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Abstract
This thesis focuses on ways of modelling
of unreinforced slender masonry elements
that are susceptible to loss of stability.
An algorithm for assessment of slender
masonry elements was proposed and im-
plemented. The algorithm is based on
a beam model with material and geomet-
ric non-linearity. The results of modelling
are used for masonry arch bridges and
slender masonry columns. There is a lack
of literature and methods on the topic
of assessment of existing structures using
the input parameters that can be stated
by the real diagnostic survey, i.e., the di-
agnostic survey that does not damage
the structure too much and has adequate
costs. The current literature is based on
theoretical parameters, such as real tensile
strength, real stress-strain diagram, biax-
ial stress diagram of material, fracture
energy, etc. The proposed algorithm and
the thesis, in general, are based on usu-
ally available input parameters; therefore,
it also applies for the practical design of
structures in accordance with the current
standards. The thesis also comments on
the approach of standards and proposes
its improvements to be able to approxi-
mate the real behaviour of masonry ele-
ments. The assessment of slender columns
is affected by the 3D effects, which the lit-
erature describes insufficiently. The de-
sign standards, for example, do not deal
with columns subjected to biaxial bending.
The algorithm consequently focuses on
the columns loaded in 3D. In addition, in
today’s literature, there is no evaluation of
the influence of the stress-strain diagram
used on the behaviour of slender columns;
no recommendations on use of the stress-
strain diagram are given. At the ultimate
limit state, the standards recommend only
rigid-plastic check which has been in this
thesis proven to be the most inadequate
check among the compared checks. A case
study of a set of columns of different slen-

derness is carried out, and the results are
plotted; results of six various stress strain
diagrams are compared. Also, a para-
metric study was carried out on a set of
masonry vault bridges, and variable arch
spans, rises, depths of backfill and others
were compared. The sensitivity analy-
sis of the input parameters of the vault
bridges on the final load carrying capacity
is carried out. Because the current stan-
dards minimally deal with the assessment
of masonry arch bridges, the thesis also
focuses on this topic.

Keywords: masonry, brick columns,
no-tension material, slenderness,
second-order analysis, vault bridge,
backfill, non-linearity, load carrying
capacity, bridge assessment, limit states,
finite element analysis, historical heritage
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Abstrakt
Práce hodnotí a porovnává různé způsoby
modelování nevyztužených štíhlých zdě-
ných konstrukcí, tedy konstrukcí náchyl-
ných na ztrátu stability. Byl navržen a
implementován algoritmus pro posuzování
štíhlých zděných konstrukcí. Jeho jádrem
je prutový model s materiálově a geomet-
ricky nelineárním chováním. Výsledky vý-
počtů s tímto přístupem jsou použity pro
hodnocení klenbových konstrukcí a zdě-
ných sloupů. U stávajících konstrukcí v
současnosti chybí literatura a metody vy-
cházející především ze vstupních parame-
trů, které je možné získat běžným dia-
gnostickým průzkumem, aniž by byla kon-
strukce nadměrně poškozena nebo aniž
by byly vyžadovány nepřiměřené náklady.
Současná literatura vychází z teoretických
parametrů, jako například tahová pevnost
malty v konstrukci, skutečný pracovní di-
agram, pracovní diagram při dvouosém
namáhání, lomovou energii materiálu a
podobně. Algoritmus a přístup této práce
vychází pouze z dostupných parametrů,
díky tomu může sloužit i pro praktické
návrhy a posouzení, které podléhají sou-
stavě norem. Z tohoto důvodu se tato
práce kromě navrhovaného přístupu ma-
ximálně snaží přístup norem objektivně
zhodnotit a podat návrhy pro jejich zlep-
šení. Z hlediska štíhlých sloupů vstupují
do výpočtu i prostorové 3D účinky, které
jsou v dnešní literatuře postiženy nedosta-
tečně. Současná norma kupříkladu sloupy
zatížené ve dvou rovinách (obecně ve 3D)
vůbec neřeší, proto se algoritmus pro ře-
šení sloupů soustředí zejména na tuto pro-
blematiku. Rovněž se v dnešní literatuře
nikde nevyskytuje hodnocení vlivu uži-
tého pracovního diagramu na chování štíh-
lých sloupů a doporučení, který pracovní
diagram použít. Norma uvádí v mezním
stavu únosnosti pouze posudek s pracov-
ním diagramem tuho-plastickým, který je
v této práci ukázán jako nejméně vhodný.
V této práci byla provedena parametrická

studie sloupů o různých štíhlostech a vý-
sledky jsou prezentovány v grafech, dále
byla provedena studie vlivu šesti různých
pracovních diagramů na chování štíhlých
sloupů. Stejně tak bylo analyzováno cho-
vání klenbových zděných mostů různých
rozpětí, tlouštěk násypu a dalších para-
metrech. Byla provedena citlivostní ana-
lýza vlivu jednotlivých vstupních parame-
trů na výslednou zatížitelnost klenbových
mostů. Protože se normy jen minimálně
zabývají posouzením zděných mostů, byly
v práci řešeny i způsoby posouzení zdě-
ných mostů.

Klíčová slova: zděné konstrukce, sloup,
materiál bez tahové pevnosti, štíhlost,
výpočet podle teorie 2. řádu, klenbový
most, násyp, nelinearita, zatížitelnost,
hodnocení mostu, mezní stavy, metoda
konečných prvků, kulturní památka
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State of the art

The state of the art is divided into four parts. Material behaviour and properties see in
Section 1.1, methods of analysing the columns in 2D see in Section 3.2, the columns in 3D
see in Section 4.2 and the methods of analysing vaults see in Section 6.

General introduction

The masonry elements connected by the mortar is one of the oldest building materials.
Many historic buildings, listed as a cultural heritage, are still in use. Bridges usually carry
much more load than at the time of their design. The traffic load is still increasing. For
this reason, we must still analyse the historic structures and the behaviour of the historic
masonry. Proper assessment of structures is one of the principles of sustainable development
and has an impact on the economics of construction; the portion of masonry structures is
large. The primary usage of masonry is for compressed members. Real masonry structures
are always also loaded by imperfections or some lateral load. Hence, the structures are
loaded by a combination of normal compressive force and bending moment (except for some
special cases, such as infill walls). For the case of a slender member, the slenderness of
the member plays an important role. The behaviour of the structure is impacted in several
ways: geometric and material non-linearity.

This thesis aims to describe the behaviour of slender masonry unreinforced elements,
implement a new method for handling the slender masonry elements, offer existing calcula-
tion methods, compare its results, show its advantages and disadvantages, and recommend
the real-time ways for assessing the slender masonry structures. The methods used are
reliable but "simple" and not complex too much - the 3D solid elements with non-linear
behaviour representing each masonry unit and mortar separately, taking into account
moisture, climatic effects, and construction stages (time-depending analysis) are not used
in this thesis. For the case of assessing the existing structures, homogenization approaches
validated with small-scale tests and engineering judgement must provide sufficient and
reliable input data for the models without the need for large-scale destructive experiments,
which are not feasible. The chosen material model is in this thesis considered homogenized
because the detailed micro-modelling demands input parameters which are almost impossi-
ble to obtain in the case of existing structures. This thesis concentrates on methods that do
not require theoretical parameters such as the real tensile strength of the structure, the real
stress-strain diagram, the biaxial stress diagram of the material, and the fracture energy.
These parameters cannot be stated by the diagnostic survey with the required precision
and the complex analysis is therefore impracticable.

The study of a set of certain structures is presented to show the importance of dealing
with several input parameters. Finally, recommendations are given for the calculations and
scope of the work of a diagnostic survey.

The newly proposed simplified method uses beam elements considering both material
and geometric non-linearity. Therefore, it includes all the impacts of the behaviour of
slender masonry columns and offers a sufficient realistic simulation for the majority of vault
bridges.
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In most cases, the material behaviour is considered non-linear, mainly because of the very

limited tensile strength of the masonry. In this thesis, the zero tensile strength is considered.
In compression, mostly the linear behaviour is assumed. The impact of considering six
various stress-strain diagrams is also shown.

The thesis is divided into two parts. In the first one, the columns are handled. In
the second one, vaults are analysed.

