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Abstract

estimates
microwave

Quantitative precipitation
(QPEs) from commercial
links (CMLs) represent a promising
source of innovative rainfall data which,
however, has not been yet extensively
investigated in hydrological modelling.
We mean to experimentally evaluate the
potential of CML QPEs for rainfall-runoff
modelling in small urban catchments. We
address the ability of individual CMLs of
various characteristics to provide relevant
QPEs for urban hydrology. We analyze
how wet-antenna attenuation, a major
source of bias in CML QPEs, can be
adequately estimated without dedicated
rainfall monitoring.  Using discharge
observations, we evaluate the perfor-
mance of rainfall-runoff modelling with
state-of-the-art CML QPEs and compare
it with the performance of traditional
rain gauge data. We employ stochastic
error model calibrated by Bayesian
inference to quantify uncertainties of the
runoff predictions. The presented results
show that QPEs from CMLs spatially
corresponding to the catchment area
can very well reproduce runoff dynamics.
However, the bias common in QPEs from
short CMLs, typically best fitting small
urban catchments, has to be reduced to
make the best use of this data. It is then
presented how high-quality QPEs can be
derived from CMLs of all path lengths,
even when no additional rainfall data are
available. Lastly, it is shown that, for
rainfall-runoff modelling in small urban
catchments covered by 1 rain gauge per
roughly 20-25 km?, CML QPEs represent
a notable improvement. For networks
with 1 gauge per 0.5-1 km?, CML QPEs
are a satisfying alternative.

iv

Keywords: commercial microwave links,
rainfall-runoff modelling, uncertainties,
urban hydrology, wet-antenna
attenuation



Abstrakt

Kvantitativni srazkové odhady (QPE) z
komerénich mikrovlnnych spoju (CML)
predstavuji slibnd inovativni sriazkova
data, kterd vsak dosud nebyla intenziv-
néji prozkoumana v hydrologickém mo-
delovani. Cilem této préce je experimen-
talné vyhodnotit potencidl CML QPE
pro srazko-odtokové modelovani v ma-
lych méstskych povodich. Zabyvame se
schopnosti jednotlivych CML rtznych cha-
rakteristik poskytovat relevantni QPE
pro meéstskou hydrologii. Analyzujeme,
jak lze dtlum na mokré anténé, jeden z
hlavnich zdroja chyb v CML QPE, veé-
rohodné kvantifikovat bez monitorovani
srazek specialné pro tento ucel. Pomoci
méfeni prutoki vyhodnocujeme kvalitu
srazko-odtokového modelovani za pouziti
CML QPE odvozenych nejaktudlnéjsimi
metodami a porovnavame ji s kvalitou mo-
delovani za pouziti tradi¢nich dat ze sraz-
koméru. Ke kvantifikaci nejistot predpo-
vézenych prutoku pouzivame stochasticky
model chyb kalibrovany pomoci Bayesov-
ské inference. Prezentované vysledky uka-
zuji, ze QPE z CML které prostorové od-
povidaji plose povodi, mohou velmi dobre
reprodukovat dynamiku odtoku. Nicméné,
aby se tato data co nejlépe vyuzila, sys-
tematické chyby bézné v QPE z kratkych
CML, které typicky nejlépe vystihuji ve-
likost malych méstskych povodim, musi
byt korigovany. Déle je prezentovano, jak
lze ziskat vysoce kvalitni QPE z CML
vSech délek, i za okolnosti kdy nejsou k
dispozici zadné dalsi idaje o srazkach. Na-
konec je ukazano, ze CML QPE maji po-
tencial znacné vylepsit vysledky srazko-
odtokového modelovani v malych mést-
skych povodich pokrytych 1 srazkomérem
na priblizné 20-25 km?. V porovnéni se
srazkomérnymi sitémi o hustoté 1 sraz-
komér na zhruba 0,5-1 km?, CML QPE
predstavuji uspokojivou alternativu.

Kli¢ova slova: komeréni mikrovlnné
spoje, méstska hydrologie, nejistoty,
srazko-odtokové modelovani, utlum na
mokré anténé

Preklad nazvu: Experimentalni
vyhodnoceni srazkovych méfeni

z komer¢nich mikrovlnnych spoji

pro srazko-odtokové modelovani v malém
meéstském povodi
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Chapter 1

Introduction

B 1.1 Motivation and goals

As the driving phenomenon of runoff mechanisms, rainfall plays an essen-
tial role in urban hydrology (Berne et al., 2004). Due to high degrees of
imperviousness, relatively small scales, and high land-use spatial variability
in urban areas, small-scale spatial and temporal rainfall variability can affect
the hydrological response in terms of the hydrograph shape, peak flows, and
their timing (Cristiano et al., |2017; Rico-Ramirez et al., 2015)). Thus, when
used as input for urban hydrological models, rainfall data represent one of
the most prominent sources of uncertainty in the modelling process (Schellart
et al.l |2012; Thorndahl et al., [2008]). Therefore, there are high requirements
on the resolution of rainfall data for urban hydrology.

Berne et al.| (2004)) found that hydrological applications in urban catchments of
the order of 1 km? require a resolution of about 3 min and 2 km. Moreover, the
growing interest in fully distributed and grid-based models (Ochoa-Rodriguez
et al., 2015} [Ichiba et al., 2018), developments in geographic information
systems, ever increasing data availability and computational power is expected
to further strengthen the need for high-resolution rainfall data in urban
hydrology (Ochoa-Rodriguez et all 2019; Salvadore et al., [2015).

Operational management of the quantity and quality of urban stormwater
runoff is a serious concern nowadays as excessive amounts of stormwater can
overload drainage systems and cause urban pluvial flooding and health risks
due to pathogens, decrease the efficiency of wastewater treatment plants, or
impact the aquatic biota of receiving waters through hydraulic stress and
pollution (Tsihrintzis & Hamid| 1997)). The mitigation of such negative effects
often relies on methods and concepts requiring operational rainfall products
which are not only available in high spatiotemporal resolution, but also in
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1. Introduction

real time (Einfalt et al., 2004). However, standard rainfall observations are
often not available online and/or in adequate resolutions. Therefore, much
effort has been invested in investigating alternative rainfall sensors.

Commercial microwave links (CMLs) are pairs of telecom antennas which
operate at frequencies where radio signal is attenuated by rainfall droplets.
The difference between the transmitted and received signal levels can be
used to derive path-integrated quantitative precipitation estimates (QPEs).
About five million CMLs were operated worldwide in 2018 as a crucial part of
telecom networks (Ericsson, 2018]), covering urbanized areas especially densely.
Moreover, CMLs can provide data in sub-minute temporal resolutions which
are accessible in (near) real time from network operation centers either through
network monitoring systems or specifically designed server-sided applications
(Chwala et al., 2016). Therefore, QPEs derived from CMLs represent a very
promising rainfall data source for urban hydrological modelling.

Thanks to the innovations introduced over the last decade, CML QPEs have
proven to provide valuable rainfall information which could complement
traditional observations with rain gauges and weather radars (Chwala &
Kunstmann|, 2019; Imhoff et all [2020; Rios Gaona et al.l [2018}; [Uijlenhoet
et al., |2018). Nonetheless, to date, only a few studies investigated the ability
of QPEs derived from real-world CML networks for quantitative hydrology,
either for rural (Brauer et al.| [2016;|Cazzaniga et al.| 2020; Smiatek et al.,|2017)
or urban catchments (Disch et al., [2019; [Stransky et al., |2018]). Therefore,
many questions regarding their hydrological applications remain unanswered.

It has been shown that, if available in high temporal resolutions, CML QPEs
could be conveniently used for urban hydrological modelling, and can lead to
very well predicted temporal dynamics of runoff from a small urban catchment
(Disch et al.l 2019} Stransky et al., [2018). However, these findings are based
on continuous adjusting of CML QPEs to reference data from traditional
rain gauges, as systematic errors (bias) often associated with CML QPEs
(Fencl et al., [2017; |[Chwala & Kunstmann) 2019) compromise their potential
for hydrological applications where precipitation or runoff volume is of high
importance. This is unfortunate because CML QPEs could be especially
helpful in regions where the availability of long-term rainfall monitoring
networks is limited (Gosset et al., [2016]). Yet, it is not clear how to make the
best use of the CML QPEs under such conditions.

The bias in QPEs is especially common for CMLs with short (ca. < 2 km) path
lengths (Leijnse et al., |2008)). Nevertheless, such QPEs could be particularly
useful for urban hydrology as they often represent well the typical scales of
small urban catchments. Moreover, shorter CMLs are better suited to capture
small-scale rainfall spatial variability which is of high importance for urban
hydrology. Uncertainties associated with such errors thus represent a major
challenge to be overcome in order to maximize the benefits of the CMLs as a
promising source of QPEs for urban hydrology.
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1.2. Thesis outline

It has also been argued that ignoring the uncertainty, particularly related to
input rainfall data, compromises hydrological modelling (Beven, 2006; [Kavet-
ski et al., 2006)), or similarly, that quantification of uncertainties associated
with urban rainfall-runoff modelling is a must (Dotto et al., 2012). However,
extensive quantification of the uncertainties related to applying CML QPEs in
urban hydrology, and a comparison with traditional rainfall data uncertainty,
has not been presented yet in relevant literature.

The main goal of the work presented in the thesis is to evaluate the potential
of QPEs retrieved from CMLs for rainfall-runoff modelling in small urban
catchments. This is to be accompanied by a robust quantification of uncer-
tainties in the runoff predictions, both for traditional rain gauge data and for
CML QPEs. In order to make the best use of these innovative rainfall data,
we also investigate the following subsidiary research questions:

® Which factors (e.g. position relative to the catchment of interest, sensi-
tivity to rainfall) most affect the suitability of individual CMLs to be
used as a source of rainfall data for rainfall-runoff modeling?

® How can the CML QPE pre-processing routine be optimized to reduce
the bias common in CML QPEs?

8 Can high-quality CML QPEs be retrieved also when the availability of
auxiliary rainfall data, e.g. from traditional rainfall monitoring networks,
is considerably limited, which is a common challenge in urban hydrology?

. 1.2 Thesis outline

This thesis is an extensive but not exhaustive presentation of research efforts
conducted by Jaroslav Pastorek as part of his doctoral studies, following the
above defined research goals. Selected most relevant studies are presented in
four individual chapters. However, these are preceded by an elaboration of
the ideas and problems briefly introduced above.

First, in chapter 2], the thesis provides an overview of recent developments
and the current state of rainfall monitoring in urban areas for quantitative
hydrological purposes. Retrieving QPEs from CMLs is introduced as a
promising way of obtaining high-resolution rainfall measurements, which,
however, is associated with considerable uncertainties. Recent approaches
to reducing these uncertainties are reviewed while acknowledging space for
further improvements.

Different approaches to assessing the value of given rainfall data for urban
hydrology are analyzed in chapter [3. A special attention is payed to the
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1. Introduction

importance of robust uncertainty evaluation when performing hydrological
modelling. The model output uncertainty quantification method which is to
be applied within the presented research is introduced and put in perspective.

Material used when performing simulations and analyses which resulted in
this thesis is presented in chapter 4. This includes an extensive data set
spanning over three years and containing both rainfall and runoff observations
as well as a calibrated well-performing rainfall-runoff model.

Chapter [5| presents a first study exploring whether QPEs obtained from
CMLs can be regarded as a viable source of rainfall data in the field of urban
rainfall-runoff modelling. This study can be understood as “the pilot study”
which has foreshadowed the direction of the subsequent research endeavors.
This chapter represents a synthesis of two studies first published in [Pastorek
et al.| (2017) and Pastorek et al. (2018)).

Chapter [6] presents a study which addresses the ability of individual CMLs to
provide relevant QPEs for urban rainfall-runoff modelling. It investigates in
how far CML instrumental parameters (path length, transmission frequency)
and network topology influence the rainfall-runoff modelling performance.
This study was first published in [Pastorek et al.| (2019b)).

Chapter [7] contains a study which analyzes how, when deriving CML QPZEs,
WAA can be estimated without dedicated rainfall monitoring. Various WAA
estimation models, including a newly proposed one, based on considerably
different assumptions are tested. The transferability of WAA model parame-
ters among CMLs of various characteristics is also addressed. This study was
first published in [Pastorek et al.| (2022)

Chapter [§ introduces a study exploring the possibilities to calibrate WAA
estimation models using data that could be commonly available to urban
hydrology specialists. This investigation is then leveraged to derive state-of-
the-art CML QPEs, the suitability of which for urban rainfall-runoff modelling
is then to be evaluated by means of model output uncertainty quantification.

Finally, in chapter |9, the most relevant findings from all the presented research
are summarized and put to mutual perspective.

The bulk of the research presented in this thesis has been originally published
in peer-reviewed journal or conference papers over the course of the past
few years. The thesis thus partially documents the progress made within
the research area. Therefore, although valid when first published, some
statements, especially regarding the state of knowledge at the period, are
outdated from the today’s point of view. Thus, especially when chapters |5
and |6 are considered, the reader is kindly asked to perceive the presented
research in the context of the time when it was first published.



Chapter 2

Rainfall monitoring for urban hydrology

B 21 Requirements on rainfall data for urban
hydrology

From the hydrological point of view, urban catchments differ from natural
ones in two fundamental aspects. Firstly, scales of areas examined in urban
and natural catchment hydrology typically differ in orders of magnitude.
Secondly, urban areas are covered by a high ratio of impermeable surfaces
that not only limit rainfall infiltration, but also lead to more surface runoff
(e.g. causing higher peak flows) and a faster response of the runoff process.
Therefore, requirements on both temporal and spatial resolution of rainfall
data are notably higher in urban catchments (e.g. Schilling, |1991; Berne et al.|
2004)). These requirements will further vary depending on the catchment
size (Ochoa-Rodriguez et al., 2015)), the climatic region (Berne et al.l [2004),
intended application (e.g. long-term analysis vs. online nowcasting Einfalt
et al.| [2004), or hydrological model complexity (semi- vs. fully-distributed
Gires et al., 2015)).

Berne et al. (2004) found that hydrological applications in urban catchments
of the order of 1 km? require a resolution of about 3 min and 2 km.
concluded that temporal resolutions below 5 min and spatial
resolutions of one rain gauge for each 1.7 km? is required. |Ochoa-Rodriguez
recommended using rainfall temporal resolutions below 5 min and
spatial resolution about 500 m for drainage areas between 1 ha and 100 ha,
whereas 1-km resolution is recommended for drainage areas larger than 100 ha.
Moreover, the growing interest in fully distributed and grid-based models
(Ochoa-Rodriguez et al.,[2015} Ichiba et al. 2018)), developments in geographic
information systems, ever increasing data availability and computational
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2. Rainfall monitoring for urban hydrology

power is expected to further strengthen the need for high-resolution rainfall
data (Ochoa-Rodriguez et al., 2019; [Salvadore et al., 2015)).

Mitigation of the negative effects of urban drainage on society and the
environment is nowadays often related to methods and concepts requiring
operational rainfall products which are not only available in high spatial
and/or temporal resolutions but as well in (near) real time
. Such rainfall observations are employed in real-time control strategies
to optimize treatment processes at wastewater treatment plants m
et all [2004), or to minimize the impacts of sewer overflows (Vezzaro & Grum),
@D Furthermore, these data are used for extreme event analyses, e.g.
for the evaluation of insurance damage claims (Spekkers et al 2013) or for
operational warnings (Montesarchio et al., [2009). Operational rainfall data
are becoming increasingly important because of the ongoing climate change
(van der Pol et al [2015) as the intensity and frequency of heavy rainfall in
many areas around the world are expected to increase (Willems et al., [2012)).

B 2.2 Rainfall data retrieval and availability

Tipping bucket rain gauges represent the traditional way of retrieving pre-
cipitation measurements in urban areas. These devices provide relatively
accurate rainfall estimates near the ground surface. On the other hand, they
are prone to considerable uncertainties due to wind (Nespor & Sevruk, 1999)
and, especially relevant in urban conditions, obstructions by surrounding
objects. Moreover, rain gauge records are in general representative only for a
limited spatial extent. For instance, in a case study in northern Israel,
found that at least three rain stations in a specific configuration
are needed to represent the rainfall data from a radar pixel of roughly 1.5
km? with a temporal resolution of about 3 min. Thus, due to their low
densities, rain gauge networks very often fail to provide sufficient information
on the rainfall with high spatiotemporal variability (Villarini et al., 2008)).
Moreover, these errors resulting from approximating an areal estimate using
point measurements increase substantially with the decreasing aggregation
time (Wood et al., [2000).

The development and use of weather radar quantitative precipitation esti-
mates (QPEs) for hydrological applications has increased in recent decades
(Berne & Krajewskil 2013} Thorndahl et al.| 2017). Radars can survey large
areas while providing rainfall data in resolutions of 500-2000 m every 5-15
min (Thorndahl et al., |2017). New generation X-band radars (e.g. |Chen &
\Chandrasekar), 2015; [Schleiss et al., |2020) can measure at even higher reso-
lutions, but with a shorter range. However, weather radars provide indirect
rainfall estimates measured hundreds of meters above ground relatively far
away from the radar itself. Due to these inherent limitations of radar as a

6



2.2. Rainfall data retrieval and availability

rainfall measurement tool, the accuracy of radar measurements is in general
insufficient, particularly in the case of extreme rainfall magnitudes (Bardossy
& Pegram, [2017; [Thorndahl et al., [2017). Therefore, radar QPEs require ad-
justment to ground observations obtained typically from rain gauge networks
(Harrison et al., 2009), although other data including urban stormwater runoff
measurements have been employed as well (Ahm & Rasmussen), 2017)).

The usage of weather radars for urban water management applications has
been extensively investigated in the past decades and substantial progress
has been made towards reliable high-quality data, however, many challenges
remain unresolved. For example, adjusting radar data in an operational mode
is both a methodological and technical challenge because rain gauge data are
often delivered with a delay. Similarly, it is difficult to quantify uncertainty
arising from the discrepancy between the catch area of a rain gauge (in the
order of 1072 m?) and the area of a radar pixel (in the order of 104-10° m?)
(e.g.|Anagnostou et al., 1999). Nevertheless, many innovative radar-rain gauge
merging techniques, which aim at combining the advantages while partially
overcoming the individual weaknesses of the two data sources, have been
recently developed (McKee & Binns| 2016). Such methods seem to have the
potential to significantly improve the quality and applicability of radar and
rain gauge rainfall estimates for hydrological tasks, however, there are still
considerable challenges specific to urban applications, such as the availability
of rain gauge data (or other ground truth) in adequate resolutions (Ochoa-
Rodriguez et al., 2019). Next, the small-scale spatial structure reflecting
local rainfall extremes, critical for urban hydrology applications, is often
not preserved after the adjustment (Wang et al., 2013; |Borup et al., 2016
Ochoa-Rodriguez et al.l 2019).

Lastly, the availability of weather radars is mostly limited to most developed
countries, where, however, there are still observational gaps with radar obser-
vations not available in the desired spatiotemporal resolution (Heistermann
et al., [2013; |Saltikoft et al., 2019)). The same holds also for the traditional
rain gauge data, for which, moreover, a decrease in their availability has been
observed in many areas around the world (Lorenz & Kunstmann| 2012; [Sun
et al,|2018)). Actually, adequate rainfall data are in general lacking for most of
the Earth’s land surface. Global precipitation data sets can be obtained from
satellite missions, but the accuracy and spatiotemporal resolution of these
observations are still insufficient to be used in the hydrological modelling of
small, mountainous or urban catchments (Kidd & Huffman, [2011). Thus, in
order to increase the quality and availability of rainfall data, much effort has
been invested in investigating alternative innovative data sources.

One possibility to overcome the above challenges regarding the rainfall data
retrieval could be to make use of the recent development of various accessible
hardware and software solutions which has made measurements with special
purpose sensors widely available throughout many different fields (Swan)



2. Rainfall monitoring for urban hydrology

2012)). For example, there are numerous online amateur weather networks that
aggregate and visualize citizen-contributed weather observations (Gharesifard
et al.,|2017;|de Vos et al.|2017)). However, quality control of such crowdsourced
data (and associated metadata) from amateur weather stations is extremely
challenging since these devices are often uncalibrated or irregularly maintained.
Furthermore, as with radar rainfall observations, this kind of data is primarily
available in developed regions only.

Rainfall data from new types of devices which could conveniently complement
traditional precipitation observation networks and, thus, improve rainfall
data availability, can also be obtained using so-called “opportunistic sensing”
(Tauro et al.l 2018)). Opportunistic precipitation sensing can be performed
using devices which are not constructed primarily for rainfall observation,
e.g. telecommunication infrastructure or building automation sensors. Such
devices are often connected to centralized communication infrastructure, so
the data can be queried in (sub-)minute intervals. This is also the case of
commercial microwave links whose millimeter-wave radio signal is attenuated
by rainfall droplets and which densely cover urban areas worldwide and could,
thus, provide urban hydrologists with rainfall data of high spatiotemporal
resolutions.

. 2.3 Rainfall retrieval from commercial microwave
links

Commercial microwave links (CMLs) are point-to-point radio connections
widely used as cellular backhaul. A substantial part of CML networks is
operated at frequencies between 20 and 40 GHz where radio wave attenuation
caused by raindrops is almost proportional to rainfall intensity. These CMLs
can, therefore, be used as unintended rainfall sensors providing path-integrated
quantitative precipitation estimates (QPEs). Although deriving precipitation
estimates from the attenuation of microwaves was originally suggested several
decades ago (Atlas & Ulbrich, [1977)), the idea has experienced a renaissance
in recent years, thanks to the extensive growth of cellular networks (Messer
et al., [2006; Leijnse et al., 2007)) which frequently incorporate CMLs.

The relationship between raindrop-induced attenuation A, [dB] and rainfall
intensity R [mm/h] is robust and well-understood. For a given rainfall
intensity, A, is proportional to CML path length and frequency. The relation
can be expressed using the following approximation:

R=a(A,/L)° (2.1)

where L [m] is the length of a given CML, and o [mm/h km® dB~?] and 3 [-]
are empirical parameters dependent upon CML frequency and polarization,
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2.4. CML QPE uncertainties

and drop size distribution (Olsen et al., [1978). The fraction A,/L can be
expressed as a single variable — specific raindrop attenuation v [dB/km)].

Nonetheless, A, must be separated from other components of the difference
between the transmitted and received signal levels TRSL [dB], for whose
purposes the following relation is often used:

TRSL = B+ A =B+ Ay, + A (2.2)

where B [dB] represents baseline attenuation consisting of, e.g., free space
loss and gaseous attenuation, A [dB] stands for observed attenuation after
baseline separation, and A, [dB] represents wet antenna attenuation (WAA).
Imprecise quantification of the raindrop-induced attenuation A, due to CML
rainfall retrieval uncertainties such as WAA estimation represents a consid-
erable source of errors in CML QPEs (Chwala & Kunstmann| 2019) and a
major challenge to their hydrological applications.

B 2.4 CcML QPE uncertainties

Most uncertainties associated with the retrieval and application of CML
QPEs could be categorized as either:

® Uncertainties associated with rainfall retrieval from individual CMLs; or

® Uncertainties associated with spatial information processing and its
representativeness in relation to the location/area of interest.

B 2.4.1 Uncertainties in QPE retrieval from individual CMLs

Uncertainties in QPE retrieval from individual CMLs can be linked with TRSL
measurements (quantization, hardware imperfections), with the separation of
raindrop-induced attenuation A, from other sources of attenuation (Eq. ,
and with the transformation of the attenuation data into rainfall intensities
(Eq. . The most prominent error sources include in particular: too
coarse temporal sampling, quantization of TRSL values, uncertainty regarding
the baseline level and regarding the WAA estimation, with the latter two
being most important for systematic errors (bias) in the estimated rain rates
(Leijnse et al., 2010; Zinevich et al., 2010; |Chwala & Kunstmann), [2019)).

Baseline B can be identified by interpolating from dry-weather attenuation
levels (Overeem et al., 2011} Schleiss & Berne| 2010). Alternatively, a low-pass
filter of the TRSL time series can be applied (Fenicia et all,[2012). Although
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2. Rainfall monitoring for urban hydrology

the latter approach has shown to improve CML QPEs when compared to
using a constant baseline, it “might produce dynamics similar to the temporal
evolution of an anticipated rain-rate-dependent WAA effect” (Chwala &
Kunstmann, [2019)), and thus interfere with the WA A estimation. Nevertheless,
the baseline is relatively stable, whereas antenna wetting is a complex dynamic
process which has not been yet completely understood (Schleiss et al., 2013}
more in next subsection).

QPEs are more prone to be contain systematic errors for CMLs with shorter
path lengths and lower frequencies (Leijnse et al., 2008]). These CMLs are less
sensitive to rainfall, and raindrop-induced attenuation A, thus constitutes
only a relatively small part of the observed TRSL (Eq. 2.2). In other words,
QPEs from these CMLs are more sensitive to errors in the process of A,
estimation. Let us illustrate this problem with a brief didactic example.
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Figure 2.1: The relative error in QPEs from CMLs with vertical polarization in
relation to CML path length for two rainfall intensities (3 and 20 mm/h) and
three CML frequencies (26, 32, 38 GHz) as caused by an error of 1 dB in the
estimate of A, due to intrumental uncertainties.

