
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

On-line Exploration of Fractals Powered by Julia

Martin Ondejka

Ing. Tomáš Kalvoda, Ph.D.

Informatics

Web and Software Engineering, specialization Web Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

1. Get familiar with a few well-known fractals (e.g., Julia set, Mandelbrot set, Newton

fractal, Twindragon, Lindenmayer system, Koch snowflake, Sierpinski triangle). Review

their basic properties and construction.

2. Select at least four fractals and design their visualization in the Julia programming

environment. Focus on the performance of your solution and select a suitable fast

graphics library. Implement and test your solution.

3. Review possible ways how to interactively present results of your fractal computations

on the web. Design a solution that will cooperate with your code as seamlessly as

possible. Consider also purely Julian tools (e.g., Genie framework or Interact.jl).

4. Implement, deploy and test your solution.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 25 October 2021 in Prague.

Bachelor’s thesis

On-line Exploration of Fractals Powered by
Julia

Martin Ondejka

Department of Software Engineering
Supervisor: Ing. Tomáš Kalvoda, Ph.D.

May 10, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Tomáš Kalvoda, Ph.D., for all the
time and dedication he provided during writing of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Martin Ondejka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ondejka, Martin. On-line Exploration of Fractals Powered by Julia. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Hlavným ciel’om tejto práce je implementácia webovej aplikácie na vizualizáciu
fraktálov v programovacom jazyku Julia. Účel tejto aplikácie má slúžit’ ako
proof-of-concept pre budúce aplikácie s náročnými výpočetnými požiadavkami.
Pre dosiahnutie tohto ciel’u, sme navrhli architektúru riešenia s vlastnost’ami
prispôsobenými požiadavkám a následne sme ju implementovali s detailným
vysvetleńım.

Kĺıčová slova fraktál, Mandelbrotova množina, Juliova množina, Kochova
vločka, Twindragon krivka, webová aplikácia, Julia, Genie, React, Postgre-
SQL, Docker

vii

Abstract

The main goal of this thesis is to implement fractals visualization web applica-
tion in programming language Julia. The purpose of this application should
serve as a proof-of-concept for future Julia web applications with demand-
ing computation requirements. To achieve this, we proposed the architecture
with the properties according to requirements and then implemented it with
detailed explanation.

Keywords fractal, Mendelbrot set, Julia set, Koch snowflake, Twindragon
curve, web application, Julia, Genie, React, PostgreSQL, Docker

viii

Contents

Introduction 1

Goal of thesis 3

1 State of the art 5
1.1 Fractal . 5

1.1.1 Mandelbrot set . 6
1.1.2 Julia set . 6
1.1.3 Twindragon . 6
1.1.4 Koch snowflake . 7

1.2 Existing solutions . 8

2 Design, architecture and technologies 9
2.1 Requirements . 9

2.1.1 Functional requirements 9
2.1.2 Non-functional requirements 9

2.2 Architecture . 10
2.2.1 Julia package . 10
2.2.2 Client-server architecture 10

2.2.2.1 Two tier architecture 10
2.2.2.2 Three tier architecture 11

2.2.3 Front-end . 11
2.2.3.1 Document Object Model 11
2.2.3.2 Single Page Application 12

2.2.4 Back-end . 12
2.2.4.1 API . 12
2.2.4.2 REST API . 12
2.2.4.3 JSON-RPC API 13
2.2.4.4 Active Object 13
2.2.4.5 Relational database 14

ix

2.3 Technologies . 14
2.3.1 Git . 15
2.3.2 Julia . 15
2.3.3 Julia Pkg . 15
2.3.4 Luxor . 15
2.3.5 React . 15
2.3.6 Genie . 16
2.3.7 SearchLight ORM . 16

3 Implementation 19
3.1 Fractals Julia package . 19

3.1.1 Environment . 19
3.1.2 Julia Set . 20
3.1.3 Mandelbrot Set . 21
3.1.4 Koch Snowflake . 23
3.1.5 Twindragon curve . 24

3.2 Front-end . 27
3.2.1 Environment . 27
3.2.2 Gallery . 27
3.2.3 Fractal form . 28
3.2.4 Fractal detail . 30

3.3 Back-end . 33
3.3.1 Environment . 33

3.3.1.1 Installation . 34
3.3.1.2 Configuration 34

3.3.2 Database . 35
3.3.2.1 Repository . 35
3.3.2.2 Activation Queue 36
3.3.2.3 Migrations . 36
3.3.2.4 Configuration 37

3.3.3 Web API . 37
3.3.3.1 JSON-RPC . 38
3.3.3.2 REST API . 38

3.3.4 Dispatcher . 38
3.3.4.1 Active object roles 38
3.3.4.2 Single dispatch method 39
3.3.4.3 Distributed computing 40

3.4 Deployment . 41
3.4.1 Dockerfile . 41

Conclusion 43
Viable future improvements . 43

Bibliography 45

x

A Acronyms 49

B Contents of enclosed media 51

xi

List of Figures

2.2 Three tier architecture. 11
2.3 Active object diagram. 14
2.1 UML component diagram of Fractals portal. 17

3.1 Fractals directory tree. 19
3.2 Julia set fractal with c = −0.8 + 0.156i for subset K = {z ∈ C|z =

a + bi, a ∈ [−0.5, 0.5], b ∈ [−0.5, 0.5]}. 21
3.3 Mandelbrot set fractal for subset K = {z ∈ C|z = a + bi, a ∈

[−2, 1], b ∈ [−1.5, 1.5]}. 22
3.4 Koch snowflake for n = 10. 24
3.5 Twindragon curve for n = 9. 25
3.6 client directory tree. 27
3.7 Gallery of the Fractals portal. 28
3.8 Form of the Koch Snowflake fractal. 29
3.9 Image tab of fractal detail page. 31
3.10 Input data tab of fractal detail page. 32
3.11 server directory tree. 33
3.12 config directory tree . 35

xiii

Introduction

Programming language Julia is high-level, high-performance and dynamic lan-
guage. It’s usage is very broad, but through it’s advantages and special syntax
it can be mostly found in computational science and numerical analysis. [1]

The aim of this thesis is to create interactive web demonstration of few
selected fractals using Julia. Since fractal rendering is one of the mathematical
problems, in which programming language Julia excels, it’s suitable for this
demonstration.

Main acquisition of the thesis is proof of concept of binding mathematical
programming language Julia with development of modern web applications
without using the overhead of other back-end frameworks.

First chapter aims to gain literature overview about the subject of frac-
tals and to define basic mathematical properties of few chosen demonstration
fractals.

Second chapter outlines the functional and non-functional requirements of
the application, establishes the underlying architecture and determines the
tools to achieve the goals.

Third chapter is dedicated to the implementation details of all of the parts
of the application.

1

Goal of thesis

The main goal is to create an interactive web application to visualize a few
well-known fractals.