Masonry columns

At first, the 2D column problem is handled, the importance of considering both geometrical
and material non-linearity is shown. For example, the method specified in the current
standard [PL07] fails and leads to an overestimation of the impact of the stability problem
(leading to conservative results). This thesis aims to analyse the real behaviour of slender
masonry columns under compression and to develop the simplified method for their design
and assessment, which can also be used in accordance with the applicable standards; this
simplified method was developed using a MATLAB® algorithm that takes into account
the phenomena mentioned above: the material and geometric non-linearity.

Then, the solution to the 2D problem was extended to the solution of the 3D problem.
The motivation is to address the realistic three-dimensional aspects of the problem which is
not described sufficiently in the literature and the standard omits it completely. Recently
designed masonry structures are, considering their arrangement and resistance, usually
designed as a wall, which strongly emphasize the existing standards (especially [PL07]).
This standard is conservative and assumes the rigid-plastic stress-strain diagram which is
shown to be unreal.

The algorithm implemented uses non-linear beam elements. Six various stress-strain
diagrams for the behaviour of masonry in compression were implemented; impact of
the stress-strain diagram used is shown. The study of a set of columns of various heights
was carried out and the results were compared. Then, the results of the experiment
were taken from other authors; these results were compared with the result of modelling.
The results are also compared to different calculation methods and current standards.

The choice of stress-strain diagram, use of material and geometric non-linearity are shown
to have a high impact on the resulting behaviour.

Masonry vaults

The main motivation is to provide "simple", robust, and reliable methods that can be
used also for practical design and require only the parameters that can be obtained. This
thesis also compares available methods and shows the main disadvantages of the most
commonly used model - the linear beam model which is unreal and mainly conservative.
See the motivation for the analysis also in Section 5.

In this part, the new method is described (using non-linear beam elements). The re-
sults are compared with other methods: the linear method using beam elements, planar
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elements with linear and non-linear behaviour, and equilibrium of rigid slabs were used.
The comparison was made for a set of masonry arch bridges of various spans, the height of
the backfill, and other input parameters. The results of the modelling were calibrated and
compared to the in-situ tests of the Legion Bridge; where the static load test was performed,
and the comparison with the original static analysis (graphical method) was also carried
out. The sensitivity of the input parameters for calculating the load carrying capacity of
the masonry arch bridges is carried out.

Mainly the 2D case of vaults is handled which is sufficient for the overwhelming majority
of vault bridges. The vault bridges that are skew such that the skewness must be handled
see in [oR17] and [FSB17].

As an example of the use of the mentioned methods, the Cheb Bridge in Karlovy Vary
was assessed in detail. A diagnostic survey was used as a basis for assessing the load
carrying capacity (as well as for the case of the Legion Bridge).
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Chapter 1
Material behaviour and properties

1.1 Material modelling - State of the art

Masonry is highly heterogeneous, anisotropic material with a strongly non-linear constitutive
response. The development of accurate and efficient numerical procedures to study masonry
structural response is still a challenging task related to the assessment of the safety and
reliability of masonry structures, especially the old ones. Although detailed material
modelling is not the focal point of this thesis, a basic overview of masonry modelling
methods is provided.

The basic approaches of material modelling are taken from the article [Lou13]:. Detailed micro-modelling in which units and mortar in the joints are represented by
continuum elements whereas the unit-mortar interface is represented by discontinuous
elements,. simplified micro-modelling in which expanded units are represented by continuum
elements whereas the behaviour of the mortar joints and unit-mortar interface is
lumped in discontinuous elements,.macro-modelling in which units, mortar and the unit-mortar interfaces are smeared
out in a homogeneous continuum.

The way of detailed micro-modelling is described, for example, in [RKR+19]. The simpli-
fied micro-modelling is explained, for example, in [Esh57], where the close-form solution for
the problem of ellipsoidal inhomogeneity within an infinite matrix is shown. The model
of article [BRR99] relies upon the exact solution after Eshelby and describes brickwork
as a mortar matrix with insertions of elliptic cylinder-shaped bricks. For an example of
the masonry arch bridge modelling, the paper [PeD07] can be referred. The micro-modelling
method requires a high computational effort; thus, it is typically adopted for simple masonry
elements, for the masonry non-linearity, local response, and details. For this reason were, for
example of the thesis [Boe15], all the implemented materials assumed to be homogeneous
and isotropic and a Smear Crack, even when modelling the reinforcement of the masonry.
The simple element (wall of dimensions 67.5 × 55 × 10 cm) was examined experimentally
and mathematically for example in [SAS17], or [MLGB13] (element of dimensions 120 ×
120 × 70 cm). Micro-modelling is not discussed in this thesis.
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1. Material behaviour and properties................................
The methodology of mesoscale modelling is described, for example, in [MI11], further

experiments were carried out in the article [CMAI18]. In this approach, the mortar and
brick–mortar interfaces are modelled by 2D 16-noded zero-thickness non-linear interface
elements. Elastic solid elements represent the masonry units. The data-fitting is done by
minimising a functional representing the discrepancy between experimental and numerical
data. In the article [SSZ+08] two specific approaches to the derivation of macroscopic
(effective) fracture energy needed in full-scale macroscopic simulations were examined.
The first approach exploits the well-known elements of the first-order homogenization in
conjunction with the statistically equivalent periodic unit cell, while the second approach
draws on the numerical representation of standard laboratory tests proposed for the deter-
mination of size-independent fracture energy for quasi-brittle materials, including concrete
and masonry structures. A comparison of the results suggests good agreement between
individual approaches.

For the purpose of analysis and the structural design, the material in this thesis is
homogenized appropriately to preserve its properties in relation to the real behaviour of
the structure modelled. The method of Eurocode is used (see [PL07]) which is according
to [MLT06] called "yield line theory" and it is based on laboratory tests (e.g. [GDE85]
and [SMC95]) conducted on the brick masonry walls subjected to lateral loads, show-
ing that failure takes place along a well-defined pattern of lines. Other homogenization
techniques are described in the paper [LMTZ07] which addresses many different homoge-
nization methods available in the literature, showing their advantages and disadvantages.
The strategy employed in [ZNSS08] is based on the well-established first-order homoge-
nization schemes, e.g. [Ant95]. In the article [ZNSS08], which concentrates on the Charles
Bridge in Prague, the non-linear mechanical behaviour of the masonry was modelled using
the CC3DNonLinCementitious plastic-fracturing constitutive model available in ATENA
3D. According to article [ZNSS08], computational homogenization approaches, when care-
fully validated with small-scale tests and engineering judgement, can provide a reasonable
procedure for feeding material models with reliable data without a need for large-scale
destructive experiments. In the thesis [Laf17], special modelling of replacing the damaged
stone units of Charles Bridge is done using both micro modelling and homogeneous model.

1.2 Compressive strength of masonry - State of the art

There are many possibilities of calculating the strength of masonry from the strength
of masonry units and mortar. The authors of [PG09] presents a list of 34 models for
the maximum masonry compression strength ("most models are based on simple empirical
investigations and are usually strongly related to the special conditions of the investigated
masonry type").

The publication [Ohl86] proposed an approach adopted also by [oR11]; the strength can
be calculated as follows:

fk = 0.5fm + a.fb − fm
2 + b.hffb

2hsRst

, (1.1)

where:
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........................ 1.3. Compressive strength of masonry - used equations

. hf is the thickness of the joint,. hs is the thickness of the masonry unit,. a, b are coefficients according to Table 9, source [oR11].

The model according to DIN 1053-1 (1996) and DIN 1053-100 (2004) has a simple
application since only two tables have to be used (see the tables, for example, in [PG09]).

The method of current standard [PL07] comes out of the group of models called "Empirical
exponential models", see the following section.

