
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

ANALYSIS OF OPEN-SOURCE TOOLS FOR AUTOMATED TESTING OF

WEB APPLICATIONS

Samson Ošlakov

Ing. Martin Komárek

Informatics

Information Systems and Management

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Analyze and describe open-source tools used primarily for automated testing of the

front-end of web applications.

1. Analyze the current state of the tools, i.e., evaluate how can the tool be used in

different types of testing, how easy it is to integrate it with other testing tools for testing

web applications and what technical skills should the user of the tool have.

2. Compare and economically evaluate the benefits of implementing automated tests

with the selected tools.

3. Design a test plan with test scenarios comprising UI and API tests for the selected

demo application.

4. Implement automated tests for the given test scenarios with the tools that were

analyzed.

5. Evaluate the benefits and risks of using automation testing tools on a web application

from an economic perspective.

Electronically approved by Ing. David Buchtela, Ph.D. on 4 April 2022 in Prague.

Bachelor’s thesis

ANALYSIS OF
OPEN-SOURCE TOOLS
FOR AUTOMATED
TESTING OF WEB
APPLICATIONS

Samson Ošlakov

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Martin Komárek
May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Samson Ošlakov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Ošlakov Samson. ANALYSIS OF OPEN-SOURCE TOOLS FOR AUTOMATED
TESTING OF WEB APPLICATIONS. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2022.

Contents

Acknowledgments viii

Declaration ix

Abstract x

Introduction 1

1 Aim of the thesis 3
1.1 Research part . 3
1.2 Practical part . 3
1.3 Structure of the thesis . 3

2 Concepts 5
2.1 End-to-end testing . 5
2.2 Functional testing . 5
2.3 Behavior-driven development . 5
2.4 Test-driven development . 5

3 Analysis of test automation tools 7
3.1 Cucumber . 7
3.2 Karate . 8

3.2.1 Description of features . 9
3.2.2 Required technical knowledge . 12
3.2.3 Set up . 12
3.2.4 Integration with other tools . 12
3.2.5 Community and support . 13
3.2.6 Disadvantages . 13

3.3 Selenium . 13
3.3.1 Description of features . 13
3.3.2 Required technical knowledge . 17
3.3.3 Set up . 17
3.3.4 Integration with other tools . 18
3.3.5 Community and support . 18
3.3.6 Disadvantages . 18

3.4 Appium . 18
3.4.1 Description of features . 19
3.4.2 Required technical knowledge . 21
3.4.3 Set up . 21
3.4.4 Integration with other tools . 21
3.4.5 Community and support . 22
3.4.6 Disadvantages . 22

3.5 SikuliX . 22
3.5.1 Description of features . 22

iii

iv Contents

3.5.2 Required technical knowledge . 24
3.5.3 Set up . 24
3.5.4 Integration with other tools . 24
3.5.5 Community and support . 24
3.5.6 Disadvantages . 25

3.6 Cypress . 25
3.6.1 Mocha . 25
3.6.2 Chai . 25
3.6.3 Description of features . 26
3.6.4 Required technical knowledge . 28
3.6.5 Set up . 29
3.6.6 Integration with other tools . 29
3.6.7 Community and support . 29
3.6.8 Disadvantages . 30

3.7 Puppeteer . 30
3.7.1 Description of features . 30
3.7.2 Required technical knowledge . 32
3.7.3 Set up . 32
3.7.4 Integration with other tools . 32
3.7.5 Community and support . 32
3.7.6 Disadvantages . 32

3.8 Playwright . 32
3.8.1 Description of features . 33
3.8.2 Required technical knowledge . 35
3.8.3 Set up . 35
3.8.4 Integration with other tools . 35
3.8.5 Community and support . 35
3.8.6 Disadvantages . 35

3.9 TestCafe . 35
3.9.1 Description of features . 35
3.9.2 Required technical knowledge . 37
3.9.3 Set up . 37
3.9.4 Integration with other tools . 37
3.9.5 Community and support . 38
3.9.6 Disadvantages . 38

3.10 Nightwatch.js . 38
3.10.1 Description of features . 38
3.10.2 Required technical knowledge . 40
3.10.3 Set up . 40
3.10.4 Integration with other tools . 40
3.10.5 Community and support . 40
3.10.6 Disadvantages . 41

3.11 TestProject . 41
3.11.1 Description of features . 41
3.11.2 Required technical knowledge . 43
3.11.3 Set up . 43
3.11.4 Integration with other tools . 43
3.11.5 Community and support . 43
3.11.6 Disadvantages . 43

3.12 WebdriverIO . 43
3.12.1 Description of features . 44
3.12.2 Required technical knowledge . 45

Contents v

3.12.3 Set up . 45
3.12.4 Integration with other tools . 45
3.12.5 Community and support . 45
3.12.6 Disadvantages . 46

3.13 Summary . 46

4 Quantitative analysis 47
4.1 Browser support . 48
4.2 Data formats . 48
4.3 Language support . 49
4.4 Dev platforms . 49
4.5 Reporting . 49
4.6 Selectors . 49
4.7 Web UI . 50
4.8 Community . 50
4.9 Integration . 51
4.10 Summary . 52

5 Test implementation 55
5.1 Introduction of the demo application . 55

5.1.1 Functionality . 56
5.2 Test plan . 58

5.2.1 Scenario 1 . 58
5.2.2 Scenario 2 . 59
5.2.3 Scenario 3 . 59

5.3 Implementation of the test plan . 60
5.3.1 Selenium . 60
5.3.2 Appium . 63
5.3.3 Karate . 65
5.3.4 SikuliX . 68
5.3.5 Cypress . 69
5.3.6 Puppeteer . 73
5.3.7 Playwright . 75
5.3.8 TestCafe . 77
5.3.9 Nightwatch.js . 78
5.3.10 TestProject . 79
5.3.11 WebdriverIO . 82

5.4 Summary . 83

6 Benefits and risks of automated testing 85
6.1 Benefits . 85
6.2 Risks and limitations . 85
6.3 Other factors . 86

Conclusion 87

Content of the attached media 97

List of Figures

3.1 Image showing how the Cucumber framework operates with tests written in Java
[6] . 8

3.2 Example of a default HTML page generated by Karate 9
3.3 Image showing how the Selenium WebDriver testing process works [21] 14
3.4 Overview of how Selenium WebDriver worked before version 4 [22] 14
3.5 Overview of how WebDriver works since version 4 [22] 15
3.6 Image of Selenium IDE . 16

5.1 Diagram of Seat Reservation Demo [120] . 56
5.2 Front end of Seat Reservation Demo . 57
5.3 Image showing an emulated Android device . 64
5.4 Image showing a running Appium Server . 64
5.5 Image showing Scenario 1 implemented using SikuliX 69
5.6 Image showing the menu of Cypress . 70
5.7 Image showing the development mode in Cypress 71
5.8 Image showing the menu of TestProject . 80
5.9 Image showing the recording capability of TestProject 81
5.10 Image showing a report of a test executed in TestProject 82

List of Tables

4.1 Table with supported browsers . 48
4.2 Table with supported data formats . 49
4.3 Table with programming languages . 49
4.4 Table with reporting parameters . 49
4.5 Table with supported selectors . 50
4.6 Table with Web UI parameters . 50
4.7 Table with community parameters . 51
4.8 Table with supported integrations . 51
4.9 Complete table with all of the parameters. 53

vi

List of code listings vii

List of code listings

1 Example of a test scenario written in Gherkin [1] 8
2 Example of an API test written in the Karate framework 10
3 Example of the workflow using SikuliX commands [2] 22
4 Scenario 1 in the Gherkin syntax . 59
5 Scenario 2 in the Gherkin syntax . 59
6 Scenario 3 in the Gherkin syntax . 60
7 Example of Selenium and JUnit configuration of the tests 61
8 Example showing part of the Selenium implementation of Scenario 1 62
9 Example of Java Cucumber test runner . 62
10 Example of Java Cucumber steps . 63
11 Example of the Appium test configuration in JUnit 65
12 Example of test generated using the Karate extension for VSC 66
13 Example of the Scenario 1 implemented in Karate 67
14 Example of an API test for POST request in Karate 68
15 Example showing part of the implementation of Scenario 1 in Cypress 72
16 Example showing the test for a POST request to the demo app in Cypress 73
17 Example showing part of the implementation of Scenario 1 using Puppeteer . . . 74
18 Example of an API test for POST request in Puppeteer 75
19 Example showing part of the implementation of Scenario 1 in Playwright 76
20 Example of an API test for POST request in Playwright 77
21 Example showing part of the implementation of Scenario 1 in TestCafe 78
22 Example showing part of the implementation of Scenario 1 in Nightwatch.js . . . 79
23 Example showing part of the implementation of Scenario 1 in WebdriverIO . . . 83

I would like to immensely thank Mr Ing. Martin Komárek for his
guidance, useful advice and for providing the demo application. I
would also like to thank APPLIFTING S.R.O. for their willingness
to cooperate on a similar topic. Finally, I would like to thank my
family and friends for their support both in life and in my studies.

viii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular, that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2022 .

ix

Abstrakt

Tato bakalářská práce popisuje a porovnává open-source nástroje pro automatizované testováńı
webových aplikaćı. Práce se zaměřuje předevš́ım na nástroje použ́ıvané při automatizovaném
end-to-end a funkčńım testováńı webových aplikaćı s grafickým uživatelským rozhrańım.

Práce analyzuje 12 nástroj̊u pro automatizované testováńı webových aplikaćı a diskutuje jejich
kvality a nedostatky. Nad rámec zadáńı je provedena kvantitativńı analýza nástroj̊u s využit́ım
vážených parametr̊u pro kategorizaci nástroj̊u pomoćı objektivńıch a subjektivńıch metrik, na
základě, kterých byly nástroje hodnoceny. Známky parametr̊u byly sečteny do celkového součtu
a nástroj s nejvyšš́ım počtem bod̊u byl považován za nejv́ıce doporučený k použit́ı. Výsledkem
je, že čtenář má k dispozici tabulku v Google sheets, kde bude moci pomoćı úpravy vah u
jednotlivých zkoumaných parametr̊u určit, který nástroj by byl nejlepš́ı volbou ve zvoleném
př́ıpadě použit́ı.

V praktické části je navržen a realizován testovaćı plán pro demo aplikaci s využit́ım analy-
zovaných nástroj̊u. Jednotlivé implementace jsou porovnány. Nakonec jsou diskutovány př́ınosy
a nevýhody automatizace testováńı z ekonomického hlediska.

Źıskané poznatky mohou být velkým př́ınosem pro vývojáře nebo jiné odpovědné osoby při
výběru vhodných nástroj̊u pro automatizované testováńı webových aplikaćı na r̊uzných projek-
tech.

Kĺıčová slova testováńı softwaru, automatizace testováńı softwaru, open-source, testováńı
webových aplikaćı, analýza testovaćıch nástroj̊u, automatizace E2E testováńı, automatizace
funkčńıho testováńı

Abstract

This bachelor thesis describes and compares open-source tools for automated testing of web
applications. The thesis primarily focuses on the tools used in the automated end-to-end and
functional testing of web applications with a graphical user interface.

The thesis analyses 12 tools for automated testing of web applications, discussing their quali-
ties and shortcomings. Beyond the terms of assignment, a quantitative analysis of the tools using
weighed parameters to categorise tools using objective and subjective metrics on which were the
tools graded. Grades of the parameters were summed into total, and the tool with the highest
amount of points was considered the most recommended for usage. As a result, the reader has
access to a Google sheet table where he will be able to use the adjusted weights of the individual
parameters examined to determine which tool would be the best choice in the selected use case.

In the practical part, a test plan for a demo application is designed and implemented using
the analysed tools. The implementations are compared. Finally, the thesis discusses the benefits
and liabilities of test automation from an economic point of view.

The findings can greatly benefit developers or other responsible individuals in selecting the
right tools for automated testing of web applications on different projects.

x

xi

Keywords software testing, software testing automation, open-source, web application testing,
analysis of testing tools, E2E testing automation, functional testing automation

List of abbreviations

AI Artificial Intelligence. 80

API Application programming interface. 1, 8, 9, 11, 12, 14, 17–20, 27, 29–34, 37–39, 41–43, 45,
47, 51, 56, 58, 60, 61, 63, 67, 72–77, 83, 84, 88

app Application. 18, 19, 27

BDD Behavior-Driven Development. 5, 7, 8, 25, 37, 45, 83

CD Continuous delivery. 1, 13, 18, 24, 26, 48, 51

CI Continuous integration. 1, 9, 10, 13, 17, 18, 21, 24, 26, 27, 29, 32–35, 43, 48, 51, 75

CLI Command Line Interface. 28, 36, 37, 77, 79, 82

CSS Cascading Style Sheets. 10, 28, 34, 35, 37, 39–41, 44, 45, 73, 78

CSV Comma-separated values. 9, 26, 42

DDT Data-Driven Testing. 9, 35, 36, 39, 42, 44, 47

DevOps Set of practices that combines software development (Dev) and IT operations (Ops).
1, 86

DOM Document Object Model. 27, 31, 33, 36–40, 44, 45, 70, 71

E2E End-to-end. 1, 3, 5, 7, 27, 35, 37–39, 41, 43–45, 47, 77, 84

GUI Graphical user interface. 1, 3, 19, 22, 24

HTML Hypertext Markup Language. vi, 8–12, 28, 31, 35, 37, 40, 45, 75

HTTP Hypertext Transfer Protocol. 11, 18, 19, 56, 58, 74

IDE Integrated Development Environment. 12, 15, 17, 19, 21, 23–25, 29, 32, 33, 35, 37, 40, 45,
68, 69, 78, 80, 83, 84

JS JavaScript. 10, 12, 13, 22, 26, 28, 30–37, 39–41, 44, 45, 56, 60, 66, 71, 73, 77, 84

JSON JavaScript Object Notation. 9–11, 14, 17–19, 26, 36, 37, 39, 44, 67, 74

npm Node.js package manager. 19, 29, 38

QA Quality assurance. 1, 5

ROI Return on investment. 1

xii

List of abbreviations xiii

SDK Software development kit. 18, 42, 80

SOAP Simple Object Access Protocol. 11

TDD Test-Driven Development. 5, 6, 26, 45

UI User interface. 1, 8, 9, 42

VSC Visual Studio Code. vii, 29, 35, 45, 66, 75

W3C World Wide Web Consortium. 10, 14, 38, 43, 82

XML Extensible Markup Language. 9, 11, 26, 38

XPath XML Path Language. 10, 20, 27, 31, 34, 36, 39, 41, 44, 73, 77, 78

YAML YAML Ain’t Markup Language. 9, 26

xiv List of abbreviations

Introduction

It is widely known that testing is a crucial phase of the software development life cycle.
Manual tests are still widely used among many software companies. It is a common prac-

tice for software companies to employ a full-time Quality assurance (QA) team. This team is
responsible for preventing or at least minimising bugs in the software products. A standard
part of their work is creating a collection of “test plans” or step by step checklists that assert
whether a feature of a software project behaves as expected. The team would then manually
execute the test plans by clicking through the application or interacting with the software and
Application programming interface (API) with the appropriate tools every time a new update
or change was introduced into the system. They would then return the results of the test plans
to the engineering team for review and any further development to address issues. [3]

This process was slow, expensive, and error-prone because the testers from the QA team often
needed to learn how the system works and behaves in certain circumstances. That takes some
time, and even after the testers get to know the system well, they are prone to make typos or
omit steps in the test script or miss some bugs that could later gravely affect the user experience.

That is why companies started automating their test plans. Automated tests are performed
by a machine that executes a test script written using various test automation frameworks using
multiple tools. These tests can vary in complexity, from testing a single method in a class to
making sure that performing a sequence of complex actions in the User interface (UI) leads to
the same results. It is much more robust and reliable than manual tests, but the quality of
automated tests depends on how well were the test scripts written. Automation brings huge
gains for team efficiency and Return on investment (ROI) of QA teams. However, it also poses
a significant challenge in finding the right people who can write and maintain these tests. Major
changes in the code of the application can often break the automated tests, so the test scripts
need to be updated. [3]

Automated testing is a crucial component of Continuous integration (CI) and Continuous
delivery (CD). Most modern agile and DevOps software projects now include automated testing
in the project’s conception. It is a great way to scale the QA process as new features are added to
an application. Automated testing puts ownership responsibilities in the hands of the engineering
team. The test scripts are developed alongside regular project road-map feature development
and are automatically executed by CI/CD tools. Automated testing enables the QA team to
focus on more sensitive tasks like exploratory testing.

There are a lot of tools available in the test automation market. Choosing the right ones
for the job can be difficult. Sometimes it can be just one tool to cover the testing needs of the
project, but most of the time, it is a combination of wisely picked tools.

I have noticed that there have not been many comprehensive resources available that compare
these tools so that the developer can have a better time choosing the tools best suitable for his
project. This is the reason why I chose this assignment.

1

Introduction 1

This problem is addressed as the thesis analyses different tools for automated testing of web
applications. Because the domain of automation testing is vast, the thesis will mainly focus
on the tools used for automating functional and End-to-end (E2E) tests for web applications
through the Graphical user interface (GUI) of web applications.

The main tools under the scope of the analysis are free and open-source, but some of the
tools offer premium services for a fee. My main criteria for choosing the tools were popularity
and usefulness.

The primary sources are the official websites and documentation written for the tools. Other
sources include technical articles, forums and university publications.

2 Introduction

Chapter 1

Aim of the thesis

This thesis aims to analyse tools for automated testing of web applications that mainly have a
GUI. The main focus will be testing the web applications on desktops across operating systems.
However, the thesis will also discuss testing web applications from mobile devices and using cloud
services.

The analysed tools are currently still maintained, so hopefully, the content of this thesis will
not get outdated soon, but that is unlikely due to the technological progress being so fast-paced
that new open-source tools for automation are likely to emerge.

After reading this thesis, the readers should be able to tell which tools are suitable for their
E2E testing automation needs by the terms they set using specified parameters. In this thesis,
one can also find recommendations on what to test in web applications and which part should
be automated, including the economic implications of test automation.

1.1 Research part

The first objective is to qualitatively analyse the selected tools used for automating functional
and E2E tests.

The second goal is to give an insight into the benefits and liabilities of automation testing
from an economic perspective.

1.2 Practical part

In the practical part of the thesis, the first objective is to give insight into the results and methods
behind the quantitative analysis of the tools.

The second objective of the practical part is to analyse the tools using tests from a test plan
created for a demo application.

1.3 Structure of the thesis

The thesis starts by giving an introduction to some concepts.
Then comes the analysis of tools for creating automated functional and E2E tests for web

applications. The chapter describes the tools and discusses their qualities and shortcomings.
After discussion, the thesis comes with an evaluation of the quantitative analysis that grades

parts of the tools on their parameters.

3

4 Aim of the thesis

Next comes the comparison of the using the tests examples. The chapter starts with a
description of the demo application for which were the tests written. Then it describes the test
plan for the application. The tools are then compared using their implementation of the test
plan.

In the next section, the thesis delves into the benefits and liabilities of automation testing
from an economic perspective.

At the end of my thesis, I evaluate the whole study.

Chapter 2

Concepts

This chapter introduces some of the concepts mentioned in the text.

2.1 End-to-end testing
End-to-end testing is a software testing method that involves testing an application’s workflow
from beginning to end. This method aims to replicate real user scenarios from the end user’s
experience so that the system can be validated for integration and data integrity. [4]

2.2 Functional testing
Functional testing is a process through which the QA team determines if a piece of software
is acting under pre-determined requirements. It uses black-box testing techniques, in which
the tester does not know the internal system logic. Functional testing is only concerned with
validating if a system works as intended. [5]

2.3 Behavior-driven development

Behavior-Driven Development (BDD) is a type of development process used by software teams.
The members map business requirements to their software implementation, using specific exam-
ples that make developers and business analysts better understand the problems they are trying
to solve.

One of the main goals of BDD is to get the team talking to each other about the system’s use
cases. Ideally, during these conversations, somebody should specify the use case scripts, which
try to explain what should happen when a user performs one or other action, so they can be used
as documentation to implement the corresponding functionalities. Besides, the use case scripts
can also be automated as tests to verify that the system’s behaviour is as expected.

Thus, a team follows BDD principles when it goes through an iterative process to define the
system’s features using the three stages: discussion, specification and test writing.. [6]

2.4 Test-driven development

Test-Driven Development (TDD) is a software development practice in which unit and acceptance
test cases are incrementally developed before writing the production code and directing the design

5

6 Concepts

of the target software.
Lately, TDD has gained substantial awareness among practitioners and researchers, beyond

its initial context in Extreme Programming, with the promise of several benefits to the software
development process.

Advocates of TDD proclaim that TDD improves code quality, application quality and devel-
oper productivity compared with traditionally testing strategies. [7]

Chapter 3

Analysis of test automation tools

The following tools have been chosen for their popularity and usefulness in writing scripts for
automated testing of web applications.

In the following sections, the open-source tools to analyse in this bachelor thesis are intro-
duced. These tools are primarily used for automating functional and E2E tests.

All of the following tools are cross-platform, which means they can be used on Windows,
Linux and macOS. Most tools support browsers from the list below and can operate on browsers
in the headless mode except for SikuliX.

Google Chrome

Mozilla Firefox

Microsoft Edge

Google Chrome is currently the most popular browser on the internet, with more than half of
the browser market share belonging to Chrome. The current browser share can be viewed using
a link.1

3.1 Cucumber
Cucumber is a wildly popular tool to support BDD. [6] It provides two major features:

Gherkin syntax Helps with defining scenarios, features, and use cases. It follows a specific
Given-When-Then pattern like shown in the example 1. It can be described as a business
readable behaviour description language.

An open-source framework Translates the Gherkin steps to executable code that can be run
as tests. It is available in multiple languages. The list of supported languages can be found
on the installation website.2

Thus, Cucumber covers two stages of BDD: writing the use cases and automating the tests. They
can be found referenced in the Cucumber documentation as Formulation and Automation. [8]

1https://gs.statcounter.com/browser-market-share
2https://cucumber.io/docs/installation/

7

https://gs.statcounter.com/browser-market-share
https://cucumber.io/docs/installation/
https://gs.statcounter.com/browser-market-share
https://cucumber.io/docs/installation/

8 Analysis of test automation tools

Scenario: Breaker guesses a word
Given the Maker has chosen a word
When the Breaker makes a guess
Then the Maker is asked to score

Code listing 1 Example of a test scenario written in Gherkin [1]

The Cucumber framework uses “feature files” for describing tests using Gherkin. The feature
files are stored in files with a “.feature” filename extension, hence the name feature file. The
test steps in the feature file are then mapped onto functions written in the chosen programming
language. The functions that describe the logic of a test are called “glue” and are stored in “step
definition” files. [1]

Image shown in the figure 3.1 explains how the Cucumber framework operates on a test
written in Java using the JUnit library.

Figure 3.1 Image showing how the Cucumber framework operates with
tests written in Java [6]

It was first released in 2008 and is now under SmartBear Software company. The “Open”
version is still under active development by the team and the open-source community. Cucumber
has around 10 000 stars on GitHub [9] and around 10 000 questions on Stack Overflow. [10]

Cucumber Open is under the MIT License3 so it can be used commercially.
Cucumber also offers a premium version called “CucumberStudio”4 that offers more useful

features for BDD.
Cucumber can be used with all of the other tools subject to this analysis.

3.2 Karate

“Karate is the only open-source tool to combine API test-automation, mocks, performance-
testing and even UI automation into a single, unified framework. The behaviour-driven develop-
ment syntax popularised by Cucumber is language-neutral and easy for even non-programmers.
Assertions and HTML reports are built-in, and you can run tests in parallel for speed.” [11]
Karate was added to the list because it is an all-in-one framework that includes environment

3https://github.com/cucumber/cucumber-jvm/blob/main/LICENCE
4https://cucumber.io/tools/cucumberstudio/features/

https://github.com/cucumber/cucumber-jvm/blob/main/LICENCE
https://cucumber.io/tools/cucumberstudio/features/
https://github.com/cucumber/cucumber-jvm/blob/main/LICENCE
https://cucumber.io/tools/cucumberstudio/features/

Karate 9

switching and CI integration. Karate was first created for API testing, but now it can do more
than that.

3.2.1 Description of features
Karate is implemented in Java. It can be used with Maven or Gradle or using the executable.
Java API is also available for those who prefer to integrate Karate into their Java code. It works
with JUnit 4 and JUnit 5. [12] The tests are stored in “.feature” files, similarly to feature files in
the Cucumber framework.

Mixing API and UI test automation within the same test script and re-using code already
written by calling other feature files are possible in Karate.

3.2.1.1 Browser support
In addition to the browsers mentioned at the beginning of the chapter, it works with:

Internet Explorer

Safari

3.2.1.2 Test recording tool
Karate does not offer a test recording tool.

3.2.1.3 Supported data formats
Karate has built-in support for JSON, Comma-separated values (CSV), XML and YAML files and
conversion between some of them. Therefore there is no need to depend on external frameworks.
[13] This comes in handy for DDT or simply for tests where some external data is needed.

3.2.1.4 Reporting
Karate offers a great default HTML report that looks good and tells all of the essential details
about the test. An example can he found in the figure 3.2.

