Definition 1.2). Indeed, in (2.8), we in-
ferred whether some of the constraints (2.8c) are always active (i.e., if some of the primal
variables µ are implied to be zero). Similarly, in case of (2.15), we inferred whether some
variables xi are implied to be 0 or 1, which corresponds to one of the inequalities in (2.15g)
being always active. We will precisely define and thoroughly analyze this general prop-
agation rule, which is applicable to any linear program, later in §4. In §4, we also show
that the fixed points of BCD are related to the stopping points of Algorithm 2.1 with this
rule. Before we do that, we show another application of our approach from §2.2 in §3.

60

Chapter 3

Bounds on Weighted CSP Using Constraint Prop-

agation and Super-Reparametrizations

As we reviewed in §1.5, a popular approach for obtaining bounds on the optimal value
of a WCSP is to compute a feasible (ideally optimal) solution of its dual LP relaxation.
For large instances, such solutions are obtained by methods based on BCD (§1.5.4.1)
or constraint propagation (§1.5.4.2) whose stopping points are typically characterized by
local consistencies of the active-tuple CSP of the reparametrized WCSP. This approach is
limited in that it cannot enforce an arbitrary level of local consistency, unless new weight
functions are introduced. Moreover, the methods for improving the bound by enforcing
local consistencies in the active-tuple CSP needed to be specifically designed based on the
chosen kind of local consistency.

In contrast, in this chapter, we propose a method that is able to improve the bound
on the WCSP optimal value using any kind of constraint propagation without introducing
new weight functions. To this end, we recall from §1.5.5 the problem of minimizing an
upper bound on the optimal value of a WCSP over its super-reparametrizations (1.45)
and show that it can be approximately optimized using any method that can (at least
sometimes) detect unsatisfiability of a CSP. On the other hand, a super-reparametrization
of a WCSP need not preserve the objective values of the individual assignments or even
the set of optimal assignments, but, as we will show, it is capable of providing a (possibly
tighter) bound on the optimal value.

Super-reparametrizations were not utilized nor analyzed in the literature except for [92]
and [125]. Yet, they are mentioned only briefly in [125] where the main focus is on
reparametrizations. Thus, to fill in this gap, we also provide additional theoretical results
connected to the optimization problem (1.45) and to super-reparametrizations.

Optimization problem (1.45) has an exponential number of constraints (1.45b), equal
to the number of assignments, i.e., |DV |. However, the suitable structure of this problem
allows us to apply the approach that we outlined in §2.2. Indeed, the method that we
present in this chapter can be interpreted as an instantiation of the previously shown
Algorithm 2.1. However, we chose not to include this method as another example in §2
because it is more involved and its description is extensive.

The structure of this chapter is as follows. We begin in §3.1 by extending the notation
that was previously defined in §1.5 and use it to state the necessary and sufficient conditions
of optimality for the problem (1.45). Next, we present our approach for approximate
minimization of the upper bound using constraint propagation in §3.2. After that, we
theoretically analyze the optimization problem and also identify further properties of the
active-tuple CSPs and the sets of optimal (and also non-optimal) super-reparametrizations
in §3.3. Unsurprisingly, we prove in §3.4 that some decision problems connected to our
approach and super-reparametrizations are NP-complete.

This chapter contains (in some places reformulated or rewritten) text and figures from

61

the submitted journal version [56a] of our earlier conference paper [55a].

3.1 Notation and Optimality Conditions

Throughout this chapter, we will use the notation for CSPs and WCSPs that was defined
in §1.4 and §1.5. Nevertheless, to concisely explain our approach, we additionally define
the set

M⊥ = { d ∈ RT | F (x |d) = 0 ∀x ∈ DV }, (3.1)

i.e., M⊥ is the set of WCSPs whose objective values are zero for all assignments (called
zero problems in [146]). See that the set M⊥ is defined only by the structure (V,D,C).
An example of a WCSP belonging to M⊥ is in Figure 1.6b.

By linearity of F (x | ·) (see §1.5.1), set M⊥ is defined as the solution set of a system
of homogeneous linear equalities and thus constitutes a linear subspace of RT . Moreover,
it is clear that WCSP f is a reparametrization of WCSP g if and only if f − g ∈ M⊥

due to F (x |f) = F (x |g) ⇐⇒ F (x |f − g) = 0 for all x ∈ DV . The affine subspace of
all reparametrizations of g is thus 50 g + M⊥ = { g + d | d ∈ M⊥ } and the optimization
problem of minimizing the upper bound over reparametrizations (1.40) can be stated as

min{B(f) | f is a reparametrization of g } = min{B(f) | f ∈ g +M⊥ }. (3.2)

Analogously, we define the set of all WCSPs (with the fixed structure) whose objective
values are non-negative for all assignments, i.e.,

M∗ = { d ∈ RT | F (x |d) ≥ 0 ∀x ∈ DV }. (3.3)

Set M∗ is a polyhedral convex cone which is however not pointed (i.e., it contains a line [24,
§2.4]) because M⊥ ⊆ M∗ and the subspace M⊥ is non-trivial (assuming |V | > 1). For a
given d ∈ RT , deciding whether d /∈M∗ is NP-complete, as we show later in Corollary 3.2.

Again, WCSP f is a super-reparametrization of WCSP g if and only if f − g ∈ M∗.
Therefore, the set of all super-reparametrizations of g is the translated cone g + M∗ =
{ g + d | d ∈ M∗ }. The binary relation ‘is a super-reparametrization of’ (on the set of
WCSPs with a fixed structure) is reflexive and transitive, hence a preorder. It is not anti-
symmetric: f−g ∈M∗ and g−f ∈M∗ does not imply f = g but merely f−g ∈M⊥, i.e.,
that f is a reparametrization of g. This is because the cone M∗ is not pointed (see [79,
§2] and [24, §2.4]).

Remark 3.1. To explain our notation for the sets M⊥ and M∗, recall the mapping φ
from (1.34) and the set M from (1.37). By expressing the set M⊥ as

M⊥ = { d ∈ RT | d>φ(x) = 0 ∀x ∈ DV } = { d ∈ RT | d>µ = 0 ∀µ ∈M }, (3.4)

it becomes clear that M⊥ ⊆ RT is the orthogonal space [156, §1.1] of the set M ⊆ RT .
Similarly, we have that

M∗ = { d ∈ RT | d>φ(x) ≥ 0 ∀x ∈ DV } = { d ∈ RT | d>µ ≥ 0 ∀µ ∈M } (3.5)

is the dual cone [156, §1.1] to M . It is easy to show that

M∗ = (convM)∗ = (coneM)∗ (3.6)

50Note, the symbol ‘+’ in the expression g +M⊥ denotes the sum of a vector and a set of vectors.

62

where cone denotes the conic hull operator and ∗ the dual cone operator [24, §2.1.5 and
§2.6.1, 10, §1]. Thus, M∗ can be also seen as the dual cone to the marginal polytope. We
made this observation in [56a, Remark 1] and, to the best of our knowledge, this has not
been mentioned before.

Using the set M∗, one can rewrite the optimization problem (1.45) as

min{B(f) | f is a super-reparametrization of g } = min{B(f) | f ∈ g +M∗ }. (3.7)

It is important to note that every f feasible for (3.7) (i.e., every super-reparametrization
of g) satisfies

B(f) ≥ F (x |f) ≥ F (x |g) ∀x ∈ DV , (3.8)

and thus provides an upper bound on the optimal value of g. This is also an immediate
consequence of the previously given Theorem 1.16.

The next theorem characterizes optimal solutions of (3.7).

Theorem 3.1. Let f be feasible for (3.7). The following are equivalent:

(a) f is optimal for (3.7),

(b) B(f) = max
x∈DV

F (x |f) = max
x∈DV

F (x |g),

(c) CSP A∗(f) has a solution x satisfying F (x |f) = F (x |g).

Proof. (a)⇐⇒ (b): This is a corollary of Theorem 1.16 together with (3.8).

(b) =⇒ (c): Since every feasible f satisfies (3.8), (b) implies B(f) = F (x |f) = F (x |g)
for some x. By Theorem 1.15b, this implies (c).

(c) =⇒ (b): By Theorem 1.15b together with (3.8), (c) implies B(f) = F (x |f) =
F (x |g) for some x. Statement (b) now follows from (3.8).

We remark that for f ∈ g + M∗, deciding whether f is optimal for (3.7) is NP-
complete, as we discuss later in Corollary 3.3. Although one part of Theorem 3.1 was
already proved in [92, Theorem 1] (reviewed in §1.5.5, see Theorem 1.16), it is crucial to
identify statement (c) in Theorem 3.1 as it has a simple but useful consequence:

Theorem 3.2. Let g ∈ RT . CSP A∗(g) is satisfiable if and only if B(g) ≤ B(f) for every
f ∈ g +M∗.

Proof. By Theorem 3.1, A∗(g) is satisfiable if and only if (3.7) attains its optimum at the
point f = g, i.e., B(g) ≤ B(f) for every f ∈ g +M∗.

3.2 Iterative Method to Improve the Bound

In this section, we present an iterative method for approximately solving (3.7). Starting
from a feasible solution to (3.7), every iteration finds a new feasible solution with a lower
objective, which by (3.8) corresponds to decreasing the upper bound on the optimal value
of the initial WCSP.

63

input: WCSP g ∈ RT .
1 Initialize f0 := g, k := 0.

2 while CSP A∗(fk) is unsatisfiable do
3 Find fk+1 ∈ fk +M∗ such that B(fk+1) < B(fk).
4 k := k + 1

5 return B(fk)

Algorithm 3.1: Iterative scheme for upper bounding the optimal value of WCSP g
assuming the ability to decide satisfiability of a CSP.

3.2.1 Outline of the Method

Consider a WCSP f feasible for (3.7), i.e., f ∈ g + M∗. By Theorem 3.1, a necessary
(but not sufficient) condition for f to be optimal for (3.7) is that CSP A∗(f) is satisfiable.
By Theorem 3.2, A∗(f) is satisfiable if and only if B(f) ≤ B(f ′) for all f ′ ∈ f + M∗. In
summary, we have the following implications and equivalences:

f is optimal for (3.7) =⇒ CSP A∗(f) is satisfiable~w� ~w�
B(f) ≤ B(f ′) ∀f ′ ∈ g +M∗ =⇒ B(f) ≤ B(f ′) ∀f ′ ∈ f +M∗

(3.9)

The left-hand equivalence is just the definition of the optimum of (3.7), the right-hand
equivalence is Theorem 3.2, and the top implication follows from Theorem 3.1. The
bottom implication independently follows from transitivity of super-reparametrizations,
which means that f ′ ∈ f +M∗ implies f ′ ∈ g +M∗ (assuming f ∈ g +M∗).

Suppose for the moment that we have an oracle that, for a given f ∈ RT feasible
for (3.7) (i.e., f ∈ g +M∗), decides if A∗(f) is satisfiable and if it is not, finds some f ′ ∈
f +M∗ such that B(f ′) < B(f) (which exists by Theorem 3.2). By transitivity of super-
reparametrizations, such f ′ is also feasible for (3.7). This suggests an iterative scheme
to improve feasible solutions to (3.7) that we outline in Algorithm 3.1 and analyze next.
Note that transitivity of super-reparametrizations implies fk ∈ f0 + M∗ for every k, so
every fk is feasible for (3.7) as expected. An example of a single iteration of Algorithm 3.1
is shown in Figure 3.1a and 3.1b.

3.2.1.1 Properties of the Method

This iterative scheme can be interpreted as a local search method to (approximately)
solve (3.7): having a current feasible estimate fk, we search for the next estimate fk+1

with a strictly better objective within a neighborhood fk +M∗ of fk. We can define local
optima of problem (3.7) with respect to this method to be super-reparametrizations f of g
such that A∗(f) is satisfiable. 51

By transitivity of super-reparametrizations, for every k we have

fk+1 +M∗ ⊆ fk +M∗ (3.10)

51For clarity, we of course do not apply local search to improve some assignment x w.r.t. the objective of
the WCSP. Instead, our variables are the components of the weight vector f and we try to improve B(f)
by local search. Furthermore, the local optima mentioned here are different from the ones considered in
Definition 1.3.

64

2

2

5

5

2

2

3

3

7
7

216

6

55

0
1
1

0

4
1
0

4

(a) WCSP f0, A∗(f0) unsatis-
fiable.

2

2

5

5

2

2

3

3

7
7

326

6

66

0
0
0

0

4
2
1

4

(b) WCSP f1 ∈ f0 + M∗,
B(f1) < B(f0).

0

0

0

0

0

0

0

0

0
0

110

0

11

0
-1
-1

0

0
1
1

0

(c) Certificate d of unsatisfiabil-
ity of A∗(f0), f1 = f0 + d.

Figure 3.1: Example of one iteration on a pairwise WCSP whose graph (V,C≥2) is a cycle
of length 4.

which holds with equality if and only if fk+1 ∈ fk +M⊥ (i.e., fk+1 is a reparametrization
of fk). This shows that the search space of the method may shrink with increasing k, in
other words, a larger and larger part of the feasible set f0 + M∗ of (3.7) is cut off and
becomes forever inaccessible. If, for some k, all global optima of (3.7) happen to lie in the
cut-off part, the method has lost any chance to find a global optimum. This is illustrated
in Figure 3.2.

This has the following consequence. By Theorems 1.15a and 3.1, every fk satisfies

B(fk) ≥ min
f∈fk+M∗

B(f) = max
x∈DV

F (x |fk). (3.11)

In every iteration, the left-hand side of inequality (3.11) decreases and the right-hand
side increases or stays the same due to (3.10). If both sides meet for some k, the CSP
A∗(fk) becomes satisfiable by Theorem 1.15b and the method stops. Monotonic increase
of the right-hand side can be seen as ‘greediness’ of the method: if we could choose fk+1

from the initial feasible set f0 +M∗ rather than from its subset fk +M∗, the right-hand
side could also decrease. Any increase of the right-hand side is undesirable because the
bounds B(fk) in future iterations will never be able to get below it. This is illustrated in
Figures 3.3 and 3.4. Unlike the case of reparametrizations, note that not every optimal
assignment for WCSP f ∈ g +M∗ is optimal for WCSP g. We will return to this in §3.3.

If A∗(fk) is unsatisfiable, there are usually many vectors fk+1 ∈ fk + M∗ satisfying
B(fk+1) < B(fk). We should choose among them the one that does not cause ‘too
much’ shrinking of the search space and/or increase of the right-hand side of (3.11).
Inclusion (3.10) holds with equality if and only if fk+1 ∈ fk+M⊥, so whenever possible we
should choose fk+1 to be a reparametrization (rather than just a super-reparametrization)
of fk. Unfortunately, we know of no other useful theoretical results to help us choose fk+1,
so we must recourse to heuristics. One natural heuristic is to choose fk+1 such that the
vector fk+1 − fk is sparse and its positive components are small. Unfortunately, this
can sometimes be too restrictive because, e.g., vectors from M⊥ can be dense and their
components have unbounded magnitudes. 52

52To see this, recall (1.41) where one can set g = 0 and choose ϕ arbitrarily. Then, gϕ may be dense
and have arbitrarily large components gϕt , yet gϕ ∈M⊥.

65

f2

f1

f0 = g

argmin
f∈g+M∗

B(f)

argmin
f∈f2+M∗

B(f)

Figure 3.2: The shrinking of the search space of the iterative method. The figure illustrates
the translated cones f i+M∗ and several contours of the objective B(f). After the second
iteration, all global minima of the original problem (marked in gray) become inaccessible
as the right-hand side of (3.11) increases. Note that the picture is only illustrative.

B(fk)

min
f∈fk+M∗

B(f) = max
x

F (x |fk)

min
f∈g+M∗

B(f) = max
x

F (x |g)

B(g)

iteration k

Figure 3.3: Illustration to the iterative scheme: B(g) and B(fk) are shown by the full
lines, maxx F (x |g) and maxx F (x |fk) are represented by the dashed lines.

66

3 1
4

1
0

1 5

0

(a) WCSP g

3 4
2

3
0

3 5

0

(b) WCSP f

Figure 3.4: WCSP f is a super-reparametrization of WCSP g and this pair of WCSPs
satisfies B(f) = 11 < B(g) = 12 and maxx∈DV F (x |f) = 11 > maxx∈DV F (x |g) = 8.
Assignment x = (b, b) (where b is the lower value, as in Figure 1.6) is not optimal for g
even though B(f) = F (x |f).

input: WCSP g ∈ RT .
1 Initialize f0 := g, k := 0.
2 repeat
3 Try to prove that CSP A∗(fk) is unsatisfiable (e.g., using constraint propagation).

4 if CSP A∗(fk) is proved to be unsatisfiable then
5 Find fk+1 ∈ fk +M∗ such that B(fk+1) < B(fk).
6 k := k + 1

7 else
8 return B(fk)

Algorithm 3.2: Iterative scheme for upper bounding the optimal value of WCSP g
using constraint propagation.

3.2.1.2 Employing Constraint Propagation

So far, we assumed that we can always decide if CSP A∗(f) is satisfiable. This is unrealistic
because the CSP is NP-complete. Yet the approach remains applicable even if we detect
unsatisfiability of A∗(f) only sometimes, e.g., using constraint propagation. We outline
this procedure in Algorithm 3.2. In this case, stopping points of the method will be even
weaker local minima of (3.7), but they nevertheless might be still non-trivial and useful.

In the sequel, we develop this approach in detail. In particular, we show, if A∗(fk) is
unsatisfiable, how to find a vector fk+1 ∈ fk + M∗ satisfying B(fk+1) < B(fk). We will
do it in two steps. First (in §3.2.2), given the CSP A∗(fk) we find a direction d ∈M∗ using
constraint propagation. This direction is a certificate of unsatisfiability of the CSP A∗(fk)
and, at the same time, an improving direction for (3.7). Second (in §3.2.3), given d and fk,
we find a step size α > 0 such that fk+1 = fk +αd and B(fk+1) < B(fk). An example of
such a certificate of unsatisfiability is shown in Figure 3.1c.

3.2.1.3 Relation to Existing Approaches

The Augmenting DAG algorithm [95, 146] and the VAC algorithm [33] are (up to the
precise way of computing certificates d and step sizes α) an example of the described
approach, which uses arc consistency to prove unsatisfiability of A∗(fk). In this favorable
case, there exist certificates d ∈M⊥, so we are, in fact, approximately solving (3.2) rather
than (3.7). Such certificates do not generally exist for stronger local consistencies (i.e.,
inevitably F (x |d) > 0 for some x).

67

The algorithm proposed in [92] can be also seen as an example of our approach. It
interleaves iterations using arc consistency (in fact, the Augmenting DAG algorithm) and
iterations using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by
introducing new weight functions (of possibly higher arity) into the WCSP objective (1.33)
and minimizing an upper bound over reparametrizations, as in [127, 11, 149, 147, 107]. In
our particular case, after each update fk+1 = fk +αd we could introduce 53 a new weight
function with scope

S′ =
⋃
{S | (S, k) ∈ T, dS(k) 6= 0 } (3.12)

and weights

fS′(k) = −α
∑
S∈C
S⊆S′

dS
(
k|S
)

(3.13)

where k ∈ DS′ . In this view, our approach can be seen as enforcing stronger local con-
sistencies but omitting these compensatory higher-order weight functions, thus saving
memory.

Finally, the described approach is an example of the iterative scheme to optimize
linear programs using constraint propagation from §2.2. In this particular case, if (3.7) is
formulated as a linear program, then the complementary slackness conditions (expressed
in terms of the dual variables) can be interpreted as the optimality condition (c) stated
in Theorem 3.1 expressed as a set of linear equalities with an exponential number of
non-negative variables (we will discuss this in detail later in §5.2). Applying constraint
propagation to this system is in correspondence with constraint propagation in a CSP.

3.2.2 Certificates of Unsatisfiability of CSP

Recall from §1.4.1 that constraint propagation 54 is an iterative algorithm, which in each
iteration (executed by a propagator) infers that some allowed tuples R ⊆ A of a current
CSP A ⊆ T can be forbidden without changing its solution set, i.e., SOL(A) = SOL(A−
R), and forbids these tuples, i.e., sets A := A − R. The algorithm terminates when
it is no longer able to forbid any tuples or when it becomes explicit that the current
CSP is unsatisfiable. The former usually happens when the CSP satisfies some desired
local consistency Φ. The latter happens if A ∩ TS = ∅ for some S ∈ C, which implies
unsatisfiability of A. 55

In this section, we show how to augment constraint propagation so that if it proves
a CSP unsatisfiable, it also provides its certificate of unsatisfiability d ∈ M∗. This cer-
tificate is needed as an improving direction for (3.7), as was mentioned in §3.2.1.2. First,
in §3.2.2.1, we introduce a more general concept, deactivating directions. One iteration
of constraint propagation constructs an R-deactivating direction for the current CSP A,

53Notice that such an added weight function would not increase the bound (1.39) since its weights are
non-positive due to the fact that it needs to decrease the objective value of some assignments.

54We speak only about constraint propagation but the approach outlined in this section is applicable
to any method that proves unsatisfiability of a CSP by iteratively forbidding subsets of tuples. In theory,
as a stronger alternative one could also use any CSP solver that is augmented to provide a certificate of
unsatisfiability (which is always possible, as we will discuss later in this section).

55This is because, as stated in §1.4, each assignment uses exactly one tuple from each scope. In addition,
if A ∩ TS = ∅ for some S ∈ C with |S| = 1, this is usually called domain wipeout [33, 31].

68

which certifies that SOL(A) = SOL(A − R). Then, in §3.2.2.2, we show how to compose
the deactivating directions obtained from individual iterations of constraint propagation
into a single deactivating direction for the initial CSP. If the initial CSP has been proved
unsatisfiable by the propagation, this composed deactivating direction is then its certificate
of unsatisfiability.

Remark 3.2. Deactivating directions correspond to cause vectors from §1.1.3 and §2.
Indeed, cause vectors certify that a linear inequality is implied by a system of linear in-
equalities, whereas deactivating directions certify that some tuples can be forbidden in a
CSP while its solution set is preserved. As in §2, where cause vectors were combined to
compute an improving direction, deactivating directions will be composed to obtain an im-
proving direction here. Although it is also possible to interpret deactivating directions as
cause vectors of certain equalities (implied by an LP formulation of a CSP), using CSP
terminology without referring to systems of linear (in)equalities simplifies the explanation
given here.

3.2.2.1 Deactivating Directions

Definition 3.1. Let A ⊆ T and R ⊆ A, R 6= ∅. An R-deactivating direction for CSP A
is a vector d ∈M∗ satisfying

(a) dt < 0 for all t ∈ R,

(b) dt = 0 for all t ∈ A−R.

For fixed A and R, all R-deactivating directions for A form a convex cone. More-
over, note that if A ⊆ A′ ⊆ T and d is an R-deactivating direction for A′, then d is an
R-deactivating direction also for A. Taking this observation into account, the following
result shows a way how to obtain a particular class of R-deactivating directions for A:

Theorem 3.3. Let R ⊆ A ⊆ A′ ⊆ T be such that SOL(A′) = SOL(A′ − R) and R 6= ∅.
Denote 56 δ = |{S ∈ C | TS ∩R 6= ∅ }|. Then, vector d ∈ RT defined by

dt =


−1 if t ∈ R
δ if t ∈ T −A′

0 otherwise (i.e., t ∈ A′ −R)

∀t ∈ T (3.14)

is an R-deactivating direction for A.

Proof. Conditions (a) and (b) of Definition 3.1 are clearly satisfied, so it only remains to
show that d ∈M∗. We have

F (x |d) =
∑
S∈C

dS
(
x|S
)

=
∑
S∈C

(S, x
S
)∈R

−1 +
∑
S∈C

(S, x
S
)∈T−A′

δ = −n1(x) + δn2(x) (3.15)

where n1(x) = |{S ∈ C |
(
S, x|S

)
∈ R }| and n2(x) = |{S ∈ C |

(
S, x|S

)
∈ T −A′ }|.

56The quantity δ is the number of scopes S such that TS contains at least one tuple from R. In other
words, for every assignment x ∈ DV ,

(
S, x|S

)
∈ R holds for at most δ scopes. We remark that the value

of δ could be in some cases decreased while (3.14) remains an R-deactivating direction, thus decreasing also
the objective values F (x |d). However, deciding whether (3.14) is not an R-deactivating direction for A for
a given value δ is an NP-complete problem (see Theorem 3.13).

69

For contradiction, let x ∈ DV satisfy F (x |d) < 0. This implies n1(x) > 0 and
n2(x) = 0, where the latter is because n1(x) ≤ δ by the definition of δ. That is, we have(
S∗, x|S∗

)
∈ R for some S∗ ∈ C and

(
S, x|S

)
∈ A′ for all S ∈ C. But the latter means

x ∈ SOL(A′) and the former implies x /∈ SOL(A′ −R), a contradiction.

Theorem 3.4. Let A ⊆ T and R ⊆ A. If there exists an R-deactivating direction for A,
then SOL(A) = SOL(A−R).

Proof. Recall from §1.4 that SOL is an isotone mapping, so SOL(A) = SOL(A − R) is
equivalent to SOL(A) ⊆ SOL(A−R) because forbidding tuples may only remove solutions.

By contradiction: let d be an R-deactivating direction for A and let x ∈ SOL(A) −
SOL(A − R), so

(
S, x|S

)
∈ R for some S ∈ C. By (1.33), we have F (x |d) < 0 because

dS
(
x|S
)

= 0 for all
(
S, x|S

)
∈ A − R by condition (b) in Definition 3.1 and dS

(
x|S
)
< 0

for all
(
S, x|S

)
∈ R by condition (a). This contradicts d ∈M∗.

Combining Theorem 3.3 (with A′ = A) and Theorem 3.4 yields the following result: for
any R ⊆ A with R 6= ∅, an R-deactivating direction for A exists if and only if SOL(A) =
SOL(A − R). Thus, any R-deactivating direction for A is a certificate of SOL(A) =
SOL(A−R).

Unfortunately, vectors d calculated naively from (3.14) with A′ = A can have many
positive components, which is undesirable as we explained earlier in §3.2.1.1. However, we
are allowed to have A′ ⊇ A in Theorem 3.3, which gives us some freedom in choosing the
deactivating direction. In particular, (3.14) shows that larger sets A′ give rise to sparser
vectors d – more precisely, vectors d with fewer positive components. This offers us a
possibility to obtain a sparser deactivating direction if we can provide a superset A′ ⊇ A
of the allowed tuples satisfying SOL(A′) = SOL(A′ −R).

GivenA ⊆ T andR ⊆ A, finding a maximal (w.r.t. the partial ordering by set inclusion)
superset A′ ⊇ A such that SOL(A′) = SOL(A′−R) is closely related to finding a minimal
unsatisfiable core and minimally unsatisfiable set of tuples 57 of an unsatisfiable CSP. While
finding a maximal such subset is likely intractable (see [70, 71]), for obtaining a ‘sparse
enough’ vector d it suffices to find a ‘large enough’ such superset A′. Such a superset
is often cheaply available as a side result of executing the propagator. Namely, we take
A′ = T − P where P is the set of forbidden tuples that were visited during the run of
the propagator. Clearly, tuples not visited by the propagator could not be needed to infer
SOL(A) = SOL(A − R). Note that P need not be the same for each CSP instance, even
for a fixed level of local consistency: for example, if the AC closure of A is empty, then
A is unsatisfiable but a domain wipeout may occur sooner or later depending on A, which
affects which tuples needed to be visited.

Let us emphasize that an R-deactivating direction for A need not be always obtained
using formula (3.14), any other method can be used as long as d satisfies Definition 3.1. We
will now give examples of deactivating directions corresponding to some popular constraint
propagation rules.

57Given an unsatisfiable CSP A ⊆ T , finding a maximal set A′ ⊇ A such that A′ is still unsatisfiable
corresponds to finding a minimally unsatisfiable set of tuples [70]. This is a finer-grained (tuple-based
rather than constraint-based) version of finding a minimal unsatisfiable core of a CSP [71]. Note that we
are looking here for a maximal superset A′ in contrast to a minimal unsatisfiable core/set of tuples because
we define CSP instances by allowed tuples while cores are CSP instances defined by forbidden tuples.

70

Example 3.1. As already stated in §1.4.1.2, CSP A is arc consistent if for all S ∈ C≥2,
i ∈ S, and k ∈ D, we have the equivalence

({i}, k) ∈ A ⇐⇒ ∃(S, `) ∈ A : `i = k. (3.16)

If, for some S ∈ C≥2, i ∈ S, and k ∈ D, the left-hand statement in (3.16) is true
and the right-hand statement is false, AC propagator (1.32) infers SOL(A) = SOL(A−R)
where R = {({i}, k)}. To infer this, it suffices to know that the tuples P = { (S, `) | ` ∈
DS , `i = k } are all forbidden. An R-deactivating direction d for A can be chosen as
in (3.14), where δ = |{S′ ∈ C | TS′ ∩ R 6= ∅ }| = 1 and A′ = T − P . Note that then we
have d ∈M⊥.

If the left-hand statement in (3.16) is false and the right-hand statement is true, AC
propagator (1.32) infers SOL(A) = SOL(A−R) where R = { (S, `) | ` ∈ DS , `i = k } ∩A.
To infer this, it suffices to know that the tuple P = {({i}, k)} is forbidden. In this partic-
ular case, rather than using (3.14) it is better to choose d as

dt =


−1 if t ∈ { (S, `) | ` ∈ DS , `i = k }
1 if t = ({i}, k)

0 otherwise

∀t ∈ T. (3.17)

Vector (3.17) satisfies d ∈ M⊥, in contrast to vector (3.14) which satisfies only d ∈ M∗.
Thus, the update fk+1 = fk + αd is a mere reparametrization 58, which is desirable as
explained in §3.2.1.1. 4

Example 3.2. We now consider cycle consistency as defined in [92]. 59 As this local
consistency was defined only for pairwise CSPs, we assume that |S| ≤ 2 for each S ∈ C.
Let L be a (polynomially sized) set of cycles in the graph (V,C≥2). A CSP A is cycle
consistent if for each tuple ({i}, k) ∈ A (where i ∈ V and k ∈ D) and each cycle L ∈ L
that passes through node i ∈ V , there exists an assignment x with xi = k that uses only
allowed tuples in cycle L. It can be shown that the cycle-repair procedure in [92] constructs
a deactivating direction whenever an inconsistent cycle is found. Moreover, the constructed
direction in this case coincides with (3.14) for a suitable set P (i.e., A′ = T − P) which
contains a subset of the forbidden tuples within the cycle. 4

Example 3.3. Recall that a CSP A is singleton arc consistent if for every tuple t =
({i}, k) ∈ A (where i ∈ V and k ∈ D), the CSP 60 A|xi=k = A − (T{i} − {t}) has non-
empty AC closure. Good (i.e., sparse) deactivating directions for singleton arc consistency
(SAC) can be obtained as follows. For some ({i}, k) ∈ A, we enforce arc consistency
of CSP A|xi=k, during which we store the causes for forbidding each tuple. If A|xi=k is
found to have empty AC closure, we trace back the AC operations and identify only those
tuples that were necessary to prove the empty AC closure. These tuples form the set P .
The deactivating direction is then constructed as in Theorem 3.3 with R = {({i}, k)} and
A′ = T − P . Note that SAC does not have bounded support [19] as many other local
consistencies do, so the size of P can significantly vary for different CSP instances. 4

58Such reparametrizations correspond to soft arc consistency operations extend and project that we
mentioned in Remark 1.12.

59This is different from cyclic consistency as defined in [34]. E.g., reparametrizations are sufficient to
enforce cyclic consistency, whereas super-reparametrizations are needed for cycle consistency.

60This can be also stated as A|xi=k = A − { ({i}, k′) | k′ ∈ D − {k} }. In other words, the solutions of
CSP A|xi=k are the solutions x of CSP A satisfying xi = k. This notation is used, e.g., in [18, 99].

71

1 procedure (S, (Ri)
n
i=0, (d

i)ni=0) = propagate(A)
2 Initialize n := 0, A0 := A.
3 while An is not Φ-consistent do
4 Find a set Rn ⊆ An and an Rn-deactivating direction dn for An.
5 An+1 := An −Rn
6 if ∃S ∈ C : An+1 ∩ TS = ∅ then
7 return (S, (Ri)

n
i=0, (di)ni=0)

8 n := n+ 1

9 return (∅, (Ri)n−1
i=0 , (di)n−1

i=0))

Algorithm 3.3: The procedure propagate applies constraint propagation to
CSP A ⊆ T and returns the sequence (Ri)

n
i=0 of tuple sets that were forbidden and

the corresponding deactivating directions (di)ni=0. If all tuples in some scope S ∈ C
become forbidden during propagation, propagate returns also S, otherwise it re-
turns S = ∅.

3.2.2.2 Composing Deactivating Directions

Consider now a propagator which, for a current CSP A ⊆ T , returns a set R ⊆ A such that
SOL(A) = SOL(A−R) and an R-deactivating direction for A. This propagator is applied
iteratively, each time forbidding a different set of tuples, until the current CSP achieves
the desired local consistency Φ or it becomes explicit that the CSP is unsatisfiable (due to
A ∩ TS = ∅ for some S ∈ C). This is outlined in Algorithm 3.3, which stores the generated
sets Ri of tuples being forbidden and the corresponding Ri-deactivating directions di. By
line 5 of the algorithm, we have Ai = A−

⋃i−1
j=0Rj for every i ∈ {0, . . . , n+ 1}. Therefore,

by Theorem 3.4, we have SOL(A) = SOL(A1) = SOL(A2) = . . . = SOL(An+1), which
implies that if An+1 is unsatisfiable, then so is A. Note that Algorithm 3.3 is an extension
of the previously shown Algorithm 1.2 that did not use deactivating directions.