1.3 Compressive strength of masonry - used equations

The methods used in this thesis can be used independently of any standard; in order
to illustrate and demonstrate the examples and because of the comparison with other
bridges, current standards are used and the following formula is used for the characteristic
compressive strength of the masonry in acceptance with Eurocodes [PL07]:

fk = Kzf
αm
b fβm, (1.2)

where:. fk is the characteristic compressive strength of the masonry,.Kz is coefficient depending on the masonry type and elements, for the cases in this
thesis equals 0.45 (see Tab 3.3 of [PL07]; in this thesis are used clay and natural stone
masonry units),. αm is coefficient depending on the type of joints and mortar, for the cases in this thesis
equals 0.7 (unreinforced masonry, general purpose mortar),. β is coefficient depending on the type of the mortar and composition, for the cases in
this thesis equals 0.3 (general purpose mortar),. fb average normalised compressive strength of the masonry units,. fm average compressive strength of the masonry mortar; the minimal value of fm is
0.1 MPa according to [ÚN14].

The design compressive strength is calculated as follows (according to [ÚN05c] and [PL07]):

fd = fk
γM

. (1.3)

γM can be according to [ÚN14] calculated as:

γM = γM1γM2γM3γM4, (1.4)

where:
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1. Material behaviour and properties................................
. γM – partial safety factor of the masonry, can be stated according to previous equation

or paragraph 2.4.3 of [PL07],. γM1 – constant coefficient - the basic value of the safety factor is 2 (for the case of
clay masonry units with general purpose mortar; in other cases, it should be assessed
individually depending on the way of obtaining the material characteristics),. γM2 – constant coefficient to take into account the level of brickwork; 0.85 ≤ γM2 ≤ 1.2;
value 0.85 is for masonry with perfect brickwork,. γM3 – constant coefficient for the consideration of moisture of the masonry; 1 ≤ γM3 ≤
1.2; value 1 is for dry masonry,. γM4 – constant coefficient for the considering cracks in the masonry; 1 ≤ γM4 ≤ 1.4;
value 1 is for masonry without cracks.

The values of these coefficients can be seen in [ÚN14]. See the example of assessing γM
coefficient in Section 11.2.3.

The stress-strain diagrams, which are considered in this thesis, are given in following
Section 1.6.1, and 2.

1.4 Shear strength of masonry

The shear strength consists of two components: initial shear strength under zero compressive
stress and a contribution due to the design normal stress multiplied by the coefficient of
friction (Mohr-Coulomb failure criterion). This is expressed by Eq. 2.2.

1.5 Tensile strength of masonry

The tensile strength of masonry is in this thesis considered zero. See the details in
Section 1.6.1. See the discussion on this topic and the literature review for the case of vault
bridges in Section 5.

1.6 Deformation properties of masonry

1.6.1 Stress-strain relationship

Masonry is in this thesis considered a homogeneous material. It is assumed that the di-
mensions of the masonry elements and the joints between them do not significantly affect
the distribution of stress in a masonry member. The check of the structure is then carried
out only in the weakest cross section, i.e., in the joints of the brickwork. It is assumed that
if the structure fulfils the verification in the joints, it fulfils the verification in all other cross
sections.

The real stress-strain diagram of masonry in compression, as can be seen in [MGF14],
shows a non-linear behaviour, see also Figure 1.1.
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............................... 1.6. Deformation properties of masonry

Figure 1.1: Stress-strain diagram of masonry in compression – experiments and curves which
try to fit it.

The stress-strain diagrams were described, for example, by Hendry and Khalaf [HK01],
Augenti and Parisi [AP10]. In Figure 1.1, Sargin’s curve describing concrete behaviour is
also displayed according to [Sar71].

The behaviour of masonry columns considering various stress-strain diagrams was studied
in Section 4.3.5; six used diagrams see in Fig. 4.7.

This thesis assumes that the material reacts only to the pressure, and tensile stress leads
to cracking and its opening. This is illustrated by Figure 1.2. If subsequently (e.g., in
another load combination) the tensile stress in the cross section vanishes, the cracks will
close, and the cross section will act as complete again. Other authors often chose the same
approach; the no-tension material with the linear stress-strain law for compression is used,
for example, in [TB77], [FF80], and [LLM93].

Figure 1.2: Changes of cross section properties in dependence on load.

Idealized stress-strain diagrams of the material for the individual limit states in accordance
with [PL07] are shown in Section 2. Stress-strain diagrams are considered linear (at the SLS
– serviceability limit state), or linearly-plastic (at the ULS - ultimate limit state). See more
possibilities of diagrams in Section 4.3.5.
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1. Material behaviour and properties................................
1.6.2 Modulus of elasticity

In this thesis, the modulus of elasticity is mostly considered E = KEfk, where KE has
a recommended value 1000 according to [PL07]. For the case that the existing structure
was assessed and the diagnostic survey was available (such as the case of the Legion Bridge;
Section 10.3.3), the modulus of elasticity of the masonry units was taken from the tests.
According to [oR17], the modulus of elasticity of masonry is lower due to the fact that
the modulus of elasticity of masonry units is combined with the impact of the mortar:

Ecm = 5000 + 300fb. (1.5)

The example of use of this equation see in Section 11.2.5.

1.6.3 Shear modulus

According to [PL07], the shear modulus, G, can be taken as 40 % of the elastic modulus.
This approach is adopted in this thesis.
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Chapter 2
Limit states - methods of assessment

A limit state is a condition of a structure beyond which it no longer meets the relevant
design criteria. In Europe, the limit state design is enforced by the Eurocodes. For this
reason, the limit state criteria are in this thesis used to assess the masonry structures.
Furthermore, the applicability of these criteria is also discussed.

2.1 Ultimate limit state

At the ultimate limit state (ULS), the behaviour of the structure just before the collapse is
investigated. The load factors according to the appropriate standard (EN 1990 - [ÚN05b])
are considered for the determination of the bearing capacity. Generally, plastic hinges are
assumed to be fully developed in the structure. The main assumption of the calculation is
that the function of strain is linear (plane sections remain plane). The second assumption
is that the stress in the cross-section is derived from the stress-strain diagram. The details
on masonry arch bridges behaviour see also in [Dra13] and [VD18]. The resistances for
axial and shear forces at the ULS can be written according to [PL07] as:

Nu = NEd ≤ NRd = fdB (H − 2eu) , (2.1)

VEd ≤ VRd = (fvk0H + 0.4σd (H − 2eu))B/γM , (2.2)

where:. fd is the design strength of the masonry in compression, calculated according to
Equation 1.3,. fvk0 is the characteristic value of the initial shear strength at normal stress equal to 0,. B,H is the width or height of the cross section, respectively,. eu is the eccentricity of the resultant axial force in the cross section at the ultimate
limit state; eu = MEd/NEd,. σd is the design compressive stress in the compressed area at the ultimate limit state
(uniformly distributed, see Figure 2.1),
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2. Limit states - methods of assessment ..............................
. 0.4 is the coefficient of friction in the masonry joint, in this thesis denoted µ, see

the study on this parameter in Section 7.2.2 and 8.2.3,. γM is the factor of the material according to Equation 1.4,.Nu = NEd is the design value of applied normal force,.NRd is the design normal resistance force,. VEd is the design value of applied shear force,. VRd is the design shear resistance force,.MEd is the design value of applied bending moment.

σ

σ

ε

ε

σ

Figure 2.1: Stress distribution of the masonry cross section at the ultimate limit state.

2.2 Serviceability limit state

The serviceability limit state (SLS) describes the behaviour of the structure under ordinary
operating conditions. Fulfilling the requirements of the serviceability limit state provides
the required properties and behaviour of the structure throughout its lifetime. In terms of
the serviceability limit state, crack width and structural stress under operating load are
verified (load factor equals to 1.0). In terms of vault structure verification, it is necessary
to verify the maximum axial stress in the cross section and the height of the compressed
area of the cross section (see [HD08] and [PL07]). The elastic behaviour of the structure
is considered with a linear distribution of axial stress in the compressed area of the cross
section. The tensioned part of the section is excluded for stress determination (see Figure 2.2
).

σn,max = NEk

3B (H − 2e) ≤ 0.45fk (2.3)

Hc ≥
H

2 −→ e ≤ H

3 (2.4)
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....................................2.2. Serviceability limit state

σ

σ

ε

ε

σ

Figure 2.2: Stress distribution of the masonry cross section at the serviceability limit state.

e = MEk

NEk
(2.5)

where:.MEk is the characteristic value of applied bending moment,.NEk is the characteristic value of applied normal force.