The first chapter aims to gain a literature overview of a few well-known
fractals (Julia set, Mandelbrot set, Twindragon, Lindenmayer system, Koch
snowflake) and to review their basic properties, mathematical definition and
construction.

The next chapter focuses on outlining the architecture of the final web
application, which includes reviewing possible ways to visualize fractals on
the web and deciding on used technologies.

The last objective is to implement designed solution. That includes using
acquired math knowledge to implement package for visualization of mentioned
fractals in Julia programming environment, and implement web application
using chosen technologies.

3

Chapter 1
State of the art

1.1 Fractal

Classical or Euclidean geometry studies geometric objects such as lines, squares,
cubes — geometric objects with discrete dimensions. Fractals are also geo-
metric objects, however they have specific properties that distinguish them
and cannot be classified as objects of classical geometry. [2]

The term fractal, derived from the Latin word fractus (“fragmented”), was
coined by the Polish-born mathematician Benoit B. Mandelbrot. [3]

According to K. Falconer, properties of fractals that distinguish them from
classical objects are [4]:

• Self-similarity: Fractal objects have similar structure on different scales.

• Irregularity: Fractal’s image patterns cannot be described by tradi-
tional Euclidean geometry.

• Fractional dimension: In the world of fractals it is necessary to gen-
eralize the concept of dimension, introducing the possibility of fractional
values. There are multiple definitions of fractal dimension, here is one
from Michael F. Bamsley. For more detailed explanation see [5].

Definition 1.1.1 (Fractal dimension). Let (X, d) denote a complete
metric space. Let A ∈ H(X) be a nonempty compact subset of X,
where (X, d) is a metric space1. Let B(x, ϵ) denote the closed ball of
radius ϵ and center at a point x ∈ X. For each ϵ > 0, let N (A, ϵ) denote
the smallest number of closed balls of radius ϵ > 0 needed to cover A. If

D = lim
ϵ→0

ln(N (A, ϵ))
ln(1/ϵ)

exists, then D is called the fractal dimension of A. We will also use the
notation D = D(A) and will say ”A has fractal dimension D.”

1https://en.wikipedia.org/wiki/Metric_space

5

https://en.wikipedia.org/wiki/Metric_space

1. State of the art

1.1.1 Mandelbrot set

Mandelbrot set is fractal named after ”father” of the fractal geometry Benoit
B. Mandelbrot. Although, the set was first discovered by Robert W. Brooks
and Peter Matelski [6], Mandelbrot later visualized it.

Mandelbrot set is set of complex numbers c for which the iterations of the
function Pc(z) = z2 + c does not diverge to ∞ when iterated from z = 0. [7]

Definition 1.1.2 (Mandelbrot set). The Mandelbrot set is the set M = {c ∈
C | ∃s ∈ R, ∀n ∈ N, |P n

c (0)| ≤ s} where P n
c (z) is the nth iterate of Pc : z →

z2 + c.

An illustration of the Mandelbrot set can be found in Figure 3.3.

1.1.2 Julia set

Julia set bears the name of French mathematician Gaston Julia of the 20th
century. [8]

Let c ∈ C be a constant, Julia set is the set of complex numbers z ∈ C for
which the iterations of the function Pc(z) = z2 + c does not diverge to ∞. [9]

Definition 1.1.3 (Filled-in Julia set). The Filled-in Julia set is the set K =
{z ∈ C | ∃s ∈ R, ∀n ∈ R, |P n

c (z)| ≤ s} where P n
c (z) is the nth iterate of

Pc : z → z2 + c.

The Julia set is then the boundary between the complex numbers c that
diverge and between those that converge.

An illustration of the Julia set can be found in Figure 3.2.

1.1.3 Twindragon

The Twindragon is fractal curve, that can be constructed recursively with
method such as Lindenmayer system.

Lindenmayer (L-system) system is a type of formal grammar where gen-
erated string serves as a instruction list to generate geometric structure. [10]

L-systems are defined as a tuple

G = (V, ω, P)

where

• V is the alphabet containing both variables and terminals

• ω is the initiator

• P is the set of production rules.

6

1.1. Fractal

During every iteration of string structuring, as many rules as possible are
applied, not only one rule per iteration, as it is in formal grammars.

The Twindragon curve can be constructed with the following context-free
L-system. [11]

G1 = ({A, B, r, l}, S, P)

Where P is

S → ArB

A → ArB

B → AlB

A and B are instructions to go forward of predefined length, and r and l
are instructions to turn right and left by 90◦ respectively.

So iteratively for:

• n = 1 → ArB

• n = 2 → ArBrAlB

• n = 3 → ArBrAlBrArBlAlB

An illustration of the Twindragon curve can be found in Figure 3.5.

1.1.4 Koch snowflake

The Koch snowflake is fractal curve, one of the earliest described fractals by
Helge von Koch in 1904. [12]

There are multiple ways to construct Koch snowflake. One of them is
Lindenmayer system, similarly as Twindragon curve.

Let G be a context-free L-system

G2 = ({F, r, l}, P, S)

Where P is

S → FlFrrF lF

F → FlFrrF lF

F is instruction to go forward of predefined length, and r and l are in-
structions to turn right and left by 60◦ respectively.

So for:

• n = 1 → FlFrrF lF

• n = 2 → FlFrrF lF lF lFrrF lFrrF lFrrF lF lF lFrrF lF

An illustration of the Koch snowflake can be found in Figure 3.4.

7

1. State of the art

1.2 Existing solutions

There are already numerous web applications presenting fractal visualiza-
tions, for example usefuljs.net/fractals or jsdw.github.io/js-fractal-
explorer. However they all have one thing in common, and that rendering
in those applications is client-sided. This means one important implication,
and that the computing power is only dependent on the user’s device. We can
interpret this consequence as advantage or disadvantage.

It can be advantage in case of many users, and not so computationally
demanding tasks. Since server is only serving static files, application like
that can be hosted on the CDN (Content delivery network) without dedicated
server. This means cheaper hosting solution with higher availability.

However most user’s devices don’t have enough computation power to
perform computationally demanding tasks. In this case the server has to
perform the rendering of the fractal and return the final image. This can
be extended not only for fractals, but any computationally demanding task,
which has to be performed on the server. This thesis is aiming to create an
application in Julia programming environment, that is able to do that.

8

usefuljs.net/fractals
jsdw.github.io/js-fractal-explorer
jsdw.github.io/js-fractal-explorer

Chapter 2
Design, architecture and

technologies

This chapter is dedicated to outlining the application requirements as well as
the core application architecture. Later sections aim to determine the tool-set
required to achieve the established requirements.