Next, we show how to compose the generated sequence of Ri-deactivating directions di

for Ai into a single
(⋃n

i=0Ri
)
-deactivating direction for A. This can be done using the

following composition rule:

Proposition 3.1. Let A ⊆ T and R,R′ ⊆ A where R∩R′ = ∅. Let d be an R-deactivating
direction for A. Let d′ be an R′-deactivating direction for A−R. Let

δ =

{
0 if d′t ≤ −1 for all t ∈ R,
max{ (−1− d′t)/dt | t ∈ R, d′t > −1 } otherwise.

(3.18)

Then d′′ = d′ + δd is an (R ∪R′)-deactivating direction for A.

Proof. First, if d′t ≤ −1 for all t ∈ R, then d′′ = d′ satisfies the required condition
immediately. Otherwise, δ > 0 since dt < 0 for all t ∈ R by definition and −1 − d′t < 0
due to d′t > −1 in the definition of δ. We will show that d′′ satisfies the conditions in
Definition 3.1.

For t ∈ R with d′t ≤ −1, d′′t = d′t + δdt < d′t ≤ −1 because δdt < 0. If t ∈ R and
d′t > −1, then δ ≥ (−1− d′t)/dt, so d′′t = d′t + δdt ≤ −1. Summarizing, we have d′′t < 0 for
all t ∈ R.

72

1 procedure (R∗, d∗) = compose((Ri)
n
i=0, (d

i)ni=0, I)
2 Initialize i := max I, d∗ := di, R∗ := Ri.
3 while i > 0 do
4 i := i− 1
5 if i ∈ I or ∃t ∈ Ri : d∗t 6= 0 then
6 d∗ := d∗+ δdi (where δ is given by (3.18) with d, d′, R replaced by di, d∗, Ri)
7 R∗ := R∗ ∪Ri

8 return (R∗, d∗)

Algorithm 3.4: The procedure compose takes the sequences (Ri)
n
i=0 and (di)ni=0

(generated by the procedure propagate in Algorithm 3.3) and a non-empty index
set I ⊆ {0, . . . , n} and composes them into an R∗-deactivating direction d∗ for A.

For t ∈ R′, d′t < 0 and dt = 0 holds by definition due to R′ ⊆ A − R, thus d′′t =
d′t + δdt = d′t < 0 which together with the previous paragraph yields condition (a).

Due to A−R ⊇ (A−R)−R′ = A− (R∪R′), for any t ∈ A− (R∪R′) we have dt = 0
and d′t = 0, which implies d′′t = d′ + δd = 0, thus verifying condition (b).

Finally, we have d′′ ∈M∗ because d, d′ ∈M∗ and δ ≥ 0.

Proposition 3.1 allows us to combine Ri-deactivating direction di for Ai = Ai−1−Ri−1

with Ri−1-deactivating direction di−1 for Ai−1 into a single (Ri−1 ∪ Ri)-deactivating di-
rection for Ai−1. Iteratively, we can thus gradually build a

(⋃n
i=0Ri

)
-deactivating direc-

tion for A, which certifies unsatisfiability of A whenever Algorithm 3.3 detects on line 6
that An+1 (and thus also A) is unsatisfiable.

However, it is not always necessary to construct a full
(⋃n

i=0Ri
)
-deactivating direction

because not every iteration of constraint propagation may have been necessary to prove
unsatisfiability of A. Instead, we can use the scope S ∈ C satisfying An+1 ∩ TS = ∅
(where An+1 = A−

⋃n
i=0Ri, as mentioned above) returned by Algorithm 3.3 on line 7 and

construct an R∗-deactivating direction d∗ for a (usually smaller) set R∗ ⊆
⋃n
i=0Ri such

that (A − R∗) ∩ TS = ∅. Such a direction d∗ still certifies unsatisfiability of A and can
be sparser and/or may have lower objective values F (x |d∗) than a

(⋃n
i=0Ri

)
-deactivating

direction, which is desirable as explained in §3.2.1.1.

This is outlined in Algorithm 3.4, which composes only a subsequence of directions di

based on a given set of indices I ⊆ {0, . . . , n} and constructs an R∗-deactivating direction
with R∗ ⊇

⋃
i∈I Ri. Although Algorithm 3.4 is applicable to any set I, in our case I is

obtained by taking a scope S ∈ C such that An+1 ∩ TS = ∅ and then setting

I = { i ∈ {0, . . . , n} | Ri ∩ TS 6= ∅ } (3.19)

so that (A−R∗) ∩ TS = ∅ due to the following fact:

Proposition 3.2. Let S ∈ C be such that (A−
⋃n
i=0Ri)∩TS = ∅. Let I be given by (3.19).

Then, (A−
⋃
i∈I Ri) ∩ TS = ∅.

Proof. For any sets A,R, T ′ ⊆ T , we have (A − R) ∩ T ′ = (T ′ − R) ∩ A. In particular,
(A−

⋃n
i=0Ri) ∩ TS = (TS −

⋃n
i=0Ri) ∩ A. But TS −

⋃n
i=0Ri = TS −

⋃
i∈I Ri because for

each i /∈ I we have Ri ∩ TS = ∅ which is equivalent to TS −Ri = TS .

73

Correctness of Algorithm 3.4 is given by the following theorem:

Theorem 3.5. Algorithm 3.4 returns an R∗-deactivating direction d∗ for A such that⋃
i∈I Ri ⊆ R∗ ⊆

⋃n
i=0Ri.

Proof. The fact that R∗ ⊇
⋃
i∈I Ri is obvious due to Rmax I ⊆ R∗ by initialization on line 2

and Ri ⊆ R∗ for any i ∈ I such that i < max I because in such case the update on line 7
is performed. Similarly, R∗ ⊆

⋃n
i=0Ri holds by initialization of R∗ on line 2 and updates

on line 7.

It remains to show that d∗ is an R∗-deactivating direction for A, which will be done
by induction. We claim that vector d∗ is always an R∗-deactivating direction for Ai on
line 3 and an R∗-deactivating direction for Ai+1 on line 5.

Initially, we have d∗ = di, so d∗ is Ri-deactivating (i.e., R∗-deactivating since R∗ = Ri
before the loop is entered) for Ai. Also, when vector d∗ is first queried on line 5, i decreased
by 1 due to the update on line 4, so d∗ is R∗-deactivating for Ai+1. The required property
thus holds when the condition on line 5 is first queried with i = max I − 1.

We proceed with the inductive step. If the condition on line 5 is not satisfied, then
necessarily d∗t = 0 for all t ∈ Ri. So, if d∗ is R∗-deactivating for Ai+1, then it is also
R∗-deactivating for Ai = Ai+1 ∪Ri, as seen from Definition 3.1.

If the condition on line 5 is satisfied, d∗ is R∗-deactivating for Ai+1 before the update
on lines 6-7. Since Ai+1 = Ai−Ri and di is Ri-deactivating for Ai, Proposition 3.1 can be
applied to di and d∗ to obtain an (R∗∪Ri)-deactivating direction for Ai. After updating R∗

on line 7, it becomes R∗-deactivating for Ai.

When eventually i = 0, d∗ is R∗-deactivating for A0 = A by line 2 in Algorithm 3.3.

Remark 3.3. This is similar to what the VAC [33] or Augmenting DAG algorithm [95,
146] do for arc consistency. To attempt to disprove satisfiability of CSP A∗(f), these
algorithms enforce AC of A∗(f), during which the causes for forbidding tuples are stored.
If empty AC closure of A∗(f) is detected (which corresponds to TS ∩ An+1 = ∅ for
some S ∈ C), these algorithms do not iterate through all previously forbidden tuples but
only trace back the causes for forbidding the elements of the wiped-out domain (here, the
elements of TS).

3.2.3 Line Search

In §3.2.2, we showed how to construct an R-deactivating direction d for CSP A, which
certifies unsatisfiability of A whenever (A − R) ∩ TS = ∅ for some S ∈ C. Given a
WCSP f ∈ RT with A∗(f) = A, to obtain f ′ ∈ f + M∗ with B(f ′) < B(f) (as in
Theorem 3.2), we need to find a step size α > 0 so that f ′ = f + αd, as discussed
in §3.2.1.2. That means, we need to find α > 0 such that B(f + αd) < B(f).

Finding the best step size (i.e., exact line search) would require finding a global min-
imum of the univariate convex piecewise-affine function α 7→ B(f + αd). As this would
be too expensive for large WCSP instances, we perform only approximate line search, i.e.,
find some non-zero step size α by the following theorem. 61

61In detail, the step size min{β, γ} computed in Theorem 3.6c corresponds to the first breakpoint of the
univariate function with a lower objective. Similarly as in §2.4.2, this is analogous to the first-hit strategy
in [48a, §3.1.4].

74

Theorem 3.6. Let f ∈ RT . Let d be an R-deactivating direction for A∗(f). Denote 62

β = min

{
maxt∈TS′ ft − ft′

dt′

∣∣∣∣ S′ ∈ C, t′ ∈ TS′ , dt′ > 0

}
,

γ = min

{
ft − ft′
dt′ − dt

∣∣∣∣ S ∈ C, (A∗(f)−R) ∩ TS = ∅, t ∈ TS ∩R, t′ ∈ TS −R, dt′ > dt

}
.

Then, β, γ > 0 and for every S ∈ C and α ∈ R, WCSP f ′ = f + αd satisfies:

(a) If (A∗(f)−R) ∩ TS 6= ∅ and 0 ≤ α ≤ β, then maxt∈TS f
′
t = maxt∈TS ft.

(b) If (A∗(f)−R) ∩ TS 6= ∅ and 0 < α < β, then A∗(f ′) ∩ TS = (A∗(f)−R) ∩ TS.

(c) If (A∗(f)−R) ∩ TS = ∅ and 0 < α ≤ min{β, γ}, then maxt∈TS f
′
t < maxt∈TS ft.

Proof. We have β > 0 because dt′ > 0 implies that t′ is an inactive tuple, so maxt∈TS ft >
ft′ . We have γ > 0 because in ft − ft′ tuple t is always active and t′ is inactive, hence
ft > ft′ .

To prove (a), let t∗ ∈ (A∗(f) − R) ∩ TS . Hence, by Definition 3.1, dt∗ = 0 and the
value maxt∈TS f

′
t does not decrease for any α since f ′t∗ = ft∗ + αdt∗ = ft∗ . To show the

maximum does not increase, consider a tuple t′ ∈ TS such that dt′ > 0 (due to α ≥ 0,

tuples with dt′ ≤ 0 cannot increase the maximum). It follows that α ≤ β ≤ maxt∈TS ft−ft′
dt′

,

so f ′t′ = ft′ + αdt′ ≤ maxt∈TS ft.

To prove (b), let (A∗(f) − R) ∩ TS 6= ∅. As in (a), we have maxt∈TS ft = maxt∈TS f
′
t .

If t ∈ (A∗(f) − R) ∩ TS , then dt = 0 and such tuples remain active by f ′t = ft. Tuples
t ∈ R ∩ TS become inactive since f ′t = ft + αdt < ft = maxt′∈TS ft′ by dt < 0 and α > 0.
Tuples t /∈ A∗(f) either satisfy dt ≤ 0 and cannot become active or satisfy dt > 0 and by

α < β ≤
maxt′∈TS

ft′−ft
dt

, f ′t = ft + αdt < maxt′∈TS ft′ , so t /∈ A∗(f ′).
To prove (c), let (A∗(f)−R) ∩ TS = ∅. For all t ∈ TS ∩R, we have f ′t = ft + αdt < ft

by dt < 0 and α > 0, i.e., maxt∈TS∩R f
′
t < maxt∈TS∩R ft. We proceed to show that

f ′t′ ≤ maxt∈TS∩R f
′
t for every t′ ∈ TS − R. Let t∗ ∈ TS ∩ R satisfy f ′t∗ = maxt∈TS∩R f

′
t . If

dt′ > dt∗ , α ≤ γ ≤ ft∗−ft′
dt′−dt∗

implies f ′t∗ = ft∗ +αdt∗ ≥ ft′ +αdt′ = f ′t′ . If dt′ ≤ dt∗ , then also

αdt′ ≤ αdt∗ and f ′t′ = ft′ + αdt′ ≤ ft∗ + αdt∗ = f ′t∗ holds for any α ≥ 0 since ft′ < ft∗ . As
a result, maxt′∈TS−R f

′
t′ ≤ maxt∈TS∩R f

′
t < maxt∈TS∩R ft = maxt∈TS ft.

If d is an R-deactivating direction for CSP A∗(f) and (A∗(f)−R)∩TS 6= ∅ for all S ∈ C,
then there is α > 0 such that f ′ = f + αd satisfies B(f ′) = B(f) and A∗(f ′) = A∗(f)−R
by Theorem 3.6a and 3.6b. This justifies why such a direction d is called R-deactivating:
a suitable update of f along this direction makes tuples R inactive.

Remark 3.4. This might suggest that to improve the current bound B(f), we need not use
Algorithm 3.4 to construct an R∗-deactivating direction d∗ with (A∗(f)−R∗)∩TS = ∅ for
some S ∈ C, but instead, perform steps using the intermediate Ri-deactivating directions di

to create a sequence f i+1 = f i+αid
i satisfying B(f0) = B(f1) = . . . = B(fn) > B(fn+1).

Unfortunately, it is hard to make this work reliably as there are many choices for the
intermediate step sizes 0 < αi < βi. We empirically found Algorithm 3.5 to be preferable.

62β is always defined: by Definition 3.1 we have F (x |d) ≥ 0 for all x, hence ∃t : dt < 0 =⇒ ∃t′ : dt′ > 0.
γ is defined and needed only in (c), where we assume that (A∗(f) − R) ∩ TS = ∅ for some S ∈ C. If the
set in the definition of γ is empty, then γ = +∞ by convention and min{β, γ} = β.

75

input: WCSP g ∈ RT .
1 Initialize f := g.
2 repeat
3 (S, (Ri)

n
i=0, (d

i)ni=0) := propagate(A∗(f)) (see Algorithm 3.3)
4 if S 6= ∅ then
5 Define I as in (3.19).
6 (R∗, d∗) := compose((Ri)

n
i=0, (d

i)ni=0, I) (see Algorithm 3.4)
7 Update f := f + min{β, γ}d∗ following Theorem 3.6.

8 else
9 return B(f)

Algorithm 3.5: The final algorithm to iteratively improve feasible solutions
to (3.7).

If d is an R-deactivating direction for A∗(f) and we have (A∗(f) − R) ∩ TS = ∅ for
some S ∈ C, then there is α > 0 such that f ′ = f + αd satisfies B(f ′) < B(f) by
Theorem 3.6a and 3.6c. The following corollary of Theorem 3.6 finally justifies why the
certificate d of unsatisfiability of CSP A∗(f) is an improving direction for (3.7):

Corollary 3.1. CSP A ⊆ T is unsatisfiable if and only if there is d ∈ M∗ such that for
every f ∈ RT with A = A∗(f) there exists α > 0 such that B(f + αd) < B(f).

Proof. First, if for some S ∈ C we have that A∩TS = ∅, A is unsatisfiable and no f ∈ RT
satisfies A = A∗(f), so the second condition is trivially satisfied by choosing any d ∈M∗.

If A ∩ TS 6= ∅ for all S ∈ C but A is unsatisfiable, let d be any A-deactivating
direction (which exists by Theorem 3.3). It follows from Theorem 3.6 that for any f ∈ RT
with A∗(f) = A, we can compute a suitable step size α > 0 such that B(f + αd) < B(f).
The case when A is satisfiable follows from Theorem 3.2.

3.2.4 Final Algorithm

Having certificates of unsatisfiability from §3.2.2 and step sizes from §3.2.3, we can now
precisely formulate in Algorithm 3.5 the iterative method that was previously sketched
in §3.2.1.2 (Algorithm 3.2). First, constraint propagation is applied to CSP A∗(f) by
Algorithm 3.3 until either A∗(f) is proved unsatisfiable or no more propagation is possible.
In the latter case, the algorithm halts and returns B(f) as the best achieved upper bound
on the optimal value of WCSP g. Otherwise, if A∗(f) is proved unsatisfiable due to
An+1 ∩ TS = ∅ for some S ∈ C, define I as in (3.19) so that (A∗(f) −

⋃
i∈I Ri) ∩ TS = ∅

and compute an R∗-deactivating direction d∗ where R∗ ⊇
⋃
i∈I Ri using Theorem 3.5.

Since (A∗(f)−R∗) ∩ TS = ∅, we can update WCSP f using Theorem 3.6. Consequently,
the bound B(f) strictly improves after each update on line 7.

Although our theoretical results are more general, our implementation is limited only
to pairwise WCSPs. In our implementation, we again use the trick similar to capacity
scaling, i.e., we replace the active tuples A∗(f) with ‘almost’ active tuples A∗ε (f) defined
in (2.10) and proceed as in Algorithm 2.2. Initially, ε is set to a high value and whenever
we are unable to disprove satisfiability of A∗ε (f), the current ε is decreased as ε := ε/10.

76

The process continues until ε becomes very small. 63 This heuristic forces the algorithm to
disprove satisfiability using tuples that are far from being active, thus hopefully leading
to larger step sizes and faster decrease of the bound.

We implemented two versions of Algorithm 3.5 (including capacity scaling), differing
in the local consistency used to attempt to disprove satisfiability of CSP A∗(f):

• Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) uses single-
ton arc consistency (SAC). Precisely, we alternate between AC and SAC propagators:
whenever a single tuple ({i}, k) (where i ∈ V and k ∈ D) is removed by SAC, we step
back to enforcing AC until no more AC propagations are possible, and repeat.

• Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as VSAC-
SR except that SAC is replaced by cycle consistency (CC). Though our implementa-
tion is different from [92] (we compose deactivating directions rather than alternate
between the cycle-repair procedure and the Augmenting DAG algorithm), it has the
same stopping points.

The procedures for generating deactivating directions for AC, SAC and CC were imple-
mented as described in Examples 3.1, 3.3, and 3.2, respectively. In SAC and CC, it
is useful to step back to AC whenever possible because deactivating directions of AC
correspond to reparametrizations (that are more favorable, recall §3.2.1.1) rather than
super-reparametrizations.

Remark 3.5. In analogy to [33, 107], let us call a WCSP instance f virtual Φ-consistent
(e.g., virtual AC or virtual RPC) if A∗(f) has non-empty Φ-consistency closure. Then,
a virtual Φ-consistency algorithm naturally refers to an algorithm to transform a given
WCSP instance to a virtual Φ-consistent WCSP instance. In the VAC algorithm, this
transformation is equivalence-preserving, i.e., a reparametrization. But in our case, it is
a super-reparametrization, which is why we call our algorithms VSAC-SR and VCC-SR.

Since we restricted ourselves to pairwise WCSPs, (V,C≥2) is an undirected graph.
The cycles in VCC-SR were chosen as follows: if 2|C≥2|/|V | ≤ 5 (i.e., the average degree
of the nodes in (V,C≥2) is at most 5), then all cycles of length 3 and 4 present in the
graph (V,C≥2) are used. If 2|C≥2|/|V | ≤ 10, then all cycles of length 3 present in the
graph are used. If 2|C≥2|/|V | > 10 or the above method did not result in any cycles,
we use all fundamental cycles w.r.t. a spanning tree of the graph (V,C≥2) [116, §9]. No
additional edges are added to the graph. Note, [92] experimented with grid graphs (where
cycles of length 4 and 6 of the grid were used) and complete graphs (where cycles of
length 3 were used).

Since both VSAC-SR and VCC-SR start by enforcing VAC (i.e., making A∗(f) have
non-empty AC closure by reparametrizations), before running these methods we used toul-
bar2 [1] to reparametrize the input WCSP instance to a VAC state (because a specialized
algorithm is faster than the more general Algorithm 3.5). We employed specialized data
structures for storing the sequences (Ri)

n
i=0 and (di)ni=0 from Algorithm 3.3, which uti-

lize the property that the sets (Ri)
n
i=0 are disjoint and make easier sequential querying

63In detail, we initialized ε = maxki,kj g{i,j}(ki, kj) − minki,kj g{i,j}(ki, kj) + maxk gi′(k) − mink gi′(k)
where {i, j} ∈ C≥2 and i′ ∈ V is the edge and variable with the lowest index (based on indexing in the
input instance). The terminating condition was ε ≤ 10−6. In order to improve the efficiency of our method,
we also decreased ε whenever the bound did not improve by more than 10−15 in 20 consecutive iterations
(cf. VACε in [33, §11.1]).

77

of (sparse) vectors (di)ni=0 in Algorithm 3.4. Note that the sequence (Ai)
n+1
i=0 need not be

stored and is only needed for theoretical analysis. Moreover, sparse representations were
used when composing deactivating directions in Algorithm 3.4. To avoid working with
‘structured’ tuples (1.23), we employed a bijection between T and {1, . . . , |T |} to work
with numerical indices instead.

Besides the above improvements, we did not fine-tune our implementation for efficiency.
Thus, the set A∗(f) was always calculated by iterating through all tuples (which could
be made faster if sparsity of the improving direction was taken into account). The hyper-
parameters of our algorithm (e.g., the decrease schedule of ε or constants mentioned in
Footnote 63) were not learned nor systematically optimized. SAC was checked on all
active tuples without warm-starting or using any faster SAC algorithm than SAC1 [18,
45, Figure 2]. Perhaps most importantly, we did not implement inter-iteration warm-
starting as in [145, 48a], i.e., after updating the weights on line 7 of Algorithm 3.5, some
deactivating directions in the sequence that were not used in computing the improving
direction may be preserved for the next iteration instead of being computed from scratch.
Except for computing the deactivating directions, the code was the same for VSAC-SR
and VCC-SR. We implemented everything in Java.

3.2.5 Experimental Results

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds provided
by EDAC [43], VAC [33], pseudo-triangles (option -t=8000 in toulbar2, adds up to 8 GB
of ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [107], which are
implemented in toulbar2 [1].

We did the comparison on the Cost Function Library benchmark [2]. Due to limited
computation resources, we used only the smallest 16500 instances (out of 18132). Of
these, we omitted instances containing weight functions of arity 3 or higher. Moreover,
to avoid easy instances, we omitted instances that were solved by VAC without search
(i.e., toulbar2 with options -A -bt=0 found an optimal solution). We also omitted the
validation instances that are used for testing and debugging. Overall, 5371 instances were
left for our comparison.

For each instance and each method, we only calculated the upper bound and did not
do any search. Then, for each instance and method, we computed the normalized bound
Bw−Bm
Bw−Bb where Bw and Bb are the worst and the best bound for the instance among all the
methods, respectively, and Bm is the bound computed by the method for the instance.
Thus, the best bound 64 transforms to 1 and the worst bound to 0, i.e., greater is better.

For 26 instances, at least one method was not able to finish in the prespecified 1-hour
CPU-time limit. These timed-out methods were omitted from the calculation of the nor-
malized bounds for these instances. From the point of view of the method, the instance
was not incorporated into the average of the normalized bounds of this particular method.
We note that implementations of VSAC-SR and VCC-SR provide a bound when termi-
nated at any time, whereas the implementations of the other methods provide a bound
only when they are left to finish. Time-out happened 5, 2, 3, 6, and 24 times for pseudo-
triangles, PIC, EDPIC, maxRPC, and EDmaxRPC, respectively. This did not affect the
results much as there were 5731 instances in total.

64To avoid numerical precision issues, bounds Bm within Bb ± 10−4Bb or Bb ± 0.01 are also normalized
to 1. If Bw = Bb, then the normalized bounds for all methods are equal to 1 on this instance.

78

Instance Group Instances EDAC VAC VSAC-SR VCC-SR Pseudo-tr. PIC EDPIC maxRPC EDmaxRPC

/biqmaclib/ 157 0.02 0.11 0.90 0.22 0.92 0.83 0.81 0.79 0.81
/crafted/academics/ 8 0.88 0.88 0.97 0.95 0.88 0.88 0.88 0.88 1.00
/crafted/auction/paths/ 420 0.00 0.09 0.91 0.35 0.99 0.45 0.68 0.64 0.57
/crafted/auction/regions/ 411 0.00 0.05 0.99 0.10 0.98 0.08 0.18 0.23 0.13
/crafted/auction/scheduling/ 419 0.00 0.02 1.00 0.09 0.80 0.41 0.38 0.41 0.24
/crafted/coloring/ 33 0.94 0.94 0.99 0.97 0.98 1.00 1.00 1.00 0.99
/crafted/feedback/ 6 0.00 0.00 0.54 0.58 0.71 0.49 0.53 0.51 0.72
/crafted/kbtree/ 1800 0.25 0.29 0.60 0.67 0.80 0.73 0.81 0.76 0.89
/crafted/maxclique/dimacs maxclique/ 49 0.06 0.24 0.98 0.39 0.87 0.39 0.50 0.51 0.55
/crafted/maxcut/spinglass maxcut/unweighted/ 5 0.00 0.00 1.00 0.42 0.15 0.15 0.15 0.15 0.15
/crafted/maxcut/spinglass maxcut/weighted/ 5 0.00 0.00 1.00 0.38 0.17 0.17 0.17 0.17 0.17
/crafted/modularity/ 6 0.17 0.19 0.38 0.25 0.99 0.96 0.94 0.96 0.97
/crafted/planning/ 65 0.00 0.54 0.94 0.72 0.32 0.07 0.09 0.07 0.17
/crafted/sumcoloring/ 43 0.04 0.15 0.47 0.50 0.81 0.53 0.63 0.64 0.61
/crafted/warehouses/ 49 0.35 0.99 1.00 0.99 0.35 0.42 0.42 0.42 0.42
/qaplib/ 5 0.40 0.40 0.40 0.41 0.99 0.97 0.97 0.98 0.97
/qplib/ 23 0.00 0.10 0.96 0.38 0.27 0.25 0.25 0.24 0.25
/random/maxcsp/completeloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/completetight/ 50 0.00 0.12 0.57 0.72 0.88 0.94 0.99 0.69 0.76
/random/maxcsp/denseloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/densetight/ 50 0.02 0.14 0.52 1.00 0.68 0.48 0.49 0.52 0.60
/random/maxcsp/sparseloose/ 90 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96
/random/maxcsp/sparsetight/ 50 0.01 0.12 0.54 1.00 0.64 0.40 0.40 0.43 0.51
/random/maxcut/random maxcut/ 400 0.00 0.00 0.77 0.13 0.95 0.98 0.98 0.97 0.99
/random/mincut/ 500 0.09 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.10
/random/randomksat/ 493 0.01 0.02 0.75 0.22 0.95 0.91 0.89 0.86 0.87
/random/wqueens/ 6 0.00 0.52 0.96 0.94 0.48 0.12 0.29 0.13 0.72
/real/celar/ 23 0.00 0.05 0.08 0.16 0.97 0.66 0.66 0.78 0.95
/real/maxclique/protein maxclique/ 1 0.00 0.00 1.00 0.03 0.93 0.04 0.04 0.08 0.04
/real/spot5/ 1 0.00 0.08 1.00 0.49 1.00 0.74 0.66 0.41 0.74
/real/tagsnp/tagsnp r0.5/ 23 0.04 0.86 0.95 0.86 0.31 0.31 0.33 0.29 0.46
/real/tagsnp/tagsnp r0.8/ 80 0.13 0.66 0.91 0.68 0.29 0.39 0.38 0.33 0.47

Average over all groups 5371 0.20 0.36 0.82 0.58 0.72 0.56 0.58 0.56 0.62
Average over groups with ≥ 5 instances 5369 0.21 0.38 0.80 0.60 0.71 0.57 0.59 0.58 0.63

Table 3.1: Results on instances from Cost Function Library: Average normalized bounds.

79

Instance Group Instances EDAC VAC VSAC-SR VCC-SR Pseudo-tr. PIC EDPIC maxRPC EDmaxRPC

/biqmaclib/ 157 0.11 0.12 180.07 34.60 83.25 1240.00 1241.29 1242.16 1271.86
/crafted/academics/ 8 0.11 0.11 28.61 1.04 29.08 121.44 120.86 108.08 104.47
/crafted/auction/paths/ 420 0.04 0.04 1.96 0.83 1.92 0.19 0.23 0.48 0.64
/crafted/auction/regions/ 411 0.20 0.32 32.14 9.45 673.42 49.85 51.37 102.61 110.48
/crafted/auction/scheduling/ 419 0.10 0.12 16.22 2.03 49.85 26.90 26.89 32.06 32.30
/crafted/coloring/ 33 0.09 0.10 4.99 1.40 0.20 545.50 545.50 545.51 545.50
/crafted/feedback/ 6 0.70 0.70 3588.39 3600.11 11.64 1860.89 1874.08 1875.93 1873.07
/crafted/kbtree/ 1800 0.02 0.02 3.13 11.25 0.10 0.04 0.05 0.06 0.07
/crafted/maxclique/dimacs maxclique/ 49 0.71 1.32 279.08 126.90 955.60 1345.67 1342.14 1429.73 1428.12
/crafted/maxcut/spinglass maxcut/unweighted/ 5 0.02 0.02 0.82 0.44 0.02 0.01 0.01 0.01 0.01
/crafted/maxcut/spinglass maxcut/weighted/ 5 0.02 0.02 1.09 0.53 0.02 0.01 0.01 0.01 0.01
/crafted/modularity/ 6 0.19 0.29 1023.48 127.39 66.25 706.30 783.02 741.91 1442.57
/crafted/planning/ 65 0.16 0.29 638.85 60.62 7.41 0.93 0.96 2.33 4.73
/crafted/sumcoloring/ 43 1.29 1.94 727.49 963.61 255.72 1508.37 1508.36 1509.34 1512.68
/crafted/warehouses/ 49 4.10 9.48 735.80 735.83 4.09 29.48 29.54 28.80 29.82
/qaplib/ 5 0.08 0.09 119.05 278.53 7.38 1448.63 1444.95 1450.09 1449.22
/qplib/ 23 0.13 0.14 255.85 43.11 195.32 626.25 626.24 626.27 626.36
/random/maxcsp/completeloose/ 50 0.06 0.06 1.31 0.16 0.48 0.09 0.10 0.19 0.18
/random/maxcsp/completetight/ 50 0.02 0.03 6.35 12.68 0.47 0.21 0.25 0.31 0.33
/random/maxcsp/denseloose/ 50 0.02 0.02 166.78 0.06 0.11 0.03 0.03 0.03 0.03
/random/maxcsp/densetight/ 50 0.02 0.02 4.20 17.38 0.10 0.06 0.07 0.07 0.08
/random/maxcsp/sparseloose/ 90 0.03 0.03 611.38 0.05 0.06 0.04 0.04 0.04 0.04
/random/maxcsp/sparsetight/ 50 0.02 0.02 11.00 9.74 0.06 0.04 0.05 0.05 0.05
/random/maxcut/random maxcut/ 400 0.01 0.01 0.73 0.15 0.04 0.03 0.03 0.05 0.07
/random/mincut/ 500 1.09 2.43 14.40 86.22 1.12 0.88 0.87 0.87 0.87
/random/randomksat/ 493 0.02 0.02 3.42 0.17 0.13 0.07 0.10 0.16 0.31
/random/wqueens/ 6 1.33 1.49 992.85 502.42 644.87 1800.15 1800.20 1800.18 1800.60
/real/celar/ 23 0.27 0.28 1798.51 2972.69 66.56 300.76 219.91 495.26 1066.87
/real/maxclique/protein maxclique/ 1 0.26 0.44 25.24 6.77 1196.62 114.62 114.99 215.30 220.81
/real/spot5/ 1 0.01 0.01 0.62 0.08 0.11 0.03 0.03 0.04 0.04
/real/tagsnp/tagsnp r0.5/ 23 4.83 378.77 3338.53 2897.83 239.38 3155.96 3148.66 3172.58 3295.19
/real/tagsnp/tagsnp r0.8/ 80 1.52 22.82 1239.73 858.83 90.05 195.12 206.76 359.55 409.88

Average over all groups 5371 0.55 13.17 495.38 417.59 143.17 471.21 471.49 491.88 538.35
Average over groups with ≥ 5 instances 5369 0.58 14.04 527.54 445.20 112.82 498.80 499.08 517.49 566.88

Table 3.2: Results on instances from Cost Function Library: Average CPU time in seconds.

80

The results in Table 3.1 show that no method is best for all instance groups, instead,
each method is suitable for a different group. However, VSAC-SR performed best for
most groups and otherwise was often competitive to the other strong consistency methods.
VSAC-SR seems particularly good at spinglass maxcut [3], planning [40] and qplib [64]
instances. Taking the overall unweighted average of group averages (giving the same im-
portance to each group), VSAC-SR achieved the greatest average value. We also evaluated
the ratio to worst bound, Bm/Bw, for instances with Bw 6= 0; the results were qualitatively
the same: VSAC-SR again achieved the best overall average of 3.93 (or 4.15 if only groups
with ≥ 5 instances are considered) compared to second-best pseudo-triangles with 2.71
(or 2.84).

The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are
reported in Table 3.2. Again, the results are group-dependent and one can observe that
the methods explore different trade-offs between bound quality and runtime. However, the
strong consistencies are comparable in terms of runtime on average, except for pseudo-
triangles, which is a faster method that however needs significantly more memory.

3.3 Additional Properties of Super-Reparametrizations

In this section, we present a more detailed study of properties of WCSPs that are preserved
by (possibly optimal) super-reparametrizations. Although we did not need these properties
for the previously described method, they may be valuable for future research. Here, we
first revisit in §3.3.1 the notion of a minimal CSP for a set of assignments that was studied,
e.g., in [105, §3, 46, §2.3.2]. The key result of §3.3 is presented in §3.3.2, where we study the
relation of the set of optimal assignments of some WCSP to the set of optimal assignments
of its super-reparametrization optimal for (3.7), showing that they need not coincide in
general. In §3.3.3, we analyze the case of general (i.e., not necessarily optimal for (3.7))
super-reparametrizations.

3.3.1 Minimal CSP

Let us ask when, for a given set X ⊆ DV of assignments (i.e., a |V |-ary relation over D),
does there exist A ⊆ T such that X = SOL(A), i.e., when is X representable as the
solution set of a CSP with a given structure (V,D,C). For that, denote

Amin(X) =
⋂
A(X) where A(X) = {A ⊆ T | X ⊆ SOL(A) }. (3.20)

Thus, A(X) is the set of all CSPs whose solution set includes X and Amin(X) is the
intersection of these CSPs. We call Amin(X) the minimal CSP for X. For pairwise CSPs,
this concept was studied in [105, §3] and [46, §2.3.2].