See the graphical expression of the criteria of limit states in Figure 8.1.
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Chapter 3
Slender masonry columns in 2D

The content of this chapter is taken mainly from the article [VD17].

3.1 Introduction

Stability analysis is one of the most studied problems in civil engineering. One reason is that
the research is quite complex due to the many phenomena that need to be included. For
example, the method specified in [PL07] fails and leads to an overestimation of the impact
of the stability problem (leads to conservative results).

Recently proposed masonry structures are, considering their arrangement and resis-
tance, usually designed as a wall, which strongly emphasizes the existing standards (es-
pecially [PL07]). However, this is insufficient for the slender masonry column because
the behaviour of a wall is quite different to the behaviour of the column. See the discussion
on this topic also in Section 4.1. The standard also does not take into account the impact of
masonry elements composition regarding the structures constructed before the acceptance
of EN.

The current research aims to analyse the real behaviour of slender masonry columns
under compression and to develop the simplified methods for their design and verification
in combination with the applicable technical regulations. Accurate modelling methods
have to consider the non-linear stress-strain diagram of masonry, changes in the cross
section characteristics due to the development of cracks, and the geometric non-linearity
of the problem. Only one non-linearity was considered in the analysis in the first analysis
methods, e.g., the linear stress-strain diagram in compression with zero tensile strength.
Today, the most common option is modelling using the finite element method. There are
many other methods, see Section 3.2.

The object of this chapter is to develop a MATLAB® algorithm that takes into account
the phenomena mentioned above, i.e., the material and geometric non-linearity, including
changing the centroid position and mechanical properties of the structure due to the de-
velopment of the cracks. The prismatic beam loaded in the plane of the main inertia is
considered in the analysis.
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3. Slender masonry columns in 2D.................................
3.2 Methods of modelling - state of the art

One of the main analysis assumptions is the assumption of the chosen material model. See
this topic in Section 3.3.2.

This section lists the methods of the load-bearing capacity assessment of unreinforced
masonry columns (such as the buckling load).

3.2.1 Analytical solutions

Stability analysis of a theoretically straight column with linear behaviour

Euler’s critical load for the theoretically straight column:

Fcr = π2EI

L2
cr

, (3.1)

where:

. Fcr – is critical load, for which the column buckles,

. EI – is bending stiffness,

. Lcr – is critical length.

The critical length depends on the boundary conditions - see Fig. 3.1. For the masonry
column, only full restraint or free end boundary conditions are applicable.
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Figure 3.1: Buckling shapes and critical lengths for various boundary conditions.

In the algorithm, the buckling shapes according to Fig. 3.1 are used in the form of
the prescribed initial shape of a column (called initial imperfection); see below.

Stability analysis of beam with initial imperfections with linear behaviour

The model geometry is based on the real layout and dimensions of the analysed struc-
ture. A crucial input data is the maximum estimated value of the initial imperfection of
the structure, which is defined by the principles which are set out in [fS07] by:

e0 = max(L/450;H/30; 20)mm, (3.2)

where:. e0 – maximal initial displacement,.H – is width of cross section in the direction of buckling and. L – is effective length, for beam column it is the distance of supports in the analysed
direction.

The maximal imperfection values are derived from the standard [ifs95], which is applicable
for the design of new structures. For the case of existing structures, the shape and values
of maximal imperfections should be measured in-situ. The initial shape of the structure
(imperfection) is determined on the basis of the expected buckling shape. Given the nature
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3. Slender masonry columns in 2D.................................
of masonry as a material with relatively small strength, the buckling shape is considered
sinusoidal or part of the sine function in any "span" of a column, i.e., between the supports.
The functions used for the approximation of the initial shape of the structure are shown
in Fig. 3.2. In the case of unequal length of "spans", approximation functions have to be
selected individually for each "span" (there is also a condition that the derivative of shapes
of imperfect beam axis is continuous).

Figure 3.2: Initial shape of the imperfect column. Left: cantilever beam, middle: simply
supported beam, right: the beam which is supported on both sides by hinges and has a hinge
support in the middle of height.

The function of initial imperfection y0 can be for the middle and right parts of Figure 3.2
described as:

y0 = e0sin (πx/L) , (3.3)

the left part of the figure (the cantilever beam) can be described by the equation:

y0 = e0sin

(
π/2 + πx

L

)
/2 + e0/2. (3.4)

The general equations for the solution used for the algorithm presented are the same as
in the 3D case; see Section 4.3.3.

Stability of a column with material non-linear behaviour

Most analytical simulations are based on the solution to the governing differential equation
derived with reference to the cracked [Yok71] or the partially cracked member [CA72].
Mainly, the beam model is used.

The method of calculation of axial and bending tangent stiffness properties for an un-
cracked and cracked masonry section with parabolic stress–strain law in compression was
proposed by [SR84].
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3.2.2 Numerical solutions

The solution of the differential equation at the deformed state of the masonry member see
in [Kyu01] for an example of a cantilever beam element. The author used the numerical
integration procedure - Butcher’s fifth-order Runge–Kutta method.

In the article [Mur08], the integro-differential problem has been formulated and solved
numerically with the finite difference method (FDM). The precision of the finite differ-
ence results is assessed by comparison with the results obtained using of the 4th-order
Runge–Kutta method and the Collocation method.

A comprehensive finite element model was presented for the combined material, and
geometric non-linear analysis of slender unreinforced masonry walls in [LSS04]. The ma-
terial tensile strength is considered; an exponential stress-strain relationship is adopted
for the compressive region, and its smooth linear extension is used for the tensile area.
The numerical results were compared with the experimental results and with the analytical
results in published technical papers.

The arc length method is a powerful numerical technique for solving systems of non-linear
equations. This technique was used in [MSS05].

3.3 Material properties

3.3.1 In general

Masonry as a construction material is highly heterogeneous, consisting of separate masonry
elements (bricks, blocks, etc.) and joints filled with a binder (mortar) usually of significantly
lower strength and stiffness. The lower strength and stiffness of the mortar ensure a uniform
transfer of a load between the masonry units, even in places of local stress concentrations
(i.e., where the asperity or roughness of the masonry elements occurs). High mortar
strength and stiffness increase the strength of the entire composite material. Still, in areas
of local asperities or roughness, undesired crushing of masonry elements would occur with
a consequent risk of failures.

3.3.2 Masonry material model

In practical terms, a 3D discrete element model of the structure, which considers the individ-
ual elements and their behaviour, is unusable, particularly with regard to the complicated
determination of the input data, its calculation, and evaluation of the result. Therefore, for
analysis and the structural design, the material is usually homogenized appropriately to
preserve its properties concerning the real behaviour of the modelled structure. A consistent
approach is chosen in this study. Masonry is considered a homogeneous or homogenized
material. See also Section 1.
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3. Slender masonry columns in 2D.................................
3.4 Mechanical modelling of masonry columns

The above-described material model causes significant changes in geometry and stiffness of
the structure being modelled depending on the applied load. The widening of the cracks in
the masonry and the geometrical non-linearities leads to non-linear solution of the whole
problem. The principle of modelling of cross sections and individual elements, changes in
the stiffness and the geometry of the structure caused by the applied load are shown in
Fig. 3.3 and 1.2. It may be seen that tension in the part of the cross section makes this
part excluded (see also 1). As a result, the cross section area decreases and the centroid
moves; the move of centroid is denoted δ, its unit is [m]. The move δ of the centroid has
a positive effect on the load eccentricity (the bending moment decreases). Still, the cross
section is getting smaller, which has a negative impact on the stresses (the stress increases).

δ
normal stress distribution

Figure 3.3: Changes of cross section and geometry of structure due to excluding the tensioned
parts.