2.1 Requirements

2.1.1 Functional requirements

The Fractals web app must be able to offer multiple categories of fractals to
render. It must offer multiple options to configure the desired fractal image.
Back-end service must be able to validate user input. It must also forbid
creating unachievable for malicious requests. Users must be able to interact
with created fractals. These interactions include:

• listing created fractals,

• filtering own fractals,

• sorting fractals based on creation time,

• showing created fractal and its metadata,

• showing status of fractal request in queue,

2.1.2 Non-functional requirements

Fractals Julia package must be usable independently from the web app. It
must be downloadable from the Internet.

9

2. Design, architecture and technologies

The web app must be available on the Internet with little downtime. Load-
ing times have to be low as possible, and waiting for fractal render has to be
intuitive and apparent to the user.

The source code has to be scalable, to allow adding new fractals in fu-
ture. Rendering fractals must use dedicated computing power as effectively
as possible. That means being able to use single computer or cluster of com-
puters, and distribute queued requests effectively between dedicated threads
or cluster nodes.

2.2 Architecture

This section outlines architecture and used design patterns. UML component
diagram of the outlined architecture can be seen in Figure 2.1.

2.2.1 Julia package

One of the requirements for Fractals source code is that it must be reusable
in the future by anyone. Another substantial requirement is that it has to
be versioned so that web app implementation will not break after updating
Fractals’ source code. Therefore it is needed to bundle Fractals source code
in the form of a package. Julia environment offers a robust package manager
called Pkg. A package manager deals with installed software packages, and al-
lows you to easily install new software, upgrade software to newer versions, or
remove software that you previously installed. Package management includes
automated dependency resolution, conflict detection thus avoiding installa-
tion errors caused by incompatible dependencies, version tracking of installed
packages and automatic download of new packages. [13]

2.2.2 Client-server architecture

There are two major kinds of modern architectures: two-tier client/server and
three-tier—also called n-tier. It’s important to note that each tier has many
possible variations. At a high level, these architectures focus on the parti-
tioning rules that can be applied based on business or technical requirements.
[14]

Client/server is often a generic umbrella term for any application archi-
tecture that divides processing among two or more processes, often on two or
more machines.

2.2.2.1 Two tier architecture

A two-tier architecture, also known as the client/server model, is a simple way
to model the client/server relationship that exists between a user’s application

10

2.2. Architecture

and a server. The client is generally the presentation layer, and the server is
the data storage layer. [14]

2.2.2.2 Three tier architecture

A three-tier architecture is an extension of the two-tier model, which adds a
new layer that isolates data processing in a central location and maximizes
object reuse. Figure 2.2 shows how this new third layer might fit into an
application architecture. [14]

Figure 2.2: Three tier architecture.

This is a suitable solution to our use case. The client is front-end served
in a browser for the end-user, the server handles client requests regardless of
how a database is implemented, and the database stores client requests and
rendered fractals with their respective metadata.

2.2.3 Front-end

Front-end in the Fractals web application will serve as a user interface for
creating fractal requests and then interacting with already created fractal
images.

Front-end web development is the development of the graphical user in-
terface of a website.

2.2.3.1 Document Object Model

The Document Object Model (DOM) is a programming interface for web doc-
uments. It binds the script with HTML document structure so that programs

11

2. Design, architecture and technologies

can change the document style and content. The DOM represents the doc-
ument as nodes and objects; that way, programming languages can interact
with the page. [15]

2.2.3.2 Single Page Application

A Single-page application (SPA) is a web application that loads a single HTML
file with injected Javascript code and then updates the body content via
JavaScript APIs such as Fetch when different content is to be shown. [16]

This therefore allows users to use websites without loading whole new pages
from the server, which can result in performance gains and a more dynamic
experience, more effort is required to maintain state, implement navigation,
and do meaningful performance monitoring. [16]

2.2.4 Back-end

Back-end in the Fractals web application has multiple essential roles. Firstly it
must communicate with the front-end. Secondly, it must remember, process,
and distribute user requests between dedicated working threads or cluster
nodes. Lastly, it has to store the results of processed requests in the form of
fractal images and be able to serve them to the front-end.

The following subsections dedicate to explaining strategies to satisfy men-
tioned requirements.

2.2.4.1 API

In order to establish communication between client and server, client needs ac-
cess to the Application Programming Interface (API). An API is a connection
between computers or between computer programs. It is a type of software
interface, offering a service to other pieces of software. [17]

2.2.4.2 REST API

A REST API (Representational State Transfer) is a software architecture for
distributed hyper-medial systems. That means it conforms to the constraints
of REST architectural style and allows for interaction with RESTful web ser-
vices. Entities in REST are treated as resources. Resource have type and set
of methods which are following HTTP protocol conventions. GET method is
used for retrieving data, POST method for creating data, PUT and PATCH
for updating data and DELETE for deleting. Each resource is identified by
URI, optionally with global ID. Moreover REST should follow HATEOAS
(Hypermedia as the Engine of Application State) constraint. It means that
hypertext should be used to find your way through the API. [18]

REST API will allow the client to communicate with the server to fetch
required data for display.

12

2.2. Architecture

2.2.4.3 JSON-RPC API

While REST API allows us to work with entities as resources, sometimes we
want to run function on back-end without following REST constraints. Before
REST became popular, most APIs were built on SOAP or XML-RPC. Web
Services induce a massive overhead in terms of file size and parse effort mainly
due to the use of XML as serialization format. JSON-RPC (JavaScript Object
Notation Remote Procedure Call) comes as a compelling trade-off between
REST API and XML based APIs for running remotely code on back-end. [19]

In the following code is the example HTTP request for creating fractal.

POST /createMandelbrotSet HTTP/1.1
Content-Type: application/json

{"iterations": 1000}

In Fractals web application JSON-RPC will be used complementary with
REST for communication between client and server.

2.2.4.4 Active Object

The active object design pattern decouples method execution from method
invocation for objects that each reside in their thread of control. The goal
is to introduce concurrency, by using asynchronous method invocation, and a
scheduler for handling requests. [20]

There are 6 components of an active object:

• A proxy, which provides an interface towards clients with publicly ac-
cessible methods.

• An interface which defines the method request on an active object.

• A list of pending requests from clients (activation queue).

• A scheduler, which decides which request to execute next.

• The implementation of the active object method, ie. business logic (or
servant).

• A callback or variable for the client to receive the future result.

[20]

13

2. Design, architecture and technologies

Figure 2.3: Active object diagram.

The Fractal web application will use the Active Object for scheduling and
dispatching the queue of fractal requests from the client.

2.2.4.5 Relational database

Created fractals and their requests need to be stored somewhere and be acces-
sible to the server processing the requests as well as the client showing results.
Therefore, it must be saved in a database. Traditionally, relational (SQL)
databases are used to handle storage and querying. Relational databases
rely on a predefined schema, which must be updated to propagate a change
in the domain model. Relational databases shine, especially when handling
highly relational data, but come with some drawbacks like strict schema or
lack of scalability. [21] Since Fractals web-app is not expected to have com-
plex relational data to be stored, using NoSQL (Not Only SQL) database,
like an in-memory key-value database, might be more beneficial. However,
Julia, as of now, has very little support even for relational databases, I chose
to stick with a more straightforward approach to avoid additional overhead
and use relational databases. Using any other type of database would require
implementing own driver for communication between Julia application and
database.