Proposition 3.3. The mapping SOL preserves intersections 65, i.e., for any A1, A2 ⊆ T
we have SOL(A1 ∩A2) = SOL(A1) ∩ SOL(A2).

65We remark that isotony of SOL (that we noted already in §1.4) does not in general imply preserved
intersections. A weaker result than our Proposition 3.3 is [105, Theorem 3.2]: in our notation, it says that
SOL(A1) = SOL(A2) implies SOL(A1 ∩A2) = SOL(A1).

81

Proof. For any x ∈ DV , we have

x ∈ SOL(A1) ∩ SOL(A2) ⇐⇒ x ∈ SOL(A1), x ∈ SOL(A2)

⇐⇒ ∀S ∈ C :
(
S, x|S

)
∈ A1,

(
S, x|S

)
∈ A2

⇐⇒ ∀S ∈ C :
(
S, x|S

)
∈ A1 ∩A2

⇐⇒ x ∈ SOL(A1 ∩A2).

Proposition 3.4. For any X ⊆ DV , the set A(X) is closed under intersections, i.e., for
any A1, A2 ⊆ T we have A1, A2 ∈ A(X) =⇒ A1 ∩A2 ∈ A(X).

Proof. Suppose that X ⊆ SOL(A1) and X ⊆ SOL(A2), then X ⊆ SOL(A1) ∩ SOL(A2) =
SOL(A1 ∩A2), where the equality holds by Proposition 3.3.

Proposition 3.4 implies Amin(X) ∈ A(X), i.e., X ⊆ SOL(Amin(X)). This shows
that Amin(X) is the smallest CSP whose solution set includes X. It follows that X =
SOL(Amin(X)) if and only if X = SOL(A) for some A ⊆ T .

The minimal CSP for X can be equivalently defined in terms of tuples:

Proposition 3.5 ([105, 46]). We have Amin(X) = { (S, k) ∈ T | ∃x ∈ X : x|S = k }.

Proof. Denote A′ = { (S, k) ∈ T | ∃x ∈ X : x|S = k }. By definition of A′, we have
SOL(A′) ⊇ X, so A′ ∈ A(X) and Amin(X) =

⋂
A(X) ⊆ A′.

It remains to show that Amin(X) ⊇ A′. For contradiction, suppose there is a tuple
(S∗, k∗) ∈ A′ − Amin(X). By definition of A′, there exists x ∈ X such that x|S∗ = k∗.

However, since
(
S∗, x|S∗

)
= (S∗, k∗) /∈ Amin(X), we have x /∈ SOL(Amin(X)). By x ∈ X,

this contradicts X ⊆ SOL(Amin(X)).

Note that Proposition 3.5 shows that Amin(X) is positively consistent (recall Defini-
tion 1.6) for every X ⊆ DV .

Theorem 3.7. For any X ⊆ DV and A ⊆ T , we have

Amin(X) ⊆ A ⇐⇒ X ⊆ SOL(A). (3.21)

Proof. If Amin(X) ⊆ A, then by isotony of SOL we have SOL(Amin(X)) ⊆ SOL(A). Since
X ⊆ SOL(Amin(X)), we have X ⊆ SOL(A).

If X ⊆ SOL(A), i.e., A ∈ A(X), then Amin(X) =
⋂
A(X) ⊆ A.

Comparing (3.21) with (3.20) shows that the set A(X) is just an interval (w.r.t. the
partial ordering given by the set inclusion):

A(X) = {A | Amin(X) ⊆ A ⊆ T } (3.22)

Theorem 3.7 further reveals that the maps Amin and SOL form a Galois connection [42,

§7] between sets 2(DV) and 2T , partially ordered by the set inclusion 66. Associated with
the Galois connection are the closure operator SOL ◦Amin and the dual closure operator
Amin ◦ SOL. We have already seen their meaning:

66To our knowledge, we were the first to notice this in [56a, §5.1].

82

• For any CSP A ⊆ T , the CSP Amin(SOL(A)) is the positive consistency (dual) clo-
sure Cpos(A) from §1.4.1.

• For any set of assignments X ⊆ DV , SOL(Amin(X)) is the smallest (possibly non-
strict) superset of X which is the solution set of some CSP A ⊆ T . We have X =
SOL(Amin(X)) if and only if X = SOL(A) for some A ⊆ T .

Remark 3.6. Following [42, §7.27], it is easy to see in this case that the mappings Amin

and SOL are mutually inverse bijections (even order-isomorphisms) if we restrict ourselves
only to positively consistent CSPs, i.e., {A ⊆ T | Amin(SOL(A)) = A } and sets of
assignments representable as solution sets of some CSP A ⊆ T , i.e., { SOL(A) | A ⊆ T }.

3.3.2 Optimal Assignments of Optimal Super-Reparametrizations

Theorem 3.1 (or already Theorem 1.16) says that the optimal value of (3.7) equals the
optimal value of WCSP g. We now focus on the optimal assignments (rather than value)
of WCSP g. For brevity, we denote the set of all optimal assignments of WCSP g by

OPT(g) = argmax
x∈DV

F (x |g) ⊆ DV . (3.23)

Theorem 3.8. If f is optimal for (3.7), then OPT(g) ⊆ OPT(f) = SOL(A∗(f)).

Proof. To show OPT(g) ⊆ OPT(f), let x∗ ∈ OPT(g). By statement (b) in Theorem 3.1,
F (x∗ |g) = B(f). Since B(f) ≥ F (x∗ |f) ≥ F (x∗ |g), we have that B(f) = F (x∗ |f) =
F (x∗ |g), thus x∗ is optimal for WCSP f .

The equality OPT(f) = SOL(A∗(f)) follows from Theorem 1.15b together withB(f) =
maxx∈DV F (x |f) which is given by optimality of f (see statement (b) in Theorem 3.1).

Our main goal in §3.3 is to characterize when the inclusion in Theorem 3.8 holds with
equality, which is given by a later stated Theorem 3.10.

Proposition 3.6. For every g ∈ RT and A ⊆ T such that OPT(g) ⊆ SOL(A), there exists
f ∈ RT optimal for (3.7) such that A = A∗(f).

Proof. Define the vector f by

ft =

{
F1/|C| if t ∈ A
F2/|C| if t /∈ A

∀t ∈ T (3.24)

where

F1 = max
x∈DV

F (x |g) and F2 = max{F (x |g) | x ∈ DV , F (x |g) < F1 } (3.25)

are the best and the second-best objective value of WCSP g, respectively. Note, if
OPT(g) = DV , then F2 is undefined but it does not matter because it is never used
in (3.24).

Since ∅ 6= OPT(g) ⊆ SOL(A), CSP A is satisfiable. Therefore for each S ∈ C we have
A ∩ TS 6= ∅, hence

max
t∈TS

ft = F1/|C|. (3.26)

Equality A = A∗(f) now follows from (3.24).
To show that f is feasible for (3.7), we distinguish two cases:

83

1 1
1

0
-1

0 0

-1

(a) WCSP g

1 1
1

0
0

1 1

0

(b) WCSP f1

1 1
1

1
0

0 0

0

(c) WCSP f2

1 1
1

1
0

1 1

0

(d) WCSP f3

Figure 3.5: Examples of four WCSPs with the same structure. WCSPs f1, f2, and f3 are
optimal super-reparametrizations of WCSP g.

• If x ∈ OPT(g), i.e., F (x |g) = F1, then x ∈ SOL(A) = SOL(A∗(f)). Therefore for
all S ∈ C we have

(
S, x|S

)
∈ A∗(f), hence fS

(
x|S
)

= F1/|C| by (3.26). Substituting
into (1.33) yields F (x |f) = F1 and F (x |f) = F1 = F (x |g).

• If x /∈ OPT(g), we have fS
(
x|S
)
≥ F2/|C| for all S ∈ C, hence F (x |f) ≥ F2 by (1.33).

By (3.25) we also have F (x |g) ≤ F2, so F (x |f) ≥ F2 ≥ F (x |g).

To show that f is optimal for (3.7), we use (3.26) to obtain B(f) =
∑

S∈C F1/|C| =
F1 = maxx F (x |g) and apply Theorem 3.1.

Example 3.4. To exemplify Proposition 3.6, consider WCSP g from Figure 3.5a. We
have that |C| = 3, F1 = 3 and F2 = 0. Each of the WCSPs shown in Figures 3.5b,
3.5c, and 3.5d has a different set of active tuples, is a super-reparametrization of g, and
is optimal for (3.7). 4

Theorem 3.9. For every g ∈ RT , we have

A(OPT(g)) = {A∗(f) | f is optimal for (3.7) }. (3.27)

Proof. The inclusion ⊇ says that for every optimal f we have OPT(g) ⊆ SOL(A∗(f)),
which was proved in Theorem 3.8. The inclusion ⊆ was proved in Proposition 3.6.

Now we combine the results of §3.3.1 and §3.3.2 to obtain the main result of §3.3. First
observe that, by (3.22), the set (3.27) is just the interval {A | Amin(OPT(g)) ⊆ A ⊆ T }.

Theorem 3.10. For every g ∈ RT , the following statements are equivalent:

(a) OPT(g) = SOL(A) for some A ⊆ T ,

(b) OPT(g) = OPT(f) for some f optimal for (3.7).

If both statements are true, then statement (a) holds, e.g., for A = Amin(OPT(g)) and
statement (b) holds, e.g., if A∗(f) = Amin(OPT(g)).

Proof. Let g ∈ RT . By Theorem 3.9, there exists f optimal for (3.7) satisfying A∗(f) =
Amin(OPT(g)). By Theorem 3.8, this f satisfies OPT(f) = SOL(A∗(f)).

By the results of §3.3.1, statement (a) is equivalent to OPT(g) = SOL(Amin(OPT(g))).
Therefore, if (a) holds, then (b) holds for the above f . In the other direction, if (b) holds
for the above f , then (a) holds.

Theorem 3.10 shows that the set inclusion in Theorem 3.8 holds with equality for some
optimal f if and only if the set OPT(g) is representable as a solution set of some CSP
with the same structure. If no such CSP exists, then OPT(g) (OPT(f) for all optimal f .
An example of WCSP g for which no such CSP exists is in Figure 3.6.

It is natural to ask which WCSPs possess this property. Though we are currently
unable to provide a full characterization of such WCSPs, we identify two such classes.

84

1 2
0

-10
1

1 2

1

1

1

1

1
0

0

1

1
0
0

(a) WCSP g with B(g) = 7

1 1
1

-9
1

1 1

1

1

1

1

1
1

1

1

1
1
1

(b) WCSP f with B(f) = 6

Figure 3.6: WCSP f is an optimal super-reparametrization of WCSP g. It is easy to verify
that A∗(f) = Amin(OPT(g)) but OPT(f) = SOL(A∗(f))) OPT(g).

Proposition 3.7 ([121, 146]). If the LP relaxation (3.2) (i.e., (1.40)) of a WCSP g ∈ RT
is tight, then OPT(g) = SOL(A) for some A ⊆ T .

Proof. If the LP relaxation (3.2) is tight, then there exists a vector f ∈ RT such that
B(f) = maxx∈DV F (x |g) and f is a reparametrization of g, i.e., F (x |f) = F (x |g) for all
x ∈ DV , thus, f is also optimal for (3.7). It follows that the sets of optimal assignments
for f and g coincide. By Theorem 3.8, A∗(f) is the required CSP.

It is clear that Proposition 3.7 also applies to the basic LP relaxation (1.44), i.e., if
the basic LP relaxation of a WCSP g is tight, then OPT(g) = SOL(A) for some A ⊆ T .

Proposition 3.8. If a WCSP g ∈ RT has a unique optimal assignment, then OPT(g) =
SOL(A) for some A ⊆ T .

Proof. Let OPT(g) = {x}. We claim that A = {
(
S, x|S

)
| S ∈ C } is the required CSP,

i.e., SOL(A) = {x}. For contradiction, suppose that x′ ∈ SOL(A) and x′ 6= x. By x′ ∈
SOL(A), we necessarily have that x′|S = x|S for all S ∈ C. By definition (1.33), this implies
F (x′ |g) = F (x |g). Thus, {x′, x} ⊆ OPT(g), which is contradictory with |OPT(g)| = 1.

3.3.3 General Super-Reparametrizations

Finally, we present one property of general super-reparametrizations f of a fixed WCSP g,
i.e., f is only feasible (but possibly not optimal) for (3.7).

Theorem 3.11. For every g ∈ RT we have

{A∗(f) | f ∈ RT is a super-reparametrization of g } = {A∗(f) | f ∈ RT }. (3.28)

Proof. The inclusion ⊆ is trivial. To prove ⊇, let f ′ ∈ RT be arbitrary. Define f ∈ RT
by ft = B(g)/|C| + Jt ∈ A∗(f ′)K, t ∈ T . Clearly, f is a super-reparametrization of g
due to F (x |f) ≥ B(g) ≥ F (x |g) for any x ∈ DV . In addition, by definition of f ,
maxt∈TS ft = B(g)/|C|+ 1 for any S ∈ C, hence A∗(f ′) = A∗(f).

Theorem 3.11 shows that the left-hand set in (3.28) does not depend on g at all.
Therefore, if we approximately optimize (3.7), i.e., we find a (possibly non-optimal) super-
reparametrization f of g, then there is in general no relation between sets OPT(f) and

85

OPT(g). However, as discussed in §3.1, an arbitrary super-reparametrization still main-
tains the valuable property that it provides an upper bound B(f) on the optimal value of
WCSP g.

3.4 Hardness Results

Unsurprisingly, a number of decision and optimization problems related to problem (3.7)
is computationally hard since the optimization problem (3.7) is hard itself. We overview
a number of such problems here.

Theorem 3.12. The following problem is NP-complete: Given f, g ∈ QT , decide whether
f is not a super-reparametrization of g (i.e., whether f is not feasible for (3.7)).

Proof. Membership in NP can be shown easily: first, one can non-deterministically choose
any x ∈ DV and then in polynomial time decide whether F (x |f) < F (x |g).

To show NP-hardness, we perform a reduction from CSP satisfiability which is known
to be NP-complete. Let A ⊆ T be a CSP. We would like to decide whether SOL(A) 6= ∅.

Let us define g ∈ {0, 1}T by

gS(k) = J(S, k) ∈ AK ∀(S, k) ∈ T. (3.29)

Thus, for any x ∈ DV , F (x |g) equals the number of constraints in CSP A that are
satisfied by the assignment x. So, F (x |g) ∈ {0, 1, . . . , |C|} and F (x |g) = |C| if and only
if x ∈ SOL(A). Consequently, maxx F (x |g) ≤ |C| − 1 if and only if SOL(A) = ∅.

We define f ∈ QT by ft = (|C| − 1)/|C|, t ∈ T . So, F (x |f) = |C| − 1 for all x ∈ DV .
Hence, SOL(A) = ∅ if and only if f is a super-reparametrization of g.

Corollary 3.2. The following problem is NP-complete: Given d ∈ QT , decide whether
d /∈M∗.

Proof. Membership in NP is analogous to Theorem 3.12. The question of whether f is not
a super-reparametrization of g from Theorem 3.12 reduces to whether d = f−g /∈M∗.

Corollary 3.3. The following problem is NP-complete: Given f, g ∈ {0, 1}T where f is a
super-reparametrization of g, decide whether f is optimal for (3.7).

Proof. Membership in NP follows from statement (c) in Theorem 3.1: as in Theorem 3.12,
one can choose x ∈ DV and then in polynomial time decide whether x ∈ SOL(A∗(f))
and F (x |f) = F (x |g).

The hardness part is completely analogous to the proof of Theorem 3.12 except that
we define f by ft = 1, t ∈ T , so B(f) = |C|. Clearly, f is element-wise greater than or
equal to g, so it is a super-reparametrization. Moreover, |C| = maxx F (x |g) if and only if
SOL(A) 6= ∅, so f is optimal for (3.7) if and only if SOL(A) 6= ∅.

Recall that in formula (3.14), the number δ had the concrete value given by Theo-
rem 3.3. However, sometimes the value of δ can be decreased while (3.14) still remains
to be an R-deactivating direction for A. Finding a small such δ is desirable because then
(3.14) results in smaller objective values F (x |d), as explained in §3.2.1.1. Unfortunately,
finding the least value of δ is likely intractable:

86

Theorem 3.13. The following problem is NP-complete: Given δ ∈ Q and ∅ 6= R ⊆ A ⊆ T
satisfying δ > 0 and SOL(A) = SOL(A − R), decide whether vector d defined by (3.14)
with A′ = A is not an R-deactivating direction for A.

Proof. Membership in NP is analogous to Theorem 3.12. Since conditions (a) and (b)
from Definition 3.1 are satisfied, the question boils down to deciding whether d /∈M∗. 67

To show hardness, we proceed by reduction from the 3-coloring problem [116, §8.6.1,
84]: given a graph G∗ = (V ∗, E∗), decide whether it is 3-colorable. Let G = (V,C) be the
graph sum [116, §8.1.2] (a.k.a. disjoint union of graphs) of G∗ and K4 where K4 is the
complete graph with 4 vertices. 68

Let CSP A have the structure (V,D,C) where |D| = 3 and

A = { ({i, j}, (ki, kj)) | {i, j} ∈ C, k ∈ D{i,j}, ki 6= kj }. (3.30)

Hence, any x ∈ DV can be interpreted as an assignment of colors to the nodes of G and
x ∈ SOL(A) if and only if x is a 3-coloring of G. Since G contains K4 as its subgraph, it
is not 3-colorable and A is unsatisfiable. Hence, setting R = A satisfies SOL(A − R) =
SOL(∅) = ∅ = SOL(A).

For the purpose of our reduction, let us define δ = (|C| − 2)/2 > 0. We will show that
for such a setting, d is not an R-deactivating direction for A if and only if G∗ is 3-colorable.

Plugging the above-defined sets A and R into the definition of d in (3.14) yields

F (x |d) =
∑
{i,j}∈C
xi 6=xj

(−1) +
∑
{i,j}∈C
xi=xj

δ = δ(|C| − COL(x))− COL(x) (3.31)

where COL(x) = |{ {i, j} ∈ C | xi 6= xj }| is the number of edges in G whose adjacent
vertices have different colors in assignment x ∈ DV .

If G∗ is 3-colorable, then there is x ∈ DV such that COL(x) = |C|−1. In other words,
only for a single edge in C−E∗ (i.e., edge of graph K4), the adjacent vertices are assigned
the same color, so F (x |d) = −|C|/2 < 0 by (3.31) and definition of δ. Hence, d is not an
R-deactivating direction for A.

For the other case, if G∗ is not 3-colorable, then for any x ∈ DV , COL(x) ≤ |C| − 2.
The reason is that for at least one edge in K4 and at least one edge in G∗, the adjacent
vertices will be assigned the same color in any assignment. By substituting the value of δ
and a simple manipulation of (3.31), one obtains

F (x |d) = δ|C| − (δ + 1) COL(x) = |C| (|C| − 2− COL(x)) /2 ≥ 0 (3.32)

where the term in brackets is non-negative due to COL(x) ≤ |C| − 2 for any x ∈ DV . So,
d is an R-deactivating direction for A.

In connection to §3.3.1, a number of decision problems concerning the minimal CSP
have been also proved hard. For recent results, we refer to [67, 57].

67This case cannot be reduced to the case in Corollary 3.2 because d in (3.14) has a special form. On
the other hand, Theorem 3.13 directly implies Corollary 3.2 and consequently also Theorem 3.12, but we
preferred to include more straightforward self-contained proofs for the previous statements.

68Informally, G is the graph obtained from G∗ by adding 4 new vertices and including an edge between
each pair of these new vertices.

87

3.5 Discussion

We have proposed a method to compute upper bounds on the WCSP. Following [92]
(reviewed in §1.5.5), the WCSP is formulated as an optimization problem with a convex
piecewise-affine objective and an exponential number of linear constraints that define the
set of feasible solutions to be the super-reparametrizations of the input WCSP instance.
Whenever the active-tuple CSP of a current WCSP instance is unsatisfiable, there exists an
improving direction (in fact, a certificate of unsatisfiability of this CSP). We showed how
these improving directions can be generated by constraint propagation (or, more generally,
any methods to prove unsatisfiability of a CSP). We proved that super-reparametrizations
are closely related to the dual cone to the well-known marginal polytope (Remark 3.1).

Special cases of our approach are the VAC / Augmenting DAG algorithm [33, 95, 146],
which uses arc consistency, and the algorithm in [92], which uses cycle consistency. We
have newly implemented the approach for singleton arc consistency, resulting in VSAC-
SR algorithm. When compared to existing local consistency methods on a public dataset,
VSAC-SR provides comparable or better bounds for many instances.

We expect our improved bounds to be useful to prune the search space during branch-
and-bound search, when solving WCSP instances to optimality. However, we have done
no experiments with this, so it is open whether during search the tighter bounds would
outweigh the higher complexity of the algorithm. We leave this for future research. Our
approach can be also useful to solve more WCSP instances even without search (similarly
as the VAC algorithm solves all supermodular WCSPs without search – recall Fact 1.2)
or, given a suitable primal heuristic, to solve WCSP instances approximately.

Our approach can be straightforwardly extended to WCSPs with different domain
sizes 69 and some weights equal to minus infinity (i.e., some constraints being hard). Of
course, further experiments would be needed to evaluate the quality of the bounds if
infinite weights are allowed.

Finally, we presented a theoretical analysis of super-reparametrizations of WCSPs,
describing the properties of optimal super-reparametrizations and characterizing the set
of active-tuple CSPs induced by different optimal super-reparametrizations. For example,
even an optimal super-reparametrization may change the set of optimal assignments, as
shown in §3.3.2. Additionally, we have shown that general (i.e., possibly non-optimal)
super-reparametrizations are only weakly related to the original WCSP instance.

69In fact, our implementation already supports different domain sizes. We did not present our theoretical
results for this generalized setting only to simplify notation.

88

Chapter 4

Relation Between BCD and Local Consistencies

Let us recall from §1.5.4 that the fixed points of BCD algorithms applied to the dual
LP relaxation of WCSP can be characterized by local consistency conditions, typically
forms of arc consistency. Although the VAC / Augmenting DAG algorithm [33, 95, 146] is
not a BCD method, its stopping points are also characterized by arc consistency, namely
non-empty AC closure of the active-tuple CSP. In addition, we discovered in [50a, §3] that
when BCD with the relative-interior rule is applied to the dual LP relaxation of SAT, it
corresponds in a precise sense to unit propagation.

These results suggest that there is a close relation between BCD applied to a linear
program and constraint propagation in a system of linear inequalities (and possibly equal-
ities). In this chapter, we identify and describe this relation precisely. While constraint
propagation in such a system can be done in many ways, we define a particular kind of
constraint propagation rule that infers from a subset of inequalities that some of them are
always active (i.e., always hold as equalities). We show that, for any linear program, Al-
gorithm 2.1 using this rule and BCD with the relative-interior rule have fixed points of the
same quality. In other words, the stopping points of Algorithm 2.1 with this rule cannot
be improved by BCD with the relative-interior rule and vice versa. Additionally, we show
that the kinds of local minima encountered in BCD (Definition 1.3) can be characterized
by certain local consistency conditions.

Although the aforementioned propagation rule is applicable to any system of linear
inequalities (and equalities) and our results hold for linear programs in any form, we show
them for the primal-dual pair (1.1). Formally, we consider applying BCD to the dual (1.1)
and applying Algorithm 2.1 to the primal-dual pair (1.1), as in §2.2. We have the following
assumptions:

• both linear programs (1.1) are feasible and bounded,

• a dual-feasible solution y is available,

• a finite collection B ⊆ 2[m] of blocks of dual variables (i.e., subsets of primal con-
straints) is provided.

For both methods, the goal is to improve this dual-feasible solution, ideally to make it
optimal. For brevity, we will assume that the set of blocks B, matrix A, and vectors b
and c are fixed in §4.1 and §4.2.

This chapter is an improved version of [54a]. Throughout our explanation, we will
refer to some results from the preliminaries, especially from §1.1, §1.2, and §1.3.

4.1 Propagation Rule and Local Consistency Condition

The precise form of constraint propagation (i.e., the set of inference rules) was neither
specified nor restricted in §2.2. Even though propagation in a system of linear inequalities
(and equalities) can be done in many ways, here we focus on a particular propagation rule:

89

From a subset of linear inequalities and equalities, infer which in-
equalities always hold with equality (i.e., are always active within
the subset) and make them equalities.

(4.1)

After repeatedly applying this rule to different subsets, if a subset of inequalities (and
equalities) is infeasible, then the original system was also infeasible.

This constraint propagation rule is used, under various names, in several existing
methods:

• As we explained in §2.3, in the VAC / Augmenting DAG algorithm [33, 95, 146], pri-
mal problem (1.1) is (1.44) and complementary slackness conditions are (2.8). Indeed,
in §2.3, we decided whether (under the conditions (2.8c)-(2.8d)), a single equality
from (2.8a) implies that some inequality from (2.8c) is always active (i.e., which vari-
ables µt are implied to be zero).

• The approach that we overviewed in §2.4 to upper-bound the LP relaxation of weighted
Max-SAT is another example. In detail, we inferred whether (under conditions (2.15e)-
(2.15g)) a single inequality (or equality) from (2.15a)-(2.15d) implies that some of the
inequalities (2.15g) are always active (i.e., if some variables are implied to be 0 or 1).
There is a technical subtlety: in case of inequalities, i.e, (2.15a) and (2.15c), we also
need to infer whether they are always active. Thus, after making all variables in a
single inequality constraint (2.15a) or (2.15c) decided (recall Remark 2.7), one needs
to check if the inequality is satisfied with strict inequality or with equality. In the
latter case, the inequality should be made an equality. However, in this case, this
has no effect on whether the rule will detect a contradiction or not because all the
variables in this constraint are already decided by Remark 2.7.

• If the minimization of a convex piecewise-affine function is expressed as a linear pro-
gram, then our method subsumes the sign relaxation technique introduced in [148, §3]
and further developed in [48a, §2.2]. In more detail, one infers whether a single equal-
ity constraint (over non-negative variables that may be set to zero) implies whether
some of the non-negative variables are implied to be zero.

For the particular case of system (2.2), rule (4.1) means that we initialize J = τ(y),
choose a subset B ∈ B ⊆ 2[m] of equalities (2.2a) and decide if the system

Aix = bi ∀i ∈ B (4.2a)

xj ≥ 0 ∀j ∈ J (4.2b)

xj = 0 ∀j ∈ [n]− J (4.2c)

implies 70 xj = 0 for some j ∈ J . If so, we remove all such indices j from J and proceed
with another block from B. Eventually, if set J becomes so small that (4.2) becomes
infeasible for some B ∈ B, original system (2.2) was also infeasible, so y is not optimal and
can be improved. In the following parts, we will analyze this propagation rule in detail.

70Recall from §1.1.3 that system (4.2) implies xj = 0 if xj = 0 holds for all x satisfying (4.2), i.e., xj ≥ 0
is always active within (4.2).

90

Definition 4.1. Let B ⊆ [m]. A set J ⊆ [n] is B-consistent if system (4.2) is feasible
and does not imply xj = 0 for any j ∈ J 71, i.e., if the system

Aix = bi ∀i ∈ B (4.3a)

xj > 0 ∀j ∈ J (4.3b)

xj = 0 ∀j ∈ [n]− J (4.3c)

is feasible. For B ⊆ 2[m], J is B-consistent if it is B-consistent for each B ∈ B.

Proposition 4.1. Let B ⊆ [m]. If J and J ′ are B-consistent, so is J ∪ J ′.

Proof. If (4.3) is satisfied by x and x′ for J and J ′, respectively, then it is satisfied
by (x+ x′)/2 for J ∪ J ′ due to (xj + x′j)/2 > 0 ⇐⇒ (xj > 0∨ x′j > 0) which follows from
non-negativity of the components of x and x′.

The property identified in Proposition 4.1 is a usual attribute of local consistencies
which was mentioned earlier in Property 1.1 (in §1.4.1). In words, Proposition 4.1 shows
that, for a fixed B ⊆ [m], the set of all B-consistent sets is closed under union. Hence,
it is a join-semilattice where the order is given by the set inclusion and its join is the set
union. However, it is not a (complete) lattice as it need not have a bottom element.

In order to overcome this, we add the bottom element ⊥ by the lifting operation
(see §1.3.1). Formally, the set J = 2[n] ∪ {⊥} can be equipped with the partial order v
defined by

J v J ′ ⇐⇒
(
J = ⊥ ∨ (J, J ′ ⊆ [n] ∧ J ⊆ J ′)

)
(4.4)

where ∨ and ∧ represent logical disjunction and conjunction, respectively, and J, J ′ ∈ J .
Consequently, for any B ⊆ [m], the set

JB = {J ⊆ [n] | J is B-consistent} ∪ {⊥} ⊆ J , (4.5)

partially ordered by v, is a complete lattice by Theorem 1.11. The join operation of this
lattice is the binary operation t on J defined by 72

J t J ′ =


J if J ′ v J
J ′ if J v J ′

J ∪ J ′ otherwise

. (4.6)

Following Theorem 1.12b, the complete lattice (JB,v) gives rise to the dual closure
operator pB : J → JB defined by

pB(J) =
⊔
{J ′ ∈ JB | J ′ v J}. (4.7)

Note that the assumptions of Theorem 1.12b are satisfied because JB ⊆ J and the
complete lattices (JB,v) and (J ,v) have the same join operation, namely t. We outline
some important properties of pB in Proposition 4.2 and Theorem 4.1.

71In other words, a set J is B-consistent if (4.2) is feasible and does not contain any always-active
inequality.

72Recall that ⊥ v J for any J ∈ J , so if the elements J, J ′ are not comparable by v, they are subsets
of [n], hence set union in the last case in (4.6) is well-defined.

91

Proposition 4.2. A set J ⊆ [n] is B-consistent if and only if pB(J) = J .

Proof. Apply Corollary 1.4 to the complete lattices (J ,v) and (JB,v) and the associated
dual closure operator pB. Note that ⊥ is not a subset of [n], so it is not B-consistent
despite pB(⊥) = ⊥.

Theorem 4.1. Let J ⊆ [n] and B ⊆ [m]. The following are equivalent:

(a) system (4.2) is feasible,

(b) pB(J) 6= ⊥,

(c) pB(J) is the union of all B-consistent subsets of J , i.e., pB(J) is the greatest B-consis-
tent subset of J ,

(d) pB(J) = J − { j ∈ J | (4.2) implies xj = 0 }, i.e., system (4.2) implies xj = 0 if and
only if j ∈ [n]− pB(J).

If these statements hold, then pB(J) = [n]−σ(x∗) where x∗ ∈ ri {x ∈ Rn | x satisfies (4.2) }
and σ was defined in (1.2a).

Proof. For brevity of notation in this proof, for any J ⊆ [n] and B ⊆ [m], we define

XB(J) = {x ∈ Rn | x satisfies (4.2) }. (4.8)

It is easy to see from (4.2) that if J ⊆ J ′, then XB(J) ⊆ XB(J ′). 73

(a) =⇒ (b): If (4.2) is feasible, then

J ′ = J − { j ∈ J | (4.2) implies xj = 0 } (4.9)

is B-consistent by definition. Also, J ′ v J , hence pB(J) 6= ⊥ due to ⊥ t J ′ = J ′.
(b) =⇒ (c): If pB(J) 6= ⊥, pB(J) =

⋃
{J ′ ∈ JB | J ′ ⊆ J} because ⊥ is the identity

element of t and operation t coincides with ∪ when applied to subsets of [n].
(c) =⇒ (a): By intensivity of pB together with pB(J) ⊆ [n], we have that pB(J) ⊆ J ,

so XB(pB(J)) ⊆ XB(J). By definition of a B-consistent set, system (4.2) is feasible
for pB(J), i.e., XB(pB(J)) 6= ∅. Consequently, XB(J) 6= ∅, i.e., (4.2) is feasible.

(c) =⇒ (d) by contradiction: Let J ′ be defined as in (4.9) and pB(J) 6= J ′. As
discussed previously, J ′ is B-consistent and J ′ ⊆ J , so pB(J)) J ′. Consequently, there
exists j ∈ pB(J) − J ′. By definition of J ′, (4.2) implies xj = 0, i.e., xj = 0 holds for
all x ∈ XB(J) = XB(J ′). Moreover, pB(J) ⊆ J implies XB(pB(J)) ⊆ XB(J), thus
xj = 0 holds for all x ∈ XB(pB(J)). Having j ∈ pB(J) is contradictory with pB(J) being
B-consistent (recall Proposition 4.2).

(d) =⇒ (b): Trivial because (4.9) is not equal to ⊥.
The last statement follows from (d) by applying Theorem 1.6 to system (4.2).

Following statement (d) in Theorem 4.1, pB can be interpreted as a propagator for the
propagation rule (4.1). Recalling §1.4.1.1, mapping pB also satisfies the typical properties
of propagators, i.e., intensivity and isotony. Moreover, pB holds on to the intuitive idea

73One can show that the restriction of XB to B-consistent sets is a bijection between B-consistent sets
and non-empty faces of the polyhedron XB([n]). Recalling [160, §2.2] that the face lattice of a polyhedron
is the set of its faces partially ordered by the set inclusion, it also holds that the face lattice of XB([n]) is
order-isomorphic to the lattice (JB ,v). To be precise, for this result it is expected that ∅ is a face of any
polyhedron (as in [160, §2.1]) and that ∅ always belongs to the face lattice – this may not be the case in
some formalisms [10, §8].

92

inputs: J ∈ J , set of blocks B ⊆ 2[m].
1 J ′ := J
2 while ∃B ∈ B : pB(J ′) 6= J ′ do
3 Find such B.
4 J ′ := pB(J ′)

5 return J ′

Algorithm 4.1: Propagation algorithm pB applied to input J ∈ J .

of a propagator: it makes an inference based on local information (in this case, detects
whether some inequality is always active based on a subset B of all equalities). Using
this propagator, we formulate the propagation algorithm that enforces B-consistency in
Algorithm 4.1.