For a 1-km-long CML working at a frequency of 32 GHz, the raindrop
attenuation A, caused by the rainfall of 20 mm/h is about 4 dB. However,
for a CML with the same frequency and a path length of 4 km, A, equals
roughly 15 dB. If A, is overestimated by 1 dB, a common value due to the
instrumental uncertainties, the derived precipitation rate is overestimated
by approximately 30% for the 1-km CML, and by 10% for the 4-km one
(see Fig. 2.1)). This becomes worse if the rainfall intensity is only 3 mm/h,
because the relative errors in CML QPEs rise to 175% and 40% for the 1-km
and 4-km CMLs respectively. Furthermore, for low rainfall rates, the derived
rainfall is very sensitive to the CML frequency, and thus higher errors are
associated with lower frequencies.
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2.4. CML QPE uncertainties

. Wet antenna attenuation

Wet antenna attenuation (WAA) is, in contrast to raindrop-induced attenua-
tion A, and baseline B, independent of CML path length. Previous studies
(Leijnse et al., 2008; |(Overeem et al., 2011) have also suggested that it is
relatively insensitive to CML frequency at bands suitable for rainfall retrieval
(20-40 GHz). However, antenna wetting is influenced not only by rainfall,
but by other atmospheric conditions (e.g. wind, temperature, humidity or
solar radiation) and also antenna hardware properties (e.g. antenna radome
material or coating; van Leth et all [2018)). Due to this complexity of the
antenna wetting process, reliable WAA estimation remains to be challenging
(Chwala & Kunstmann, 2019).

To date, there is no unified approach to estimate WAA and reported WAA
models are often based on different assumptions and result in considerably
different estimates. For example, drying times of up to several hours have
been reported (Schleiss et al.l 2013), whereas other studies have not considered
any wetting or drying dynamics at all, relating WAA only to rainfall intensity
(Valtr et al.l 2019; Kharadly & Ross, 2001)).

It has also been suggested to estimate WAA based on water quantity and
distribution (droplets, rivulets, water film) on antenna radomes (Leijnse
et al., [2008; Mancini et al., |2019). Recently, it has been shown that WAA
can be estimated using antenna reflectivity acting as a proxy variable for
water film thickness (Moroder et al., [2019). However, applying this model is
significantly limited by the unavailability of the required antenna reflectivity
measurements.

Since having a globally valid WAA model only depending on known CML
characteristics such as frequency does not seem possible, optimal WA A models
should ideally be determined for each individual CML. This is especially true
for models whose parameters depend on CML path length (e.g. Kharadly &
Ross, [2001)). However, optimal WAA model identification (e.g. for calibration
purposes) on the level of individual CMLs is challenging, especially for real-
world application with networks consisting of a high number of CMLs. As
noted by (Ostrometzky et al., |2018]), maintenance of dedicated equipment for
the retrieval of the needed reference rainfall observations is impractical for
such networks.

Due to all the above-discussed issues, application-focused studies with city
or regional-scale CML networks have often not applied any WAA correction
at all (Chwala et all 2012} Smiatek et al., 2017) or have used only a simple
constant offset model (Overeem et al., [2011; Roversi et al., [2020; [Fencl et al.|
2020)). Although the latter approach may be a reasonable choice when only
15-min TRSL maxima and minima are available (Chwala & Kunstmann) 2019)),
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2. Rainfall monitoring for urban hydrology

it can introduce considerable bias in the resulting CML QPEs (Fencl et al.,
2019)).

Adopting a different approach to the challenge of WAA estimation, [Fencl et al.
(2017) proposed continuous adjusting of A, representing WAA and o (Eq.
2.1, 2.2) to measurements from traditional rain gauges, if these are available
in the vicinity of CMLs. They have shown that such adjusted high-resolution
CML QPEs can, in spite of underestimating peak rainfalls, outperform the
gauge data used as the adjusting reference.

Alternatively, prior calibration to reference rainfall data seems to be a rea-
sonable way to achieve reliable WAA models. However, reference rainfall
retrieval approaches employed in research studies which include intensive
monitoring campaigns (e.g. [Schleiss et al., [2013; van Leth et al., [2018) are
impractical for high numbers of CMLs due to the costs associated with the
dedicated equipment needed. Alternatively, already existing rain gauge net-
works or high-resolution weather radars might be used to calibrate the WAA
models. However, as discussed above, such rainfall data sources are often not
readily available to urban hydrologists. Moreover, the potential usefulness
of CML QPEs increases with the decreasing availability of other rainfall (or
other reference) data. Thus, it would come handy if WAA models could be
calibrated using better available data and tools, such as low resolution rainfall
measurements or stormwater discharge observations in combination with a
rainfall-runoff model.

B 2.4.2 Spatial uncertainties

Other uncertainty type arises from the spatial processing of rainfall informa-
tion, e.g. algorithms used to transform path-integrated QPEs from individual
CMLs to spatially distributed (typically gridded) rainfall maps (e.g. Overeem
et al., 2013; Rios Gaona et al., [2018), and from the rainfall data representative-
ness in relation to the location/area of interest, given by the spatial relations
between the CMLs and the area of interest and by the spatiotemporal rainfall
variability. It has been observed that spatial (or mapping) uncertainties are
relatively small compared to rainfall retrieval uncertainties (Rios Gaona et al.,
2015). Nonetheless, the role of these uncertainties should not be ignored,
especially if QPE retrieval uncertainties are successfully reduced.

Several more or less sophisticated methods of rainfall field reconstruction from
the path-integrated CML QPEs have been introduced (e.g. |Goldshtein et al.,
2009; D’Amico et al., 2016; [Haese et al., 2017)). Nevertheless, spatial rainfall
field reconstruction remains unappealing for some CML QPE hydrological
applications, e.g. when using lumped or semi-distributed models and/or
modelling hydrological processes in a catchment the size of which is similar
to (or smaller than) the size of a rainfall grid cell.
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2.5. Potential of CML QPEs for hydrological modelling

For such tasks where areal rainfall estimates are satisfying and several CMLs
are at hand, the influence of different CML topologies on the estimated
areal rainfall has been investigated (Fencl et al., 2015) with a conclusion
that combining QPEs from all available CMLs can very well capture the
rainfall and is recommended when no prior information on CML data quality
is available. However, at the same time, only a few very precise (i.e. least
biased) CMLs are expected to deliver the most accurate areal rainfall data
and, thus, CMLs used to derive areal rainfall should be ideally selected very
carefully (Fencl et al. [2015). However, if the bias in QPEs is relatively
comparable among the available CMLs, it is not clear how to identify optimal
subsets of CMLs in such conditions; whether, for substance, the CML spatial
relations with the area of interest can be used as the only decisive criteria.

. otential o s for hydrologica
Bo2s p ial of CML QPEs for hydrological
modelling

CML QPEs have a path-integrated character which makes them better
suited for capturing rainfall spatial variability over a catchment than rain
gauges. Moreover, unlike weather radars, they observe rainfall close to the
ground. Recently, there were about five million CMLs being used worldwide
within cellular networks and the number has been increasing , .
Exploiting this infrastructure for rainfall detection does not necessitate sub-
stantial additional investments. Moreover, CML data can be accessed online
in high temporal resolutions and in (near) real time from network operation
centers either through network monitoring systems or specifically designed
server-sided applications (Chwala et al., 2016)). Thanks to the dense coverage
of urban areas, CMLs represent very promising rainfall sensors for urban
hydrological modelling.

In fact, thanks to the intensive recent research, especially regarding the
uncertainties in their retrieval, CML QPEs have proven to provide valuable
rainfall information which could complement traditional observations with
rain gauges and weather radars (Chwala & Kunstmann) [2019; Imhoff et al.,
2020; Rios Gaona et al. 2018} [Uijlenhoet et al., 2018)). However, despite
the high potential and recent advances, only a few studies have investigated
the ability of QPEs derived from real-world CML networks for quantitative
hydrology, either for rural (Brauer et al., 2016;|Cazzaniga et al.,2020; Smiatek|
or urban catchments (Disch et al., 2019} [Stransky et al., [2018)).

Therefore, many questions remain unresolved.

The studies from urban environments (Disch et al., 2019} Stransky et al.|
2018)) have suggested that, if available in high temporal resolutions, CML
QPEs in combination with other rainfall data could be conveniently used to
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2. Rainfall monitoring for urban hydrology

predict rainfall runoff. Nevertheless, CML QPEs could be particularly useful
in regions where long-term rainfall monitoring networks are not available,
or available only in resolutions which do no not suffice for most purposes of
urban hydrological modelling (Gosset et al., [2016). Yet, it is not clear how to
make the best use of CML QPEs under such conditions, as their potential of
a stand-alone rainfall sensors for hydrological applications is compromised by
systematic errors common in the QPEs, especially those from shorter CMLs
(Leijnse et al., 2008).

14



Chapter 3

Evaluation of rainfall data by rainfall-runoff
modelling

It is a common approach (e.g. |[Fencl et al. 2015, 2017; Rios Gaona et al.,
2015} |Graf et all, 2020) to evaluate and benchmark rainfall data by a direct
comparison with a reference rainfall data set. However, weather radars are
often not available in adequate spatial resolutions (Heistermann et al., [2013}
Saltikoff et al.,2019)) and have intrinsic problems with reflecting local rainfall
extremes (Wang et all, 2013} Borup et all [2016). Records from rain gauges,
other common type of rainfall reference, are in general representative only for
a limited spatial extent. Therefore, the limited or unknown representativeness
of the reference rainfall data, compared to the true incident rainfall, represents
a major uncertainty of direct comparison to reference rainfall observations.
If one was about to evaluate a data set which would better describe the
ground-truth precipitation than the reference rainfall data, the potential
improvement could not be discovered.

River and drainage system discharges closely reflect transformed rainfall
aggregated for a whole given catchment. Especially in urban areas, stormwater
runoff can be considered as a proxy variable of the catchment areal rainfall.
Furthermore, stream discharges are typically measurable more reliably than
the true incident precipitation over the corresponding catchment. This can be
especially useful in the case of convective precipitation commonly associated
with high spatiotemporal rainfall variability, which is difficult to capture
with traditional reference rainfall measurements. Therefore, when evaluating
the suitability of rainfall data sets for purposes of rainfall-runoff modelling,
using a rainfall-runoff model and runoff observations as the reference is a
valid approach which has been commonly applied. This was done in the
studies of |Obled et al.| (1994), Segond et al.| (2007)), or [Sikorska & Seibert|
which investigated natural catchments. Focusing specifically on urban
rainfall-runoff modelling, |Goormans & Willems| (2013) and [Wang et al.| (2015)
evaluated the suitability of weather radar data sets, and |[Kleidorfer et al.|
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3. Evaluation of rainfall data by rainfall-runoff modelling

(2009)) studied the impact of artificially created imperfections in rainfall data
on model parameters.

A similar approach to rainfall data evaluation has been employed by
Rodriguez et al| (2015) who analyzed the impact of spatial and temporal
resolution of rainfall inputs on urban hydrodynamic modelling. In this study,
model outputs obtained using various rainfall data sets were evaluated using,
as the reference, model outputs associated with the finest resolution rainfall
estimates. This approach was also applied by Disch et al.| (2019) when
comparing the impact of different sources of rainfall data on urban rainfall-
runoff predictions. Nevertheless, when using this approach, similar issues as
discussed above, regarding the representativeness of the reference, can arise.
Furthermore, it is unclear whether the best-quality rainfall data lead to the
best model performance in some circumstances, e.g. when the model used
was calibrated using another rainfall data set.

Alternatively, Berne et al.| (2004)) investigated spatiotemporal rainfall-runoff
dynamics in Mediterranean urban areas in relation to, among others, rainfall
data integration to various temporal resolutions. The relation between the
precipitation and runoff was quantified without rainfall-runoff modelling, only
using the lag time, i.e. “the time difference between the gravity centre of the
mean rainfall over the catchment on one hand and the gravity centre of the
generated hydrograph on the other hand”.

B 3.1 Quantification of prediction uncertainty
in hydrological modelling

When hydrological modelling is employed for rainfall data evaluation, addi-
tional uncertainties are introduced into the process, which should be taken
account for. It has been argued that ignoring the uncertainty, particularly
related to input data, compromises (not only) hydrological modelling ,
2006; Kavetski et al., 2006)), or similarly, that quantification of the uncertainty
associated with the models in urban stormwater modelling is a must
et al), [2012). However, quantifying the effect of all principal uncertainty
sources (or, specifically, the effect of uncertainty related to rainfall data) on
rainfall-runoff modelling results is a complex and challenging task. Therefore,
though conceptually desirable, it is rarely practiced (Dotto et al. 2012).
Researchers have often decided, instead, to put effort to maximize the relia-
bility of modelling results, e.g. by using data measured over a long period of
time (Segond et al.,[2007), or by employing “verified and operational models”
(Ochoa-Rodriguez et al., 2015).
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3.1. Quantification of prediction uncertainty in hydrological modelling

Deletic et al.| (2012) reviewed studies investigating uncertainty in urban
hydrological modelling and identified the following key uncertainty sources:

1. Model input (measured input data and parameters) uncertainties;

2. Calibration (calibration data measuring, availability, and choices; calibra-
tion algorithms and objective functions used in the calibration process)
uncertainties;

3. Model structure (conceptualisation errors, equations and numerical meth-
ods) uncertainties.

Many published urban drainage modelling studies have dealt with uncertain-
ties associated with model parameters, often producing parameter probability
distributions and estimating confidence intervals around the model’s outputs
(e.g. Thorndahl et al.l 2008; Dotto et al.l [2012). However, Deletic et al. (2012)
recognized that the uncertainty sources are highly interlinked, suggesting that
assessing the impact of a single source is not going to be adequate and that
simultaneous propagation of key sources of uncertainties is required.

Dotto et al.| (2012) observed that a common approach when trying to estimate
the total uncertainty (related to parameters and all other sources) is adding a
Gaussian error term to the model predictions. This approach is based on the
assumption that the residuals between the measured and modelled values are
normally distributed (i.e. only due to white measurement noise). However,
the deviations of model outputs from observed data are usually considerably
larger than random observation errors, typically due to a simplified description
of the system by the deterministic model and due to input data imperfections
(Reichert & Schuwirth, 2012). When ignored, such systematic deviations
can lead to unrealistic (usually too narrow) uncertainty bounds of model
parameters and model predictions (Reichert & Schuwirth, [2012]).

Systematic deviations of model predictions from observed data, or model bias,
can by addressed by increasing the complexity of the model to reduce bias or
by trying to find a statistical description of the bias in model outputs. [Reichert
& Schuwirth| (2012) adapted a statistical technique of [Kennedy & O’Hagan
(2001)), accounting for bias in model outputs, for purposes of environmental
modelling and extended it with a framework enabling for multiobjective model
calibration. [Sikorska & Seibert| (2018)) used this approach to asses the value
of different precipitation data for flood prediction in an alpine catchment.
Del Giudice et al.|(2013) applied this technique to urban drainage modelling
while proposing various formulations of the stochastic process representing the
model bias (more in section [3.2). Their results showed that runoff simulations
are much more reliable when bias is accounted for than when it is neglected.

While approaches based on explicit model bias consideration can improve the
reliability of hydrological predictions, they only provide limited information
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3. Evaluation of rainfall data by rainfall-runoff modelling

about the causes of model bias and, therefore, do not help much to distinguish
imperfections in input rainfall data from model structural errors (Del Giudice
et al} 2013). A conceptually more satisfying approach is to make the input
uncertain and to propagate it through the model. This can be done by using
so-called rainfall multipliers (Kavetski et al., [2006; Vrugt et al., 2008). These
random variables multiply observed rainfall rates (1 multiplier per event)
before feeding it into the model. They are estimated together with other model
parameters and allow to quantify the rainfall-related uncertainty directly in
input data. |Sikorska et al.| (2012) combined a stochastic error model with
rainfall multipliers to separate the effect of uncertainty in the rainfall data
from other erorrs sources. However, the rainfall multiplier approach fails
when the observed precipitation has a different temporal pattern from the
true one or if the true nonzero rainfall is not detected (Del Giudice et al.,
2016]).

To overcome the above problem, Del Giudice et al.| (2016|) introduced a method
where the average precipitation over a given catchment is formulated as a
stochastic process, parameters of which are inferred together with other model
parameters during calibration. They showed that, even when starting with
inaccurate precipitation data, this approach can accurately reconstruct the
whole-catchment precipitation and reliably quantify the related uncertainty.
However, their results suggested that even a simpler approach (e.g.|Del Giudice
et al., [2013)) can lead to similar model parameters and prediction intervals.
Therefore, if precipitation reconstructing is not of major interest, the novel
approach is not appealing, given its high computational requirements.

B 32 Explicit statistical consideration of model bias

Herein we describe the framework of Kennedy & O’Hagan| (2001)) as formu-
lated by Reichert & Schuwirth| (2012) and first used in the context of urban
hydrology by Del Giudice et al.| (2013). The basic principle of the method is
extension of a deterministic (e.g. rainfall-runoff) model by a stochastic error
model. However, a commonly used error model considering only independent
and identically distributed (i.i.d.) errors is adjusted to explicitly account for
the systematic model errors (bias) of the deterministic model, acknowledg-
ing the fact that simulators cannot describe the true behavior of a system
(Del Giudice et al.l 2013]). Using this approach, the extended model can be
formulated using the equation

%(x707¢) :yM(xa9)+B(¢)+E(1/f) (31)

where variables in capitals represent random variables and those in lowercase
are deterministic functions. Y, represents the observed system output, yas
stands for the deterministic model output. To better fulfill the underlying
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3.2. Explicit statistical consideration of model bias

statistical assumptions and thus obtain more reliable predictions, a transfor-
mation (details in [3.2.1]) should be applied on both Y, and yy; (Del Giudice
et al., 2013). Next, B and FE, respectively, stand for the bias and measurement
noise in the system output. Precipitation as the external driving force is
represented by x, whereas 6 and 1 respectively represent the deterministic
and error model parameters. The measurement noise of the system response
FE is sampled from a multivariate normal distribution with mean 0 and a
diagonal covariance matrix

Y=ol (3.2)

Del Giudice et al. (2013)) investigated various formulations of the model bias
B and presented a structured approach to select the optimal bias description
for a given case study. In general, it is an autoregressive term which can be
dependent on the input (rainfall) or/and output (runoff) of the system. For
more details, see |Del Giudice et al.| (2013)).

By combining the deterministic hydrological and the stochastic error models,
we can quantify the probability that the observed runoffs can be explained
by given predicted runoffs and error model. This can be formally expressed
by a likelihood function describing the joint probability density f(Y,|0, v, x)
of observed system response Y, for given 6, ¢, and x. It can be written as

__ _@en
PG00, 2) = L2
xp (= 31T~ g (6,2)] 760, 2) ' [T, — e (6,2)]) T 2y Bose ) 63
=1

where n is the number of observations (i.e. the dimension of Y, and y;s) and
3(0,1, x) stands for a covariance matrix of the residuals transformed by a
function g(). Similarly, g = g(yar)-

To achieve accurate rainfall-runoff predictions and reliable quantification of
their uncertainty, the extended model should be calibrated. In theory, this
could be done by optimizing the likelihood function as the objective function.
However, there is “a severe identifiability problem” between the deterministic
model 4 and bias B “as the two components cannot be observed separately”
(Reichert & Schuwirthl 2012). By implementing the Bayesian approach, i.e.
combining the likelihood with prior knowledge (belief) about the extended
model, we can specify that we are seeking for the smallest bias possible when
calibrating the model. Although somewhat subjective choices regarding the
amount of bias acceptable are required, this approach at least makes them
transparent (Reichert & Schuwirth) 2012).
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3. Evaluation of rainfall data by rainfall-runoff modelling

B 3.2.1 Output transformation

Because of the statistical assumptions of homoscedasticity and normality of
calibration residuals, a transformation g() should be applied on simulation
and observed output data (i.e., in our case, runoff discharges). It is a common
way in hydrological modelling how to account for increasing variance with
increasing discharge and thus reduce the residual heteroscedascity. Moreover,
it is expected to reduce the proportion of negative flow predictions by making
error distributions asymmetric (Del Giudice et al., 2013]).

According to |Del Giudice et al|(2013), two most promising variance stabiliza-
tion techniques for urban drainage applications are the Box—Cox ,
and the log-sinh (Wang et all [2012)) transformation. The Box-Cox
transformation has been used more often in hydrological studies than the
log-sinh alternative, primarily due to the date of its first introduction. The
two-parameter Box—Cox transformation can be written as

3.4
7(y+/\/2\)r1_1, otherwise (34)

log(y + X2), if A1 =0
9(y) = {
and holds for y > —Ag. The one-parameter version would need only A; while
keeping Ao = 0. [Del Giudice et al.| (2013)) used the one-parameter version of
the transformation with the parameter value A\; = 0.35, which had already
been proven to perform satisfactorily in the past (e.g. Honti et al., [2013;
‘Wang et al., [2012).

The log-sinh transformation was introduced for hydrological purposes only
recently by Wang et al.| (2012)). Del Giudice et al. (2013) proposed its
modification which would result in a “reparameterised form with parameters
that have a more intuitive meaning”. The formula would be

g(y) = Blog (sinh(a;y»7 (3.5)

where « and 3 represent lower and upper reference outputs. This means that
“o controls how the relative error increases for low flows” and “for outputs

larger than [, the absolute error gradually stops increasing” (Del Giudice
2013)).

B 3.3 Rainfall-runoff modelling performance
assessment

Whether the uncertainty analysis is employed or not, there are various methods
to evaluate the performance of a rainfall-runoff model. The primary output
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3.3. Rainfall-runoff modelling performance assessment

of a rainfall-runoff model is a time series of simulated discharges at a given
location. Such a time series is well suited to be evaluated visually, creating a
hydrograph. However, for numerical evaluation, it is preferable to summarize
the performance in a single metric (or a small number of metrics). Many
metrics often represent only a specific part (e.g. maximal discharge) or only
a certain aspect (e.g. temporal precision, total volume discharged) of the
hydrograph. If multiple rainfall-runoff events or even various catchments are
to be compared, it is preferable to use standardized dimensionless criteria,
e.g. the relative error of maximal discharges. Alternatively, there are metrics
which take into account the whole time series and are often applied when
trying to summarize the overall model performance, such as the mean squared
error (MSE) or Nash-Sutcliffe efficiency (NSE). These two metrics are used
very commonly in hydrological modelling although it has been shown that
there are systematic problems inherent with their usage (Gupta et al., |2009;
Ehret & Zehe, 2011)).

When dealing with interval predictions, it is common to evaluate two aspects
of the predictive performance — its precision and accuracy. The prediction
precision can be quantified by the width of the determined confidence inter-
val, referred to also as interval sharpness (e.g. Breinholt et al., [2012). The
prediction accuracy can be understood as the position of observed value(s) in
relation to the confidence bound(s). Time series predictions such as hydro-
graphs can also be assessed in this manner, e.g. by calculating the prediction
reliability, i.e. the share of observed data points within the predicted bounds,
and the “average bandwidth” — the interval widths averaged over the entire
prediction period (Del Giudice et al., 2013).

Gneiting & Raftery| (2007)) proposed a metric which combines the two above
aspects — the interval score S,. For a single interval prediction at a confidence
level 1 — a (determined by the prediction quantiles at levels § and 1 — §),
the interval score is defined as

Sa(lyu,z) = (u—1)+ %(l —o)l{x <} + %(x —uw)l{z>u}, (3.6)

where [ and u stand for lower and upper interval bounds. This metric is
supposed to allow for intuitive comprehension as “the forecaster is rewarded
for narrow prediction intervals and incurs a penalty, the size of which depends
on «, if the observation misses the interval” (Gneiting & Raftery, [2007).

For time series predicition, the idea of S, can be extended and the mean
interval scores (MIS) for a given period can be quantified. |Bourgin et al.
(2015) further developed the concept and, “to ease comparison between
catchments and evaluate the skill of the prediction bounds”, proposed to
benchmark the prediction confidence bounds by MIS for reference bounds
(MIS,c5) obtained e.g. from long term climatological data. The mean interval
skill score MISS would be computed as

MISS = 1 — (MIS/MIS,.;), (3.7)
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high values of which indicate greater prediction skill, with positive scores
indicating that evaluated predictions are more skillful than the reference.
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Chapter 4

Material

Data used in this thesis originate from an experimental urban catchment (Fig.
with an area of 1.3 km? which lies in Prague-Letniany, Czech Republic,
and is drained by a separate stormwater drainage system. Approximately
35% of the catchment area is covered by impervious surfaces. The catchment
is slightly inclined to the north, with the altitude gradually declining from
roughly 280 to 250 m above sea level (Baltic 1957 height, EPSG:8357). The
lag time between rainfall peak and runoff peak observed at the outlet from
the catchment’s drainage system is approximately 20 minutes.