Karate has an option for the JUnit XML output from the parallel runner that can determine
the status of the build as well as generate reports that can be integrated with most reporting
and CI tools. [14]

It has examples for the set-up of reporting and an example for third-party libraries that can
be easily used to generate excellent looking reports from the JSON output of the parallel runner.
An example of a commonly used library with Karate is the “cucumber-reporting” open-source
library. [13]

Figure 3.2 Example of a default HTML page generated by Karate

10 Analysis of test automation tools

Karate has adequate traceability for the errors that might occur during tests. Detailed wire-
protocol logs can be enabled in line with the test steps in the HTML report. [12]

3.2.1.5 Language support
The syntax for the Karate tests is similar to Gherkin but mixed with specific keywords and
characters for doing certain operations as shown in the example 2 Karate offers dynamic variables
and functions and can even pass variables to JSON.

It offers JavaScript and Java interoperability. You can chain commands and use JavaScript
using the script() function. [14] Adding third-party Java libraries and creating own Java or
JavaScript functions is also possible with Karate. For users not comfortable with Java, Karate
offers a cross-platform stand-alone executable. [12]

Scenario: Try to create a new reservation with an empty body and fail.
* def req =

"""
{}
"""

Given url apiUrlPost
And request req
When method post
Then status 500

Code listing 2 Example of an API test written in the Karate framework

3.2.1.6 Parallel testing
Parallel testing is frankly easy to configure. Unlike Selenium, choosing between execution on a
single node, Cloud CI environment or Docker without needing a “controller node” or configuring
a “grid” is possible. There is even an option to run tests in parallel across different machines.
Karate can aggregate the results and present them as one. [14]

3.2.1.7 UI automation and selectors
In this section, the words “locator” and “selector” are used interchangeably as they refer to
the same concept when finding a web element on the page. Karate supports fundamental user
interactions with the web page, such as refresh, click, scroll, drag, etc. It also supports iFrame,
browser tabs, alerts, and uploading files which are all very important for simulating the user.

W3C WebDriver support is built-in and can also utilise remote/grid providers. Chrome au-
tomation is made better using the Chrome DevTools Protocol, similar to Puppeteer. Android
and iOS mobile testing is supported via Appium. It even supports cross-platform desktop au-
tomation that can be mixed into web automation flows if needed. [14]

Karate has support for standard CSS and XPath selectors. There are also the wildcard and
“friendly” locators that select without inspecting the HTML-page source, CSS, or internal XPath
structure. Karate also offers a locateAll() function that filters elements using a filter in the form
of a JavaScript (JS) function. [14]

Karate includes a straightforward retry and wait strategy. It likewise allows handling common
combinations like: “submit() + click()” by chaining them, which is common in many JS testing
frameworks.

Karate 11

Karate contains broad assertion abilities. For easy troubleshooting, the failed tests report
which web element and path are not as anticipated. Karate’s match assertion command and
other UI assertions core capabilities can use regular expressions (regex).

Mimicking standard user input types like keyboard key combinations and mouse actions is
possible in Karate.

Karate allows intercepting HTTP requests made by the browser and uses Karate mocks to
stub/modify server responses and replace HTML content. [14]

3.2.1.8 API testing
API testing was the first main feature that Karate supported. It is carefully designed for
HTTP(S), JSON, GraphQL and XML requests and data types. [12]

Comprehensive support for different types of requests:

SOAP/XML requests

HTTPS/SSL without needing certificates, keystores or truststores

HTTP proxy server support

URL encoded HTML form data

Multi-part file upload, including multipart/mixed and multipart/related

Browser-like cookie handling

Full control over HTTP headers, path and query parameters

Re-try until a condition is met

WebSocket support

As was mentioned in the previous section, the assertion capabilities are also applied to API
testing.

3.2.1.9 Performance testing
Karate integrates performance testing using a Gatling adapter.

“Gatling is a powerful open-source load testing solution. Gatling is designed for continuous
load testing and integrates with your development pipeline. Gatling includes a web recorder and
colourful reports.” [15]

Karate can be used to see how well does an application handle stress by re-using Karate API
tests as performance tests executed by Gatling. Gatling only needs to be used for defining a load
model. Karate can handle everything else.

Karate assertions are integrated with the Gatling report. The line numbers where assertions
failed can be seen in the report.

Asserting that server responses are as behaving as expected under load is much harder in
Gatling and other performance testing tools than with Karate. Another benefit is that API
invocation sequences representing end-user workflows are much easier to express in Karate. Dis-
tributing the load test over multiple hardware nodes or Docker containers is also possible. [16]

3.2.1.10 Environment configuration
Karate is controlled by a configuration file “karate-config.js” where multiple environments can
be easily configured by changing the values of some variables or adding functionality that is only
meant to be applied to the selected environments. [12] This can be useful when running Karate
using Docker and Kubernetes.

12 Analysis of test automation tools

3.2.1.11 Screenshots and video recordings of tests
Karate can transform the HTML of the website to PDF and capture the whole web page as an
image utilising the Chrome Java API. There is furthermore an option to embed video recordings
of tests into the HTML report from a Docker container. [14]

3.2.1.12 Multifunctionality
From all of the functionalities mentioned afore, it can be assessed that Karate is a unique multi-
purpose testing framework which has a goal to keep things simple and bundled together.

All of this is helpful in case using multiple tools for testing automation is not favourable, as
it can often be demanding to teach each team member to use multiple tools.

3.2.1.13 Documentation and test examples
Karate maintains thorough documentation and offers many different test examples and usages,
which is a correct approach because it uses its syntax. Without detailed documentation and
numerous examples, this tool would not be as valuable as it is today.

The documentation can be found on the documentation website.5 Examples and another a
part of the documentation can also be found on GitHub.6

3.2.2 Required technical knowledge
The syntax of Karate is clean and straightforward. It is well suited for people new to programming
or test automation.

The users do not have to know complicated programming concepts such as “callbacks”, “async
and await” and “promises” that are common in JS. [14]

3.2.3 Set up
To set up the Karate framework, one needs a computer with macOS or Windows or Linux and
Java Development Kit (JDK) or Java SE version 8 or later to execute the Karate standalone.

In case of the need to develop and debug the tests, an Integrated Development Environment
(IDE) should be installed. Then it would be best to have a project management tool for Java,
either Maven or Gradle.

3.2.4 Integration with other tools
Karate can be run in a Docker container and run well on the cloud.

Karate has experimental support for Playwright, a framework we will talk about later because
Playwright has even more cross-browser and headless options that can connect to a server or
Docker container using the Playwright wire protocol.

IDE support and syntax-colouring options for Cucumber and Karate. Karate has an extension
for Visual Studio Code. It step-debugging and even back-stepping to edit and re-play steps. [17]
The extension can even generate API tests from OpenAPI specification.7 If the specification is
written correctly, the generated tests will work perfectly.

Karate offers asynchronous support that allows seamless integration to handle custom events
or listen to message queues.

5https://karatelabs.github.io/karate/
6https://github.com/karatelabs/karate/
7https://swagger.io/resources/open-api/

https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate/
https://swagger.io/resources/open-api/
https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate/
https://swagger.io/resources/open-api/

Selenium 13

Karate integrates well with CI/CD tools because of the standalone version. It also has Spring
Boot support.

Karate is integrable with GitLab and GitHub actions.

3.2.5 Community and support
Peter Thomas developed karate in 2017 [13]. It is relatively new multiple new features are
expected to be added. Karate is licensed under the MIT License .8

It is managed by Karate Labs Incorporated.9 It is still being maintained mostly by the
author. It has around 3 200 questions on Stack Overflow [18] many of them answered by the
creator of Karate, around 6 000 stars and 1 600 used by statistics on GitHub. [12] The author is
actively responding to GitHub issues and Stack Overflow questions.

3.2.6 Disadvantages
One of the disadvantages is that the main contributor to Karate is the author himself. The
progress can be slow if one person mostly maintains the project.

The fact that it uses its syntax can be offsetting for someone because the interoperability
with Java and JS can be problematic and bothersome.

Since the tool is relatively new and not used by many people, encountering problems that
have not yet been solved or at least asked on Stack Overflow is possible, so fixing them or asking
how to fix them is a personal responsibility.

3.3 Selenium
Selenium is probably the most widely-known and used suite of tools for testing web applications.
[19] It is often used for regression testing. The suite consists of:

Selenium IDE Is used for recording tests, executing, debugging, and generating scripts.

Selenium WebDriver Drives a browser natively, as a user would locally or on a remote machine
and marks a big step forward in browser automation. Selenium WebDriver refers to both
the language bindings and the individual browser controlling code implementations. [20] It
is designed as a simple, object-oriented and more concise programming interface.

Selenium Remote Control Is an old version of WebDriver that had to be used with an old
version of Selenium Grid.

Selenium Grid Works as a central point for managing tests on different devices and running
tests in parallel.

3.3.1 Description of features
The primary purpose of the WebDriver is to communicate with the browser. It is not a testing
tool as it cant be used to compare things, assert, pass or fail, print reports and other standard
features of test tools. To fill the spot, different frameworks come into play.

Running WebDriver in tests will require a test framework that matches the language bindings
like JUnit for Java and other similar frameworks for different languages.

The test framework is responsible for executing commands to the WebDriver and related
steps in tests. [21] A more visual example of the explanation can be found in the figure 3.3.

8https://github.com/karatelabs/karate/blob/master/LICENSE
9https://www.karatelabs.io/

https://github.com/karatelabs/karate/blob/master/LICENSE
https://www.karatelabs.io/
https://github.com/karatelabs/karate/blob/master/LICENSE
https://www.karatelabs.io/

14 Analysis of test automation tools

Figure 3.3 Image showing how the Selenium WebDriver testing process
works [21]

3.3.1.1 The JSON Wire Protocol
In the versions before Selenium 4, the JSON Wire Protocol was used for transmitting commands
to the web browser, as shown in the figure 3.4. As the Selenium Client libraries use the JSON
Wire Protocol, and the web browser uses the W3C protocol, API calls, encoding and decoding
were involved in the entire process, making the communication process slower. [22]

Figure 3.4 Overview of how Selenium WebDriver worked before
version 4 [22]

With Selenium 4, the JSON Wire Protocol is no longer supported, as can be seen in the
figure 3.5. For backward compatibility, Selenium provides Java bindings and Selenium Server.
With a focus on the W3C protocol, Java bindings will persist in being backwards compatible so
that tests working on Selenium 3 do not break on Selenium 4. [22]

Selenium 15

Figure 3.5 Overview of how WebDriver works since version 4 [22]

3.3.1.2 Browser support
Selenium additionally supports:

Internet Explorer

Safari

Opera

3.3.1.3 Test recording tool
Selenium IDE is the tool used for developing Selenium test cases. It is an easy-to-use extension
for Chrome and Firefox and is typically the most efficient method to create test cases.

It can record the users’ movements in the browser for different test cases using existing
Selenium commands, with parameters determined by the specific element’s context, which saves
much time and is also an excellent way of comprehending Selenium scripting syntax. [23]

It allows the creation of projects and individual tests inside the project. The recorded or
manually created tests can be run and debugged using Selenium IDE.

It offers several options for locating each web element, with the possibility to change the input
values for input elements. Steps can be added manually from the available list of commands and
even create comments for each test step. Exporting tests into code generated in the language
Selenium IDE offers is a great way to save time and speed up the automation process. Even the
comments will be exported into the code.

A screenshot of Selenium IDE can be found in the figure 3.6.

16 Analysis of test automation tools

Figure 3.6 Image of Selenium IDE

3.3.1.4 Supported data formats
Data formats and their transformations are not part of Selenium’s functionality.

Appropriate third-party libraries for the chosen implementation languages need to be used.

3.3.1.5 Reporting
Reporting relies on the testing framework and third-party reporting libraries. Since Selenium is
prevalent numerous reporting libraries support it.

3.3.1.6 Language support
Selenium is implemented in many officially10 and unofficially11 supported programming lan-
guages.

3.3.1.7 Parallel testing
Selenium Grid is used to execute WebDriver scripts on remote machines by routing commands
sent by the client to remote browser instances. It seeks to provide an easy method to execute
tests in parallel on multiple devices. It allows the configuration of different browser versions and
browser configurations centrally instead of configuring each test.

It solves a subset of typical delegation and distribution issues, but it will not manage the
infrastructure and might not fit some distinct requirements.

It offers a central entry point for all tests and the ability to scale and load balance the nodes.
[24]

3.3.1.8 UI automation and selectors
Selenium was the first tool to set an example of how to automate the way users navigate the
browsers — the methods of the WebDriver cover the primary commands for the browser like tab
switching and file uploading.

Selenium 4 makes it easy to navigate shadow DOMs, iFrames, Alerts and other bothersome
web elements. It offers multiple types of waits and listeners for events and event handlers.

10https://www.selenium.dev/downloads/
11https://www.selenium.dev/ecosystem/

https://www.selenium.dev/downloads/
https://www.selenium.dev/ecosystem/
https://www.selenium.dev/downloads/
https://www.selenium.dev/ecosystem/

Selenium 17

The execution speed was greatly improved by getting rid of the JSON Wire Protocol. The
methods are named and parameterised nicely, so the scripting process is genuinely intuitive.

3.3.1.9 Multifunctionality

The functionality of Selenium revolves around the WebDriver and support for it. Other tools
and frameworks need to be used in order for it to function correctly. The performance or API
testing is not part of Selenium, so other tools need to be used.

3.3.1.10 Environment configuration

Environment configuration is possible, and there are many examples of how to do it online though
it is not an easy process. It entails configuring the drivers for each browser, configuring different
pathways and taking care of many other things.

Some tools or services make it easier, but people who want to configure it themselves should
know what they are doing.

3.3.1.11 Screenshots and video recordings of tests

Selenium allows taking screenshots, but it requires a lot of external commands to save them.
Video recording is possible only with additional libraries that also need to be configured.

3.3.1.12 Documentation and test examples

Selenium maintains good documentation12 with examples in multiple languages because it is a
very known and widely used tool.

Over the years, many tutorials and articles have been published, so the pool of learning
material is enormous. Many examples, tutorials and repositories can be found in the publications.
One can learn how to configure Selenium to work well, learn how the methods work, and integrate
it with other tools properly.

3.3.2 Required technical knowledge
Selenium is a set of intuitive tools. A considerable amount of time is required to learn to use it
well. In order to utilise Selenium, it needs to be integrated with many other tools like a testing
framework, reporting library, CI configuration and Selenium Grid. . .

When someone intends to use it, they should have experience or good IT skills.

3.3.3 Set up
The setup process differs depending on the programming language chosen for the test scripts.

Nevertheless, one should install an IDE and the prerequisites for the language chosen for
the implementation. To use Selenium, one has to install the web drivers for each browser and
configure the pathway for them.

Selenium Grid needs to be configured for parallel testing, and nodes need to be connected to
it. The process is not trivial.

12https://www.selenium.dev/documentation/

https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/

18 Analysis of test automation tools

3.3.4 Integration with other tools
Numerous frameworks and libraries support Selenium, and many testing frameworks are built on
top of Selenium. Many versatile Selenium plugins and extensions were developed for the IDEs.

Selenium tests can run in Docker. Selenium has examples of integration with GitHub and
GitLab. It is favoured in testing cloud platforms. Many examples of configuring CI/CD pipelines
for Selenium can be found.

3.3.5 Community and support
Selenium was initially developed in 2004 by Jason Hugging and is currently managed by the
Software Freedom Conservancy. [25]

It is licensed under Apache License 2.0.13

It has around 95 000 questions on Stack Overflow, [26] so many problems that users can face
while using Selenium might already be solved there. Selenium gained around 30 000 stars and
141 000 used by statistics on GitHub.[27]

Users seeking support can use the bug tracker, user group, chat rooms on multiple chatting
platforms, contact sponsors and Slack.

3.3.6 Disadvantages
The test scripts can take a significant amount of time to write and maintain. To debug the code
or get to the problematic part, one needs to rerun the test.

The JSON Wired Protocol caused problems in the tests because it added an extra layer of
HTTP communication.

It needs to be used alongside many other tools and frameworks to test effectively.

3.4 Appium
Appium is an open-source tool for automating native, mobile web, and hybrid applications on
iOS and Android mobile platforms and the Windows desktop platform.

The native apps are applications written using the iOS, Android, or Windows SDK. Mobile
web apps are web apps accessed using a mobile browser. [28]

The subsequent four principles summarise the principles of Appium:

1. “You shouldn’t have to recompile an app or modify it in any way to automate it.”

2. “You shouldn’t be locked into a specific language or framework to write and run tests.”

3. “A mobile automation framework shouldn’t reinvent the wheel when it comes to automation
APIs. (it uses Selenium WebDriver)”

4. “A mobile automation framework should be open source, in spirit and practice as well as in
name!” [28]

To uphold the first principle by using the automation frameworks developed by the creators
of each platform (Apple, Google, Microsoft), implying that one does not have to compile any
additional code with an app.

The second principle is upheld by wrapping the frameworks into one API, the WebDriver API.
As discussed with Selenium, one can use any client implementation and test frameworks they
choose because Appium and WebDriver clients are automation libraries and not test frameworks.

13https://github.com/SeleniumHQ/selenium/blob/trunk/LICENSE

https://github.com/SeleniumHQ/selenium/blob/trunk/LICENSE
https://github.com/SeleniumHQ/selenium/blob/trunk/LICENSE

Appium 19

The third principle relies on WebDriver because it became a standard for automating web
browsers. Creating a new standard for mobile browsers would be a waste of time. Instead, the
protocol was extended with extra API methods useful for mobile automation.

The last one speaks for itself because Appium is open source. [28]

3.4.1 Description of features
Appium lets its users write tests on iOS, Android and Windows using the same API, enabling
code reuse between iOS, Android, and Windows test suites.

Appium can be configured to operate on an actual mobile device or an emulated mobile
device.

The core of Appium is the server that exposes a REST API and receives connections from a
client. The server executes the commands sent in by the client on a mobile device and returns an
HTTP response that represents the command execution result. This type of architecture allows
executing tests on different machines so one can configure it to run in a cloud. The server is
written in Node.js. It can be built and installed from a source or installed directly from npm.

The automation is performed in the context of a session. Clients initiate a session with a
server in ways specific to each library, but they all send a POST request to the server with a
JSON object called the “desired capabilities”. The object is used to configure the environment
where it will run the test. Upon the request’s arrival, the server will start up the automation
session and respond with a session ID used for sending further commands.

Appium Desktop is a GUI wrapper around the Appium server that can be downloaded for
any platform. It comes bundled with everything required to run the Appium server. It also
comes with an Inspector, which enables users to check out an app’s hierarchy, a feature useful
for writing tests. [28]

3.4.1.1 Browser support
Appium also supports the same browsers as Selenium does because it tries not to reinvent the
wheel and uses It for browser testing.

Most importantly, Appium supports Safari on iOS and Chrome or the built-in app for brows-
ing on Android.

3.4.1.2 Test recording tool
Appium does not offer a test recording tool, but one can use Selenium IDE for mobile browser
testing because it will use the same calls as the Selenium WebDriver.

3.4.1.3 Supported data formats
Data formats and their transformations are not part of Appium’s functionality.

Appropriate third-party libraries for the chosen implementation languages need to be used.

3.4.1.4 Reporting
Reporting relies on the testing framework and third-party reporting libraries. Many reporting
libraries support Appium.

3.4.1.5 Language support
The client libraries are implemented in various programming languages. The list of supported
languages can be found on the website14 with supported clients.

14https://appium.io/docs/en/about-appium/appium-clients/index.html

https://appium.io/docs/en/about-appium/appium-clients/index.html
https://appium.io/docs/en/about-appium/appium-clients/index.html

20 Analysis of test automation tools

Beware when using Appium. One needs to use these client libraries instead of the regular
WebDriver client. [28]

3.4.1.6 Parallel testing

Appium allows users to automate multiple Android sessions on a single device on a single server
instance. State that it is unattainable to have more than one session running on the same device.

Since Xcode9, Appium supports parallel RealDevice and Simulator testing for iOS.
All it takes is starting the Appium server on any open port and correctly configuring the

desired capabilities. [29]

3.4.1.7 UI automation and selectors

What was discussed about Selenium WebDriver accounts for Appium’s mobile browser testing
with some mobile commands added to the API.

As far as the elements of native and hybrid apps go, it takes the abilities of the integrated
frameworks that run under its hood.

The strategies for selecting can be seen in the following list:

Accessibility ID

Class name

ID

Name

XPath

Image

Android UiAutomator

Android View Tag

Android Data Matcher

iOS UIAutomation [30]

Details about the selectors can be found on the Appium elements page.15

3.4.1.8 Multifunctionality

The functionality of Appium revolves around the automation of mobile applications UI and
support for it.

Other tools and frameworks need to be used in order for Appium to function correctly,
including emulators, test frameworks, and reporting libraries.

The performance or API testing is not part of Appium, so other tools need to be used.

15https://appium.io/docs/en/commands/element/find-elements/

https://appium.io/docs/en/commands/element/find-elements/
https://appium.io/docs/en/commands/element/find-elements/

Appium 21

3.4.1.9 Environment configuration
Appium is very focused on environment configuration, and there are many examples of how to
do it locally or in the cloud. It is generally not an easy process.

It entails configuring the drivers for each browser and configuring different pathways. It
requires configuring the devices or emulators and their desired capabilities for them, including
changing values for the Appium server. . .

Some tools or cloud services make it easier. However, users who take matters into their own
hands definitively need to know a lot about the tools and processes if they want to configure and
run their tests successfully.

3.4.1.10 Screenshots and video recordings of tests
Appium allows taking screenshots [31] and recording videos. [32] Both options are configurable,
and both require some extra configuration and commands to be stored somewhere.

3.4.1.11 Documentation and test examples

Appium has useful documentation16 with examples in numerous languages.
Extensive material is online explaining how to configure the devices and projects to ensure

that everything works correctly.

3.4.2 Required technical knowledge
Appium is a heavy configuration framework it requires basic knowledge about the iOS or Android
system and the structure of its applications. When doing mobile browser testing, one also needs
to learn Selenium.

When someone intends to use it, they should have experience creating or testing mobile
applications and using mobile device emulators.

3.4.3 Set up
The setup process depends on the programming language and the mobile device chosen for the
test scripts.

Regardless, one should install an IDE and the prerequisites for the language chosen for the
implementation — getting an existing iOS or Android device or installing and configuring an
emulator, choosing the proper testing framework and configuring test scenarios. To do mobile
web testing, one has to install the web drivers for each browser and configure the pathway for
them.

Appium server needs to be installed and configured to run the tests.

3.4.4 Integration with other tools
Multiple frameworks and libraries support Appium, and many testing frameworks are built on
top of Appium and Selenium. Multiple Appium plugins and extensions were developed for the
IDEs.

Appium tests can run in Docker. Appium is well integrated with GitHub and GitLab. It
is often used in testing on cloud platforms. It is well integrated with CI, but configuration for
specific environments can be tricky.

16https://appium.io/docs/en/about-appium/api/

https://appium.io/docs/en/about-appium/api/
https://appium.io/docs/en/about-appium/api/

22 Analysis of test automation tools

3.4.5 Community and support
Appium was initially developed in 2011 by Dan Cuellar and is currently managed by the JS
Foundation. [33]

It is licensed under Apache License 2.0.17

It has around 8 000 questions on Stack Overflow, [34] which is considerable. Appium gained
around 15 000 stars and 2 600 used by statistics on GitHub. [35]

Users seeking support can use the Appium discuss forum.18

3.4.6 Disadvantages
The tests can take a significant amount of time to write and maintain due to the complexity of
the configuration and maintenance of devices and emulators.

To debug the code or get to the problematic part, one needs to rerun the test, which can be
very slow when using emulators.

It needs to be used alongside many other tools and frameworks to test effectively.

3.5 SikuliX
“SikuliX automates anything you see on the screen of your desktop computer running Windows,
Mac or some Linux/Unix. It uses image recognition powered by OpenCV to identify GUI
components. This is handy in cases when there is no easy access to a GUI’s internals or the
source code of the application or web page you want to act on.” [36]

3.5.1 Description of features
SikuliX mainly features functions for visual testing. It has commands that work well for au-
tomating repetitive tasks in daily apps, video games, administration, etc.

SikuliX uses the OpenCV package for locating an image on the screen. It is based on
OpenCV’s method matchTemplate(), which expects an even-sized or larger image (base), where
the given image (target) should be searched. [2] In the example 3, an example workflow using
SikuliX commands is shown.

openApp(someApp) # we use an application someApp
click(imageButton.png) # we click some button
wait(imageExpected.png)
we wait for the app to react and show the expected result on the screen
type(\some text"); type(Key.ENTER) # we fill in some text and press ENTER
wait(imageExpected1) # again we wait for some expected reaction or result
click(...) # we click ...

Code listing 3 Example of the workflow using SikuliX commands [2]

3.5.1.1 Browser support
SikuliX locates elements using images, and browsers have a GUI, so for every browser on a
desktop, SikuliX scripts can be written. However, it is not valid if the browser is run in headless
mode, then it does not show the GUI.

17https://github.com/appium/appium/blob/master/LICENSE
18https://discuss.appium.io/

https://github.com/appium/appium/blob/master/LICENSE
https://discuss.appium.io/
https://github.com/appium/appium/blob/master/LICENSE
https://discuss.appium.io/

SikuliX 23

3.5.1.2 Test recording tool
SikuliX IDE can set up and maintain visual workflows. [2] More will be discussed in the test
implementation part of the thesis.