3.4.1 The method of calculation - MVo code (see also Section 4.3.3 )..1. First step..a. Dividing of the column to partial beam elements, calculate their stiffness...b. Elastic analysis with the full cross section.
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......................................... 3.5. Example 1..c. Calculation of stresses in the cross section of each element and determining
whether the excluding of the tensioned part of the cross section executes, or
the cross section remains full...d. Calculation of the matrix "prop" – the matrix of the height, the area, the moment
of inertia, and the stiffness of the cross section in each step of the calculation...2. Second and every other step..a. Calculation of δ - move of a cross section of each element (from matrix "prop"
from the last step)...b. Calculation of matrix K (global stiffness matrix) with the new cross section
properties and changed geometry...c. Calculation of matrix KG (global geometric stiffness matrix)...d. Calculation of vector rd (vector of displacement) with changed geometry and new
matrix K...e. Calculation of stresses in the new cross section and determination, whether
the new cross section becomes even smaller or it grows bigger again...f. Filling of the matrix "prop"...g. Checking the condition of convergence – see Equation 4.19.

3.5 Example 1

The column hinged on both sides with the square cross section B × H = 0.4 × 0.4 m
with the height of 4.2 m was chosen. Its initial imperfect shape was chosen according
to Section 3.2.1, initially inclined right. The axial load on the column was 770 kN and
the bending moments at both ends 39 kNm. These moments were chosen so that they
enlarge the moment from imperfection. The final deflection and internal forces can be seen
in Fig. 3.4: Left top - final shape and lateral deflection (see also Fig. 3.5), right top – lateral
deflection of the middle of the column in each step of the calculation, left bottom – shear
force in the final step, right bottom – the bending moment in the last step. In Fig. 3.6 can
be seen the final shape of column (function of thickness H) when excluding the tensioned
zones. All this is for the case that cross section reduces, and the calculation converges to
equilibrium.

27



3. Slender masonry columns in 2D.................................

Figure 3.4: The results of modelling - Example 1.

28



......................................... 3.5. Example 1

(a) : The final height of the cross section at
the final step.

(b) : The bending moment in the middle of
the height of the column in each step of calcu-
lation.

Figure 3.6: The results for the case that the cross section reduces and the calculation converges
to equilibrium.

Figure 3.5: The final shape of central line and lateral deflection of this structure, non-
proportional plot. The results for the case that cross section reduces and the calculation
converge to equilibrium.

The load in the above example was chosen to show the impact of the material non-linearity.
If the load is higher than the critical load, the lateral deflection grows excessively large. In
such a case, the calculation stops after a few steps; see Figure 3.7.
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3. Slender masonry columns in 2D.................................

Figure 3.7: Lateral deflection of the middle of the column in each calculation step. The results
are shown for the case that the cross section is reduced and the calculation did not converge.

The last possible case is that the column cross section does not reduce because the tension
did not occur. So the calculation is carried out only with the assumption of the linear
behaviour of the material. The result can be seen in Figure 3.8.
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Figure 3.8: Left top - final shape and lateral deflection, right top – lateral deflection of the middle
of the column in each step of calculation, left bottom – shear force in the final step, right bottom
– bending moment in the final step. All this is for the case, that the cross section does not
reduce and the calculation converges to equilibrium.

3.6 Example 2

The column fixed at both ends with the square cross section B ×H = 0.4 × 0.4 m with
the height 8.2 m was chosen. Its initial imperfect shape was chosen 0.18 m, initially inclined
right. The axial load on the column was 770 kN. The final deformation and the internal
forces can be seen in Fig. 3.9. In Fig. 3.10 can be seen the final shape of column (function
of thickness H) when excluding the tensioned zones.
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Figure 3.9: Left top - final shape and lateral deflection, non-proportional plot, right top –
lateral deflection of the middle of the column in each step of the calculation, left bottom –
the shear force in the final step, right bottom – the bending moment in the final step. All this
is for the case that the cross section reduces and the calculation converges to equilibrium.

3.7 Conclusions

An algorithm that can solve non-linear stability analysis of slender columns loaded in
the plane of the main moment of inertia was implemented in the program MATLAB®.
The program allows us to analyse these structures till their failure. The comparison of
the results of the developed algorithm with other calculation methods can be seen in
Section 4.4.3.
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(a) : The final height of cross section
at the final step.

(b) : The final shape of the column – without excluded
tensioned parts of the cross section.

Figure 3.10: The results for the case that the cross section reduces and the calculation converges
to equilibrium.
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Chapter 4
Slender columns subjected to biaxial bending
combined with compressive normal force

The content of this chapter is taken mainly from the article [VD21].

4.1 Introduction

In general, all structures are loaded in all three directions, and all material behaviour
is described by the non-linear behaviour. In practical structural design, the stiffness of
an element usually allows the minor load effect to be neglected and to consider the element
loaded in one direction only. It is not suitable for cases, for which My > 0.1Mz (or
Mz > 0.1My), such as columns in the corner of the building, where load by wind can occur
in two directions or for example of a high bridge pier, where the transverse wind load
cannot be neglected. The impact of the biaxial bending loading combined is even higher in
the case of slender columns.

According to the current code of masonry structures ([PL07]), the rectangular cross
section loaded by a combination of normal force and one bending moment (which results
in a smaller, again rectangular cross section according to Section 1.6.1 and 3) can be
considered. This is not sufficient for the case of biaxial bending moments, which can lead
to a skew neutral axis and a trapezoidal or general polygon-shaped cross section; neutral
axis impacts the calculation at the level of cross section. The approach that all members
are designed as a wall does not reflect the behaviour of column member which impacts
the whole structure. The standard [PL07] also assumes that the columns are used mainly
in combination with a stiff ceiling, which is not the case of many existing (often historic)
columns.

The general stress diagram arising from biaxial bending is shown in Figure 4.1 for
the case of the linear stress-strain diagram (used in SLS) and in Figure 4.2 for the case
of the rigid-plastic diagram (used in the ULS). The stress-strain diagram for the SLS is
doubtless linear for the compression, but for the ULS, there are many options. The [PL07]
recommends a non-linear relation, even though it does not recommend which relation should
be used. Another possibility is to use an elastic - ideal plastic. The equation for the check
of the design value of resistance normal force arises from the rigid-plastic diagram, which is
also used in this chapter. See all the diagrams used in Section 4.3.
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Figure 4.1: The general stress diagram of a rectangular cross section - at the SLS.

Figure 4.2: The general stress diagram of a rectangular cross section at the ULS – for example
of rigid-plastic stress-strain diagram.

4.2 Methods and literature review

Biaxial bending is mentioned in a few masonry standards throughout the world. In case
that the biaxial bending is mentioned, the verification is very conservative. For example of
the British standard – [BSI05], the slenderness ratio λs is limited by the value of 27 (in
this case study, columns of ratio λs up to the value of 300 are analysed). All the methods
consider only the rectangular shape of the cross section. In general, methods can be divided
by (each method has its shortcut):. Consideration of material non-linearity for calculation of internal forces.. Yes (M). Linear stress-strain diagram (L). Rigid-plastic diagram (R). Non-linear diagram (N). No (-). Consideration of geometric non-linearity for calculation of internal forces.
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................................. 4.2. Methods and literature review

. Yes (G). No (-).Method, how is the check done.. Effective area – rectangular shape, 1 coefficient for impact of buckling (B1). Effective area – rectangular shape, 2 coefficients for impact of buckling (B2). Effective area – general shape according to B. Das [Das18], 1 coefficients for
impact of buckling (D). Fully non-linear calculation, controlling the strain and stress of material (S)

For example, the method proposed by this thesis is ML,R,N GB1,D,S method ("," means
multiple options). The order of characters in the shortcut corresponds to the items in
the list above. For example, the method of EC6 [PL07] is -RGB?, see the following chapter.

4.2.1 Methods according to EC6 [PL07]

According to [PL07], only the wall should be verified. The standard does not deal with
biaxial bending. The eccentricity of the load occurs only in one direction (in the direction
of smaller stiffness). The design normal resistance force (see also equations in Section 2)
must fulfil the following condition:

NEd ≤ NRd = ΦBHfd, (4.1)

Φi = 1− 2ei
B
, (4.2)

for check at foot and head of column, and

Φm = A1e
−u2

2
nl , (4.3)

A1 = 1− 2emk
B

, (4.4)

u = λ− 0.063
0.73− 1.17emk/B

, (4.5)

λ = hef
B

√
fk
E
, (4.6)

for check in the midspan of columns height, where:.NEd – design value of applied normal force,.NRd – normal resistance force,
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Figure 4.3: Shape of the cross section due to the load with eccentricity in one direction.