Figure 4.1: Aerial view of the urban catchment studied with the main sewers and
receiveing water body as well as the position of the local rain gauges (RGs).
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4. Material

B 4.1 Data retrieval and availability

A set of 19 CMLs (Table |4.1; Fig. |4.2) and several rain gauges located in the
catchment’s surroundings (Figs. 4.1/ and 4.2)) were monitored over the period
between July 2014 and October 2016, excluding the winter months (December—
March) as CML signal attenuation by frozen precipitation, occurring in winter
periods, is considerably different than that of liquid precipitation. Moreover,
our monitoring setup is designed for periods with liquid precipitation only, as
the rain gauges (see below) are not heated.

The CMLs (Mini-Link, Ericsson) broadcast at frequencies from 25 to 39 GHz,
their lengths are between 611 and 5795 m, and they are operated by a major
telecommunication service provider. Long CMLs extend out of the catchment
for several kilometers. Signal-level data from CMLs, featuring a common
quantization of 1 dB and 0.33 dB for the transmitted and received signal
power, were retrieved at a 10-s resolution with a custom-made logging script
(Fencl et al., |2015) and then aggregated to a 1-min resolution.

All tipping bucket rain gauges in the area (Figs. 4.1 and |4.2)) were produced
by the same manufacturer (MR3, Meteoservis) and feature the same char-
acteristics: A funnel area of 500 cm?, a bucket volume of 5 ml, and a single
tip corresponding to 0.1 mm of rainfall. They are all dynamically calibrated
(Humphrey et al.,|[1997)) every year and the rainfall data they provide is stored
at a 1-min resolution. However, the rain gauges make part of two different
networks. Those located one km or more outside of the catchment (Fig. 4.2)
are operated and maintained by the municipal sewer authority as a part of
their long-term monitoring network with a density of one gauge per 20—25
km?. These gauges are further referred to as “municipal”. In contrast, rain
gauges temporarily installed for research purposes at three locations at the
catchment boundaries (Fig. 4.1)) are referred to as “local”.

In addition, discharges were measured roughly 100 m upstream from the
stormwater drainage system outlet (50°9°7.572”, 14°30’44.800”E; Fig. 4.2)
using an area-velocity flow meter (Triton, ADS). The flow meter is located in
a concrete pipe of a circular shape with the diameter of 1.5 m and horizontal
inclination of 0.86%. The device was calibrated in a standard way using
stream gauging and the velocity-area method employing an electromagnetic
velocity probe. The temporal resolution of these measurements is 2 min for
wet periods and 10 min for dry periods. Observed discharge values range from
approximately 2 to 2000 1/s. Uncertainty of these observations is estimated
in chapter 6.2.4.

During the observation period, more than 100 relevant rainfall events with
depths exceeding 2 mm were registered. However, due to outages in data

from the monitoring devices, it was possible to analyze data from only a
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4.1. Data retrieval and availability

ID | FreqA [GHz] FreqB [GHz] Polarization Length [m]

1 31.82 32.63 v 611

2 32.63 NA H 645

3 NA 32.63 v 816

4 38.88 38.60 vV 911

) 24.55 25.56 v 1022
6 37.62 37.62 v 1086
7 37.62 38.88 A% 1396
8 37.62 38.88 v 1584
9 31.82 32.63 vV 1858
10 24.55 25.56 H 1953
11 38.88 NA v 1979
12 31.82 32.63 v 2611
13 24.55 25.56 v 2957
14 24.55 25.56 vV 3000
15 24.55 25.56 v 3195
16 24.55 25.56 A% 3432
17 25.56 24.55 v 4253
18 24.55 25.56 v 4523
19 24.55 25.56 vV 5795

Table 4.1: Characteristics of the CMLs observed. FreqA and FreqB are CML
frequencies for the two directions. The NA values indicate that records are not
available. Polarization (Vertical/Horizontal) is the same for both directions.

e Leaflet| tapiles by Stamen Design. CC B 2.C — Hap dats ® Gpenst
() catehm.[» e
A FM . Py

—— CMLs

y [km]

Figure 4.2: Spatial relations of the catchment, the flowmeter (FM), the CMLs
(with IDs denoted), and the monitored municipal rain gauges (RGs).
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4. Material

considerably lower number of events. The exact number differs for each study
presented due to using data from various sets of devices, the availability of
the data at a given time, or differences in event definition. Details on rainfall
characteristics for events as used in the study presented in chapter |6] (see
6.2.1)) are provided in Appendix (Table |A.1)).

An overview of CML data availability during the monitoring period is shown
in Appendix (Fig. |A.1)). Data from each CML were available, on average,
during 80% of the events. Six CMLs had data availability higher than 95%
and only two of them lower than 50%. Due to long-term outages, data from
CMLs #1, #2, and #10 are analyzed only in the study presented in chapter
5, which investigates only a shorter period for which the data from these
CMLs are available.

. 4.2 Rainfall-runoff model and its reliability

To simulate discharges at the drainage system outlet, a rainfall-runoff model
built in the EPA-SWMM software is used. It was constructed using detailed
information about the catchment (e.g. the ratio of impervious areas for
individual subcatchments) and the drainage system (e.g. pipe materials and
diameters) provided by the municipal water management authority. The
model was calibrated for rainfall measurements obtained from the three local
rain gauges (Fig. |4.1), however, using an independent data set collected
before the above specified observation period (Pastorek, 2014]). The process
of runoff generation is formulated empirically and separately for each model
subcatchment (195 in total) using the respective surface-depression-storage-
depth parameters. The subsequent runoff itself is modeled as one-dimensional
flow expressed by Saint-Venant equations. These are numerically solved in
an approximated form of a kinematic wave for surface runoff and in the full
form of a dynamic wave for the following runoff in the drainage network.

In the cases of all rainfall data sets (observation layouts) studied within the
thesis, except for the local rain gauges, the rainfall model input is always
implemented as areal rainfall in the model, meaning that rainfall intensity
in a given time step has a constant value over all model subcatchments. For
the local rain gauges, the catchment is divided into three Thiessen polygons,
corresponding to the local gauges at three locations. This means that every
subcatchment is assigned the same rainfall intensity as measured at the closest
local rain gauge.

The reliability of model predictions was tested using rainfall data from the
three local rain gauges, i.e. the same devices that were used for the model
calibration. This verification was performed for 56 rainfall-runoff events (see
section [6.2.1)) from the observed period between July 2014 and October 2016.
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4.2. Rainfall-runoff model and its reliability
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Figure 4.3: Results of the rainfall-runoff model verification. Top: Histograms
of the statistics for all evaluated events. Bottom: Scatter plots showing the
statistics for single events with respect to the maximal 10-minute rainfall intensity
(Rmax.10) observed by the local rain gauges during these events.

Hydrographs for all analyzed events are provided in the Supplementary Data
appended to the study of [Pastorek et al.| (2019b)). Results of this verification
are summarized in Fig. 4.3. These results suggest that the model predicts
very realistic rainfall runoff. First, on average 78% of simulated discharges
fall within the 95% confidence bands of observed runoff defined by 2.5%
and 97.5% quantiles of observation errors (see section 6.2.4), i.e. the mean
containing ratio CR [-] is 0.78, and its st. dev. is 0.15. Second, the relative
error in volume on average is only -0.7%, and modelled discharge shows
a 0.95 Pearson’s correlation coefficient in relation to the observed values. The
Nash-Sutcliffe efficiency is also high (mean 0.77 and st. dev. 0.3). The model
performs less satisfactorily in terms of predicting peak flows during heavy
rainfalls, they are often substantially overestimated (on average by 40%).
This is probably related to errors associated with the rainfall measurement or
strong assumptions regarding rainfall spatial variability over the catchment
area. For some of the heaviest rainfalls, peak flows are overestimated by more
than 100%, which is probably also due to the model structural deficiencies,
e.g. unmodelled overland flows during extreme events. In summary, the
rainfall-runoff model performs very well except for extreme events.
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Chapter 5

Assesing CML QPEs by quantifying
uncertainties in runoff predictions in a
small urban catchment: The pilot study

This study represents a first assessment of applying quantitative precipitation
estimates (QPEs) retrieved from commercial microwave links (CMLs) for
hydrological modelling in urban catchments. We compare rainfall data from
CMLs with more conventional observations from rain gauges by evaluating
rainfall-runoff modelling predictions against observed runoffs. We employ a
method based on Bayesian inference to calibrate our rainfall-runoff model and
to estimate the uncertainty of modelling outputs. Results of the performed
analyses show that CML rainfall data, when a suitable adjustment is applied
(e.g. using information from nearby rain gauges), allow for better detection of
dynamics of precipitation and subsequent runoff than data from rain gauges
alone, especially in the case of heavy rainfalls which are highly variable in
space and time. Thus, CMLs seem to represent a relevant rainfall data source,
which can conveniently complement existing rainfall monitoring networks.

The bulk of this chapter was originally published in:

Pastorek, J., Fencl, M., Stransky, D., Rieckermann, J., & Bares, V. (2017). Reliability
of microwave link rainfall data for urban runoff modelling. In Proceedings of the
14th IWA /TAHR International Conference on Urban Drainage (pp. 1340-1343). Prague,
Czech Republic.

Pastorek, J., Fencl, M., Rieckermann, J., Sykora, P., Stransky, D., Dohnal, M., &
Bares, V. (2018). Posouzeni srazkovych dat z mikrovlnnych spoji v méstském
povodi pomoci analyzy nejistot hydrologického modelu. [The Evaluation of CML
Rainfall Data in Urban Catchment by Means of Hydrologic Model Uncertainty]. SOVAK:

Casopis oboru vodovodi a kanalizaci 27, 16-22.
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5. Assesing CML QPEs by quantifying uncertainties ... : The pilot study

. 5.1 Introduction

Reliable rainfall data are crucial when performing urban rainfall-runoff mod-
elling. Nevertheless, high spatial variability of rainfall during convective
events negatively affects the representativeness of point precipitation mea-
surements from rain gauges. This could be avoided by employing commercial
microwave links (CMLs), which allow for indirect path-averaged precipitation
detection and are typically very dense in urban areas. However, to date,
only a few studies have investigated the ability of quantitative precipitation
estimates (QPEs) from CMLs for quantitative hydrology.

Smiatek et al.| (2017) investigated the potential of QPEs from CMLs for
streamflow prediction in an orographically complex mountainous region.
In urban settings, Fencl et al. (2013]) assessed the potential of CMLs to
capture spatiotemporal rainfall dynamics and thus improve urban rainfall-
runoff modelling, however, using only virtual rainfall fields. In a similar
analysis, |[Fencl et al.| (2015) evaluated QPEs derived from real-world CML
data, however, without using these for hydrological modelling. Thus, to
the best of our knowledge, no research has been presented yet in relevant
literature where real-world CML QPEs would be applied for urban rainfall-
runoff modelling.

In this study, we target the above research gap and analyze whether QPEs
obtained from CMLs can be regarded as a viable alternative for rainfall data
in the field of urban rainfall-runoff modelling. As CML QPEs are often highly
biased, what limits their usability for practical purposes, we analyze CML
QPEs derived using both a standard approach and a recently proposed (Fencl
et al., [2017) method for adjusting the QPEs to existing rain gauges.

The CML QPEs, as well as traditional data from rain gauges, are propagated
through a calibrated rainfall-runoff model and evaluated against observed
discharges. Since additional uncertainties are introduced into the process
of rainfall data evaluation by employing the rainfall-runoff modelling, we
use a thorough statistical method which allows for reliable quantification of
the runoff prediction uncertainty associated with various rainfall observation
layouts.

. 5.2 Methods

The defined problem is addrresses using rainfall and runoff data collected
in a small urban catchment in Prague-Letniany, Czech Republic (details in
chapter 4) during three months (August— October) of 2014. Precipitation
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5.2. Methods

time series from six rainfall observation layouts are propagated through a
rainfall-runoff model (chapter 4.2)) and evaluated against observed runoffs.
In order to quantify the associated uncertainties, the hydrological model
is operated by means of prediction uncertainty quantification as first used
in an urban hydrology context by Del Giudice et al. (2013) and theoretically
introduced in chapter |3.2.

B 5.2.1 Rainfall observation layouts

We investigate rainfall data observed during 15 rainfall-runoff events from
the summer season of 2014 using the six following observation layouts:

1. Measurements from three local rain gauges

Rainfall data from three local rain gauges installed for research
purposes (Fig. |4.1) around the catchment of interest. This
data set represents rainfall information observed on site which,
however, in the context of the Czech Republic, is available
only for short term experimental purposes. In this study, this
data set is considered as the best-case-scenario reference.

2. Measurements from a single local rain gauge

Rainfall data at a 1-min resolution from the local rain gauge
located at the south-west catchment boundary (Fig. 4.1).
This data set represents rainfall information observed on site
which could be available more commonly than the data above,
however typically also only for a limited period of time, e.g.
in order to evaluate the effect of (re)construction works in the
catchment.

3. Measurements from three municipal rain gauges

Rainfall data from the three municipal rain gauges closest to
the catchment (Fig. 4.2)). Due to their 1-min resolution, for
which correlations are low for the given distances (Villarini
et al., 2008), only a single time series, constructed as the mean
of the instantaneous R [mm/h] values of the three gauges, is
evaluated. This data set represents rainfall data standardly
available in long-term perspectives in urbanized areas of the
Czech Republic.

4. QPEs from four CMLs adjusted by the local rain gauge,

Data from the single local rain gauge specified above, aggre-
gated to 15-min time steps, is used to adjust (Fencl et al.,
2017) CML QPEs with a 1-min resolution. In particular, wet
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5. Assesing CML QPEs by quantifying uncertainties ... : The pilot study

antenna attenuation (A, from Eq. [2.2) and o (Eq. 2.1)
are adjusted, while keeping § = 1. Only short CMLs (path
length < 1500 m) located close to the catchment center are
used (#1, #2, #5, #7; Fig. 4.2, #3 and #4 are excluded due
to outages and erratic behavior, respectively). Only a single
time series, constructed as the mean of the instantaneous R
[mm/h] values of the four CMLs, is evaluated. This rainfall
data set showcases application of CML QPEs when traditional
rainfall information is available directly in the catchment area,
however, not in a satisfying spatial resolution.

5. QPEs from four CMLs adjusted by the municipal rain gauges

The instantaneous mean of the QPEs from the same four CMLs
as above, adjusted in the same way, however, using the mean
of the data from the three municipal rain gauges (specified
above). This rainfall data set showcases application of CML
QPEs in situations when rainfall is not measured directly in
the catchment, but there are gauges in the distance of 2—3 km,
which, however, provide data in lower temporal resolutions
(e.g. 15, 30, or 60 min).

6. Unadjusted QPEs from all CMLs available (Fig. |4.2]).

The instantaneous mean of QPEs derived, using a standard
approach, from all 19 CMLs available in the area in a given
time. A, is estimated as a constant offset with the value
of 2.5 dB, which was determined by comparing the specific
raindrop attenuation v [dB/km]| of short and long CMLs. The
rainfall intensity R [mm/h] is calculated with parameter values
« and 8 chosen in accordance with I'TU Radiocommunication
Sector| (2005)). This data set represents a situation when tradi-
tional rainfall information is not available in the catchment’s
surroundings.

In the cases of all CML data, prior to applying the correction for A,,,, baseline
B [dB] (Eq. 2.2) is separated in the same manner as in |Fencl et al.| (2017)). In
particular, the unprocessed data are first classified into dry and wet periods
according to Schleiss & Berne| (2010) using a moving window of the length
of 15 min. The baseline for a given wet period is then assumed to equal the
10% quantile in the preceding dry weather period.

B 5.2.2 Rainfall-runoff modelling and uncertainty analysis

Rainfall time series retrieved using all the five observation layouts are propa-
gated through a rainfall-runoff model (4.2)) and evaluated against discharges
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observed at the outlet from the local stormwater drainage system. When
using rainfall data from the three local rain gauges, the rainfall input is
implemented in the model using three Thiessen polygons. This means that
the rainfall intensity above a given model subcatchment is assumed to be the
same as measured at the closest gauge. In all other cases, rainfall input is
implemented as areal rainfall, meaning that rainfall intensity in a given time
step has a constant value over all subcatchments of the model.

In order to acknowledge uncertainties of the rainfall-runoff model predictions,
we employ uncertainty analysis framework of Kennedy & O’Hagan! (2001])
as formulated by Reichert & Schuwirth| (2012) and first used in a context
similar to ours by |Del Giudice et al.| (2013), as introduced in chapter 3.2.
This method, among other features, enables quantification of uncertainties
in model output, i.e. in discharge predictions. By varying the input rainfall
data while keeping the rainfall-runoff model structure unchanged, we are
able to trace the associated changes in the prediction uncertainty back to the
respective rainfall data. Details regarding the application of this framework
in the presented study are provided below.

Bl 5.2.3 Uncertainty analysis implementation

The basic idea behind this uncertainty analysis method is the extension (Eq.
3.1)) of a deterministic (i.e., in our case, rainfall-runoff) model by a stochastic
error model which explicitly accounts not only for the random errors (“white
noise”), but also for systematic model errors, i.e. bias. Del Giudice et al.
(2013) investigated various formulations of the model bias. Based on their
recommendations and our previous analyses (Pastorek, 2016), we formulate
the bias B(v)) (Eq. 3.1) as an autoregressive stationary random process
with a long-term equilibrium value of zero and a constant variance. It is a
mean-reverting Ornstein—Uhlenbeck process (Uhlenbeck & Ornstein), [1930),
“the discretisation of which would be a first-order autoregressive process with
Gaussian independent and identically distributed noise” (Del Giudice et al.
2013). It can be expressed using the following differential equation:

aB(t) = - B0 g 4 \/éoBdW(t), (5.1)

T

where 7 represents the correlation time, op the asymptotic standard deviation
of the random fluctuations around the equilibrium, and dWW(¢) a Wiener
process, i.e. standard Brownian motion. The following steps are then required
to calibrate the extended (deterministic + stochastic) model formulated

as described above, and to perform the subsequent uncertainty analysis
(Del Giudice et al.) 2013]):

33



5. Assesing CML QPEs by quantifying uncertainties ... : The pilot study

1. Definition of marginal distributions of the prior joint probability distri-

bution of the both the deterministic rainfall-runoff model parameters
and the stochastic error model parameters .

Del Giudice et al.| (2013) suggest that completely uninformative prior dis-
tributions should not be used for parameters of neither the deterministic
rainfall-runoff model () nor the stochastic error model (¢). Considering
the chosen error model (Eq. 5.1)), o is unlikely to be higher than the
variability of observed discharge, 7 should represent the characteristic
correlation length of the residuals, and og should mirror the measure-
ment noise of the system output Del Giudice et al.| (2013). The priors
are, thus, chosen based on our knowledge of the urban catchment and
on consultations with experts who have already used the method.

For all the parameters, marginals of the prior joint distribution are
defined (Table 5.1)) as truncated normal distributions with four defining
parameters - mean (u), standard deviation (o), minimum, and maximum.
When 6 parameters are concerned, they represent multiplicative (scaling)
values of the actual model parameters. This means that when a given
parameter, e.g. imp, is set to 1.1, the respective imp values for all 195
subcatchments are multiplied by 1.1.

Before the next step, a transformation g() should be applied on simulation
results and output data to account for the variance increasing with the
discharge and to reduce the heteroscedascity of residuals (details in 3.2.1)).
Thus, v parameters op and og are also defined in the transformed space.
Based on our previous analyses (Pastorek, 2016), as transformation g(),
we use the Box-Cox transformation (Box & Cox 1964) with parameters
)\1 = 0.45 and )\2 =1.

Bayesian inference of the posterior parameter distribution.

The extended model is calibrated by the means of Bayesian inference.
To obtain posterior parameter distribution, the joint probability density,
a product of the prior f(6,%) and the likelihood function f(Y,|0,,z)
(Eq. [3.3)), gets conditioned on the observed discharge data:

I XN AR
0o ) = J7 0 iy f 00, 0 wyaody -~ 0P

Solving this problem analytically would include dealing with multidimen-
sional integrals. This can be avoided by employing a numerical method
such as Markov Chain Monte Carlo (MCMC) to approximate properties
of the posterior distribution.

Although the deterministc rainfall-runoff model has been calibrated
in the past, we optimize its parameters also here, together with the
stochastic error model parameters, as we aim to maximize both the
discharge prediction accuracy and precision. Data from five out of the 15
available rainfall-runoff events are used to calibrate the extended model.
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parameter ‘ abbrev. ! o min. max.
_ Percentage of imp 1 1 0.8 1.2
impervious areas [%]
Width of overland .

i il [l wid 1 1 0.3 1.7
Manning’s N for Nipm 1 1 0.3 1.7
impervious areas

Surface depressmn storage S 1 1 0.3 17
for impervious areas [mm|]
Percentage of impervious areas
with no depression storage [%] pel 1 L 03 L7
Manning’s N for N, 1 1 0.3 1.7
drainage pipes
Correlation time [h] T 0.5 0.25  0.01 3
Asymptotic stand. dev.
of independent errors [g(1/s)] oE 9(0.5) g(0.25) 0.01 1.5
Asymptotic stand. dev.
of the random fluctuations oB 9(50)  g(25) 0 10 000 000
around the equilibrium [g(1/s)]

Table 5.1: Summary of the prior marginal distributions.

The calibration itself is performed in two steps. First, we use a gener-
alized simulated annealing function which was designed to “search for
a global minimum of a very complex non-linear objective function with
a very large number of optima” (Xiang et al., 2013). Second, we use
a numerical Monte Carlo Markov Chain sampler which “achieves often
a high efficiency by tuning the proposal distributions to a user defined
acceptance rate” as implemented by |Scheidegger| (2012)) according to the
proposal of |Vihola; (2012).

Probabilistic predictions for the data set used for calibration

Samples from the joint posterior parameter distribution are taken and
used to obtain predictions from the extended model. We re-use the
last 2000 samples from the calibration. Probabilistic predictions for
multivariate normal distributions related to the random variables of this
type are performed as recommended by Kendall et al.| (1994]) and Kollo
& von Rosen (2006).

Probabilistic predictions for unseen temporal points (validation)

It is possible to proceed above. However, [Del Giudice et al.| (2013]) suggest
to take advantage of using bias formulated as an Ornstein—Uhlenbeck
process and to “draw a realization for the entire period by iteratively
drawing the realization for the next time step at time ¢; from that of a
previous time step at time ¢;_; from a normal distribution”.

Verification of the statistical assumptions

In many similar cases, it is usual to confirm the statistical assumptions
of the error model by residual analysis (Reichert & Schuwirth) [2012]).
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However, the Bayesian approach implemented in this method allows us
to test only the observation error E, which is the only purely frequentist
term. However, since these errors are likely to constitute only a small
portion of the residuals of the deterministic simulator, the informative
value of this analysis might be limited.

B 5.2.4 Performance assessment

After performing the extended model calibration, data from the ten remaining
rainfall-runoff events are used to analyze the model predictions. To evaluate
the rainfall-runoff predictions visually, we produce hydrographs for each of
the ten events and rainfall data from each of the five observation layouts.
We do not the evaluate the prediction performance by examining separately
the uncertainty intervals for the deterministic rainfall-runoff model output.
This is in accordance with Del Giudice et al.| (2013]), who see this approach
as “not conclusive because the field observations are not realisations of the
deterministic model but of the model plus the errors”. Instead, we only
evaluate the total uncertainty intervals associated with the extended model,
i.e. the deterministic and the stochastic model together.

We also employ common summary hydrological metrics such as the Nash-
Sutcliffe efficiency NSE' [-], the total discharged volume during a whole given
event, or the discharged volume during peak flow period. In particular, we
compute relative errors of the total discharged volume dV [-] and of the volume
during peak flow dVjeqr [-] for every single prediction of the extended model.
When calculating dVjeqr, the time step with the maximal discharge observed
is identified first and the volume discharged during eight minutes around
the time step (four minutes before and four after) is computed afterwards.
The difference between the modelled time with the maximal discharge and
the observed one dtgmqz [h] is another metric we quantify for every model
prediction.

The uncertainty in the metrics NSE, dV', dVpear, and dtgmas is evaluated by
calculating the median and other quantiles for the whole set of predictions
associated with a given rainfall observation layout, which are then graphically
presented in boxplots. This is in accordance with [Fencl et al.| (2013) who
also used the relative error of the total discharged volume and interpreted its
mean dV as the volume prediction bias and its standard deviation sd(dV)
as the prediction uncertainty. Moreover, the discharge prediction reliability
associated with a given observation layout is quantified as the fraction of
discharge observations falling into the predicted 90% confidence intervals.

To better interpret the results, we classify the rainfall events as either light
or heavy, based on the maximal 10-minute precipitation rate.
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. 5.3 Results

First, we present hydrographs showing observed and modelled discharges for
a heavy and a light rainfall event which characterize well typical features of
the overall results. Next, a summary of the results for all 10 events used,
as well as only those classified as heavy (maximal 10-min rainfall intensity
Rynaz,10 > 12 mm/h), and those classified as light (Rpae,10 < 12 mm/h), is
presented in boxplots, with a special attention on the heavy rainfalls.