Since the set J is finite and propagators pB, B ∈ B are intensive and isotone, Al-
gorithm 4.1 is an instance of the more general Algorithm 1.1. By Theorem 1.13, the
value returned by Algorithm 4.1 is independent of the order in which the propagators pB
are applied. Thus, we can denote the value returned by Algorithm 4.1 as pB(J). For
any J ∈ J , pB(J) is the greatest common fixed point of the propagators pB, B ∈ B such
that pB(J) v J .

Proposition 4.3. A set J ⊆ [n] is B-consistent if and only if pB(J) = J .

Proof. Consider the following chain of equivalences:

J is B-consistent ⇐⇒ ∀B ∈ B : J is B-consistent (4.10a)

⇐⇒ ∀B ∈ B : pB(J) = J (4.10b)

⇐⇒ pB(J) = J (4.10c)

where (4.10a) is given by Definition 4.1 and (4.10b) follows from Proposition 4.2. Equiv-
alence (4.10c) follows from the definition of pB in Algorithm 4.1.

Remark 4.1. It can be shown that pB is the dual closure operator associated with (recall
Theorem 1.12b) the complete lattice of B-consistent sets extended by ⊥, i.e.,

{ J ⊆ [n] | J is B-consistent } ∪ {⊥} = { J ∈ J | pB(J) = J } (4.11)

where the partial order is v and its join operation is again t.

Example 4.1. Let m = 3, n = 4, J = {2, 3, 4}, B = {{1, 2}, {3}}, and the system Ax = b
from (2.2a) be

3x1 + x2 = 1 (4.12a)

x2 + 2x3 = 1 (4.12b)

− 2x2 + 5x3 − x4 = 0 (4.12c)

where the equalities are numbered 1–3 from top to bottom. Recall that x2, x3, x4 ≥ 0 due
to (2.2b) and x1 = 0 due to (2.2c) (note that 1 /∈ J). We now demonstrate the run of
Algorithm 4.1.

93

inputs: instance of problem (1.1), dual-feasible solution y, set of blocks B.
1 while pB(τ(y)) = ⊥ do
2 Find an improving direction ȳ satisfying (2.3).
3 Compute (possibly non-optimal) step size α > 0 so that y + αȳ is feasible.
4 Update y := y + αȳ.

5 return y

Algorithm 4.2: Algorithmic scheme for approximate optimization of the dual (1.1)
using the constraint propagation rule (4.1).

First, see that p{3}(J) = J because equality (4.12c) can be easily satisfied by, e.g., x2 =
x3 = 1 and x4 = 3. So, this equality does not (together with non-negativity of x2, x3, x4)
imply that any of these variables are zero and p{3} is therefore not applied.

Second, we apply propagator p{1,2}. From (4.12a), it follows that x2 = 1 due to x1 = 0.
Combining this with (4.12b) yields that x3 = 0. Hence, the equalities (4.12a)-(4.12b)
together with x1 = 0 imply x3 = 0, i.e., p{1,2}(J) = {2, 4} and x3 is set to zero (via (2.2c)
and 3 /∈ p{1,2}(J)). 74

Third, we return to propagator p{3}. Due to x3 = 0, (4.12c) can be satisfied only
with x2 = x4 = 0. In other words, (4.12c) together with x3 = 0 and non-negativity of x2

and x4 implies x2 = x4 = 0, i.e., all variables are now set to zero and p{3}({2, 4}) = ∅.
Finally, we again apply propagator p{1,2} and find that equalities (4.12a)-(4.12b) can-

not be satisfied if all variables are zero. Hence, the propagation algorithm detected a
contradiction, i.e., p{1,2}(∅) = ⊥ and pB(J) = ⊥. 75 4

Let us recall system (2.2). If pB(J) = ⊥, then (2.2) is infeasible. This follows from
the fact that if a subsystem (4.2) implies xj = 0 for some j ∈ J , then also the whole
system (2.2) implies xj = 0. Furthermore, if a subsystem (4.2) is infeasible, then so
is (2.2). On the other hand, pB(J) 6= ⊥ in general does not imply that (2.2) is feasible.

As discussed previously, if (2.2) with J = τ(y) is infeasible, there exists an improving
direction ȳ satisfying (2.3). We note that such an improving direction can be constructed
from the history of the propagation, as we outlined in [54a, Appendix B].

We show how the propagation rule defined in this section can be applied to approxi-
mately optimize the dual (1.1) in Algorithm 4.2 which is a specialized version of the more
general Algorithm 2.1.

4.2 Relation Between the Approaches

Now, we proceed to show a close connection between Algorithm 4.2 (based on constraint
propagation) and BCD. In detail, we will prove that the stopping points of Algorithm 4.2
are precisely pre-ILMs of the dual (1.1) w.r.t. B and that ILMs of the dual (1.1) w.r.t. B
can be characterized as points y for which the set τ(y) is B-consistent. Then, using
Theorem 1.8, it follows that BCD with the relative-interior rule (and consequently, any
exact BCD method) cannot improve the objective in the stopping points of Algorithm 4.2.

74We do not set x2 = 1 because we infer only which variables are zero. In other words, the reason is
that there is no inequality x2 ≤ 1 (or x2 ≥ 1) in system (2.2) that could be made active.

75In general, it does not necessarily hold that pB(∅) = ⊥. E.g., if b = 0 (i.e., system (4.3a) is homoge-
neous), then (4.3) is feasible even with J = ∅ and pB(∅) = ∅ 6= ⊥.

94

On the other hand, Algorithm 4.2 cannot improve the objective from any ILM or even
pre-ILM w.r.t. B.

We consider applying BCD to the dual linear program (1.1), so whenever we refer to
any statement from §1.2, we assume that Y = {y ∈ Rm | A>y ≥ c}, f(y) = b>y, and f̄ is
defined as in (1.12).

Next, we formulate the dual (1.1) restricted to a block of variables y|B, B ⊆ [m]

together with the corresponding primal 76, i.e.,

max d>x min
∑
i∈B

biyi (4.13a)

Aix = bi yi ∈ R ∀i ∈ B (4.13b)

xj ≥ 0
∑
i∈B

Aijyi ≥ dj ∀j ∈ [n] (4.13c)

where dj = cj −
∑

i∈[m]−B Aijyi are constants and Aij is the element of A in row i and
column j. Notice that the complementary slackness (and strict complementary slackness)
conditions for block-optimality of y|B, i.e., optimality of y|B for dual (4.13), are equivalent
to (4.2) (and (4.3)) being feasible for J = τ(y), respectively, due to

∑
i∈B Aijyi = dj ⇐⇒

j ∈ τ(y) by definition of dj . This observation allows us to show the connection of local
minima, interior local minima, and optimizers of the dual (1.1) to B-consistent sets.

Lemma 4.1. Let y be feasible for the dual (1.1) and let B ⊆ [m]. Then,

(a) block of variables y|B satisfies (1.15) if and only if pB(τ(y)) 6= ⊥,

(b) block of variables y|B satisfies (1.16) if and only if pB(τ(y)) = τ(y), i.e., τ(y) is
B-consistent.

Proof. (a): Clearly, y|B is optimal for the dual (4.13) if and only if there exists x feasible
for the primal (4.13) satisfying complementary slackness conditions. The complementary
slackness conditions are equivalent to (4.2) for J = τ(y). By statements (a) and (b) in
Theorem 4.1, (4.2) for J = τ(y) is feasible if and only if pB(τ(y)) 6= ⊥.

(b): Block y|B satisfies (1.16) if and only if there exists an optimal solution x for the
primal problem (4.13) satisfying strict complementary slackness conditions with y|B. This
is equivalent to feasibility of (4.3) for J = τ(y). By definition of B-consistency, this is
equivalent to τ(y) being B-consistent, i.e., pB(τ(y)) = τ(y) by Proposition 4.2.

Theorem 4.2. Let y be feasible for the dual (1.1). Then,

(a) y is an LM of the dual (1.1) w.r.t. B if and only if pB(τ(y)) 6= ⊥ for all B ∈ B,

(b) y is an ILM of the dual (1.1) w.r.t. B if and only if pB(τ(y)) = τ(y), i.e., τ(y) is
B-consistent,

(c) y is an optimizer of the dual (1.1) if and only if p[m](τ(y)) 6= ⊥,

(d) y is in the relative interior of optimizers of the dual (1.1) if and only if τ(y) is
[m]-consistent.

76The pair (4.13) is mutually dual. Of course, the primal (on the left-hand side in (4.13)) is different
from the primal in (1.1). Namely, it contains only a subset of the equality constraints and the objective is
different.

95

Proof. (a): By definition, y is an LM of dual (1.1) w.r.t. B if (1.15) holds for all B ∈ B.
Applying Lemma 4.1a, this is equivalent to pB(τ(y)) 6= ⊥ for all B ∈ B. Claim (b) is
analogous, except that we use Lemma 4.1b and recall Proposition 4.3.

(c): Dual optimality of y is equivalent to (1.15) with B = [m]. The claim now follows
from Lemma 4.1a. Statement (d) is obtained similarly, by Lemma 4.1b.

4.2.1 Connection Between the Propagators and BCD Updates

Before we characterize pre-ILMs using the propagation algorithm, let us focus on a con-
nection between the propagators pB and block-coordinate updates (1.14).

Lemma 4.2. Let y be a feasible point for the dual (1.1) and B ⊆ [m]. Let y∗ be the
result of BCD iteration (1.14) applied to y w.r.t. block B, i.e., y∗ =

(
y∗|B, y|[m]−B

)
where

y∗|B ∈ ri argminy′∈RB f̄
(
y′, y|[m]−B

)
. Then,

(a) pB(τ(y)) = ⊥ if and only if b>y > b>y∗,

(b) if pB(τ(y)) 6= ⊥, then b>y = b>y∗ and pB(τ(y)) = τ(y∗).

Proof. It follows from Lemma 4.1a that pB(τ(y)) = ⊥ holds if and only if condition (1.15)
was not satisfied i.e., y|B was not block-optimal and updating it results in improved

objective, i.e., b>y > b>y∗. On the other hand, if (1.15) was satisfied, y|B was block-

optimal and objective does not improve, i.e., pB(τ(y)) 6= ⊥ implies b>y = b>y∗.

For the remaining statement, suppose that y|B was block-optimal, i.e., pB(τ(y)) 6= ⊥
by Lemma 4.1a. Since any optimal solution to the primal (4.13) needs to satisfy comple-
mentary slackness with any dual-optimal y|B, the set of primal-optimal solutions coincides
with x feasible for (4.2) where J = τ(y). Let x∗ be from the relative interior of (4.2) for
J = τ(y), i.e., from the relative interior of optimizers of the primal (4.13). By the last
statement in Theorem 4.1 together with feasibility of (4.2) for J = τ(y), we have that
pB(τ(y)) = [n]− σ(x∗) = τ(y∗) where the second equality holds by strict complementary
slackness (Theorem 1.3).

Remark 4.2. We now describe an interpretation of the relative-interior rule based on
Lemmas 4.1 and 4.2. Let y be a dual-feasible solution. When performing a single update
of y over a block B ∈ B to obtain y∗, precisely one of the following options happens:

(a) If y|B already satisfies condition (1.16), then τ(y) = τ(y∗) and b>y = b>y∗.

(b) If y|B satisfies (1.15) but not (1.16), then τ(y)) τ(y∗) and b>y = b>y∗.

(c) If y|B does not satisfy (1.15), then b>y > b>y∗.

Suppose that we try to improve y by BCD updates (1.14) where the sequence (Bk)
∞
k=1

is chosen such that each B ∈ B occurs in it an infinite number of times. Since the set τ(y)
may shrink only a finite number of times, case (b) from the previous list can happen only
a finite number of times in a row. Hence, when applying relative-interior updates (1.14)
for consecutive B ∈ B from the sequence, either the objective b>y improves after a finite
number of iterations or one needs to attain an ILM w.r.t. B (cf. Theorem 1.8).

The connection between the propagators and BCD for multiple consecutive iterations
is given by the following theorem.

96

Theorem 4.3. Let y1 be a feasible point for the dual (1.1). Let (Bk)
∞
k=1 be a sequence

of blocks from B. Let (yk)∞k=1 be a sequence satisfying (1.14) w.r.t. blocks (Bk)
∞
k=1.

Let (Jk)
∞
k=1 be the sequence defined by J1 = τ(y1) and Jk+1 = pBk(Jk) for all k ≥ 1.

Then, for every k, it holds that:

(a) if Jk = ⊥, then b>yk < b>y1,

(b) if Jk 6= ⊥, then b>yk = b>y1 and τ(yk) = Jk.

Proof. We proceed by induction. The base case with k = 1 holds by definition due to
b>y1 = b>y1 and J1 = τ(y1) 6= ⊥. For the inductive step with k ≥ 1, yk+1 originated
from yk by updating block Bk and Jk+1 = pBk(Jk). We consider the following cases:

• If pBk(τ(yk)) 6= ⊥ and Jk 6= ⊥, we have that b>yk = b>yk+1 and pBk(τ(yk)) = τ(yk+1)
by Lemma 4.2b. By induction hypothesis, due to Jk 6= ⊥, we have b>y1 = b>yk

and τ(yk) = Jk. Therefore, τ(yk+1) = pBk(τ(yk)) = pBk(Jk) = Jk+1 6= ⊥ and
b>y1 = b>yk = b>yk+1.

• If pBk(τ(yk)) = ⊥ and Jk 6= ⊥, then by Lemma 4.2a, b>yk > b>yk+1. Similarly as in
the previous case, by induction hypothesis: since Jk 6= ⊥, it holds that b>y1 = b>yk

and τ(yk) = Jk. Thus, pBk(τ(yk)) = pBk(Jk) = Jk+1 = ⊥ and b>y1 = b>yk > b>yk+1.

• If Jk = ⊥, by induction hypothesis b>yk < b>y1 and by isotony of propagator, Jk+1 =
pBk(Jk) = pBk(⊥) = ⊥. Since updates (1.14) never worsen the objective, b>y1 >
b>yk ≥ b>yk+1.

Example 4.2. Let us now consider the same instance as in Example 4.1. Here, we will
illustrate that BCD updates with the relative-interior rule are in correspondence with the
actions of the propagators that were shown in Example 4.1.

Let the matrix A and vector b be defined by (4.12) and B = {{1, 2}, {3}}, i.e., as in
Example 4.1. In addition, we define c = (3, 6, 6, 0) so that the dual (1.1) reads

min y1 + y2 (4.14a)

3y1 ≥ 3 (4.14b)

y1 + y2 − 2y3 ≥ 6 (4.14c)

2y2 + 5y3 ≥ 6 (4.14d)

− y3 ≥ 0 (4.14e)

where the constraints (4.14b)-(4.14e) correspond to the primal variables x1-x4.

For y1 = (3, 3, 0), the set of active dual constraints is J = τ(y1) = {2, 3, 4} (which
is the same initial set J as in Example 4.1). We now initialize BCD at y1. As given
by the previously shown theorems, the set of active dual constraints after each update of
block B will be the same as if the propagator pB was applied (to be precise, this holds until
the propagator does not return ⊥). Moreover, the propagator returns ⊥ if and only if the
corresponding BCD update improves the objective.

For B = {3}, y1 is block-optimal and also in the relative interior of block-optimizers
which is in correspondence to p{3}(τ(y1)) = τ(y1) (cf. Lemma 4.1b for y1 and B = {3}).

Next, y1 is block-optimal for B = {1, 2} but not in the relative interior of block-
optimizers. Updating the values of y1|{1,2} to the relative interior of block-optimizers re-

sults in, e.g., y2 = (2, 4, 0). Although the relative interior contains multiple elements,

97

we will have p{1,2}(τ(y1)) = τ(y2) = {2, 4} for any of them (cf. Lemma 4.2b for y1

and B = {1, 2}).

Now, y2 is block-optimal for B = {3} but not in the relative interior of block-optimizers.
Performing a relative-interior update for this coordinate results in, e.g., y3 = (2, 4,−1

5).
So, we have p{3}(τ(y2)) = τ(y3) = ∅ (cf. Lemma 4.2b for y2 and B = {3}).

Finally, y3 is not block-optimal for B = {1, 2}. Updating this block with the relative-
interior rule results in, e.g., y4 = (2− 1

5 , 4−
1
5 ,−

1
5) and improves the objective from b>y3 =

6 to b>y4 = 6− 2
5 . Note that p{1,2}(τ(y3)) = ⊥ (cf. Lemma 4.2a for y3 and B = {3}). 4

4.2.2 Pre-interior Local Minima and Overview of Results

We are now able to combine the previous results with the properties of pre-ILMs given in
Theorem 1.8 to obtain their characterization using the propagation algorithm.

Theorem 4.4. For any y feasible for the dual (1.1), y is a pre-ILM of dual (1.1) w.r.t. B
if and only if pB(τ(y)) 6= ⊥.

Proof. Let (Bk)
l
k=1 be a finite sequence of blocks Bk ∈ B such that

pBl(pBl−1
(. . . pB2(pB1(τ(y))) . . .)) = pB(τ(y)). (4.15)

Note, (Bk)
l
k=1 can be obtained, e.g., by storing the individual blocks as they were applied in

Algorithm 4.1. Let us extend this finite sequence into an infinite sequence (Bk)
∞
k=1 so that

(Bk)
∞
k=1 contains each element of B an infinite number of times. Next, define sequences

(Jk)
∞
k=1 and (yk)∞k=1 based on the sequence (Bk)

∞
k=1 and y1 = y as in Theorem 4.3.

If Jl+1 = pB(τ(y)) = ⊥, Theorem 4.3a yields b>y1 > b>yl+1. This together with
Theorem 1.8c implies that y = y1 is not a pre-ILM because updates (1.14) cannot improve
the objective from a pre-ILM.

On the other hand, if Jl+1 = pB(τ(y)) 6= ⊥, then pB(Jl+1) = Jl+1 6= ⊥ for all B ∈ B,
hence Jk 6= ⊥ for all k, so b>y1 = b>yk by Theorem 4.3b. Combining this with Theo-
rem 1.8d yields that y = y1 is a pre-ILM.

Corollary 4.1 summarizes and connects the results given by Theorems 4.2 and 4.4.

Corollary 4.1. Let y be a feasible point for the dual (1.1). The following implications
and equivalences hold (for better readability, equivalent statements are boxed in gray):

y is an LM of dual (1.1) w.r.t. B ⇐ y is an ILM of dual (1.1) w.r.t. B
m m

pB(τ(y)) 6= ⊥ for all B ∈ B pB(τ(y)) = τ(y)
⇑ m

y is a pre-ILM of dual (1.1) w.r.t. B ⇐ τ(y) is B-consistent
m ⇑

pB(τ(y)) 6= ⊥ ⇐ y is in the rel. int. of optimizers of dual (1.1)
⇑ m

y is an optimizer of dual (1.1) p[m](τ(y)) = τ(y)

m m
p[m](τ(y)) 6= ⊥ ⇐ τ(y) is [m]-consistent

98

Proof. The equivalences are given by Theorems 4.2 and 4.4. To link the individual state-
ments together, let J ⊆ [n]. We prove the following implications:

p[m](J) = J
(a)
=⇒ pB(J) = J

=⇒(b)

=⇒(c)

p[m](J) 6= ⊥
(d)
=⇒ pB(J) 6= ⊥

(e)
=⇒ ∀B ∈ B : pB(J) 6= ⊥.

(4.16)

To show (a), p[m](J) = J is equivalent to J being [m]-consistent by Proposition 4.2,
i.e., (4.3) is feasible for B = [m] by definition. This clearly implies feasibility of (4.3) for
any B ⊆ [m] as then (4.3) contains only a subset of all the equalities, so J is B-consistent
which is equivalent to pB(J) = J by Proposition 4.3.

Implications (b) and (c) are trivial due to J 6= ⊥.

For implication (d), denote p[m](J) = J ′ 6= ⊥, so (4.3) is feasible for J ′ and B = [m] be-
cause J ′ is [m]-consistent by Proposition 4.2. As in the previous case, this implies pB(J ′) =
J ′. By (4.10), J ′ is a common fixed point of propagators pB, B ∈ B and a subset of J .
As discussed in §4.1, pB(J) is the greatest common fixed point of these propagators such
that pB(J) v J , so ⊥ 6= J ′ v pB(J). Due to ⊥ v J ′, we have pB(J) 6= ⊥.

Implication (e) can be easily proved by contrapositive: if pB(J) = ⊥ for some B ∈ B,
then the propagation algorithm (Algorithm 4.1) terminates with pB(J) = ⊥.

4.3 Other Forms of Linear Programs

As we previously noted in §1.1 and §1.2.3, it is well known that linear programs come in dif-
ferent forms which can be easily transformed to each other, preserving global optima [110,
§2.1]. One can ask if the propagation algorithm can be formulated and the relation with
BCD holds also for different forms than (1.1). This question is non-trivial because trans-
formations that preserve global minima do not necessarily preserve (pre-)interior local
minima, as we discussed in §1.2.3. Nevertheless, we argue that, independently of the form
of the LP problem, the two approaches are still related in the same way if we use the
propagation rule (4.1).

4.3.1 Inequalities and Non-negative Variables

For example, consider the primal-dual pair

max c>x min b>y (4.17a)

Ax ≤ b y ≥ 0 (4.17b)

x ≥ 0 A>y ≥ c. (4.17c)

The primal problem (4.17) (on the left-hand side) can be equivalently reformulated [110,
§2.1, 103, §4.1] by introducing non-negative slack variables si ≥ 0, i ∈ [m] which yields

99

the primal-dual pair

max c>x min b>y (4.18a)

Ax+ s = b y ∈ Rm (4.18b)

x ≥ 0 A>y ≥ c (4.18c)

s ≥ 0 y ≥ 0 (4.18d)

which is in the form (1.1). See that the duals (4.17) and (4.18) are identical, hence also
BCD applied to them is identical.

The propagation rule (4.1) for the case of (4.18) corresponds to deciding which si
and xj are implied to be zero. Clearly, setting si = 0 corresponds to setting Aix = bi and
enforcing si > 0 is equivalent to Aix < bi. Thus, instead of rewriting (4.17) into (4.18),
we can apply propagation directly to the primal (4.17) except that when considering
system (4.2) for some B ∈ B, we will instead of a single set J use two sets, J1 ⊆ [m]
and J2 ⊆ [n], that indicate which of the original inequalities need to hold with equality,
i.e., we will use

Aix ≤ bi ∀i ∈ J1 ∩B (4.19a)

Aix = bi ∀i ∈ ([m]− J1) ∩B (4.19b)

xj ≥ 0 ∀j ∈ J2 (4.19c)

xj = 0 ∀j ∈ [n]− J2 (4.19d)

instead of (4.2). Deciding which inequalities among (4.19a) in (4.19) are always active by
considering a set J1 ⊆ [m] is in one-to-one correspondence with deciding which inequali-
ties si ≥ 0 in

Aix+ si = bi ∀i ∈ B (4.20a)

si ≥ 0 ∀i ∈ J1 (4.20b)

si = 0 ∀i ∈ [m]− J1 (4.20c)

xj ≥ 0 ∀j ∈ J2 (4.20d)

xj = 0 ∀j ∈ [n]− J2 (4.20e)

are always active. In particular, (4.19) contains an always-active inequality if and only if
(4.20) contains an always-active inequality.

4.3.2 Inequalities and Real-Valued Variables

The second common form of a primal-dual pair is

max c>x min b>y (4.21a)

Ax ≤ b y ≥ 0 (4.21b)

x ∈ Rn A>y = c. (4.21c)

By complementary slackness, y is optimal for the dual if and only if there exists x ∈ Rn
such that

Aix ≤ bi ∀i ∈ σ′(y) (4.22a)

Aix = bi ∀i ∈ [m]− σ′(y) (4.22b)

100

where σ′(y) = {i ∈ [m] | yi = 0} (in analogy to (1.2a)).
From this point, we could completely repeat the reasoning in §4.1 and prove the same

theorems as in §4.2. We would infer from

Aix ≤ bi ∀i ∈ σ′(y) ∩B (4.23a)

Aix = bi ∀i ∈ ([m]− σ′(y)) ∩B (4.23b)

whether some of the inequalities (4.23a) are always active. As an example, for any y feasible
for the dual (4.21): y is an ILM of the dual (4.21) w.r.t. B if and only if for each B ∈ B,
(4.23) is feasible and no inequality from (4.23a) is always active within the system (4.23).

4.4 Discussion

In the previous sections, we have shown that, for any B ⊆ 2[m], pre-ILMs w.r.t. B of the
dual (1.1) coincide with the stopping points of Algorithm 4.2. Perhaps most importantly,
we characterized the types of local and global minima using the local consistency from §4.1
in Corollary 4.1. Let us now comment on how these results apply in practice to LP
relaxations that we met earlier.

4.4.1 Weighted CSP

We proved in [151a, §6] that

• ϕ is an ILM of (1.43) (w.r.t. individual variables) if and only if A∗(gϕ) is arc consistent
(in the sense of (1.29)) and non-empty 77 and

• ϕ is a pre-ILM of (1.43) (w.r.t. individual variables) if and only if A∗(gϕ) has non-
empty AC closure.

These results can be now seen as a consequence of the characterization in Corollary 4.1
since propagation rule (4.1) (with appropriately defined blocks) applied to system (2.8)
corresponds to enforcing arc consistency, as we discussed earlier at the beginning of §4.1.

In addition, we showed [151a, §6] that max-sum diffusion [96, 146] and even gen-
eral max-marginal averaging approaches (such as TRW-S [88]) satisfy the relative-interior
rule. We also found out that MPLP [65] does not satisfy the relative-interior rule (i.e., it
may choose a block-optimizer from the relative boundary), but its fixed points are pre-
ILMs [151a, §6.2]. As discussed in §4.1, the VAC [33] and Augmenting DAG algorithm [95,
146] are instances of Algorithm 4.2. Therefore, our results subsume the relation between
these BCD methods and the VAC / Augmenting DAG algorithm.

Furthermore, we are able to show that other BCD methods applied to a dual LP
relaxation of WCSP also satisfy the relative-interior rule (e.g., the generalization of max-
sum diffusion to higher-order models in [149, §6.2] or, possibly under additional conditions,
the convex max-product algorithm [135, §3.3, 111, Algorithm 1]) or that their fixed points
are pre-ILMs (e.g., SRMP [87] or MPLP++ [134]).

Since the updates of the generalized max-sum diffusion from [149, §6.2] satisfy the
relative-interior rule, it immediately follows from the discussion in [149, §6.2] (combined
with our previous results here) that BCD with the relative-interior rule in fact enforces

77Non-emptiness is in fact not necessary here because CSP A∗(f) is non-empty for any WCSP f ∈ RT .
We state it in this form only for the purposes of comparison with Corollary 5.3 given later.

101

pairwise consistency of the active-tuple CSP if a dual LP relaxation with a different cou-
pling scheme (recall Remark 1.9) is optimized.

Even though the constraint-propagation-based algorithm presented in §3.2 can be inter-
preted as detecting some always-active inequalities in a subsystem of the complementary
slackness conditions, it does not find all of them even if unsatisfiability of CSP A∗(f) is
always detected. Consequently, constraint propagation that was used in §3.2 is weaker
than the one proposed in §4.1. We will return to this in more detail later in §5.2.

4.4.2 SAT Problem

Next, we review one of our results from [50a] where we noticed a connection between
BCD and unit propagation. We will argue next that this connection can be explained
by the general relation between BCD and constraint propagation identified in §4.2. This
subsection is to some extent based on [50a, §3].

Let us consider the SAT problem [21] (a.k.a. the Boolean satisfiability problem) for a
set of clauses C. Following the notation from §2.4, this problem can be formulated [110,
Example 13.4] as finding an assignment x ∈ {0, 1}V such that∑

i∈V +
c

xi +
∑
i∈V −c

(1− xi) ≥ 1 ∀c ∈ C. (4.24)

Deciding whether such an assignment exists is well known to be NP-complete [32, 84].
A popular technique used to tackle this problem is unit propagation [153, §4]. Unit

propagation can simplify a set of clauses by gradually assigning values to variables that
can take only a single specific value in order to result in a satisfying assignment. Noting
that the LP relaxation of (4.24) is (2.15) where C≥1(y) = C and XU (y) = V (while the
remaining sets C=1(y), C≤1(y), C=0(y), X1(y), and X0(y) are empty), unit propagation
in fact applies propagation rules A1 and A2 from Table 2.1 to make some of the variables
decided or detect that the instance is unsatisfiable. Note, the other rules B1-C2 are not
applicable due to C=1(y) = C≤1(y) = C=0(y) = ∅. More on unit propagation can be
found, e.g., in [157] or [76, §3.2.3, 21, §3.5.2] (where it is called unit resolution).

As already indicated, the LP relaxation of SAT is the feasibility problem of find-
ing x ∈ [0, 1]V satisfying (4.24). The dual LP relaxation can be expressed in a form
similar to (2.14), namely

min
∑
i∈V

max{y(C+
i), y(C−i)} − y(C) (4.25a)

yc ≥ 0 ∀c ∈ C. (4.25b)

Suppose that we initialize y = 0 and sequentially update each yc, c ∈ C to be in
the relative interior of the set of coordinate-wise optimizers, i.e., we apply BCD with the
relative-interior rule to (4.25) where each block contains only a single variable yc, c ∈ C.
After |C|+ 1 cycles 78 of updates, one of the following two options happens:

• The dual objective (4.25a) improves, i.e., decreases below 0 which was the initial
objective for y = 0. This is the case if and only if unit propagation would detect
contradiction if applied to this instance.

78By a cycle of updates, we mean performing the update (1.14) for each variable yc, c ∈ C in some
predefined order.

102

• The dual objective (4.25a) stays zero. In this case, let us define the sets X0(y), X1(y),
and XU (y) as in (2.15e)-(2.15g) based on the current y. Sets X0(y) and X1(y) contain
precisely those variables that would be set by unit propagation to 0 and 1, respectively.
The set XU (y) contains those variables whose value would not be determined by unit
propagation. Note, in this case, unit propagation would not detect contradiction.

We now discuss how this phenomenon follows from our previous results. The LP re-
laxation of SAT has zero objective, so it can be either feasible with optimal value zero, or
infeasible. To find out which case it is, one can use unit propagation: if no contradiction
is detected by applying rules A1 and A2 from Table 2.1, then, for each c ∈ C, either all
variables in Vc are decided and the clause is satisfied, or there are at least two undecided
variables in Vc. Consequently, setting all undecided variables to 1

2 results in an assign-
ment x ∈ [0, 1]V satisfying (4.24). All in all, unit propagation can decide the feasibility of
the LP relaxation of SAT, i.e., the rules A1 and A2 are refutation complete for the system
of linear inequalities given by the LP relaxation of any SAT instance.

Next, the dual (4.25) is always feasible, so it can be either feasible with zero optimal
value (if the primal is feasible), or unbounded (if the primal is infeasible). The comple-
mentary slackness conditions for optimality of y = 0 for (4.25) are equivalent to feasibility
of (4.24) subject to x ∈ [0, 1]V (i.e., feasibility of LP relaxation of SAT). Applying the
general propagation rule (4.1) to these conditions corresponds to rules A1 and A2 from
Table 2.1 that in fact perform unit propagation in (4.24). By §4.2.1, these rules detect
contradiction if and only if the dual objective improves. And, if the dual objective does not
improve, then point y obtained after |C|+ 1 cycles of updates is an ILM of (4.25) (w.r.t.
individual variables) by Theorem 1.9 and, by §4.2.1, the sets X0(y), X1(y), and XU (y)
defined by the ILM y (via (2.15e)-(2.15g)) coincide with the sets of variables that unit
propagation sets to 0, 1, and does not decide, respectively.

Of course, there exist faster algorithms for unit propagation (see, e.g., [157]) than
applying BCD with the relative-interior rule to the dual LP relaxation (4.25). However,
this result is of theoretical importance as it provided a starting point for the more general
results that were described in §4.2.

Remark 4.3. This result is also connected to the fact that applying the rules from Table 2.1
corresponds to enforcing arc consistency of (4.24) seen as a CSP (recall Remark 2.9). The
connection between unit propagation in the SAT problem and arc consistency in its different
formulations as a CSP was studied in [141].

4.4.3 Weighted Max-SAT

As explained in §4.1, the propagation rules outlined in §2.4.1 for the LP relaxation of
weighted Max-SAT are (up to technical details) an example of the specific constraint
propagation rule (4.1) applied to system (2.15). Consequently, pre-ILMs of (2.14) w.r.t.
individual variables 79 coincide with the stopping points of the algorithm from §2.4.3.

79In detail, the system from which we infer the always-active inequalities in case of the rules in Table 2.1
contains all constraints 0 ≤ x ≤ 1 and 0 ≤ z ≤ 1, and a single primal constraint from (2.11b) (where some
of the inequalities may in fact be equalities, as in the complementary slackness conditions (2.15)). This
means that each block of dual variables in BCD consists of all p and q variables, and a single yc variable
where c is the index of the constraint from (2.11b). Recalling Fact 1.1, applying BCD to the dual (2.11)
with these blocks of variables is in correspondence to applying BCD to (2.14) along individual variables yc.

103

We performed experiments with coordinate-wise minimization (following the relative-
interior rule) of the dual LP relaxation of weighted partial 80 Max-SAT in [53a, §4.1]
and observed that the objective was frequently not too far from the optimum of the LP
relaxation. The results of this chapter show that the fixed points of BCD are of the same
nature as stopping points of the method from §2.4 (possibly up to the differences caused
by allowing hard clauses). We theoretically analyzed BCD with the relative-interior rule
applied to the dual LP relaxation of weighted partial Max-SAT in [50a, §2].