3.5.1.3 Supported data formats
The primary data formats supported are images. External data must be added using other
libraries. That can be quickly done when SikuliX is used as a Java library. Otherwise, it is much
more challenging.

3.5.1.4 Reporting
Logs are used in SikuliX IDE or when it is used as a library. Further reporting needs to be
configured using other libraries.

3.5.1.5 Language support
Python 2.7 (supported by Jython, runs in SikuliX IDE)

RobotFramework text-scripts

Ruby 1.9 and 2.0 (supported by JRuby)

JavaScript (supported by the Java Scripting Engine)

SikuliX can be used in Java and with any Java aware programming/scripting language. [36]

3.5.1.6 Parallel testing
SikuliX does not support parallel testing.

3.5.1.7 UI automation and selectors
As already mentioned, SikuliX uses images as selectors for elements. It also features practical
functions for automating user actions:

Click on an element

Right click on an element

Find an element

Double click on an element

Check whether an element is present on the screen

Type a string into a text box

Wheeling on a particular image

Drag and drop an image/element

Roll hover on a particular image

Paste a copied string [37]

24 Analysis of test automation tools

3.5.1.8 Multifunctionality
It simply automates the GUI using image recognition to find elements and by simulating simple
user commands.

3.5.1.9 Environment configuration
SikuliX is not very configurable. A script written in SikuliX IDE can be executed in the IDE
or be exported and run. The screen should be ready in some predefined state when running the
script, so the script executes correctly.

When used as a library in Java, it can be reasonably configured. For example, configuring a
virtual screen is possible so it can run in the cloud.

3.5.1.10 Screenshots and video recordings of tests
Screenshots can be captured when used as a library. Additional commands need to be run to
save it, similar to Selenium. For videos, additional libraries need to be used.

3.5.1.11 Documentation and test examples
SikuliX has good documentation, but it is all over the place. Multiple versions of the documen-
tation exist on different sites. The newest documentation can be found using the link.19

The documentation lacks solid examples.

3.5.2 Required technical knowledge
Excluding SikuliX’s basic commands, users do not need programming or scripting knowledge,
but making more advanced scripts requires some knowledge of one of the supported languages.

3.5.3 Set up
SikuliX needs an actual screen running the application under test or at least an equivalent virtual
solution. SikuliX is only available on devices running Windows, macOS or Linux Moreover, it
requires Java version 8 or higher. Then it is up to the choice whether to use SikuliX IDE or use
it as a Java library.

3.5.4 Integration with other tools
SikuliX is mainly integrable with Java, which means that it can be integrated with multiple
testing frameworks. CI/CD pipelines can be configured for tests using SikuliX, but the test must
then be connected to a properly configured real or virtual screen.

Tests using SikuliX can run in a Docker container or be deployed in the cloud, but configuring
a virtual screen might not be trivial.

3.5.5 Community and support
Sikuli was started in 2009 as an open-source research project at the User Interface Design Group
at MIT by Tsung-Hsiang Chang and Tom Yeh. Both left the project in 2012. Raimund Hocke
decided to take over development and support and rename it SikuliX. [36]

It is licensed under the MIT License .20

19https://sikulix.github.io/docs
20https://github.com/RaiMan/SikuliX1/blob/master/LICENSE

https://github.com/RaiMan/SikuliX1/blob/master/LICENSE
https://sikulix.github.io/docs
https://github.com/RaiMan/SikuliX1/blob/master/LICENSE

Cypress 25

It has around 900 questions on Stack Overflow, [38] which is not much. SikuliX gained around
1 800 stars and 2 400 used by statistics on GitHub. [39]

Users seeking support can use the SikuliX launchpad.21

3.5.6 Disadvantages
Scripts written using SikuliX IDE cannot be exported to code, only to runnable JAR files.

SikuliX requires an actual screen or a virtual one. Script using reference images captured for
a screen with a specific resolution often does not work on another screen or another resolution.

It can be integrated into a sensible advanced test plan only by using Java alongside many
other tools and frameworks to test effectively.

Similar to Karate, the project is maintained primarily by one person.

3.6 Cypress

Cypress is a great front end testing tool built for the modern web. It consists of a free, open-
source, locally installed Test Runner and a Dashboard Service for recording tests. [40] Cypress
is a JavaScript testing framework based on Chai library and Mocha framework.

3.6.1 Mocha
Cypress has adopted BDD syntax from Mocha to fit perfectly with both integration and unit
testing. Mocha offers outstanding async support. Cypress has extended Mocha and fixed un-
pleasant functionalities. These fixes are all fully transparent. All of the tests in Cypress sit on
the fundamental saddle Mocha provides, specifically:

describe()

context()

it()

before()

beforeEach()

afterEach()

after()

.only()

.skip() [41]

3.6.2 Chai
Chai provides Cypress with the ability to write assertions quickly. It offers readable assertions
with exceptional error messages. Cypress extends this, fixes several typical catches, and envelops
Chai’s DSL using subjects and the .should() command. [42]

21https://answers.launchpad.net/sikuli

https://answers.launchpad.net/sikuli
https://answers.launchpad.net/sikuli

26 Analysis of test automation tools

3.6.3 Description of features
Time Travel – using the snapshots of the test run

Debugging – errors, stack traces, Chrome Devtools

Automatic Waiting – no need for sleep and waits

Spies, Stubs, and Clocks – verification of the behaviour of functions, server responses or
timers

Network Traffic Control

Consistent Results – unlike Selenium

Screenshots and Videos

Cross-browser Testing

Integration with CI/CD tools

Integration with GitHub and Slack [40]

3.6.3.1 Browser support
In addition to the browsers mentioned at the beginning of the chapter, Cypress supports Elec-
tron and Brave.

3.6.3.2 Test recording tool

Cypress provides a tool for recording tests only in the premium version named Cypress Studio.22

3.6.3.3 Supported data formats
Cypress has built-in support for JSON, YAML and text files for a good TDD setup. Other
external data files (CSV, XML) can be added easily using other JS libraries.

3.6.3.4 Reporting
Cypress uses the spec reporter to output information to STDOUT in the default configuration.

Reporters built for Mocha can be used with Cypress. Teamcity and JUnit are the two most
common third party reporters for Mocha are built into Cypress.

Creating custom reporters or using any third party reporter is supported in Cypress.
There is also a possibility of merging reports across specs and using multiple reporters. [43]
The Cypress Dashboard is a service that provides access to recorded test results. Typically

when running tests from a CI provider. The Dashboard provides insight into what transpired
when the tests ran. It is possible to add more additional record keys. The Dashboard is free to
use for non-commercial open-source public projects. [44]

3.6.3.5 Language support
Cypress supports JS and TypeScript.

22https://docs.cypress.io/guides/core-concepts/cypress-studio

https://docs.cypress.io/guides/core-concepts/cypress-studio

Cypress 27

3.6.3.6 Parallel testing
Running tests parallelly across many virtual machines can save time and money when running
tests in CI.

While parallel tests can likewise technically run on a single machine, it is not recommended
since the machine would demand significant resources to run tests efficiently.

The parallelization system is file-based. In order to use parallelization, tests will need to be
split across individual files.

The multiple machines need to be set up in the used CI tool. [45] Furthermore, parallel and
cross-browser test execution can be set up together.

3.6.3.7 UI automation and selectors
Cypress has a cy.get() command to select elements from the DOM. The command can be chained
with other command calls to get a specific element that passes the filters set by the commands
like cy.get(’.nav’).contains(’Hello’). This can be combined and makes selecting elements more
intuitive. Cypress also supports standard XPath and css selectors. Selecting elements relative
to an element is also possible in Cypress.

Usages of the get command:

cy.get(selector)

cy.get(alias)

cy.get(selector, options)

cy.get(alias, options) [46]

The cy.contains() can be used to select elemetns too. It can select elements that match a
regular expression, text, selector or even contain a number for example cy.contains(2) will select
the first element that contains number 2.

Cypress can work with the shadow DOM and iFrames, though working with iFrames is not
very intuitive. Cypress can use multiple tabs. Asserts are very intuitive.

It features retries and auto waits, but they are not ideal and sometimes do not react well to
some UI changes. This can be fixed by using manual waits.

Cypress can sometimes select multiple elements from a dynamic element, which can sometimes
be problematic.

Cypress offers useful callback functions to create aliases, debugging functions and closures
that enable to keep references around to refer to work done in previous commands. [47]

Sharing context between tests is possible using cy.fixture(). The call is used for loading a
fixed set of data located in a file.

Cypress features multiple events and ways of handling them. Like listening for uncaught
exceptions and preventing Cypress from failing the test. Listening for alert or confirm calls and
changing the confirm behaviour. This is primarily used to handle alerts in browses. Listening for
window:before:load events and modifying the window before any app code is executed between
page transitions. Listen for command:retry events to comprehend why Cypress is internally
retrying for debugging intentions. [48]

File uploading can be done only after installing a plugin.

3.6.3.8 Multifunctionality
Cypress enables writing E2E, integration and unit tests. [40]

Cypress supports UI and API testing and can test some performance aspects but probably
does not cover all of the demands for performance testing.

Cypress can be considered a multifunctional tool for testing modern web applications.

28 Analysis of test automation tools

3.6.3.9 Environment configuration
Environment variables in Cypress are helpful when:

Values should be different across developer devices.

Values should be different across multiple environments: (dev, staging, qa, prod)

Values change frequently and are highly dynamic.

Cypress also has OS-level variables. Environment variables can be created and modified easily
in 6 different ways:

1. Configuration file (cypress.json)

2. cypress.env.json (new file)

3. CYPRESS * (OS-level)

4. –env (CLI)

5. Plugins

6. Test configuration [49]

3.6.3.10 Screenshots and video recordings of tests
Cypress can take screenshots manually using the cy.screenshot() command, and it captures
screenshots automatically on a failed test run. However, Screenshots on failure are not auto-
matically taken during cypress open. Capturing screenshots on a test failure can be turned off
entirely.

Screenshots are stored in cypress/screenshots by default. Cypress removes any existing screen-
shots before cypress run. This feature can be turned off. [50]

Cypress records a video per spec file when running tests during cypress run. Videos are not
automatically recorded during cypress open. Video recording can be turned off.

After the cypress run completes, the video is automatically compressed to make the file size
smaller. It compresses to a 32 CRF by default, but this is configurable.

Using the –record flag for running tests, videos are processed, compressed, and uploaded to
the Dashboard Service after every spec file runs. To only process videos if tests fail can be
set in the configuration.

Videos are stored in cypress/videos by default. Cypress removes any existing videos before a
cypress run. This feature can also be turned off. [50]

3.6.3.11 Documentation and test examples
Authors of the documentation believe that their documentation should be approachable, enabling
readers to understand the what fully and why. [40]

The authors achieved their goal well. This documentation discusses all of the aspects of the
tool in detail. It has numerous links for easier orientation and offers a vast amount of examples.
Example projects were created to showcase most of the features in Cypress.

It might have the best documentation of the analysed tools.

3.6.4 Required technical knowledge
Users should have basic knowledge of JS, programming concepts, HTML, CSS and an overview
of how websites function to use Cypress.

Cypress 29

3.6.5 Set up
Cypress is a desktop application that needs to be installed.

The application supports these operating systems:

macOS 10.9 and above (64-bit only)

Linux Ubuntu 12.04 and above, Fedora 21 and Debian 8 (64-bit only)

Windows 7 and above (64-bit only)

Node.js is 12 or 14 and above is required for installing Cypress using npm. Alternatively, it
can be directly downloaded. [51]

3.6.6 Integration with other tools
Many third-party IDE extensions and plugins help integrate IDE with Cypress.

For VSC:

Cypress Fixture – IntelliSense

Cypress Helper

Cypress Snippets

Open Cypress

Test Utils

Intelligent Code Completion [52]

For IntelliJ:

Cypress Support

Cypress Support Pro [52]

Free extensions for test recording a then script generation exist, but they are much worse than
the tool in the premium version.

Integrations with Jira are allowed in the premium version, but it is still possible to code the
integration using Jira API and JUnit reporter. [53]

Cypress has excellent integration with Slack for notifications about test results. [54]
It has numerous different guides and examples of integrations with various CI tools. Including

official guides for GitHub actions and GitLab CI, CircleCI, Bitbucket pipelines, AWS Codebuild.
Cypress tests are often available in testing clouds. [55]

Cypress probably offers the most significant amount of integrations from the analysed tools.

3.6.7 Community and support
The first commit on Cypress happened in 2014. [56] It is an open-source tool managed by
Cypress.io.

It is licensed under the MIT License.23

It has around 6 000 questions on Stack Overflow, [57] which is a considerable number. Cypress
gained around 38 000 stars and 409 000 used by statistics on GitHub. [58] Making it a popular
tool with a big community.

Users seeking support can use the Stack Overflow, Git issues or Gitter.24

23https://github.com/cypress-io/cypress/blob/develop/LICENSE
24https://gitter.im/cypress-io/cypress

https://github.com/cypress-io/cypress/blob/develop/LICENSE
https://gitter.im/cypress-io/cypress
https://github.com/cypress-io/cypress/blob/develop/LICENSE
https://gitter.im/cypress-io/cypress

30 Analysis of test automation tools

3.6.8 Disadvantages
One disadvantage could that that Cypress is mainly for JS.

Some of the capabilities of Cypress in the premium version are available for free in other
tools.§

File uploading can be done only after installing a plugin.

3.7 Puppeteer
Puppeteer is a Node.js library which provides a high-level API to manage Chrome or Chromium
over the DevTools Protocol. Puppeteer operates in the headless mode by default but can be
configured to operate full (non-headless) Chrome or Chromium. [59]

3.7.1 Description of features
Aims of Puppeteer:

1. Create a slim, canonical library that emphasises the powers of the DevTools Protocol.

2. Supply a reference implementation for similar testing libraries. Eventually, these other frame-
works could adopt Puppeteer as their foundation.

3. Increase the adoption of headless/automated browser testing.

4. Aid testing new DevTools Protocol features!

5. Discover more about the pain points of automated browser testing and help seal those cracks.
[59]

Chromium principles adapted by Puppeteer:

1. Speed: Puppeteer has nearly zero performance overhead over an automated page.

2. Security: Puppeteer operates off-process to Chromium, making it safe to automate potentially
malicious pages.

3. Stability: Puppeteer should not be flaky and should not leak memory.

4. Simplicity: Puppeteer provides a high-level API that’s easy to use, understand, and debug.
[59]

Puppeteer operates over Google Chrome directly without requiring additional tools like drivers.
Setting up automated scripts is faster and simpler.

3.7.1.1 Browser support
Puppeteer supports chromium-based browsers, but experimental Firefox support is available.

3.7.1.2 Test recording tool
Free extensions are available on GitHub and Chrome Web Store. They are mostly not very
advanced but they work.

3.7.1.3 Supported data formats
Other JS libraries need to be used for supporting external data because Puppeteer is not built
for this.

Puppeteer 31

3.7.1.4 Reporting
Puppeteer does not support reporting. It only outputs logs and error traces. Integrating Pup-
peteer into testing requires using it with a JS testing framework.

3.7.1.5 Language support
Puppeteer is only available in JS.

3.7.1.6 Parallel testing
It is possible to run Puppeteer scripts in parallel. Primarily by using third party libraries.

3.7.1.7 UI automation and selectors
Puppeteer supports the following type of selectors:

Type selector

Class selector

ID selector

Attribute selector

XPath selector [60]

Puppeteer also uses Selectors API. Navigation in Puppeteer is done using the page object.
Things like opening a new page, going back and forward in the page navigation history and
reloading a page.

By default, the viewport is 800x600px and can be set to a different value.
Emulating a device can be done by setting the user agent to a specific device and setting the

viewport accordingly.
Puppeteer can get the HTML source of a page and can handle multiple tabs, iFrames and

shadow DOM. However, it is a bit challenging. Using eval() it is possible to get an object from
DOM and perform actions on it. Puppeteer allows usingJS functions in the page context. Mouse
and keyboard operations are available in Puppeteer. Puppeteer can focus on elements and type
values into them. Generating a PDF from a page can also be done using Puppeteer. Setting the
content of a page is possible too.

Waiting for events and handling them is also part of Puppeteer. It is often used on alerts.
Puppeteer extends the EventEmitter object from Node.js. [61]

Pupetteer has no asserting capabilities. They have to be added using other libraries.

3.7.1.8 Multifunctionality
Puppeteer can be used in API testing, but it was not created. It can intercept the GET request for
the website, change it to another request, and add the body and awaiting the script constructed
is wired. Other tools should be used for the purpose.

3.7.1.9 Environment configuration
Puppeteer is a library, so it is up to the user how he configures the tool in different environments.
It does not come with a particular configuration file.

32 Analysis of test automation tools

3.7.1.10 Screenshots and video recordings of tests
Puppeteer can take a screenshot of the page, saving it to the filename selected using the path as
a parameter. Video recording in Pupeteer is only possible using third party libraries.

3.7.1.11 Documentation and test examples
Puppeteer has technical documentation25 that is not too user-friendly but provides good insights
for developers. The documentation has some examples, but they are not abundant.

3.7.2 Required technical knowledge
To use Puppeteer, a user should have a solid knowledge of JS and the web because it will require
different configurations and integrations to use as a proper testing tool.

3.7.3 Set up
To set up the development process in Puppeteer requires a desktop with Windows, macOS or
Linux. The newest version of Node.js and an IDE.

3.7.4 Integration with other tools
Puppeteer can be naturally integrated into a lot of different JS testing frameworks. Some exten-
sions for IDE make the development of Puppeteer scripts a bit easier, but there are not many
of them. It can be integrated with multiple different CI tools. It can run in a Docker container.
Few testing clouds support Puppeteer.

3.7.5 Community and support
Puppeteer was released in 2018. It is an open-source tool managed by Google.

It is licensed under the Apache License 2.0.26

It has around 6 500 questions on Stack Overflow, [62] which is a considerable number. Pup-
peteer gained around 76 000 stars and 197 700 used by statistics on GitHub. [59] It is a popular
tool with a large community.

There are many ways to get help on Puppeteer, but most problems are discussed on Stack
Overflow and GitHub issues.

3.7.6 Disadvantages
Puppeteer has no asserting capabilities.

Requires a lot of work and integration with other tools to be used it as a proper testing tool.
Puppeteer is not very beginner-friendly.

3.8 Playwright
Playwright is a framework for automated web testing. It allows testing Chromium, Firefox and
WebKit with a single API. Playwright enables cross-browser web automation that is ever-green,
capable, reliable and fast.[63]

25https://pptr.dev/
26https://github.com/puppeteer/puppeteer/blob/main/LICENSE

https://github.com/puppeteer/puppeteer/blob/main/LICENSE
https://pptr.dev/
https://github.com/puppeteer/puppeteer/blob/main/LICENSE

Playwright 33

3.8.1 Description of features
Cross-browser Playwright supports all modern rendering engines, including Chromium, We-

bKit, and Firefox.

Cross-platform Test on Windows, Linux, and macOS, locally or on CI, headless or not.

Cross-language] Use the Playwright API in TypeScript, JS, Python, .NET, and Java.

Test Mobile Web Native mobile emulation of Google Chrome for Android and Mobile Safari.
The same rendering engine works on the Desktop and in the Cloud.

Auto-wait Playwright waits for elements to be actionable prior to performing actions. It also
features a rich set of introspection events. Combining the two eliminates the need for artificial
timeouts – the primary cause of breakable tests.

Web-first assertions Playwright assertions are explicitly created for the dynamic web. Checks
are automatically retried until the necessary conditions are met.

Tracing Configure test retry strategy, capture execution trace, videos, and screenshots to elim-
inate flakes.

Trusted events Hover elements, interact with dynamic controls, and produce trusted events.
Playwright uses real browser input pipeline indistinguishable from the actual user.

Test frames, pierce Shadow DOM Playwright selectors pierce shadow DOM and allow en-
tering frames seamlessly.

Multiple everything Test scenarios that run multiple tabs, multiple origins and multiple users.
Create scenarios with different contexts for different users and run them against a server, all
in one test.

Browser contexts Browsers run web content belonging to different origins in different pro-
cesses. Playwright is aligned with the architecture of the modern browser and runs tests
out-of-process, making Playwright free of the typical in-process test runner limitations.

Log in once Playwright can save the authentication state of the context and reuse it in all the
tests.

Codegen Playwright can generate tests by recording user actions and saving them in any lan-
guage.

Playwright inspector Inspect page, generate selectors, step through the test execution, see
click points, and explore execution logs.

Trace Viewer Capture all the information to investigate the test failure. Playwright trace
contains test execution screencast, live DOM snapshots, action explorer, test source, etc. [63]

3.8.1.1 Test recording tool
Codegen is great when used with Playwright inspector. The tool is free but not quite as
convenient as Selenium IDE.

3.8.1.2 Supported data formats
Third-party libraries are recommended to be installed to operate with external data.

34 Analysis of test automation tools

3.8.1.3 Reporting
By default, Playwright generates an excellent HTML web page report with all necessary infor-
mation about the executed tests, including everything about tracing described in the features.
Debugging tests are made much easier with the default reporter and other valuable tools Play-
wright provides. Multiple reporters can be used, and it can aggregate results from the sharded
executions into one. The reporter can be easily changed and configured in the configuration file.

3.8.1.4 Parallel testing
Playwright Test executes tests in parallel. It runs several worker instances that operate at the
same time. Tests in a single file are run in the order in the same worker process but can be
configured to run in a single file in parallel. The whole project can be configured to have all tests
run in parallel. Limits for workers and failed tests can be set. Test executions can be sharded
to run different parts of the test execution on multiple machines. Parallelism can be disabled by
limiting the number of workers to one. [64]

3.8.1.5 UI automation and selectors
Playwright uses Puppeteer as one of the essential layers of the program.

Playwright supports standard XPath and CSS selectors . It also features a text selector,
filter by another locator, inside CSS selector, n-th element selector, role selectors, id, name and
supports some combinations. [65]

Playwright Test uses expect library for test assertions. This library provides many matching
functions like toEqual, toContain, toMatch, toMatchSnapshot and more. [66]

It supports mobile testing using mobile browsers and has experimental features for Android.
Alerts are handled using events similar to Puppeteer. File uploading can be done by default

but is not configured intuitively.
The syntax is usually intuitive and logical.
Tests are executed swiftly.

3.8.1.6 Multifunctionality
Playwright is a reliable multifunctional tool for testing modern web apps. It supports API
testing, and the tests in Playwright look very similar to the ones in Cypress. It can also be used
in performance testing a bit but not in most aspects.

3.8.1.7 Environment configuration
Playwright provides options to configure the default browser, context, page fixtures, screenshots
and videos. For example, there are options for headless, viewport and ignoreHTTPSErrors.

There are many testing options like timeout or testDir that configure how tests are collected
and executed. Options can be set globally in the configuration file, most locally in a test file.

Each project can be configured separately and run a different set of tests with different
options. Options can be set to configure which tests should the project run and how should they
be set up and teardown. This is useful for configuring tests to run in different environments. [67]

3.8.1.8 Documentation and test examples
Playwright has beautiful example-rich and user-friendly documentation. Examples are avail-
able in Typescript and JS. The documentation is well connected using links and contains setup
examples in different CI tools.

TestCafe 35

3.8.2 Required technical knowledge
Users of Playwright should have basic knowledge of JS, HTML, CSS and programming concepts.

3.8.3 Set up
Playwright requires a desktop with Windows, macOS or Linux. The newest version of Node.js
and an IDE.

3.8.4 Integration with other tools
Playwright can be integrated with Slack, but the integration is not official.

A pre-built Docker image is available, which can be used directly or as a reference to edit
existing Docker definitions. CI set-up is available in the documentation for GitHub actions,
GitLab, AWS pipelines, CircleCI, Jenkins and Bitbucket Pipelines. [68]

Mocking can be integrated into Playwright.
Useful extensions are primarily available for VSC like a test runner and a few for IntelliJ

tools.

3.8.5 Community and support
Playwright was released in 2020. [69] A big part of the team previously working on the Puppeteer
currently work on Playwright. Playwright is under the management of Microsoft.

Playwright is licensed under the Apache License 2.0.27

It has around 800 questions on Stack Overflow, [70] which is not a lot because it is new.
Playwright gained around 35 000 stars and 11 000 used by statistics on GitHub. [71] It is becoming
a more popular tool and is growing an extensive community.

Users seeking help can visit GitHub issues, Stack Overflow or might try their luck on Microsoft
support.

3.8.6 Disadvantages
It is relatively new and does not offer official integrations for Jira, Slack or Microsoft teams.
Playwright does not support DDT by default.

3.9 TestCafe

TestCafe is a JS framework running on Node.js, and it aims to simplifiy E2E testing.

3.9.1 Description of features
TestCafe additionally supports TypeScript. It uses the browsers already installed on the system
and does not require WebDriver. It can do cross-browser testing without manual timeouts and
using cumbersome boilerplate expressions. Resulting in less time tracking down annoying issues
and more time doing what matters most, which is writing code in a framework with very intuitive
syntax. [72]

27https://github.com/microsoft/playwright/blob/main/LICENSE

https://github.com/microsoft/playwright/blob/main/LICENSE
https://github.com/microsoft/playwright/blob/main/LICENSE

36 Analysis of test automation tools

3.9.1.1 Browser support
In addition to browsers supported by all analysed tools, TestCafe supports:

Internet Explorer

Safari

Opera

3.9.1.2 Test recording tool
The test recording tool is only available in the premium version.

3.9.1.3 Supported data formats
TestCafe does not have built-in support for data formats to be used for DDT, excluding JSON,
but since it is a JS tool, many other libraries can help.