2.3 Technologies

Building the whole application from scratch would not be attainable, therefore
using third party libraries and services is essential for developers.

14

2.3. Technologies

2.3.1 Git

“Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.”
[22]

Fractals web app and Julia package use git to version all source code.
The repository is stored remotely on the faculty GitLab server (https://
gitlab.fit.cvut.cz/ondejmar/bp-julia-fractals) with public access to all
faculty members. GitLab can also be used in the future for continuous inte-
gration and deployment.

2.3.2 Julia

Julia is a high-level, high-performance dynamic programming language for
technical computing. It provides a sophisticated compiler, distributed par-
allel execution, numerical accuracy, and an extensive mathematical function
library. [23]

Using Julia programming language is the main requirement of this thesis,
therefore Julia is used in Fractals package and back-end of web application.

2.3.3 Julia Pkg

Pkg is Julia’s builtin package manager, and handles operations such as in-
stalling, updating and removing packages. [24]

Web app back-end uses pkg to manage dependencies, while Julia package
also uses it to bundle it’s code for future use.

2.3.4 Luxor

Luxor is a Julia package for drawing simple static vector graphics. It provides
basic drawing functions and utilities for working with shapes, polygons, clip-
ping masks, PNG and SVG images, turtle graphics, and simple animations.
Luxor uses Cairo for rendering. [25]

Julia Fractals package uses it to render vector fractals like Koch snowflake
or Twindragon.

2.3.5 React

React is an open-source front-end JavaScript library developed by Meta for
building UIs. React advocates a component-based approach, building encap-
sulated components that manage their state, then composing them to make
complex UIs. Since component logic is written in JavaScript instead of tem-
plates, it is possible to pass rich data through the app and keep the state out
of the DOM. [26] React can be used as a base in the development of SPA,
mobile apps, or server-rendered applications using frameworks like Next.js.

15

https://gitlab.fit.cvut.cz/ondejmar/bp-julia-fractals
https://gitlab.fit.cvut.cz/ondejmar/bp-julia-fractals

2. Design, architecture and technologies

For now, Fractals web app is SPA created using Create React App (CRA),
a tool to bootstrap single-page React applications officially supported by the
React team. By using a high-level front-end framework like React, the client
of a web app is easily extensible in the future to a desktop application using
Electron or a mobile application using React Native.

2.3.6 Genie

Genie provides a streamlined and efficient framework for developing modern
web applications. It builds on Julia’s strengths (high-level, high-performance,
dynamic, JIT compiled), exposing a rich API and a powerful tool-set for
productive web development. [27]

Genie covers most of the back-end infrastructure:

• REST API: Genie has a built-in HTTP server providing API to build
REST endpoints.

• Database Connection: Genie provides tool-set called SearchLight,
which includes Object–relational mapping (ORM) and connection drivers
for few well-known relational databases like PostgreSQL, MySQL or
SQLite.

2.3.7 SearchLight ORM

In programming usually data management tasks revolve around objects, as ob-
ject can precisely represent entity with various properties. However relational
databases don’t store data as objects, so Object-relational mapping (ORM)
is needed. ORM is technique for converting stored data from database into
usable objects in programming languages. [28]

SearchLight serves as the ORM layer of Genie tool-set.

16

2.3. Technologies

Figure 2.1: UML component diagram of Fractals portal.

17

Chapter 3
Implementation

This chapter describes the implementation of all application parts into details.

3.1 Fractals Julia package

3.1.1 Environment

Fractals

src

Fractals.jl

JuliaSet.jl

KochSnowflake.jl

MandelbrotSet.jl

Twindragon.jl

.gitignore

Project.toml

Manifest.toml

Main Julia file with included fractal implementations.

Description of the Julia package and dependencies.

Figure 3.1: Fractals directory tree.

The Fractals package is the Julia package with fractal implementations,
that can be install and reused. The package was generated using command

19

3. Implementation

generate Fractals which generates new folder src and files Project.toml
and Manifest.toml (more info about those files in Section 3.3.1).

3.1.2 Julia Set

We can get the approximate result to what is described in Section 1.1.2 by
setting some R > 0, number of iterations M ∈ N and for z from some subset
of C, we measure how many iterations of f(z) = z2 + c we have to do until we
pass the R. This approach is described by Ing. Tomáš Kalvoda, Ph.D. in [9].

function julia_set(c, R, M, reals, imags)
f(z) = zˆ2 + c

for j = axes(reals, 1), k = axes(imags, 1)
z = complex(reals[j], imags[k])

for n = 1:M
z = f(z)
if abs(z) > R

data[j, k] = n
break

end
end

end

data = map(
x -> 1.0 - min(x / M, 1.0) |> Gray,
transpose(data)

)
end

Listing 3.1: Source code of Julia set.

20

3.1. Fractals Julia package

Figure 3.2: Julia set fractal with c = −0.8+0.156i for subset K = {z ∈ C|z =
a + bi, a ∈ [−0.5, 0.5], b ∈ [−0.5, 0.5]}.

3.1.3 Mandelbrot Set

We can get an approximate result of the Mandelbrot set by following similar
approach as in Julia set. We set some R > 0, number of iterations M ∈ N and
for c from some subset of C, we measure how many iterations of f(z) = z2 +c,
beginning with z = 0 we have to do until we pass the R.

21

3. Implementation

function mandelbrot_set(R, M, reals, imags)
f(z, c) = zˆ2 + c

for j = axes(reals, 1), k = axes(imags, 1)
c = complex(reals[j], imags[k])
z = 0

for n = 1:M
z = f(z, c)
if abs(z) > R

data[j, k] = n
break

end
end

end

data = map(
x -> 1.0 - min(x / M, 1.0) |> Gray,
transpose(data)

)
end

Listing 3.2: Source code of Mandelbrot set.

Figure 3.3: Mandelbrot set fractal for subset K = {z ∈ C|z = a + bi, a ∈
[−2, 1], b ∈ [−1.5, 1.5]}.
22

3.1. Fractals Julia package

3.1.4 Koch Snowflake

To draw curves, package Luxor provides turtle graphics module. Turtle graph-
ics are vector graphics using turtle as a relative cursor.