Interestingly, in [50a, §4], we identified a connection between BCD applied to the dual
LP relaxation of weighted Max-SAT and a modified version of the dominating unit-clause
rule [153, §4.3, 109, §3.1] which finds a part of some optimal solution, i.e., it finds an
assignment to a subset of variables that can be extended to some optimal solution of
the weighted Max-SAT problem. Similarly to §4.4.2, there is a relation between the sets
of variables that are set to 0 and 1 by this rule and the sets X0(y) and X1(y) defined
by (2.15f) and (2.15e) for an ILM y of (2.14), respectively. In detail, the former sets are
subsets of the latter sets [50a, Theorem 2]. However, we are currently not able to link this
phenomenon to our results from §4.2 or provide a simple proof and refer to [50a, §4] for
details.

80Weighted partial Max-SAT is a generalization of both weighted Max-SAT and SAT. In weighted partial
Max-SAT, there are two types of clauses – soft and hard. Each soft clause is assigned a weight and the task
is to find an assignment satisfying all hard clauses such that the sum of weights of satisfied soft clauses is
maximized [21, §19.2].

104

Chapter 5

Linear Programs Optimally Solvable by BCD

As we reviewed in §1.2, the fixed points of BCD need not be global minima for convex op-
timization problems (or even for linear programs). Moreover, finding new classes of linear
programs that are solvable by BCD (more precisely, linear programs where (pre-)ILMs are
global minima of the problem) seems to be hard. Despite these limitations, we were able
to find new such classes and present our results in this chapter.

To this end, we use our previous results from §4.2 and, in §5.1, link refutation-
completeness of the propagation rule (4.1) to optimality of BCD with the relative-interior
rule. This provides a new proof technique for finding (classes of) linear programs opti-
mally solvable by BCD. Next, in §5.2, we exemplify this technique on the optimization
problem (1.45) and show that (pre-)ILMs of (1.45) w.r.t. individual variables are global
minima – however, solving this problem (or even performing coordinate-wise updates with
the relative-interior rule) is likely intractable. After that, in §5.3, we find two more classes
that are defined by limiting the problem structure and form of the constraints. These
classes include, e.g., the maximum flow problem or LP relaxations of certain hard combi-
natorial problems. Nevertheless, thanks to the special structure of these linear programs,
they can be also solved by efficient combinatorial algorithms. Finally, we exemplify in §5.4
why reformulating a problem has an impact on its solvability by BCD.

This chapter is mainly based on [53a] (which is an improved version of [51a]) and
contains some insights from [54a, 151a]. Results described in §5.2 have not been published
before.

5.1 Refutation-Completeness and Optimality of BCD

First, let us return to the general constraint-propagation-based approach that we formu-
lated in Algorithm 2.1. If the chosen constraint propagation rule is refutation complete,
i.e., it is always able to detect infeasibility of complementary slackness conditions (2.2),
then any stopping point of Algorithm 2.1 is clearly a global minimum of the dual (1.1).
Applying this observation to the propagation rule (4.1), which was analyzed in §4.1, yields
the following corollary.

Corollary 5.1. Let B ⊆ 2[m]. The following are equivalent:

(a) every ILM y of the dual (1.1) w.r.t. B is a global minimum of the dual (1.1),

(b) every pre-ILM y of the dual (1.1) w.r.t. B is a global minimum of the dual (1.1),

(c) for all y feasible for the dual (1.1): p[m](τ(y)) = ⊥ =⇒ pB(τ(y)) = ⊥, i.e., if (2.2)
is infeasible for J = τ(y), then the propagation algorithm detects it (pB(τ(y)) = ⊥),

(d) for all y feasible for the dual (1.1): if J = τ(y) is B-consistent, then (2.2) is feasible.

Proof. The equivalence (a)⇐⇒ (b) is given by Corollary 1.3 and (a)⇐⇒ (d) follows from
Theorem 4.2b. The contrapositive of statement (c) is pB(τ(y)) 6= ⊥ =⇒ p[m](τ(y)) 6= ⊥.

105

The equivalence (b) ⇐⇒ (c) is now immediate from the implications and equivalences
summarized in Corollary 4.1.

This result shows that the question whether all the (pre-)ILMs are global minima for
a given linear program can be reformulated as the question whether the constraint propa-
gation rule (4.1) is refutation complete for a certain class of systems of linear inequalities
and equalities where this class is given by the complementary slackness conditions.

5.2 Solving Weighted CSP by BCD

Now, we apply this observation to the optimization problem (1.45) (i.e., (3.7)) which
was approximately optimized using constraint propagation in §3.2. Here, we show that
(pre-)ILMs w.r.t. individual variables of (1.45) are in fact global minima. More strongly,
this holds even for the LP formulation of (1.45). Next, we characterize pre-ILMs and
ILMs of the LP formulation using positive consistency. Finally, we derive coordinate-
wise updates satisfying the relative-interior rule, discuss their convergence, and prove that
executing a single update is likely intractable.

Using the well-known transformation from §1.1.2, (1.45) can be expressed as a linear
program with an exponential number of constraints. This linear program is the right-hand
problem of the pair

max
∑
x∈DV

F (x |g)λ(x) min
∑
S∈C

zS (5.1a)

∑
k∈DS

µS(k) = 1 zS ∈ R ∀S ∈ C (5.1b)

∑
x∈DV
x
S

=k

λ(x) = µS(k) fS(k) ∈ R ∀(S, k) ∈ T (5.1c)

λ(x) ≥ 0 F (x |f) ≥ F (x |g) ∀x ∈ DV (5.1d)

µS(k) ≥ 0 zS ≥ fS(k) ∀(S, k) ∈ T (5.1e)

where we also wrote the dual on the left-hand side. Note that g ∈ RT is a given WCSP.

In accordance with the pair (1.1), we will further on refer to the left-hand problem (5.1)
as primal and the right-hand problem (5.1) as dual. In the primal (5.1), there is a non-
negative variable λ(x) for each assignment x ∈ DV and a non-negative variable µS(k) for
each tuple (S, k) ∈ T . The dual (5.1) has a real-valued variable zS for each scope S ∈ C
and a real-valued variable fS(k) for each tuple (S, k) ∈ T . The primal constraints and
dual variables are thus indexed by T ∪ C whereas primal variables and dual constraints
are indexed by T ∪ DV . Note that these are disjoint unions, i.e., T ∩ C = T ∩ DV = ∅.
The index sets here are different from (1.1) where they were [m] and [n].

In this section, we partition any J ⊆ T∪DV into {JA, JX} where JA ⊆ T and JX ⊆ DV ,
i.e., JA = J ∩ T and JX = J ∩DV . 81

81This is analogous to the previously used notation. In §4, subsets of primal variables and dual constraints
were denoted by J . In §3.3, subsets of T (i.e., CSPs) were frequently denoted by A and subsets of DV

by X. We also emphasise that, unlike other sections with linear programs, the symbol x is no longer a
variable of the optimization problem, but is used only for indexing the variables and constraints.

106

Remark 5.1. Recall from Theorem 1.16 that the common optimal value of the primal-dual
pair (5.1) coincides with the optimal value of WCSP g. The primal (5.1) is therefore also
an LP formulation of WCSP g in some sense.

To see this more clearly, realize that any solution feasible for the primal satisfies∑
x∈DV

λ(x) =
∑
k∈DS

∑
x∈DV
x
S

=k

λ(x) =
∑
k∈DS

µS(k) = 1 (5.2)

where we chose an arbitrary S ∈ C and used primal constraints (5.1b) and (5.1c). More-
over, for any non-negative values of variables λ satisfying

∑
x∈DV λ(x) = 1, variables µ

can be defined using (5.1c) so that (λ, µ) is feasible for the primal (5.1). By non-negativity
of λ and

∑
x∈DV λ(x) = 1, the primal objective (5.1a) can be interpreted as a convex com-

bination of numbers F (x |g), x ∈ DV . Thus, primal-feasible solutions can attain any
objective value from the interval [minx F (x |g),maxx F (x |g)] and no value outside of it.

A solution (z, f) feasible for the dual (5.1) is optimal if and only if there exists a feasible
solution for the primal (5.1) satisfying complementary slackness. These conditions read∑

k∈DS
µS(k) = 1 ∀S ∈ C (5.3a)

∑
x∈DV
x
S

=k

λ(x) = µS(k) ∀(S, k) ∈ T (5.3b)

λ(x) ≥ 0 ∀x ∈ JX (5.3c)

λ(x) = 0 ∀x ∈ DV − JX (5.3d)

µS(k) ≥ 0 ∀(S, k) ∈ JA (5.3e)

µS(k) = 0 ∀(S, k) ∈ T − JA (5.3f)

where

J = τ(z, f) = { (S, k) ∈ T | zS = fS(k) }︸ ︷︷ ︸
JA⊆T

∪ {x ∈ DV | F (x |f) = F (x |g) }︸ ︷︷ ︸
JX⊆DV

(5.4)

is the set of dual constraints that are active for the current dual-feasible point (z, f). 82

Note, system (5.3) is a special case of (2.2) because already the primal-dual pair (5.1)
is in the form (1.1). A possible interpretation of conditions (5.3) is given by the following
proposition.

Proposition 5.1. Let JA ⊆ T and JX ⊆ DV . System (5.3) is feasible if and only if
SOL(JA) ∩ JX 6= ∅. 83

82The set JA in (5.4) is similar to the set A∗(f) defined in §1.5.2. To be precise, we have that JA = A∗(f)
if zS = maxk∈DS fS(k) for all S ∈ C. However, the variables zS may also attain other (i.e., greater) values
in general.

83Condition SOL(JA) ∩ JX 6= ∅ corresponds to statement (c) in Theorem 3.1. Also, feasibility of (5.3)
is (by complementary slackness) the condition for (z, f) to be optimal for the dual (5.1). Putting this
together, Proposition 5.1 could be expected.

107

Proof. For the ‘only if’ direction, let (λ, µ) be feasible for (5.3). By Remark 5.1, there
is x∗ ∈ DV such that λ(x∗) > 0. By conditions (5.3b) and non-negativity of (λ, µ), we
have µS

(
x∗|S

)
> 0 for all S ∈ C. Due to conditions (5.3d) and (5.3f), we necessarily have

x∗ ∈ JX and
(
S, x∗|S

)
∈ JA for all S ∈ C, hence x∗ ∈ SOL(JA).

For the ‘if’ direction, let x∗ ∈ SOL(JA)∩JX . By x∗ ∈ SOL(JA), we have
(
S, x∗|S

)
∈ JA

for all S ∈ C. Now, values λ(x) = Jx = x∗K for all x ∈ DV and µS(k) = Jx∗|S = kK for all
(S, k) ∈ T are feasible for (5.3). In detail, for any S ∈ C, (5.3a) is satisfied since k = x∗|S
holds for exactly one k ∈ DS . Condition (5.3b) is immediate. Next, we have x∗ ∈ JX ,
so λ(x∗) can be non-zero by (5.3c). Analogously, we have

(
S, x∗|S

)
∈ JA for all S ∈ C, so

the variables µS
(
x∗|S

)
can be non-zero by (5.3e).

Proposition 5.1 formalizes the fact that (5.3) is an LP formulation of CSP JA with an
additional global constraint x ∈ JX . This can be compared to the case of the (dual of)
basic LP relaxation where complementary slackness conditions (2.8) can be interpreted as
an LP relaxation of the active-tuple CSP [146], as discussed in §2.3.

5.2.1 Optimality of BCD

Let us now focus on coordinate-wise minimization of the dual (5.1). By Fact 1.1, optimizing
the dual (5.1) coordinate-wise is weaker than optimizing (1.45) coordinate-wise because
the z variables are updated separately in the LP formulation (5.1). Nevertheless, we are
still able to show that pre-ILMs of the dual (5.1) w.r.t. individual variables are global
minima of (5.1). Following Fact 1.1, this implies that pre-ILMs of (1.45) w.r.t. individual
variables are also global minima.

Because the primal-dual pair (5.1) is precisely in the form (1.1) that we studied in §4.1,
we can proceed directly by carrying over the corresponding notion of a B-consistent set and
analyzing its meaning here for this particular linear program. In (5.1), the dual variables
and primal constraints are indexed by elements of T ∪ C, so the set of blocks B contains
all singleton subsets of T ∪ C, i.e.,

B = { {(S, k)} | (S, k) ∈ T } ∪ { {S} | S ∈ C }. (5.5)

Recalling the previously defined notation, instead of talking about B-consistency of J , we
will talk about B-consistency of JA ∪JX . To simplify formulations, we will assume that B
is always defined by (5.5) whenever it is mentioned in §5.2.

To prove our results formally, recall from Definition 4.1 that a set is B-consistent
(where B is (5.5)) if and only if it is {(S, k)}-consistent for each (S, k) ∈ T and {S}-consis-
tent for each S ∈ C. First, we state two lemmas that characterize B-consistent sets
for B ∈ B, i.e., when B is a singleton set.

Lemma 5.1. Let JA ⊆ T , JX ⊆ DV , and B = {S} where S ∈ C. The set JA ∪ JX is
B-consistent if and only if TS ∩ JA 6= ∅ (recall TS from (1.24)), i.e., there exists k ∈ DS

with (S, k) ∈ JA.

Proof. By definition of B-consistency (Definition 4.1), the system formed by a single equal-
ity (5.3a) (for the given S) and all conditions (5.3c)-(5.3f) must be feasible. This happens
if and only if at least one variable µS(k) for some (S, k) ∈ TS is allowed to be non-zero
due to (5.3a), i.e., TS ∩ JA 6= ∅.

108

Clearly, the system formed by a single equality (5.3a) (for the given S) and all condi-
tions (5.3c)-(5.3f) never implies that any of the inequalities should hold with equality, i.e.,
it never contains an always-active inequality (assuming that this system is feasible).

Lemma 5.2. Let JA ⊆ T , JX ⊆ DV , and B = {(S, k)} where (S, k) ∈ T . The set JA∪JX
is B-consistent if and only if(

∃x ∈ JX : x|S = k
)
⇐⇒ (S, k) ∈ JA. (5.6)

Proof. Again, by definition of B-consistency, we analyze the system formed by a single
equality (5.3b) (for the given (S, k)) and all conditions (5.3c)-(5.3f). This system is always
feasible by setting all variables to zero.

If (S, k) ∈ T − JA (i.e., µS(k) = 0), then the system implies that all variables λ(x) on
the left-hand side of the equality (5.3b) need to be zero too since they are non-negative,
so we must have x ∈ DV − JX for all x with x|S = k, i.e., @x ∈ JX : x|S = k.

Similarly, if @x ∈ JX : x|S = k (i.e., λ(x) = 0 for all x ∈ DV with x|S = k), then the
left-hand side of the equality (5.3b) is zero and it thus implies µS(k) = 0, so we must
have (S, k) ∈ T − JA.

Theorem 5.1. Let JA ⊆ T and JX ⊆ DV . If JA ∪ JX is B-consistent, (5.3) is feasible.

Proof. Let S∗ ∈ C. By Lemma 5.1 applied to S∗, we have (S∗, k∗) ∈ TS∗ ∩ JA ⊆ JA
for some k∗ ∈ DS∗ . Therefore, by Lemma 5.2 applied to (S∗, k∗), there exists x ∈ JX
with x|S∗ = k∗. Applying Lemma 5.2 again to B =

{(
S, x|S

)}
for each S ∈ C yields

that
(
S, x|S

)
∈ JA due to x ∈ JX . Consequently, x ∈ SOL(JA) and system (5.3) is feasible

by Proposition 5.1.

Theorem 5.1 states that the propagation rule (4.1) with blocks being singleton subsets
is refutation complete for system (5.3), i.e., it is always able to detect infeasibility of (5.3)
whenever (5.3) is infeasible. Combining this with Corollary 5.1, we obtain one of the main
results of §5.2:

Corollary 5.2. Any (pre-)ILM of the dual (5.1) w.r.t. individual variables (i.e., w.r.t. B)
is a global minimum of the dual (5.1). Therefore, any (pre-)ILM of (1.45) w.r.t. individual
variables is a global minimum of (1.45).

5.2.2 Enforcing Positive Consistency

Now, we will argue that B-consistency in a precise sense corresponds to positive consistency
of a certain CSP. To this end, let us slightly deviate from our assumption on the structure
of all CSPs to be the same in this subsection. We will show that the propagator pB is in fact
enforcing positive consistency in the CSP JA with an additional global constraint x ∈ JX .
The structure of this CSP is (V,D,C ∪ {V }) and its set of allowed tuples is

JA ∪ {(V, x) | x ∈ JX}. (5.7)

Clearly, the solution set of this CSP is SOL(JA) ∩ JX . To connect positive consistency of
CSP (5.7) with B-consistency of JA ∪ JX , we need the following lemma.

Lemma 5.3. Let JA ⊆ T and JX ⊆ DV . CSP (5.7) is positively consistent if and only
if (5.6) holds for all (S, k) ∈ T .

109

Proof. For the ‘if’ direction, we proceed to show that any tuple from (5.7) is used in
some solution of this CSP. For (V, x) with x ∈ JX , applying (5.6) for all

(
S, x|S

)
, S ∈ C

yields
(
S, x|S

)
∈ JA, consequently x ∈ SOL(JA) and x ∈ SOL(JA) ∩ JX . For (S, k) ∈ JA,

(5.6) implies that there is x ∈ JX with x|S = k. As in the previous case, x ∈ JX implies
that x is a solution of the CSP and x uses tuple (S, k).

For the ‘only if’ direction, let (S, k) ∈ T . By positive consistency, if (S, k) ∈ JA, then
there exists x ∈ SOL(JA) ∩ JX such that x|S = k, so x ∈ JX which yields the ⇐=
direction in (5.6). To prove the other direction, if ∃x ∈ JX : x|S = k, then tuple (V, x) is

allowed in CSP (5.7) and we must have x ∈ SOL(JA) ∩ JX , so (S, k) =
(
S, x|S

)
∈ JA.

Theorem 5.2. Let JA ⊆ T and JX ⊆ DV . The following are equivalent:

(a) CSP (5.7) is positively consistent and non-empty,

(b) JA ∪ JX is B-consistent.

Proof. (a) =⇒ (b): A non-empty positively consistent CSP is satisfiable (recall Ex-
ample 1.12), so SOL(JA) ∩ JX 6= ∅ which implies satisfiability of CSP JA and conse-
quently TS ∩ JA 6= ∅ for all S ∈ C. So, JA ∪ JX is {S}-consistent for all S ∈ C by
Lemma 5.1. By Lemma 5.3, positive consistency implies that (5.6) holds for all (S, k) ∈ T .
Using Lemma 5.2, this establishes {(S, k)}-consistency of JA ∪ JX for all (S, k) ∈ T .

(b) =⇒ (a): Theorem 5.1 together with Proposition 5.1 imply SOL(JA) ∩ JX 6= ∅,
so the CSP is satisfiable and therefore non-empty. Due to B-consistency, set JA ∪ JX is
{(S, k)}-consistent for each (S, k) ∈ T , so (5.6) holds for each (S, k) ∈ T by Lemma 5.2.
By Lemma 5.3, this implies that the CSP is positively consistent.

These results allow us to characterize ILMs and pre-ILMs of the dual (5.1) w.r.t. B by
positive consistency of CSP (5.7):

Corollary 5.3. Let (z, f) be feasible for the dual (5.1) and let JA and JX be as in (5.4).

(a) (z, f) is an ILM of the dual (5.1) w.r.t. individual variables (i.e., w.r.t. B) if and only
if CSP (5.7) is positively consistent and non-empty.

(b) (z, f) is a pre-ILM of the dual (5.1) w.r.t. individual variables (i.e., w.r.t. B) if and
only if CSP (5.7) has non-empty positive consistency closure.

Proof. (a): By Theorem 4.2b, (z, f) is an ILM if and only if JA∪JX is B-consistent which
is equivalent to CSP (5.7) being positively consistent and non-empty by Theorem 5.2.

(b): The CSP has non-empty positive consistency closure if and only if it is satisfiable,
i.e., SOL(JA) ∩ JX 6= ∅. By Proposition 5.1, this is equivalent to feasibility of (5.3). By
definition of JA and JX , (5.3) is feasible precisely when (z, f) is optimal for (5.1). Using
Corollaries 5.2 and 1.3, the set of pre-ILMs coincides with global minima.

Compare the result given by Corollary 5.3 to the results stated in §4.4.1: for (1.43)
(i.e., the dual of the basic LP relaxation of WCSP), ILMs and pre-ILMs w.r.t. individual
variables are defined in a completely analogous way except that one uses arc consistency
(of CSP A∗(gϕ)) instead of positive consistency (of CSP (5.7)).

110

5.2.3 Coordinate-Wise Updates: Convergence and Hardness

We derive coordinate-wise updates for the dual (5.1) satisfying the relative-interior rule
and show that if these updates are performed in a cyclic order, then the current solution
converges to the set of optimizers of the dual. However, we will also show that performing
these updates is likely to be intractable.

The coordinate-wise update of a single variable zS , S ∈ C is unique because zS is to
be minimized in the dual (5.1) and

zS := max
k∈DS

fS(k) (5.8)

is the least value of zS allowed by dual constraints (5.1e) for the fixed values of variables f .
An update for a single variable fS(k), (S, k) ∈ T is given in the following proposition.

Proposition 5.2. Let (z, f) be feasible for the dual (5.1) and (S, k) ∈ T . Consider the
coordinate-wise update

fS(k) := 1
2zS + 1

2δ(g, f, S, k) (5.9)

where
δ(g, f, S, k) = max

x∈DV
x
S

=k

(
F (x |g)−

∑
S′∈C
S′ 6=S

fS′
(
x|S′

))
. (5.10)

This update satisfies the relative-interior rule.

Proof. Variable fS(k) appears in the constraints (5.1d) for all x ∈ DV with x|S = k.
Written explicitly, this is

F (x |f)︷ ︸︸ ︷
fS(k) +

∑
S′∈C
S′ 6=S

fS′
(
x|S′

)
≥ F (x |g) ∀x ∈ DV : x|S = k (5.11)

which yields the lower bound fS(k) ≥ δ(g, f, S, k). Next, fS(k) also appears in one of the
constraints (5.1e) which results in the upper bound zS ≥ fS(k).

Thus, to stay within the feasible set, we need fS(k) ∈ [δ(g, f, S, k), zS]. Because the
objective is independent of fS(k), it suffices to choose any point from this interval. To
satisfy the relative-interior rule, the update (5.9) chooses the midpoint of this interval.

To ensure convergence, we proceed to prove that the sequence of points (z, f) generated
by the updates (5.8) and (5.9) is bounded.

Proposition 5.3. Let (z, f) be feasible for the dual (5.1). Any sequence of points obtained
by performing updates (5.8) and (5.9) is bounded.

Proof. Variables z are bounded from above because they never increase. Moreover, they
are also bounded from below because, for any feasible (z, f),

∑
S′∈C zS′ is an upper bound

on the optimal value of WCSP g, so no zS can get below maxx F (x |g) −
∑

S′∈C−{S} zS′

which is non-decreasing because g is constant and z are non-increasing. Furthermore,
the variables f are bounded from above by the corresponding z variables and from below
because z are non-increasing and

fS(k) ≥ max
x∈DV
x
S

=k

(
F (x |g)−

∑
S′∈C
S′ 6=S

fS′
(
x|S′

))
≥ max

x∈DV
x
S

=k

(
F (x |g)−

∑
S′∈C
S′ 6=S

zS′
)

(5.12)

111

which follows from fS(k) ≥ δ(g, f, S, k) and zS′ ≥ fS′(k) for each (S′, k) ∈ T .

Since both updates (5.8) and (5.9) are clearly continuous in (z, f) and the resulting
sequence is bounded (Proposition 5.3), it follows from Theorem 1.10 that if updates (5.8)
and (5.9) are performed for all variables in a cyclic order, then the current point converges
to the set of optimizers of the dual (5.1). Note that, by combining Corollary 5.2 with
Corollary 1.3, the set of optimizers coincides with the set of pre-ILMs.

However, by Theorem 1.16, the optimal value of (5.1) coincides with the optimal value
of WCSP g. It is therefore not surprising that performing BCD with the relative-interior
rule is likely to be intractable.

Theorem 5.3. The following problem is NP-complete: Given f, g ∈ ZT , z ∈ ZC ,
and (S∗, k∗) ∈ T such that (z, f) is feasible for the dual (5.1) and zS∗ = fS∗(k

∗), decide
whether fS∗(k

∗) ∈ ri [δ(g, f, S∗, k∗), zS∗] (i.e., whether fS∗(k
∗) is in the relative interior of

optimizers of the dual (5.1) while the remaining variables are fixed).

Proof. In this proof, we abbreviate δ(g, f, S∗, k∗) to δ. First, see that zS∗ ∈ ri [δ, zS∗] if
and only if δ = zS∗ (recall Example 1.1 for n = 1). So, due to fS∗(k

∗) = zS∗ , the problem
boils down to deciding whether fS∗(k

∗) = δ.
Membership in NP follows from the fact that one can generate x ∈ DV with x|S∗ = k∗

and verify whether the term in the maximum in (5.10) equals fS∗(k
∗). Such an x exists if

and only if fS∗(k
∗) = δ.

To show NP-hardness, we proceed similarly as in Theorem 3.13 by reduction from
3-coloring [116, §8.6.1, 84], i.e., given a graph G = (V,C), decide whether it is 3-colorable.
For the purpose of our reduction, we consider the structure (V,D,C) where |D| = 3 and
formulate the 3-coloring problem as a WCSP g ∈ {0, 1}T defined by

g{i,j}(ki, kj) = Jki 6= kjK ∀{i, j} ∈ C, k ∈ D{i,j}. (5.13)

Each x ∈ DV corresponds to an assignment of the 3 colors from D to the vertices
and F (x |g) = |{ {i, j} ∈ C | xi 6= xj }| is the number of edges in G whose adjacent
vertices have different colors in assignment x ∈ DV . Thus, maxx F (x |g) = |C| if and only
if G is 3-colorable (and maxx F (x |g) ≤ |C| − 1 otherwise).

Now, we pick an arbitrary edge S∗ = {i∗, j∗} ∈ C and define (z, f) by

zS = |C| · JS = S∗K ∀S ∈ C (5.14a)

fS(k) = |C| · JS = S∗K ∀(S, k) ∈ T. (5.14b)

Clearly, F (x |f) = |C| for all x ∈ DV and (z, f) is feasible for the dual (5.1). Since
the colors can be arbitrarily permuted in a solution, we can choose any k∗ ∈ DS∗ such
that k∗i∗ 6= k∗j∗ and see that

max
x∈DV

F (x |g) = max
x∈DV
x
S∗

=k∗

F (x |g) = max
x∈DV
x
S∗

=k∗

(
F (x |g)−

∑
S∈C
S 6=S∗

fS
(
x|S
)

︸ ︷︷ ︸
0

)
= δ (5.15)

where the second equality follows from the definition of f in (5.14b).
For the above-defined g, f, z, S∗, and k∗, we have that fS∗(k

∗) ∈ ri [δ, zS∗] if and only
if G is 3-colorable.

112

Following Theorem 5.3, performing even a single coordinate-wise update satisfying
the relative-interior rule is likely intractable. Let us also note that, for (z, f) feasible for
the dual (5.1), deciding whether (z, f) is a pre-ILM of the dual (5.1) w.r.t. individual
variables is NP-complete. This is an immediate consequence of Corollary 3.3 because
pre-ILMs coincide with global minima (recall Corollary 1.3).

In contrast, performing arbitrary exact BCD updates (1.13) (without the relative-
interior rule) is tractable and trivial. Indeed, for any (z, f) feasible for the dual (5.1), we
can simply keep each ft, t ∈ T constant and update each zS as in (5.8). Eventually, when
all z variables satisfy zS = maxk∈DS fS(k), the current point is an LM of the dual (5.1)
w.r.t. individual variables. Such local minima can be however arbitrarily bad.

5.3 Two More Classes of Linear Programs Solvable by BCD

In this section, we identify two classes of linear programs that are solvable to optimality by
BCD with the relative-interior rule. We begin by defining the precise form of the considered
linear program and stating the main result of this section in Theorem 5.4. Then, we prove
this theorem in §5.3.1. Finally, in §5.3.2, we list some practical LP problems to which the
theorem applies. This section follows our presentation given in [53a] with some parts of
the text reused.

We consider the pair of mutually dual linear programs

max y>p+ y>q + c>x min b>y + 1>z (5.16a)

xj ≥ 0 zj +A>j y ≥ cj ∀j ∈ [n] (5.16b)

xj ≤ 1 zj ≥ 0 ∀j ∈ [n] (5.16c)

pi ≥ 0 yi ≥ yi ∀i ∈ [m] (5.16d)

qi ≤ 0 yi ≤ yi ∀i ∈ [m] (5.16e)

Aix+ pi + qi = bi yi ∈ R ∀i ∈ [m] (5.16f)

where we will call the left-hand problem primal and the right-hand problem dual. The
entries A ∈ Rm×n, b ∈ Rm, c ∈ Rn, y ∈ Rm−∞, and y ∈ Rm+∞ (assuming y ≤ y) are given
constants where R+∞ = R ∪ {+∞} and R−∞ = R ∪ {−∞}. We optimize over variables
(p, q, x) in the primal and (y, z) in the dual.

We allow infinite values in the vectors y and y that constitute lower and upper bounds

on the dual variables y, respectively. For this purpose, in products y>p and y>q, we adopt
that +∞·0 = −∞·0 = 0. This formalism allows us to introduce also inequality constraints
into the primal and to set arbitrary bounds on the dual variables y.

Example 5.1. To illustrate, let i ∈ [m], yi = +∞, and y
i

= 0. In this setting, it is
undesirable to have qi < 0 in the primal because then the primal objective is −∞, so we
need qi = 0 to guarantee a finite objective. On the other hand, due to y

i
= 0, variable pi

does not have any influence on the objective and appears only in a single primal constraint,
Aix+ pi + qi = bi. Therefore, we can eliminate both pi ≥ 0 and qi = 0 from this constraint
to obtain Aix ≤ bi. Note that this is precisely the primal constraint that corresponds to a
non-negative dual variable yi ≥ 0.

If we want to make a dual variable yi unbounded, we can set yi = +∞ and y
i

= −∞.
Then, by analogous reasoning, we need to have qi = pi = 0 in the primal. Consequently,

113

these two variables can be omitted from the primal due to being zero and the primal con-
straint (5.16f) corresponding to yi ∈ R becomes Aix = bi, as expected. 4

In analogy to §1.1.2 or §2.4, at any minimum (z, y) of the dual (5.16), we have

zj = max{cj −A>j y, 0} ∀j ∈ [n] (5.17)

which allows us to express the dual as a box-constrained minimization of a convex piecewise-
affine function, namely

min b>y +
∑
j∈[n]

max{cj −A>j y, 0} (5.18a)

y
i
≤ yi ≤ yi ∀i ∈ [m]. (5.18b)

Before we state the conditions that guarantee that any (pre-)ILM of (5.18) w.r.t. individual
variables is a global minimum, we need a number of definitions.

Definition 5.1 ([26, §1.1]). The bipartite graph associated with matrix A ∈ Rm×n is a
graph with m+ n vertices whose partitions are {r1, . . . , rm} and {c1, . . . , cn} and contains
an edge {ri, cj} if Aij 6= 0.

Definition 5.2. A matrix A ∈ Rm×n is bipartite-acyclic if the bipartite graph associated
with A is acyclic.

Definition 5.3. Matrix A ∈ Rm×n is 2-in-row if for each i ∈ [m] one of the following
conditions is satisfied:

(a) row i of matrix A has at most 2 non-zero elements, i.e., |{ j ∈ [n] | Aij 6= 0 }| ≤ 2,

(b) row i of matrix A has 3 non-zero elements and at least one of them is the only non-zero
element in its column, i.e., |{ j ∈ [n] | Aij 6= 0 }| = 3 and there exists j∗ ∈ [n] such
that Aij∗ 6= 0 and ∀i∗ ∈ [m]− {i} : Ai∗j∗ = 0.

Remark 5.2. One can also characterize 2-in-row matrices A ∈ Rm×n by the associated
bipartite graph, ({r1, . . . , rm}, {c1, . . . , cn}, E). A is 2-in-row if and only if each ri, i ∈ [m]
has degree at most 3 and, after removing all vertices cj with degree 1, each ri has degree
at most 2.

Now, we are able to state the main result of this section in Theorem 5.4.

Theorem 5.4. Let A ∈ {−1, 0, 1}m×n, b ∈ Zm, c ∈ Rn, y ∈ Rm−∞, and y ∈ Rm+∞. If A is
2-in-row or bipartite-acyclic, then any (pre-)ILM of (5.18) w.r.t. individual variables is a
global minimum of (5.18).

As the proof of this theorem is lengthy, we present it in the next subsection. 84

84Our results from §4 allowed us to significantly simplify our previous proof given in [51a]. It is also
possible to prove Theorem 5.4 (at least for the case of 2-in-row matrices) even without relying on the
results from §4, as we did in [51a] when results from §4 were yet unknown. Such an approach is more
involved and requires a precise analysis of block-optimality conditions with the relative-interior rule and
case analysis.

114

5.3.1 Proof of Theorem 5.4

Following Fact 1.1, applying BCD to (5.18) along individual variables (i.e., optimiz-
ing (5.18) coordinate-wise) is equivalent to applying BCD to the dual (5.16) along m blocks
of variables where each block contains all z variables and a single variable yi. Being
slightly informal, we will refer to a single such block by Bi. The set of all such blocks
is B = {Bi | i ∈ [m]}. Whenever we refer to Bi or B in §5.3.1, we assume that these sets
have the values defined here.

In this setting, Theorem 5.4 is equivalent to the fact that (under the specified conditions
on the matrix A and vector b), any (pre-)ILM of the dual (5.16) w.r.t. B is a global
minimum. Since dual (5.16) is a linear program, we will use our results from §4 together
with Corollary 5.1. Although the primal-dual pair (5.16) is not in the form (1.1), our
results can be extended to more general forms, as discussed in §4.3.