3.9.1.4 Reporting
TestCafe has following built-in reporters:

spec

list

minimal

xUnit

JSON

The default reporting setting is set to spec. It primitively reports to the CLI, so another reporter
should probably be configured instead. A custom reporter can be created to fulfil one’s needs.
The community has developed custom reporters for Slack, NUnit, TeamCity and Tesults. [73]

3.9.1.5 Parallel testing
TestCafe has a concurrent mode to run multiple browser instances simultaneously. It can be
enabled using the concurrency configuration file property. With concurrency enabled, tests are
run in parallel, decreasing the execution time of the test suite, but requiring more resources from
the test environment. The headless mode of browsers can be used to speed up execution time.
[74]

3.9.1.6 UI automation and selectors
In TestCafe, it is possible to create custom selectors and import them to tests, an interesting
feature that seems to complicate things redundantly. By default, it does not support XPath, but
the implementation can be found and imported from GitHub.

Using the Selector object allows filtering elements in DOM by chaining different methods
and using matches by index, text, attribute, visibility or relativity to a selected element like
a parent, child, next sibling, or previous sibling. The selector object also allows shadow root
navigation. DOM node state can also be accessed. TestCafe also supports framework-specific
selectors (React, Angular, etc.). [75]

TestCafe supports basic user action methods, including file uploading, iFrames and handling
dialogues.

TestCafe 37

Smart assertions that can do retries. For asserting the BDD inspired expect method is used.
Regex can be used for matching text. Page element properties can be accessed for assertion. [76]

TestCafe has a speed variable that can be changed in the configuration to speed up or slow
down the pace of tests. TestCafe features request mocking and server-side caching to speed up
some parts of the tests.

Roles can be used for user authentication. It takes data from cookies, sessionStorage and
localStorage. [74]

3.9.1.7 Multifunctionality
The functionality of TestCafe revolves around user E2E testing. It does not support API testing
and probably should not be used for performance testing.

3.9.1.8 Environment configuration
Launch options can be specified from CLI.

A configuration file can be either in JSON or JS. JS is the better option because it is dynamic.
The configuration file allows managing many settings like browsers, reporters, screenshots,

videos, debugging, concurrency, timeouts, variables, etc.
The export command can be used to create an environment variable, and it can be accessed

using the process.env property. [77]

3.9.1.9 Screenshots and video recordings of tests
TestCafe allows taking screenshots of the tested webpage and recording videos of test runs.
Options can be configured, and screenshots can also be taken arbitrarily using takeScreenshot()
method. [78]

3.9.1.10 Documentation and test examples
The documentation of TestCafe is clear and well optimized for orientation. It features good
examples of how to use methods or configure some parameters. Implemented tests can be found
on the official GitHub.

3.9.2 Required technical knowledge
Users of TestCafe should have solid knowledge of JS, HTML, CSS, DOM structure, programming
concepts and should definitively read the documentation.

3.9.3 Set up
To set up TestCafe, one should possess a desktop with Windows, macOS or Linux, and have the
newest version of Node.js, IDE and some time to read the documentation, import commands
from GitHub, and configure the framework to work well.

3.9.4 Integration with other tools
Thankfully for community members, TestCafe reports can be integrated with Slack. [73]

The documentation features numerous guides on configuring TestCafe to run using different
CI tools like GitHub actions, GitLab, Jenkins, etc. [79]

A few extensions for TestCafe are also available for IDEs.
TestCafe it can be run on BrowserStack, SauceLabs and LambdaTest testing clouds.

38 Analysis of test automation tools

3.9.5 Community and support
TestCafe was released in 2016. [80]

TestCafe is under the management of Developer Express Incorporated.
It is licensed under the MIT License.28

It has around 1 600 questions on Stack Overflow, [81] which sounds OK.
TestCafe gained around 9 300 stars and 10 200 used by statistics on GitHub. [82] TestCafe

has a good community of users and is not unknown, but it can be probably said that this tool
will grow but not much.

More focus might be put on their premium version than the open-sourced one, but the team
is reportedly committed to the open-source community and is actively upgrading TestCafe.

Users seeking help can visit GitHub issues, Stack Overflow.

3.9.6 Disadvantages
TestCafe does not create the configuration file upon installing from npm.

Documentation needs to be read extensively before starting development.
The selector object is complicated initially, and importing selectors from GitHub is not ideal.

3.10 Nightwatch.js

NightwatchJS is an integrated, easy to use, E2E testing solution for browser-based applications
and websites and is running on Node.js. It uses the W3C WebDriver APIto perform commands
and assertions on DOMelements.

NightwatchJS has a clean and simple syntax so that tests can be written swiftly. It comes
with a built-in test runner, it has support for page objects within the framework, and it can be
easily extended to create items like custom reporters.[83]

3.10.1 Description of features
NightwatchJS is an integrated, easy to use, E2E testing solution for browser-based applications
and websites and is running on Node.js. It uses the W3C WebDriver API to perform commands
and assertions on DOM elements.

NightwatchJS has a clean and simple syntax so that tests can be written swiftly. It comes
with a built-in test runner, it has support for page objects within the framework, and it can be
easily extended to create items like custom reporters.[83]

Cloud Testing Support Works with BrowserStack out of the box and other clouds can be
easily added.

WebDriver Service Manages Selenium or WebDriver services (ChromeDriver, GeckoDriver,
Edge, Safari) automatically in a separate child process.

Continuous Integration JUnit XML reporting is built-in for integrating tests in the build
process with systems such as Teamcity, Jenkins, CircleCI etc.

Plugin API Flexible command and assertion framework makes it easy to implement custom
plugins and extend the built-in commands and assertions APIs. [83]

28https://github.com/DevExpress/testcafe/blob/master/LICENSE

https://github.com/DevExpress/testcafe/blob/master/LICENSE
https://github.com/DevExpress/testcafe/blob/master/LICENSE

Nightwatch.js 39

3.10.1.1 Test recording tool

Free extensions are available on Chrome Web Store or GitHub for generating NightwatchJS
scripts, but they are not customisable, but they will record some of the actions, and that should
suffice.

3.10.1.2 Supported data formats

Similar to JS frameworks mentioned before excluding Cypress, NightwatchJS does not have built-
in support for data formats to be used for DDT, excluding JSON. However, since it is a Node.js
tool, additional libraries can solve the problem.

3.10.1.3 Reporting

By default, NightwatchJS reports into the console, which can be changed using third party or
custom reporters.

3.10.1.4 Parallel testing

Parallel testing can be configured in the test runner settings.

3.10.1.5 UI automation and selectors

NightwatchJS allows locating web elements using the element() object for CSS and XPath se-
lectors or particular Nightwatch selector objects. However, methods that switch between the
two need to be called in the browser context, making it strange. NightwatchJS allows usage
of Selenium locators and instances of WebElement objects, which makes it easy for Selenium
users to select. [84]

Since WebElement instances are available in NightwatchJS supports its methods.
NightwatchJS features standard user actions and offers advanced methods like keyDown()

and keyUp() for the keyboard and press() and release() for the mouse. Alerts, iFrames and file
uploading are handled intuitively. [85]

Ensure API allows waiting until a specific condition is met regarding the state of DOM.
[86]

The built-in extendable assert/verify library is available as two namespaces containing the
same methods which perform assertions on elements:

.assert Upon failing an assertion, the test terminates, skipping all other assertions.

.verify Upon failing an assertion, the test logs the failure and resumes with further assertions.

Negate assertions are available for both versions of calls to negate the assertion logic. For ex-
ample, browser.assert.not.visible(’.visible’) should fail because the element is visible even though
we wanted it not to be visible.

Assertions can automatically retry, and timeout can be configured. [87]

3.10.1.6 Multifunctionality

NightwatchJS is a good E2E testing tool, and it is not made for API and performance testing.

40 Analysis of test automation tools

3.10.1.7 Environment configuration
The nightwatch.json file allows managing many settings like test suites, sources, environments,
browsers, reporters, screenshots, concurrency, timeouts, variables, etc.

Multiple environments of test settings can be defined so that they can overwrite specific
values per environment. A “default” environment is demanded. An environment inherits all the
base settings and settings defined under the “default” environment and can overwrite settings as
required. [88]

3.10.1.8 Screenshots and video recordings of tests
Configurable screenshots are built-in and can also be taken arbitrarily. Recording videos can be
done using third party libraries.

3.10.1.9 Documentation and test examples
The documentation contains detailed information for developers and many usage examples. How-
ever, it is not orientation friendly and well displayed.

3.10.2 Required technical knowledge
Users should be on a similar level recommended for Playwright, they should have basic knowledge
of JS, HTML, CSS, DOM structure, programming concepts.

3.10.3 Set up
The set-up process is identical to TestCafe and Playwright.

3.10.4 Integration with other tools
NightwatchJS can be unofficially integrated with Slack. [89]

It can run in a Docker container [90].
It integrates with CI tools, but guides or examples are not available in the documentation.
A small number of extensions for IDEs exists, but it is still better than nothing.

3.10.5 Community and support
NightwatchJS was created in 2014 by Andrei Rusu. [83]

NightwatchJS is under the management of BrowserStack.
It is licensed under the MIT License.29

It has around 1 600 questions on Stack Overflow, [91] which is roughly the same as TestCafe.
NightwatchJS gained around 11 100 stars and 133 000 used by statistics on GitHub. [92]

NightwatchJS is highly configurable, which opens a window for the skilful users from the com-
munity to create and share their modifications and plugins. It has the potential to grow.

Users seeking help can visit GitHub issues, Stack Overflow and Discord. The team is com-
mitted to the open-source community and actively upgrades NightwatchJS and adds exciting
features like Selenium support.

29https://github.com/nightwatchjs/nightwatch/blob/main/LICENSE.md

https://github.com/nightwatchjs/nightwatch/blob/main/LICENSE.md
https://github.com/nightwatchjs/nightwatch/blob/main/LICENSE.md

TestProject 41

3.10.6 Disadvantages
It is only avalivable in JS.

Switching between XPath and CSS selectors should be removed, and the selectors should be
united.

The documentation could be made better for exploration.

3.11 TestProject

TestProject is a great free E2E automation platform for web, mobile, and API testing that is
built on top of Selenium and Appium.

Most testing can be done using TestProject from the browser on the platform, but there is
also an offline version available if storing data in the cloud is a problem.

3.11.1 Description of features
Easy to get started with The TestProject recorder is a powerful and easy to use record and

playback tool that helps anyone get started with making tests with a minimal learning curve

Full team collaboration Test automation works best when the whole team can work together
on the same platform. TestProject makes sharing tests between team members straightfor-
ward and simple

Extensibility There is a library of shared add-ons available to help extend the default capabil-
ities of TestProject. Teams of people can also create their add-ons to simplify the work.

Integration into existing workflows TestProject has an API that can run within existing
continuous integration workflows. It also has a developer SDK that allows creating or im-
porting existing tests that users might have into the platform.

Cross Browser and Cross Platform Creating and running mobile tests (Android and iOS)
is possible. TestProject can be installed on any Windows, macOS and Linux. It only takes a
quick install to access testing on all connected platforms and browsers instantly.

Reliable Technology TestProject uses reliable and proven technology like Selenium and Ap-
pium for a robust and well-understood way of interacting with web pages.

Free! The Free plan that TestProject offers is unparalleled in test automation in terms of features
and capabilities. TestProject is a powerful and fully-featured product that anyone can use
for free. [93]

3.11.1.1 Browser support
In addition to browsers supported by all analysed tools, TestProject supports Safari and Inter-
net Explorer. It supports running in headless mode. It can connect to browsers installed on
the device where an agent is running and to SauceLabs.

3.11.1.2 Test recording tool
The test recording tool must be the best free test recording tool currently available. More is
covered in the implementation part of the thesis.

42 Analysis of test automation tools

3.11.1.3 Supported data formats
DDT is supported in TestProject using parameters. External data can be uploaded in CSV
format. [94]

3.11.1.4 Reporting
Reporting is done by default, and the reports look astonishingly professional. The reporting
menu is described in detail with images in the implementation part of the thesis.

3.11.1.5 Language support
TestProject has SDK available in Python, Java and C#.

3.11.1.6 Parallel testing
A parallel task, likewise known as an Agent Worker, can be a test/job execution, recording, or
OpenSDK development session. Running tests and jobs in parallel demands extra resources and
capabilities from the machine they are utilising. Appropriate settings must be configured for the
Agent, so it does not starve the CPU and memory. There are options to run browsers or tests
in parallel or both simultaneously. [95]

3.11.1.7 UI automation and selectors
Web automation in TestProject runs Selenium under the hood, so it offers all of Selenium’s
commands and selectors. The commands can be accessed using OpenSDK or better in the test
creation menu in the browser. Simply by finding the command in the menu and changing its
parameters, inputs and output from the UI without writing code. By chaining further commands
step by step, a test is created.

The commands include asserting, file uploading, iFrame switching, alert handling, etc. Fur-
thermore, when the usual commands are not enough using multiple add-ons is possible in a few
clicks.

This could also be a great way to utilise the work of complete beginners while giving them a
platform to comprehend some of the abstract concepts.

The tests written in the browser can be exported into code written in chosen language running
on OpenSDK, and tests written using OpenSDK can be imported to the platform.

More is covered in the implementation part of the thesis.

3.11.1.8 Multifunctionality
TestProject is a multifunctional tool as it can be used in API testing using cleverly designed add-
ons with commands in which asserting the response and saving the output can be configured. It
can also test mobile applications and allows offline and online development.

3.11.1.9 Environment configuration
Configuration of test and project parameters can be done in TestProject. Tests can be organised
in different folders, and the values of parameters can be changed for different environments.

3.11.1.10 Screenshots and video recordings of tests
TestProject can be configured to take screenshots on different occasions or by simply execut-
ing the command for taking a screenshot.Videos can be currently recorded by integrating with
BrowserStack, which costs money, or by coding the functionality using OpenSDK.

WebdriverIO 43

3.11.1.11 Documentation and test examples
The documentation of TestProject is written well and offers plenty of visual examples. Articles
discussing aspects or containing tutorials for TestProject are available on their website.

3.11.2 Required technical knowledge
The users should know how to use a computer and be aware of the website structure. A total
beginner in testing and programming can handle it with some guidance.

3.11.3 Set up
Firstly, an account must be created for TestProject. Then a TestProject Agent must be down-
loaded and installed on the selected device along with the browsers. After the installation, the
Agent should be configured and registered to the created account with an API key. The setup
is ready, and tests can be created and executed. [96]

3.11.4 Integration with other tools
TestProject can be officially integrated with Jenkins, TeamCity, CircleCI, GitHub and GitLab
CI tools.

It can also be integrated with Slack, and email notifications can be set up too. [97]
TestProject Agent can run in a Docker container [98] and even on Kubernetes. [99]
Finally, it can be integrated with BrowserStack and SauceLabs cloud testing services. [97]

The integration guide can be found in the documentation.

3.11.5 Community and support
TestProject was publicly launched in 2018.

TestProject is currently under the management of Tricentis. [100]
It is offered as a free forever service, and the OpenSDK is licensed under the Apache License

2.0.30

Users seeking help can visit their forum or contact the team directly from the project using
the help-seeking window. The support is said to be responsive.

The team and the open-source community actively upgrade TestProject and add new exciting
add-ons.

3.11.6 Disadvantages
Using TestProject in the cloud mode can be a problem when under maintenance. The tests are
inaccessible.

Importing tests to the platform can be challenging.

3.12 WebdriverIO
WebdriverIO is a modern Node.js E2E test automation framework that allows running tests based
on the W3C WebDriver protocol or Chrome DevTools Protocol and Appium. [101] WebdriverIO
offers third-party integrations that make testing and debugging a lot more efficient. [102]

30https://github.com/testproject-io/java-opensdk/blob/master/LICENSE

https://github.com/testproject-io/java-opensdk/blob/master/LICENSE
https://github.com/testproject-io/java-opensdk/blob/master/LICENSE
https://github.com/testproject-io/java-opensdk/blob/master/LICENSE

44 Analysis of test automation tools

3.12.1 Description of features
WebdriverIO Framework can be configured to Page Object Model. It does not restrict origins.
Testers can automate them unconditionally. It is highly extendable so that users can customize
the framework as they please. [103]

3.12.1.1 Browser support
WebdriverIO additionally supports Internet Explorer and Safari. [104]

3.12.1.2 Test recording tool
Katalan Recorder is an extension for Chromium browsers that allows test recording and code
generating. An extension for WebdriverIO syntax export can be added to it.

3.12.1.3 Supported data formats
Similar to JS frameworks mentioned before excluding Cypress, WebdriverIO does not have built-
in support for data formats to be used for DDT, excluding JSON.

3.12.1.4 Reporting
WebdriverIO reports to the console by default but comes with a vast list of reporters that can be
easily configured instead, like JUnit, Video, HTML, JSON and Mochawesome Reporters. The
list is far from over. [103]

3.12.1.5 Language support
Scripts are mainly written in JS, but TypeScript support can be configured. [103]

3.12.1.6 Parallel testing
Users can configure WebdriverIO to launch multiple instances and execute tests parallelly by
changing the settings of max instances and grouping tests into suites. [105]

3.12.1.7 UI automation and selectors
WebdriverIO supports Jasmine and Mocha testing frameworks and the Cucumber framework.
[106]

By default, WebdriverIO has a built-in assertion library that uses the expect() function. It
allows powerful assertions on various aspects of the browser or elements within the web page. It
extends Jests Matchers functionality with additional E2E testing optimized matches.[107]

It has no interactive or development mode. Debugging can be done using available debug
methods and installing third-party integrations that simplify debugging. [103]

Scenarios using an iFrame can be automated using simple web driver commands. Webdrive-
rIO supports switching to and from multiple windows and tabs. It tries to shorten the length of
scripts by using the $ and $$ characters for selectors compared to other analysed JS tools. It
features XPath and CSS selectors and many other valuable selectors that use link text, name,
tag, id and deep selectors for shadow DOM. It also has numerous selectors for mobile devices.
[108]

It can intuitively handle alerts and upload files. WebdriverIO can use mocks and spies and
add custom commands. [103]

WebdriverIO 45

3.12.1.8 Multifunctionality
The primary purpose of WebdriverIO is E2E testing which is why it cannot be used in API
testing. It is integrable with PerformanceTotal. [109] Google Lighthouse can also be
integrated using the Devtools service. [110] Both integrations enable measuring performance
during testing, but that does not make WebdriverIO a performance testing tool because it lacks
functionalities.

3.12.1.9 Environment configuration
The configuration file is located in wdio.conf.js. Similarly to a configuration file used by Night-
watch.js, it is used to configure test suites, outputs, reporting, parallel execution, drivers, time-
outs, hooks, etc. [111] Importantly, test suites and environmental variables can be configured
there as well.

3.12.1.10 Screenshots and video recordings of tests
Screenshot saving can be configured and also invoked using the WebDriver API. Video recording
can be set up using a video reporter. [112]

3.12.1.11 Documentation and test examples
The documentation is user friendly and well-linked. It provides appropriate examples and guides
for integrations and services.

3.12.2 Required technical knowledge
Users should be on a similar level recommended for Playwright and NightwatchJS, they should
have elementary knowledge of JS, HTML, CSS, DOM structure, programming concepts.

3.12.3 Set up
The setup is analogous to other JS frameworks. It requires a desktop with a suitable operating
system and having Node.js at least v12.16.1 or higher installed. [113]

3.12.4 Integration with other tools
WebdriverIO provides support for multiple BDD/TDD test frameworks and will run tests lo-
cally or in the cloud using Sauce Labs, BrowserStack, TestingBot, LambdaTest, Cross-
BrowserTesting and Perfecto. Regarding CI tools WebdriverIO supports GitHub actions,
Jenkins, Bamboo and Travis CI. [101]

WebdriverIO can run in a Docker container. [114]
It supports numerous services, including Slack [115] and Microsoft Teams. [116]
Autocomplete extensions were developed for VSC and IntelliJ IDE. [117]

3.12.5 Community and support
The first releases of WebdriverIO could be seen in 2013. [102] WebdriverIO is under the man-
agement of JS Foundation.

It is licensed under the MIT License.31

31https://github.com/webdriverio/webdriverio/blob/main/LICENSE-MIT

https://github.com/webdriverio/webdriverio/blob/main/LICENSE-MIT
https://github.com/webdriverio/webdriverio/blob/main/LICENSE-MIT

46 Analysis of test automation tools

It has around 1 500 questions on Stack Overflow, [118] which is a bit less than TestCafe and
NightwatchJS.

WebdriverIO gained around 7 500 stars and 40 700 used by statistics on GitHub. [102]
Help can be found on Stack Overflow, Slack, Gitter and GitHub discussions. [119]

3.12.6 Disadvantages
The syntax of WebdriverIO can be confusing for beginners.

No reliable test recording tools are available.
It needs to be initially configured a lot to be valuable.

3.13 Summary
In this chapter, the tools were analysed in-depth on their capabilities and shortcomings.

Cucumber has an interesting approach to testing with its feature files and function mappings,
but it is definitively not for everyone. Each team should decide if it is worth it for them. I
would not recommend it, as writing the functions matching specific steps is constraining and
bothersome.

Selenium and Appium have presented themselves as valuable tools that drive other tools and
frameworks. Selenium was used in Nightwatch.js, TestProject and WebdriverIO, and Appium
was used in Karate, TestProject and WebdriverIO.

Karate has shown that it is a jack of all trades that simplifies syntax and tries to keep all
testing within one framework.

SikuliX emerged as a helpful accessory that can be integrated into a custom Java testing
framework with other tools.

TestProject is an unbelievably beneficial beginner-friendly tool that probably beast most of
the tools in terms of the quality of functionalities in its default settings. It appeals to me the most
from all of the analysed tools. Though its strength is its weakness, having everything available
on the cloud is great, but it is a free service, so security and availability can be concerning.
However, when set up in the offline mode, a part of its functionality and simplicity is traded for
configuration and data management.

Regarding JS frameworks, Cypress and Playwright are the most developer-friendly, advanced,
and popular. If having a lot of different integrations and services readily available is an essential
factor for selection, then WebdriverIO would be a great candidate.

Nightwatch.js has exciting capabilities, but I would not choose it over Cypress and Playwright
due to the development experience that can be had with those tools.

TestCafe did not impress me with a missing XPath selector and other parts of its func-
tionalities. Coding selectors by making operations with DOM can be a memorable exploratory
experience, but not when the goal is to write a test, then not so much.

Concerning fact can be that Cypress and TestCafe offer premium versions of their products
that have functionalities that other open-source frameworks offer for free, like test recording and
professionally looking reporting. The developers might focus on the premium aspect more than
the open-source one, and the tool might start to deteriorate in the eyes of the community.

Chapter 4

Quantitative analysis

For the quantitative analysis part of the thesis, a decision was made to create a Google sheet
table to compare the tools using weighted parameters. These parameters will try to categorize
a tool using objective and subjective metrics on which should be the tools graded.

The grades are then summed into total, and the tool with the highest points is considered the
most recommended (with the selected weights). The explanation for grading of each parameter
and the entire table can be found using a link.1

Explanation for chosen parameters:

Browser support In E2E, testing a web application’s browser support is crucial. More browsers
supported means more points for the tool.

Test recording tool It is very convenient for the developer of the test scripts if the tool allows
him to record his test as if he was the actual user of the app and just recorded scenarios. It
is a massive bonus if the tool offers a test recording capability. The better the recording tool
is, the more points it gets.

Required technical knowledge If the tool is hard to use, configure or has a steep learning
curve, it gets fewer points.

Supported data formats Many tests use data for input and output, which is especially im-
portant in DDT. The more formats they support, the better points they get.

Reporting Reporting is paramount for the testing process. The reports need to be in a suitable
format and preferably exportable.

Language support This parameter is essential if the codebase should be based in a specific
language or if having an option to write tests in many languages is advantageous.

Parallel testing This parameter is crucial for the rapid execution of the tests.

Web UI automation This is an integral part of the UI aspect of the test automation. It grades
the tools on how they handle certain parts of web elements and other aspects of UI testing.

API testing If the tool includes API testing, it gets more points. They get fewer points if API
tests can be run in the same script but using different libraries.

Performance testing If the tool includes performance testing, it gets more points. They get
fewer points if performance tests can be run in the same script but using different libraries.

1https:
//docs.google.com/spreadsheets/d/1mzyTKND-6bCwpxybEJpuiv5uQWvMIPGpBKQxkoqyzf8/edit#gid=699299515

47

https://docs.google.com/spreadsheets/d/1mzyTKND-6bCwpxybEJpuiv5uQWvMIPGpBKQxkoqyzf8/edit#gid=699299515
https://docs.google.com/spreadsheets/d/1mzyTKND-6bCwpxybEJpuiv5uQWvMIPGpBKQxkoqyzf8/edit#gid=699299515

48 Quantitative analysis

Development platform variability Development platforms are Windows, macOS, and Linux.
Point per supported platform.

Environment configuration Meaningful category when it is essential to run tests in different
environments like VM, Cloud, Desktop, Mobile, Emulator, or it is essential to configure
different parameters.

Set up difficulty The harder it is to install the prerequisites and configure the run and devel-
opment environment, the fewer points it gets.