Hydrographs of a chosen light rainfall event (Fig. 5.1 top) show that the
prediction performance during such an event is very similar for five out of
the six evaluated rainfall observation layouts. The runoff dynamics as well as
volumes are captured very well in all cases and errors occur in the same part
of the hydrographs - the rising limbs. In contrast, results for the unadjusted
CML QPEs present different characteristics. There is a tendency to notably
underestimate the discharges. The runoff dynamics feature similar trends as
before, however, not as precisely. Interestingly, many observations are out of
the prediction bounds, meaning that the prediction reliability is low for this
rainfall observation layout.

Hydrographs of a chosen heavy rainfall event (Fig. 5.1 bottom) present a
slightly different picture than the light rainfalls above. The worst runoff
prediction was obtained using rainfall data from three municipal rain gauges.
In particular, the peak flows were considerably underestimated in this case.
Rainfall data from all other observation layouts, including unadjusted CML
QPEs, reproduced well the peaks as well as all other hydrograph features.

Summary results presented in Fig. 5.2 confirm the previously mentioned
tendencies. First of all, unadjusted CML QPEs feature remarkably different
results than other five observation layouts which quite resemble each other.
The unadjusted QPEs considerably underestimate the runoff volumes for
light rainfalls, circa by 75% in median. However, for heavy rainfall events,
the bias is at the same level as in other cases. This is also reflected in the
associated NSFE values, which are around -0.5 in median for light and around
0.7 for heavy rainfalls. A certain level of bias is present as well in result for
the five other observation layouts, roughly between -10% and -20% in median.
Interestingly, in the cases of both the single local rain gauge and the three
municipal gauges, CML QPEs adjusted using the gauge data feature smaller
bias than the gauge data used alone. This also affects the associated NSE
values, which are higher for the adjusted CML QPEs than for the rain gauge
data, especially when the heavy rainfalls are considered.
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Figure 5.1: Hydrographs associated with a light rainfall observed on 11th August
2014 with a start at 02:24 am (top) and a heavy rainfall observed on 29th August
2014 with a start at 02:56 pm (bottom). Predicted discharges at a confidence level
of 90% are shown as grey bands. The dashed line represents median prediction
for a given timestep. Observed discharges are shown as circles (blue if within
the prediction bounds, red if outside).
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Figure 5.2: Boxplots showing prediction performance summaries in terms of NSE
(left) and dV (right) for all 10 events (top), heavy rainfalls (center), and light
rainfalls (bottom). Boxplot whiskers extent from the 10th to 100th percentile
for NSE and from the 5th to 95th percentile for dV.
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Figure 5.3: Boxplots showing prediction performance summaries in terms of
At Qmae (left) and dVpeqr (right) for heavy rainfalls. Boxplot whiskers extent
from the 5th to 95th percentile.

Heavy rainfall events are analyzed in more detail in terms of their peak flows
in Fig. |5.3l This shows that unadjusted CML QPEs most overestimate the
peak discharges. However, adjusting CML QPEs to rain gauge data reduces
the variance in dV)q, values, even when compared to the rain gauge data
themselves. In fact, most accurate and precise peak flows are obtained using
the QPEs adjusted to the three municipal rain gauges. When timing of the
discharge maximum is considered, the worst results in terms of precision are
obtained using the single local rain gauge, and in terms of accuracy using the
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three municipal gauges. CML QPEs, both adjusted and unadjusted, perform
very similarly as the best-case-scenario three local rain gauges.

. 5.4 Discussion

The main findings of the study are that CML QPEs derived using a standard
approach, which are often biased, lead to biased rainfall-runoff predictions,
especially their underestimation during light rainfall events. However, for
heavy rainfalls, which are often associated with convective events, the bias
is notably lower, and runoff temporal dynamic are captured similarly well
as when using high-resolution local rain gauge data. Moreover, compared
to traditional rain gauge data (a single local rain gauge or three municipal
gauges) used alone, adjusting CML QPEs to these gauge data has lead to an
improvement in the reproduction of peak discharges and the overall modelling
performance in terms of NSE for heavy rainfalls, for which CMLs play out
the advantage of excellent spatial coverage.

These findings suggest that CML QPEs can be regarded as a viable additional
rainfall data source for the field of urban rainfall-runoff modelling, especially
for the monitoring of heavy rainfalls when the availability of traditional rain
gauge data is limited. This is in agreement with |Smiatek et al.| (2017)) who
investigated the potential of CML QPEs for streamflow prediction in an
orographically complex mountainous region. They found that, during an
extreme flooding period with many local heavy rainfall events, a considerable
improvement in hydrograph reproduction can be achieved when CML QPEs
are employed. Our findings are also in agreement with those of [Fencl et al.
(2017), who found that adjusting CML QPEs to rain gauge data reduces the
bias in the QPEs, which can then outperform each of the rainfall data types
used individually.

Nevertheless, the relevance of our findings should be subject to further
research using more extensive data sets ideally from multiple locations, since
our data set only covers three consecutive months in the area of a single
urban catchment. Next, it should be stressed out that the observation layouts
of unadjusted CML QPEs consists of data from all 19 CMLs available in the
area in that time. However, due to high computational demands, the CML
QPEs adjusting to rain gauge data has been done only for four rather short
CMLs which were assumed to correspond well to the catchment topology.
Therefore, a similar analysis should be performed where data from CMLs of
more variable path lengths and other relevant characteristics (e.g. frequency)
would be evaluated, and the potential role of these characteristics on the
results would be studied.

40



5.5. Conclusions
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Figure 5.4: Discharge prediction reliability for all 10 events evaluated as a whole.

Next, the bias in simulated runoffs when using the unadjusted CML QPEs,
especially pronounced during light rainfall events, has not been adequately
compensated for by extending the prediction intervals (see e.g. Fig. 5.1
top) which has also lead to low overall prediction reliability as presented in
Fig|5.4l For all other observational layouts, the prediction reliability at the
declared 90%-confidence level is very close to 90%, however, it is only 56%
for the unadjusted CML QPEs. This behavior, which could be explained by
an inappropriately calibrated stochastic error model, does not compromise
the main findings regarding rainfall data from this observational layouts
Nevertheless, it should be analyzed what factors ( e.g. the definition of the
parameter prior distributions, or the choice of meta-parameters necessary for
the calibration process) have caused this effect so that similar erratic behavior
could be avoided in future analyses.

It should also be noted that, during the extended model calibration, the
internal structure of the deterministic rainfall-runoff model stays unchanged
for a given 6 parameter, which is used only as a scaling factor affecting all
sub-parts of the model in the same way (see ?7). This could be avoided by
employing additional stochastic parameters which would introduce random
changes into the internal proportions of the  parameters and might, in theory,
improve the model structure and thus reduce the associated uncertainties.
However, we have chosen not to implement this, for the sake of modelling
simplicity (lower number of parameters) and results interpretability.

. 5.5 Conclusions

This study has presented the first analysis of using QPEs from real-world
CMLs for rainfall-runoff modelling in a small urban catchment. This has in-
cluded a comparison of the modelling performance with traditional rain gauge
data and a robust statistical analysis of the model prediction uncertainty.
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Our results have shown that stormwater discharges modelled using CML QPEs
derived using a standard approach are often considerably biased, especially
during light rainfall events. On the other hand, these QPEs can very well
reproduce the runoff temporal dynamics. Moreover, adjusting the CML
QPEs to traditional rain gauge data in sub-optimal resolutions has lead
to an improvement in the reproduction of peak discharges and the overall
modelling performance in terms of NSE for heavy rainfalls, compared to using
the rain gauge data alone. Such adjusted CML QPEs can even lead to the
same rainfall-runoff modelling performance as high-resolution rain gauge data
during heavy precipitation events.

The above findings suggest that CML QPEs can be regarded as a viable
additional rainfall data source for the field of urban rainfall-runoff modelling,
especially for monitoring of heavy rainfalls, if local rain gauge data in high
spatial resolution are not available in a given catchment. In such cases,
adjusting CML QPEs to gauges from a low-density network, e.g. operated by
national meteorological service or similar institutions, could provide rainfall
information of adequate quality, especially when heavy rainfalls, crucial for
design and operation of urban drainage systems, are considered.

Using CML QPEs in situations when other rainfall data are not available,
i.e. when adjusting is not an option, would be complicated by the systematic
errors in these data. However, more advanced pre-processing of CML QPEs
could in theory reduce these errors in the future.

Future studies should also assess the validity of our findings using more
extensive data sets which would cover longer time periods and ideally various
experimental areas with CMLs of various relevant characteristics (path length,
frequency), and could thus evaluate the potential role of these various factors
for the CML QPE suitability for urban rainfall-runoff modelling.
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Chapter 6

The effect of link characteristics and their
position on runoff simulations

This study addresses the ability of individual commercial microwave links
(CMLs) to provide relevant quantitative precipitation estimates (QPEs) for
urban rainfall-runoff simulations and specifically investigates the influence
of CML characteristics and position on the predicted runoff. QPEs from
real world CMLs are used as inputs for urban rainfall-runoff predictions
and subsequent modelling performance is assessed by comparing simulated
runoffs with measured stormwater discharges. The results show that model
performance is related to both the sensitivity of CML to rainfall and CML
position. The bias propagated into the runoff predictions is inversely pro-
portional to CML path length. The effect of CML position is especially
pronounced during heavy rainfalls, when QPEs from shorter CMLs, lo-
cated within or close to catchment boundaries, better reproduce runoff
dynamics than QPEs from longer CMLs extending far beyond the catch-
ment boundaries. Interestingly, QPEs averaged from all available CMLs
best reproduce the runoff temporal dynamics. Adjusting CML QPEs to
three rain gauges located 2-3 km outside of the catchment substantially
reduces the bias in CML QPEs. Unfortunately, this compromises the abil-
ity of the CML QPEs to reproduce runoff dynamics during heavy rainfalls.

The bulk of this chapter was originally published in:

Pastorek, J., Fencl, M., Rieckermann, J., & Bares, V. (2019). Commercial mi-
crowave links for urban drainage modelling: The effect of link characteristics
and their position on runoff simulations. Journal of Environmental Management 251,
109522. https://doi.org/10.1016/j.jenvman.2019.109522.
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. 6.1 Introduction

Inaccuracies in quantitative precipitation estimates (QPEs) from commercial
microwave links (CMLs) are very much dependent on CML’s sensitivity to
inaccurate estimation of raindrop-induced attenuation A, [dB] which is largely
determined (see 2.4.1)) by its characteristics such as transmission frequency
and path length (Leijnse et al., [2008).

Path lengths of CMLs typically range from a few hundred meters up to a
few kilometers. Longer CMLs are less prone to bias in CML QPEs caused by
inaccurate A, estimation due to, e.g., imprecise correction for wet antenna
attenuation (WAA). However, their path lengths often do not correspond well
to relatively small scales of urban (sub)catchments and, thus, they cannot
capture rainfall spatial variability at corresponding scales. On the other hand,
shorter path lengths, fitting the typical urban catchment scale well, make
CMLs more prone to bias. Nonetheless, shorter CMLs usually operate at
higher frequencies which are associated with a lower liability to bias.

Unfortunately, very little is known about the combined effect of the CML
characteristics and their spatial representativeness on efficient use of CML
QPEs for hydrological applications such as rainfall-runoff modeling. This
study addresses the above knowledge gap and investigates in how far CML
instrumental parameters and network topology influence the performance of
CMLs as rainfall sensors for hydrological modelling. This complex problem is
addressed in three steps:

1. The sensitivity of QPEs to the CML path length and transmission
frequency is analyzed.

2. The CML spatial representativeness related to their path length, position,
and the spatial structure of the rainfall event are investigated.

3. As, in theory, CML QPEs should outperform point measurements from
rain gauges during extreme or heavy rainfall, we analyze the performance
of CML QPEs in such conditions in greater detail.

In our view, main innovations of the study include also the following:

1. It is among the very first which investigate the potential of CML QPEs
for urban rainfall-runoff modelling at catchment scales;

2. It employs a unique real-world data set which was collected over three
consecutive summer seasons and which contains comprehensive, high-
resolution data from a dense network of 19 CMLs; and

3. It provides specific recommendations on how to select CMLs suitable for
urban rainfall-runoff modelling.
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. 6.2 Methods

QPEs from real-world CMLs (4.1)) are used as inputs in a calibrated urban
rainfall-runoff model (4.2). The model performance is evaluated for CML
QPEs from various observation layouts by comparing the simulated runoffs
with those observed at the stormwater drainage system outlet. Next, we
perform an exploratory data analysis on CML attributes to better understand
their influence on volumes and temporal dynamics of the simulated runoff.

B 6.2.1 Data availability

Due to outages in data from the monitoring devices, it was possible to perform
and evaluate rainfall-runoff simulations for 71 events from the monitoring
period (section [4.1)). For each of the events, there were data available from
between 9 and 17 CMLs (47%-89%). To improve the robustness of the
statistical evaluation, we have excluded from the analysis 12 rainfall events
with less than two thirds of the CMLs available. Also, we excluded three
extreme rainfall events for which runoff predictions were unsatisfactory, i.e.
maximal discharges were overestimated by more than 100% when modelled
using high-quality rainfall data from the three local rain gauges (Fig. 4.1).
Similarly, three CMLs (#1, #2, #10), which experienced long outages during
the experimental period, are not analyzed in the study. In summary, after
rigorous quality control, the analysis is performed for 16 CMLs and 56 events.
Details on the rainfall characteristics are provided in Appendix (Table |A.1)).

B 6.2.2 From signal levels to QPEs

Although we deliberately chose a pragmatic approach to derive CML QPEs,
several steps are necessary to estimate precipitation-induced attenuation for
a given CML and to derive the associated precipitation rates:

1. The difference between the transmitted and received signal level TRSL [dB]
is calculated for each of two CML channels.

2. A quality check is performed to identify erratic CML behavior which has
to be filtered out. The following behavior is regarded as erratic:

® Sudden peaks where, within two time steps, T RSL increases and
then decreases (or vice versa) by more than 5 dB,
® Longer periods (days) with no signal fluctuation, and

8 Periods with random noise larger than 2 dB.
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3. TRSL data are aggregated to regular 1-min time series by averaging
values within 1-min intervals.

4. TRSL time series from the two CML channels are averaged.

5. Baseline attenuation B is estimated with a low-pass filter parameter
m = 0.00145 (Fenicia et al., 2012)) and separated from TRSL (Eq. [2.1)).

After the baseline separation, we proceed by applying WAA correction (A,
from Eq. [2.2) and calculating the rainfall intensity R [mm/h] (Eq. 2.1)) in
two different ways:

® WAA A,, is modelled as a constant offset with values suggested by
Overeem et al.| (2011). Parameters o and [ are chosen in accordance
with I'TU Radiocommunication Sector| (2005).

® The mean of the instantaneous R values of the three municipal rain
gauges closest to the catchment (Fig. 4.2), aggregated to 15-min time
steps, is used for adjusting A, and «, while keeping S = 1, as proposed
by [Fencl et al. (2017)).

B 6.2.3 Observation layouts and their evaluation

Rainfall data from 18 different observation layouts are used as precipitation
inputs into the rainfall-runoff model. The rainfall model input is in all cases
implemented as areal rainfall in the model meaning that rainfall intensity in
a given time step has a constant value over all subcatchments of the model.

Firstly, we employ QPEs derived from only a single CML at a time, using each
of the 16 CMLs consecutively. Next, we construct a time series calculated as
the arithmetic mean of all available CML QPEs (not weighted) for every time
step. These 17 observational layouts based on the CML data are used for both
methods of deriving CML QPEs (see the end of section [6.2.2]). Additionally,
to compare CML QPEs with a traditional way of rainfall monitoring, the
mean of the three rain gauges from the municipal network is used as the
model input. These are the same rain gauges as those used for CML adjusting,
but the original 1-min resolution is used in this case.

The rainfall-runoff simulations are not performed continuously for the whole
observation period, but only for individual rainfall-runoff events. The model
performance is evaluated, for the 18 studied observation layouts, both CML
QPE deriving methods, and each of the 56 events, by comparing the simu-
lated runoffs and observed stormwater discharges. Performance metrics are
Nash-Sutcliffe efficiency NSFE [-], the Pearson correlation coefficient PCC
[-], and the relative error of the total runoff volume dV [-].
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The model performance for the rainfall observation layouts is analyzed also
with respect to rainfall intensities of evaluated events. For these purposes, we
classify the events into “light”, “moderate” and “heavy” (Table 6.1). Runoff
simulations for heavy rainfalls are investigated in more detail to demonstrate
the ability of CMLs for capturing heavy rainfalls, which are often characterized
by high spatial variability and thus difficult to measure reliably with point
rain gauge observations. However, we expect that location and spatial scale
of CMLs might play a larger role than their instrumental errors when used
for modelling runoff generated by heavy (spatially variable) rainfalls.

‘Light Moderate Heavy

Defining Rypgz10 [mm/h] | x <5 5 <x <12 12<x
Number of events 20 20 16

Table 6.1: Categorization of rainfall events. The defining maximal 10-min
rainfall intensity R,,q.,10 as measured by the three local rain gauges temporarily
installed around the catchment. For detailed info, see Appendix (Table |A.1).

Bl 6.2.4 Data uncertainty

To interpret correctly the study results, it is crucial to estimate expected errors
of both CML QPEs and discharge measurements. The errors in CML QPEs
are addressed in section [2.4.1. The uncertainty of the measured discharges at
the outlet of the catchment are estimated following the suggestions of [Muste
et al. (2012)). The discharge is computed from pipe radius R [m], measured
flow depth A [m], and measured cross sectional velocity V' [m/s], which are
assumed to have uncorrelated errors. The following values of input variables
are propagated: R = 0.75 m with a standard uncertainty (at a 68% level of
confidence) u(R) = 0.0015 m. The discharge uncertainty is estimated only
for periods with stormwater runoff, therefore, we assume that the standard
uncertainty of measured flow depth h is u(h) = 0.015 m. The standard
uncertainty of the flow velocity V' in the cross section is estimated as u(V) =
0.05V. Finally, the expanded uncertainty (at a 95% level of confidence) of
measured discharge U(Q) is estimated for all discharge measurements. The
expanded uncertainty U(Q) varies for different flow depths, e.g. for 10% pipe
filling, U(Q) = + 0.0282 m?/s, what is equivalent to + 31.0% of the total
value Q = 0.091 m3/s. For 50% pipe filling, the uncertainty U(Q) = + 0.245
m? /s, corresponding to (+ 11.0%) of the discharge Q = 2.17 m3/s.

. 6.3 Results

Firstly, typical features of simulated discharge are illustrated on a hydrograph
of one of the 56 events. Secondly, the performance of the rainfall-runoff model
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is investigated in relation to the CML lengths and frequencies. Afterwards,
the model performance is evaluated separately for heavy rainfalls to under-
stand the effect of CML lengths and positions during spatially more variable
rainfalls. Finally, runoff simulations for CML QPEs adjusted to rain gauges
are presented.
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Figure 6.1: Modelled and observed discharges for a selected rainfall-runoff event
and all examined rainfall observation layouts: QPEs from individual CMLs both
unadjusted (“single CML unadj.”) and adjusted to rain gauges (“single CML adj.
to RGs”); The mean of both unadjusted and adjusted QPEs from all available
CMLs (“mean CML unadj.” and “mean CML adj. to RGs”); The mean of the
three municipal rain gauges (“mean RGs”).

B 6.3.1 Characteristic features of simulated hydrographs

A hydrograph which illustrates well typical features of the rainfall-runoff
process is shown in Fig. [6.1. Firstly, one can see that discharge simulations
using unadjusted CML QPEs (in blue) can be highly biased, however, this
bias varies substantially for various individual CMLs (dV between -0.709
and 0.823). In contrast, the correlation with the observed runoff is relatively
high (PCC 0.878 in mean) and much more stable among various CMLs
(0.15 in st. dev.). Secondly, the efficiency of adjusting CML QPEs to rain
gauge observations (in red) is highly conditional on the rain gauge data. The
adjustment reduces the bias in simulated discharges (dV between -0.280 and
0.066), but it does not always outperform simulations based on the mean of
the rain gauges (dV -0.152).
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Figure 6.2: Boxplots of performance metrics (see obtained using unad-
justed CML QPEs, summarized for all available rainfall-runoff events. "Mean 16”
stands for the mean of all QPEs from all 16 individual CMLs, “RGs” stands for
the mean of the three municipal rain gauges. Boxes represent the interquartile
range, whiskers extend to the most extreme data point which is no more than
1.5 times the interquartile range from the box, and circles represent outliers.

B 6.3.2 Performance in relation to CML lengths and
frequencies

Fig. shows boxplots of the model performance when using unadjusted
CML QPE:s for all 56 rainfall-runoff events, where each boxplot belongs to one
observation layout. The layouts are sorted by the CML path length. Predicted
discharges are on average highly biased and the large whiskers indicate
substantial inter-event variability outside the upper and lower quartiles for all
metrics. The largest dV values tend to be associated with unadjusted QPEs
from short CMLs (the exception of CML #4 is discussed below). Similarly, the
inter-event variability in dV is largest for simulations with short unadjusted
CMLs. Such positive bias linked to the high sensitivity of short CMLs to wet
antenna attenuation has been observed in the past (e.g. [Fencl et al., |2019)).

CML #4 is a distinctive exception to the observations formulated above. Al-
though it is very short, unadjusted QPEs from this CML lead to substantially
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underestimated runoff volumes. Additional analyses identified malfunction in
one of the two channels of this CML causing unusually low values of observed
attenuation. Since we use the mean of the observed attenuation of the two
channels to estimate rainfall intensity, the intensities derived from this CML,
and consequently the simulated runoffs, are systematically underestimated.

The model performance in terms of PCC' (Fig. 6.2, middle), which is insensi-
tive to linear bias, does not show a clear dependence on CML path lengths.
Better-than-average values are obtained using QPEs from 38 GHz CMLs.
This is probably because these CMLs cover the catchment relatively well while
being more sensitive to rainfall than lower frequency CMLs. Interestingly, the
best performing CML QPEs, with PCC' values similar to the rain gauges, are
those derived from the mean of all available CMLs. NSE values (Fig. 6.2,
bottom) are generally unsatisfactory, due to the high bias in the unadjusted
CML QPEs. As expected, NSF values are better for longer CMLs and for
the mean of QPEs from all 16 CMLs.

Using the given CML network topology, the relation between the CML
frequency and its performance cannot be studied completely independently
of the CML path length. Nevertheless, results of CMLs #9 and #11 or #12
and #13, which have similar lengths but different frequencies, indicate that
higher frequencies (which are more sensitive to raindrop attenuation) tend to
provide better results, especially in terms of better correlations.

In general, when evaluating discharge simulations using volume-related per-
formance metrics (dV and NSE), instrumental errors seem to dominate over
errors related to CML spatial representativeness. The longest least biased
CMLs distinctively outperform shorter CMLs. The short CMLs are within or
close to the catchment boundaries, and their lengths correspond better to
the catchment scale (Fig. 4.2), but they are more prone to bias due to wet
antenna attenuation (see 2.4.1). On the other hand, correlations are slightly
better for shorter 38 GHz CMLs than for longer 26 GHz CMLs. However, the
spatial representativeness of CMLs in relation to the catchment area might be
more pronounced during heavy rainfalls, which are typically highly spatially
variable and during which we can expect CMLs to be relatively less prone to
instrumental errors (see 2.4.1). This is investigated in greater detail in the
following subsection.