. Φ – capacity factor according to slenderness, Φi at the top or bottom of the column,
Φm in the midspan ,. B – width of a section,.H – thickness of a section,. fd – design masonry normal strength according to Equation 1.3,. fk – characteristic masonry normal strength according to Equation 1.2,. E – modulus of elasticity of masonry,. hef – critical (buckling) length,. enl – the base of the natural logarithm,. emk – sum of eccentricities from the load, initial imperfection and creep in the midspan
of the column,. ei – sum of eccentricities from the load, initial imperfection and creep in the head or
foot of the column.

This relation considers bending only in one plane, at the ultimate limit state. The ser-
viceability limit state is not handled, no relationship is given. It is generally noted that
overstressing or damage shall be avoided.

4.2.2 JÄGER, W. Mauerwerk-Kalender

The reduced shape of the cross section according to [Jä13] can be seen in Figure 4.4.
According to [Jä13], the following relation should be used:

NRd = ΦiyΦizBHfd, (4.7)
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Figure 4.4: Method which uses effective area – rectangle shape (shortcut B).

Φiy = (1− 2ey
B

)e
−u2

y
2

nl , (4.8)

Φiz = (1− 2ez
H

)e
−u2

z
2

nl , (4.9)

where:

. uy and uz can be calculated according to the previous section.. ey and ez – the sum of eccentricities of the load, initial imperfection, and creep in
the midspan of the column in the direction of axis y and z, respectively.

It is -RGB2 method. The equations consider the rigid-plastic stress-strain diagram and
multiply two buckling coefficients (capacity factors), which is very conservative.

4.2.3 Valentin Förster [Fö17]

The method shortcut is -R-B1. The article [Fö17] states that:

NRd = min(ΦRd,yBredHfd; ΦRd,zBHredfd), (4.10)

Bred = (1− 2ey
B

)B, (4.11)
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Hred = (1− 2ez

H
)H, (4.12)

where:. ΦRd,y – slenderness reduction factor in direction of axis y according to the previous
section,. ΦRd,z – slenderness reduction factor in direction of axis z according to the previous
section.

This method is based on the use of the load-bearing capacity of exclusively uniaxially
eccentrically loaded compressed members to calculate the load-bearing capacity of biaxially
eccentrically loaded compression members. It uses the rigid-plastic stress-strain diagram
and only one coefficient of buckling.

4.2.4 Cais, J. and Das, B.: the skew shape of compressed area

Skew shape (shortcut -R-D) using a rigid-plastic stress-strain diagram according to [Das18]
and [Cai57] proposed for the check of stress in the soil under the shallow rectangular
foundations gives us the following relations:

NEd ≤ NRd = ΦAefffd, (4.13)

Aeff = λDβ/2, (4.14)

λD = 3/2− 3εx, (4.15)

β = 3/2− 3εz, (4.16)

εz = ez/H, (4.17)

εx = ex/B, (4.18)

where:. B – width of a section,.H – thickness of a section,. ex – eccentricity in the direction of dimension H,. ez – eccentricity in the direction of dimension B.

These relationships are valid only for the case that the effective area has a triangular
shape; see Figure 4.5. In other cases, the calculation is much more complicated; see [Das18].
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Figure 4.5: Shape of the effective compressed area according to [Das18].

4.2.5 ACI – standard of American concrete institute

The method of ACI [ms13] is described in Section 4.4.2.

4.3 Method used in this chapter

4.3.1 Assumptions of analysis

On the cross section level, the local axes are used: y_loc and x_loc. For the formation
of the global stiffness matrix, the global axes are used: xg and yg. Because the material
cannot be carried by the tension, cracks open and the loaded part of the cross section, which
carries the load, changes its shape. As a consequence, the centroid of the cross section
moves. The centroid can, in general, move in both horizontal directions, in the plane of
cross section (according to Figure 4.6 in the direction of y_loc and x_loc). The behaviour
of the slender column, when considering the material non-linearity, can be described by
Figure 3.3.

Depending on the magnitude of the acting bending moments, the neutral axis can be
skewed or, in a particular case, perpendicular to one of the axes y_loc and x_loc of the local
coordinate system. The special case, for which the neutral axis is parallel to one of the axes
and the imperfection in the perpendicular direction is considered zero, is discussed in
Chapter 3 and article [VD17].

In general, the following shapes of a cross section can occur:..1. Rectangular shape in case of occurrence of one bending moment – My_loc...2. Rectangular shape in case of occurrence of one bending moment – Mz_loc...3. General polygon shape which was created by cutting of a triangle.
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Figure 4.6: Cases which can occur in the structure...4. Trapezoidal cross section, where the edge B is reduced (see B, H in Figure 4.3)...5. Trapezoidal cross section, where the edge H is reduced...6. Triangular shape.

In the proposed algorithm, all cases are covered. If Mz_loc < 0.1My_loc, case # 1 can
be used and if My_loc < 0.1Mz_loc, case # 2 can be used. Case # 6 usually results in
the collapse of the structure for the case of a slender column (see the conclusions of this
chapter). However, it can occur in the case of a short column loaded by force with large
eccentricities. In this chapter, the approach to the interaction of mortar and the masonry
units is chosen the same as in the current code [PL07] – the masonry is homogenized in
a suitable manner. See the details of homogenization in Section 1.

The whole column is considered as a beam of the same material, uniform strength and
uniform modulus of elasticity of masonry. The shape of the cross section depends on the re-
sulting strain diagram for the appropriate cross section in the i-th step of the calculation.
The tensioned part of the cross section is excluded. The column has an eccentricity (imper-
fection) in both directions y_loc and z_loc. In general, the imperfection in the direction
y_loc can be independent of the imperfection in the direction z_loc. The imperfection of
sin function shape is considered. The buckled shape or eigenvector is described in [TG61].
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As boundary conditions, both the top and the bottom of the column are considered
hinged; at the bottom, all translations are fixed; at the top, horizontal translations are
fixed, and vertical translation is free (a simply supported beam).

4.3.2 Developed algorithm - MVo code

The algorithm considers in each step the material non-linearity and geometric non-linearity.
The geometric non-linearity is solved by second-order analysis. The solution is sought
iteratively; the calculation stops if the error is less than the chosen precision of the calculation.
As an error, the difference between the two deformations in the midspan of the column in
the following two steps is chosen:

ε = abs(rid,Nel/2 − r
i−1
d,Nel/2)) < εchosen, (4.19)

where:.Nel – number of elements,.Nel/2 means the midspan of the column,. rd see below in the next section,. i – number of step,. εchosen – chosen error in metres. In the algorithm, 10e-07 is used.

The beam representing the column is divided into smaller elements which have the pris-
matic shape – the cross section is constant over the elements length. For demanded
precision, the usual number of elements is between 128 and 512. The solution is carried out
in the following steps:..1. Finding the linear solution in the first step, calculating of internal forces...2. Finding the neutral axis of each element, forming the updated matrix of cross section

properties with reduced moments of inertia Iy, Iz, Iyz, area and move of centroid due
to material non-linearity...3. Updating the geometry of the column, finding the solution to the set of new equations,
going to step 2, and repeating it until the error is lower than the chosen precision of
the calculation. The case for which error is growing and does not converge means
collapse of the structure.

4.3.3 General equations for the solution

Analysis of frame buckling by the stiffness method generally reduces according to [Lep14]
and [BC10] to linear matrix equation:

K(µk)rd = f, (4.20)

where:
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. rd is the column matrix of small generalized displacement increments from the initial

state,. f is column matrix of the associated small generalized force increments,.K is matrix of incremental stiffness coefficients and. µk is the parameter of initial loads, that are independent of f .

Equation 4.20 represents a matrix eigenvalue problem of nonstandard type because
the coefficients of K depend on µk non-linearly, and µk appears not only in diagonal terms.
To get rid of this non-linearity, columns are subdivided into three or more elements (in
this chapter, the number of elements is between 128 and 512). The linear part of Taylor
expansion is used; we obtain a nonstandard linear eigenvalue problem:

(K −KG)rd = 0, (4.21)

where: KG – geometric stiffness matrix. The iterative solution begins with the equation:

Krd = f + fekv, (4.22)

where:

fekv = KGrd. (4.23)

4.3.4 Equations used for the solution and the step-by-step solution

In first step
Kr0

d = f, (4.24)

From which we obtain r0
d, N

0,K0
G, where:. r0

d – initial displacement vector from the first step,.N0 – initial normal force from the first step,.K0
G – geometric stiffness matrix which is calculated from the initial normal force and

is used in the next step.