Using the grammar defined in Section 1.1.4, we can use function Turn
from Luxor to perform r and l instructions and create recursive function
forward_recursive for instruction F .

function forward_recursive(t::Turtle, n::Integer, size::Number)
if n <= 0

Forward(t, size)
return

end

size /= 3

forward_recursive(t, n - 1, size)
Turn(t, -60)
forward_recursive(t, n - 1, size)
Turn(t, 60)
Turn(t, 60)
forward_recursive(t, n - 1, size)
Turn(t, -60)
forward_recursive(t, n - 1, size)

end

function koch_curve(n::Integer, size::Integer, path::String)
t = Turtle()

@png begin
Reposition(t, Point(-size / 2, size / 10))
forward_recursive(t, n, size)

end size size path
end

Listing 3.3: Koch snowflake source code

To draw snowflake instead of single Koch curve, we can repeat the process
3 times.

23

3. Implementation

Figure 3.4: Koch snowflake for n = 10.

3.1.5 Twindragon curve

Grammar defined in Section 1.1.3 can be performed in similar manner as Koch
snowflake.

To perform instructions r and l we can use function Turn and to perform
instructions A and B we can define two recursive functions forwardA and
forwardB.

24

3.1. Fractals Julia package

Figure 3.5: Twindragon curve for n = 9.

25

3. Implementation

function forwardA(t::Turtle, n::Integer, length::Number)
if n <= 0

Forward(t, length)
return

end

forwardA(t, n - 1, length / sqrt(2))
Turn(t, 90)
forwardB(t, n - 1, length / sqrt(2))

end

function forwardB(t::Turtle, n::Integer, length::Number)
if n <= 0

Forward(t, length)
return

end

forwardA(t, n - 1, length / sqrt(2))
Turn(t, -90)
forwardB(t, n - 1, length / sqrt(2))

end

function twindragon(n::Integer, size::Integer, path::String)
t = Turtle()

Reposition(t, Point(0, size / 6))
Turn(t, -90 * (floor(((n + 3) / 2)) % 4))

@png begin
forwardA(t, n, size / 3)

end size size path
end

Listing 3.4: Source code of Twindragon curve.

26

3.2. Front-end

3.2 Front-end

In this section I will describe the main front-end components of the Fractals
portal client.

client

public

index.html

src

components

views

.gitignore

package.json

README.md

tsconfig.json

Public static files

HTML document with injected React code.

Client source code.

React reusable components.

Client pages.

Node.js file defining list od dependencies and scripts.

Typescript configuration.

Figure 3.6: client directory tree.

3.2.1 Environment

A new React application can be instantiated in multiple ways. Nowadays
React is pretty much only coding paradigm and meta-frameworks are used
to handle compilation, bundling, bootstrapping etc. Fractals client is created
by tool called Create-React-App2, which creates new Node.js boilerplate
environment.

Fractals client uses also a component library called Mantine3, which pro-
vides React components for broad variety of UI elements like buttons, input
boxes, layouts, etc. and React hooks for common use-cases.

3.2.2 Gallery

The gallery is used as a landing page for Fractals portal. It lists all created
fractals and fractal requests in the database.

On the left side is navigation with all the pages including Gallery and link
to every possible Fractal request form.

2https://create-react-app.dev/
3https://mantine.dev/

27

https://create-react-app.dev/
https://mantine.dev/

3. Implementation

On the right side is the panel with filtering options. User is able to filter
based on fractal type, request status or name.

Demonstration of the final gallery UI can be seen in the Figure 3.7.

It is also possible to filter only user’s fractals. It doesn’t work cross
browsers, since in the background, the local storage is utilized for this fea-
ture. Local storage is storage object of the browser, which stores data across
browser sessions. It is similar to session storage, except it has no expiration
time. When Fractal client sends the request to create fractal, it saves the uid
from the response to the local storage, and then filters only those that are
present, when filter ”Only my fractals” is toggled on.

Figure 3.7: Gallery of the Fractals portal.

3.2.3 Fractal form

Every fractal type has it’s own page for creating request on the route
/create/:fractal_type. The page consists of form, which on submit sends
the request data to the respective API endpoint. Demonstration of the final
form UI can be seen in the Figure 3.8. API responds with the uid of the
created request, which is stored into the local storage for gallery filtering and
redirects to the page showing this fractal.

28

3.2. Front-end

const [
myFractals,
setMyFractals

] = useLocalStorage<string[]>({
key: "my-fractals",
defaultValue: [],

}); // React hook for using local storage

const send = async (values: JuliaSetInput) => {
const result = await fetch("/julia-set", {

method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify(values),

});

const { uid } = await result.json();

// Store uid to the local storage
setMyFractals([uid, ...myFractals]);

navigate(`/view/${uid}`); // Redirect to the detail page
};

Listing 3.5: Implementation of form handling.

Figure 3.8: Form of the Koch Snowflake fractal.

29

3. Implementation

3.2.4 Fractal detail

Every created fractal and fractal request has it’s own dedicated page on the
route /view/:uid. There are 2 ways to get on this page, either from the
gallery or by being redirected from the form.

The page layout is divided into 2 tabs:

• Image: This tab 3.9 shows the metadata info (title, type, status, date-
time of creation) of the fractal request on the left side, and if request is
finished, final image on the right side.

• Input data: This tab 3.10 shows the input data being sent to the server.
Input data are essential to replicate or modify the fractal image.

Demonstration of the final detail UI can be seen in the Figure 3.9 or 3.10.
Fractal request has few possible states and fractal detail has to display

every one of them accordingly. The states are:

1. "WAITING" and IN_PROGRESS: Client shows metadata, and instead of
image, loading animation is being shown to indicate user that the request
is being worked on. Additionally, client periodically tries to re-fetch
status of the request, to automatically show a final image when it’s
ready.

2. "FINISHED": Client shows metadata and final image like in Figure 3.9.

3. "ERROR": Client shows metadata and instead of a fractal image, the
error placeholder image is being shown.

30

3.2. Front-end

Figure 3.9: Image tab of fractal detail page.

31

3. Implementation

Figure 3.10: Input data tab of fractal detail page.

32

3.3. Back-end

3.3 Back-end

In this section I will further explain back-end infrastructure of Fractals web
application. Folders structure follow Genie framework conventions.

All of the back-end code lives in the server subdirectory in the git repos-
itory. 4

server

app

bin

config

db

public

src

test

.gitignore

Project.toml

Manifest.toml

routes.jl

bootstrap.jl

bootstrap dispatcher.jl

Resources repositories and controllers.

Binaries to run server instances, REPL and cron jobs.

Configs for prod, dev and test environments.

Migration and seeding scripts for database.

Public assets like css and images (includes generated fractals).

Implementation of the active object dispatcher.

Unit tests.

Files and folders that should be ignored by git.

High level description of project, including list of dependencies.

Absolute record of the state of the packages in the environment.

List of the endpoints with respective controllers.

Bootstrap genie app into the memory.

Bootstrap dispatcher instance into the memory.

Figure 3.11: server directory tree.