B 6.3.3 Performance during heavy rainfalls

Fig. [6.3] summarizes the rainfall-runoff modelling performance for heavy
rainfalls. General tendencies for volume-related statistics are similar as
when summarizing for all available events. It can be seen that there is still
a considerable dependence between the CML path length and the bias in
simulated discharges (dV, Fig. 6.3, top), which also affects the performance
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in terms of NSE (Fig. 6.3, bottom). Interestingly, the temporal dynamics
(PCC, Fig. 6.3, middle) are now best reproduced (median PCC 0.94, st.
dev. 0.04) by the mean of all CML QPEs. This suggests that such averaged
data contain valuable information about the rainfall spatiotemporal dynamics
above the catchment. For the individual CML QPEs, the highest PCC values
are reached by QPEs from relatively short 38 GHz CMLs (#6, #7, #8)
located in the western part of the catchment. This demonstrates that even
biased CML QPEs can very well reproduce runoff dynamics if the CMLs
cover the catchment area well. Nevertheless, the bias in the QPEs from
short CMLs considerably limits their performance in terms of volume-related
performance metrics, which are important for applications such as modelling
of water balance or designing large retention tanks. Elimination of the bias
in CML QPEs by adjusting to rain gauges is presented in the next section.
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Figure 6.3: Boxplots of performance metrics obtained using unadjusted CML
QPEs, summarized only for heavy rainfalls. "Mean 16” stands for the mean of
all QPEs from all 16 individual CMLs, “RGs” stands for the mean of the three
municipal rain gauges. Boxes represent the interquartile range, whiskers extend
to the most extreme data point which is no more than 1.5 times the interquartile
range from the box, and circles represent outliers.
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B 6.3.4 Discharge simulations from adjusted CML QPEs

Although the adjustment of CML QPEs to rain gauges greatly reduces the
bias (median dV between 0.01 and 0.12; Fig. , it does not outperform the
rain gauge data (median dV 0.01). There are no clear trends associated with
CML path length, neither in terms of the dV median nor the dV inter-event
variability (st. dev. between 0.37 and 0.61). Similarly, for all CML QPEs,
correlations of simulated and observed discharges are in similar ranges as for
the rain gauges used alone (PCC medians around 0.9, st. dev. around 0.27).
For six of the individual CMLs (including short ones) and for the mean of all
CMLs, the adjusted QPEs lead to slightly less variable NSE values than the
rain gauges (st. dev. between 0.6 and 0.73). However, no CML QPEs lead to
decisively higher median N SE values.
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Figure 6.4: Boxplots of performance metrics obtained using the adjusted CML
QPEs, summarized for all available rainfall events (left) and only for heavy
rainfalls (right). ”"Mean 16” stands for the mean of all QPEs from all 16
individual CMLs, “RGs” stands for the mean of the three municipal rain gauges.
Boxes represent the interquartile range, whiskers extend to the most extreme
data point which is no more than 1.5 times the interquartile range from the box,
and circles represent outliers.

Adjusting CML QPEs to rain gauge data effectively minimizes the bias in
the CML QPEs, though it is considerably constrained by the reliability of
the rain gauge data. This is especially critical during heavy rainfalls when
observations from rain gauges located 2—-3 km from the catchment often do not
represent rainfall intensities directly in the catchment. In these cases, adjusted
CML QPEs tend to be unreliable and can even worsen CML performance,
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6.4. Discussion

especially in terms of their ability to capture temporal dynamics of rainfall
and subsequent runoff. This is demonstrated in Fig. 6.5, where discharge
simulations based on i) only rain gauges, i) the mean of all unadjusted
CML QPEs, and ) the mean of all adjusted CML QPEs are evaluated in
terms of PC'C' and compared with each other. For heavy rainfall events, the
unadjusted CML QPEs clearly outperform the rain gauge data (Fig. 6.5, left).
Adjusting CML QPEs to rain gauges improves the PCC' performance for
light and moderate rainfall events, but it also worsens the results for heavy
(and a few moderate) rainfall events (Fig. |6.5, right). When comparing the
adjusted CML QPEs and the rain gauge data (Fig. 6.5, middle), there is no
clear difference between the respective PC'C values.
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Figure 6.5: Scatterplots of PCC with color-coded max. 10-min rainfall intensities
(Rmax,10) of individual events. Left: The mean of unadjusted CML QPEs (x
axis) vs. rain gauges (y axis). Middle: The mean of adjusted CML QPEs (x
axis) vs. rain gauges (y axis). Right: The mean of unadjusted (x axis) and the
mean of adjusted CML QPEs (y axis).

. 6.4 Discussion

Our experimental results on using QPEs from CMLs for urban rainfall-runoff
predictions suggest that CMLs can indeed provide valuable rainfall data.
However, if CML QPEs are not adjusted to rain gauges, the large bias in
CML QPEs leads to unsatisfactory performance, especially for short CMLs.
Nevertheless, the results strongly depend on the reliability of the rainfall-
runoff model and discharge observations, the pre-processing method applied
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6. The effect of link characteristics and their position on runoff simulations

to obtain CML QPEs, and the quality and availability of the CML data.
Therefore, to better interpret our results, it is necessary to discuss:

® the combined effect of uncertainty in measured discharges and the rainfall-
runoff model on overall performance of CML-based discharge simulations,

® CML preprocessing with a special focus on eliminating the bias in CML
QPEs, and

® the effect of the quality and availability of CML QPEs on the represen-
tativeness of the results and their transferability to different catchments.

The rainfall-runoff model was validated using independent rainfall observations
from three rain gauges located within or close to the catchment boundaries
(Fig. 4.1} left) for all events analyzed in this study. This enables us to directly
quantify the reliability of the model (see section 4.2). The validation shows
that the model reproduces runoff very well in terms of both discharge volumes
(dV') and temporal dynamics (PCC, partly NSE). The relative error in dV/
is small for most of the evaluated events (mean -0.007, st. dev. 0.153). These
values are more than a magnitude lower than those obtained using unadjusted
QPEs from short CML, and about two times lower in comparison to those
of the best performing CML. Therefore, the bias in CML-based discharge
simulations can be attributed mostly to the uncertainty (the bias) in CML
QPEs and not to the combined uncertainty of observed discharges and the
rainfall-runoff model.

The validation also shows that the simulated discharges are highly correlated
with the observed ones (mean 0.95, st. dev. 0.06). The mean PCC for
CML-based discharge simulations is between 0.49 and 0.86, with st. dev.
between 0.15 and 0.43. Thus, the deficit in reproducing runoff dynamics
can also be attributed predominantly to uncertainties in CML QPEs. The
only exception are discharge simulations for heavy rainfalls obtained from
the mean of all unadjusted CML QPEs (Fig. [6.3, boxplot ‘mean 16’), for
which PCC values are comparable (mean 0.94, st. dev. 0.04) to the excellent
runoff predictions using the local rain gauges (mean 0.96, st. dev. 0.02).
In summary, the validation of the rainfall-runoff model demonstrates that
the combined uncertainty related to measured discharges and the rainfall-
runoff model introduces only very little variability and, most importantly, no
systematic errors into the performance assessment.

Results of this study show that bias in unadjusted CML QPEs negatively
affects their usefulness for rainfall-runoff modelling, especially in terms of
volume-related statistics. Most importantly, unadjusted QPEs were increas-
ingly overestimated as CML path length decreased since shorter CMLs are
relatively more sensitive to errors in A, estimation (2.4.1) due to, e.g. inaccu-
rate WAA correction (Eq. 2.2). In our pragmatic rainfall retrieval approach,
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6.4. Discussion

WAA A,,., was considered constant and its value was taken from literature
(Overeem et al., [2011). It can be expected that calibrating the WAA model
using independent rainfall data, or stormwater runoff measurements which
reflect transformed rainfall aggregated for a whole catchment well (Pastorek
et al.l 2019a), would result in less biased QPEs, on average. However, the
large inter-event variability indicates that the simple wet antenna correction
with a constant threshold is not satisfactory, and more precise WAA models
(e.g. with WAA A,,, proportional to rainfall intensity) are necessary to obtain
unbiased CML QPEs.

Adjusting CML QPEs to measurements from traditional rain gauges (Fencl
et al.l 2017) successfully minimizes the bias. However, using adjusted CML
QPEs does not outperform predictions based on rain gauge data. Moreover,
the adjustment considerably worsens the ability of CML QPEs to reproduce
runoff dynamics during heavy rainfalls, except for QPEs from long individual
CMLs with end nodes located further from the catchment than rain gauges.
This is because the adjustment method strongly depends on the reliability of
rain gauge observations which are often too far from each other to accurately
observe small-scale rainfall variability. Thus, although the adjusting is con-
ceptually promising for eliminating the bias, it requires further development.
One important advantage of the adjustment suggested by [Fencl et al.| (2017
is that, thanks to the high temporal resolution of CML QPEs, it performs
well also for rain gauge data with hourly resolution. Thus, this method can
be recommended for disaggregating rainfall data in catchments where rain
gauge data are available only in temporal resolutions suboptimal for urban
drainage modelling.

We show that runoffs simulated using QPEs from (relatively short) CMLs
located within or close to the catchment boundaries are, in spite of being
biased, very well correlated with the observed runoffs. Moreover, in this
respect they outperform runoffs simulated using the relatively unbiased QPEs
from long CMLs, primarily during heavy rainfalls. This is probably because
heavy rainfalls are often characterized by high spatial variability, and the
paths of the long CMLs extend far beyond the catchment. Thus, these
long CMLs cannot accurately capture areal rainfall over the catchment. For
larger catchments, even relatively long CMLs might not extend out of the
catchment, and thus they could be better suited to provide representative
rainfall information. However, larger catchments might also require spatially
distributed rainfall information, and assuming uniform rainfall, as in our
study, might provide unsatisfying results. On the other hand, our results show
that averaging unadjusted QPEs from all available CMLs best reproduces
runoff dynamics, probably because it best captures the temporal variability
of areal rainfall over the catchment, even though the averaging concerns a
substantially larger area. This is in accordance with the findings of |Ochoa
Rodriguez et al.| (2015)), who identified temporal variability of rainfall as
the most sensitive attribute for urban rainfall-runoff simulations. Therefore,
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6. The effect of link characteristics and their position on runoff simulations

it can be expected that CML QPEs will be suitable for modelling runoff
dynamics also in other urban catchments where CML coverage corresponds
to the spatial extent of typical rainfalls.

. 6.5 Conclusions

This study has evaluated the suitability of quantitative precipitation estimates
(QPEs) from commercial microwave links (CMLs) for urban rainfall-runoff
modelling. Using a unique data set from three summer seasons collected in
a small (1.3 km?) urban catchment in Prague-Lettiany, runoff observed in
the catchment was compared to runoff predicted using rainfall data from
different observational layouts, in particular QPEs derived from various
individual CMLs. We used a hydrodynamic model which accurately describes
the rainfall-runoff process, although it underestimates flows for extreme
events. The results have demonstrated that CML QPEs can be conveniently
used for rainfall-runoff modeling. However, the CML data pre-processing,
characteristics of the individual CMLs, such as frequency or path length,
and their position influence the quality of the retrieved QPEs. The main
conclusions are as follows:

® The sensitivity of CMLs to rainfall, which is given by their frequency,
polarization, and length, is the most influential factor affecting the
accuracy of CML QPEs, especially their bias, i.e. systematic under- or
overestimation. This bias is greatest for the shortest CMLs, however,
it is also variable among events. Thus, the ability of such biased CML
QPEs to provide reliable flow estimates is predominantly low.

® As expected, the position of CMLs within the small urban catchment
affects their ability to capture rainfall-runoff dynamics, such as the onset
of a runoff event, timing of the hydrograph rising limb, runoff peak, and
recession limb. The effect of CML position is especially pronounced
for heavy rainfalls, when shorter CMLs with paths within or close to
the catchment boundaries reproduce runoff dynamics better than longer
CMLs extending far beyond the catchment.

® The best performance in terms of capturing runoff dynamics is obtained
when rainfall observations of all CMLs are averaged. Notably promising
results are obtained during heavy rainfall events, probably because areal
rainfall from all the CMLs captures the temporal rainfall variability
especially well, and runoff dynamics in small urban catchments are
often more sensitive to temporal than spatial variations. Therefore,
averaging of CML QPEs can be especially recommended for applications
where the temporal structure of runoff and timing of peak flows is
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more important than volume-related statistics, e.g. alarms during sewer
construction/maintenance works.

® Adjusting the CML QPEs to data from rain gauges substantially re-
duces their bias while minimizing the difference among CMLs of various
characteristics. Unfortunately, the adjustment also considerably worsens
the ability of CML QPEs to reproduce runoff dynamics during heavy
rainfalls, except for QPEs from long individual CMLs. On the other
hand, the adjustment can be recommended for disaggregating rainfall
data in catchments where traditional rainfall data are available only in
temporal resolutions suboptimal for urban drainage modelling.

#® QOur experimental results demonstrate that CMLs cannot replace observa-
tion networks designed for long-term continuous hydrological monitoring.
Many events had to be excluded from the analysis because of the limited
CML data availability due to removal or replacement of CML units,
communication outages, or hardware malfunctions, to name just a few
challenges. Nevertheless, CMLs can very well complement the tradi-
tional networks and provide valuable data for operational hydrology. We
expect that this is especially the case for sparsely gauged or completely
ungauged regions.

Reducing systematic errors in CML QPEs remains a major challenge com-
promising their applications in water management tasks where runoff volume
is essential, e.g. water balance modelling or designing retention capacity of
drainage systems. CML QPE preprocessing methods tailored to different
water management tasks, catchments, and CML networks could solve this
problem. Therefore, it is necessary to better understand the interactions be-
tween the CML QPE observation errors and catchment runoff characteristics.
Although modelling studies with virtual drop size distribution fields (Fencl
et al., 2013) can be useful to investigate topological issues, more monitor-
ing campaigns and experimental case studies are necessary to understand
error-generating processes related to CML hardware, such as antenna wetting.
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Chapter 7

Practical Approaches to Wet-Antenna
Correction

This study analyzes how, when deriving quantitative precipitation esti-
mates (QPEs) from commercial microwave links (CMLs), wet antenna at-
tenuation (WAA) can be corrected without dedicated rainfall monitoring.
For a set of 16 CMLs, the performance of six empirical WAA models is
studied, both when calibrated to rainfall observations from a permanent
municipal rain gauge network and when using model parameters from the
literature. The transferability of WAA model parameters among CMLs
of various characteristics is also addressed. The results show that high-
quality quantitative precipitation estimates with a bias below 5% and RMSE
of 1 mm/h in the median could be retrieved, even from sub-kilometer
CMLs where WAA is relatively large compared to raindrop attenuation.
Models in which WAA is proportional to rainfall intensity provide bet-
ter WAA estimates than constant and time-dependent models. It is also
shown that the parameters of models deriving WAA explicitly from rain-
fall intensity are independent of CML frequency and path length and, thus,
transferable to other locations with CMLs of similar antenna properties.

The bulk of this chapter was originally published in:

Pastorek, J., Fencl, M., Rieckermann, J., & Bares, V. (2022). Precipitation
Estimates from Commercial Microwave Links: Practical Approaches to Wet-
Antenna Correction. IEEE Transactions on Geoscience and Remote Sensing 60, 1-9.
https://doi.org/10.1109/TGRS.2021.3110004.

59



7. Practical Approaches to Wet-Antenna Correction

. 7.1 Introduction

The complexity of the antenna (radome) wetting process, namely its depen-
dence on antenna hardware properties (e.g. coating; [van Leth et al.l 2018)
and on atmospheric conditions other than precipitation, is a major challenge
to reliable estimation of wet antenna attnuation (WAA). It also negatively
affects the transferability of WAA models among different commercial mi-
crowave links (CMLs) and, thus, optimal WAA models should ideally be
determined for each individual CML. This is especially true for models whose
parameters depend on CML path length (e.g. Kharadly & Ross, 2001). How-
ever, optimal WA A model identification (e.g. for calibration purposes) on the
level of individual CMLs is challenging for real-world application with net-
works consisting of a high number of CMLs. As noted by [Ostrometzky et al|
, maintenance of dedicated equipment for the retrieval of the needed
reference rainfall observations is impractical for such networks. Consequently,
application-focused studies with city or regional-scale CML networks have
often not applied any WAA correction at all (Chwala et al., 2012} |Smiatek|
et al 2017) or have used only a simple constant offset model (Pastorek et al.l
2019b; Overeem et al., 2011; Roversi et al., |2020; Fencl et al., [2020)). Although
the latter approach may be a reasonable choice when observations of the
difference between the transmitted and received signal levels TRSL [dB] are
available only as 15-min maxima and minima (Chwala & Kunstmann) 2019)),
it can introduce considerable bias in resulting CML quantitative precipitation
estimates (QPEs) (Pastorek et al. 2019b; Fencl et al., 2019). To avoid such
errors, (Graf et al. (2020)) recently tested a time-dependent (Schleiss et al.,
and a semi-empirical WAA model assuming a homogeneous water film
on antenna radomes which depends on rain rate through a power law (Leijnse
. However, in the case of both WAA models, only a single set of
fixed parameters for all of around 4000 CMLs from their extensive dataset was
used and this did not address the suitability of the WA A model parameters
for individual CMLs.

This study analyzes, for the first time, six empirical WA A models, including
a newly proposed one, based on considerably different assumptions and tests
their performance in detail. In contrast to previous studies, often limited
by a low number of CMLs investigated (Schleiss et al., 2013} Leijnse et al.,
2008; van Leth et all 2018)), short time series of a few months (Leijnse
et al., 2008; Overeem et al., 2011; Roversi et al., 2020) or 15-min CML
data sampling intervals (Overeem et all, 2011} Rios Gaona et al. [2018), a
rich dataset of more than two years of data retrieved from 16 CMLs with
a sub-minute sampling rate is used. Motivated by the vision of reducing
the costs of future studies with high numbers of CMLs, we also address the
previously recognized need (Ostrometzky et al., [2018; |Graf et al., [2020) to
minimize the amount of auxiliary data necessary for WA A estimation without
compromising the quality of retrieved QPEs and, thus, we introduce three
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7.2. Methods

conceptual innovations not previously presented in relevant literature. Firstly,
we show how the investigated empirical WAA models can be calibrated while
notably minimizing the requirements on the reference rainfall data necessary,
i.e. using only a rain gauge network with a spatial resolution of one gauge
per 2025 km? and a temporal resolution of 15 minutes. Secondly, we
analyze the variability in WAA model parameters optimized for different
CMLs, thus indirectly assessing parameter uncertainties, and investigate
which of the studied models can provide reliable WAA estimates without
being calibrated for each individual CML. This includes a reformulation of a
previously reported WAA model (Valtr et al., 2019). Thirdly, we suggest a
procedure enabling the application of rainfall-dependent WA A models without
any auxiliary rainfall observations, i.e. using only CML data.

. 7.2 Methods

Attenuation data from 16 CMLs collected over a 3-year period (see section 4.1))
are processed (section |7.2.1) and corrected for WAA using six empirical WAA
models (sections [7.2.2/and |7.2.3). The resulting CML QPEs are evaluated
against the rain gauge data from the municipal network (section 7.2.4).

B 7.2.1 From signal levels to QPEs

CML data processing steps before baseline separation, including a quality
check and aggregation to a 1-min resolution, are done in the same way as
described in section 6.2.2. Baseline attenuation B [dB] is assumed to equal
TRSL [dB] (Eq. 2.2)) during dry periods. During wet periods, B is estimated
by linearly interpolating from the dry periods. Data available from both
CMLs and rain gauges for the wet period identification are used. First, we
identify wet timesteps for the CML data (mean TRSL of all CMLs) using a
climatological threshold (Schleiss & Bernel 2010) defined as the 90th percentile
of the rolling standard deviation of a 60-minute window. For the rain gauge
data, timesteps are identified as wet when gauge tipping is observed at one or
more gauges. Subsequently, wet periods are defined for both sensor types by
setting the start of a wet period to one minute before the first observed wet
timestep and the end to 60 minutes after the last one to ensure that baseline
interpolation is not affected by wet antennas. Afterwards, the wet periods
defined by the two sensor types are merged by taking the earliest starts and
the latest ends. These are then used for the baseline separation using the
linear baseline model.

From the above defined wet periods, only hydrologically relevant rainfall
events (total rainfall depth H > 2 mm) are selected for further processing.
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After eliminating events with substantial data gaps, 53 events (360 hours)
are available.

After the baseline separation, WAA A,,, [dB] is estimated (details in the
next section) and subtracted to obtain raindrop attenuation A, [dB] (Eq.
2.2). Then, A, is divided by the CML path length and thus transformed
into specific raindrop attenuation v [dB/km] from which rainfall intensity
R [mm/h] is calculated using Eq. 2.1, with parameters a and § according
to ITU Radiocommunication Sector| (2005)). These parameter values are in
very good agreement with values derived directly from drop size distribution
observations (Chwala & Kunstmann, 2019; Valtr et al.l 2019), however, they
may not be optimal for other rain type regions (Rios Gaona et al., [2018)).

B 7.2.2 Empirical WAA models

We evaluate a scenario without correcting for WAA (Zero) and six empirical
models for WAA correction (overview in Table [7.1). For all models, it is
assumed that WAA is estimated for two antennas, i.e. at both CML ends. The
simplest approach is to model WAA A, as a constant offset (O; |Overeem
et all 2011). In a more complex method, we model A, as time-dependent,
exponentially increasing towards an upper limit during wet periods, and
decreasing exponentially afterwards (S; |Schleiss et al.l [2013).

Next, we evaluate models where A,, depends on R. |Valtr et al.| (2019)
proposed a model (V) where the dependence on R is explicit through a power
law

Apa = 2K'R (7.1)

where &’ and o' are the power law parameters. We also analyze a model (KR)
suggested by |[Kharadly & Ross|(2001) deriving A,,, from observed attenuation
after baseline separation A [dB] (see Eq. 2.2), i.e. depending on R implicitly.
However, as A is dependent on CML path length, optimal parameters of
the KR model would differ for two CMLs with the same hardware but with
different path lengths. To eliminate this feature, we propose a model (KR-alt)
in which A,, is bounded by an upper limit, as in |[Kharadly & Ross| (2001]),
but derived from R explicitly through a power law

Apa = C(1 — exp(—dR?)) (7.2)

where C' [dB] represents the maximal A, possible, and d and z are power
law parameters. Nevertheless, as optimal C' and d values are not independent
and can compensate for each other (similar to the KR model, see Fig. |7.4]),
we reduce the number of parameters to two by setting d = 0.1.

WAA models with parameters independent of CML path length can also be
formulated when A, is derived explicitly from -, not only R. However, it is
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unclear which of the two alternatives would provide WAA model parameters
independent of CML frequency. Unlike 7, R is independent of CML frequency.
The results from Leijnse et al. (2008) suggest that A, is also considerably
less sensitive to CML frequency than A, or . Therefore, parameters of the
models deriving A,,, from R explicitly are probably more transferrable among
frequencies. To confirm this hypothesis, we reformulate the model of [Valtr
et al. (2019) (V-alt), and replace R with v so that:

Awa = 2p7q (73)
where p and ¢ are the power law parameters.

As neither R nor - can be observed directly using CMLs, the V, V-alt, and
KR-alt model equations must be rearranged to include only one unknown
variable, A, which can thus be quantified from A (details in the next
section). The rearranged equations are then solved numerically.

WAA model Parameter values from the literature Abbrev.

Zero WAA - ,
(no WAA correction) €ro

Constant Ape = 1.585 dB

non-zero offset the mean of the optimal values (@)
identified in |Overeem et al.| (2011)
Dynamic (time-dependent) W =23dB 7 =15 min g
(Schleiss et al., [2013)) from |Schleiss et al.| (2013])
Depending on A explicitely _ _
with an upper limit G=06s = 0ks KR

(Kharadly & Ross, 2001) from Kharadly & Ross| (2001)); for 27 GHz

Depending on R explicitely

. . = KR-alt
with an upper limit
Power-law relation to R k' =0.68 o =0.34 v
(Valtr et al., 2019)) from Valtr et al.| (2019)
Power-law relation to ~y 5 Vealt

(reformulated V)

Table 7.1: Overview of the investigated WA A models and their parameters.

B 7.2.3 Practical details on WWA model equations

Herein we show how WAA models dependent on rainfall intensity can be
used during the CML data processing routine without the need for auxiliary
rainfall observations. In particular, we formulate single-unknown equation
forms of the models which relate WAA A, [dB] explicitly to the rainfall
intensity R [mm/h] and to the specific raindrop attenuation « [dB/km]. Using
these rearranged equations, A, can be quantified directly from the observed
attenuation after baseline separation A [dB], e.g. by solving the equations
numerically. The relation between V and V-alt models is also provided.
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B V model

The original equation of V model (Eq. [7.1; [Valtr et al., [2019), where &’
and o are the WAA model’s power law parameters, requires independent
observation of the rainfall intensity R [mm/h| as its input. However, it holds
that:

R =y’ (7.4)

where a and (8 are the power law parameters with values depending on the
CML frequency and polarization. Moreover, if L [km] is the CML path length,
then

v =(A— Auwd)/L. (7.5)

Therefore, using Eq. |7.4 and |7.5| the original Eq. |7.1/ can be rearranged into
the following single-unknown form which can be used to quantify A,,, from A:

Awa = 2K (((A — Awa) /L)% (7.6)

Bl V-alt model

Starting from its original equation in which A, is explicitly dependent on
R (Eq. [7.1), V model can be reformulated using Eq. 7.4 in the following
manner:

Apa = 2K'RY = 2K (ar®)¥ = 2k a7, (7.7)

If (p = Ka® and ¢ = Ba’), then the V-alt model (Eq. [7.3) represents a
reformulation of the V model in which A, is explicitly dependent on ~.

Similarly as the original V model, also the V-alt model (Eq. [7.3) can be
rearranged using Eq. [7.5 into a single-unknown form which can be used to
quantify A, from A:

Apa = 2p((A — Aya) /L) (7.8)

B KR-alt model

The following original KR model (Kharadly & Ross, 2001)), where C' [dB] and
d are the model parameters, relates A,,, explicitly to A:

Awa = C(1 — exp(—dA)). (7.9)

However, as A is affected by CML path length, optimal parameters of the
KR model would differ for two CMLs with the same hardware but different
path lengths. To eliminate this feature, we have proposed a WAA model (Eq.
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7.2, KR-alt) in which A, is, similar to Eq. 7.9, bounded by an upper limit,
but derived from R explicitly through a power law.