It is clear that in any ILM (or pre-ILM) (z, y) of (5.16) w.r.t. B, (5.17) holds – if not,
it would not be block-optimal for variables z. Under this assumption, (z, y) is optimal for
the dual (5.16) if and only if there exist x ∈ Rn and p, q ∈ Rm such that

0 ≤ xj ≤ 1 ∀j ∈ XU (y) = {j ∈ [n] | A>j y = cj} (5.19a)

xj = 0 ∀j ∈ X0(y) = {j ∈ [n] | A>j y > cj} (5.19b)

xj = 1 ∀j ∈ X1(y) = {j ∈ [n] | A>j y < cj} (5.19c)

pi = 0 ∀i ∈ P0(y) = {i ∈ [m] | yi > y
i
} (5.19d)

pi ≥ 0 ∀i ∈ P+(y) = {i ∈ [m] | yi = y
i
} (5.19e)

qi = 0 ∀i ∈ Q0(y) = {i ∈ [m] | yi < yi} (5.19f)

qi ≤ 0 ∀i ∈ Q−(y) = {i ∈ [m] | yi = yi} (5.19g)

Aix+ pi + qi = bi ∀i ∈ [m]. (5.19h)

These conditions follow from the complementary slackness theorem applied to the primal-
dual pair (5.16) while noting the substitution (5.17). Notice that {XU (y), X0(y), X1(y)}
is a partition of [n]. Also, {P0(y), P+(y)} and {Q0(y), Q−(y)} are partitions of [m].

Lemma 5.4. Let (z, y) be an ILM of (5.16) w.r.t. B and i∗ ∈ [m]. The system

0 ≤ xj ≤ 1 ∀j ∈ XU (y) (5.20a)

xj = 0 ∀j ∈ X0(y) (5.20b)

xj = 1 ∀j ∈ X1(y) (5.20c){
pi∗ = 0 if i∗ ∈ P0(y)

pi∗ ≥ 0 if i∗ ∈ P+(y)
(5.20d){

qi∗ = 0 if i∗ ∈ Q0(y)

qi∗ ≤ 0 if i∗ ∈ Q−(y)
(5.20e)

Ai
∗
x+ pi∗ + qi∗ = bi∗ (5.20f)

is feasible and does not contain any always-active inequality.
In other words, system (5.20) is feasible and implies neither xj = 0 nor xj = 1 for

any j ∈ XU (y). Also, if i∗ ∈ P+(y) (or i∗ ∈ Q−(y)), it does not imply pi∗ = 0 (or qi∗ = 0),
respectively.

115

Proof. Here, we apply our results from §4. The set of constraints from (5.19) corresponding
to an aforementioned block Bi∗ ∈ B is in fact (5.20). This is because such a system (as
in (4.2)) always contains all the primal variables. Also, it contains conditions xj ≤ 1
or xj = 1 for each j ∈ [n] because all z variables are in the block Bi∗ (see (5.16c): zj
variables are the dual variables corresponding to the primal constraints xj ≤ 1). Finally,
it contains the equality (5.19h) for i = i∗ because yi∗ is in the block Bi∗ (see (5.16f):
variables y correspond to constraints (5.20f)). Clearly, variables pi and qi for i 6= i∗ do not
appear in any constraint of the subsystem and can be removed from the set of equalities
and inequalities without changing any of its properties.

The claim now follows from Definition 4.1 (recall Footnote 71) applied to block Bi∗ ∈ B
combined with Lemma 4.1b.

System (5.20) can be further simplified by eliminating variables pi∗ and qi∗ , as we state
in the following corollary of Lemma 5.4.

Corollary 5.4. Let (z, y) be an ILM of (5.16) w.r.t. B and i∗ ∈ [m]. The system

0 ≤ xj ≤ 1 ∀j ∈ XU (y) (5.21a)

xj = 0 ∀j ∈ X0(y) (5.21b)

xj = 1 ∀j ∈ X1(y) (5.21c)
Ai
∗
x = bi∗ if i∗ ∈ P0(y) ∩Q0(y)

Ai
∗
x ≥ bi∗ if i∗ ∈ P0(y) ∩Q−(y)

Ai
∗
x ≤ bi∗ if i∗ ∈ P+(y) ∩Q0(y)

(5.21d)

is feasible and implies neither xj = 0 nor xj = 1 for any j ∈ XU (y).

Proof. The corollary follows from the fact that the set of x feasible for (5.21) is the
projection of the feasible set of (5.20) onto the x variables (cf. Example 5.1).

Note that the case with i∗ ∈ P+(y) ∩ Q−(y) is not stated in (5.21d). This is due to
the fact that for such i∗, constraint (5.20f) vanishes after projecting out pi∗ and qi∗ , i.e.,
corresponds to Ai

∗
x ∈ R and is always satisfied. This case happens if and only if y

i∗
= yi∗ .

So, if y < y, we have that P+(y) ∩Q−(y) = ∅ for any y ∈ Rm.

As in the previous corollary, one can also eliminate all p and q variables from the whole
system (5.19) to obtain

0 ≤ xj ≤ 1 ∀j ∈ XU (y) (5.22a)

xj = 0 ∀j ∈ X0(y) (5.22b)

xj = 1 ∀j ∈ X1(y) (5.22c)
Aix = bi if i ∈ P0(y) ∩Q0(y)

Aix ≥ bi if i ∈ P0(y) ∩Q−(y)

Aix ≤ bi if i ∈ P+(y) ∩Q0(y)

∀i ∈ [m]− (P+(y) ∩Q−(y)). (5.22d)

Clearly, (5.22) and (5.19) are equisatisfiable, i.e., (5.22) is feasible if and only if (5.19) is
feasible.

Before we prove Theorem 5.4 for bipartite-acyclic matrices A, we need two more aux-
iliary lemmas given below.

116

Lemma 5.5 (cf. [76, Theorem 45]). Let d ∈ {−1, 0, 1}n and δ ∈ Z. The polyhedra

{x ∈ [0, 1]n | d>x ≤ δ } (5.23a)

{x ∈ [0, 1]n | d>x = δ } (5.23b)

are integral and their projection onto each xj, j ∈ [n] is either ∅, {0}, {1}, or [0, 1].

Proof. Recall that a polyhedron is integral if its extremal points (i.e., vertices [110, The-
orem 2.4, 103, §4.4]) have integral coordinates. For a polyhedron P , a point v ∈ P is its
extremal point if v′, v′′ ∈ P , 0 < α < 1, and v = αv′ + (1 − α)v′′ implies v = v′ = v′′.
So, an extremal point cannot be a strict convex combination of two different points of the
polyhedron.

We prove the lemma for polyhedron (5.23a) as the proof would change only slightly
for (5.23b). We proceed by contradiction (to some extent similarly to [138, Lemma 14.4]):
let v be an extremal point of (5.23a) and j∗ ∈ [n] such that vj∗ /∈ {0, 1}.

If dj∗ = 0 or d>v < δ, then we can both increase or decrease vj∗ by some ε > 0 so that
point v stays in the polyhedron (5.23a). Consequently, it is not an extremal point.

If dj∗ 6= 0 and d>v = δ, there needs to exist j′ ∈ [n] − {j∗} such that vj′ /∈ {0, 1}
and dj′ 6= 0 due to δ ∈ Z and d ∈ {−1, 0, 1}n. For some suitable ε > 0 which is sufficiently
small, points w+, w− ∈ Rn defined by

w±j =


vj if j ∈ [n]− {j∗, j′}
vj∗ ∓ dj∗ε if j = j∗

vj′ ± dj′ ε if j = j′
∀j ∈ [n] (5.24)

satisfy d>w+ = d>w− = δ and w+, w− ∈ [0, 1]n, so they belong to (5.23a). The fact that
there exists such a value for ε follows from 0 < vj∗ , vj′ < 1. Point v = 1

2w
+ + 1

2w
− is

therefore not an extremal point.
The property of projection is directly implied by integrality.

Lemma 5.6. Let (z, y) be an ILM of (5.16) w.r.t. B, A ∈ {−1, 0, 1}m×n, and b ∈ Zm.
The CSP with discrete variables xj ∈ {0, 1}, j ∈ [n] (where some domains of the variables
are reduced by (5.22b) and (5.22c)) and constraints (5.22d) is AC (in the sense of (1.30)).
Moreover, if A is bipartite-acyclic, this CSP is satisfiable.

Proof. We first show that the CSP is AC in the sense of (1.30). For contradiction, suppose
that there is j∗ ∈ [n],

k∗ ∈


{0, 1} if j∗ ∈ XU (y)

{0} if j∗ ∈ X0(y)

{1} if j∗ ∈ X1(y)

, (5.25)

and that for some i∗ ∈ [m] − (P+(y) ∩ Q−(y)), there is no x ∈ {0, 1}n with xj∗ = k∗

satisfying (5.21). In other words, there is no integral solution x of (5.21) with xj∗ = k∗.
However, the polyhedron defined by (5.21) is integral by Lemma 5.5, so (5.21) is infeasible
or, if j∗ ∈ XU (y), (5.21) implies xj∗ = 1 − k∗. None of these options is allowed by
Corollary 5.4.

If A is bipartite-acyclic, it follows directly from Definition 5.2 that this CSP has acyclic
factor graph. For such a structure, AC is refutation complete and the CSP is satisfiable
(recall Example 1.11).

117

Proof (Theorem 5.4 for bipartite-acyclic matrices). Let (z, y) be an ILM of (5.16)
w.r.t. B (i.e., y is ILM of (5.18) w.r.t. individual variables). If A is bipartite-acyclic,
Lemma 5.6 implies that there is x ∈ {0, 1}n satisfying (5.22). However, (5.22) is a projec-
tion of (5.19), so (5.19) is feasible too and (z, y) is optimal for the dual (5.16) (and y is
optimal for (5.18)).

We now focus on the case of 2-in-row matrices in Theorem 5.4. For this part, we rely
on a slightly different proof technique that requires the following lemma.

Lemma 5.7. Let n ∈ {1, 2, 3} and P ⊆ [0, 1]n be an integral polyhedron such that the
projection of P onto each coordinate xj, j ∈ [n] is the interval [0, 1].

(a) If n ∈ {1, 2}, then x defined by xj = 1
2 for all j ∈ [n] belongs to P .

(b) If n = 3, then there is x3 ∈ [0, 1] such that
(

1
2 ,

1
2 , x3

)
∈ P .

Proof. We begin by proving (a). If n = 1, we have P = [0, 1] and x = 1
2 ∈ [0, 1]. If n = 2,

the set of extremal points of P is a subset of {(0, 0), (1, 0), (0, 1), (1, 1)} = {0, 1}2 because
P is integral. Since P is bounded, it equals the convex hull of its extremal points [110,
§2.3]. This leaves 16 options for the choice of the extremal points based on exhaustive
enumeration, from which only 7 options satisfy the assumptions on projections. For each
of these 7 options, x =

(
1
2 ,

1
2

)
∈ P .

We continue with (b). Let P ′ = { (x1, x2) | ∃x3 ∈ [0, 1] : (x1, x2, x3) ∈ P } ⊆ [0, 1]2

be the projection of P onto the coordinates x1 and x2. Clearly, P ′ also satisfies the
assumptions of this lemma: P ′ is integral and the projection of P ′ onto any xj , j ∈ {1, 2}
is [0, 1]. So, by (a), we have

(
1
2 ,

1
2

)
∈ P ′ which implies

(
1
2 ,

1
2 , x3

)
∈ P for some x3 ∈ [0, 1]

by definition of P ′.

Next, let us simplify (5.22) by substituting the values for the decided variables xj ,
j ∈ X1(y) ∪ X0(y). To this end, define b′i = bi −

∑
j∈X1(y)Aij for each i ∈ [m] and

let A′ ∈ R[m]×XU (y) be the matrix obtained from A by removing columns X0(y) ∪X1(y).
This yields

0 ≤ xj ≤ 1 ∀j ∈ XU (y) (5.26a)
A′ix = b′i if i ∈ P0(y) ∩Q0(y)

A′ix ≥ b′i if i ∈ P0(y) ∩Q−(y)

A′ix ≤ b′i if i ∈ P+(y) ∩Q0(y)

∀i ∈ [m]− (P+(y) ∩Q−(y)). (5.26b)

The set of x ∈ RXU (y) feasible for (5.26) is a projection of the feasible set of (5.22)
(or (5.19)) onto variables xj , j ∈ XU (y).

Proof (Theorem 5.4 for 2-in-row matrices). Let (z, y) be an ILM of (5.16) w.r.t. B
(i.e., y is ILM of (5.18) w.r.t. individual variables). Also recall that A ∈ {−1, 0, 1}m×n
and b ∈ Zm, so A′ ∈ {−1, 0, 1}[m]×XU (y) and b′ ∈ Zm.

Let i∗ ∈ [m] − (P+(y) ∩ Q−(y)) be arbitrary. By Lemma 5.5, the polyhedron defined
by (5.26a) and a single constraint (5.26b) for i = i∗ is integral and its projection onto
any variable xj , j ∈ XU (y) is either ∅, {0}, {1}, or [0, 1]. However, by Corollary 5.4,
the projection can be neither ∅ (because the system defining the polyhedron is feasible),
nor {0}, nor {1} (because the system implies neither xj = 0 nor xj = 1 for any j ∈ XU (y)).

118

So, the projection of the polyhedron onto any xj , j ∈ XU (y) must be [0, 1] which allows
us to apply Lemma 5.7.

If each constraint in (5.26b) contains at most 2 variables (i.e.,
∑

j∈XU (y) |A′ij | ≤ 2 holds

for each i ∈ [m] − (P+(y) ∩ Q−(y))), then Lemma 5.7a implies that setting xj = 1
2 for

all j ∈ XU (y) satisfies each constraint in (5.26). So, (5.26) is feasible.

However, since some rows of A may satisfy statement (b) in Definition 5.3, some
constraints in (5.26b) may contain 3 variables. By Definition 5.3, for each such a constraint,
at least one of the variables in this constraint is not present in any other constraint. Let
us denote the set of such variables by X ′, i.e.,

X ′ = { j ∈ XU (y) | ∃i∗ :

column j of A′ contains exactly one non-zero element, A′i∗j︷ ︸︸ ︷
{i | A′ij 6= 0} = {i∗}, |{j∗ ∈ XU (y) | A′i∗j∗ 6= 0}| = 3︸ ︷︷ ︸

row i∗ of A′ contains exactly 3 non-zero elements

}. (5.27)

Now, one can set xj = 1
2 for all j ∈ XU (y) −X ′ and, by Lemma 5.7b, there exist values

also for the remaining variables xj , j ∈ X ′ such that x satisfies (5.26). In detail, for any
constraint i∗ from (5.26b) that contains some variables from X ′, there exists a value for
these variables that satisfies this constraint (while the variables xj , j ∈ XU (y) − X ′ are
already set to 1

2) – since this is the only occurrence of these variables, they can be set

independently in each such a constraint. All in all, there exists a vector x ∈ [0, 1]XU (y)

satisfying (5.26).

In both cases above, we proved feasibility of (5.26). Feasibility of this system implies
feasibility of (5.22) which in turn implies that (5.19) is feasible too, so (z, y) is optimal for
the dual (5.16) and y is optimal for (5.18).

5.3.2 Applications

Let us now discuss some problems to which Theorem 5.4 is applicable.

First, note that the LP relaxation of weighted Max-SAT (2.11) is subsumed by the
formulation (5.16) where the matrix A contains only elements of {−1, 0, 1} and vector b
contains only integers (both of these conditions are required in Theorem 5.4). Further-
more, if this is an LP relaxation of Max-2SAT, then A is 2-in-row because each primal
constraint (2.11b) contains at most 2 variables x and the variable zc appears only in this
constraint (except for the box constraints 0 ≤ zc ≤ 1, which is allowed). Alternatively, if
the clause-variable incidence graph is acyclic, then the corresponding matrix A is bipartite-
acyclic. Therefore, (pre-)ILMs of (2.14) w.r.t. individual variables are global minima of
the LP relaxation in case of Max-2SAT or when the clause-variable incidence graph is
acyclic.

Remark 5.3. These results for LP relaxation of weighted Max-SAT already follow from
our previous discussions, although we did not say it explicitly. In detail, we stated in §4.4.3
that the propagation rules for weighted Max-SAT from §2.4.1 are a specific example (up
to technical details) of rule (4.1). By Corollary 5.1, whenever these propagation rules
are refutation complete (discussed in Remark 2.6 and §2.4.5), (pre-)ILMs of (2.14) w.r.t.
individual variables are global minima. Theorem 5.4 can be thus seen as a generalization
of these results.

119

A class of problems that are related to (5.16) with 2-in-row constraint matrix A are
IP2 optimization problems [75, §1.2]. These include 85 integer linear programs in the form

min
∑
i∈V

cixi +
∑

(i,j)∈E

c′ijzij (5.28a)

aijxi + a′ijxj ≤ bij + dijzij ∀(i, j) ∈ E (5.28b)

xi ∈ {0, 1} ∀i ∈ V (5.28c)

zij ∈ {0, 1} ∀(i, j) ∈ E (5.28d)

where (V,E) is a directed graph and the following is satisfied:

• for all (i, j) ∈ E, we have aij , a
′
ij ∈ Z, bij , c

′
ij ∈ R, dij ∈ {0, 1},

• for all i ∈ V , we have ci ∈ R.

Moreover, for (i, j) ∈ E, constraint (5.28b) is

• monotone [75, Definition 1] if aij > 0 and a′ij < 0,

• binarized [75, Definition 2] if aij , a
′
ij ∈ {−1, 0, 1}.

Problem (5.28) with monotone constraints can be solved by a reduction to minimum st-
cut or minimum cost flow on an associated graph [75, Theorem 1.1]. Problem (5.28) with
some constraints non-monotone can be transformed to the monotone case by introducing
additional variables and constraints, but the inverse transformation does not preserve
integrality. Consequently, for (5.28) with some constraints non-monotone, the reduction
yields only an upper bound on the optimal value [75, Theorem 1.1], which is however not
worse than the bound provided by the LP relaxation of (5.28) [75, §1.1.2].

It is immediate from the structure of constraints (5.28b) that each contains at most
two x variables and each z variable appears only in a single inequality. Consequently, the
constraint matrix of this problem is 2-in-row and, if the problem is binarized and bij ∈ Z
for all (i, j) ∈ E, its LP relaxation (where we replace (5.28c) and (5.28d) by 0 ≤ xi ≤ 1
and 0 ≤ zij ≤ 1, respectively) satisfies the assumptions of Theorem 5.4 and thus can be
also solved by BCD.

In [75, §5-§8], there are listed many problems that can be expressed in the form (5.28)
and their LP relaxations are subsumed by the primal (5.16) and also satisfy the conditions
stated in Theorem 5.4. These include, e.g., generalized independent set or Min-SAT.

Except for the previously mentioned problems, we noticed in [53a, §4.5] that Theo-
rem 5.4 applies to a suitable formulation of the roof dual optimization problem [23, §5.1.2,
76, §7.2] which is the dual LP relaxation of the problem of maximizing a (quadratic) pseu-
doboolean function [23, 76, §7.1]. We note that, again, there exist specialized algorithms
for optimizing the roof dual based on network flows [23, §5.1.5, 76, §7.2].

Moreover, there exist suitable formulations of the maximum flow problem, LP relax-
ation of weighted vertex cover, and LP relaxation of Boolean WCSP with Potts interactions
that satisfy the assumptions of Theorem 5.4. We comment on these optimization problems
in detail in §5.4.

85In [75], the objective function (5.28a) was allowed to be more general, the domains (5.28c) could be
any finite subsets of Z and (5.28d) even infinite subsets of Z. Also, some inequalities from (5.28b) can be
in the ≥ direction.

120

5.4 Reformulations and Optimality of BCD

We argued in §4.3 that the relation between BCD and constraint propagation holds for
linear programs in any form. So, suppose that we have a primal-dual pair of linear pro-
grams and we apply BCD to the dual. The form of the complementary slackness conditions
(expressed in terms of the primal variables) depends on the formulation of the dual. Unsur-
prisingly, the propagation rule (4.1) may be weaker, stronger, or even refutation complete,
based on the precise form of the conditions. Consequently, the fixed points of BCD may
be worse, better, or even global optima. This explains the fact that applicability of BCD
highly depends on the precise form of the optimization problem (as exemplified in §1.2.3).

In this section, we illustrate this phenomenon in detail on three different problems.
First, we show that coordinate-wise optimization applied to the dual of the usual LP
relaxation of minimum weight vertex cover problem [138, §14.3] (§5.4.1) and LP formu-
lation of maximum flow problem (§5.4.2) need not attain the optimal value. However,
after a slight reformulation, these linear programs become exactly solvable by BCD which
is naturally explained by the corresponding propagation rule (4.1) becoming refutation
complete.

Next, we consider a special dual LP relaxation of WCSP with Potts interactions. In
this case, optimality of BCD is guaranteed if the WCSP is Boolean. Interestingly, if
the WCSP has acyclic factor graph and is not necessarily Boolean, optimality of BCD is
no longer guaranteed, which is in contrast to the usual dual LP relaxation (1.43) where
(pre-)ILMs w.r.t. individual variables are global minima under such assumptions.

For each of these problems, we also show coordinate-wise updates satisfying the relative-
interior rule and discuss convergence. This section is mainly based on our exposition
in [53a, §4, 54a, §5.3] with some parts from [151a, §6.3 and §7] and a few new insights.

5.4.1 Example: Vertex Cover

Recall the minimum weight vertex cover problem [103, §3.3] on an undirected graph (V,E)
with non-negative vertex weights w ∈ RV+. A vertex cover is a subset of vertices S ⊆ V
satisfying {i, j}∩S 6= ∅ for each edge {i, j} ∈ E. The task is to find a vertex cover S such
that

∑
i∈S wi is minimal. This problem is NP-hard and its decision version was among the

first problems shown to be NP-complete [84, §4, 122, Corollary 64.1a, 110, §15.6]. The LP
relaxation of this problem [138, §14.3] is the left-hand problem of the primal-dual pair

min w>x max
∑
{i,j}∈E

yij (5.29a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (5.29b)

xi ≥ 0
∑
j∈Ni

yij ≤ wi ∀i ∈ V. (5.29c)

In the dual (on the right), Ni = {j ∈ V | {i, j} ∈ E} denotes the set of neighbors of
vertex i ∈ V in the graph and y{i,j} was abbreviated to yij (so that yij = yji). Obviously,
this is a relaxation of the aforementioned problem as there is a bijection between vertex
covers of (V,E) and vectors x ∈ {0, 1}V feasible for the primal (5.29).

For now, suppose that we optimize the dual (5.29) coordinate-wise (i.e., we apply BCD
with blocks of size 1). This results in a greedy procedure that gradually makes each yij

121

as large as possible subject to the dual constraints (5.29c). (Pre-)interior local maxima of
the dual (5.29) need not be its global maxima, as the following example shows.

Example 5.2. Let V = {1, 2, 3}, E = {{1, 2}, {2, 3}, {1, 3}}, and (w1, w2, w3) = (1, 2, 3),
i.e., (V,E) is the complete graph with 3 vertices. Dual-feasible solution y = (y12, y23, y13) =
(1, 1, 0) is an interior local maximum of the dual (5.29) w.r.t. individual variables since
none of the variables can be increased while maintaining feasibility and the coordinate-wise
optimizers are unique. However, the optimal solution y∗ = (y∗12, y

∗
23, y

∗
13) = (0, 2, 1) has

better objective value. 4

The primal linear program (5.29) is also not amenable to BCD. We found [53a, Ex-
ample 4] that there may be even (pre-)ILMs of the primal (5.29) w.r.t. B = {B | B (V }
that are not global minima.

Let us add constraints xi ≤ 1, i ∈ V to the primal (as in [103, §3.3]), obtaining the
primal-dual pair

min w>x max
∑
{i,j}∈E

yij +
∑
i∈V

zi (5.30a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (5.30b)

xi ≥ 0 zi +
∑
j∈Ni

yij ≤ wi ∀i ∈ V (5.30c)

xi ≤ 1 zi ≤ 0 ∀i ∈ V. (5.30d)

Constraints (5.30d) are redundant for the primal in the sense that they do not change the
optimal value. Indeed, if there was an optimal solution x of the primal (5.29) with xi > 1
for some i ∈ V , then we could decrease xi to 1 and maintain feasibility of this solution while
improving or preserving the objective due to non-negativity of wi. So, (5.29) and (5.30)
have the same optimal value.

Similarly to §2.4 or §5.3, variables z can be eliminated from the dual (5.30) to formulate
it as a maximization of a concave piecewise-affine function over non-negative variables, i.e.,

max
∑
{i,j}∈E

yij +
∑
i∈V

min
{
wi −

∑
j∈Ni

yij , 0
}

(5.31a)

yij ≥ 0 ∀{i, j} ∈ E. (5.31b)

The following corollary is immediate from Theorem 5.4.

Corollary 5.5. Any (pre-)interior local maximum w.r.t. individual variables of (5.31) is
a global maximum of (5.31).

Proof. The primal (5.30) has box-constrained variables x ∈ [0, 1]V and each primal con-
straint (5.30b) contains exactly two variables, so the constraint matrix is 2-in-row. All
other conditions imposed by Theorem 5.4 are clearly satisfied. The optimization prob-
lem (5.31) is related to the dual (5.30) in the same way as the optimization problem (5.18)
is related to the dual (5.16).

The fact that we minimize in the primal and maximize in the dual (as opposed to §5.3)
does not influence refutation-completeness of the propagator when applied to the comple-
mentary slackness conditions.

122

Let us now explain the different behavior of BCD by referring to the propagation
rule (4.1). The difference stems from the fact that in case of (5.29), we can only propagate
equality in constraints (5.29b) and infer zero values of xi. However, in (5.30), we can
additionally infer xi = 1 due to the added constraint xi ≤ 1. This results in a stronger
propagation algorithm that is even refutation complete for this particular case.

Remark 5.4. In more detail, the ability to propagate xi = 1 follows from the fact that, in
analogy to Fact 1.1, optimizing (5.31) coordinate-wise is in correspondence to optimizing
the dual (5.30) by BCD along blocks of variables where each block contains all the z vari-
ables and a single variable yij. Consequently, each system that is used in propagation
(analogous to (5.21)) consists of xi + xj ≥ 1 and 0 ≤ xk ≤ 1, k ∈ V where some of these
inequalities may be equalities instead.

We derived in [151a, §7] an update for variable yij in (5.31) satisfying the relative-
interior rule, namely

yij := 1
2 max

{
wi −

∑
k∈Ni−{j}

yik, 0
}

+ 1
2 max

{
wj −

∑
k∈Nj−{i}

yjk, 0
}
. (5.32)

It is clear that this update is continuous in the other variables y. Furthermore, the right-
hand side of (5.32) is always at most (wi +wj)/2, so any sequence of points y obtained by
such updates (possibly except for the initial point) is bounded as 0 ≤ yij ≤ (wi + wj)/2,
{i, j} ∈ E. Applying Theorem 1.10 and Corollaries 1.3 and 5.5, this implies that, while
performing updates (5.32) in a cyclic order for each {i, j} ∈ E, the current point y will
converge to the set of optimizers of (5.31).

Remark 5.5. We performed experiments with updates (5.32) in [151a, §7]. On each
tested instance, the optimum of the LP relaxation was attained.

Let us also note that, for a given interior local maximum of the dual (5.31), there exists
a closed-form expression for an optimal solution of the primal (5.30). This expression is
a special case of the general formula that we stated in [51a, Theorem 2].

Remark 5.6. Although the difference between (5.29) and (5.30) might seem simple, it is
not obvious at first sight (at least without knowing our results from §4.2). To support this
claim, LP relaxation of the related maximum weight independent set problem was studied
in [118]. The corresponding primal-dual pair has a form similar to (5.29) except that we
swap min/max and the directions of the inequalities in the primal constraints (5.29b) and
the dual constraints (5.29c) change to ≤ and ≥, respectively. It was noticed in [118, §VI]
that optimizing the dual of such a formulation coordinate-wise does not typically solve the
problem to optimality. Of course, if the dual LP relaxation is reformulated analogously
to (5.31), it becomes optimally solvable by BCD, which follows from Theorem 5.4. How-
ever, instead of such a reformulation, a barrier method was proposed in [118, §VI].

5.4.2 Example: Maximum Flow

One of the earliest problems of linear programming is the maximum flow problem [59,
§I] where one is given a directed graph (V,E), two distinguished nodes s ∈ V (source)
and t ∈ V (sink), and non-negative edge capacities c ∈ RE+. The usual LP formulation of

123

the maximum flow problem [59, §I, 110, §6.1, 102, §6.1] is the right-hand linear program
of the primal-dual pair

min c>q max
∑

(s,j)∈E

fsj (5.33a)

qsj + xj ≥ 1 fsj ≥ 0 ∀(s, j) ∈ E (5.33b)

qit − xi ≥ 0 fit ≥ 0 ∀(i, t) ∈ E (5.33c)

qij − xi + xj ≥ 0 fij ≥ 0 ∀(i, j) ∈ E, i 6= s, j 6= t (5.33d)

qij ≥ 0 fij ≤ cij ∀(i, j) ∈ E (5.33e)

xk ∈ R
∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj ∀k ∈ V − {s, t} (5.33f)

where the problem on the left is well known to be the LP formulation of the minimum
st-cut problem [59, §I12, 110, §6.1]. As usual, we will refer to the left-hand problem (5.33)
as the primal and to the right-hand problem (5.33) as the dual.

For simplicity, we assumed that there are no incoming edges to s and no outgoing
edges from t. Furthermore, we expect that (s, t) /∈ E – such an edge would be always
saturated (i.e., fst = cst) by a maximum flow. Finally (in contrast to the notation that
was used in the previous section, §5.4.1), we emphasise that fij and fji are in general
different variables here because the graph is directed and (i, j) 6= (j, i).

Suppose that we optimize the dual (5.33) coordinate-wise (i.e., apply block-coordinate
ascent with blocks of size 1). Clearly, the flow-conservation constraints (5.33f) make any
update impossible, hence any f feasible for the dual (5.33) is an interior local maximum
w.r.t. individual variables (cf. Example 1.6).

Remark 5.7. This corresponds to the fact that the propagation rule (4.1) is very weak
when applied to complementary slackness conditions expressed in terms of the primal vari-
ables (q, x) for some fixed dual-feasible f . In detail, some q variables are set to 0 and
some of the primal constraints (5.33b)-(5.33d) are equalities. However, since the x vari-
ables are unbounded and each variable q appears only in a single constraint (5.33b)-(5.33d)
(without any other q variables), no inequalities are implied to hold with equality, i.e., no
propagation is done.

We identified a more suitable formulation that uses the fact that one can impose box-
constraints on the x variables in the primal (5.33), namely replace constraints xk ∈ R
with constraints 0 ≤ xk ≤ 1. Such a change does not influence the optimal value of the
primal (5.33) due to its integrality (for details, we refer to [59, §I12, 110, §6.1]). This
results in the primal-dual pair

min c>q max
∑

(s,j)∈E

fsj +
∑

k∈V−{s,t}

zk (5.34a)

qsj + xj ≥ 1 fsj ≥ 0 ∀(s, j) ∈ E (5.34b)

qit − xi ≥ 0 fit ≥ 0 ∀(i, t) ∈ E (5.34c)

qij − xi + xj ≥ 0 fij ≥ 0 ∀(i, j) ∈ E, i 6= s, j 6= t (5.34d)

qij ≥ 0 fij ≤ cij ∀(i, j) ∈ E (5.34e)

xk ≥ 0 zk ≤ Rk(f) ∀k ∈ V − {s, t} (5.34f)

xk ≤ 1 zk ≤ 0 ∀k ∈ V − {s, t} (5.34g)

124

where we abbreviated
Rk(f) =

∑
(k,j)∈E

fkj −
∑

(i,k)∈E

fik (5.35)

for k ∈ V − {s, t}.
Note that the only difference between the duals (5.33) and (5.34) is in the objec-

tive (5.34a) and constraints (5.34f) and (5.34g).
The additional z variables in (5.34) can be eliminated similarly as in §2.4 or §5.4.1. In

detail, in any optimal solution (z, f) of dual (5.34), it holds that zk = min{Rk(f), 0} for
all k ∈ V − {s, t}. Making this substitution yields the optimization problem

max
∑

(s,j)∈E

fsj +
∑

k∈V−{s,t}

min{Rk(f), 0} (5.36a)

0 ≤ fij ≤ cij ∀(i, j) ∈ E. (5.36b)

By Theorem 5.4, we have the following optimality result.

Corollary 5.6. Any (pre-)interior local maximum w.r.t. individual variables of (5.36) is
a global maximum of (5.36).

Proof. The primal (5.34) is in the form (5.16). Also, each constraint contains at most two
x variables, so the constraint matrix is 2-in-row. All other conditions of Theorem 5.4 are
clearly satisfied. The result now follows from Theorem 5.4 by analogous reasoning as in
the proof of Corollary 5.5.

Remark 5.8. The reason for the success of block-coordinate ascent for this formulation
can be again linked to the ability of the corresponding propagation rule to set some x
variables to 0 or 1 and consequently also set q variables to 0 using the primal con-
straints (5.34b)-(5.34d). Since any interior local maximum of (5.36) w.r.t. individual
variables is a global maximum of (5.36), the propagation rule is refutation complete by
Corollary 5.1. This is in sharp contrast to the formulation (5.33) and Remark 5.7.

An update satisfying the relative-interior rule for a variable fij , (i, j) ∈ E in (5.36)
depends on whether i = s or j = t. We derived this update in [53a, §4.3.1] and it reads

fij :=


1
2

(
csj + πsj(Rj(f) + fsj)

)
if i = s

1
2

(
πit(fit −Ri(f)) + cit

)
if j = t

1
2

(
πij(fij −Ri(f)) + πij(Rj(f) + fij)

)
if i 6= s and j 6= t

(5.37)

where πij : R → [0, cij] is the projection onto [0, cij], i.e., πij(a) = max{0,min{cij , a}}.
These updates are clearly continuous in the f variables and any sequence of points f
feasible for (5.36) is bounded due to the capacity constraints (5.36b). Therefore, by The-
orem 1.10 and Corollaries 1.3 and 5.6, while performing the updates (5.37) to individual
variables fij of (5.36) in a cyclic order, the current point f will converge to the set of
optimizers of (5.36).