Maintenance How hard is it to maintain the tests, configurations, and devices. The harder it
is, the fewer points it gets.

Integration with other useful dev tools This is a vital category because, in a modern envi-
ronment, the tools should be integrable with many other tools like CI/CD or communication
tools.

Community/Support This parameter rates the tool by downloads, community, age and com-
pany size.

Screenshots and Video recordings of tests This parameter is useful for reporting and de-
bugging.

Multifunctionality This parameter is vital if it is crucial to have one tool for everything and
minimize the need to use many different tools for each part of the testing.

Documentation and test examples This is important, especially if a user needs to get started
with the tool or needs to find out how the tool works. The more convenient the documentation
and vast the examples are, the more points for the tool.

Selectors This is also an important parameter that touches on Web UI automation. The more
selectors the tools support or if it has any other exciting capabilities with selecting web
elements, the more points it gets.

4.1 Browser support
Table 4.1 shows points given to tools if they support the browser.

One point was given if it supported the browser, and 0 points were given if the tool did not
support it.

Browser Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Chrome 1 1 1 1 1 1 1 1 1 1 1 1

Firefox 1 1 1 1 1 1 1 1 1 1 1 1

Edge 1 1 1 1 1 1 1 1 1 1 1 1

Internet explorer 1 1 0 1 0 0 0 1 1 1 1 1

Safari 1 1 0 1 1 1 0 1 1 1 1 1

Headless mode 1 1 1 0 1 1 1 1 1 1 1 1

Opera 0 1 0 1 1 1 0 1 0 0 0 1

Sum 6 7 4 6 6 6 4 7 6 6 6

Table 4.1 Table with supported browsers

4.2 Data formats
In the table 4.2 one can see points given to tools according to how they support data types.

Two points were given if the tool had built-in support for the data type, One point was given
if the tool could be integrated with other libraries that support the data type. 0 points were
given if the tool did not support the data type.

Language support 49

Data type Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

CSV 2 1 1 1 1 1 1 1 1 2 1 1

JSON 2 1 2 1 1 2 2 2 2 2 2 1

XML 2 1 1 1 1 1 1 1 1 2 1 1

YAML 2 1 2 1 1 1 1 1 1 2 1 1

Text files 1 1 2 1 1 1 1 1 1 2 1 1

Sum 9 5 8 5 5 6 6 6 6 10 6

Table 4.2 Table with supported data formats

4.3 Language support
Table 4.3 displays points given to tools if they support the programming language meaning that
it is possible to implement test scripts in them, or it offers interoperability or bindings.

One point per supported language and 0 points were given otherwise.

Language Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Java 1 1 0 1 1 1 0 0 0 1 0 1

Javascript 1 1 1 0 1 1 1 1 1 0 1 1

Python 0 1 0 1 1 1 0 0 0 1 0 1

Ruby 0 1 0 1 1 0 0 0 0 0 0 1

PHP 0 1 0 0 1 0 0 0 0 0 0 1

C# 0 1 0 0 1 1 0 0 0 1 0 1

Other 1 1 1 0 1 1 1 1 0 1 0 1

Sum 3 7 2 3 7 5 2 2 1 4 1

Table 4.3 Table with programming languages

4.4 Dev platforms
All tools got 3 points per supported platform (macOS, Windows, Linux).

4.5 Reporting
Table 4.4 shows tools rated on their reporting capabilities like logging and showing test steps
having an excellent report with graphs, and having the ability to export the report.

The first two parameters were graded 0 or 1 depending on whether the tool supported the
feature or not. The other parameters were rated on an integer scale from 0 to 2, depending on
the quality of supportability.

Reporting type Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Logs 1 1 1 1 1 1 1 1 1 1 1 1

Test steps 1 1 1 0 1 1 0 1 0 1 1 1

Graphs 1 1 1 1 1 1 1 1 1 2 2 1

Report format 2 1 1 1 1 2 1 1 1 2 2 1

Exporable report 1 1 1 1 1 1 1 1 1 2 1 1

Sum 6 5 5 4 5 6 4 5 4 8 7

Table 4.4 Table with reporting parameters

4.6 Selectors
The tools are rated on their selector capabilities in the figure 4.5.

One point is given to the tool for supporting the following type of selectors: CSS selectors,
XPath selectors, Images (using image recognition), Selecting relative to some elements, Mobile
app selectors and Desktop app selectors. If the selector is not supported, 0 points are given.

50 Quantitative analysis

The “custom useful selectors” parameter is rated from 0 to 2 points based on the subjective
experience of the benefit and sophistication of the custom selectors.

Selector Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

CSS selectors 1 1 1 0 1 1 1 1 1 1 1 1

XPath selectors 1 1 1 0 1 1 1 1 1 1 1 1

Custom useful selectors 1 1 2 1 1 2 1 1 1 2 2 1

Images 1 0 0 1 0 0 0 0 0 0 1 1

Relative to some elements 1 1 1 1 1 1 0 0 1 1 0 1

Mobile app selectors 1 0 0 0 1 0 0 0 0 1 1 1

Desktop app selectors 1 0 0 0 1 0 0 0 0 0 0 1

Sum 7 4 5 3 6 5 3 3 4 6 6

Table 4.5 Table with supported selectors

4.7 Web UI
This section contains a rating of the tools for handling some of the main aspects of browser
testing and some general testing capabilities. The results can be found in the table 4.6.

Most of the parameters are rated mixed on objective and subjective criteria on their intu-
itiveness of implementation or presence. Details about grading can be found in the Google sheet.

Capability Karate Selenium Cypress Sikuli and SikuliX Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Waits 2 2 2 1 2 3 2 2 2 3 3 1

Events 1 2 2 1 2 2 2 2 1 2 2 1

Alerts 2 2 2 2 2 1 1 1 2 2 2 1

Asserting 2 1 2 1 1 2 1 2 2 2 2 1

Mobile support 2 0 1 0 2 1 1 1 2 2 2 1

Execution speed 3 2 2 1 1 3 3 2 2 2 2 1

iFrame 2 2 1 2 2 2 2 2 2 2 2 1

Shadow root 1 2 2 2 2 2 1 2 1 1 2 1

Multiple tabs 1 1 1 1 1 1 1 0 1 1 1 1

File upload 2 2 1 0 2 2 2 2 2 2 2 1

Syntax 2 2 2 2 2 2 1 1 1 2 2 1

Data driven 2 1 2 1 1 1 1 1 1 2 1 1

Debugging 1 1 1 1 1 1 0 1 0 1 1 2

Sum 24 21 22 16 22 24 18 20 19 25 21

Table 4.6 Table with Web UI parameters

4.8 Community
In this section, the tools were rated using the following criteria:

Stack Overflow questions Because it is an important place for developers to ask questions.
More questions answered or asked means more problems addressed.

GitHub stars and used by statistics Reflect popularity and community.

Downloads Enumerate the popularity of the tool.

Responsible authority Is a criterium to categorize the size of the team managing the tool. It
makes a huge difference whether a tool is managed by one man or a team from a company
like Microsoft or Google.

Support This parameter rated the tools by the platforms that the responsible authorities to
answer questions from other developers using the tools.

Age Is a crucial factor. The older the tool is, the more people got into contact with it. That
includes written articles about the tools, tests written with the tools, YouTube or other
tutorials published about the tool, etc.

Integration 51

These parameters were sorted into different groups selected by closest intervals of size, age,
etc., and given points according to the group they were put in.

The results can be found in the table 4.7.
Statistic Karate Selenium Cypress Sikuli and

SikuliX
Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Stack overflow questions 3200 95000 6000 900 8000 800 6500 1600 1600 13 1500 1

Github stars 6000 30000 38000 1700 15000 35000 76000 9300 11100 200 7500 1

Github used by 1600 140000 409000 2400 2600 11000 197700 10200 133000 - 40700 1

NPM downloads - 3000000 4000000 - - 2000000 3000000 250000 187000 - 1000000 1

Other downloads - 130000000 - 400000 20000000 - - - - 102000 - 1

Responsible authority Karate Labs Inc. Software Freedom Conservancy Cypress.io Sikuli Lab OpenJS Foundation Microsoft Google Developer Express Inc. BrowserStack Tricentis OpenJS Foundation 1

Age 2017 2004 2014 2012 2011 2020 2018 2016 2014 2017 2013 1

Support Stack overflow, Github issues Bug tracker, user group, chat
rooms (multiple platforms),
sponsors, Slack

Gitter, Stack
overflow,
Github issues

Questions and
Bugs on their
website

Appium discuss Microsoft
support, Github
issues

Github issues,
Stack overflow

Github issues, Stack
overflow

Github, Discord,
Stack overflow

Help articles,
Contact us

Slack, Github
discussions, Gitter

1

Stack overflow questions in points 2 4 3 1 3 1 3 2 2 1 2 1

Github stars in points 1 3 3 1 2 3 4 1 2 1 1 1

Github used by in points 1 2 4 1 1 2 3 1 2 1 1 1

Downloads in points 1 3 2 1 2 2 2 1 1 1 2 1

Responsible authority in points 1 3 2 1 3 4 4 2 2 3 3 1

Age in points 1 4 2 3 3 1 1 2 2 1 3 1

Support in points 2 2 2 1 1 2 2 2 2 1 2 1

Sum 9 21 18 9 15 15 19 11 13 9 14

Table 4.7 Table with community parameters

4.9 Integration

Integration with other tools is a valuable perk for an automation tool. It involves posting a
notification about a completed test run to a Slack channel or Microsoft Teams. Automatically
create a Jira test execution report after the test run is finished. Running in a Docker container
and integrating well with popular CI/CD tools like GitLab and Jenkins.

This is why the tools are rated on how well they integrate with other devices in this section.
The tools were rated for the existence of integration. It was either non-existent (or not found),

so it got 0 points, or it existed, but it required usage of third-party libraries to get 1 point, or
the creators of the tool officially supported the integration, then it got 2 points.

The important cloud and CI/CD tools like AWS, Azure pipelines, and GitLab got the point
per found integration. Other CI tools were counted into a CI category, and the tool got 1 point
per supported CI tool.

All tools can be used in testing that can be reported to Jira using its API, but some offer a
more advanced integration, so they got an additional point.

All tools are usable with the Cucumber framework.
All tools can be run in a Docker container though SikuliX needs a virtual display configuration

to function.
For someone testing, clouds are an essential service to satisfy ones testing needs. Nevertheless,

for the default configuration of the table, the weights for these parameters were lowered because
it does not go well with the open-source theme.

The results can be seen in the table 4.8.

Tool Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Slack 0 0 2 0 0 1 1 1 1 2 1 1

Microsoft teams 0 0 1 0 0 0 0 0 0 2 1 1

Github actions 1 1 2 1 2 2 1 2 2 2 2 2

GitLab 1 2 2 1 2 2 2 2 2 2 2 2

CI (Circle CI, Jenkins, Bitbucket...) 3 6 12 6 6 3 6 6 1 4 2 0.1

Testing clouds 0 8 7 1 15 9 6 3 5 2 6 0.1

Cucumber 1 1 1 1 1 1 1 1 1 1 1 2

Jira 0 1 1 0 1 1 1 1 0 0 1 1

Docker 1 1 1 1 1 1 1 1 1 1 1 3

Mocking 2 1 2 1 1 2 1 2 1 1 2 1

AWS 1 1 1 1 1 1 1 1 0 1 1 1

IDE plugins or extensions 2 2 1 1 1 2 1 2 1 2 2 1

Azure pipelines 1 1 1 0 1 1 1 1 1 1 1 1

Sum 15.3 18.4 23.9 12.7 20.1 22.2 18.2 21.9 17.6 22.6 22.8

Table 4.8 Table with supported integrations

52 Quantitative analysis

4.10 Summary
The values found in Sum row of tables from previous sections are used as values in the rows
corresponding to the names of previous sections. This decision was made to lower the number
of rows in the final table and split relative parameters into relevant tables. The final table 4.9
contains all parameters in one table.

In the row labelled Total one can see the sum of all points multiplied by their weights. The
tool with the most points is TestProject and can be seen as a winner and the best tool in the
bunch. However, that is not necessarily the truth.

The table is designed with weights in order for individuals to emphasise what they value or
want from their tool more. Better integration, mobile support, multifunctionality? The emphasis
can be changed by adjusting the weight. The result might end up entirely differently. Moreover,
some of the parameters are purely subjective, so the grades given to them by the author might
differ from grades given by someone else. There is also a possibility that the grading system for
some of the parameters is not good or the parameter itself is useless. Alternatively, there might
be a possibility that there are not enough grades or parameters. This is why an editable version
of the Google sheet is available.2 Anyone interested can modify it according to their own needs
and rate it by the parameters suitable to their needs.

Regarding the results using the normalised version where the max score is 100, it is apparent
that tools like Cypress, TestProject and Playwright are presentably not far from each other in
the score. All of them are popular tools and could be an excellent choice for the right team.

TestProject is likely the winner because it is free and can work in the cloud or offline. It can
be managed from a browser, and the default capabilities of the tool are excellent. Writing cross-
browser tests without code only using UI is great because beginners can do so it can cut costs.
The add-ons add great functionality in a few clicks. The reports look great and if having it in the
cloud is bothersome, running it on other servers is possible while adding personal integrations
and configurations.

In other bulk of close results, we can see Karate, Selenium, Cypress, Appium and WebdriverIO.
Each could have gotten its most significant share of points from different parameters.

Nightwatch.js and TestCafe seem not on the same level of JS testing frameworks as Playwright
and Cypress, as this analysis showed.

Puppeteer proved to be a helpful tool mainly when combined with other tools. SikuliX might
come off as a loser here, but it is still an excellent tool for automating UI without a need to know
the structure of the application.

The Google sheet made available even has a quality list where one can see tools asses according
to some of their qualities. Using a link,3 one can go to the Google Drive folder with editable
unsorted material used to create this thesis.

2https:
//docs.google.com/spreadsheets/d/1C_r5Bwvej2QhFhL0OQ4hrdZTy8iNv0dbnnCovvWrzqw/edit#gid=699299515

3https://drive.google.com/drive/folders/1CWG_o-luwJAgWFsJxKpsEDqEXV5z4hDL?usp=sharing

https://docs.google.com/spreadsheets/d/1C_r5Bwvej2QhFhL0OQ4hrdZTy8iNv0dbnnCovvWrzqw/edit#gid=699299515
https://docs.google.com/spreadsheets/d/1C_r5Bwvej2QhFhL0OQ4hrdZTy8iNv0dbnnCovvWrzqw/edit#gid=699299515
https://drive.google.com/drive/folders/1CWG_o-luwJAgWFsJxKpsEDqEXV5z4hDL?usp=sharing

Sum
m

ary
53

Capability Karate Selenium Cypress Sikuli and
SikuliX

Appium Playwright Puppeteer TestCafe Nightwatch.js TestProject WebdriverIO Weight

Browser support 6.00 6.00 4.00 6.00 6.00 6.00 4.00 7.00 6.00 6.00 6.00 1.00

Test recording tool 0.00 3.00 1.00 1.00 2.00 3.00 1.00 1.00 1.00 3.00 1.00 2.00

Required technical knowledge 2.00 1.00 2.00 3.00 1.00 2.00 1.00 2.00 1.00 3.00 2.00 2.00

Supported data formats 9.00 5.00 8.00 5.00 5.00 6.00 6.00 6.00 6.00 10.00 6.00 1.50

Reporting 6.00 5.00 5.00 4.00 5.00 6.00 4.00 5.00 4.00 8.00 7.00 2.00

Language support 3.00 7.00 2.00 3.00 7.00 5.00 2.00 2.00 1.00 4.00 1.00 1.00

Parallel testing 2.00 1.00 1.00 0.00 1.00 2.00 1.00 1.00 1.00 2.00 2.00 2.00

Web UI automation 24.00 21.00 22.00 16.00 22.00 24.00 18.00 20.00 19.00 25.00 21.00 1.50

API testing 3.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00 1.00 3.00 1.00 1.00

Performance testing 2.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

Development platform variability 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.00

Environment configuration 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00

Set up difficulty 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00

Maintenance 1.00 1.00 2.00 0.00 0.00 2.00 0.00 1.00 1.00 2.00 2.00 1.00

Integration with other useful dev tools 15.30 18.40 23.90 12.70 20.10 22.20 18.20 21.90 17.60 22.60 22.80 1.00

Community/Support 9.00 21.00 18.00 9.00 15.00 15.00 19.00 11.00 13.00 9.00 14.00 1.50

Screenshots and Video recordings of tests 1.00 1.00 2.00 1.00 2.00 3.00 2.00 2.00 2.00 2.00 3.00 1.00

Multifunctionality 2.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 3.00

Documentation and test examples 3.00 4.00 4.00 2.00 4.00 3.00 2.00 3.00 2.00 3.00 3.00 2.00

Selectors 7.00 4.00 5.00 3.00 7.00 5.00 3.00 3.00 4.00 6.00 6.00 1.50

Total 141.80 143.90 152.40 97.20 140.60 158.20 114.60 128.90 114.60 161.60 143.30

Normalised 87.75 89.05 94.31 60.15 87.00 97.90 70.92 79.76 70.92 100.00 88.68

Table 4.9 Complete table with all of the parameters.

54 Quantitative analysis

Chapter 5

Test implementation

In this chapter, the analysed tools will be put under practical use.
The introduced demo application will be tested using tools analysed in the previous chapters.

The implementations will be commented on and compared.

5.1 Introduction of the demo application
The demo application is called Seat Reservation Demo and was provided for testing purposes by
the supervisor. In the figure 5.1 one can see an architectural diagram of the application.

55

56 Test implementation

Figure 5.1 Diagram of Seat Reservation Demo [120]

5.1.1 Functionality
All requests from the frontend component are sent to the API component. API component
then sends the requests further to the backend component via Kafka or HTTP. The backend
component can send a notification request via Kafka to the mail sender application. [120]

The front end was changed from the original to provide a file upload functionality for testing
purposes and is hosted on a free Vercel website,1 and can be seen in the figure 5.2. Vercel is a
free deployment platform for JS applications. The front end is connected to the backend hosted
on the Stratox Cloud Native servers.

1https://demo-app-fe.vercel.app/

https://demo-app-fe.vercel.app/
https://demo-app-fe.vercel.app/

Introduction of the demo application 57

Figure 5.2 Front end of Seat Reservation Demo

58 Test implementation

5.1.1.1 Create Reservation
After filling and submitting a reservation form in the frontend component, a request is sent to
the API component, which sends the request to the backend component via Kafka. The backend
component sets the reservation status to ACCEPTED, saves the reservation into a database and
sends a notification to the mail sender via Kafka. The mail sender sends an email notification.
[120]

5.1.1.2 View of Reservations
After clicking on the button Get Reservations, a request is sent to the API component, which
sends the request to the backend component via HTTP. The backend component finds the last
50 created reservations and sends the reservations back to the API component and API back to
the frontend. The front end generates a table with all the reservations received from the backend.
When a reservation has the status ACCEPTED, a button Cancel Reservation is shown in the
STATUS column. [120]

5.1.1.3 Cancel Reservation
After clicking the Cancel Reservation button, a request with an id of the reservation selected to be
cancelled is sent to the API component, which sends the request to the backend component via
Kafka. The backend component finds the reservation, sets its status to CANCELED and sends
a notification request to the mail sender via Kafka. The mail sender sends an email notification.
[120]

5.2 Test plan
Part of the thesis assignment is to create a test plan and implement it using the analysed tools.

In some tools that offer API testing the following requests will be tested:

POST Request for creating a reservation

GET Request for getting the last 50 created reservations

PUT Request for canceling a reservation

The API tests will send either a valid or invalid request to the backend of the demo application
and assert that the response status and message are correct.

The functionalities of the demo application can be tested using the following test plan com-
prised of three scenarios. The scenarios are described using the Gherkin syntax.

5.2.1 Scenario 1
Scenario 1 is shown in the example 4, and it describes a user visiting the front end of the
application, filling in all of the details, and sending the reservation. After which, the user should
be notified with an alert acknowledging the success of creating the reservation.

Test plan 59

Scenario: Create a new reservation using the front end of the demo application.
Given the user opens a browser
When the user enters the demo application
Then the user should see the reservation details
When the user enters all of the necessary information
And clicks the Submit button
Then the user should see an alert with a message:
Reservation created successfully
And the user closes the browser

Code listing 4 Scenario 1 in the Gherkin syntax

5.2.2 Scenario 2
Scenario 2 is shown in the example 5, and it describes a user visiting the front end of the
application after creating the reservation in Scenario 1. The views the created reservations and
cancels the first one shown in the reservations table. After dealing with alerts presented by the
browser, the user should see that status of the reservation has changed.

Scenario: Get a list of reservation and cancel the latest reservation
that you created in the Scenario 1.

Given the user opens a browser
When the user enters the demo application
And the user already created a reservation
When the user clicks the Get Reservations button
Then the user should see an alert with a message:
Get reservations view is successful
When the user clicks the OK button in the alert view
Then the user should see the table with the latest 50 reservations
When the user clicks the Cancel Reservation button located
in the first row of the reservation table
Then the user should see an alert with a message:
Reservation canceled successfully.
When the user clicks the OK button in the in the alert view
Then the user should see an alert with a message:
Get reservations view is successful
When the user clicks the OK button in the alert view
Then the status of the first reservation
in the reservation table should be CANCELED
And the user closes the browser

Code listing 5 Scenario 2 in the Gherkin syntax

5.2.3 Scenario 3
This scenario describes a user visiting the front end of the application, filling in all the details
correctly except for the email address by not adding the @ character. The user will not be able
to create a reservation after submitting the reservation and will be hit with a temporary message
box from the email input informing him that the email is not in the correct format. The scenario
can be seen in the example 6.

60 Test implementation

Scenario: Try to create a new reservation but enter the invalid email address.
Given the user opens a browser
When the user enters the demo application
Then the user should see the reservation details
When enters the email address without the @ symbol
And clicks the Submit button
Then the user should see not see an alert with a message:
Reservation created successfully
And the user closes the browser

Code listing 6 Scenario 3 in the Gherkin syntax

5.3 Implementation of the test plan
In this section, the implementations written using the analysed tools are shown, discussed and
compared. The code written for the can be found on GitHub2 and will be a part of the attached
media.

README.md is available in the folders of the implementation, instructing users on how to
install the prerequisites and run the tests. To run the tests, Node.js and Java should be installed.

A third party library Faker, will be used for Java3 and JS4 for generating data that will be
used for inputting data to the front end and API requests.

5.3.1 Selenium
In the file located in the folder with code implementation SeleniumDemo/src/test/java/com/se-
leniumdemo/DemoAppTest.java one can see an implementation of the test scenarios using Java
and JUnit library with Selenium WebDriver commands.

As shown in the example 7 before each test, objects are initialised, and parameters can be set
to change the properties of the web drivers. It is possible to initialise different drivers for different
browsers used during the testing. For this implementation, the Chrome driver was chosen. At
the end of each test, the driver is shut down.

2https://github.com/oslaksam/CodenowDemoAppTestExamples
3https://github.com/DiUS/java-faker
4https://github.com/faker-js/fakerprojects

https://github.com/oslaksam/CodenowDemoAppTestExamples
https://github.com/DiUS/java-faker
https://github.com/faker-js/faker projects

Implementation of the test plan 61

private WebDriver driver;
private Map<String, Object> vars;
private JavascriptExecutor js;
private Faker faker;
private final String URL = "https://demo-app-fe.vercel.app/";

@BeforeEach
public void setUp() {

System.setProperty("webdriver.chrome.driver",
"src/test/resources/chromedriver.exe");
driver = new ChromeDriver();
js = (JavascriptExecutor) driver;
vars = new HashMap<String, Object>();
faker = new Faker();

}

@AfterEach
public void tearDown() {

driver.quit();
}

Code listing 7 Example of Selenium and JUnit configuration of the tests

Most of the code was generated using the Selenium IDE, which records the scenarios. The
project in which scenarios are recorded can be found in SeleniumDemo/DemoSelenium.side and
can be imported into Selenium IDE.

As shown in the example 8, the syntax of the WebDriver API is straightforward, and com-
mands are understandable, handling alerts is intuitive. Selenium IDE generated the comments
in the code. All implemented scenarios can be found in the above mentioned Java code file. To
run the tests, the project can be loaded into an IDE, favourably IntelliJ IDEA and run from
there or can be compiled using Maven (mvn clean install). In the created target directory, there
will be an executable JAR that will run the tests.

5.3.1.1 Cucumber
To show how an implementation of the Cucumber framework could look like, it was decided
to use the Selenium implementation. The scenarios written in Gherkin syntax can be found in
SeleniumDemo/src/test/resources/features/demoapp.feature.

The difference between the implementation with and without the Cucumber framework is
that in the Cucumber framework, there is a different runner to use. It is specified where the
feature file is and where the glue is. This runner is located in SeleniumDemo/src/test/java/-
com/cucumberselenium/DemoAppCucumberTest.java. How the runner looks like in code can be
seen in the example 9.