Analogically to the V model (Eq. [7.1), also the KR-alt model (Eq. |7.2)) can
be rearranged, by applying Eq. 7.4 and (7.5, into a single-unknown form which
can be used to quantify A,,, from A:

Auwa = C(1 — exp(—d(a((A — Aua)/L)7)?)). (7.10)

B 7.2.4 Calibration and performance of WAA models

The WAA models studied are evaluated when using parameter values taken
from the literature, if available, and when calibrated to rainfall data from the
three municipal rain gauges. Moreover, for each WAA model, calibration is
done in three scenarios:

® separately for each of the 16 CMLs;
® separately for each frequency band; and

m for all CMLs at once.

In total, data from 53 rainfall events (360 hours) are available for WA A model
calibration and evaluation. From these, we randomly select 25 events (281
hours) for the calibration. Model parameters are optimized by comparing the
CML QPEs with the mean R of the three municipal rain gauges. Both data
sets are aggregated from a 1-min to a 15-min resolution to reduce observation
noise. The root mean square error (RMSE) is used as the objective function
and optimized with simulated annealing, an optimization method designed for
complicated non-linear functions with many local minima (Xiang et al., [2013)).
For calibration scenarios using multiple CMLs at once, the mean RMSE of
the CMLs is optimized.
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Once the optimal WAA model parameters are identified, they are used to
derive CML QPEs for the remaining 28 events (349 hours) not used for
calibration. The CML QPEs are aggregated from the 1-min to the 15-min
resolution and evaluated by direct comparison with the rain gauge data (the
mean of the three gauges in the 15-min resolution). The QPEs are evaluated
individually for each CML using a time series consisting of all 28 events, the
performance for individual events is not quantified. Performance metrics
employed are:

® the relative error of the rainfall depth dH [%)] reflecting the bias;
® the root mean square error RMSE [mm/h]; and

® the Spearman rank correlation coefficient SCC [-] which quantifies the
strength of a monotonic relationship between two variables and is inde-
pendent of both linear and non-linear bias.

. 7.3 Results

Firstly, the performance of the estimated CML QPEs summarized for all
CMLs is presented (7.3.1)). Secondly, the QPEs are investigated in closer
detail on the level of individual CMLs (7.3.2). Parameter values used for the
WAA model evaluation are also presented (7.3.3]).

B 7.3.1 Summary for all CMLs

The results summarized in Fig. 7.1 show that, when calibrated individually
for each CML, models in which A, is proportional to R (KR, V, KR-alt,
V-alt) can lead to CML QPEs with a bias lower than 5% in the median
(up to 10% for most CMLs) and with RMSE between 0.8 and 1.2 mm/h.
Models explicitly relating A, to R (V and KR-alt) attain similarly good
values (median bias less than 5%, standard deviation 18%) not only when
calibrated individually for each CML, but also when calibrated for groups of
CMLs with the same frequency and for all CMLs at the same time. Similarly,
RMSE obtained using these two models is almost the same, between 0.8 and
1.2 mm/h, for all three calibration approaches. A very similar performance
is reached using the V-alt model, which relates A,,, to v, when calibrating
separately for each of the three frequency bands. However, when calibrating
the V-alt model for all CMLs at once, the standard deviation of dH increases
to 25% and RMSE values reach up to 1.4 mm/h for some CMLs. Calibrating
models O and S leads to markedly underestimated dH values for most CMLs
(around 40% in median) for all three calibration approaches. This also affects
the respective RMSE values which are around 1.4 mm/h in the median for
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Figure 7.1: Boxplots showing variation in the performance of the QPEs from
the 16 individual CMLs quantified by the performance metrics dH (top), RMSE
(middle), and SCC (bottom). CML QPEs have been derived without WAA
correction (Zero) and using the six WAA models. Sub-boxplots show the effect
of WAA model calibration (lit. — parameter values from literature, perAll —
calibrated for all CMLs at once, perFreq — calibrated separately for CMLs
operating at the three various frequency bands, perLink — calibrated separately
for each CML). Note the different ranges of the y-axes for the Zero model.

all calibration approaches. Interestingly, using the S model with parameter
values from the literature leads to a lower bias for most CMLs (dH -20% in
the median). However, the RVMSE is virtually the same as for the calibrated
model, with only a slightly larger variance. For other WAA models, the
literature values perform, in general, worse than those optimized during the
calibration, both in terms of dd and RMSE. As expected, without the WAA
correction, CML QPEs are considerably overestimated (median dH ca. 200%,
RMSE ca. 3 mm/h).

The correlation in terms of SCC' (Fig. |7.1] bottom) reaches very similar values
(about 0.85 in median) for all WAA models in which A, is proportional to
R (KR, V, KR-alt, V-alt), regardless of whether/how they are calibrated.
Only negligibly lower values are reached when not using any WAA model
at all (scenario Zero). For most CMLs, SCC values between 0.8 and 0.85
are associated with the O and S models with parameter values from the
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literature. Calibrating these two models has led not only to a considerable
underestimation of rainfall, but also to relatively low SCC values (medians

between 0.65 and 0.76).
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Figure 7.2: Scatter plots comparing rain gauge data (RGs) with CML QPEs
for the O model with parameters from the literature. Note that the axes are in
logarithmic scales. The presented 15-minute data from the 28 rainfall events
used for the evaluation represent 349 hours of observations. In 835 out of the
1,401 time steps, rain gauge data contain non-zero records. Most points with RG
rainfall intensity below 0.3 mm/h are out of the plotting range, as the respective
CML QPEs are below 0.05 mm/h.

B 7.3.2 Individual CMLs

In addition, we analyze the estimated QPEs on the level of individual CMLs
for two WAA modelling scenarios. First, CML QPEs derived using the
commonly used O model with parameter values from literature are compared
with the rain gauge data (Fig. . Next, representing the better performing
WAA models from above, the same is done for the V model with parameters
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optimized for all CMLs at once (Fig. [7.3). The V model leads to a distinct
improvement over the O model. The V model reduces the bias for low and
high R and thus removes the dependence of errors in CML QPEs on R.
Therefore, the performance metrics dH and RMSE are improved for most
CMLs, however, the change of SCC' is practically negligible. The reduction of
errors is most significant for the shortest CMLs, as the relative contribution
of Ayq to A decreases with the increasing path length.
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Figure 7.3: Scatter plots comparing rain gauge data (RGs) with CML QPEs
for the V model with the same parameters used for all the CMLs (obtained by
optimizing for all CMLs at once). Note that the axes are in logarithmic scales.
The presented 15-minute data from the 28 rainfall events used for the evaluation
represent 349 hours of observations. In 835 out of the 1,401 time steps, rain
gauge data contain non-zero records.

B 7.3.3 WAA model parameters

We also present parameter values used for the WAA model evaluation, both
optimized during calibration and taken from the literature (Fig. . Op-
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timized parameter values of the V and KR-alt models are similarly located
in their parameter spaces. Moreover, optimal parameter values for the three
various frequency bands are, for these two models, located very close to the
optimal values obtained when calibrating for all CMLs at once. This stands in
contrast to the V-alt method for which a dependence between the frequency
band and the optimal parameter values can be seen. For the KR model, the
clear dependence of the two model parameters is most striking. For the S
model, optimal values of the W parameter are similar to the parameter values
of the O model. However, there is no clear relation to the CML frequency for
either of these two WAA models. Parameter values taken from the literature
are, in all four cases, located relatively close to the optimized parameters.
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Figure 7.4: WAA model parameter values used for WAA model evaluation,
both optimized during calibration and taken from literature (if available). The
numbers indicate CML IDs and the colors indicate frequency.
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. 7.4 Discussion

The best results, in terms of dH and RMSE, are, in general, achieved for
the models in which WAA A,,, is proportional to rainfall intensity R (KR,
V, KR-alt, V-alt). For these models, QPEs of the same high quality can be
obtained when calibrating for each CML separately. However, the V model
and the newly proposed KR-alt model, which both relate A, to R explicitly,
perform very well, even when using the same parameter set for all CMLs. As
the KR model relates A,,, to A, which is dependent on CML path length, it
performs markedly worse when using the same parameter set for more CMLs.
The V-alt model performs very well when using the same parameters for
CMLs operating at one frequency band and moderately worse when using the
same parameter set for all frequency bands. This is in agreement with the
calibrated model parameter values (Fig. |7.4) and supports the hypothesis
that the parameters of models deriving A, from R explicitly (V, KR-alt) are
more transferrable among CMLs of various frequencies than the parameters
of models deriving A, explicitly from (V-alt).

The results of calibrating the O and S models resemble each other in terms of
estimated rainfalls (Fig. |7.1), optimal model parameters (Fig. [7.4), and WAA
levels (Fig. [7.5). The rainfall underestimation (i.e. WAA overestimation)
associated with the O and S models is likely caused by different optimal
parameter values for RMSFE, used as the calibration objective function, and
dH due to the systematic errors in rainfall estimates when modelling WA A
Aya as completely or almost constant.
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Figure 7.5: WAA levels obtained using the O and S WA A models when calibrated
separately for each CML in relation to the respective CML QPEs. The vertical
line in the left panel at R = 0 mm/h is caused by the nature of the O model. If
observed attenuation after baseline separation A is lower than a given parameter
value of the O model, WAA is considered equal to A, i.e. there is no rainfall
observed.

In total, our results show that unbiased CML QPEs could be retrieved without
the need for extensive additional rainfall monitoring when empirical models for
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WAA estimation are calibrated to rainfall data from the permanent municipal
rain gauge network. Models in which WAA is dependent on rainfall intensity
provide the best WAA estimates. Moreover, models explicitly relating WAA
to rainfall intensity can provide optimal results even when using the same set
of parameter values for CMLs of different characteristics.

The presented results confirm the importance of appropriately correcting for
WAA when deriving QPEs from CMLs which is in agreement with previous
research (Chwala & Kunstmann) 2019). In particular, the results imply that
modelling WAA as constant (O model) is not satisfying when TRSL data in 1-
min resolution are available. This is in accordance with Pastorek et al.| (2019b));
Fencl et al. (2019) and contradicting Ostrometzky et al.| (2018]), however, it
should be noted that the latter study focused on WA A estimation for purposes
of CML network design and investigated E-band CMLs. Nonetheless, our
findings do not dispute the statement that this approach may be a reasonable
choice if only 15-min TRSL maxima and minima are available (Chwala &
Kunstmann), 2019)).

It is shown that the most accurate rainfall estimates are associated with
models relating WAA to rainfall intensity, which is in agreement with the
WAA estimation approaches presented in |Valtr et al.| (2019); Kharadly & Ross
(2001)); Leijnse et al.| (2008)); Fencl et al.| (2019)). On the other hand, having
provided a comparison of the performance of different WA A models, [Schleiss
et al.| (2013) came to different conclusions. Although their results correspond
to ours in terms of RMSE, not only for the scenario without WAA correction
(Zero; 3.15 mm/h), but also for the WAA models O (1.34 mm/h) and KR
(0.91 mm/h), they observed the best performance for the time-dependent
S model (0.72 mm/h). It should be noted that they used data from only a
single CML and that the parameter values differed from those used in our
study because the models were calibrated to local rainfall data from five
disdrometers along the CML path. Since, in our case, the S model has only
performed (and generally behaved) very similarly as the constant O model,
it seems that, in accordance with ivan Leth et al.| (2018)), wetting dynamics
play a much smaller role for the antennas used in this study than for those
analyzed by |Schleiss et al.| (2013)). Recently, similar behavior was observed by
Graf et al|(2020) who found that a semi-empirical WAA model assuming a
homogeneous water film on antenna radomes dependent on rain rate through
a power law (Leijnse et al., 2008) led to more precise CML QPEs than the S
model. As their analysis was based on a large country-wide dataset of around
4000 CMLs, it can be concluded that CML antennas for which WAA is not
affected by the wetting dynamics are rather usual.

However, the relevance of our findings for other CML networks should be
subject to further research. Firstly, it is likely that the capacity of rainfall
data from rain gauge networks for calibrating WAA models will depend
on gauge network density as the correlation among the gauges decreases
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with increasing distance. Aggregating the data to coarser resolutions for the
calibration might improve the results as it would improve the correlation
(Villarini et al., [2008). Nevertheless, if the sensors are too far from each other,
it might be more appropriate to use long-term (e.g. monthly) precipitation
depths.

Secondly, the reference areal rainfall used to evaluate the performance of
the WAA models has been derived from the same three rain gauges that
had been previously used to calibrate the WAA models. However, the rain
gauge network density of one gauge per 2025 km? might not be sufficient
to reliably represent areal rainfall for events with high spatial variability, e.g.
storms with small convective cells. Therefore, out of the 28 individual rainfall
events used for the WAA model evaluation, we have identified 11 events with
the highest variability among the rain gauges and repeated our analysis using
only the data from the remaining 17 events. Differences between the results
for the 17 events and for all 28 events together are subtle. The estimated
rainfall depths are slightly higher when evaluating all 28 events together than
when using the 17 less variable events only. However, differences in terms of
RMSE and SCC are minimal, and mutual relations of the individual WAA
models and calibration scenarios are not affected.

Due to the use of only three rain gauges, we are also not able to precisely
estimate rainfall starts and ends specifically for each CML. Therefore, the
process of wet period identification has been designed to avoid classifying wet
timesteps as dry, rather than vice versa. This approach makes wet periods
longer, however, as the baseline is relatively stable (Schleiss et al., [2013), the
order of errors in the estimated baseline levels is well below 1 dB.

Next, all CMLs used in this study are from the same product family of the
same manufacturer (Ericsson, Mini-Link) and have aged similarly due to
exposure to similar climatic conditions. However, different behavior might
be observed for CML antenna hardware of different producers, exposed to
different climates for different time periods, or for other specific conditions
(e.g. non-zero antenna elevation angles), and thus, the results of this study
might not be directly applicable in such circumstances.

Lastly, it should be noted that the V model was originally derived (Valtr,

et al. 12019) by using one of our 16 CMLs and data from one of the three
summer seasons that we have investigated herein.

. 7.5 Conclusions

We have shown in this study that virtually unbiased QPEs could be retrieved
from CMLs without the need for dedicated rainfall monitoring campaigns.
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CML QPEs with a bias lower than 5% and RMSE of 1 mm/h in the median
have been obtained when the empirical models for WA A estimation have been
calibrated to rainfall data from the permanent municipal rain gauge network
with a spatial resolution of one gauge per 20 —25 km?. It has been shown that
such high-quality QPEs can even be derived from short, sub-kilometer CMLs
where WAA is relatively large compared to raindrop attenuation. Models
relating WAA to rainfall intensity, implicitly or explicitly, have led to the
best results. For the latter, parameter sets have been found to be suitable for
CMLs of various path lengths operating at various frequency bands, which
could thus be transferred to other locations with CMLs of similar antenna
hardware characteristics. Moreover, it has been demonstrated how these WAA
models can be successfully applied without any auxiliary rainfall observations,
i.e. using CML data only.

This study has confirmed both the potential of CMLs as a source of high-
quality rainfall data and the importance of appropriate WAA correction when
deriving the QPEs. The presented advances in minimizing the requirements
on auxiliary data necessary, both during the calibration of WAA models and
during their implementation in the CML data processing routine, represent
a legitimate step towards the retrieval of reliable QPEs from large CML
networks in conditions where rainfall data are scarce. However, since the
potential usefulness of CML QPEs increases with the decreasing availability
of other rainfall (or other reference) data, further studies are needed, ideally
with extensive datasets containing different CML hardware, to advance our
capacity to correct for WAA in the data-scarce conditions. This would
also be greatly beneficial for the application of CML QPEs in quantitative
hydrological tasks such as urban rainfall-runoff predictions.
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Chapter 8

Assesing CML QPEs by quantifying
uncertainties in runoff predictions in a
small urban catchment: The final study

This study analyzes the value of state-of-the-art quantitative precipitation
estimates (QPEs) from commercial microwave links (CMLs) for rainfall-runoff
modelling in a small urban catchment. A model for wet-antenna attenuation
(WAA) is calibrated to data which could be commonly available to urban
hydrologists. CML QPEs retrieved using such WAA model are then used for
runoff predictions. The uncertainty of the predicted runoff is quantified using
a stochastic error model. Predictions with CML QPEs derived using the
WAA model calibrated to 60-min data from an 8-km distant rain gauge are
notably biased. However, such CML QPEs perform better than 1-min data
from rain gauges at 2-3 km distances. Calibrating the WAA model to 60-min
records from the 3 above gauges, or to observed discharges, leads to CML
QPEs predicting discharges almost as well as 1-min records from 3 gauges
at the catchment boundaries. These results imply that, for rainfall-runoff
modelling in small urban catchments covered by roughly 1 rain gauge per
20-25 km?, CML QPEs represent a notable improvement. For networks with
roughly 1 gauge per 0.5-1 km?, CML QPEs are a satisfying alternative.

The bulk of this chapter represents a paper manuscript which is about to be submitted to

be considered for publication in Journal of Hydrology.
B 8.1 Introduction

Quantitative precipitation estimates (QPEs) retrieved from commercial mi-
crowave links (CMLs) have been proven to contain valuable rainfall informa-
tion which could complement traditional data from rain gauges and weather
radars (Chwala & Kunstmann), |2019; Imhoff et all 2020; Rios Gaona et al.,
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2018; |Uijlenhoet et al.l [2018). Nevertheless, only a few studies, either from ru-
ral (Brauer et al., 2016; Cazzaniga et al., 2020; Smiatek et al.,2017) or urban
catchments (Disch et al., [2019; |[Pastorek et al., 2019b; [Stransky et al., 2018)),
have presented application of QPEs derived from real-world CML networks
for hydrological modelling. Therefore, in spite of their high potential and
recent advances in their retrieval, many questions regarding the suitability of
CML QPEs for practical hydrological tasks, such as rainfall-runoff modelling
in small urban catchments, remain unresolved.

It has been concluded that CML QPEs could be conveniently used for urban
hydrological modelling in combination with other rainfall data, and if available
in high temporal resolutions, they can lead to very well predicted temporal
dynamics of runoff from a small urban catchment (Disch et al., 2019; Stransky
et al., 2018)). It has also been shown that, when deriving CML QPEs without
using reference rainfall data, systematic errors common in CML QPEs, make
them unsuitable for applications where precipitation/runoff volume is of high
importance (Pastorek et al., 2019b, Chapter |6). This is unfortunate because
CML QPEs could be particularly useful in regions where long-term rainfall
monitoring networks are not available, or available only in resolutions which
do no not suffice for most purposes of urban hydrological modelling (Gosset,
et al., 2016)). Yet, it is not clear how to make the best use of CML QPEs
under such conditions.

It has been argued that ignoring the uncertainty, particularly related to input
data, compromises (not only) hydrological modelling (Beven 2006; |Kavetski
et all 2006), or similarly, that quantification of the uncertainty associated
with the models in urban stormwater modelling is a must (Dotto et al., 2012]).
However, extensive quantification of the uncertainties related to applying
CML QPEs in urban hydrology, and a comparison with traditional rainfall
data uncertainty, has not been presented yet in relevant literature.

We address the above mentioned knowledge gaps and assess the suitability
of CML QPEs for rainfall-runoff modelling in small urban catchments. We
also try to reduce the systematic errors in the CML QPEs with the help of
reference datasets which could be commonly available to urban hydrology
professionals. In particular, we aim to optimize the model that estimates
the wet-antenna attenuation (WAA) by calibrating it to 60-min data from
three rain gauges located 2-3 km outside of the catchment, to 60-min data
from a rain gauge located in an 8-km distance from the catchment, and,
in combination with a rainfall-runoff model, also to stormwater discharge
records. Moreover, the rainfall-runoff modelling performance associated with
such CML QPEs is then compared with the performance of traditional rain
gauge data while quantifying uncertainties in predicted discharges using a
stochastic error model.
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. 8.2 Methods

The study is performed using rainfall and runoff data collected during 46
rainfall-runoff events (670 hours) observed over a three-year period in an urban
catchment with the area of 1.3 km? (section 8.2.1). QPEs are derived from
CMLs using recent state-of-the-art approaches which could be implemented
with the data available (section [8.2.2). We seek to reduce the bias in CML
QPEs by calibrating the WAA estimation model to the three reference datasets
available, using data from 23 randomly selected events (section [8.2.3). The
remaining 23 events are used in the validation stage (section 8.2.5), in which
rainfall data retrieved using all observation layouts of interest (section [8.2.4)
are propagated through a rainfall-runoff model and the model outputs are
evaluated against observed discharges. The model performance is analyzed
using a robust prediction uncertainty quantification method.

B 8.2.1 Data used

Both rainfall and runoff observations collected in the investigated small
urban catchment (details in chapter 4) are employed in this study. Most
importantly, we use signal-level data collected from 16 CMLs located within
the catchment and its surroundings (Fig. 4.2). We also use rain gauge
data from a permanent monitoring network operated by the municipal sewer
authority with the density of 1 gauge per 20-25 km? (Fig. 4.2). These
gauges are referred to as “municipal”. Moreover, we observed rainfall using
additional rain gauges temporarily installed at three locations around the
catchment with the intention of increasing the rain gauge network density
in the area (Fig. |4.1). These gauges are referred to as “local”. All the rain
gauge observations were recorded at a 1-min resolution. For the sake of this
study, when the rain gauge data are used as the reference for WAA model
optimization, their resolution is aggregated to 60 min. In addition, we use
discharges measured at the stormwater drainage system outlet (Fig. 4.2)). The
temporal resolution of the discharge measurements is 2 min for wet periods
and 10 min for dry periods. More details regarding the data retrieval are
available in chapter 4.1.

From the three-year observation period, we select data from hydrologically
relevant rainfall events (rainfall depth H > 2 mm) and only use these in
the presented study. After eliminating events with substantial data gaps, 46
rainfall-runoff events (670 hours) are available, from which we randomly select
23 (340 hours) to be used for the WAA model calibration (section 8.2.3). The
remaining 23 events (330 hours; basic characteristics are summarized in Table
A.2/in Appendix) are then used in the validation stage (section8.2.5)).
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B 8.2.2 Deriving CML QPEs

CML data processing steps before baseline separation, including a quality
check and aggregation to a 1-min resolution, are done in the same way as
described in chapter 6.2.2. Baseline is estimated as a moving median with
a centered window having the length of 1 week applied on TRSL time series
averaged over 60-min intervals (Fencl et al., 2020). To estimate WAA, we use
the model proposed by (Valtr et al., 2019} see Eq. [7.1). Values of the model
parameters k' and o/ are obtained by calibration to the individual reference
datasets available (details in section 8.2.3).

After subtracting baseline B [dB] and WAA A,, [dB] from the observed
TRSL (Eq. 2.2), raindrop-induced attenuation A, [dB] is used to compute
rainfall intensity R [mm/h] (Eq. [2.1) with parameters a and 3 according to
ITU Radiocommunication Sector| (2005)), similarly as in chapter |7.2.1.

B 8.2.3 WAA model calibration

WAA estimation models are calibrated using three various reference datasets.
We believe that an equivalent of at least one of them could be available
to most urban hydrology professionals. The reference datasets include the
following;:

® 60-min data from the three closest municipal rain gauges located 2-3 km
outside of the catchment (Fig. 4.2)). A single time series, constructed as
the mean of the instantaneous R [mm/h| values of the three gauges, is
used.

® 60-min data from a municipal rain gauge located at the Prague central
waste water treatment plant (WWTP) in an 8-km distance to the south-
west from the catchment (Fig. 4.2)).

B Stormwater discharges observed at the catchment’s drainage system
outlet (Fig. 4.2)) with a temporal resolution of 2 min for wet periods and
a 10 min for dry ones.

The WAA model is calibrated for each individual reference dataset available.
The optimization is performed separately for each single CML.

When using rain gauge data as the reference, the WAA model parameters
are optimized by comparing QPEs with the gauge data as described in |7.2.4}
however, with CML QPEs aggregated to 60-min resolution to match the
reference gauge data resolution. The root mean square error is used as the
objective function.
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When employing the discharge measurements, we repeatedly propagate the
CML QPEs in the original 1-min resolution through a deterministic rainfall-
runoff model (details in chapter |4.2) and optimize the WAA model parameters
by comparing the modelled and observed discharges. Now, the Nash—Sutcliffe
efficiency is the objective function. In the case of both calibration approaches,
the objective functions evaluate the QPEs as whole time series consisting of
all 23 events.