In i-th step of iteration:

Kri+1
d = f +Ki

Gr
i
d, (4.25)

Convergence criterion: see Equation 4.19. For the both-end-hinged beam in 2D, the matrix
KG has the form:

KG,2D = N

Le



0 0 0 0 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 0


. (4.26)
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For the both-end-fixed beam in 2D, the matrix KG has the form:

KG,2D = N

30Le



0 0 0 0 0 0
0 36 3Le 0 −36 3Le
0 3Le 4L2

e 0 −3Le −L2
e

0 0 0 0 0 0
0 −36 −3Le 0 36 −3Le
0 3Le −L2

e 0 −3Le 4L2
e


. (4.27)

For the both-end-fixed beam in 3D, the matrix KG has the form:

KG,3D = N

Le

[
M1 M2
M2 M3

]
, (4.28)

where:

M1 =



0 0 0 0 0 0
0 6/5+2φY +φ2

Y
(1+φY )2 0 0 0 Le

10/(1+φY )2

0 0 6/5+2φZ+φ2
Z

(1+φZ)2 0 −Le
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(4.30)
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(4.31)
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Figure 4.7: Various stress-strain diagrams.

φY = 12EIz
GAsL2

e

, (4.32)

φZ = 12EIy
GAsL2

e

, (4.33)

J = BH3/3, (4.34)

where:. As - shear area of cross section,. Le - length of an element,. E - modulus of elasticity of masonry.

4.3.5 Material non-linearity

For the calculation of stresses, many stress-strain diagrams can be used. In the case study of
the non-linear behaviour of masonry columns, six basic possibilities are used; see Figure 4.7,
the rigid plastic see in Figure 4.8.

Linear-plastic, parabolic-plastic (parabolic-rectangular) and rigid-plastic diagrams are
given in [PL07]. The ASCE diagram is shown in [KRJ07], Augenti and Parisi is shown
in [AP10]. Finding the stress distribution in the cross section consists of two iterative
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Figure 4.8: Resulting stress for various stress-strain diagrams, B×H = 0.4×0.4 m, N =670 kN,
M=95 kNm.

calculations. The cross section is divided into a finite number of parts (for the final results,
300 parts were used). The stress arising from the strain is integrated numerically; internal
forces are obtained. In the first iterative calculation, the Emu – multiple of the modulus of
elasticity is sought to fulfil the force equilibrium condition. If the bending moment acting
in the cross section is not equal to the bending moment obtained by integrating the stresses,
the neutral axis is moved, and the Emu is sought again until both the moment and the force
equilibrium conditions are fulfilled.

This calculation is provided for all elements. Then, the (i + 1)-th step (further step)
of the calculation according to Section 4.3.4 is carried out. This step is repeated until
the convergence criterion is fulfilled. In each step, the strain is controlled.

4.4 Results of modelling

The results can generally be divided into 3 cases:..1. Short columns – only two steps of calculation are enough to fulfil the criterion according
to Equation 4.19. The failure occurs due to material crushing (overstress)...2. Long columns, for which the finite number of steps is enough to fulfil the convergence
criterion and the stress does not exceed the tensile strength (which is considered zero).
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The failure occurs due to material crushing (the bending moments are increased by
slenderness)...3. Slender columns, where the material non-linearity impacts the result, because the tensile
strength is exceeded. The failure occurs because of buckling.

In this chapter, results of modelling of a single column are presented, and a case study of
a relevant set of columns shows how the stability and resistance of the masonry column are
impacted by the 3D effects, material non-linearity, and geometric non-linearity.

4.4.1 Example of single column

To demonstrate an example, a column of 5 m height is chosen. The dimensions of the column
are B×H = 0.5×0.3 m. The eccentricity (initial imperfection) is chosen ey = 0.15B, eccen-
tricity ez = 0.025 H, fk = 6.42 MPa, E = 1000 fk. See the results in Figure 4.9, 4.10, 4.11
and 4.12.

4.4.2 Case study of various columns

The approach of ACI [ms13] is compared to the result of the modelling used in this chapter
(named “MVo code”). According to ACI, the stress at all points of the cross section must
be negative (compression). Second-order moments should be included. In the case study,
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Figure 4.10: Bending moment convergence.

column thickness B was chosen as 0.4 m, and H was variable, as well as slenderness λs.
The eccentricities were chosen the same, as in the example above. The result of modelling
using the ACI criteria can be seen in Fig. 4.13; results of "MVo" code are shown in Fig. 4.14.

The following example is used to show the effect of using various stress-strain diagrams.
The cross section with dimensions B×H = 0.4×0.4 m is loaded with the force NEd = 670 kN
and various bending moments. After the convergence of an iteration of the bending moment
is fulfilled, the different height of compressed area Hc was found for the various stress-strain
diagrams, see Figure 4.15.

Due to a different resulting height of the compressed area, the final carrying capacity
varies for the various stress-strain diagrams. Note that the carrying capacity is limited
by the slenderness (and second-order effect) as well as the stress limitation according to
the stress-strain diagram (see Figure 4.7 and 4.8). The limit stress, which should not be
exceeded, is considered fk for all the stress-strain diagrams for the reason of comparability,
except for the ASCE and Augenti & Parisi diagrams, for which the maximal stress is equal
to fk/0.86.

It can be seen from Figure 4.16 that the resulting curve due to ACI requirements is quite
similar to the curve representing the linear behaviour. This is because the eccentricities
considered are the same for all the cases, and the decisive criterion was always the criterion
of maximal stress, not the crack opening. For different eccentricities, the curves would vary.
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Figure 4.11: Final internal forces - bending moment and shear force.

4.4.3 Comparison of all the methods

For the purpose of comparison, all of the methods are displayed in one plot - Figure 4.17.
New curves are added:..1. CSN731101 is a standard valid before the Eurocodes (current standard), see [ifs80]...2. EN1996 is method according to Section 4.2.1...3. Masonry − V V is the calculation method of this article ("MVo code" implemented in

MATLAB®), the boundary conditions were changed to column both-end-fixed (zero
rotations)...4. FcritEuler is the critical buckling force of the ideal beam with linear behaviour
(Section 3.2.1). V V means both-end-fixed, KK means both-end-hinged.

4.5 Comparing the results from the experiment

The experiment, described in [Klo16a], was based on testing 5 columns of the height 2.75 m
loaded by a force and an eccentricity in one horizontal direction (denoted “1e”), and 5
columns of a height 1.75 m loaded by a force and an eccentricity in two horizontal directions
(denoted “2e”). The dimensions of the column are B ×H = 0.44× 0.5 m. Specimen 1 was
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tested in a centric compression; the design stress fde was taken from this specimen 1 and
considered for the other specimens. The following expression was used:

fde = Nm,A2
BH

, (4.35)

where:. fde – the strength of specimen 1 which is used for other specimens,.Nm,A2 – the normal force, at which the crushing of specimen 1 occurred.

The bricks tested are usually used in new masonry walls, and they have cavities due
to the requirements of energy codes. As can be seen in Figure 4.18, the curves obtained
by measuring the strain using strain gauges are linear until the end of the experiment.
According to [Klo16a], "the way of deforming can be described as quasi-linear, mode of
failure is brittle, and the crushing always occurred at the outer edge, closer to the applied
force," which means that the collapse of one face of a brick means stopping further loading.
The collapse is always caused by the combination of normal force, and bending moment;
the collapsed shape was always by collapsing of one face of a brick.

specimen 1-0 1-1 1-2 1-3 1-4

Quantity name

eccentricity ez [m] 0 0.072 0.147 0.11 0.11

eccentricity ey [m] 0 0 0 0 0

Max.force Nm [kN] 1207 992.0 577.0 717.0 759.0

A1z [-] 1 0.673 0.332 0.5 0.5

A2y [-] 1 1 1 1 1

Ac [-] 0.22 0.148 0.073 0.11 0.11

u1 [-] 0.237 0.322 0.512 0.397 0.397

Φ1 [-] 0.972 0.950 0.877 0.924 0.924

Φ2 [-] 1.000 1.000 1.000 1.000 1.000

NRd [kN] 1207 793 361.3 573.8 573.8

NRd [kN] 1224 818.2 377.0 581.9 581.9

NRd [kN] 1210 825.1 407 613.3 613.3

experiment 1e

EN1996 - rigid-plastic check (rec. shape)

Mason, lin. diagram -> rigid-plastic check (rec. shape)

Mason, rigid-plastic diagram and check (rec. shape)

Table 4.1: Uniaxial bending experiment “1e”.