62 Test implementation

@Test
@Order(1)
public void createReservation() {

// Generated by Selenium IDE
// Test name: Create a reservation
// Step # | name | target | value
// 1 | open | / |
// Open the website
driver.get(URL);
// 2 | setWindowSize | max |
// Resolution
driver.manage().window().maximize();
// 3 | click | css=.rs-picker-toggle-value |
// Click on date selector
driver.findElement(By.cssSelector(".rs-picker-toggle-value")).click();
...
// 10 | type | name=firstName | Sony
// Type in the name
driver.findElement(By.name("firstName")).sendKeys(faker.name().firstName());
...
// 15 | type | name=file | C:\fakepath\file.random
// Type in the path to the selected file
driver.findElement(By.name("file")).sendKeys("C:\\file.random");
// 16 | click | xpath=//button[contains(.,'Submit')] |
// Click on the submit button
driver.findElement(By.xpath("//button[contains(.,'Submit')]")).click();
// 17 | assertAlert | Reservation created successfully |
// Wait for an alert and assert that the reservation was created successfully
Alert alert = new WebDriverWait(driver, Duration.ofSeconds(3))

.until(driver -> driver.switchTo().alert());
assertEquals(alert.getText(), "Reservation created successfully");
alert.accept();

}

Code listing 8 Example showing part of the Selenium implementation
of Scenario 1

@RunWith(Cucumber.class)
@CucumberOptions(
features = {"classpath:features/demoapp.feature"},
glue = {"com.cucumberselenium"},
plugin = {"pretty", "html:target/cucumber-reports"})

public class DemoAppCucumberTest {
}

Code listing 9 Example of Java Cucumber test runner

The glue is the code used in implementation, but it is redistributed into methods that cor-
respond to steps in the feature file. The glue can be found in SeleniumDemo/src/test/java/-
com/cucumberselenium/ReservationSteps.java.

As shown in the example 10, Cucumber makes it a bit more complicated to write tests as the
mapping required for the scenario steps. It is up to the team that decides to use the Cucumber
framework if it seems beneficial to them or not. It is possible to generate the functions mapped

Implementation of the test plan 63

to feature file steps using an IDE with some Cucumber plugins, but the rest of the code must be
written by someone.

@And("clicks the Submit button")
public void clicksTheSubmitButton() {

// 16 | click | xpath=//button[contains(.,'Submit')] |
// Click on the submit button
driver.findElement(By.xpath("//button[contains(.,'Submit')]")).click();

}

@Then("the user should see an alert with a message: Reservation created successfully")
public void theUserShouldSeeAnAlertWithAMessageReservationCreatedSuccessfully() {

// 17 | assertAlert | Reservation created successfully |
// Wait for an alert and assert that the reservation was created successfully
alert = new WebDriverWait(driver, Duration.ofSeconds(3))

.until(driver -> driver.switchTo().alert());
assertEquals(alert.getText(), "Reservation created successfully");
}

Code listing 10 Example of Java Cucumber steps

5.3.2 Appium
The implementation for Appium was almost the same as the implementation for Selenium, as it
used the WebDriver API. The significant difference was in the configuration of the device. For
this example, an emulated Android Device was used.

The Android Studio needed to be installed for its Virtual device management capabilities.
The virtual device had to be selected configured in terms of virtual size and the Android version
and emulator API. A Google Pixel phone with android version code name Tiramisu was used for
this implementation. The emulated phone can be seen in the figure 5.3.

64 Test implementation

Figure 5.3 Image showing an emulated Android device

To get the tests running, Appium Server needs to be configured and run. For this implemen-
tation, Appium Server GUI for Windows was chosen, and an example of a running server can be
seen in the figure 5.4.

Figure 5.4 Image showing a running Appium Server

Implementation of the test plan 65

The difference in code can be seen in the example 11. The difference is in the driver con-
figuration. Instead of using a Selenium WebDriver, the Appiums AndroidDriver is used. The
pathway to the Chrome driver is set in the capabilities, and the Chrome driver will be used to
execute the tests in the Chrome installed on the emulated device.

private AndroidDriver driver;

@BeforeEach
public void before() throws MalformedURLException {
DesiredCapabilities caps = new DesiredCapabilities();
//caps.setCapability("VERSION", "10.0");
caps.setCapability("deviceName", "emulator-5554");
caps.setCapability("platformName", "Android");
caps.setCapability("browserName", "chrome");
//Replace withou your path to chromedriver.exe
caps.setCapability("chromedriverExecutable", "C:\\chromedriver.exe");
driver = new AndroidDriver(new URL("http://0.0.0.0:4723/wd/hub"), caps);
}

Code listing 11 Example of the Appium test configuration in JUnit

5.3.3 Karate
It was previously stated that the syntax of Karate is based on the Gherkin syntax from Cucumber.
There are IDE extensions available that can help with syntax highlighting, and there is also an
excellent Karate extension for Visual Studio Code that allows code generation.5

For this example, the OpenAPI specification of the demo application was used and converted
to a YAML file available in KarateDemo/src/test/java/demoapp/openapi.yaml the generated
tests are working well if the specification is well defined. The example data in OpenAPI is often
used as testing data. The generated test and data can be seen in the folder KarateDemo/sr-
c/test/java/demoapp. Test data is stored in the test-data folder and the generated tests are in the
cancelReservationUsingPUT.feature, createReservationUsingPOST.feature and getViewOfReser-
vationsUsingGET.feature files. The generated code example can be seen in the example 12.

5https://marketplace.visualstudio.com/items?itemName=KarateIDE.karate-ide

https://marketplace.visualstudio.com/items?itemName=KarateIDE.karate-ide

66 Test implementation

@operationId=createReservationUsingPOST
Scenario Outline: Test createReservationUsingPOST for <status> status code

* def args = read(<testDataFile>)
* def result = call read('createReservationUsingPOST.feature@operation') args
* match result.responseStatus == <status>
Examples:

status	testDataFile
200	'test-data/createReservationUsingPOST_200.yml'
200	'test-data/createReservationUsingPOST_201.yml'
401	'test-data/createReservationUsingPOST_401.yml'
403	'test-data/createReservationUsingPOST_403.yml'
404	'test-data/createReservationUsingPOST_404.yml'

@operationId=createReservationUsingPOST
Scenario: explore createReservationUsingPOST inline

You can use this test to quickly explore your API.
* def payload =

"""
{

"statusCode": 200,
"headers": {},
"params": {},
"body": {

"date": "2019-08-24T14:15:22Z",
"email": "string",
"firstName": "string",
"lastName": "string",
"seatId": "string",
"trainId": "string"

},
"matchResponse": true

}
"""

* call read('createReservationUsingPOST.feature@operation') payload

Code listing 12 Example of test generated using the Karate extension
for VSC

Tests are written in KarateDemo/src/test/java/demoapp/reservation.feature and the envi-
ronment is configured in KarateDemo/src/test/java/demoapp/karate-config.js. The environment
configuration can be made easily by editing the config files and adding different conditions and
variables to tests using the JS logic of the file.

The integration with Cucumber is generally pretty nice. The tests are written in feature files,
and there is an option to call other feature files within feature files. That gives users the ability
to reuse code.

For example, the user has to log into an application to do certain things. The logic for logging
in can be written in one feature file and called whenever presented with a scenario where the
user needs to be logged in to do other things.

Scenario 1 is implemented in the example 13. One can notice that a Java library Faker is
loaded into Karate, and a new object is created for generating fake data that are passed into
variables fName, lName and mailId. This feature is a part of interoperability with Java. In

Implementation of the test plan 67

Karate UI testing, it is possible to combine the Gherkin keywords to one’s liking. The code is
concise and simple, and helpful locators like {}Select are useful. Managing alerts and asserting
is also uncomplicated and convenient.

Feature: Demo reservation app reservation tests

Background:
this section is optional !
steps here are executed before each Scenario in this file
variables defined here will be 'global' to all scenarios
and will be reinitialised before every scenario
* def Faker = Java.type('com.github.javafaker.Faker') #loading a Java library
* def fakerObj = new Faker()
* def fName = fakerObj.name().firstName()
* def lName = fakerObj.name().lastName()
* def mailId = fName+'.'+lName+'@test.com'
* def feUrl = 'https://demo-app-fe.vercel.app/'

Scenario: Use the front end to create a new reservation
replace the executable with your own
* configure driver = { type: 'chrome', showDriverLog: true,
executable: 'C:\\chrome.exe' }
Given driver feUrl
And driver.maximize()
When waitFor(".rs-picker-toggle-value")
Then click(".rs-picker-toggle-value")
When waitFor("{span}Today")
Then click("{span}Today")
When waitFor("{}Select")
Then click("{}Select")
When waitFor("{}Sp 9301")
Then click("{}Sp 9301")
When waitFor("{}Select")
Then click("{}Select")
When waitFor("//a[@name='seatId']")
Then click("//a[@name='seatId']")
When waitFor("{}Coach 1 / Seat 21")
Then click("{}Coach 1 / Seat 21")
And input('input[name=firstName]', fName)
And input('input[name=lastName]', lName)
And input('input[name=email]', mailId)
replace the file with your own file
And driver.inputFile('input[name=file]', 'C:\random.file')
When click("//button[contains(.,'Submit')]")
And delay(1200)
Then match driver.dialogText == 'Reservation created successfully'
And dialog(true)

Code listing 13 Example of the Scenario 1 implemented in Karate

The first main functionality of Karate was API testing and it can be done in a few lines of
code, as shown in the example 14 or in the example 2. Karate offers advanced asserting abilities
for requests and responses. Karate offers advanced asserting abilities for requests and responses.
Using the interoperability with Java, it is even possible to pass a variable to a JSON as shown
in the example 14.

68 Test implementation

Scenario: Send an API request for a new reservation
* def req =

"""
{

"date": "2022-03-21T02:24:59.815Z",
"email": "#(mailId)",
"firstName": "#(fName)",
"lastName": "#(lName)",
"seatId": "1-21",
"trainId": "ICE-575"

}
"""

Given url apiUrlPost
And request req
When method post
Then status 200

Code listing 14 Example of an API test for POST request in Karate

5.3.4 SikuliX
SikuliX tests can be implemented using SikuliX IDE, which helps writing simple Jython scripts
for SikuliX, or it is often used as a library for Java.

The SikuliDemo/SikuliDemo.sikuli folder can be opened as a project in SikuliXIDE, and it
is an implementation of the Scenario 1. Other folders that end with .sikuli in the SikuliDemo
folder are implementations of the remaining scenarios. The scripts were written for the Google
Chrome browser.

The SikuliX IDE offers the ability to insert images and configure the region, location and
offset to describe where exactly should SikuliX click on an image that matches with a predefined
image in the script when executing the scripts. The IDE also offers the ability to take screenshots.
When the picture is inserted, it can be used as an object that can be passed to the script functions.

SikuliX can run the scripts and export them as runnable JAR files. When running the scripts,
it is required to have an environment ready or fail because it will not be able to find the required
GUI elements. It is possible to configure a virtual desktop for the cloud and other environments.

Implementation of Scenario 1 is shown in the figure 5.5. Before running the script, it is
required to open the front end of the demo application in the browser.

Implementation of the test plan 69

Figure 5.5 Image showing Scenario 1 implemented using SikuliX

The better way to use SikuliX is using it in a Java program combined with other tools like
JUnit, Selenium or Appium to automate the GUI using image recognition.

5.3.5 Cypress
Implementing tests in Cypress is remarkably developer-friendly. Upon opening Cypress for the
first time, numerous examples can be seen to navigate through the functions of Cypress. There
are also numerous extensions for Cypress available for IDEs. In the figure 5.6 one can see the
main menu after running Cypress. The tests can be found in the CypressIODemo/cypress/inte-
gration/demoapp folder.

70 Test implementation

Figure 5.6 Image showing the menu of Cypress

A test recording tool is available in the premium version of Cypress, but free test recording
extensions are available, though they are not as sophisticated as the premium tool. For this
implementation, a free extension called Cypress Recorder6 was used.

When creating or opening a spec file, Cypress launches a selected browser and starts executing
the commands in the test file. It works in developer mode. When the test code is changed,
Cypress starts executing the code in the spec file. This feature can swiftly notify the developer
whether his code works properly or breaks somewhere.

After all of the commands in a test are executed, it is marked as passed. If an error happens
along the way, the test is marked as failed. The developer can see the cause of the error in the
browser. The test steps are displayed on the left side of the window, and it is possible to go step
by step before and after every action because Cypress can snapshot the DOM of the website,
making debugging easy and by default. In the step where the test fails, a detailed description
can be found explaining the error. Image in the figure 5.7 shows an example of the development
mode in Cypress.

6https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab

https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab

Implementation of the test plan 71

Figure 5.7 Image showing the development mode in Cypress

Cypress can be seamlessly integrated with CI tools. An account can be created on the
company website7 allowing users to connect their projects to a dashboard with details about the
test execution and other reporting capabilities. The dashboard also offers parallelization and
load balancing, but the free version has only three users and 500 test results per project.

The menu of Cypress after running it In the folder, CypressIODemo/cypress/support one can
find a global configuration file for tests in index.js and commands.js for storing custom utility
functions. Users write functions to be reused across different tests by importing them into the
code file.

File uploading and downloading is not a functionality built-in by default, but they are sup-
ported using plugins.

Mocha and Chai keywords can be seen in the example 15, they are used in the structure and
assertions of the test. Flow of the implementation is straightforward and understandable though
it requires basic knowledge of JS. The way the alerts are handled is acceptable. The auto wait
function is not ideal, so it had to be supported using the cy.wait(500) function, so the DOM has
time to change its state before the following command is executed. Without the wait, the test
often failed.

7https://dashboard.cypress.io/signup

https://dashboard.cypress.io/signup

72 Test implementation

describe("demo reservation app", () => {
beforeEach(() => {

cy.visit("https://demo-app-fe.vercel.app/");
});
it("Creates a reservation", () => {

const name = faker.name.firstName();
...
cy.get(".rs-picker-toggle-value").click();
cy.get(".rs-picker-toolbar-option:nth-child(1) > span").click();
cy.get("[name='trainId']").click();
let val = Math.floor(Math.random() * (4 - 1 + 1) + 1);
cy.wait(500);
cy.get("div:nth-child(" + val + ") > .rs-picker-select-menu-item").click({

multiple: true,
});
...
cy.get(".rs-form-group:nth-child(5) > .rs-input")

.should("be.visible")

.click()

.type(name);
...
const filepath = "example.json";
cy.get(".rs-form-group:nth-child(8) > .rs-input").attachFile(filepath);
...
cy.get(".rs-btn-primary").should("be.visible").click();
cy.wait(1001);
cy.on("window:confirm", (text) => {

expect(text).to.contains("Reservation created successfully");
});

});
});

Code listing 15 Example showing part of the implementation of
Scenario 1 in Cypress

It is also possible to write API tests in Cypress. Writing them and asserting them is not
complicated, as can be seen in the example 16. The variables created by the Faker library can
be set to a body of the request, which is convenient.

Implementation of the test plan 73

context("POST /reservation", () => {
it("Should create a reservation", () => {

cy.request({
method: "POST",
url: "https://demo-app-spring-api-aca-demo.stxcn-aca.stxcn.codenow.com/reservation",
body: {

date: "2022-03-21T02:24:59.815Z",
email: faker.internet.email(),
firstName: faker.name.firstName(),
lastName: faker.name.lastName(),
seatId: "1-21",
trainId: "ICE-575",

},
}).should((response) => {

expect(response.status).to.eq(200);
expect(response.body).to.eq("Reservation accepted.");
cy.log(JSON.stringify(response.body));

});
});

Code listing 16 Example showing the test for a POST request to the
demo app in Cypress

5.3.6 Puppeteer
Implementing tests using Puppeteer was an unpleasant experience. The tests are located in the
PuppeteerDemo folder.

Puppeteer is a Node.js library which provides an API to control Chrome over the DevTools
Protocol. The information shows that Puppeteer is not a testing framework, so it should be
integrated with a testing framework like Mocha to use it properly for testing purposes.

For this implementation, it was decided that the test will be marked as passed when running
the JS test file with Puppeteer code will not throw an error, which means that all of the commands
in the script will be executed successfully. Alternatively, when running the file returns an error,
the test will be classified as a failure. The expect function from the Chai asserting library was
imported to run asserts.

Most of the code was recorded using an extension from Google Webstore called Headless
recorder.8

Part of the implementation of Scenario 1 can be seen in the example 17. In default settings,
the scripts are run in headless mode. The headless mode was turned off to ensure that the
commands were executed.

CSS selectors are handled intuitively in Puppeteer but selecting and interacting with elements
using XPath is unintuitive. File uploading and input typing are part of the API as they should.
Alert handling is handled as an event as it can be problematic to have one listener for multiple
alerts.

8https://chrome.google.com/webstore/detail/headless-recorder/djeegiggegleadkkbgopoonhjimgehda

https://chrome.google.com/webstore/detail/headless-recorder/djeegiggegleadkkbgopoonhjimgehda

74 Test implementation

(async () => {
const browser = await puppeteer.launch({

headless: false,
});
const page = await browser.newPage();
await page.goto(url);
await page.setViewport({ width: 1920, height: 1080 });
await page.waitForSelector(

".rs-form > .rs-form-group > .rs-picker-date > .rs-btn > .rs-picker-toggle-value"
);
await page.click(

".rs-form > .rs-form-group > .rs-picker-date > .rs-btn > .rs-picker-toggle-value"
);
...
await page.waitForXPath("//a[@name='seatId']");
let elHandle = await page.$x("//a[@name='seatId']");
await elHandle[0].click();
...
await page.click(

".rs-container > .rs-content > .rs-form > .rs-form-group:nth-child(5) > .rs-input"
);
await page.focus(

".rs-container > .rs-content > .rs-form > .rs-form-group:nth-child(5) > .rs-input"
);
await page.keyboard.type(faker.name.firstName());
...
const elementHandle = await page.$(

".rs-container > .rs-content > .rs-form > .rs-form-group:nth-child(8) > .rs-input"
);
await elementHandle.uploadFile(

"C:\\random.file"
);
page.on("dialog", async (dialog) => {

console.log(dialog.message());
await expect(dialog.message()).to.equal("Reservation created successfully");
await dialog.accept();

});
await page.click(

".rs-content > .rs-form > .rs-form-group > .rs-btn-toolbar > .rs-btn-primary"
);
await browser.close();

})();

Code listing 17 Example showing part of the implementation of
Scenario 1 using Puppeteer

API testing is also possible using Puppeteer though it was probably not designed. The way
it works is when the command page.goto(url) is executed, an HTTP GET request is sent to a
target server but because the page.setRequestInterception(true) command was executed, and an
event listener for requests was added. The GET request was intercepted and handled by the
event listener, which can be modified to be another type of request. As shown in the example 18,
the GET request was changed into a POST request with a JSON body added to it. The POST
request is then sent to the server. The response from the server can then be further handled.

Implementation of the test plan 75

(async () => {
const browser = await puppeteer.launch();
const page = await browser.newPage();
const POST_JSON = {

date: "2022-03-21T02:24:59.815Z",
email: faker.internet.email(),
firstName: faker.name.firstName(),
lastName: faker.name.lastName(),
seatId: "1-21",
trainId: "ICE-575",

};
await page.setRequestInterception(true);
page.on("request", (request) => {

let data = {
method: "POST",
postData: JSON.stringify(POST_JSON),

};
// Request modified... finish sending!
request.continue(data);

});
const res = await page.goto(TARGET_URL);
const content = await res.text();
console.log(content);
await expect(content).to.include("Reservation accepted.");
await browser.close();

})();

Code listing 18 Example of an API test for POST request in Puppeteer

5.3.7 Playwright
Playwright is a testing framework created mainly by the same people who worked on Puppeteer,
so there is a significant possibility that similar concepts occur in Playwright as it utilises Pup-
peteer. Being a testing framework, Playwright has a configuration file where it is possible to
configure devices, drivers, outputs, reports, timeouts, CI, workers and other test-related param-
eters.

For this implementation, the configuration file is located in PlaywrightDemo/playwright.config.js,
and the tests are located in this folder PlaywrightDemo/tests.

Setting up Playwright was the least problematic task in comparison with other js tools. It
performs well and runs tests in parallel out of the box.

The implementation of the scenarios was generated using the test generator functionality. It
is even possible to preserve an authenticated state while recording tests using cookies. There is
even geolocation, language and timezone emulation available. Test generator can generate code
in multiple programming languages supported by the Playwright API. However, the tool is not
as advanced as Selenium IDE because it allows choosing between multiple selectors and offers
numerous additional features.

It offers good extensions for VSC for executing and debugging.
By default, reports are generated onto an HTML page. The reports are detailed and contain

screenshots of the application before and after each step in the test to make debugging easier.
The code shown in the example 19, shows the similarity between the Puppeteer and Play-

wright because they are both run in “async” mode, and both use the page object. Playwright
uses some useful custom selectors like placeholder and role. Uploading files is done very unintu-
itively, using events. Alert handling is done in the same spirit as Puppeteer and Cypress, using

76 Test implementation

event listeners and handlers.

test.beforeEach(async ({ page }) => {
await page.goto("https://demo-app-fe.vercel.app/");
await expect(page).toHaveTitle(/React App/);

});
test("Create a reservation", async ({ page }) => {

...
// Click a[role="combobox"]:has-text("YYYY-MM-DD")
await page.locator('a[role="combobox"]:has-text("YYYY-MM-DD")').click();
// Click a[role="button"]:has-text("Today")
await page.locator('a[role="button"]:has-text("Today")').click();
...
// Click [placeholder="Tony"]
await page.locator('[placeholder="Tony"]').click();
// Fill [placeholder="Tony"]
await page.locator('[placeholder="Tony"]').fill(firstName);
...
const [fileChooser] = await Promise.all([

// It is important to call waitForEvent before click to set up waiting.
page.waitForEvent("filechooser"),
// Opens the file chooser.
page

.locator(
".rs-container > .rs-content > .rs-form > .rs-form-group:nth-child(8) > .rs-input"

)
.click(),

]);
await fileChooser.setFiles(

"C:\\random.file"
);
page.once("dialog", (dialog) => {

console.log(`Dialog message: ${dialog.message()}`);
expect(dialog.message()).toBe("Reservation created successfully");
dialog.accept().catch(() => {});

});
// Click text=Submit
await page.locator("text=Submit").click();
await page.close({ runBeforeUnload: true });

});

Code listing 19 Example showing part of the implementation of
Scenario 1 in Playwright

Playwright can also be used for API testing. In the example 20, a test for POST request
is shown. In the first part, a correct body is sent, and the response is asserted to have an OK
status. Then a request with an empty body is sent, following the assertion that the result was
not OK. The implementation looks similar to Cypress.

Implementation of the test plan 77

test("Create a new reservation", async ({ request }) => {
const newIssue = await request.post(`/reservation`, {

data: {
date: "2022-03-21T02:24:59.815Z",
email: faker.internet.email(),
firstName: faker.name.firstName(),
lastName: faker.name.lastName(),
seatId: "1-21",
trainId: "ICE-575",

},
});
expect(newIssue.ok()).toBeTruthy();
expect(await newIssue.text()).toEqual("Reservation accepted.");
const badIssue = await request.post(`/reservation`, {

data: {},
});
expect(badIssue.ok()).not.toBeTruthy();

});

Code listing 20 Example of an API test for POST request in Playwright

5.3.8 TestCafe
TestCafe is a JS E2E testing framework. TestCafe claims that it has a concise syntax without
cumbersome boilerplate expressions and manual timeouts. TestCafe does not require WebDriver
and uses browsers installed on the device.

The premium version offers a test recording tool and other useful features, but the license is
expensive.

In the example 21, part of the implementation of Scenario 1 can be found. Tests implementing
the scenarios are located in TestCafeDemo/demoapp.js. TestCafe was disappointing because to
use XPath selectors, a custom function found on GitHub of TestCafe had to be imported into
the test for XPath selectors to work. The same goes for other valuable functionalities that could
have been integrated into TestCafe but instead are available as JS files on GitHub.

Handling alerts is done by configuring a native dialogue handler. The dialogue handler should
return true when the alert is OK. Otherwise, it should return false. The designed solution is not
ideal, but it works. The file upload method is designed well.

Some selectors have practical methods like withAttribute().
TestCafe uses a CLI reporter by default.
TestCafe allows API mocking, but it is not a suitable tool for API testing.

78 Test implementation

fixture`Demo app test`.page`https://demo-app-fe.vercel.app/`;
test("Reservation create test", async (t) => {

...
await t.setNativeDialogHandler((type, text, url) => {

if (text === "Reservation created successfully") return true;
return false;

});
...
const select = await XPathSelector("//a[.='Select']");
await t

.click(select)

.click("div:nth-child(" + randomValue + ") > .rs-picker-select-menu-item");
...
await t

.click(Selector("input").withAttribute("name", "firstName"))

.typeText(Selector("input").withAttribute("name", "firstName"), firstName)

.click(Selector("input").withAttribute("name", "lastName"))

.typeText(Selector("input").withAttribute("name", "lastName"), lastName)

.click(Selector("input").withAttribute("name", "email"))

.typeText(Selector("input").withAttribute("name", "email"), randomEmail)

.setFilesToUpload(Selector("input").withAttribute("name", "file"), [
"./random.file",

]);
const submit = await XPathSelector("//button[contains(.,'Submit')]");
await t.click(submit);
await t.wait(1001);

});

Code listing 21 Example showing part of the implementation of
Scenario 1 in TestCafe

5.3.9 Nightwatch.js
Implementations of the scenarios in Nightwish.js are stored in the NightwatchJsDemo/tests folder.
The configuration file is located in NightwatchJsDemo/nightwatch.conf.js. It can configure test
sources, reporting, drivers, devices, connection to BrowserStack, connection to Selenium Server,
plugins, custom commands, environment configuration, etc.