Remark 5.9. The updates (5.37) have an informal interpretation that was explained
in [53a, §4.3.1]. Briefly, performing updates (5.37) for fsj, (s, j) ∈ E can be interpreted as
trying to push flow into the network from the source (and symmetrically for fit, (i, t) ∈ E),
while the updates of fij for the ‘intermediate’ edges (i, j) ∈ E with i 6= s and j 6= t
propagate the flow throughout the network and, in a precise sense, try to make |Rk(f)|
small.

125

Remark 5.10. We practically evaluated coordinate-wise optimization of a slightly dif-
ferent formulation [51a, Equation (14)] where the objective was to be minimized. Using
publicly available instances of the maximum flow problem from computer vision, we ver-
ified that coordinate-wise optimization is able to attain the optimal value (up to machine
precision) [51a, §4.3].

In analogy to Remark 5.5, there is also a formula for an optimal solution of the pri-
mal (5.34) based on an interior local maximum of (5.36).

5.4.3 Example: WCSP with Potts Interactions

To show a slightly different example, let us consider the particular case of pairwise WCSP
with Potts interactions, i.e., we have |S| ≤ 2 for all S ∈ C, the unary weight functions g{i},
i ∈ V can be arbitrary whereas the weight functions of arity 2 are given by 86

g{i,j}(ki, kj) = −Jki 6= kjK ∀{i, j} ∈ C≥2, k ∈ D{i,j}. (5.38)

With such weight functions, one can add the constraints

ϕ{i,j},i(k) + ϕ{i,j},j(k) = 0 ∀{i, j} ∈ C≥2, k ∈ D (5.39a)

ϕ{i,j},i(k), ϕ{i,j},j(k) ∈
[
− 1

2 ,
1
2

]
∀{i, j} ∈ C≥2, k ∈ D (5.39b)

to the LP relaxation (1.43) without changing its optimal value [151a, §6.3, 53a, §4.4].
This can be derived by transforming the dual of the LP relaxation that was stated in [86,
Equation (ULP), 113, Equation (6)].

We will now show how the LP relaxation (1.43) with constraints (5.39) can be simpli-
fied. First, one can notice that if ϕ satisfies (5.39), then we have for each {i, j} ∈ C≥2

and k ∈ D{i,j} that

gϕ{i,j}(ki, kj) =

{0 (due to (5.38))︷ ︸︸ ︷
g{i,j}(ki, ki) +

0 (due to (5.39a))︷ ︸︸ ︷
ϕ{i,j},i(ki) + ϕ{i,j},j(ki) = 0 if ki = kj

g{i,j}(ki, kj)︸ ︷︷ ︸
−1 (due to (5.38))

+ϕ{i,j},i(ki) + ϕ{i,j},j(kj)︸ ︷︷ ︸
≤1 (due to (5.39b))

≤ 0 if ki 6= kj
(5.40)

and therefore
max

k∈D{i,j}
gϕ{i,j}(ki, kj) = 0 ∀{i, j} ∈ C≥2. (5.41)

Second, we assign an arbitrary direction to each edge in the undirected graph (V,C≥2)
to obtain a directed graph (V,E) so that for each undirected edge {i, j} ∈ C≥2, there is
exactly one directed edge (i, j) ∈ E. In other words, (V,E) is an orientation [116, §8.3.3]
of (V,C≥2). Consequently, constraint (5.39a) can be eliminated by substituting the ϕ
variables by new λ variables,

λij(k) = −ϕ{i,j},i(k) = ϕ{i,j},j(k) ∀(i, j) ∈ E, k ∈ D, (5.42)

86More generally, there can be a non-negative scalar wij ≥ 0 for each {i, j} ∈ C≥2 and the weight
functions are then defined by g{i,j}(ki, kj) = −wijJki 6= kjK, as in [25, §7, 86, §3, 113, §2.1]. Our results
from this section would also apply to this generalization. For clarity, we note that the sign is inverted
in our case here because we maximize the WCSP objective whereas the papers [25, 86, 113] consider
minimization. WCSP with Potts interactions is also known as the uniform labeling problem [86, §3] which
is a special case of the metric labeling problem [86, §1.2].

126

which reduces the total number of variables by half.
All in all, using the variable substitution (5.42) together with (5.41), we can transform

the optimization problem (1.43) with constraints (5.39) into the simpler form

min
∑
i∈V

max
k∈D

(g↑λ{i}(k)︷ ︸︸ ︷
g{i}(k) +

∑
(i,j)∈E

λij(k)−
∑

(j,i)∈E

λji(k)
)

(5.43a)

−1
2 ≤ λij(k) ≤ 1

2 ∀(i, j) ∈ E, k ∈ D (5.43b)

that uses the new variables λ. Note that we defined new notation g↑λ{i}(k) for the term in the

maximum in (5.43a) – we use the arrow symbol to distinguish it from the transformation
that was defined earlier in (1.41).

Based on the previous discussion, it follows that the optimal value of (5.43) coincides
with the optimal value of (1.43). Moreover, any optimal solution λ of (5.43) defines an
optimal solution ϕ of (1.43) via (5.42).

Interestingly, (5.42) need not map ILMs of (5.43) to pre-ILMs of (1.43) if |D| ≥ 3.
More precisely, for an ILM λ of (5.43) w.r.t. individual variables, ϕ defined by (5.42)
need not be an ILM (or even a pre-ILM) of (1.43) w.r.t. individual variables. We gave a
detailed example of this phenomenon in [53a, Example 5]. Let us note that the example
given in [53a] used a chain graph (V,C≥2) and |D| = 3. Thus, (pre-)ILMs of (5.43) need
not be global minima even if the underlying graph is acyclic. This is in contrast with the
formulation (1.43) where any (pre-)ILM is a global minimum if the factor graph of (V,C)
is acyclic (or, in particular, if the WCSP is pairwise and the graph (V,C≥2) is acyclic) –
this follows from Fact 1.2 combined with the results in §4.4.1.

However, as given by the following corollary, if the WCSP is in addition Boolean, then
any ILM of (5.43) is a global minimum. In this particular case, the problem becomes
supermodular [119, §11.2.1] and thus the optimal value of the LP relaxation (1.43) (and
hence also (5.43)) coincides with the optimal value of the WCSP by Fact 1.2. 87

Corollary 5.7. If |D| = 2, then any (pre-)ILM w.r.t. individual variables of (5.43) is a
global minimum of (5.43).

Proof. Let the set of labels be D = {a, b}. It is easy to see that∑
i∈V

(∑
(i,j)∈E

λij(b)−
∑

(j,i)∈E

λji(b)
)

= 0, (5.44)

so
∑

i∈V g
↑λ
{i}(b) =

∑
i∈V g{i}(b). In addition, max{x, y} = max{x − y, 0} + y holds for

any x, y ∈ R, hence the objective (5.43a) can be rewritten as∑
i∈V

max
{
g↑λ{i}(a), g↑λ{i}(b)

}
=
∑
i∈V

max
{
g↑λ{i}(a)− g↑λ{i}(b), 0

}
+
∑
i∈V

g{i}(b). (5.45)

87In case of supermodular (or general Boolean pairwise) problems, the fixed points ϕ of the BCD
algorithms from §1.5.4.1 are optimal for (1.43) (recall Facts 1.2 and 1.3). However, we emphasise that this
fact does not (at least directly) imply Corollary 5.7 because the optimization problem (1.43) is different
from (5.43). As mentioned earlier, the ‘acyclic’ part of Fact 1.2 does not carry over to the optimization
problem here because (5.43) may have non-optimal (pre-)ILMs even if the underlying graph (V,C≥2) =
(V, {{i, j} | (i, j) ∈ E}) is acyclic (which is in contrast to (1.43)).

127

After omitting the constant term
∑

i∈V g{i}(b) (which does not influence solvability
by BCD), the rewritten objective is in the form (5.18a) with a 2-in-row matrix A whose
elements are from the set {−1, 0, 1} and the box constraints (5.43b) are subsumed by the
constraints (5.18b). The corollary now follows from Theorem 5.4.

We remark that, if |D| ≥ 3, then solving this relaxation is as hard as solving any linear
program [113].

In [151a, §6.3], we derived an update satisfying the relative-interior rule for the in-
dividual λ variables in the optimization problem (5.43). For (i, j) ∈ E and k ∈ D, the
update reads

λij(k) := 1
2π
(

max
`∈D
6̀=k

g↑λ{i}(`)− g
↑λ
{i}(k) +λij(k)

)
+ 1

2π
(

max
`∈D
`6=k

g↑λ{j}(`)− g
↑λ
{j}(k)−λij(k)

)
(5.46)

where π : R→
[
− 1

2 ,
1
2

]
is the projection onto

[
− 1

2 ,
1
2

]
, i.e., π(a) = max

{
− 1

2 ,min
{

1
2 , a
}}

.
Clearly, the values of λ are bounded due to the box constraints (5.43b) and the up-

dates (5.46) are continuous in λ. Therefore, Theorem 1.10 yields that if the individual
coordinates of λ are updated by (5.46) in a cyclic order, the point will converge to the set
of pre-ILMs w.r.t. individual variables of (5.43). Moreover, by Corollary 5.7 (combined
with Corollary 1.3), if the WCSP instance is in addition Boolean, it will converge to the
set of global minima of (5.43).

Remark 5.11. We experimentally evaluated coordinate-wise minimization of (5.43) by
updates (5.46) on synthetic image segmentation tasks in [151a]. In all evaluated criteria
(i.e., attained objective of the relaxation, runtime, and an obtained segmentation), the
updates (5.46) were competitive to max-sum diffusion which optimizes (1.43) by relative-
interior updates. For more details, we refer to the supplementary material of [151a].

5.5 Discussion

The starting point of this chapter is Corollary 5.1 that follows from our results in §4 and
links solvability of linear programs by BCD to refutation-completeness of an associated
propagator. Thanks to this result, we identified three new classes of linear programs
where (pre-)ILMs are global optima: LP formulation of WCSP (the dual (5.1)) and the
problem (5.16) with 2-in-row or bipartite-acyclic matrix (and additional constraints on A
and b). Note that the constraint matrix in (5.1) is neither 2-in-row nor bipartite-acyclic.
The practical impact of these results is limited because performing BCD with the relative-
interior rule in the dual (5.1) is likely intractable and all of the listed linear programs
with 2-in-row constraint matrix can be reduced to network flow problems and solved by
combinatorial algorithms. Although these classes are relatively narrow, we believe that
this is not an exhaustive list of linear programs solvable by BCD and that our proof
technique may have the potential to identify other such classes in the future.

The presented results are of theoretical interest. For example, we proved that the
propagator defined in §4.1 in the case of linear program (5.1) enforces positive consis-
tency. This can be compared to the case of the LP relaxation (1.43) where the associated
propagator (see §4.4.1) enforces arc consistency.

Furthermore, we also explained and exemplified the differences in applicability of BCD
caused by reformulations of problems in §5.4. This may provide theoretical background

128

to identify what formulations of linear programs are more amenable to BCD or determine
whether the fixed points of BCD are global optima in other cases.

As an example, in [53a, §5], we considered the class of problems (5.16) where ma-
trix A ∈ {−1, 0, 1}m×n contains at most two non-zero entries in each column and b ∈ Zm.
This class includes, e.g., the LP formulations of the assignment problem and shortest path
problem, or the LP relaxation of maximum weight matching. For these problems, we
optimized the corresponding formulation (5.18) coordinate-wise with the relative-interior
rule to find that the objective of fixed points is typically close to the optimal value of the
linear program on randomly generated instances. This is not guaranteed in theory as we
were able to find a small instance with a non-optimal ILM for each of these problems.
Based on our experience, finding such counter-examples is simpler when working directly
with the associated propagator via our results from §4 (as opposed to trying to find a
non-optimal ILM directly).

More generally, one could ask for which linear programs there is a formulation where
any (pre-)ILM w.r.t. some small subsets of variables is a global optimum. Without further
restrictions (such as linear-time reduction), this question is trivial: Let Y ⊆ Rm be a
polytope, V ⊆ Y be the set of its vertices, and b ∈ Rm. The optimum of the linear
program min{ b>y | y ∈ Y } is attained in at least one vertex v ∈ V [119, §3.3]. It is easy
to show that any LM (and thus any (pre-)ILM) of

min
∑
y∈V

(b>y)λ(y) (5.47a)

λ(y) ≥ 0 ∀y ∈ V (5.47b)∑
y∈V

λ(y) = 1 (5.47c)

w.r.t. all blocks of variables of size 2 is a global minimum. An optimizer of the original
problem is obtained by y∗ =

∑
y∈V λ(y)y. There exist even more trivial examples of such

transformations that require non-linear time.

Remark 5.12. On a different but related note, it can be shown [49a, Theorem 1] that
for any polyhedron Y ⊆ Rm, there exists a finite set of directions so that for any convex
differentiable function f : Y → R (in particular, any linear function), any LM 88 of f on Y
w.r.t. this set of directions (recall Remark 1.3) is a global minimum.

Without going into too much details, one can find the tangent cone of each face of Y [44,
Definition 6.2.2]. Since Y is a polyhedron, this tangent cone is polyhedral and thus finitely
generated [44, Theorem 1.3.12, 123, Corollary 7.1a]. The set of directions is obtained as
the union of the generators of tangent cones for all faces of Y . Since each polyhedron has
only a finite number of faces, the resulting set of directions is finite. Also, it is possible
to transform the optimization of any problem along a set of directions into a form where
it corresponds to coordinate-wise minimization via introducing additional variables (whose
number is not greater than the number of directions).

88In [49a], we assumed the relative-interior rule, but this is in fact not necessary.

129

Conclusion

In this thesis, our practical interests laid in designing algorithms for approximately solving
(more precisely, bounding the optimal value of) large-scale linear programs that nowadays
emerge and cannot be tackled by off-the-shelf LP solvers in practice. From the theoretical
viewpoint, we provided a connection between local consistencies and BCD for LP problems
which resulted in a characterization of linear programs optimally solvable by BCD in terms
of constraint propagation. In turn, this characterization helped us identify new classes of
problems solvable by BCD. We now conclude with an overview of our contributions that
were presented in the previous chapters and also discuss their implications for scientific
development in the future.

Contributions

The basis for our theoretical results is the framework for approximate optimization of
large-scale linear programs which was introduced in §2.2. In detail, one applies (generally
problem-dependent) constraint propagation rules to the complementary slackness condi-
tions in order to try to detect their infeasibility. If infeasibility is detected, any certificate
of infeasibility turns out to be a direction that can be used to improve a current dual solu-
tion. We argued that this scheme subsumes the VAC / Augmenting DAG algorithm [33,
95, 146] and used it as an illustrative example (in §2.3). Next, we designed an algorithm
based on constraint propagation for approximately optimizing the dual LP relaxation of
weighted Max-SAT, including experiments on a publicly available benchmark (in §2.4).

The more complex algorithm that we outlined in §3.2 can be also interpreted as an
application of the aforementioned framework. This algorithm computes a bound on the
WCSP optimal value by approximately optimizing the problem (1.45) which has an ex-
ponential number of constraints. Although the optimization problem (1.45) was already
proposed in [92], we have newly shown that one can use any method to detect unsatisfi-
ability of the active-tuple CSP to improve the bound. 89 In other words, one can enforce
any local consistency in the active-tuple CSP. This is in contrast to previous approaches
for obtaining bounds using constraint propagation (that we overviewed in §1.5.4.2) which
needed to be tailored to a single chosen (soft) local consistency. We experimentally verified
that our method (implemented with singleton arc consistency) is able to provide superior
or at least frequently competitive bounds when compared to other (soft) local consisten-
cies (in §3.2.5). The cost for this is that our method does not produce a reparametrization
of the input WCSP but only a super-reparametrization which may not preserve the ob-
jective value of the individual assignments or even the set of optimal assignments. Since
the properties of super-reparametrizations or of the optimization problem (1.45) were not
theoretically studied before, we filled in this gap in §3 and §5.2.

Our crucial result from §4 is the identification of the special (yet natural) constraint
propagation rule (4.1) which is applicable to any system of linear inequalities and equal-
ities. The stopping points of the method from §2.2 with this propagation rule coincide

89On a high level, our method can be interpreted as improving an upper bound on the WCSP optimal
value by sequentially detecting unsatisfiability of certain CSPs.

130

with pre-ILMs (i.e., points from which no BCD updates can improve the objective). Con-
sequently, although these methods are not guaranteed to reach a global optimum, none of
the methods can improve the stopping points of the other. Moreover, we precisely char-
acterized the types of local (and global) minima in BCD using the associated propagator
in Corollary 4.1.

Next, we discovered that some known local consistencies can be enforced by this prop-
agation rule if it is applied to a suitable system of linear inequalities (consequently, they
can be also enforced by BCD with the relative-interior rule). For example, our propagator
(or BCD) enforces/performs

• arc consistency, when applied to the dual of basic LP relaxation of WCSP (§4.4.1),

• pairwise consistency, if a different coupling scheme is used (§4.4.1),

• positive consistency, when applied to the linear program (1.45) (§5.2.2),

• unit propagation, when applied to the dual of LP relaxation of SAT (§4.4.2).

We also classified some popular BCD methods designed for approximate optimization of
the dual LP relaxation of WCSP in terms of whether they satisfy the relative-interior rule
or if their fixed points are at least pre-ILMs (in §4.4.1).

Furthermore, we precisely characterized linear programs solvable by BCD by refutation-
completeness of the propagation rule (4.1) in §5.1. This provides a new technique for
proving optimality of BCD which was exemplified in §5.2.1 by showing that the opti-
mization problem (1.45) can be solved to optimality by BCD, which is however likely
intractable (following §5.2.3). In addition to that, we identified in §5.3 two new classes
of linear programs solvable by BCD that subsume several optimization problems, includ-
ing, e.g., a suitable formulation of the maximum flow problem or LP relaxations of some
combinatorial problems.

Finally, in §5.4, we analyzed three optimization problems where applicability of BCD
highly depends on the precise formulation of the optimization problem – this was an LP
formulation of the maximum flow problem, LP relaxation of weighted vertex cover, and a
special LP relaxation of WCSP with Potts interactions.

Throughout our presentation, we referred to our experimental results from [151a, 53a,
51a] where we applied BCD with the relative-interior rule to various linear programs,
namely LP formulations of maximum flow, shortest paths, or assignment problem and
LP relaxations of weighted vertex cover, weighted partial Max-SAT, maximum weight
matching, or WCSP with Potts interactions. For each of these problems, we designed a
closed-form coordinate-wise update satisfying the relative-interior rule and evaluated the
quality of the resulting stopping points that were typically at least close to global optima
of the linear programs (sometimes even guaranteed to be optimal, as discussed above).

Further Development

We believe that the constraint-propagation-based approach from §2 has the potential to be
useful when approximately solving other large-scale linear programs, which is indicated,
e.g., by our experimental results in §2.4.4 and §3.2.5. This approach seems to provide more
flexibility when compared to BCD because BCD updates may not be easily applicable to
some problems. An example is the case of optimizing an upper bound on WCSP over
its super-reparametrizations (1.45): applying BCD with the relative-interior rule is likely
intractable, whereas BCD without the relative-interior rule may become trivial (see §5.2.3).

131

By placing this optimization problem into our approach with constraint propagation, we
were able to design a method that is weaker than Algorithm 4.2 but is capable of providing
useful bounds and can be adapted to any level of local consistency, resulting in different
trade-offs between bound quality and runtime.

Let us now focus on our algorithm from §3.2 in more detail. Because its subroutines are
involved and the algorithm offers significant flexibility, there may be multiple areas that
could be refined in order to even further improve the provided bounds or achieve speed-ups.
First, there is the choice of the local consistency that is enforced in the active-tuple CSP.
Second, one can also choose the specific propagation algorithm to enforce the chosen local
consistency – e.g., the computational effort for enforcing SAC varies, depending on the
precise choice of the propagation algorithm [18]. Third, one may invent better heuristics
or theoretical background for computing deactivating directions (or improving directions
in general) that would be more suitable in the sense of not increasing the objective values
for the individual assignments in the super-reparametrized WCSP so much. Lastly, there
are also important considerations for implementation details, including, e.g., better choice
of hyper-parameters in capacity scaling or introduction of tailored stopping conditions.
Improving any of these areas may have a considerable impact on the performance of this
method.

In our work, we did not experiment with using the computed bounds in branch-and-
bound search. Further experiments are necessary to evaluate whether our techniques will
make it possible to design better algorithms to compute exact or approximate solutions
for some problems of combinatorial optimization.

Aside from possible future algorithms, we believe that our results open a number of
questions for subsequent theoretical research. For example, for which WCSP instances
does it hold that their set of optimal solutions is equal to the set of solutions of some CSP
instance with the same structure (§3.3.2).

Next, the relation between BCD and local consistencies that we presented in §4 provides
useful background for theoretical evaluation of BCD methods. As an example, one can
compare different formulations of a single optimization problem to find out which is more
amenable to BCD by comparing the strength of the corresponding propagators (as we
did in §5.4). Other interesting tasks include, e.g., to identify other problems where the
propagator from §4.1 corresponds to some well-known propagation rule or local consistency
(aside from the cases that we listed in the section above). For instance, one could analyze
the meaning of the propagator in case of the maximum flow formulation (5.34) and see if
Algorithm 4.2 in this case corresponds to some already known maximum-flow algorithm.
Another research direction may be to study which reformulations preserve (pre-)ILMs or
LMs and which do not. In general, the identified connection may provide theoretical basis
for analysis of BCD in terms of constraint propagation.

Our results from §5 may help discover new classes of linear programs where the fixed
points of BCD are global optima or may lead to better design for choices of blocks of vari-
ables so that the propagation is more effective and BCD thus reaches at least better fixed
points. Moreover, it is natural to ask for which problems is the constraint propagation
rule (4.1) refutation complete – this kind of problems is studied for classical local consis-
tencies in CSPs (recall §1.4.1.3) and could perhaps lead to a different characterization of
the class of linear programs solvable by BCD.

A broader question is whether the obtained results can be extended beyond linear
programs, e.g., to general convex optimization problems. To generalize the constraint-

132

propagation-based approach from §2, a possible starting point could be stating the opti-
mality conditions (or conditions that are at least necessary for optimality) in a suitable
way that, if proved infeasible, would allow us to obtain an improving direction or a feasible
point with better objective. Regarding a generalization of the results from §4 or §5, for
this one needs to identify the precise form of constraint propagation that corresponds to
performing BCD. Of course, such a constraint propagation rule is not guaranteed to exist
in more general cases.

133

Appendix

List of Publications

We enclose the list of publications of the author of this thesis. All publications are related
to the topic of the dissertation and are indexed in Scopus. The list of citations is based on
Google Scholar with self-citations omitted. All stated information is as of May 2nd, 2022.

Publications in Impacted Journals and CORE A*/A Conferences

Since there is a delay in indexing by Web of Science (WoS), the conference papers listed in
this section are not currently indexed in WoS, but the proceedings of at least 7 previous
years of the conferences are indexed.

• Dlask, T. and Werner, T. Classes of linear programs solvable by coordinate-wise mini-
mization. In: Annals of Mathematics and Artificial Intelligence (2021). Cited as [53a].

◦ Authorship shares: Dlask: 75%, Werner: 25%.

• Dlask, T. and Werner, T. Bounding linear programs by constraint propagation: ap-
plication to Max-SAT. In: International Conference on Principles and Practice of
Constraint Programming (2020). Cited as [52a].

◦ Authorship shares: Dlask: 55%, Werner: 45%.
◦ Rank A conference according to the CORE Conference Rankings
◦ Cited by:

? Marino, R. Learning from survey propagation: a neural network for MAX-E-
3-SAT. In: Machine Learning: Science and Technology (2021).

? Montalbano, P., de Givry, S., and Katsirelos, G. Contrainte de sac-à-dos à
choix multiples dans les réseaux de fonctions de coûts. In: Proceedings of
JFPC (2021).

• Dlask, T. and Werner, T. On relation between constraint propagation and block-
coordinate descent in linear programs. In: International Conference on Principles
and Practice of Constraint Programming (2020). Cited as [54a].

◦ Authorship shares: Dlask: 60%, Werner: 40%.
◦ Rank A conference according to the CORE Conference Rankings
◦ Cited by:

? Montalbano, P., de Givry, S., and Katsirelos, G. Contrainte de sac-à-dos à
choix multiples dans les réseaux de fonctions de coûts. In: Proceedings of
JFPC (2021).

• Dlask, T., Werner, T., and de Givry, S. Bounds on Weighted CSPs Using Constraint
Propagation and Super-Reparametrizations. In: International Conference on Princi-
ples and Practice of Constraint Programming (2021). Cited as [55a].

◦ Authorship shares: Dlask: 45%, Werner: 35%, de Givry: 20%.
◦ Rank A conference according to the CORE Conference Rankings

134

• Werner, T., Pr̊uša, D., and Dlask, T. Relative Interior Rule in Block-Coordinate
Descent. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020). Cited as [151a].

◦ Authorship shares: Werner: 40%, Pr̊uša: 40%, Dlask: 20%.
◦ Rank A* conference according to the CORE Conference Rankings
◦ Cited by:

? Lange, J.H. and Swoboda, P. Efficient message passing for 0–1 ILPs with
binary decision diagrams. In: International Conference on Machine Learning
(2021).

? Abbas, A. and Swoboda, P. FastDOG: fast discrete optimization on GPU.
arXiv preprint arXiv:2111.10270 (2021).

? Savchynskyy, B. Discrete graphical models -— an optimization perspective.
In: Foundations and Trends in Computer Graphics and Vision (2019).

Other Publications

• Dlask, T. and Werner, T. A class of linear programs solvable by coordinate-wise min-
imization. In: Learning and Intelligent Optimization (2020). Cited as [51a].

◦ Authorship shares: Dlask: 65%, Werner: 35%.
◦ Note: the proceedings of this conference from 5 previous years were indexed by

WoS; we do not know whether the proceedings from 2020 will be indexed.
◦ Cited by:

? Lange, J.H. and Swoboda, P. Efficient message passing for 0–1 ILPs with
binary decision diagrams. In: International Conference on Machine Learning
(2021).

• Dlask, T. Unit propagation by means of coordinate-wise minimization. In: Inter-
national Conference on Machine Learning, Optimization, and Data Science (2020).
Cited as [50a].

◦ Note: the proceedings of this conference from years 2017, 2019, and 2021 were
indexed by WoS; we do not know whether the proceedings from 2020 will be
indexed.

• Dlask, T. On coordinate-wise minimization applied to general convex optimization
problems. In: Procedia Computer Science (2020). Cited as [49a].

Submissions Under Review

• Dlask, T., Werner, T., and de Givry, S. Super-Reparametrizations of Weighted CSPs:
Properties and Optimization Perspective. Cited as [56a].

◦ Authorship shares: Dlask: 45%, Werner: 35%, de Givry: 20%.
◦ Submitted to Artificial Intelligence in 2021, no reviews yet.
◦ Preprint is available online: https://arxiv.org/abs/2201.02018.

135

https://arxiv.org/abs/2201.02018

List of Abbreviations

AC Arc Consistency
a.k.a. also known as
BCD Block-Coordinate Descent
CC Cycle Consistency
cf. compare
CSP Constraint Satisfaction Problem
DAC Directional Arc Consistency
DAG Directed Acyclic Graph
EDAC Existential Directional Arc Consistency
EDmaxRPC Existential Directional max Restricted Path Consistency
EDPIC Existential Directional Path Inverse Consistency
e.g. for example
etc. and so forth
FDAC Full Directional Arc Consistency
i.e. that is
ILM Interior Local Minimum
LM Local Minimum
LP Linear Programming
Max-SAT Maximum Satisfiability
maxRPC max-Restricted Path Consistency
MPLP Max Product Linear Programming
NP complexity class non-deterministic polynomial time (as in NP-hard or

NP-complete)
OSAC Optimal Soft Arc Consistency
PIC Path Inverse Consistency
pre-ILM pre-Interior Local Minimum
RPC Restricted Path Consistency
SAT boolean satisfiability problem of a formula in conjunctive normal form
SPAM Shortest Path Adaptive Minorant
SRMP Sequential Reweighted Message Passing
TRW-S Sequential Tree-Reweighted message passing
VAC Virtual Arc Consistency
VCC-SR Virtual Cycle Consistency via Super-Reparametrizations
VSAC-SR Virtual Singleton Arc Consistency via Super-Reparametrizations
WCSP Weighted Constraint Satisfaction Problem
WoS Web of Science
w.r.t. with respect to

136

Overview of Notation

Even though unusual notation is always defined in text on its first occurrence, we give an
overview of frequently appearing notation here. Some specialized notation that does not
occur frequently is defined in places where it is needed.

Sets

R set of real numbers
R+ set of non-negative real numbers
R++ set of positive real numbers
R+∞ set of real numbers extended by +∞, i.e., R+∞ = R ∪ {+∞}
R−∞ set of real numbers extended by −∞, i.e., R−∞ = R ∪ {−∞}
Z set of integers
N set of positive integers
N0 set of non-negative integers
[n] {1, . . . , n}, i.e., set of positive integers lower than or equal to n ∈ N
2S power set of set S, i.e., set of all subsets of S (including S and ∅)
Sn n-ary Cartesian power of set S (for n ∈ N)
Sm×n set of all matrices with m rows and n columns whose elements are taken from

set S (e.g., Rm×n is the set of all real matrices with m rows and n columns)
riS relative interior of a convex set S

spanS linear hull of set S
aff S affine hull of set S

convS convex hull of set S
coneS conic hull of set S
AB set of all mappings B → A (for a ∈ AB and b ∈ B, we also denote a(b) by ab)

A−B set difference, A−B = {a ∈ A | a /∈ B}
A ⊆ B set inclusion, i.e., A ⊆ B if A ∩B = A
A (B strict (a.k.a. proper) set inclusion, i.e., A (B if A ⊆ B and A 6= B

The notation for n-ary Cartesian power of a set S (denoted by Sn) is a simplification
of S[n] (where n ∈ N).

For x, y ∈ Rn, [x, y] denotes the line segment {αx+(1−α)y | 0 ≤ α ≤ 1}. In particular,
for n = 1, this simplifies to the real interval [x, y] = {α ∈ R | x ≤ α ≤ y}

Vectors, Matrices, and Matrix/Dot Product

Ai i-th row of matrix A
Aj j-th column of matrix A
Aij element of matrix A in i-th row and j-th column
A> transpose of matrix A (also applicable to vectors)
x>y dot product of two column vectors x, y ∈ Rn, i.e., x>y =

∑n
i=1 xiyi (or, more

generally, x>y =
∑

i∈S xiyi for x, y ∈ RS)

137

All vectors are considered to be column vectors, so x>y is in fact the matrix product of a
row vector x> and a column vector y. This is in analogy to matrix products Aix, A>j y,
or Ax (for A ∈ Rm×n, x ∈ Rn, y ∈ Rm, i ∈ [m], and j ∈ [n]). As we never require matrix
power, there is no ambiguity whenever writing Ai.

Let A and B be sets. For a vector x ∈ AB and B′ ⊆ B, x|B′ denotes the subvector of x

containing only indices from B′. Analogously, if x ∈ AB is seen as a mapping x : B → A,
then x|B′ is its restriction to set B′. In case that B′ is a singleton set, i.e., B′ = {b}
for some b ∈ B, we simplify x|{b} to xb. As an example, for x ∈ R4, we have x =

(x1, x2, x3, x4) and x|{2,3} = (x2, x3). This notation also extends to (outputs of) functions,

i.e., for f : D → AB, d ∈ D, B′ ⊆ B, and b ∈ B, we have f(d)|B′ ∈ A
B′ and f(d)b ∈ A.

Sequences

A sequence of sets is indexed by a subscript (e.g., S1, S2, S3, . . .) to avoid ambiguity with
the n-ary Cartesian power of a set (which is denoted by Sn). On the other hand, sequences
of vectors (or tuples) are indexed by a superscript (e.g., b1, b2, b3, . . .) because their com-
ponents are obtained by a subscript (e.g., b1 = (b11, b

1
2, b

1
3) ∈ R3). Sequences of matrices

are not required.

Functions

f ◦ g composition of function f with g as (f ◦ g) : x 7→ f(g(x))
JψK Iverson bracket: JψK = 1 if ψ is true and JψK = 0 if ψ is false
∨ join operation in §1.3 and Example 1.11, logical disjunction in other sections
∧ meet operation in §1.3, logical conjunction in other sections

Throughout the thesis, argminx∈X f(x) = {x ∈ X | f(x) = minx′∈X f(x′) } denotes the
set of minimizers of function f over set X. The case with argmax is analogous.

Partially Ordered Sets

� a partial order

Q↑S set of all upper bounds on Q in S

Q↓S set of all lower bounds on Q in S∧
S Q greatest lower bound on Q in S (we simplify

∧
S {q1, q2} to q1 ∧S q2)∨

S Q least upper bound on Q in S (we simplify
∨
S {q1, q2} to q1 ∨S q2)

> top element
⊥ bottom element

im f image of mapping f (see (1.22))

CSP and Weighted CSP

V finite set of variables
D finite domain of each variable
C non-empty set of non-empty scopes of constraints, C ⊆ 2V , ∅ /∈ C
C≥2 set of non-unary scopes, i.e., C≥2 = {S ∈ C | |S| ≥ 2}
T set of all tuples, partitioned into TS (see (1.23) and (1.24))

A,A′, . . . CSP instances, i.e., sets of allowed tuples

138

SOL(A) solution set of CSP A
CΦ (dual) closure operator associated with Φ-consistency (see (1.27))

d, f, g, . . . WCSP instances, i.e., vectors with their weights
F (x |f) objective value of WCSP f for assignment x
B(f) upper bound on the optimal value of WCSP f (see (1.39))
A∗(f) set of active tuples for WCSP f (also see (2.10) for A∗ε (f))
M∗ set of WCSPs f ∈ RT such that F (x |f) ≥ 0 for all assignments x ∈ DV

M⊥ set of WCSPs f ∈ RT such that F (x |f) = 0 for all assignments x ∈ DV

OPT(f) set of all optimal assignments for WCSP f (see (3.23))

We also note that we write yS(k) and yt interchangeably for any y ∈ RT and t = (S, k) ∈ T .