B 8.2.4 Rainfall observation layouts

In the validation stage, we evaluate several rainfall observation layouts using
data collected over 23 rainfall-runoff events not employed in the calibration
stage (basic characteristics are summarized in Table |A.2|in Appendix). We
asses three sets of CML QPEs derived using the calibrated WAA models,
corresponding to the three reference datasets used for WAA calibration
(section 8.2.3)). It has been concluded that only a few very precise CMLs
are expected to deliver the most accurate areal QPEs (Fencl et al., 2015)
and that the position of CMLs within a small urban catchment affects their
ability to capture rainfall-runoff dynamics (Pastorek et al.l 2019bl chapter
6). Therefore, for all three CML QPE observation layouts, we evaluate areal
QPEs computed as the mean of data from CMLs the paths of which best
cover the catchment of interest, i.e. CMLs #3, #7, #8, #12, and #15 (Fig.
4.2)). The potential of other CML subsets is discussed in chapter 8.4l

Next, to provide a comparison with capabilities of traditional rain gauge
observations, we also asses data from the rain gauges used for the WAA model
calibration. In particular, we evaluate 60-min records from the single gauge at
an 8-km distance and data from the three gauges at 2-3 km distances (Fig. |4.2)
in the original resolution of 1 min. The former layout represents a observations
potentially available in data-scarce conditions but clearly not sufficient for
urban hydrological modelling, whereas the latter corresponds to the best
data usually available in long-term in the context of the Czech Republic.
Additionally, we evaluate as well the performance of 1-min observations from
the three local rain gauges representing the best-case-scenario regarding the
availability of traditional rainfall data (Fig. 4.1).

Bl 8.2.5 Rainfall data validation by rainfall-runoff modelling

Rainfall data retrieved using the above observation layouts are propagated
through a rainfall-runoff model, and the model outputs are evaluated against
observed discharges. The deterministic rainfall-runoff model was built in the
EPA-SWMM software. It was calibrated in the past and has shown to perform
well, except for extreme rainfalls. A detailed description of the rainfall-runoff
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model and an analysis of its performance can be found in chapter 4.2, We
use the model to simulate discharges at the outlet of the local stormwater
drainage system. Except for data from the local rain gauges, rainfall input is
implemented in the model as areal rainfall, meaning that rainfall intensity
in a given time step has a constant value over all model subcatchments. For
the local rain gauges, the catchment is divided into three Thiessen polygons,
corresponding to the local gauges at three locations (Fig 4.1).

We decide to quantify uncertainties of the rainfall-runoff model predictions
and employ the Bayesian uncertainty analysis framework of [Kennedy &
O’Hagan| (2001) as formulated by Reichert & Schuwirth| (2012)) and first used
in an urban hydrology context by |Del Giudice et al.| (2013)), as introduced
in chapter [3.2l More recently, this approach has been successfully applied
by |Sikorska & Seibert| (2018) to analyze the value of different precipitation
data for flood prediction in an alpine catchment. The basic principle of the
method is to extend the deterministic rainfall-runoff model by a stochastic
error model which explicitly accounts for systematic model errors, i.e. bias.

When performing the uncertainty analysis, we follow the same steps as
described in chapter |5.2.3, although there are some differences. Most impor-
tantly, in this study, we do not calibrate the whole extended (deterministic +
stochastic) model. In contrast, we only optimize the stochastic error model
parameters, since the deterministic rainfall-runoff model has been calibrated
in the past and has shown to perform well (chapter |4.2)). The calibration is
performed individually for each rainfall observation layout evaluated.

As the model is to be calibrated in a Bayesian framework, prior probability
distribution of the model parameters must be first defined (Table 8.1). The
part of the error model representing the random noise only has a single
parameter - the asymptotic stand. dev. of the random errors op [l/s].
The part of the stochastic model representing the bias (Eq. [5.1) has two
parameters that are calibrated — the asymptotic stand. dev. of the random
fluctuations around the equilibrium op [1/s] and the associated correlation
time 7 [h]. Compared to the prior distributions used in chapter 5.2.3, the
below defined priors aim to better reflect the random measurement errors
in our system. Similarly, they address the “severe identifiability problem”
between the deterministic model and the bias (Reichert & Schuwirth) 2012,
chapter 3.2) and specify that we are seeking for the smallest bias possible.

The calibration by means of Bayesian inference, as well as all the subsequent
steps necessary for quantifying the uncertainties in runoff predictions, are
performed in the same manner as described in chapter|5.2.3. When calibrating
the stochastic error model, data from the same 23 events as when optimizing
the WAA estimation model are employed.
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parameter ‘ o o min. max.
oE [1/s] 2 2 001 100

op[l/s] | 0001 25 0 1000
7 [h] 05 025 001 3

Table 8.1: Marginal prior distribution of the error model parameters defined as
truncated normal distributions with four defining parameters - mean u, standard
deviation ¢, minimum, and maximum. Same as in chapter |5.2.3, o and op are
employed in the analysis in a transformed space (Box-Cox transformation with
parameters A\; = 0.45 and Ao = 1) with units [g(1/s)].

To validate the rainfall-runoff modelling performance associated with a given
rainfall observation layout, we use data from the 23 events not employed in
the calibration stage. We produce hydrographs of each event showing median
predictions and 90% confidence intervals. For the median prediction, as well
as for every single stochastic model prediction associated with a given event,
we quantify the normalized Nash—Sutcliffe efficiency NNSE [-] summarizing
the overall performance, the relative error of the total runoff volume dV' [-],
the Spearman rank correlation coefficient SCC' which quantifies the strength
of a monotonic relationship between two variables and is independent of both
linear and nonlinear bias, and d@Q a4, [-] which is the relative error of the sum
of discharges during eight minutes around the observed maximal discharge
(four minutes before and four after). The uncertainty of the performance
metrics is analyzed by visualizing the most favorable 90% intervals within their
distributions. Next, the discharge prediction reliability is quantified for each
event as the fraction of discharge observations falling into the 90% confidence
intervals. We also use a metric which takes into account both the prediction
accuracy and precision - normalized mean interval skill score NMISS [-]. It is
based on the interval score (Gneiting & Raftery, [2007; Breinholt et al., [2012)
which rewards the forecaster for narrow prediction intervals and, depending
on a predefined confidence level, penalizes the forecaster if the observation
misses the prediction interval (Eq. |3.6)). This concept has been extended into
mean interval skill score MISS [-] (Bourgin et al., 2015} [Bock et al., [2018)
which benchmarks the prediction confidence bounds by reference bounds
obtained, e.g., from long-term climatological data (Eq. 3.7). We apply this
approach and determine MISS for each event, however, we benchmark the
90% confidence bounds by the 90% range of the runoff observations for the
given event. To confine its values to the interval of [-1, 1], we transform MISS
into NMISS using the equation

NMISS = 1/(2 — MISS), (8.1)

The 23 events used in the validation stage are classified according to the
rainfall spatial variability (Table |A.2|in Appendix). This is determined by
estimating the variability among records from six rain gauges around the
catchment, three local and three nearest municipal gauges, aggregated to
60 min. In particular, for each event, we quantify the arithmetic mean of
the coefficients of variation determined for each 60-min time step. When
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analyzing the results, we pay special attention to events with high rainfall
spatial variability, as they are often associated with a low representativeness
of traditional rain gauge observations, and thus represent a promising niche
for usage of CML QPEs.

. 8.3 Results

We briefly present precipitation estimates retrieved using all six evaluated
rainfall observation layouts (chapter 8.3.1). Next, the effect of various natures
of rainfall data from the individual observation layouts on runoff predictions is
introduced using the deterministic rainfall-runoff model only (chapter 8.3.2).
Subsequently, results based on a quantification of the rainfall-runoff modelling
output uncertainty are presented. We pay special attention to events with
high rainfall spatial variability (chapter|8.3.3) and then present an exhaustive
summary for all events and layouts (chapter [8.3.4]).

B 8.3.1 Retrieved rainfall

First, we briefly compare precipitation estimates retrieved using all six evalu-
ated rainfall observation layouts (chapter 8.2.4)). Data from the 23 validation
events capturing the highest 30% of the records for the individual layouts
are plotted in Fig. 8.1l Unsurprisingly, 1-min rain gauge data from three
local gauges and from three municipal ones resemble each other much more
than 60-min data from the single gauge at the wastewater treatment plant
(WWTP). Due to the coarser temporal resolution, records from the WWTP
rain gauge contain, relative to the 1-min data from the other gauges, more
data points with low (< 2 mm/h) rainfall intensities and fewer with high ones
(> 5 mm/h). Reflecting these imperfections of the WWTP gauge data, CML
QPEs derived using a WAA model calibrated to these records also tend to
overestimate intensities below ca. 0.7 mm/h and underestimate higher ones,
even when compared to the other two CML QPE layouts, which are more
alike. Nevertheless, all three CML QPE layouts contain considerably more
records of very low (ca. < 0.3 mm/h) non-zero intensities than the 1-min
gauge data. This is probably due to the high uncertainties when sensing
low-intensity rainfall (see chapter 2.4.1), and to the CML QPE retrieval
implemented in this study which does not eliminate such low-intensity false
positives caused by, e.g., baseline oscillation. However, if not recorded in
continual bursts, such low-intensity observations are not likely to affect the
runoff above the level of baseflow oscillation at the discharge measuring profile.
Thus, as demonstrated in next chapters, CML QPEs retrieved using a WAA
model calibrated to records from the three closest municipal gauges, or to the
observed discharges, do not lead to practically any bias in runoff predictions.
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Figure 8.1: Rainfall retrieved over the 23 validation events (330 hours) ordered
by the rainfall intensity R [mm/h], only showing the highest 30%. Note that the
y-axis is in a log scale. All observation layouts evaluated are shown: the mean
of the 1-min records from the three local rain gauges (3 local), the mean of the
1-min records from the three muncipal gauges at 2-3 km distances (3 munic.;
the “steps” are due to rounding to 1 decimal place), 60-min records from the
single gauge at an 8-km distance (1 at WWTP), CML QPEs derived using the
WAA model calibrated to observed discharges (cal. to observed Q), to data from
the three municipal gagues (cal. to 3 mun. RGs), and to data from the single
gauge at an 8-km distance (cal. to RG WWTP).

B 8.3.2 Deterministic rainfall-runoff predictions

Discharges predicted using the deterministic rainfall-runoff model only are
summarized in Fig. 8.2 Although this is only a brief analysis, it clearly shows
some tendencies present throughout the results. From the four evaluated
rainfall observation layouts, records from the local rain gauges lead to the
best performance, in terms of both dV (0.009) reflecting the bias and SCC
(0.930) reflecting the temporal dynamics reproduction. Next, corresponding
to the above rainfall data analysis, CML QPEs derived using the WA A model
calibrated to 60-min records from the 8-km distant rain gauge at the WWTP
have resulted in the most biased runoff volumes (dV' 0.129). When using
1-min data from the three municipal rain gauges, or CML QPEs with the
WAA model calibrated to 60-min data from these gauges, the resulting bias
is notably lower (dV -0.052 and 0.040 respectively).

Compared to the records from the municipal rain gauges, both CML QPE
observation layouts seem to reduce both the amount of outliers associated
with rainfall events with high spatial variability and the general point spread
perpendicular to the line x = y. These is reflected also in the respective
values of the SCC performance metric, which are higher for both CML QPE
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observation layouts (0.893 and 0.908) than for the municipal rain gauges
(0.868), suggesting better reproduction of runoff temporal dynamics by the
CML QPEs. This is analyzed more closely in the next section.

7 3loc RGs | 1 3mun. RGs (1-min) )
1 dv:0.009 SCC:0.930 P | dVv:-0.052 SCC: 0.868 e

500 1000 2000

modelled Q [l/s]
50 100 200

1CML QPEs cal. to RG WWTP 2~ | |CML QPEs cal. to 3 mun. RGs
1dV:-0.129 SCC: 0.893 ; " 1dV:-0.040 SCC:0.908 3
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Figure 8.2: Scatterplots comparing observed and modelled (using the deter-
ministic rainfall-runoff model only) discharge @ [1/s] at the level of individual
data points (time steps) for four rainfall observation layouts: 1-min records from
the three local rain gauges (top left), 1-min records from the three municipal
gauges at distances of 2-3 km (top right), CML QPEs retrieved with WA A model
calibrated to the 60-min records from the gauge at the WWTP (bottom left), and
CML QPEs retrieved with WAA model calibrated to the 60-min records from
the three municipal gauges (bottom right). Each of the 23 events is displayed
in a different colour which represents the rainfall spatial variability during the
given event (blue — low variability, red — high variability). Note that the axes
are in logarithmic scales. Metrics dV and SCC' evaluate the perofrmance for
whole time series consisting of all 23 events.
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Bl 8.3.3 Stochastic predictions: Rainfalls with the highest
spatial variability

In this section, rainfall-runoff modelling performance when using data from
eight events with the highest rainfall spatial variability (see Table |A.2| in
Appendix) is analyzed. First, we compare the uncertainty of rainfall-runoff
modelling predictions only for two rainfall observation layouts: 1-min data
from the three nearest municipal rain gauges and QPEs derived from the best-
located CMLs with the WAA model calibrated to the 60-min data from the
same gauges. For a chosen rainfall-runoff event (Fig. |8.3)) with a high spatial
rainfall variability, the discharge peak is considerably better reproduced, in
terms of both amplitude and timing, when using the CML QPEs. In fact, all
modelling performance metrics we quantify reach, in general, better values, in
terms of their medians, for the CML QPEs. However, it should be noted that
the performance of median discharge predictions (in purple) in terms of SCC,
reflecting the temporal dynamics, is remarkable in both cases, only slightly
higher for the CML QPEs (0.91 vs. 0.87). On the other hand, when the
overall uncertainty bound prediction (INMISS) is considered and compared
with other events, it is above-median for the CML QPEs (0.74), but quite
inferior for the rain gauge data (0.53).

If comparing the same two rainfall observation layouts for another event with
a high spatial rainfall variability (Fig. 8.4), the aptitude of CML QPEs for
rainfall-runoff model predictions is further confirmed. In contrast to the pre-
vious event, the rain gauge records rather overestimate the discharges. Most
interestingly, they predict a small runoff peak at the event beginning, which
is not actually present in the observed discharges. The CML QPEs, correctly,
do not predict this peak and, although providing slightly biased predictions
(dV median 0.15, dQnq, median -0.07), they still lead to considerably better
overall performance than the rain gauge data (median NNSE 0.74 vs. 0.58).
Hydrographs obtained with these two rainfall observation layouts, for all
remaining 21 events evaluated, are presented in Appendix |A.2.

Summarizing data from all eight events with the highest rainfall spatial vari-
ability, the rainfall-runoff modeling performance of all CML QPE observation
layouts is compared with the performance of 1-min records from the three
local rain gauges in Fig. [8.5. The best-case-scenario rain gauge data outper-
form the CML QPEs in terms of SCC, both for medians (0.72 vs. 0.63-0.667)
and variability. Systematic errors in CML QPEs with the WAA model cali-
brated to records from the rain gauge at the WW'TP affect the relative error
of maximal discharges dQq2, Which is -0.292 for this observation layout.
However, for the two other CML QPE layouts, d@ 4z is, in absolute values,
lower (-0.127 for calibration to three municipal gauges; -0.103 for calibration
to observed discharges) than for the rain gauge records (0.167). The overall
uncertainty bound performance in terms of INMISS is also very similar for
these three layouts, reaching practically the same medians of roughly 0.7 and
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Figure 8.3: Hydrographs showing 90% prediction bounds for a chosen rainfall-
runoff event (2016-09-05, 12:31) obtained using 1-min data from the three
municipal rain gauges (top) and CML QPEs retrieved with the WAA model
calibrated using 60-min data from the same gauges (bottom). The violin-plots
show the metrics (dV,dQmaz, NNSE, SCC) which can be evaluated for each
individual model prediction within the uncertainty ensemble. The other two
metrics (reliability, NMISS) show the only value associated with the given event
(in black) whereas the background boxplots (in light gray) show the variability
among all 23 events used in the validation stage.
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Figure 8.4: Hydrographs showing 90% prediction bounds for a chosen rainfall-
runoff event (2015-07-25, 03:06) obtained using 1-min data from the three
municipal rain gauges (top) and CML QPEs retrieved with the WAA model
calibrated using 60-min data from the same gauges (bottom). The violin-plots
show the metrics (dV,dQmaz, NNSE, SCC) which can be evaluated for each
individual model prediction within the uncertainty ensemble. The other two
metrics (reliability, NMISS) show the only value associated with the given event
(in black) whereas the background boxplots (in light gray) show the variability
among all 23 events used in the validation stage.
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Figure 8.5: The output uncertainty of the rainfall-runoff modelling associated
with the 1-min records from the three local rain gauges (left) and with all three
CML QPE observation layouts, summarized for eight events with the highest
rainfall spatial variability. The violin-plots show the metrics (dQmaz, SCC)
which were evaluated for each individual model prediction within the uncertainty
ensemble. The purple lines reflect the median predictions for each event. Areas
in darker gray highlight the best 90% of the predictions. The boxplots feature
metrics (reliability, NMISS) which can be calculated only for the band prediction
as a whole and thus only visualize the variability among eight values associated
with the individual events.
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varying between 0.5 and 0.85. Moreover, the rain gauge observations lead to
a lower prediction reliability, only 0.95 in median, compared to the medians
of circa 0.97 for the CML QPEs.

B 8.3.4 Stochastic predictions: Summary of all events and all
observation layouts

In Fig. 8.0, we summarize the rainfall-runoff modelling performance for all
evaluated rainfall observation layouts using data from all 23 events. These
results confirm the above tendencies that CML QPEs outperform record from
the municipal rain gauges and are almost as good as the local rain gauges.

In terms of overall performance NMISS, the highest median (0.76) is observed
for the local rain gauges, followed by the CML QPE layouts (0.7-0.72), three
closest municipal gauges (0.61) and the rain gauge at the WWTP (0.52).
The mutual relations are very similar when quantifying the performance in
terms of NNSE. The highest median (0.82) is reached by the local gauges,
followed by the CML QPEs (0.76-0.79), three municipal gauges (0.68) and
the WWTP gauge (0.49). The variability of NNSE increases accordingly, just
like the variability of the relative error of the total discharged volume dV.
However, dV medians are lower in absolute values for CML QPEs with the
WAA model calibrated to records from the three municipal gauges (-0.011)
and to discharge observations (-0.007) than for the local rain gauges (0.046).
Systematic errors in CML QPEs calibrated to records from the rain gauge
at the WWTP affect also the associated dV values, whose median is -0.085.
The prediction reliability is above the declared level of 0.9 for most events of
all scenarios, except for using data from the WWTP rain gauge, for which
the median is 0.89. The associated variability in terms of the interquartile
range is lowest for the CML QPE observation layouts.

. 8.4 Discussion

The main finding of the study is that, when using CML QPEs to predict
rainfall runoff in the investigated small urban catchment, the rainfall-runoff
model performance in terms of the summarizing prediction bound skill score
NMISS has been better than when using 1-min records from the municipal
rain gauge network, and almost as good as when using three local rain gauges
installed around the catchment.

From the three CML QPEs observation layouts, the best discharge predic-
tions have been achieved when calibrating the WAA model to the observed
discharges and to the 60-min records from the three closest municipal rain
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Figure 8.6: The output uncertainty of the rainfall-runoff modelling associated
with all six rainfall observation layouts evaluated, summarized for all 23 events.
The violin-plots show the metrics (dV, NNSE) which were evaluated for each
individual model prediction within the uncertainty ensemble. The purple lines
reflect the median predictions for each event. Areas in darker gray highlight the
best 90% of the predictions. The boxplots feature metrics (reliability, NMISS)
which can be calculated only for the band prediction as a whole and thus only
visualize the variability among 23 values associated with the individual events.
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8.4. Discussion

gauges. In fact, there has been effectively no difference between the perfor-
mance of CML QPEs from these two observation layouts. Moreover, the
predicted discharges have been biased to a lesser extent than for the local
rain gauge data, especially for runoff maxima associated with rainfalls of
high spatial variability. In contrast, calibrating the WAA model to 60-min
records from the single rain gauge at an 8-km distance has resulted in CML
QPEs which underestimate the discharges by 8.5% in median, however, by
up to 30% for runoff maxima. Nonetheless, as expected, this performance
represents a notable improvement compared to using only the 60-min gauge
data themselves.

These results suggest that satisfying rainfall-runoff modelling performance
can be achieved with CML QPEs when the availability of data which could
be used to optimize the WA A model is considerably limited. This issue has
already been addressed in the study of (Pastorek et al., 2022, chapter 7))
showing that calibrating the WAA model to 15-min data from the three
closest rain gauges from the municipal network can lead to virtually unbiased
CML QPEs. However, in that study, the aptitude of CML QPEs to be
used in hydrological modelling was not tested. In the presented study, we
have used the CML QPEs to predict rainfall runoff, and have shown that
practically unbiased CML QPEs and high-quality discharge predictions can
be obtained also when calibrating the WA A model to 60-min records from the
municipal gauges, or even 1-min discharge observations. We have also shown
that CML QPEs with the WAA model calibrated to 60-min records from
a rain gauge at an 8-km distance can also lead to reasonable rainfall-runoff
modelling performance. The presented results thus confirm the high potential
of CML QPEs for rainfall-runoff modelling in small urban catchments where
traditional long-term rainfall observations are not available in resolutions
suitable for urban hydrology purposes.

The above results also imply that CML QPEs are promising not only for
catchments with considerable data scarcity, but also for urban areas already
covered by rain gauge networks of densities between 1 gauge per 20—25 km?
and 1 gauge per 0.5-1 km? (respectively corresponding to the municipal and
local gauges). This is in agreement with findings of (Stransky et al., 2018}
Disch et al., 2019)) who, however, evaluated CML QPEs continuously adjusted
to rain gauges. In contrast, we have shown that similar performance can
be obtained even when rain gauges are no longer available after the initial
WAA model calibration. Moreover, our findings are based on exploiting a
larger dataset, spanning over three years, and on employing a robust output
uncertainty quantification method. Thus, it seems that CML QPEs can
be considered more than a sufficient alternative to rain gauge observations
corresponding to the best rainfall data usually available in long-term in the
context of the Czech Republic.
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Several choices regarding the implemented methods should also be discussed.
Firstly, it was concluded that the position of CMLs within a small urban
catchment affects their ability to capture rainfall-runoff dynamics and, thus,
CMLs used to derive areal rainfall should be selected very carefully (Fencl
et al., |2015; |Pastorek et al., [2019b, chapter 6)). Therefore, from the 16 CMLs
available, we have only evaluated the mean QPEs of CMLs the paths of which
best cover the catchment of interest, i.e. CMLs #3, #7, #8, #12, and #15
(Fig. 4.2). However, to confirm the validity of this choice, we have analyzed
more than 450 additional CML subsets. Due to the high number of all
possible subsets of the 16 CMLs (65 535), we have not evaluated each possible
combination. Since the effect of adding/subtracting a single CML to a subset
is likely to decrease with an increasing number of CMLs in the subset, we
have focused primarily on subsets with low numbers of CMLs. In particular,
we have evaluated each CML individually (16), all subsets consisting of two
CMLs (120), and a randomly selected half of the subsets with three CMLs
(280). Next, after having evaluated all individual CMLs, we have sorted them
according to their performance in terms of NNSE, dV, and SCC. For each
of the metrics, we have created additional CML subsets consisting of two,
three, four, (...), fifteen best performing CMLs. Lastly, we have analyzed
mean QPEs from all CMLs available. None of the additional CML subsets
tested has led to clearly better rainfall-runoff modelling performance than the
subset of the “best-located” CMLs. However, several subsets have reached
very similar performance, including the mean QPEs from all CMLs. This is in
agreement with conclusions of Fencl et al.| (2015)) that combining QPEs from
all available CMLs can very well capture the rainfall and is recommended
when no prior information on CML data quality is available. Performance
of the subset consisting of all CMLs, in terms of dV and NNSE, as well
as the performance of QPEs from individual CMLs, is presented in Fig.
8.7. The best performing individual CMLs in terms of NNSFE are #8, #12,
and #15 which all make part of the “best-located” subset. When the dV
metric is concerned, in contrast to previous studies (Pastorek et al., 2019b),
chapter 6), no dependence on CML path length is observed, showing that the
implemented WA A model can reduce systematic errors also in QPEs from
CMLs otherwise prone to bias.