A test recording extension from GitHub9 was used to generate some of the code in the script.
Due to poorly generated selectors, a large part of the code needed to be rewritten.

However, the tool is not as advanced as Selenium IDE because it allows choosing between
multiple selectors and offers numerous additional features.

In the example 22, part of the implementation of Scenario 1 is shown. TestCafe and Night-
watch.js have similar chaining properties. It is possible to write a test only using methods invoked
on the isolated occurrence of the driving object in the test code.

Nightwatch.js supports XPath and CSS selectors but it is required to call methods useXpath()
and useCss() to switch between them which is burdensome. Nevertheless, it is possible to use
other selectors provided by Nightwatch.js.

At first it was tricky to understand what parameter to pass into the waitForElementVisible()
and setValue() methods instead of XPath and CSS selectors but after reading the documentation
it was no longer a problem.

File uploading and alert handling work are similar to Selenium, which is intuitive. It is also
9https://github.com/vvscode/js--nightwatch-recorder

https://github.com/vvscode/js--nightwatch-recorder

Implementation of the test plan 79

convenient that the await keyword is not used, unlike in Playwright and Puppeteer.
Nightwatch.js uses a CLI reporter by default.

const DEFAULT_TIMEOUT = 800;
module.exports = {

"Create a reservation": function (browser) {
browser

.url("https://demo-app-fe.vercel.app/")

.waitForElementVisible(".rs-picker-toggle-value", DEFAULT_TIMEOUT)

.click(".rs-picker-toggle-value")
...
let randomValue = Math.floor(Math.random() * (4 - 1 + 1) + 1);
browser

.waitForElementVisible(
"div:nth-child(" + randomValue + ") > .rs-picker-select-menu-item",
DEFAULT_TIMEOUT

)
.click("div:nth-child(" + randomValue + ") > .rs-picker-select-menu-item")
.pause(300)
.useXpath()
.waitForElementVisible("//a[.='Select']", DEFAULT_TIMEOUT)
.click("//a[.='Select']");

...
browser

.useCss()
...

.waitForElementVisible("form input[name='firstName']", DEFAULT_TIMEOUT)

.click("form input[name='firstName']")

.waitForElementVisible("input[name='firstName']", DEFAULT_TIMEOUT)

.setValue("input[name='firstName']", faker.name.firstName())
...

.waitForElementVisible("form input[name='file']", DEFAULT_TIMEOUT)

.setValue("form input[name='file']", __dirname + "\\README.md")

.waitForElementVisible("form .rs-btn.rs-btn-primary", DEFAULT_TIMEOUT)

.click("form .rs-btn.rs-btn-primary")

.pause(900)

.getAlertText((results) => {
console.log(results.value);
browser.assert.equal(results.value, "Reservation created successfully");

})
.acceptAlert();

},
};

Code listing 22 Example showing part of the implementation of
Scenario 1 in Nightwatch.js

5.3.10 TestProject
Implementing the scenarios in TestProject was a great experience. Tests can be developed and
run from a browser. An account is needed to use TestProject.

TestProject Agent needs to be installed on the device to execute the tests. After installing
the agent, it needs to be linked with the project. The agent is responsible for test execution and

80 Test implementation

communication with TestProject. The agent uses browsers installed on the device, so when a
user decides to run the tests, he is presented with a list of browsers available for running the
tests on. The agent can run on Windows, macOS and Linux or as a Docker container.

In the figure 5.8, a menu of the project for testing the demo application is shown. UI elements
on the left side of the menu allow users to switch between projects, create folders, and move tests
between the folders. Next, they allow users to add a new application that they want to test.
Adding data sources is possible if external data is needed for the tests. Parameters can be
configured for a project, and for individual tests, they essentially work as variables.

Figure 5.8 Image showing the menu of TestProject

When creating a project, a user is presented with three options: mobile, web and code. Mobile
tests use Appium and AI. Selenium and AI are used in web tests.

These tests can be developed in the browser by combining the regular functionality of Test-
Project and add-ons. Instead of coding, a developer defines the test by searching and applying
commands step by step using the TestProject platform on his browser. The commands can be
further configured.

If the default commands are insufficient, many add-ons can be added using a click. The
add-ons often solve common problems or do practical operations that simplify a tester’s life.

Code tests give the user the ability to use TestProjects SDK to develop tests in their way.
Creating useful add-ons for TestProject is very welcomed by the community.

TestProject offers a fantastic tool for recording tests. In the figure 5.9 is a screenshot of
the demo application launched in recording mode by the agent. The test editing tool is also on
the screenshot. After the user interacts with the app, a command is added to the test script.
Recording can be stopped to configure the commands in the test script and can be resumed.
While configuring the commands, selectors of web elements can be chosen from the list similar
to Selenium IDE. However, the tool used by TestProject is more sophisticated.

Implementation of the test plan 81

Figure 5.9 Image showing the recording capability of TestProject

Test execution can be started manually or using a job. Jobs can be configured to execute
tests at the specified time, serially or parallelly. Webhooks, email notifications, browsers and
desired capabilities are configured in the job specification. It is possible to see the progress of
the execution during the execution.

After a test is executed, the report can be seen in the reports section. Reports contain useful
statistics about test runs. When a user selects a finished test execution, he is presented with
information about the step by step execution from each browser. By clicking on a step, the user
might find additional helpful information. The test execution can be exported to pdf as a full or
summary report.

A report of test execution can be seen in the figure 5.10.

82 Test implementation

Figure 5.10 Image showing a report of a test executed in TestProject

By default, TestProject is run in the cloud hybrid mode. That means that data and tests of the
project are stored in the cloud. It could be problematic when TestProject is under maintenance
because the users cannot access their projects. For this reason, it is possible to use TestProject
offline and store files and tests locally. However, it requires some effort to configure but, in the
end, is still worth the effort.

5.3.11 WebdriverIO
WebdriverIO is a progressive automation framework that offers a lot of different integrations and
third-party services and libraries. WebdriverIO can run on the W3C WebDriver protocol or a
solution based on the Chrome DevTools protocol.

WebdriverIO does not offer a test recording tool, but Katalon Recoreder10 was used with an
extension for exporting test recordings into WebdriverIO scripts.11

The code for the implementation can be found in WebdriverIODemo/test/specs/demoapp.js.
The configuration file is located in WebdriverIODemo/wdio.conf.js.
The await keyword is present in the code, similar to Playwright and Puppeteer. WebdriverIO

uses a CLI reporter by default.
In the example 23, a part of the implementation of Scenario 1 is shown. The link text

and name selectors can be seen in the example. File uploading and Alert handling are made
intuitively.

10https://chrome.google.com/webstore/detail/katalon-recorder-selenium/ljdobmomdgdljniojadhoplhkpialdid
11https://chrome.google.com/webstore/detail/webdriverio-exporter-for/kccnpljpbgjkbjoncfpbmkobhacfekko

https://chrome.google.com/webstore/detail/katalon-recorder-selenium/ljdobmomdgdljniojadhoplhkpialdid
https://chrome.google.com/webstore/detail/webdriverio-exporter-for/kccnpljpbgjkbjoncfpbmkobhacfekko

Summary 83

describe("Demo application", () => {
it("Should create a reservation.", async () => {

await browser.url("https://demo-app-fe.vercel.app/");
await expect(browser).toHaveUrl("https://demo-app-fe.vercel.app/");
await expect(browser).toHaveTitle("React App");
await $("//div/a/span").click();
...
await $("=IC 879 Hamburg").click();
...
await $('[name="firstName"]').click();
await $('[name="firstName"]').setValue(faker.name.firstName());
...
await $('[name="file"]').setValue("C:\\random.file");
await $("//button[@type='submit']").click();
await browser.pause(3000);
const msg = await browser.getAlertText();
await console.log(msg);
await browser.acceptAlert();
await expect(msg).toBe("Reservation created successfully");

});
});

Code listing 23 Example showing part of the implementation of
Scenario 1 in WebdriverIO

5.4 Summary

In conclusion, the demo app and the test plan for it were described in detail.
The three scenarios described earlier in this chapter were successfully automated for every

analysed tool. Furthermore, API tests were developed using Cypress, Karate, Puppeteer, Play-
wright and TestProject. In total 51 tests were implemented for this project (3 scenarios, 3 types
of API requests) to summarise the outputs.

Selenium is usually the first option people think of for automating browsers. It requires
downloading drivers for the browsers and configuring them in code to run correctly. Users
should be skilled enough to understand the configuration, testing and basic programming. The
WebDriver is designed well, and the syntax is intuitive.

Cucumber was combined with the done Selenium code. Commands were mapped onto the
test steps functions generated from the feature file into Java. Sometimes it was hard to find a
piece of code that could be mapped to a line from the emphfeature file, so it was left empty.
Cucumber and BDD are not often the best approach to testing and development. It highly varies
on the team and the approach on BDD.

Appium works well, and it is often used in mobile application testing. Configuring and
managing actual and emulated mobile devices can be challenging. Drivers and the Appium
Server also need to be configured to run. Users should have a comparable technical level, as
conveyed in the suggestion for Selenium users. Its API is designed well.

Karate is a great beginner-friendly multipurpose tool to suit most of the web application
automated testing needs. Great for small projects and in cases where minimising the number of
tools is optimal.

SikuliX is a decent tool when it is used as a Java library. SikuliX IDE is a bit interesting, but it
cannot effectively export the recorded projects into code that could be used in other applications.
That significantly limits environment configuration and access to crucial functionalities other
tools provide, concluding that it is most useful as a Java library.

84 Test implementation

The process of writing tests in Cypress is enjoyable. The IDE snapshots and the development
mode make it easy to fix bugs while writing the code. It is widespread and a good choice for
many JS projects. It requires basic JS knowledge that can be also said about the rest of the
analysed JS tools.

Puppeteer is just a library and needs to be combined with many other tools to be usable.
The natural thing to do is to use Playwright as it is based on Puppeteer and functions as an
E2E testing framework.

Working with Playwright was enjoyable, and the code gen functionality works nicely. The
design of some of the aspects of the API was subjectively unintuitive. Nonetheless, the tool is
still a great choice due to its ease of configuration, functionalities and integrations.

TestCafe is not a good choice when compared to other JS testing frameworks. TestCafe uses
its way to manipulate the browsers instead of using the standard W3C WebDriver. Important
functionalities are either added by importing JS files from GitHub or buying a premium version.

Nightwatch.js is probably best used for integrating with the BrowserStack cloud testing ser-
vice. Some API aspects are not as satisfactory as in other JS testing frameworks.

TestProject is an outstanding cross-platform E2E automation testing tool. The default con-
figuration is much better than in other analysed tools. Even a non-programmer can quickly start
automating web applications. It can be operated effectively from the browser. It works as a
hybrid cloud but offers the ability to work offline.

WebdriverIO is a likeable JS automation framework. The API is good, and it offers a lot of
different integrations.

Chapter 6

Benefits and risks of automated
testing

Academic papers discussing automation software testing from economic and utility perspectives
are the primary resources to evaluate the risks and benefits of automated testing.

6.1 Benefits
The results from a research paper “Benefits and Limitations of Automated Software Testing:
Systematic Literature Review and Practitioner Survey” published in 2012 showed that the main
benefits of test automation are:

Reusability

Repeatability

Effort saved in test executions [121]

The results also indicated that automation improves test coverage, even in cases where excessive
regression testing was not needed.

Other benefits are:

Improved product quality

Reduced testing time

Reduction in cost

Effort saved in test executions [122]

Increased fault detection was considered as a valid benefit by 58% of the respondents. One
of them noted that the tester facilitates high defect detection and that one can get high defect
detection with both manual and automated testing depending on how they are used. [121]

6.2 Risks and limitations
Regarding risks and limitations, the main factors in the study:

High initial cost In designing the test cases, buying a test automation tool, and training the
staff.

85

86 Benefits and risks of automated testing

Maintenance Was also perceived as problematic.

Unsuitable for specific needs 45% of the practitioners responded that test automation tools
in 2012 offered a poor fit for their needs. [121]

In 2022 buying a test automation tool might no longer be a problem because the market offers
many free and open-source tools for automation testing. The current capabilities of the tools are
vastly improved compared to the tools in 2012.

80% of respondents did not agree that automated testing can replace manual testing. [121]
Other limitations of test automation:

Process of test automation needs time to mature

False expectations

Inappropriate test automation strategy

Lack of skilled people [122]

6.3 Other factors
Some of the respondents said that further research should be focused on more prevailing param-
eters regarding choosing tools for automated testing like:

1. Have an easy learning curve. This would mitigate the high initial investment required for
test automation.

2. Utilization of test cases that are highly maintainable and robust. The maintenance bur-
den of automated testing is likely to increase. Techniques and tools developed for software
maintenance and evolution can be applied for test code would be valuable, like tools that
automatically “fix” test cases when the production system changes.

3. Efficient creation of test cases. Test recording tools already allow the efficient production of
test code, but the generated code can be unmaintainable and fragile.

4. Ease of configuration and integration with DevOps components

5. Support an incremental delivery of test automation. To lower the risk. [121]

Topics mentioned in the list, excluding the fifth point, were discussed in the analysis part of the
thesis, which indicates that the thesis is not irrelevant.

Conclusion

In conclusion, the aims set at the begging of this thesis were achieved.
Twelve tools used in automated testing of web applications were qualitatively analysed in

detail and compared.
List of analysed tools:

Karate

Selenium

Cypress

SikuliX

Appium

Playwright

Puppeteer

TestCafe

Nightwatch.js

TestProject

WebdriverIO

Beyond the terms of assignment, a qualitative analysis was also done. The method behind
qualitative analysis was to use weighed parameters to categorise tools tool using objective and
subjective metrics on which were the tools graded. Grades of the parameters were summed into
total, and the tool with the highest amount of points was considered the most recommended for
usage.

According to the results of the quantitative analysis, the most suitable tool to pick is the
TestProject, as it is free and can work in the cloud or offline. It can be managed from a browser,
and the default capabilities of the tool are excellent. Writing cross-browser tests without code
only using UI is great because beginners can do so it can cut costs.

The quantitative analysis results are not final because the weights and the grading setup con-
tain a mix of subjective and objective parametrised criteria. So anyone who wants to prefer some
parameter of the tools over the others can change the weights or grades to get a recommended
tool that better suits one’s needs. The Google sheet is made publicly available for anyone to
copy it, change values, and add or delete parameters and tools. The links can be found at the
end of chapter 4.

87

88 Conclusion

A test plan was designed to test the demo application provided by the supervisor. The
functionality of the demo application and the test plan are described in chapter 5.

The test plan was implemented using the analysed tools. In total 51 tests were implemented
for this project (3 scenarios, 3 types of API requests). API tests were developed using Cypress,
Karate, Puppeteer, Playwright and TestProject. The development of the UI test involved all of
the tools. The tools were also compared in their implementations of the tests.

The benefits and liabilities of test automation were also discussed from an economic stand-
point.

While writing this thesis, I gained much practical knowledge of testing tools and their capa-
bilities.

The results of this thesis can be a great benefit for developers or other responsible individuals
in selecting the right tools for the testing automation needs for a project.

Further work could optimise the quantitative analysis’s parameters and grading scale. Also,
adding new tools would be beneficial. Other research could compare the tools set up in a
professional testing environment with different integrations. The tools could also be compared
on other parameters like performance, etc.

Bibliography

1. SMARTBEAR SOFTWARE. Introduction - Cucumber Documentation [online]. 2019 [vis-
ited on 2022-04-24]. Available from: https://cucumber.io/docs/guides/overview/.

2. HOCKE, Raimund. Introduction — SikuliX [online]. 2021 [visited on 2022-05-08]. Available
from: https://sikulix.github.io/docs/.

3. ATLASSIAN. Automated software testing for continuous delivery [online]. 2022 [visited
on 2022-04-20]. Available from: https://www.atlassian.com/continuous-delivery/
software-testing/automated-testing.

4. KATALON. What is End-to-End (E2E) Testing? — All You Need to Know [online]. 2021
[visited on 2022-04-24]. Available from: https://katalon.com/resources-center/blog/
end-to-end-e2e-testing.

5. BOSE, Shreya. Functional Testing : Definition, Types and Examples — BrowserStack [on-
line]. BrowserStack, 2021 [visited on 2022-04-24]. Available from: https://www.browserstack.
com/guide/functional-testing.

6. THEPRACTICALDEVELOPER. Introduction to Microservice End-to-End tests with Cu-
cumber [online]. 2020 [visited on 2022-04-25]. Available from: https://thepracticaldeveloper.
com/cucumber-guide-1-intro-bdd-gherkin/.

7. LI, Angela. Understanding the Efficacy of Test Driven Development [online]. Auckland,
2009 [visited on 2022-05-11]. Available from: https://core.ac.uk/download/pdf/
56361543.pdf. MSc thesis. Auckland University of Technology, School of Computing and
Mathematical Sciences. Supervised by Jim BUCHAN.

8. SMARTBEAR SOFTWARE. Behaviour-Driven Development - Cucumber Documentation
[online]. 2019 [visited on 2022-04-24]. Available from: https://cucumber.io/docs/bdd/.

9. CUCUMBER. Cucumber [online]. 2022 [visited on 2022-04-26]. Available from: https:
//github.com/cucumber.

10. STACK OVERFLOW. Newest ’cucumber’ Questions [online]. 2022 [visited on 2022-04-
26]. Available from: https://stackoverflow.com/questions/tagged/cucumber?tab=
Newest.

11. THOMAS, Peter. Karate [online]. Karate Labs, 2019 [visited on 2022-04-24]. Available
from: https://karatelabs.github.io/karate/.

12. KARATELABS. karatelabs/karate: Test Automation Made Simple [online]. 2022 [visited
on 2022-04-26]. Available from: https://github.com/karatelabs/karate.

13. SOFTWARE TESTING HELP. Karate Framework Tutorial: Automated API Testing with
Karate [online]. 2022 [visited on 2022-04-26]. Available from: https://www.softwaretestinghelp.
com/api-testing-with-karate-framework/.

89

https://cucumber.io/docs/guides/overview/
https://sikulix.github.io/docs/
https://www.atlassian.com/continuous-delivery/software-testing/automated-testing
https://www.atlassian.com/continuous-delivery/software-testing/automated-testing
https://katalon.com/resources-center/blog/end-to-end-e2e-testing
https://katalon.com/resources-center/blog/end-to-end-e2e-testing
https://www.browserstack.com/guide/functional-testing
https://www.browserstack.com/guide/functional-testing
https://thepracticaldeveloper.com/cucumber-guide-1-intro-bdd-gherkin/
https://thepracticaldeveloper.com/cucumber-guide-1-intro-bdd-gherkin/
https://core.ac.uk/download/pdf/56361543.pdf
https://core.ac.uk/download/pdf/56361543.pdf
https://cucumber.io/docs/bdd/
https://github.com/cucumber
https://github.com/cucumber
https://stackoverflow.com/questions/tagged/cucumber?tab=Newest
https://stackoverflow.com/questions/tagged/cucumber?tab=Newest
https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate
https://www.softwaretestinghelp.com/api-testing-with-karate-framework/
https://www.softwaretestinghelp.com/api-testing-with-karate-framework/

90 Bibliography

14. KARATELABS. Karate UI [online]. 2022 [visited on 2022-04-26]. Available from: https:
//karatelabs.github.io/karate/karate-core/.

15. GATLING. Open Source Load Testing - Gatling [online]. 2022 [visited on 2022-04-27].
Available from: https://gatling.io/open-source/.

16. KARATELABS. karate/karate-gatling at Master — karatelabs/karate [online]. 2021 [vis-
ited on 2022-04-27]. Available from: https://github.com/karatelabs/karate/tree/
master/karate-gatling.

17. KARATELABS. IDE Support — KarateLabs/Karate Wiki [online]. 2021 [visited on 2022-
04-26]. Available from: https://github.com/karatelabs/karate/wiki/IDE-Support.

18. STACK OVERFLOW. Newest ’karate’ Questions [online]. 2022 [visited on 2022-04-26].
Available from: https://stackoverflow.com/questions/tagged/karate.

19. BERGA, Mariana. Top 7 Automation Testing Tools (2021) [online]. Blog — Imaginary
Cloud, 2021 [visited on 2022-04-24]. Available from: https://www.imaginarycloud.com/
blog/top-automation-testing-tools/.

20. SOFTWARE FREEDOM CONSERVANCY. WebDriver [online]. 2021 [visited on 2022-
04-28]. Available from: https://www.selenium.dev/documentation/webdriver/.

21. SOFTWARE FREEDOM CONSERVANCY. Selenium components [online]. 2021 [visited
on 2022-04-28]. Available from: https://www.selenium.dev/documentation/overview/
components/.

22. SHETH, Himanshu. Selenium 4 New Features and Improvements — What’s New in Sele-
nium 4 [online]. LambdaTest, 2020 [visited on 2022-04-28]. Available from: https://www.
lambdatest.com/blog/selenium4-w3c-webdriver-protocol/.

23. SOFTWARE FREEDOM CONSERVANCY. Selenium components [online]. 2021 [visited
on 2022-04-28]. Available from: https://www.selenium.dev/documentation/overview/
components/.

24. SOFTWARE FREEDOM CONSERVANCY. Selenium Grid 4 [online]. 2021 [visited on
2022-04-28]. Available from: https://www.selenium.dev/documentation/grid/.

25. SOFTWARE FREEDOM CONSERVANCY. History [online]. 2012 [visited on 2022-04-29].
Available from: https://www.selenium.dev/history/.

26. STACK OVERFLOW. Newest ’selenium’ Questions [online]. 2022 [visited on 2022-04-29].
Available from: https://stackoverflow.com/questions/tagged/selenium.

27. SELENIUMHQ. Selenium [online]. 2022 [visited on 2022-04-29]. Available from: https:
//github.com/SeleniumHQ.

28. JS FOUNDATION. Introduction - Appium [online]. 2022 [visited on 2022-04-24]. Available
from: https://appium.io/docs/en/about-appium/intro/.

29. JS FOUNDATION. Setup for Parallel Testing - Appium [online]. 2022 [visited on 2022-
05-01]. Available from: https://appium.io/docs/en/advanced-concepts/parallel-
tests/.

30. JS FOUNDATION. Find Elements - Appium [online]. 2022 [visited on 2022-05-01]. Avail-
able from: https://appium.io/docs/en/commands/element/find-elements/.

31. JS FOUNDATION. Screenshot - Appium [online]. 2022 [visited on 2022-05-01]. Available
from: http://appium.io/docs/en/commands/session/screenshot/.

32. JS FOUNDATION. Start Screen Recording - Appium [online]. 2022 [visited on 2022-05-
01]. Available from: https : / / appium . io / docs / en / commands / device / recording -
screen/start-recording-screen/.

33. JS FOUNDATION. Appium: Mobile App Automation Made Awesome. [Online]. 2022 [vis-
ited on 2022-05-02]. Available from: https://appium.io/history.html?lang=en.

https://karatelabs.github.io/karate/karate-core/
https://karatelabs.github.io/karate/karate-core/
https://gatling.io/open-source/
https://github.com/karatelabs/karate/tree/master/karate-gatling
https://github.com/karatelabs/karate/tree/master/karate-gatling
https://github.com/karatelabs/karate/wiki/IDE-Support
https://stackoverflow.com/questions/tagged/karate
https://www.imaginarycloud.com/blog/top-automation-testing-tools/
https://www.imaginarycloud.com/blog/top-automation-testing-tools/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/overview/components/
https://www.selenium.dev/documentation/overview/components/
https://www.lambdatest.com/blog/selenium4-w3c-webdriver-protocol/
https://www.lambdatest.com/blog/selenium4-w3c-webdriver-protocol/
https://www.selenium.dev/documentation/overview/components/
https://www.selenium.dev/documentation/overview/components/
https://www.selenium.dev/documentation/grid/
https://www.selenium.dev/history/
https://stackoverflow.com/questions/tagged/selenium
https://github.com/SeleniumHQ
https://github.com/SeleniumHQ
https://appium.io/docs/en/about-appium/intro/
https://appium.io/docs/en/advanced-concepts/parallel-tests/
https://appium.io/docs/en/advanced-concepts/parallel-tests/
https://appium.io/docs/en/commands/element/find-elements/
http://appium.io/docs/en/commands/session/screenshot/
https://appium.io/docs/en/commands/device/recording-screen/start-recording-screen/
https://appium.io/docs/en/commands/device/recording-screen/start-recording-screen/
https://appium.io/history.html?lang=en

Bibliography 91

34. STACK OVERFLOW. Newest ’appium’ Questions [online]. 2022 [visited on 2022-05-02].
Available from: https://stackoverflow.com/questions/tagged/appium.

35. JS FOUNDATION. appium/appium: Automation for iOS, Android, and Windows Apps.
[Online]. 2022 [visited on 2022-05-02]. Available from: https://github.com/appium/
appium.

36. HOCKE, Raimund. RaiMan’s SikuliX [online]. 2012 [visited on 2022-04-24]. Available from:
http://sikulix.com/.

37. ESWARI, Anitha. Introduction to Sikuli (GUI Automation Tool) - Sikuli Tutorial Part 1
[online]. 2014 [visited on 2022-05-08]. Available from: https://www.softwaretestinghelp.
com/sikuli-tutorial-part-1/.