Linear Programs

σ(x) set of indices of primal constraints active at x (see (1.2a))
τ(y) set of indices of dual constraints active at y (see (1.2b), also see (2.6) for τε(y))

SAT and Weighted Max-SAT

V set of logical variables
C set of clauses
V +
c set of variables that occur in clause c non-negated
V −c set of variables that occur in clause c negated
Vc set of all variables that occur in clause c
C+
i set of clauses where variable i occurs non-negated

C−i set of clauses where variable i occurs negated
xci value of variable i in clause c (see (2.16))

Let A and B be sets with B ⊆ A. For a vector x ∈ RA, x(B) denotes
∑

i∈B xi. This
special notation is used only in the context of (Max-)SAT to simplify formulations.

Graphs

An undirected graph is a pair (V,E) where V is a finite set of nodes (a.k.a. vertices) and
E contains (a subset of) 2-element subsets of V , i.e., for edge {i, j} ∈ E, we have i, j ∈ V
and i 6= j, which forbids loops. In an undirected graph, Ni = {j ∈ V | {i, j} ∈ E} is the
set of neighbors of node i ∈ V .

A directed graph is a pair (V,E) where V is a finite set of nodes and E ⊆ V × V ,
i.e., edge (i, j) ∈ E is oriented from i ∈ V to j ∈ V . We generally forbid loops in
directed graphs too, i.e., (i, i) /∈ E for all i ∈ V . The set of successors of node i ∈ V is
N+
i = {j ∈ V | (i, j) ∈ E}.

An (undirected) hypergraph is a pair (V,E) where V is a finite set of nodes and E ⊆ 2V

is a set of hyperedges with ∅ /∈ E. We do not use directed hypergraphs.

Text Flow and References

End of example is indicated by4, QED symbol is the standard �. Papers/works where the
author of this thesis contributed are marked with ‘a’, e.g., as in [55a]. Whenever referring
to, e.g., ‘§1’ (or ‘§1.1’), we mean ‘Chapter 1’ (or ‘Section 1.1’) etc. A group citation, e.g.,
‘[123, §7.4, 103, §6.1, 24]’ should be interpreted as ‘§7.4 in [123], §6.1 in [103], and [24]’.

139

Bibliography

[1] https://miat.inrae.fr/toulbar2.

[2] https://forgemia.inra.fr/thomas.schiex/cost-function-library, com-
mit 356bbb85.

[3] https://software.cs.uni-koeln.de/spinglass.

[4] Adler, I. and Monteiro, R. D. “A geometric view of parametric linear program-
ming”. In: Algorithmica 8.1 (1992), pp. 161–176.

[5] Apt, K. R. “From chaotic iteration to constraint propagation”. In: International
Colloquium on Automata, Languages, and Programming. Springer. 1997, pp. 36–
55.

[6] Apt, K. R. “The Rough Guide to Constraint Propagation”. In: Conference on
Principles and Practice of Constraint Programming. Springer, 1999, pp. 1–23.

[7] Astesana, J., Cosserat, L., and Fargier, H. “Constraint-based Vehicle Configura-
tion: A Case Study”. In: 2010 22nd IEEE International Conference on Tools with
Artificial Intelligence. Vol. 1. 2010, pp. 68–75.

[8] Bacchus, F., Chen, X., Van Beek, P., and Walsh, T. “Binary vs. non-binary con-
straints”. In: Artificial Intelligence 140.1-2 (2002), pp. 1–37.

[9] Bacchus, F., Järvisalo, M., and Martins, R. “MaxSAT Evaluation 2018: New De-
velopments and Detailed Results”. In: Journal on Satisfiability, Boolean Mod-
eling and Computation 11.1 (2019). Instances available at https://maxsat-

evaluations.github.io/., pp. 99–131.

[10] Bachem, A. and Grötschel, M. New aspects of polyhedral theory. Ed. by B.Korte.
Inst. für Ökonometrie und Operations Research, North-Holland Publishing Com-
pany, 1982.

[11] Batra, D., Nowozin, S., and Kohli, P. “Tighter relaxations for MAP-MRF infer-
ence: A local primal-dual gap based separation algorithm”. In: Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics. 2011,
pp. 146–154.

[12] Beck, A. “The 2-coordinate descent method for solving double-sided simplex con-
strained minimization problems”. In: Journal of Optimization Theory and Appli-
cations 162.3 (2014), pp. 892–919.

[13] Benhamou, F. and Granvilliers, L. “Continuous and Interval Constraints”. In:
Handbook of Constraint Programming. Elsevier, 2006. Chap. 16.

[14] Berge, C. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

[15] Bertsekas, D. P. “Nonlinear Programming. Athena Scientific”. In: Belmont, MA
(1999).

[16] Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear optimization. Vol. 6.
Athena Scientific Belmont, MA, 1997.

140

https://miat.inrae.fr/toulbar2
https://forgemia.inra.fr/thomas.schiex/cost-function-library
356bbb85
https://software.cs.uni-koeln.de/spinglass
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/

[17] Bessiere, C. “Constraint Propagation”. In: Handbook of Constraint Programming.
Elsevier, 2006. Chap. 3.

[18] Bessiere, C., Cardon, S., Debruyne, R., and Lecoutre, C. “Efficient algorithms for
singleton arc consistency”. In: Constraints 16.1 (2011), pp. 25–53.

[19] Bessiere, C. and Debruyne, R. “Theoretical analysis of singleton arc consistency”.
In: Workshop on Modelling and Solving Problems with Constraints. 2004, pp. 20–
29.

[20] Bessiere, C., Fargier, H., and Lecoutre, C. “Global Inverse Consistency for In-
teractive Constraint Satisfaction”. In: Principles and Practice of Constraint Pro-
gramming. Ed. by Schulte, C. Springer Berlin Heidelberg, 2013, pp. 159–174.

[21] Biere, A., Heule, M., and Maaren, H. van. Handbook of satisfiability. Vol. 185. IOS
press, 2009.

[22] Blyth, T. Lattices and Ordered Algebraic Structures. Universitext. Springer Lon-
don, 2005. isbn: 9781852339050.

[23] Boros, E. and Hammer, P. L. “Pseudo-boolean optimization”. In: Discrete applied
mathematics 123.1-3 (2002), pp. 155–225.

[24] Boyd, S. and Vandenberghe, L. Convex optimization. Cambridge university press,
2004.

[25] Boykov, Y., Veksler, O., and Zabih, R. “Fast approximate energy minimization via
graph cuts”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
23.11 (2001), pp. 1222–1239. doi: 10.1109/34.969114.

[26] Brualdi, R. A. Combinatorial matrix classes. Vol. 13. Cambridge University Press,
2006.

[27] Bulatov, A. A. “A dichotomy theorem for nonuniform CSPs”. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2017,
pp. 319–330.

[28] Chekuri, C., Khanna, S., Naor, J. S., and Zosin, L. “Approximation algorithms
for the metric labeling problem via a new linear programming formulation”. In:
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics. 2001, pp. 109–118.

[29] Cohen, D., Cooper, M., Jeavons, P., and Krokhin, A. “A maximal tractable class of
soft constraints”. In: Journal of Artificial Intelligence Research 22 (2004), pp. 1–
22.

[30] Cohen, D. and Jeavons, P. “The complexity of constraint languages”. In: Founda-
tions of Artificial Intelligence. Vol. 2. Elsevier, 2006, pp. 245–280.

[31] Cohen, D. A. and Jeavons, P. G. “The power of propagation: when GAC is
enough”. In: Constraints 22.1 (2017), pp. 3–23.

[32] Cook, S. A. “The complexity of theorem-proving procedures”. In: Proceedings of
the third annual ACM symposium on Theory of computing. 1971, pp. 151–158.

[33] Cooper, M. C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., and Werner, T.
“Soft arc consistency revisited”. In: Artificial Intelligence 174.7-8 (2010), pp. 449–
478.

141

https://doi.org/10.1109/34.969114

[34] Cooper, M. C. “Cyclic consistency: a local reduction operation for binary valued
constraints”. In: Artificial Intelligence 155.1-2 (2004), pp. 69–92.

[35] Cooper, M. C. “High-order consistency in valued constraint satisfaction”. In: Con-
straints 10.3 (2005), pp. 283–305.

[36] Cooper, M. C. “Minimization of locally defined submodular functions by optimal
soft arc consistency”. In: Constraints 13.4 (2008), pp. 437–458.

[37] Cooper, M. C. “Reduction operations in fuzzy or valued constraint satisfaction”.
In: Fuzzy Sets and Systems 134.3 (2003), pp. 311–342.

[38] Cooper, M. C., de Givry, S., and Schiex, T. “Optimal Soft Arc Consistency.” In:
Proceedings of the 20th International Joint Conference on Artifical Intelligence.
Vol. 7. 2007, pp. 68–73.

[39] Cooper, M. C., de Givry, S., and Schiex, T. “Valued Constraint Satisfaction
Problems”. In: A Guided Tour of Artificial Intelligence Research. Springer, 2020,
pp. 185–207.

[40] Cooper, M. C., Roquemaurel, M. de, and Régnier, P. “A weighted CSP approach
to cost-optimal planning”. In: AI Communications 24.1 (2011), pp. 1–29.

[41] Creignou, N. “A dichotomy theorem for maximum generalized satisfiability prob-
lems”. In: Journal of Computer and System Sciences 51.3 (1995), pp. 511–522.

[42] Davey, B. A. and Priestley, H. A. Introduction to lattices and order. Cambridge
university press, 2002.

[43] de Givry, S., Heras, F., Zytnicki, M., and Larrosa, J. “Existential arc consistency:
Getting closer to full arc consistency in weighted CSPs”. In: International Joint
Conference on Artificial Intelligence. Vol. 5. 2005, pp. 84–89.

[44] De Loera, J. A., Hemmecke, R., and Köppe, M. Algebraic and geometric ideas in
the theory of discrete optimization. SIAM, 2012.

[45] Debruyne, R. and Bessiere, C. “Some Practicable Filtering Techniques for the
Constraint Satisfaction Problem”. In: Proceedings of IJCAI’97. 1997, pp. 412–
417.

[46] Dechter, R. Constraint processing. Morgan Kaufmann, 2003.

[47] Devriendt, J., Gleixner, A., and Nordström, J. “Learn to relax: Integrating 0-
1 integer linear programming with pseudo-Boolean conflict-driven search”. In:
Constraints (2021), pp. 1–30.

[48a] Dlask, T. “Minimizing Convex Piecewise-Affine Functions by Local Consistency
Techniques”. Master’s thesis. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2018.

[49a] Dlask, T. “On Coordinate-Wise Minimization Applied to General Convex Opti-
mization Problems”. In: Procedia Computer Science 176 (2020), pp. 1328–1337.

[50a] Dlask, T. “Unit Propagation by Means of Coordinate-Wise Minimization”. In:
International Conference on Machine Learning, Optimization, and Data Science.
Springer. 2020.

142

[51a] Dlask, T. and Werner, T. “A Class of Linear Programs Solvable by Coordinate-
Wise Minimization”. In: Learning and Intelligent Optimization. Ed. by Kotsireas,
I. S. and Pardalos, P. M. Springer. 2020, pp. 52–67.

[52a] Dlask, T. and Werner, T. “Bounding linear programs by constraint propagation:
application to Max-SAT”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2020, pp. 177–193.

[53a] Dlask, T. and Werner, T. “Classes of linear programs solvable by coordinate-wise
minimization”. In: Annals of Mathematics and Artificial Intelligence (2021).

[54a] Dlask, T. and Werner, T. “On relation between constraint propagation and block-
coordinate descent in linear programs”. In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2020, pp. 194–210.

[55a] Dlask, T., Werner, T., and de Givry, S. “Bounds on Weighted CSPs Using
Constraint Propagation and Super-Reparametrizations”. In: 27th International
Conference on Principles and Practice of Constraint Programming (CP 2021).
Vol. 210. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 23:1–23:18.

[56a] Dlask, T., Werner, T., and de Givry, S. “Super-Reparametrizations of Weighted
CSPs: Properties and Optimization Perspective”. In: Submitted to Artificial In-
telligence (2021). Preprint available online: arXiv: 2201.02018 [math.OC].

[57] Escamocher, G. and O’Sullivan, B. “Pushing the frontier of minimality”. In: The-
oretical Computer Science 745 (2018), pp. 172–201.

[58] Feder, T. and Vardi, M. Y. “The computational structure of monotone monadic
SNP and constraint satisfaction: A study through Datalog and group theory”. In:
SIAM Journal on Computing 28.1 (1998), pp. 57–104.

[59] Ford, L. R. and Fulkerson, D. R. Flows in networks. Vol. 43. Princeton University
Press, 1962.

[60] Franc, V., Hlaváč, V., and Navara, M. “Sequential coordinate-wise algorithm for
the non-negative least squares problem”. In: International Conference on Com-
puter Analysis of Images and Patterns. Springer. 2005, pp. 407–414.

[61] Freuder, E. C. “A sufficient condition for backtrack-free search”. In: Journal of
the ACM (JACM) 29.1 (1982), pp. 24–32.

[62] Freund, R. M., Roundy, R., and Todd, M. J. “Identifying the set of always-active
constraints in a system of linear inequalities by a single linear program”. 1985.

[63] Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. “Pathwise coordinate
optimization”. In: The annals of applied statistics 1.2 (2007), pp. 302–332.

[64] Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Lib-
erti, L., Lodi, A., Misener, R., Mittelmann, H., et al. “QPLIB: a library of
quadratic programming instances”. In: Mathematical Programming Computation
11.2 (2019), pp. 237–265.

[65] Globerson, A. and Jaakkola, T. S. “Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations”. In: Advances in Neural Information
Processing Systems. 2008, pp. 553–560.

143

https://arxiv.org/abs/2201.02018

[66] Goldman, A. J. and Tucker, A. W. “Theory of Linear Programming”. In: Lin-
ear Inequalities and Related Systems. (AM-38), Volume 38. Princeton University
Press, 1956, pp. 53–97.

[67] Gottlob, G. “On minimal constraint networks”. In: Artificial Intelligence 191
(2012), pp. 42–60.

[68] Greenberg, H. J. “Consistency, redundancy, and implied equalities in linear sys-
tems”. In: Annals of Mathematics and Artificial Intelligence 17.1 (1996), pp. 37–
83.

[69] Greenberg, H. J. “The use of the optimal partition in a linear programming
solution for postoptimal analysis”. In: Operations Research Letters 15.4 (1994),
pp. 179–185.

[70] Grégoire, É., Mazure, B., and Piette, C. “MUST: Provide a finer-grained explana-
tion of unsatisfiability”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2007, pp. 317–331.

[71] Grégoire, E., Mazure, B., and Piette, C. “On finding minimally unsatisfiable cores
of CSPs”. In: International Journal on Artificial Intelligence Tools 17.04 (2008),
pp. 745–763.

[72] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2020. url:
https://www.gurobi.com.

[73] Haller, S., Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swo-
boda, P., and Savchynskyy, B. “A Primal-Dual Solver for Large-Scale Tracking-by-
Assignment”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2020, pp. 2539–2549.

[74] Haller, S., Swoboda, P., and Savchynskyy, B. “Exact map-inference by confining
combinatorial search with LP relaxation”. In: Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

[75] Hochbaum, D. S. “Solving integer programs over monotone inequalities in three
variables: A framework for half integrality and good approximations”. In: Euro-
pean Journal of Operational Research 140.2 (2002), pp. 291–321.

[76] Hooker, J. Logic-based methods for optimization: combining optimization and con-
straint satisfaction. Wiley series in discrete mathematics and optimization. Wiley,
2000.

[77] Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. “A
dual coordinate descent method for large-scale linear SVM”. In: Proceedings of
the 25th International Conference on Machine learning. 2008, pp. 408–415.

[78] Hsieh, C.-J. and Dhillon, I. S. “Fast coordinate descent methods with variable
selection for non-negative matrix factorization”. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
2011, pp. 1064–1072.

[79] Jahn, J. and Ha, T. X. D. “New order relations in set optimization”. In: Journal
of Optimization Theory and Applications 148.2 (2011), pp. 209–236.

144

https://www.gurobi.com

[80] Jansen, B, Roos, C., Terlaky, T, and Vial, J.-P. “Interior-point methodology for
linear programming: duality, sensitivity analysis and computational aspects”. In:
Optimization in Planning and Operation of Electric Power Systems. Springer,
1993, pp. 57–123.

[81] Jeavons, P. G. and Cooper, M. C. “Tractable constraints on ordered domains”.
In: Artificial Intelligence 79.2 (1995), pp. 327–339.

[82] Jégou, P. “Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems”. In: AAAI. Vol. 93. 1993, pp. 731–736.

[83] Kappes, J. H. et al. “A Comparative Study of Modern Inference Techniques for
Structured Discrete Energy Minimization Problems”. In: International Journal of
Computer Vision 115.2 (2015), pp. 155–184.

[84] Karp, R. M. “Reducibility among combinatorial problems”. In: Complexity of
computer computations. Springer, 1972, pp. 85–103.

[85] Khanna, S. and Sudan, M. “The optimization complexity of constraint satisfac-
tion problems”. In: Electonic Colloquium on Computational Complexity. Citeseer.
1996.

[86] Kleinberg, J. and Tardos, E. “Approximation algorithms for classification prob-
lems with pairwise relationships: Metric labeling and Markov random fields”. In:
Journal of the ACM (JACM) 49.5 (2002), pp. 616–639.

[87] Kolmogorov, V. “A new look at reweighted message passing”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 37.5 (2014), pp. 919–930.

[88] Kolmogorov, V. “Convergent tree-reweighted message passing for energy mini-
mization”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.10 (2006), pp. 1568–1583.

[89] Kolmogorov, V., Krokhin, A., and Roĺınek, M. “The complexity of general-valued
CSPs”. In: SIAM Journal on Computing 46.3 (2017), pp. 1087–1110.

[90] Kolmogorov, V., Thapper, J., and Živný, S. “The power of linear programming
for general-valued CSPs”. In: SIAM Journal on Computing 44.1 (2015), pp. 1–36.

[91] Kolmogorov, V. and Wainwright, M. J. “On the Optimality of Tree-Reweighted
Max-Product Message-Passing”. In: UAI’05. Edinburgh, Scotland: AUAI Press,
2005, 316–323. isbn: 0974903914.

[92] Komodakis, N. and Paragios, N. “Beyond loose LP-relaxations: Optimizing MRFs
by repairing cycles”. In: European Conference on Computer Vision. Springer. 2008,
pp. 806–820.

[93] Komodakis, N., Paragios, N., and Tziritas, G. “MRF energy minimization and
beyond via dual decomposition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 33.3 (2010), pp. 531–552.

[94] Koster, A. M., Hoesel, S. P. van, and Kolen, A. W. “The partial constraint sat-
isfaction problem: Facets and lifting theorems”. In: Operations research letters
23.3-5 (1998), pp. 89–97.

[95] Koval, V. K. and Schlesinger, M. I. “Dvumernoe programmirovanie v zadachakh
analiza izobrazheniy (Two-dimensional Programming in Image Analysis Prob-
lems)”. In: Automatics and Telemechanics 8 (1976). In Russian, pp. 149–168.

145

[96] Kovalevsky, V. and Koval, V. “A diffusion algorithm for decreasing energy of max-
sum labeling problem”. In: Glushkov Institute of Cybernetics, Kiev, USSR (1975).
Unpublished.

[97] Lange, J.-H. and Swoboda, P. “Efficient Message Passing for 0–1 ILPs with Binary
Decision Diagrams”. In: International Conference on Machine Learning. PMLR.
2021, pp. 6000–6010.

[98] Larrosa, J. and Schiex, T. “In the quest of the best form of local consistency
for weighted CSP”. In: International Joint Conference on Artificial Intelligence.
Vol. 3. 2003, pp. 239–244.

[99] Lecoutre, C. Constraint Networks: Techniques and algorithms. ISTE, 2009. isbn:
978-1-84821-106-3.

[100] Lemaréchal, C. and Hiriart-Urruty, J.-B. Fundamentals of Convex Analysis.
Springer Grundlehren Text Editions, Springer Verlag, New York, 2004.

[101] Mackworth, A. K. “Consistency in networks of relations”. In: Artificial Intelligence
8.1 (1977), pp. 99–118.

[102] Magnanti, T., Ahuja, R., and Orlin, J. “Network Flows: Theory, Algorithms, and
Applications”. In: Prentice Hall, Upper Saddle River, NJ (1993).

[103] Matoušek, J. and Gärtner, B. Understanding and using linear programming (uni-
versitext). Springer-Verlag, 2006.

[104] Mehrotra, S. and Ye, Y. “Finding an interior point in the optimal face of linear
programs”. In: Mathematical Programming 62.1 (1993), pp. 497–515.

[105] Montanari, U. “Networks of constraints: Fundamental properties and applications
to picture processing”. In: Information sciences 7 (1974), pp. 95–132.

[106] Nation, J. B. Notes on lattice theory. 1998.

[107] Nguyen, H., Bessiere, C., de Givry, S., and Schiex, T. “Triangle-based consistencies
for cost function networks”. In: Constraints 22.2 (2017), pp. 230–264.

[108] Nguyen, H., Schiex, T., and Bessiere, C. “Dynamic virtual arc consistency”. In:
The 28th Annual ACM Symposium on Applied Computing. 2013, pp. 98–103.

[109] Niedermeier, R. and Rossmanith, P. “New upper bounds for maximum satisfiabil-
ity”. In: Journal of Algorithms 36.1 (2000), pp. 63–88.

[110] Papadimitriou, C. H. and Steiglitz, K. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[111] Peng, J., Hazan, T., McAllester, D., and Urtasun, R. “Convex max-product algo-
rithms for continuous MRFs with applications to protein folding”. In: Proceedings
of the 28th International Conference on Machine Learning. 2011.

[112] Platt, J. Sequential minimal optimization: A fast algorithm for training support
vector machines. Tech. rep. MSR-TR-98-14. 1998.

[113] Pr̊uša, D. and Werner, T. “LP relaxation of the Potts labeling problem is as hard
as any linear program”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.7 (2016), pp. 1469–1475.

146

[114] Pr̊uša, D. and Werner, T. “Solving LP Relaxations of Some NP-Hard Problems
Is As Hard As Solving Any Linear Program”. In: SIAM Journal on Optimization
29.3 (2019), pp. 1745–1771.

[115] Pr̊uša, D. and Werner, T. “Universality of the Local Marginal Polytope”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 37.4 (Apr. 2015),
pp. 898–904.

[116] Rosen, K. H. and Michaels, J. G. Handbook of Discrete and Combinatorial Math-
ematics. Boca Raton, FL: CRC Press, 1232 p., 2000.

[117] Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M. “Optimizing binary
MRFs via extended roof duality”. In: 2007 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE. 2007, pp. 1–8.

[118] Sanghavi, S., Shah, D., and Willsky, A. S. “Message passing for maximum weight
independent set”. In: IEEE Transactions on Information Theory 55.11 (2009),
pp. 4822–4834.

[119] Savchynskyy, B. “Discrete Graphical Models – An Optimization Perspective”. In:
Foundations and Trends in Computer Graphics and Vision 11.3-4 (2019), pp. 160–
429. issn: 1572-2740.

[120] Schlesinger, D. and Flach, B. Transforming an arbitrary minsum problem into a
binary one. TU, Fak. Informatik, 2006.

[121] Schlesinger, M. I. “Sintaksicheskiy analiz dvumernykh zritelnikh signalov v
usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy
conditions)”. In: Kibernetika 4.113-130 (1976).

[122] Schrijver, A. Combinatorial optimization: polyhedra and efficiency. Springer Sci-
ence & Business Media, 2004. isbn: 3-540-20456-3.

[123] Schrijver, A. Theory of linear and integer programming. John Wiley & Sons, 1998.

[124] Sherali, H. D. and Adams, W. P. “A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems”. In:
SIAM Journal on Discrete Mathematics 3.3 (1990), pp. 411–430.

[125] Sontag, D. and Jaakkola, T. “Tree block coordinate descent for MAP in graphical
models”. In: Artificial Intelligence and Statistics. 2009, pp. 544–551.

[126] Sontag, D., Li, Y., et al. “Efficiently searching for frustrated cycles in MAP in-
ference”. In: 28th Conference on Uncertainty in Artificial Intelligence, UAI 2012.
2012, pp. 795–804.

[127] Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., and Weiss, Y. Tightening
LP Relaxations for MAP using Message Passing. 2008.

[128] Swoboda, P. and Andres, B. “A message passing algorithm for the minimum cost
multicut problem”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 1617–1626.

[129] Swoboda, P., Kuske, J., and Savchynskyy, B. “A dual ascent framework for La-
grangean decomposition of combinatorial problems”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 1596–1606.

147

[130] Swoboda, P., Rother, C., Abu Alhaija, H., Kainmuller, D., and Savchynskyy, B.
“A study of lagrangean decompositions and dual ascent solvers for graph match-
ing”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1607–1616.

[131] Telgen, J. “Identifying redundant constraints and implicit equalities in systems of
linear constraints”. In: Management Science 29.10 (1983), pp. 1209–1222.

[132] Thapper, J. and Živný, S. “The complexity of finite-valued CSPs”. In: Journal of
the ACM (JACM) 63.4 (2016), pp. 1–33.

[133] Thapper, J. and Živný, S. “The power of linear programming for valued CSPs”.
In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
IEEE. 2012, pp. 669–678.

[134] Tourani, S., Shekhovtsov, A., Rother, C., and Savchynskyy, B. “MPLP++: Fast,
parallel dual block-coordinate ascent for dense graphical models”. In: Proceedings
of the European Conference on Computer Vision. 2018, pp. 251–267.

[135] Tourani, S., Shekhovtsov, A., Rother, C., and Savchynskyy, B. “Taxonomy of
Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization”. In:
International Conference on Artificial Intelligence and Statistics. PMLR. 2020,
pp. 2775–2785.

[136] Trösser, F., de Givry, S., and Katsirelos, G. “Relaxation-Aware Heuristics for
Exact Optimization in Graphical Models”. In: Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Ed. by Hebrard, E. and
Musliu, N. Cham: Springer International Publishing, 2020, pp. 475–491.

[137] Tseng, P. “Convergence of a block coordinate descent method for nondifferentiable
minimization”. In: Journal of Optimization Theory and Applications 109.3 (2001),
pp. 475–494.

[138] Vazirani, V. V. Approximation Algorithms. Springer-Verlag New York, 2001. isbn:
3-540-65367-8.

[139] Wainwright, M., Jaakkola, T., and Willsky, A. “MAP estimation via agreement on
(hyper) trees: Message-passing and linear programming approaches”. In: Proceed-
ings of the annual Allerton conference on communication control and computing.
2002, pp. 1565–1575.

[140] Wainwright, M. J. and Jordan, M. I. “Graphical Models, Exponential Families,
and Variational Inference”. In: Foundations and Trends in Machine Learning 1.1-2
(2008), pp. 1–305.

[141] Walsh, T. “SAT v CSP”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2000, pp. 441–456.

[142] Wang, H. and Daphne, K. “Subproblem-tree calibration: A unified approach to
max-product message passing”. In: International Conference on Machine Learn-
ing. PMLR. 2013, pp. 190–198.

[143] Wang, P.-W., Chang, W.-C., and Kolter, J. Z. “The Mixing method: low-rank
coordinate descent for semidefinite programming with diagonal constraints”. In:
ArXiv.org (2017). arXiv: 1706.00476.

148

https://arxiv.org/abs/1706.00476

[144] Wang, P.-W. and Kolter, J. Z. “Low-rank semidefinite programming for the
MAX2SAT problem”. In: Proceedings of the AAAI Conference on Artificial In-
telligence. Vol. 33. 01. 2019, pp. 1641–1649.

[145] Werner, T. A Linear Programming Approach to Max-sum Problem: A Review.
Tech. rep. CTU-CMP-2005-25. Center for Machine Perception, Czech Technical
University, Dec. 2005.

[146] Werner, T. “A Linear Programming Approach to Max-sum Problem: A Review”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 29.7 (July
2007), pp. 1165–1179.

[147] Werner, T. “Marginal Consistency: Upper-Bounding Partition Functions over
Commutative Semirings”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 37.7 (July 2015), pp. 1455–1468.

[148] Werner, T. On Coordinate Minimization of Piecewise-Affine Functions. Tech. rep.
CTU-CMP-2017-05. Department of Cybernetics, Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, Sept. 2017.

[149] Werner, T. “Revisiting the Linear Programming Relaxation Approach to Gibbs
Energy Minimization and Weighted Constraint Satisfaction”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32.8 (Aug. 2010), pp. 1474–
1488.

[150] Werner, T. and Pr̊uša, D. “Relative Interior Rule in Block-Coordinate Minimiza-
tion”. In: ArXiv.org (2019). arXiv: 1910.09488 [math.OC].

[151a] Werner, T., Pr̊uša, D., and Dlask, T. “Relative Interior Rule in Block-Coordinate
Descent”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 7559–7567.

[152] Wu, T., Lange, K., et al. “Coordinate descent algorithms for lasso penalized re-
gression”. In: The Annals of Applied Statistics 2.1 (2008), pp. 224–244.

[153] Xing, Z. and Zhang, W. “MaxSolver: An efficient exact algorithm for (weighted)
maximum satisfiability”. In: Artificial Intelligence 164.1-2 (2005), pp. 47–80.

[154] Yanover, C., Meltzer, T., Weiss, Y., Bennett, K. P., and Parrado-Hernández, E.
“Linear Programming Relaxations and Belief Propagation–An Empirical Study.”
In: Journal of Machine Learning Research 7.9 (2006).

[155] Zadeh, N. “A Note on the Cyclic Coordinate Ascent Method”. In: Management
Science 16.9 (1970), pp. 642–644.

[156] Zalinescu, C. Convex Analysis in General Vector Spaces. World Scientific, 2002.

[157] Zhang, H. and Stickely, M. E. “An Efficient Algorithm for Unit Propagation”. In:
Proc. of AI-MATH 96 (1996).

[158] Zhang, S. “On the strictly complementary slackness relation in linear program-
ming”. In: Advances in Optimization and Approximation. Springer, 1994, pp. 347–
361.

[159] Zhuk, D. “A proof of the CSP dichotomy conjecture”. In: Journal of the ACM
(JACM) 67.5 (2020), pp. 1–78.

149

https://arxiv.org/abs/1910.09488

[160] Ziegler, G. M. Lectures on Polytopes. Springer-Verlag, New York, 1994. isbn:
038794365X.

[161] Živný, S. and Cooper, M. C. “The power of arc consistency for CSPs defined by
partially-ordered forbidden patterns”. In: Logical Methods in Computer Science
13 (2017).

150

	Introduction
	Structure and Contributions

	Background
	Linear Programming and Systems of Linear Inequalities
	Relative Interior and Strict Complementarity
	Convex Piecewise-Affine Objective
	Systems of Linear Inequalities and Linear Inference

	Block-Coordinate Descent and Relative-Interior Rule
	Relative-Interior Rule
	Convergence
	Reformulations of Problems

	Partially Ordered Sets
	Lattices
	(Dual) Closure Operators and Chaotic Iterations

	Constraint Satisfaction Problem and Local Consistencies
	Local Consistencies and Constraint Propagation

	Weighted CSP and LP-Based Bounds
	Linearity and Marginal Polytope
	Active Tuples and Upper Bound
	Reparametrizations and LP Relaxation
	Methods for Obtaining Bounds Using Reparametrizations
	Super-Reparametrizations

	Bounds on Large-Scale Linear Programs Using Constraint Propagation
	Constraint Propagation for Linear Inequalities
	Computing Certificate of Infeasibility

	Bounding the Optimal Value of Linear Programs
	Finiteness and Capacity Scaling

	Example: Basic LP Relaxation and Arc Consistency
	Example: LP Relaxation of Weighted Max-SAT
	Employing Constraint Propagation
	Finding Step Size by Approximate Line Search
	Algorithm Overview and Implementation Details
	Experimental Results
	Tightness of the Bound on Tractable Max-SAT Classes

	Discussion

	Bounds on Weighted CSP Using Constraint Propagation and Super-Reparametrizations
	Notation and Optimality Conditions
	Iterative Method to Improve the Bound
	Outline of the Method
	Certificates of Unsatisfiability of CSP
	Line Search
	Final Algorithm
	Experimental Results

	Additional Properties of Super-Reparametrizations
	Minimal CSP
	Optimal Assignments of Optimal Super-Reparametrizations
	General Super-Reparametrizations

	Hardness Results
	Discussion

	Relation Between BCD and Local Consistencies
	Propagation Rule and Local Consistency Condition
	Relation Between the Approaches
	Connection Between the Propagators and BCD Updates
	Pre-interior Local Minima and Overview of Results

	Other Forms of Linear Programs
	Inequalities and Non-negative Variables
	Inequalities and Real-Valued Variables

	Discussion
	Weighted CSP
	SAT Problem
	Weighted Max-SAT

	Linear Programs Optimally Solvable by BCD
	Refutation-Completeness and Optimality of BCD
	Solving Weighted CSP by BCD
	Optimality of BCD
	Enforcing Positive Consistency
	Coordinate-Wise Updates: Convergence and Hardness

	Two More Classes of Linear Programs Solvable by BCD
	Proof of Theorem 5.4
	Applications

	Reformulations and Optimality of BCD
	Example: Vertex Cover
	Example: Maximum Flow
	Example: WCSP with Potts Interactions

	Discussion

	Conclusion
	Contributions
	Further Development

	List of Publications
	List of Abbreviations
	Overview of Notation
	Bibliography