Next, we have quantified the rainfall-runoff modelling output uncertainty by
extend the deterministic rainfall-runoff model by a stochastic error model.
Prior to that, to ensure reliable uncertainty estimates, we have calibrated
stochastic error model parameters for each of the rainfall observation layouts
evaluated. However, unlike in chapter |5, the deterministic rainfall-runoff has
not been calibrated within this study. In fact, it has been used in the form as
resulted from its original calibration to measurements collected from the three
local rain gauges before the observation period used in the presented study
(see chapter |4.2)). It is thus possible that, if the model was calibrated to other
data, especially to the CML QPEs themselves, the modelling performance of
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individual rainfall observation layouts might change, probably for the worse
for the local rain gauges, and for the better for CML QPEs.

o
o
=4

v

—

50

dV [%]
0
I

-50

i i
i i
i
i
i
i
i
' i
o S
i |
[ N
[ | T R
T e R S H B
[ o ey
L R
i | | [
EI Ik
I
I. “
I
' |
o " ,.4‘ T
I ' |
N
e | t |
\.;-},“ [
41—} ooy ) .,
4
4 [ e
k- i-- -1 A
o
4 oL 4
o

—
' 1
'

—_
'

'
o

—=s"

—_—

'
e

-
|

I
i

==

|
[
I
- - -
R
o R
o
' '
' i
' re=
b
3o -
:
‘EE
| ;
e
[
IR
[
,A‘LAL
[
|

1.0 -100

0.8

06

E

NNSE []

0.4

i

- |
i

0.2

'
o

[H256Hz H326H; BE38GHz| |

0.0
|

)»4444444444

o

gl pic

I
i

2

i

=

-

#9

T T T T T T
v O N~ oo
g § H OH O H OB

loc. RGs

- - = o

#17

#18

#19 -

all CMLs

best-loc. CMLs

Figure 8.7: Deterministic rainfall-runoff modelling performance in terms of
dV (top) and NNSE (bottom) obtained using 1-min records from local rain
gauges (loc. RGs), QPEs from individual CMLs (#3, ..., #19), mean QPEs
from all CMLs available (all CMLs), and mean QPEs from those CMLs the
paths of which best cover the catchment of interest (best-loc. CMLs; see chapter
. All CML QPEs were retrieved using the WAA model calibrated to the
60-min data from the three municipal rain gauges. Each boxplot reflects the
variability among all 23 events used for the validation. The pink bars show the
performance calculated for the time series consisting of the 23 events as a whole.
The CMLs are ordered according to the increasing path length, their frequencies

are colour-coded.

Nonetheless, the relevance of our findings for other small urban catchments
should be subject to further research. Firstly, based on our previous study
where we had analyzed several WA A models (Pastorek et al., 2022, chapter|7),
we have tested only the WA A model originally derived by using one of our 16
CMLs and data from one of the three summer seasons investigated herein
(Valtr et all |2019)). Moreover, all CMLs used in this study are from the same
product family of the same manufacturer (Ericsson, Mini-Link) and have
aged similarly due to exposure to similar climatic conditions. Nevertheless,
CML networks in other areas can consist of antennas of different hardware
characteristics exposed to different climates for different time periods. Identi-
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fying optimal WA A models might be more complicated in such conditions,
especially if the reference data are available only in low resolutions.

. 8.5 Conclusions

In this study, we have assessed the value of quantitative precipitation estimates
(QPEs) retrieved from commercial microwave links (CMLs) for rainfall-runoff
modelling in a small urban catchment by quantifying model output uncertain-
ties associated both with the CML QPEs and with traditional rain gauge data.
Moreover, we have analyzed the possibilities of reducing systematic errors in
the CML QPEs with the help of three various reference datasets, equivalents
of which might be commonly available to urban hydrology professionals.

It has been shown that, when predicting rainfall runoff with CML QPEs
derived using a wet-antenna attenuation (WAA) model calibrated to 60-min
records from a single rain gauge at an 8-km distance from the catchment
of interest, the simulated discharges have been underestimated by 8.5% in
median, and by up to 30% for runoff maxima, due to the low representativeness
of the reference gauge data for the catchment’s area. However, except for
the considerable bias, the performance of these CML QPEs has been an
improvement compared to records from the three closest rain gauges from
the municipal rainfall monitoring network. These results have confirmed the
high potential of CML QPEs for rainfall-runoff modelling in small urban
catchments where traditional long-term rainfall observations are not available
in resolutions suitable for urban hydrology purposes.

We have also demonstrated that, when calibrating the WAA model to both
discharges observed at the catchment’s outlet and to 60-min records from the
three closest municipal rain gauges, virtually unbiased CML QPEs can be
retrieved. These CML QPEs can then reproduce observed discharges almost
as well (median NNSE 0.79) as three local rain gauges installed around the
studied catchment for research purposes (median NNSE 0.82). In fact, for
rainfall events of high spatial variability, runoff maxima have been biased to
a lesser extent when using the CML QPEs (-10%) than for the local rain
gauge data (+17%). This shows that CML QPEs can be successfully used
for rainfall-runoff modelling also when no reference rainfall data, only runoff
observations, are available.

In sum, the presented findings imply that CML QPEs are promising not
only for catchments with considerable data scarcity, but also for urban areas
already covered by rain gauge networks. For areas with network densities
of roughly 1 gauge per 20—25 km?, corresponding to the best rainfall data
usually available in long-term in the context of the Czech Republic, CML
QPEs represent a notable potential improvement for rainfall-runoff modelling
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in small urban catchments. For denser networks with roughly 1 gauge per
0.5-1 km?, CML QPEs can be considered a satisfying alternative, especially
for rainfall events with high spatial variability, which are often associated
with high rainfall intensities, important for many urban hydrology tasks, e.g.
design and evaluation of urban stormwater systems.
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Chapter 9

Summary

This thesis has aimed to evaluate the potential of quantitative precipitation
estimates (QPEs) obtained from commercial microwave links (CMLs) for
rainfall-runoff modelling in small urban catchments. It has also investigated
which factors (e.g. position relative to the catchment, liability to bias) most
affect the suitability of individual CMLs to be used as a source of rainfall
data for rainfall-runoff modeling. In order to reach the highest quality of
CML QPEs, possibilities of reducing the bias common in CML QPE retrieval
have also been addressed. Moreover, as CML QPEs could be most useful
when traditional rainfall data are not available in adequate resolutions, which
is a common challenge in urban hydrology, a special attention has been payed
to CML QPE retrieval in such data-scarce conditions.

In chapter |5, we have first addressed the question whether QPEs from CMLs
can be regarded as a viable source of rainfall data in the field of urban rainfall-
runoff modelling. Both the CML QPEs and traditional rainfall data have been
used for rainfall-runoff modelling in a small urban catchment, the performance
of which has been evaluated against observed discharge measurements. The
study has shown that stormwater discharges modelled using CML QPEs can
very well reproduce the runoff temporal dynamics. However, when using
the straightforward QPE retrieval approach, i.e. the mean from all CMLs
available and wet-antenna attenuation (WAA) estimated as a constant offset,
the runoff predictions were often considerably biased, especially during light
rainfall events. In contrast, adjusting QPEs from selected short CMLs to
traditional rain gauge data has led to an improvement in the reproduction of
both overall volumes during light rainfalls and peak discharges during heavy
rainfalls. In fact, for heavy rainfalls, such adjusted CML QPEs has even led
to the same rainfall-runoff modelling performance as high-resolution data
from the local rain gauges.
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The above results have suggested that CML QPEs corrected for systematic
errors, e.g. by adjusting to gauges from a low-density network (roughly 1 gauge
per 2025 km?), could represent a relevant rainfall data source for urban
hydrology, if traditional rain gauge data in high spatial resolutions (roughly
1 gauge per 0.5-1 km?) are not available in the given catchment. Their value
could be especially pronounced for monitoring of heavy rainfalls, which are
crucial for design and operation of urban drainage systems. However, at the
time of the study, we were able to use data only from three consecutive months
covering 15 relevant (rainfall depth over 2 mm) rainfall-runoff events. Similarly,
QPEs from only four out of 19 CMLs were available as both unadjusted
and adjusted to rain gauge observations. Furthermore, differences among
individual CMLs have not been addressed, only the mean of all available
CMLs has been examined. This space for improvement have foreshadowed
the direction of the subsequent research endeavors.

The study presented in chapter 6| has addressed the combined effect of the
CML characteristics (path length, transmission frequency) and their location
relative to the catchment on the efficient use of CML QPEs for hydrological
applications. In particular, it has investigated ability of individual CMLs to
provide relevant QPEs for urban rainfall-runoff modelling in a small urban
catchment. An extensive dataset covering a three-year period has been
leveraged for the first time. The results have demonstrated that the quality
of the retrieved CML QPEs and predicted stormwater runoffs is affected by
both characteristics of individual CMLs and their position in respect to the
catchment, as well as by CML data pre-processing.

Firstly, the position of a CML in respect to the small urban catchment has
been proven to affect the CML’s ability to capture rainfall-runoff dynamics,
as shorter CMLs with paths within or close to the catchment boundaries have
reproduced runoff dynamics better, especially for heavy rainfalls. Interestingly,
in terms of capturing the runoff dynamics, mean QPEs of all CMLs have
outperformed QPEs from individual CMLs. Secondly, however, it has also
been shown that the sensitivity of CMLs to rainfall, given by their frequency,
polarization, and length, is the most influential factor affecting the bias in
CML QPEs and subsequent runoff, and that the ability of biased CML QPEs
to provide reliable flow estimates is predominantly low.

As expected, continuously adjusting the CML QPEs to rain gauge data has
minimized the bias for all CMLs. Unfortunately, it has also considerably
worsened the ability of CML QPEs to reproduce runoff dynamics during heavy
rainfalls. This is, likely, because the adjustment method strongly depends on
the rain gauge data reliability, but the gauges are too far from each other to
accurately observe small-scale rainfall variability. Moreover, when deriving
the CML QPEs using this approach, the rainfall retrieval parameters change
in 15-min time steps, which might be too coarse to reflect the underlying
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physical processes. Thus, although the adjusting is conceptually promising
for eliminating the bias, it requires further development.

In sum, this study has confirmed the potential of CML QPEs for quantitative
urban hydrology, especially for those CMLs the position of which corresponds
well with the catchment of interest. However, the bias propagated into the
runoff predictions has been shown to be inversely proportional to the CML
path length. Therefore, to make the best use of these innovative rainfall data
when modelling rainfall runoff in small urban catchments, the possibilities of
reducing the bias without compromising their ability to reproduce rainfall-
runoff dynamics should be better investigated.

The study presented within chapter [7| has addressed the estimation of wet
antenna attenuation (WAA), a major source of the bias in CML QPEs. In
particular, it has been analyzed how, when deriving QPEs from CMLs, WAA
can be reliably estimated without dedicated rainfall monitoring. Various
WAA estimation model based on considerably different assumptions have
been tested, including a newly formulated one. Their performance has been
evaluated both when calibrated to rainfall observations from a municipal rain
gauge network and when using model parameters from the literature. We
have also analyzed which of the studied models can provide reliable WA A
estimates without being calibrated for each individual CML.

The results have shown that virtually unbiased CML QPEs could be retrieved
when calibrating the WAA estimation models to rainfall data from the
permanent municipal rain gauge network with a spatial resolution of one
gauge per 2025 km? and a temporal resolution of 15 minutes. Such high-
quality QPEs have been derived even from short, sub-kilometer CMLs which
are in general very prone to bias. It has also been demonstrated how models
relating WA A to rainfall intensity, implicitly or explicitly, can be successfully
applied without any auxiliary rainfall observations, i.e. using CML data
only. In fact, out of all models evaluated, these have led to the best WAA
estimation. In contrast, modeling WA A as a constant offset has been shown to
be unsatisfying for CML data available in a 1-min resolution. Next, for models
relating WAA to rainfall intensity explicitly, we have found sets of model
parameters which are suitable for CMLs of various path lengths operating
at various frequency bands, and which could thus be transferred to other
locations with CMLs of similar antenna hardware characteristics.

In short, it has been presented how high-quality QPEs can be derived from
CMLs of all path lengths while minimizing the requirements on auxiliary
data necessary. The importance of adequate WAA correction when deriving
CML QPEs in the 1-min resolution has been confirmed. This study thus
represents a legitimate step towards the retrieval and application of CML
QPEs, especially in conditions when the availability of auxiliary rainfall data
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is an important limiting factor, e.g. in areas where traditional rainfall data
are scarce, or when employing large CML networks.

In chapter |8, we have assessed the value of state-of-the-art CML QPEs for
rainfall-runoff modelling in a small urban catchment by quantifying model
output uncertainties associated both with the CML QPEs and with traditional
rain gauge data. Moreover, we have explored the possibilities to calibrate
WAA estimation models using data that could be more commonly available
to urban hydrology specialists than the 15-min data from the three closest
rain gauges from the municipal network which were used in chapter [7. In
particular, we have calibrated the WA A model to 60-min records from the
same three gauges, to 60-min records from a single rain gauge at an 8-km
distance from the catchment of interest, and to discharges observed at the
catchment’s outlet. CML QPEs retrieved using such calibrated WA A models
have been then used to predict rainfall runoff in the investigated small urban
catchment. The uncertainty of the predicted runoffs has been quantified using
a stochastic error model, and the rainfall-runoff modelling performance has
been evaluated by comparing observed and simulated discharges.

It has been shown that, when predicting rainfall runoff with CML QPEs
derived using a WA A model calibrated to 60-min records from the 8-km distant
rain gauge, the simulated discharges have been considerably biased, due to
the low representativeness of the reference gauge data for the catchment’s
area. However, except for that, the performance of these CML QPEs has
been an improvement compared to the performance of 1-min records from the
three closest municipal rain gauges. We have also demonstrated that, when
calibrating the WA A model both to 60-min records from the three municipal
gauges or to observed discharges, practically unbiased CML QPEs can be
retrieved. Moreover, such CML QPEs have been shown to reproduce observed
discharges almost as well as 1-min records from three local rain gauges
temporarily installed around the studied catchment for research purposes. In
fact, for rainfall events of high spatial variability, runoff maxima have been
biased to a lesser extent when using the CML QPEs.

Research presented in [§| has demonstrated that CML QPEs can be successfully
used for rainfall-runoff modelling when no reference rainfall data, only runoff
observations, are available. Moreover, the above findings imply that CML
QPEs are promising also for urban catchments already covered by rain gauge
networks. For areas with network densities of roughly 1 gauge per 20-25 km?,
corresponding to the best rainfall data usually available in long-term in the
context of the Czech Republic, CML QPEs represent a notable improvement
for rainfall-runoff modelling in small urban catchments. For denser networks
with roughly 1 gauge per 0.5-1 km?, CML QPEs can be considered as a
satisfying alternative. This is especially true for rainfall events with high
spatial variability, which are often associated with high rainfall intensities,
important for urban hydrology tasks such as design and evaluation of urban
stormwater management systems.
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This Appendix contains additional information on rainfall data as used in
chapter [6] as well as information on rainfall characteristics and hydrographs
with simulated and observed discharges from chapter |8. More additional
material is available in the “Supplementary material” document published
with the study of (Pastorek et al) 2019b| chapter [6)), where hydrographs for
all rainfall layouts evaluated in that study are presented, including those
for rainfall data from the local rain gauges, which were used to verify the
rainfall-runoff model reliability.

B A.1 Rainfall from chapter 6

The following material presents additional information on rainfall event
characteristics (Table and CML data availability (Fig. [A.1). It is based
on rainfall-runoff events as defined and used for the study presented in chapter
|§| (see . Although the underlying observations are the same (see chapter
4.1)), the exact number of rainfall (or rainfall-runoff) events differs for each
study presented in the thesis due to various availability of data from various
devices used, or differences in the event definition.
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start (id) end duration [min] depth [mm]  Rmax [mm/h]  Rmax10 [mm/h]
2014-09-19 15:41  2014-09-20 00:45 544 5.7 33.9 243
2014-09-20 14:46  2014-09-2017:19 153 2 10.8 7.3
2014-09-21 19:16  2014-09-22 02:27 431 7.5 9.5 6.3
2014-10-13 22:55 2014-10-14 10:15 680 18.1 19.1 17.4
2014-10-1516:36 2014-10-16 11:25 1129 8.2 24.5 10.1
2014-10-16 17:02 2014-10-16 19:31 149 2.1 35.3 12.5
2014-10-21 21:58 2014-10-22 02:51 293 6.2 12.9 8
2014-10-22 10:36  2014-10-23 08:31 1315 11.6 5.9 3.9
2015-04-27 18:41 2015-04-28 00:21 340 89 30.8 18.3
2015-04-28 07:35 2015-04-2817:11 576 8.9 10.7 7.3
2015-05-03 20:36  2015-05-04 01:15 279 2.4 5 2.4
2015-05-05 21:07 2015-05-06 12:09 902 6.9 6 3.2
2015-05-09 06:19 2015-05-09 09:15 176 2.5 10.3 8.6
2015-05-29 22:06  2015-05-30 02:47 281 10.4 54.4 393
2015-06-08 19:54 2015-06-09 13:11 1037 29.2 34.5 21
2015-06-13 13:50 2015-06-13 20:31 401 3.8 14.8 7.2
2015-06-23 00:22 2015-06-23 05:51 329 41 5.1 3.6
2015-07-07 02:12 2015-07-08 03:45 1533 6.8 35.1 18
2015-07-2504:23 2015-07-2517:20 777 45 9.8 6
2015-07-27 13:51 2015-07-27 18:01 250 5.6 43.7 28.2
2015-07-29 14:48 2015-07-29 20:23 335 3.2 16.4 8.2
2015-08-17 06:08 2015-08-19 14:28 3380 49.9 22.8 13.5
2015-09-01 16:45 2015-09-02 04:11 686 41 6 4.7
2015-09-07 11:03 2015-09-07 15:55 292 2.2 14 6.7
2015-09-09 12:05 2015-09-09 17:05 300 2.5 22.9 13
2015-10-07 00:55 2015-10-07 07:59 424 7.8 10.1 7.8
2015-10-07 10:15 2015-10-07 16:31 376 5 9 6.9
2015-10-07 17:17 2015-10-08 16:33 1396 10.5 4 2.3
2015-10-14 01:20 2015-10-14 18:39 1039 10.3 5.9 1.8

Table continues on the next page.
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Table starts on the previous page.

start (id) end duration [min] depth [mm]  Rmax [mm/h]  Rmax10 [mm/h]
2015-10-14 20:48 2015-10-15 13:21 993 8.1 4.8 3.1
2015-11-1504:02  2015-11-15 15:51 709 2.7 3.4 2
2015-11-1916:36 2015-11-20 06:41 845 151 23 18.6
2015-11-2010:48 2015-11-21 01:31 883 a.7 5.1 1.7
2015-11-3003:28 2015-12-0102:29 1381 11 238 14
2015-12-01 04:41 2015-12-01 12:11 450 3.1 7.7 4.2
2015-12-09 14:49 2015-12-09 20:35 346 2.1 3.4 1.8
2016-05-03 18:25 2016-05-04 19:36 1511 5.4 3 13
2016-05-24 13:53  2016-05-25 03:07 794 13.9 31.6 22.4
2016-05-31 04:41 2016-05-31 09:25 284 6.2 18.1 9.3
2016-06-02 13:19 2016-06-02 21:41 502 51 18 9.8
2016-06-02 23:03  2016-06-03 10:41 698 6.4 6 4.3
2016-06-12 15:47 2016-06-12 21:59 372 15.7 49.9 38.7
2016-06-16 19:20 2016-06-17 01:33 373 4.2 10.8 5.6
2016-06-17 04:36  2016-06-17 13:24 528 6.5 35.8 15.6
2016-06-25 13:54 2016-06-26 02:07 733 4.7 23 9.6
2016-07-01 01:55 2016-07-01 06:01 246 155 51.9 43.2
2016-07-12 04:46  2016-07-12 10:00 314 31 5.1 39
2016-07-13 12:45 2016-07-14 17:45 1740 18.2 14.5 10.2
2016-08-10 13:46 2016-08-1017:03 197 31 8 7.2
2016-08-29 11:38 2016-08-29 19:31 473 7.4 216 16.7
2016-09-05 13:38 2016-09-05 17:45 247 2.4 18.7 8.7
2016-09-16 15:52 2016-09-17 12:03 1211 453 62.3 338
2016-10-02 11:35 2016-10-02 23:38 723 4.2 5.1 25
2016-10-03 08:56  2016-10-03 22:03 787 15.8 36.2 23
2016-10-03 23:59 2016-10-04 11:05 666 10.7 6.9 4.8
2016-10-11 13:37 2016-10-12 00:03 626 23 6.9 4.5
2016-10-12 01:05 2016-10-12 10:41 576 23 2.6 0.9
2016-10-19 05:59 2016-10-19 12:17 378 51 15.8 8.8
2016-10-25 02:45 2016-10-25 08:51 366 4.5 6.1 4.8

Table A.1: Basic characteristics of the 56 rainfalls events data from which are
evaluated in chapter 6] (see [6.2.1). The characteristics were estimated on the
basis of data from the local rain gauges (Fig. , in particular, a single time
series obtained as the mean value of the three gauges. R,,.. stands for the
maximal 1-min rainfall intensity and R,qz,10 for the maximal 10-min rainfall

intensity.
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Figure A.1: Overall availability of CML data for individual CMLs and 71 events
for which it was possible to perform rainfall-runoff simulations within the study

presented in chapter @ (see .

B A.2 Rainfall events and hydrographs
from chapter 8

The following material presents additional information on rainfall event
characteristics (Table based on rainfall-runoff events as defined and
used for the study presented in chapter [8 Next, hydrographs showing 90%
prediction bounds obtained with two rainfall observation layouts for all 23
events evaluated, are also presented. The selected rainfall layouts are 1-min
data from the three nearest municipal rain gauges and QPEs derived from
the best-located CMLs with the WAA model calibrated to the 60-min data
from the same gauges.
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A.2. Rainfall events and hydrographs from chapter 8

start (id) duration [min]  depth [mm]  Rmax [mm/h] Rmax,10 [mm/h] spatial var. [-]
2014-09-20 13:31 288 2.0 9.8 7.2 1.84
2014-09-21 17:58 569 7.5 9.0 6.2 0.89
2014-10-13 21:27 828 18.1 19.1 17.4 0.35
2014-10-16 15:32 299 2.2 36.3 12.5 1.17
2014-10-22 09:09 1462 11.6 5.1 3.7 0.74
2015-05-03 19:18 417 2.4 2.8 23 0.76
2015-05-05 15:44 1285 7.2 4.3 3.0 0.59
2015-05-29 20:40 427 10.4 54.4 39.2 0.26
2015-06-23 09:00 639 2.9 14.7 7.2 1.45
2015-07-07 22:48 357 6.8 351 18.0 1.42
2015-07-25 03:06 914 4.6 8.6 59 1.75
2015-09-07 10:03 412 2.2 13.1 6.5 1.16
2015-09-09 12:48 317 2.5 220 13.0 0.65
2015-10-14 00:07 3344 20.4 5.4 4.7 0.59
2015-11-20 09:27 1024 4.7 1.7 1.5 0.71
2015-12-09 10:29 666 2.2 1.8 1.7 0.80
2016-05-24 13:04 903 13.9 316 22.3 0.85
2016-06-25 20:05 364 4.7 233 9.7 0.70
2016-08-29 02:28 1023 8.9 21.6 16.5 0.95
2016-09-05 12:31 374 2.4 18.9 8.5 1.45
2016-10-03 07:33 1712 26.6 36.2 23.0 0.79
2016-10-11 12:35 1469 4.7 5.7 4.4 0.70
2016-10-19 00:13 784 6.0 15.4 8.8 0.97

Table A.2: Basic characteristics of the 23 rainfalls events used to validate the
rainfall observation layouts in chapter [8. R,,q. stands for the maximal 1-min
rainfall intensity and R,,44,10 for the maximal 10-min rainfall intensity. Except
for the last column reflecting the spatial rainfall variability, the characteristics
were estimated on the basis of data from the local rain gauges, in particular,
a single time series obtained as the mean value of the three gauges. The
spatial variability is determined by estimating the variability among 60-min
rainfall data from six rain gauges around the catchment - three local and three
nearest municipal gauges. In particular, we quantify the arithmetic mean of the
coefficients of variation determined for each 60-min time step. Higher values
indicate higher spatial variability.
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1-min data from the three municipal rain gauges (1/4)

© Q observed - within predicted bounds
o Q observed - out of predicted bounds

——Q predicted - median

I 90% bounds (Q predicted or performance metrics)

2014-09-20 13:31:00, Rmax10 = 7.2 mm/h

2014-09-21 17:58:00, Rmax10 = 6.2 mm/h
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1-min data from the three municipal rain gauges (2/4)

Discharge [I/s]

© Q observed - within predicted bounds ——Q predicted - median
o Q observed - out of predicted bounds I 90% bounds (Q predicted or performance metrics)
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2015-09-09 12:48:00, Rmax10 = 13 mm/h

1-min data from the three municipal rain gauges (3/4)
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I 90% bounds (Q predicted or performance metrics)
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1-min data from the three municipal rain gauges (4/4)

© Q observed - within predicted bounds
o Q observed - out of predicted bounds

——Q predicted - median

I 90% bounds (Q predicted or performance metrics)

2016-08-29 02:28:00, Rmax10 = 16.5 mm/h

2016-09-05 12:31:00, Rmax10 = 8.5 mm/h
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CML QPEs, WAA calibrated to 60-min data from the 3 municipal gauges (1/4)

© Q observed - within predicted bounds
o Q observed - out of predicted bounds

——Q predicted - median
I 90% bounds (Q predicted or performance metrics)

2014-09-20 13:31:00, Rmax10 = 7.2 mm/h

2014-09-21 17:58:00, Rmax10 = 6.2 mm/h
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CML QPEs, WAA calibrated to 60-min data from the 3 municipal gauges (2/4)

© Q observed - within predicted bounds ——Q predicted - median
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CML QPEs, WAA calibrated to 60-min data from the 3 municipal gauges (3/4)
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