38. STACK OVERFLOW. Newest ’sikuli’ Questions [online]. 2022 [visited on 2022-05-09].
Available from: https://stackoverflow.com/questions/tagged/sikuli.

39. HOCKE, Raimund. RaiMan/SikuliX1: SikuliX Version 2.0.0+ (2019+) [online]. 2022 [vis-
ited on 2022-05-09]. Available from: https://github.com/RaiMan/SikuliX1.

40. CYPRESS.IO. Why Cypress? — Cypress Documentation [online]. 2022 [visited on 2022-
04-24]. Available from: https://docs.cypress.io/guides/overview/why-cypress#
Features.

41. CYPRESS.IO. Bundled Tools — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https : / / docs . cypress . io / guides / references / bundled -
tools#Mocha.

42. CYPRESS.IO. Bundled Tools — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https : / / docs . cypress . io / guides / references / bundled -
tools#Chai.

43. CYPRESS.IO. Reporters — Cypress Documentation [online]. 2022 [visited on 2022-05-09].
Available from: https://docs.cypress.io/guides/tooling/reporters.

44. CYPRESS.IO. Dashboard — Cypress Documentation [online]. 2022 [visited on 2022-05-
09]. Available from: https://docs.cypress.io/guides/dashboard/introduction#
Features.

45. CYPRESS.IO. Parallelization — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https://docs.cypress.io/guides/guides/parallelization.

46. CYPRESS.IO. Get — Cypress Documentation [online]. 2022 [visited on 2022-05-10]. Avail-
able from: https://docs.cypress.io/api/commands/get.

47. CYPRESS.IO. Variables and Aliases — Cypress Documentation [online]. 2022 [visited
on 2022-05-10]. Available from: https://docs.cypress.io/guides/core-concepts/
variables-and-aliases.

48. CYPRESS.IO. Catalog of Events — Cypress Documentation [online]. 2022 [visited on 2022-
05-10]. Available from: https://docs.cypress.io/api/events/catalog-of-events.

49. CYPRESS.IO. Environment Variables — Cypress Documentation [online]. 2022 [visited on
2022-05-09]. Available from: https://docs.cypress.io/guides/guides/environment-
variables.

50. CYPRESS.IO. Screenshots and Videos — Cypress Documentation [online]. 2022 [visited on
2022-05-09]. Available from: https://docs.cypress.io/guides/guides/screenshots-
and-videos.

51. CYPRESS.IO. Installing Cypress — Cypress Documentation [online]. 2022 [visited on
2022-05-09]. Available from: https://docs.cypress.io/guides/getting- started/
installing-cypress.

https://stackoverflow.com/questions/tagged/appium
https://github.com/appium/appium
https://github.com/appium/appium
http://sikulix.com/
https://www.softwaretestinghelp.com/sikuli-tutorial-part-1/
https://www.softwaretestinghelp.com/sikuli-tutorial-part-1/
https://stackoverflow.com/questions/tagged/sikuli
https://github.com/RaiMan/SikuliX1
https://docs.cypress.io/guides/overview/why-cypress#Features
https://docs.cypress.io/guides/overview/why-cypress#Features
https://docs.cypress.io/guides/references/bundled-tools#Mocha
https://docs.cypress.io/guides/references/bundled-tools#Mocha
https://docs.cypress.io/guides/references/bundled-tools#Chai
https://docs.cypress.io/guides/references/bundled-tools#Chai
https://docs.cypress.io/guides/tooling/reporters
https://docs.cypress.io/guides/dashboard/introduction#Features
https://docs.cypress.io/guides/dashboard/introduction#Features
https://docs.cypress.io/guides/guides/parallelization
https://docs.cypress.io/api/commands/get
https://docs.cypress.io/guides/core-concepts/variables-and-aliases
https://docs.cypress.io/guides/core-concepts/variables-and-aliases
https://docs.cypress.io/api/events/catalog-of-events
https://docs.cypress.io/guides/guides/environment-variables
https://docs.cypress.io/guides/guides/environment-variables
https://docs.cypress.io/guides/guides/screenshots-and-videos
https://docs.cypress.io/guides/guides/screenshots-and-videos
https://docs.cypress.io/guides/getting-started/installing-cypress
https://docs.cypress.io/guides/getting-started/installing-cypress

92 Bibliography

52. CYPRESS.IO. IDE Integration — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https://docs.cypress.io/guides/tooling/IDE-integration.

53. CYPRESS.IO. Jira Integration — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https://docs.cypress.io/guides/dashboard/jira-integration.

54. CYPRESS.IO. Slack Integration — Cypress Documentation [online]. 2022 [visited on 2022-
05-09]. Available from: https://docs.cypress.io/guides/dashboard/slack-integration.

55. CYPRESS.IO. CI Provider Examples — Cypress Documentation [online]. 2022 [visited
on 2022-05-09]. Available from: https : / / docs . cypress . io / guides / continuous -
integration/ci-provider-examples#Guides.

56. MANN, Brian. Cypress Is Now Public Beta [online]. 2017 [visited on 2022-05-09]. Available
from: https://www.cypress.io/blog/2017/10/10/cypress-is-now-public-beta/.

57. STACK OVERFLOW. Newest ’cypress’ Questions [online]. 2022 [visited on 2022-05-09].
Available from: https://stackoverflow.com/questions/tagged/cypress.

58. CYPRESS.IO. cypress-io/cypress: Fast, Easy and Reliable Testing for Anything That Runs
in a browser. [Online]. 2022 [visited on 2022-05-09]. Available from: https://github.com/
cypress-io/cypress.

59. PUPPETEER. puppeteer/puppeteer: Headless Chrome Node.js API [online]. 2022 [visited
on 2022-04-24]. Available from: https://github.com/puppeteer/puppeteer.

60. MANJUNATHA, Manu. Selectors in Puppeteer - tools4testing [online]. 2019 [visited on
2022-05-10]. Available from: https://www.tools4testing.com/contents/puppeteer/
selectors-in-puppeteer.

61. COPES, Flavio. Introduction to Puppeteer [online]. flaviocopes.com, 2019 [visited on 2022-
05-10]. Available from: https://flaviocopes.com/puppeteer/.

62. OVERFLOW, Stack. Newest ’puppeteer’ Questions [online]. 2022 [visited on 2022-05-10].
Available from: https://stackoverflow.com/questions/tagged/puppeteer.

63. MICROSOFT CORPORATION. Fast and Reliable End-to-end Testing for Modern Web
Apps — Playwright [online]. 2022 [visited on 2022-04-24]. Available from: https : / /
playwright.dev/.

64. MICROSOFT CORPORATION. Parallelism and Sharding — Playwright [online]. 2022
[visited on 2022-05-10]. Available from: https://playwright.dev/docs/test-parallel.

65. MICROSOFT CORPORATION. Selectors — Playwright [online]. 2022 [visited on 2022-
05-10]. Available from: https://playwright.dev/docs/selectors.

66. MICROSOFT CORPORATION. Assertions — Playwright [online]. 2022 [visited on 2022-
05-10]. Available from: https://playwright.dev/docs/test-assertions.

67. MICROSOFT CORPORATION. Configuration — Playwright. Playwright, [n.d.].
68. MICROSOFT CORPORATION. Continuous Integration — Playwright [online]. Play-

wright, 2022 [visited on 2022-05-10]. Available from: https://playwright.dev/docs/ci.
69. HEGDE, Ganesh. Playwright Framework: Tutorial on Getting Started — BrowserStack

[online]. 2022 [visited on 2022-05-10]. Available from: https://www.browserstack.com/
guide/playwright-tutorial.

70. STACK OVERFLOW. Newest ’playwright’ Questions [online]. 2022 [visited on 2022-05-
10]. Available from: https://stackoverflow.com/questions/tagged/playwright.

71. MICROSOFT CORPORATION. microsoft/playwright: Playwright Is a Framework for
Web Testing and Automation. It Allows Testing Chromium, Firefox and WebKit with a
Single API. [Online]. 2022 [visited on 2022-05-10]. Available from: https://github.com/
microsoft/playwright.

https://docs.cypress.io/guides/tooling/IDE-integration
https://docs.cypress.io/guides/dashboard/jira-integration
https://docs.cypress.io/guides/dashboard/slack-integration
https://docs.cypress.io/guides/continuous-integration/ci-provider-examples#Guides
https://docs.cypress.io/guides/continuous-integration/ci-provider-examples#Guides
https://www.cypress.io/blog/2017/10/10/cypress-is-now-public-beta/
https://stackoverflow.com/questions/tagged/cypress
https://github.com/cypress-io/cypress
https://github.com/cypress-io/cypress
https://github.com/puppeteer/puppeteer
https://www.tools4testing.com/contents/puppeteer/selectors-in-puppeteer
https://www.tools4testing.com/contents/puppeteer/selectors-in-puppeteer
https://flaviocopes.com/puppeteer/
https://stackoverflow.com/questions/tagged/puppeteer
https://playwright.dev/
https://playwright.dev/
https://playwright.dev/docs/test-parallel
https://playwright.dev/docs/selectors
https://playwright.dev/docs/test-assertions
https://playwright.dev/docs/ci
https://www.browserstack.com/guide/playwright-tutorial
https://www.browserstack.com/guide/playwright-tutorial
https://stackoverflow.com/questions/tagged/playwright
https://github.com/microsoft/playwright
https://github.com/microsoft/playwright

Bibliography 93

72. DEVELOPER EXPRESS INCORPORATED. Crossbrowser E2E Testing Framework —
TestCafe [online]. 2012 [visited on 2022-04-24]. Available from: https://testcafe.io/.

73. DEVELOPER EXPRESS INCORPORATED. Reporters — Concepts — Guides — Docs
[online]. 2022 [visited on 2022-05-10]. Available from: https://testcafe.io/documentation/
402825/guides/concepts/reporters.

74. DEVELOPER EXPRESS INCORPORATED. Speed up Test Execution — Advanced Guides
— Guides — Docs [online]. 2022 [visited on 2022-05-10]. Available from: https : / /
testcafe.io/documentation/402963/guides/advanced- guides/speed- up- test-
execution.

75. DEVELOPER EXPRESS INCORPORATED. Interact with the Page — Basic Guides —
Guides — Docs [online]. 2022 [visited on 2022-05-10]. Available from: https://testcafe.
io/documentation/402833/guides/basic-guides/interact-with-the-page.

76. DEVELOPER EXPRESS INCORPORATED. Assert — Basic Guides — Guides — Docs
[online]. 2022 [visited on 2022-05-10]. Available from: https://testcafe.io/documentation/
402837/guides/basic-guides/assert.

77. DEVELOPER EXPRESS INCORPORATED. Configuration File — Reference — Docs
[online]. 2015 [visited on 2022-05-10]. Available from: https://testcafe.io/documentation/
402638/reference/configuration-file.

78. DEVELOPER EXPRESS INCORPORATED. Screenshots and Videos — Advanced Guides
— Guides — Docs [online]. 2019 [visited on 2022-05-10]. Available from: https : / /
testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-
videos.

79. INCORPORATED, Developer Express. Continuous Integration — Guides — Docs [on-
line]. 2022 [visited on 2022-05-10]. Available from: https://testcafe.io/documentation/
402809/guides/continuous-integration.

80. DEVELOPER EXPRESS INCORPORATED. Introducing TestCafe Testing Framework
— Framework — Release Notes [online]. 2016 [visited on 2022-05-10]. Available from:
https://testcafe.io/402864/release-notes/framework/2016-10-17-introducing-
testcafe-open-source-testing-framework.

81. STACK OVERFLOW. Newest ’testcafe’ Questions [online]. 2022 [visited on 2022-05-10].
Available from: https://stackoverflow.com/questions/tagged/testcafe.

82. DEVELOPER EXPRESS INCORPORATED. DevExpress/testcafe: a Node.js Tool to Au-
tomate end-to-end Web testing. [Online]. 2022 [visited on 2022-05-10]. Available from:
https://github.com/DevExpress/testcafe.

83. BROWSERSTACK. Nightwatch.js — Node.js Powered End-to-End Testing Framework
[online]. 2022 [visited on 2022-04-24]. Available from: https://nightwatchjs.org/.

84. BROWSERSTACK. API Reference — Nightwatch.js [online]. 2022 [visited on 2022-05-10].
Available from: https://nightwatchjs.org/api/element/.

85. BROWSERSTACK. API Reference — Nightwatch.js [online]. 2022 [visited on 2022-05-10].
Available from: https://nightwatchjs.org/api/useractions/.

86. BROWSERSTACK. API Reference — Nightwatch.js [online]. 2022 [visited on 2022-05-10].
Available from: https://nightwatchjs.org/api/ensure/#ensure-api.

87. BROWSERSTACK. API Reference — Nightwatch.js [online]. 2022 [visited on 2022-05-10].
Available from: https://nightwatchjs.org/api/assert/.

88. BROWSERSTACK. nightwatch-docs/test-environments.md at Main — nightwatchjs/nightwatch-
docs [online]. 2021 [visited on 2022-05-10]. Available from: https://github.com/nightwatchjs/
nightwatch-docs/blob/main/guide/running-tests/test-environments.md.

https://testcafe.io/
https://testcafe.io/documentation/402825/guides/concepts/reporters
https://testcafe.io/documentation/402825/guides/concepts/reporters
https://testcafe.io/documentation/402963/guides/advanced-guides/speed-up-test-execution
https://testcafe.io/documentation/402963/guides/advanced-guides/speed-up-test-execution
https://testcafe.io/documentation/402963/guides/advanced-guides/speed-up-test-execution
https://testcafe.io/documentation/402833/guides/basic-guides/interact-with-the-page
https://testcafe.io/documentation/402833/guides/basic-guides/interact-with-the-page
https://testcafe.io/documentation/402837/guides/basic-guides/assert
https://testcafe.io/documentation/402837/guides/basic-guides/assert
https://testcafe.io/documentation/402638/reference/configuration-file
https://testcafe.io/documentation/402638/reference/configuration-file
https://testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-videos
https://testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-videos
https://testcafe.io/documentation/402840/guides/advanced-guides/screenshots-and-videos
https://testcafe.io/documentation/402809/guides/continuous-integration
https://testcafe.io/documentation/402809/guides/continuous-integration
https://testcafe.io/402864/release-notes/framework/2016-10-17-introducing-testcafe-open-source-testing-framework
https://testcafe.io/402864/release-notes/framework/2016-10-17-introducing-testcafe-open-source-testing-framework
https://stackoverflow.com/questions/tagged/testcafe
https://github.com/DevExpress/testcafe
https://nightwatchjs.org/
https://nightwatchjs.org/api/element/
https://nightwatchjs.org/api/useractions/
https://nightwatchjs.org/api/ensure/#ensure-api
https://nightwatchjs.org/api/assert/
https://github.com/nightwatchjs/nightwatch-docs/blob/main/guide/running-tests/test-environments.md
https://github.com/nightwatchjs/nightwatch-docs/blob/main/guide/running-tests/test-environments.md

94 Bibliography

89. NGS. ngs/nightwatch-slack-reporter: a @nightwatchjs Reporter That Notifies Results to
Slack [online]. 2016 [visited on 2022-05-10]. Available from: https://github.com/ngs/
nightwatch-slack-reporter.

90. TSCHAN, Sebastian. Docker Hub [online]. 2022 [visited on 2022-05-10]. Available from:
https://hub.docker.com/r/blueimp/nightwatch.

91. STACK OVERFLOW. Newest ’nightwatch.js’ Questions [online]. 2022 [visited on 2022-05-
10]. Available from: https://stackoverflow.com/questions/tagged/nightwatch.js.

92. BROWSERSTACK. nightwatchjs/nightwatch: End-to-end Testing Framework Written in
Node.js and Using the W3C Webdriver API [online]. 2022 [visited on 2022-05-10]. Available
from: https://github.com/nightwatchjs/nightwatch/.

93. TRICENTIS. Why Should You Use TestProject - TestProject Documentation [online].
2022 [visited on 2022-04-24]. Available from: https : / / docs . testproject . io / why -
testproject/why-should-you-use-testproject.

94. TRICENTIS. Using Data Driven Tests and Jobs in TestProject - TestProject Documenta-
tion [online]. 2021 [visited on 2022-05-11]. Available from: https://docs.testproject.
io/using-the-smart-test-recorder/using-data-driven-jobs-in-testproject.

95. TRICENTIS. Parallel Execution - TestProject Documentation [online]. 2022 [visited on
2022-05-11]. Available from: https : / / docs . testproject . io / schedule - and - run -
tests/parallel-execution.

96. TRICENTIS. Installation and Setup - TestProject Documentation [online]. 2022 [visited
on 2022-05-11]. Available from: https://docs.testproject.io/getting- started/
installation-and-setup.

97. TRICENTIS. Integrations - TestProject Documentation [online]. 2022 [visited on 2022-05-
11]. Available from: https://docs.testproject.io/testproject-integrations/.

98. TRICENTIS. TestProject Agent in Docker - TestProject Documentation [online]. 2022
[visited on 2022-05-11]. Available from: https://docs.testproject.io/testproject-
agents/testproject-agent-in-docker.

99. TRICENTIS. TestProject Agent on Kubernetes - TestProject Documentation [online]. 2022
[visited on 2022-05-11]. Available from: https://docs.testproject.io/testproject-
agents/testproject-agent-on-kubernetes.

100. TRICENTIS. About us — TestProject [online]. 2022 [visited on 2022-05-11]. Available
from: https://testproject.io/about/.

101. TIWARI, Garima. WebDriverIO Tutorial for Selenium Automation — BrowserStack [on-
line]. 2021 [visited on 2022-04-24]. Available from: https://www.browserstack.com/
guide/webdriverio-tutorial-for-selenium-automation.

102. WEBDRIVERIO. webdriverio/webdriverio: Next-gen Browser and Mobile Automation Test
Framework for Node.js [online]. 2022 [visited on 2022-04-24]. Available from: https://
github.com/webdriverio/webdriverio.

103. HEGDE, Ganesh. Cypress Vs WebdriverIO: Key Differences — BrowserStack [online].
2021 [visited on 2022-05-11]. Available from: https://www.browserstack.com/guide/
cypress-vs-webdriverio.

104. JS FOUNDATION. Automation Protocols — WebdriverIO [online]. 2022 [visited on 2022-
05-11]. Available from: https://webdriver.io/docs/automationProtocols/.

105. JS FOUNDATION. Organizing Test Suite — WebdriverIO [online]. 2022 [visited on 2022-
05-11]. Available from: https://webdriver.io/docs/organizingsuites/.

106. JS FOUNDATION. Frameworks — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/frameworks.

https://github.com/ngs/nightwatch-slack-reporter
https://github.com/ngs/nightwatch-slack-reporter
https://hub.docker.com/r/blueimp/nightwatch
https://stackoverflow.com/questions/tagged/nightwatch.js
https://github.com/nightwatchjs/nightwatch/
https://docs.testproject.io/why-testproject/why-should-you-use-testproject
https://docs.testproject.io/why-testproject/why-should-you-use-testproject
https://docs.testproject.io/using-the-smart-test-recorder/using-data-driven-jobs-in-testproject
https://docs.testproject.io/using-the-smart-test-recorder/using-data-driven-jobs-in-testproject
https://docs.testproject.io/schedule-and-run-tests/parallel-execution
https://docs.testproject.io/schedule-and-run-tests/parallel-execution
https://docs.testproject.io/getting-started/installation-and-setup
https://docs.testproject.io/getting-started/installation-and-setup
https://docs.testproject.io/testproject-integrations/
https://docs.testproject.io/testproject-agents/testproject-agent-in-docker
https://docs.testproject.io/testproject-agents/testproject-agent-in-docker
https://docs.testproject.io/testproject-agents/testproject-agent-on-kubernetes
https://docs.testproject.io/testproject-agents/testproject-agent-on-kubernetes
https://testproject.io/about/
https://www.browserstack.com/guide/webdriverio-tutorial-for-selenium-automation
https://www.browserstack.com/guide/webdriverio-tutorial-for-selenium-automation
https://github.com/webdriverio/webdriverio
https://github.com/webdriverio/webdriverio
https://www.browserstack.com/guide/cypress-vs-webdriverio
https://www.browserstack.com/guide/cypress-vs-webdriverio
https://webdriver.io/docs/automationProtocols/
https://webdriver.io/docs/organizingsuites/
https://webdriver.io/docs/frameworks

Bibliography 95

107. JS FOUNDATION. Assertion — WebdriverIO [online]. 2022 [visited on 2022-05-11]. Avail-
able from: https://webdriver.io/docs/assertion.

108. JS FOUNDATION. Selectors — WebdriverIO [online]. 2022 [visited on 2022-05-11]. Avail-
able from: https://webdriver.io/docs/selectors.

109. JS FOUNDATION. PerformanceTotal Service — WebdriverIO [online]. 2022 [visited on
2022-05-11]. Available from: https://webdriver.io/docs/wdio-performancetotal-
service/.

110. JS FOUNDATION. Devtools Service — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/devtools-service.

111. JS FOUNDATION. Testrunner Configuration — WebdriverIO [online]. 2017 [visited on
2022-05-11]. Available from: https://webdriver.io/docs/configurationfile.

112. JS FOUNDATION. Video Reporter — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/wdio-video-reporter/.

113. JS FOUNDATION. Getting Started — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/gettingstarted/.

114. JS FOUNDATION. Docker — WebdriverIO [online]. 2022 [visited on 2022-05-11]. Available
from: https://webdriver.io/docs/docker.

115. JS FOUNDATION. Slack Service — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/wdio-slack-service.

116. JS FOUNDATION. Microsoft Teams Service — WebdriverIO [online]. 2022 [visited on
2022-05-11]. Available from: https://webdriver.io/docs/wdio-ms-teams-service.

117. JS FOUNDATION. Autocompletion — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/docs/autocompletion.

118. STACK OVERFLOW. Newest ’webdriver-io’ Questions [online]. 2022 [visited on 2022-05-
11]. Available from: https://stackoverflow.com/questions/tagged/webdriver-io.

119. JS FOUNDATION. Need Help? — WebdriverIO [online]. 2022 [visited on 2022-05-11].
Available from: https://webdriver.io/community/support/.

120. STRATOX CLOUD NATIVE. Ticket Reservation Demo App - Java Spring Boot - Stratox
Cloud Native - Tettra [online]. 2022 [visited on 2022-05-03]. Available from: https://
shorturl.at/fhvLW.

121. RAFI, Dudekula; MOSES, Katam; PETERSEN, Kai; MÄNTYLÄ, Mika. Benefits and
limitations of automated software testing: Systematic literature review and practitioner
survey. In: 2012, pp. 36–42. isbn 978-1-4673-1821-1. Available from doi: 10.1109/IWAST.
2012.6228988.

122. LINDHOLM, David. Economics of Test Automation: Test case selection for automation.
Linköping, 2019. Available also from: http://www.diva-portal.org/smash/get/diva2:
1294193/FULLTEXT01.pdf. MSc thesis. Linköping University, Department of Computer
and Information Science. Supervised by Azeem AHMAD.

https://webdriver.io/docs/assertion
https://webdriver.io/docs/selectors
https://webdriver.io/docs/wdio-performancetotal-service/
https://webdriver.io/docs/wdio-performancetotal-service/
https://webdriver.io/docs/devtools-service
https://webdriver.io/docs/configurationfile
https://webdriver.io/docs/wdio-video-reporter/
https://webdriver.io/docs/gettingstarted/
https://webdriver.io/docs/docker
https://webdriver.io/docs/wdio-slack-service
https://webdriver.io/docs/wdio-ms-teams-service
https://webdriver.io/docs/autocompletion
https://stackoverflow.com/questions/tagged/webdriver-io
https://webdriver.io/community/support/
https://shorturl.at/fhvLW
https://shorturl.at/fhvLW
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1109/IWAST.2012.6228988
http://www.diva-portal.org/smash/get/diva2:1294193/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1294193/FULLTEXT01.pdf

96 Bibliography

Content of the attached media

readme.txt brief description of the contents of the media
src

impl... implementation source code
thesis......................................source form of the work in LATEX format

text.. text of thesis
thesis.pdf ... text of thesis in PDF format

97

	Acknowledgments
	Declaration
	Abstract
	Introduction
	Aim of the thesis
	Research part
	Practical part
	Structure of the thesis

	Concepts
	End-to-end testing
	Functional testing
	Behavior-driven development
	Test-driven development

	Analysis of test automation tools
	Cucumber
	Karate
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Selenium
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Appium
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	SikuliX
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Cypress
	Mocha
	Chai
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Puppeteer
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Playwright
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	TestCafe
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Nightwatch.js
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	TestProject
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	WebdriverIO
	Description of features
	Required technical knowledge
	Set up
	Integration with other tools
	Community and support
	Disadvantages

	Summary

	Quantitative analysis
	Browser support
	Data formats
	Language support
	Dev platforms
	Reporting
	Selectors
	Web UI
	Community
	Integration
	Summary

	Test implementation
	Introduction of the demo application
	Functionality

	Test plan
	Scenario 1
	Scenario 2
	Scenario 3

	Implementation of the test plan
	Selenium
	Appium
	Karate
	SikuliX
	Cypress
	Puppeteer
	Playwright
	TestCafe
	Nightwatch.js
	TestProject
	WebdriverIO

	Summary

	Benefits and risks of automated testing
	Benefits
	Risks and limitations
	Other factors

	Conclusion
	Content of the attached media