3.3.1 Environment

Back-end has two server instances with different roles (public REST API
and implementation of active object, dispatcher), which shares common en-
vironment. This environment is described in two files, Project.toml and
Manifest.toml, which are then used by Pkg to instantiate the environment.

Project.toml describes the project on a high level, with information like
project’s name, author, version etc. Most importantly it includes the list of

4https://gitlab.fit.cvut.cz/ondejmar/bp-julia-fractals/tree/master/server

33

https://gitlab.fit.cvut.cz/ondejmar/bp-julia-fractals/tree/master/server

3. Implementation

library dependencies and compatibility constraints with libraries version and
version of the Julia itself.

name = "Server"
uuid = "b278cb4a-0c3d-4ab5-88cd-cc79f0708b4f"
authors = ["Martin Ondejka <ondejmar@fit.cvut.cz>"]
version = "0.1.0"

[deps]
Genie = "c43c736e-a2d1-11e8-161f-af95117fbd1e"
Fractals = "c3bcf3c1-58f0-4432-ada4-aa8da7106ebb"
...

Manifest.toml is auto-generated file by Pkg on instantiating of the en-
vironment. It is an absolute record of the state of the packages in the envi-
ronment, which includes exact information about dependencies in the project
like version, uuid, dependencies upon which was this package instantiated etc.
Usually this file is ignored by git, but in this particular case it is needed to be
committed as it includes information about how our Fractals package was
installed from relative path.

...
[[deps.Fractals]]
deps = ["Luxor"]
path = "../Fractals"
uuid = "c3bcf3c1-58f0-4432-ada4-aa8da7106ebb"
version = "0.1.0"
...

3.3.1.1 Installation

The back-end environment can be installed by running make install in the
root directory of the project. The command runs simple Julia script which
activates the local environment and instantiates packages.

using Pkg
Pkg.activate(".")
Pkg.instantiate()

3.3.1.2 Configuration

Folder config contains configuration files required to initialize environment
for running the application. config/env/global.jl file contains all the com-
mon variables, while dev.jl, prod.jl and test.jl contain variables that are
different in every environment.

Differentiating of the development environments is needed due to variables
like WORKER_NPROCS which defines number of worker processes for dispatcher
or SERVER_URL, which will be different in production than in local development
environment.

34

3.3. Back-end

config

initializers

env

dev.jl

global.jl

prod.jl

test.jl

Scripts for initializing of application modules.

Environment variables based on current environment.

Figure 3.12: config directory tree

3.3.2 Database

In Fractals back-end, PostgreSQL relational database is used. Genie ecosys-
tem offers ORM SearchLight5, which will cover all of the SQL queries without
having to write SQL.

In Genie entities are established as resources. To create new resource we
can run in julia REPL command:

julia> Genie.newresource("Fractal")

This will create new FractalRepository.jl module, FractalController.jl
module, and database migration to create fractal table.

3.3.2.1 Repository

In Genie Repository contains struct Fractal. ORM will then map the entity,
and all of the database operations on this Fractal struct. This will ensure
separation of database layer from business logic, as all of the database oper-
ations will be run from defined functions in repository. In Fractals web-app
we have one repository for Fractal entity, which represents created fractal re-
quests with the status "WAITING" and all of the created fractal images with
the status "FINISHED".

Fractal entity has 5 attributes. uid identifying fractal uniquely, data stor-
ing input data from the request, created_at to order fractals based on cre-
ation time, location defining location URI of the image and status describ-
ing the current status of processed request.

Fractal table supports following database operations:

• Creating new Fractal request.
5https://genieframework.com/docs/searchlight/api/callbacks.html

35

https://genieframework.com/docs/searchlight/api/callbacks.html

3. Implementation

@kwdef mutable struct Fractal <: AbstractModel
id::DbId = DbId()
uid::String = ""
data::String = ""
created_at::DateTime = now()
location::String = ""
status::String = "WAITING"

end

function get_fractal(uid::String)
find(Fractal, SQLWhere(:uid, uid)) |> onereduce

end

function waiting_fractals()
find(Fractal, SQLWhere(:status, "WAITING"))

end

...

Listing 3.6: Source code of the Fractal repository.

• Fetching one Fractal request based on uid.

• Fetching all of the Fractal requests for client to list the gallery.

• Fetching all of the waiting Fractal requests for dispatcher.

3.3.2.2 Activation Queue

Database table fractal_request serves also the role of an Activation Queue
in the Active Object architecture. By querying all of the Fractal requests with
the status "WAITING", we get the queue ready to be processed.

3.3.2.3 Migrations

All of the database schema alterations in SearchLight are resolved through
migration scripts. Relational databases require strict schema, which disallow
changing requirements during development. Migrations solve this issue by
having the queue of scripts with strict order to be applied on database once,
which results in correct schema.

Migration script requires two functions:

• up(): to implement desired alteration.

• down(): to rollback implemented alteration from up().

In SearchLight migrations can be created by creating new resource like in
section 3.3.2. In Fractals web-app, migration is firstly used to create fractal
table, and then during development to add required new fields.

36

3.3. Back-end

3.3.2.4 Configuration

Connection configuration file is defined by ORM driver package for Post-
greSQL, and it’s located in db/connection.yml. File is divided into three
configurations dev, prod, test.

Additionally for local development configuration of docker-compose.yml
file is provided to easily install database instance on local machine without
having to install PostgreSQL manually.

version: "3.9"

services:
fractals-db:

image: postgres
ports:

- "5432:5432"
environment:

- POSTGRES_PASSWORD=postgres
- POSTGRES_DB=fractals

volumes:
- data:/var/lib/postgresql/data

restart: always

volumes:
data:

Listing 3.7: Docker compose configuration.

By running make db-run from root of the repository, docker will automat-
ically download latest postgres docker image and create container with volume
storage.

3.3.3 Web API

The Fractals web-app requirements of an API are:

1. Request generation of fractal image from the client.

2. Fetch data about in-progress and finished requests from the client.

Genie offers robust MVC framework for HTTP protocol communication.
MVC stands for Model View Controller, which in our case we will use only
Model (in the repository module) and Controller parts, as View is implemented
separately in the client.

Respectively to the requirements an API is also divided into two compo-
nents.

37

3. Implementation

3.3.3.1 JSON-RPC

Remote Procedure Call API is used to enqueue fractal request into the active
object scheduler called Dispatcher. Therefore this component of an API serves
the role of proxy in the active object architecture 2.2.4.4.

Every fractal type has one endpoint procedure to enqueue new request
with input data defined in the body of the POST payload.

• /koch-snowflake: payload of this fractal requires only n to define num-
ber of nested iterations, and size to define size of final image in pixels.

• /koch-curve: koch-curve has exactly same input parameters as koch-
snowflake.

• /twindragon: since Twindragon curve is similar fractal to Koch snowflake,
the input is same.

• /mandelbrot-set: mandelbrot-set endpoint has all the input parame-
ters required for computation of the image which include r, M , range of
x axis, range of y axis and size.

• /julia-set: julia-set endpoint has the same input parameters as mandelbrot-
set, except it adds the parameter c.

3.3.3.2 REST API

REST API is used to fetch resources to the client in form of created fractal
requests or finished fractal images.

REST API contains two endpoints defined in routes.jl file:

• /fractals: fetch all created, waiting and in-progress fractals.

• /fractal/:uid: fetch single fractal resource based on unique ID.

3.3.4 Dispatcher

Dispatcher is the computing module of the Fractals web-app back-end. It
shelters processing of Fractal requests efficiently based on the computing power
provided, and stores the final image in the data storage.

3.3.4.1 Active object roles

Dispatcher is the main pillar of the Active Object architecture. It serves three
most important roles:

• Scheduler: Separate process, which repeatedly checks the Activation
Queue 3.3.2.2 for waiting requests.

38

3.3. Back-end

– If there are any waiting requests, dispatcher delegates processing
of the request to the other process.

– If there are no waiting requests, dispatcher sleeps for 2 seconds.

while true
while count_waiting_fractals() === 0

sleep(THREAD_SLEEP)
end

for request in waiting_fractals()
@spawnat :any dispatch(request)

end
end

Listing 3.8: Dispatcher scheduler implementation.

• Servant: Servants are all the processes delegated to the dispatcher. Set-
ting environment variable WORKER_NPROCS to the number of processes,
Scheduler process initializes them and uses for dispatching of requests.

• Method: Single dispatch method is used to have only one method for
enqueing all the requests, but ensure that every request will be processed
correctly according to the request type.

3.3.4.2 Single dispatch method

dispatch function is defined in file Dispatcher.jl, which is then called by
scheduler. Purpose of this function is to delegate Fractal request to the ap-
propriate method from the Fractals package in this order.

1. Sets the status of the request to the IN_PROGRESS.

2. Parses the json request data.

3. Creates the location of the final image.

4. Checks the "type" field in request data and based on it parses rest of
the request data and calls the method from Fractals package together
with the location.

5. On success, saves the request with the status of FINISHED.

6. On error, logs the error and saves the request with the status of ERROR.

39

3. Implementation

function dispatch(request)
uid = request.uid
data = JSONParser.parse(request.data)

try
location = "img/fractals/$uid.png"

if data.type === "koch_curve"
(; n, size) = data

@info "Processing koch curve request $uid"
koch_curve(n, size, "public/$location")

end

...

request.status = "FINISHED"
request.location = location
save(request)

catch e
request.status = "ERROR"
save(request)
@error "Unexpected error:" e

end
end

Listing 3.9: Dispatcher servant implementation.

3.3.4.3 Distributed computing

Dispatcher allows for running the servants in separate processes or even on a
remote machine, therefore scheduler serves as a proxy.

To run Dispatcher with multiple processes, it is needed to set WORKER_NPROCS
environment variable to the number of processes.

To run Dispatcher servant remotely, it is needed to set two environment
variables:

• WORKER_SSH_TUNNEL=true

• WORKER_SSH_CONFIG to the flags that will be passed to the ssh com-
mand. Example: WORKER_SSH_CONFIG=user@host:port

Dispatcher can be run by entering the command make dispatcher-run,
this will run the script called bootstrap_dispatcher.jl.

Every spawned process has to be initialized and to load every library used
to the memory same as in the parent process Additionally database has to
be used, so Genie initializes SearchLight database driver by loading all of the
modules. Libraries can be loaded into the memory of spawned process by
running @everywhere macro.

40

3.4. Deployment

@info "Loading configuration"
using Genie
Genie.load_configurations(context=@__MODULE__)
@everywhere using Genie
@everywhere using SearchLight
@everywhere Genie.load(; context=@__MODULE__)

@everywhere using Fractals
@everywhere using FractalRepository

3.4 Deployment

In Fractals portal, there are 3 main components of the web application that
need to be deployed in order to function properly:

1. Client

2. HTTP server with API

3. Dispatcher

Client can be built into the single Javascript bundle file and be served
from the HTTP server. By running yarn build from the client directory,
client/build folder will be created with full bundle of static files ready to
be served. Client static files, together with fractal images can be served by
any HTTP server like Nginx 6 or Apache 7. Currently Fractals portal is
serving static files by built-in Genie HTTP server, which is not ideal from the
performance perspective. Usually dedicated HTTP servers offer caching and
other features to serve static files more efficiently.

Fractals API and Dispatcher are both Julia applications, so they can be
deployed in the same way. In order to uniform Julia environments and provide
easy way to deploy application on any unix machine, the Fractals portal can
be containerized.

3.4.1 Dockerfile

Dockerfile is used to build docker image of Fractals portal. Docker images
can be then run on server, which creates docker container — runtime of the
Fractals portal.

FROM --platform=linux/amd64 julia:latest

set up the app
RUN mkdir -p app/server
RUN mkdir -p app/Fractals

6https://www.nginx.com/
7https://httpd.apache.org/

41

https://www.nginx.com/
https://httpd.apache.org/

3. Implementation

COPY ./server app/server
COPY ./Fractals app/Fractals

WORKDIR app/server

...

instantiate Julia packages
RUN julia -e " \
using Pkg; \
Pkg.activate(\".\"); \
Pkg.instantiate(); \
Pkg.precompile(); "

EXPOSE 80

set up app environment
ENV GENIE_ENV "prod"

CMD ["./run.sh"]

In order to build the image docker build -t fractals-image . can be
run. Then to run the container:

docker run -e PORT=80 -e SERVER_URL=$domain_of_the_server \
-p 80:80 fractals-image

42

Conclusion

This thesis describes details on how the goals were achieved to implement web
application to visualize fractals in programming language Julia.

The literature overview about the chosen set of fractals has been provided
and well defined.

Requirements for an application were outlined the architecture and re-
quired tools have been chosen and introduced.

Implementation details of the Fractals portal have been detailed. The code
was implemented and explained in the thesis.

The application has been deployed on CloudFIT environment and is run-
ning flawlessly.

To conclude this thesis, goals from the beginning, as well as the outlined
requirements, were fulfilled.

Viable future improvements

Scope of this thesis didn’t include some of the features that would be very
valuable.

Currently there is no other option of removing the fractals, other then
manually connecting to the database. Valuable addition to the application
would be an admin interface behind the authentication layer.

To mitigate the impact of long lasting computations, method to segregate
requests based on computation duration should be implemented. There should
be always at lest one dispatcher worker available for the short lasting tasks.

43

Bibliography

[1] Bezanson, J.; Edelman, A.; et al. Julia: A fresh approach to numerical
computing. SIAM review, volume 59, no. 1, 2017: pp. 65–98.

[2] Theiler, J. Estimating fractal dimension. JOSA A, volume 7, no. 6, 1990:
pp. 1055–1073.

[3] Mandelbrot, B. B.; Evertsz, C. J.; et al. Fractals and chaos: the Mandel-
brot set and beyond, volume 3. Springer, 2004.

[4] Falconer, K. Fractal geometry: mathematical foundations and applica-
tions. John Wiley & Sons, 2004.

[5] Barnsley, M. F. Fractals everywhere. Academic press, 2014.

[6] Brooks, R.; Matelski, J. P. The dynamics of 2-generator subgroups of
PSL (2, C). In Riemann surfaces and related topics: Proceedings of the
1978 Stony Brook Conference, Ann. of Math. Stud, volume 97, 1980, pp.
65–71.

[7] Avalos-Bock, S. Fractal Geometry: The Mandelbrot and Julia Sets.
May 2022. Available from: https://math.uchicago.edu/˜may/VIGRE/
VIGRE2009/REUPapers/Avalos-Bock.pdf

[8] Julia set. April 2022. Available from: http://www.britannica.com/
science/Julia-set

[9] Kalvoda, T. 07: Vizualizace a manipulace s grafikou. April 2022. Avail-
able from: https://courses.fit.cvut.cz/BI-JUL/tutorials/bi-jul-
07.html

[10] Prusinkiewicz, P.; Hanan, J. Lindenmayer systems, fractals, and plants,
volume 79. Springer Science & Business Media, 2013.

45

https://math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Avalos-Bock.pdf
https://math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Avalos-Bock.pdf
http://www.britannica.com/science/Julia-set
http://www.britannica.com/science/Julia-set
https://courses.fit.cvut.cz/BI-JUL/tutorials/bi-jul-07.html
https://courses.fit.cvut.cz/BI-JUL/tutorials/bi-jul-07.html

Bibliography

[11] Großkopf, P. Intersecting the twin dragon with rational lines. Dissertation
thesis, Wien, 2020.

[12] Koch snowflake. April 2022. Available from: https://
mathworld.wolfram.com/KochSnowflake.html

[13] Aptitude user’s manual: What is a package manager? March 2022.
Available from: https://www.debian.org/doc/manuals/aptitude/
pr01s02.en.html

[14] Reese, G. Database Programming with JDBC and JAVA. ” O’Reilly Me-
dia, Inc.”, 2000.

[15] Introduction to the DOM. March 2022. Available from: https:
//developer.mozilla.org/en-US/docs/Web/API/Document_Object_
Model/Introduction

[16] SPA (Single-page application). March 2022. Available from: https://
developer.mozilla.org/en-US/docs/Glossary/SPA

[17] Reddy, M. API Design for C++. Elsevier, 2011.

[18] What is a REST API? March 2022. Available from: https://
www.redhat.com/en/topics/api/what-is-a-rest-api

[19] Samsel, C.; Gökay, S.; et al. Web Service to JSON-RPC Transformation.
In ICSOFT, 2013, pp. 214–219.

[20] Špaček, P. Lecture 7: Concurrency patterns. March 2022. Available from:
https://courses.fit.cvut.cz/NI-ADP/lectures/index.html

[21] Venkatraman, S.; Fahd, K.; et al. SQL versus NoSQL movement with
big data analytics. International Journal of Information Technology and
Computer Science, volume 8, no. 12, 2016: pp. 59–66.

[22] Git. March 2022. Available from: https://git-scm.com

[23] Wikipedia: Julia (programming language). March 2022. Available from:
https://en.wikipedia.org/wiki/Julia_(programming_language)

[24] The Julia Language: Pkg. March 2022. Available from: https://
docs.julialang.org/en/v1/stdlib/Pkg

[25] Introduction to Luxor. March 2022. Available from: http://
juliagraphics.github.io/Luxor.jl/stable

[26] React github. March 2022. Available from: https://github.com/
facebook/react

46

https://mathworld.wolfram.com/KochSnowflake.html
https://mathworld.wolfram.com/KochSnowflake.html
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://courses.fit.cvut.cz/NI-ADP/lectures/index.html
https://git-scm.com
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://docs.julialang.org/en/v1/stdlib/Pkg
https://docs.julialang.org/en/v1/stdlib/Pkg
http://juliagraphics.github.io/Luxor.jl/stable
http://juliagraphics.github.io/Luxor.jl/stable
https://github.com/facebook/react
https://github.com/facebook/react

Bibliography

[27] Genie framework. March 2022. Available from: https://github.com/
GenieFramework/Genie.jl

[28] O’Neil, E. J. Object/relational mapping 2008: hibernate and the entity
data model (edm). In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, 2008, pp. 1351–1356.

47

https://github.com/GenieFramework/Genie.jl
https://github.com/GenieFramework/Genie.jl

Appendix A
Acronyms

API Application Programming Interface

CDN Content Delivery Network

CRA Create React App

DOM Document Object Model

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JIT Just in Time

JSON Javascript Object Notation

MVC Model View Controller

NoSQL Not Only SQL

ORM Object-relational Mapping

PNG Portable Network Graphics

REST Representational State Transfer

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SPA Single Page Application

SVG Scalable Vector Graphics

SQL Structured Query Language

UI User Interface

49

A. Acronyms

UID Unique Identifier

URI Universal Resource Identifier

XML Extensible Markup Language

50

Appendix B
Contents of enclosed media

readme.txt ... the file with the instructions to run Fractals portal locally
src.......................................the directory of source codes

server..................the source code of the Fractals portal server
client.............the source code of the Fractals portal react client
Fractals....................the source code of the Fractals package

thesis...
thesis.tex the thesis source code
thesis.pdf...........................the thesis text in PDF format

51

	Introduction
	Goal of thesis
	State of the art
	Fractal
	Mandelbrot set
	Julia set
	Twindragon
	Koch snowflake

	Existing solutions

	Design, architecture and technologies
	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Julia package
	Client-server architecture
	Two tier architecture
	Three tier architecture

	Front-end
	Document Object Model
	Single Page Application

	Back-end
	API
	REST API
	JSON-RPC API
	Active Object
	Relational database

	Technologies
	Git
	Julia
	Julia Pkg
	Luxor
	React
	Genie
	SearchLight ORM

	Implementation
	Fractals Julia package
	Environment
	Julia Set
	Mandelbrot Set
	Koch Snowflake
	Twindragon curve

	Front-end
	Environment
	Gallery
	Fractal form
	Fractal detail

	Back-end
	Environment
	Installation
	Configuration

	Database
	Repository
	Activation Queue
	Migrations
	Configuration

	Web API
	JSON-RPC
	REST API

	Dispatcher
	Active object roles
	Single dispatch method
	Distributed computing

	Deployment
	Dockerfile

	Conclusion
	Viable future improvements

	Bibliography
	Acronyms
	Contents of enclosed media