The results of the experiments can be seen in Fig. 4.19, Fig. 4.20 and Tab. 4.2. In
the table 4.1, a new check is added for the comparison. In this check, “Mason – lin.

51



4. Slender columns subjected to biaxial bending combined with compressive normal force .........
Diagram -> rigid plastic check”, the normal force of resistance at the ULS – NRd is
calculated in the following manner: internal forces and shape of the cross section were
taken from the linear stress-strain diagram using the "MVo code" (see the example of
stress-strain diagram in Figure 4.1). Then, the resulting effective cross section is loaded
by force with eccentricities calculated from acting bending moments – the forces from
the linear calculation are checked by the rigid-plastic check of the ULS.

specimen 2-0 2-1 2-2 2-3 2-4

Quantity name

eccentricity ez [m] 0 0.147 0.073 0.073 0.147

eccentricity ey [m] 0 0.167 0.083 0.167 0.083

Max.force Nm [kN] 955 225 691 420 488

A1z [-] 1 0.332 0.668 0.668 0.332

A2y [-] 1 0.332 0.668 0.332 0.668

Ac [-] 0.22 0.024 0.098 0.049 0.049

u1 [-] 0.12 0.258 0.163 0.163 0.258

u2 [-] 0.095 0.205 0.129 0.205 0.129

Φ1z [-] 0.993 0.967 0.987 0.987 0.967

Φ2y [-] 0.996 0.979 0.992 0.979 0.992

NRd [kN] 955 100.8 422 207.1 205.4

λ [-] 1.5 0.498 1.002 1.002 0.498

β [-] 1.5 0.498 1.002 0.498 1.002

λ . B [m] 0.219 0.441 0.441 0.219

β . H [m] 0.249 0.501 0.249 0.501

NRd [kN] 959.3 115.8 478.8 236.1 233

NRd [kN] 952.6 219.6 528.5 249.7 249.5

NRd [kN] 941.6 106.4 431.3 214.3 214.2

experiment 2e

EN1996 - rigid-plastic check (rec. shape)

Cais, J. - rigid-plastic check (general shape)

Mason, rigid-plastic diagram and check (rec. shape)

Mason, lin. diagram -> rigid-plastic check (rec. shape)

Table 4.2: Biaxial bending experiment “2e”.

It can be seen that for all the cases, the results from the "MVo code" calculation are closer
to the results obtained from the experiment than the resistance according to the current
standard EN1996. It should be noted that more experiments should be carried out and
columns in the experiments should be more slender.

Mathematical modelling was also part of the article [Klo16a]. The author used a 3D
FEM model using 3D solid elements with non-linear behaviour – modified Drucker-Prager
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model was chosen. The shortcut of this method is MN-S. It was stated that “computational
models compared to the results of experiments reflect very well the behaviour of the tested
masonry pillars and bodies as well as the way of their deformation and failure”.

4.6 Results discussion

All the methods used in the mentioned literature review have at least one error. Mostly it
is the assumption of rigid-plastic behaviour, which we consider incorrect (see below). Using
a real stress-strain diagram leads to methods that cannot be used for a practical design. For
example, article [Klo16a] deals especially with the preciseness of modelling of the boundary
conditions – especially the supporting sheet metal of compression testing machine. In
the case of a practical design, these conditions are unknown, so the 3D solid non-linear
time-demanding and tough method seems to be impracticable. The calculation according
to ACI gives results which are for small bending moments (small eccentricities, such as
eccentricities chosen in the case study of this chapter) the same as by using the non-linear
calculation, because the tension does not occur till the collapse of the column. On the other
hand, the ACI approach is conservative because the larger bending moment, which causes
tension, is not admitted.

The verification of a normal loading capacity provided in the current standard [PL07] by
using the rigid-plastic stress-strain diagram is insufficient for a 3D case. Handling the 3D
case by calculating the eccentricities from the equilibrium conditions and using the equation,
which is also used to verify the shallow foundation of rectangular shape, we obtain:

NEd ≤ NRd = (B − 2ey)(H − 2ez)fd, (4.36)

This formula also assumes the fully rigid-plastic behaviour. This can theoretically occur
in the case of an infinite rotation of the cross section. This cannot be obviously considered
for the slender columns; it would result in infinite deformation and in used second-order
beam analysis also infinite acting bending moment and collapse of the structure. The results
of calculating the compressed area using the Equation 4.36 without controlling the strain
can be seen in Figure 4.16. The height of the compressed area is much lower than in
the other stress-strain diagrams. For these reasons, we do not recommend the rigid-plastic
stress-strain diagram for analysing the slender masonry columns.

From Figure 4.21 it can be seen that the function of the strain is more or less linear
(even until the failure). Also, according to [Han03], the behaviour in experiments fits best
with the linear behaviour of the material.

In addition, comparing the results of the experiments with various calculation methods
showed a good agreement between the normal resistance force obtained by the linear
calculation and the experiment.

Based on the previous paragraphs, we recommend verifying the slender column’s loading
capacity in terms of the ULS and the SLS by using a linear stress-strain diagram for
the practical design. The difference between the ULS and the SLS should only be in
the value of the coefficients γM , γF used (see the explanation in EN 1990 - [ÚN05b]
and [PL07]). The method for calculating the internal forces should include the material and
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geometric non-linearity. The cross section area, which remains after the reduction due to
the material non-linearity and after fulfilling the convergence criterion, was minimally 50 %
in this case study. This tally well enough with standard [HD08]. This standard recommends
limiting eccentricity to e ≤ H/3 in the SLS (see also Equations 2.4 and 4.37); the author of
this thesis recommends using this limit also for the ULS, i.e., using the relation:

Hcompressed ≥ H/2→ e ≤ H/3, (4.37)

for the uniaxial bending and

Acompressed ≥ A/2 (4.38)

for biaxial bending (A – the total area of a cross section). This recommendation is
suitable for slender columns, λs >10. For short masonry elements, loaded by force with large
eccentricity, which reduces effective area significantly, the author of this thesis recommends
analysing the column as a new column with a reduced – effective area, i.e., to use for
the calculation of u and λ the effective dimensions of the column, not the original ones.

The article [HD17] recommends modifying the Equation 4.37 in dependence on a category
of the masonry (categories are defined in [PL07]), namely to limit the maximal eccentricities
in ULS to 0.45H for category 1 and 0.4H for category 2.

The shear criterion of the resistance according to [PL07] or Equation 2.2 should be for
the columns loaded in two planes replaced with the formula:

VEd,3D ≤ VRd, (4.39)

where:

VEd,3D =
√
V 2
Ed,y + V 2

Ed,z, , (4.40)

where VEd,y, VEd,z are applied shear forces in the direction of axis y, z respectively. VRd
see in Equation 2.2.

The results of the experiment showed that the non-linear model used in this chapter is
closer to the result of the experiment than the approach of the standard. The number of
specimens tested in the experiment is not enough to establish the new detailed criteria for
calculating the load capacity of slender columns. The slenderness ratio λs for the experiment
"1e" is 21.65, for the experiment "2e" it is 13.78. Both ratios are lower than 27, which shows
that the investigated columns are not very slender. Further experiments should test a larger
number of columns of various slenderness.

4.7 Conclusions

A mathematical method of verifying the slender masonry column was proposed. The method
was implemented in MATLAB®, and a case study of the resistance of various columns was
carried out. Then, the results of the mathematical modelling were compared with the results
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of the experiments. The methods used in the literature were also compared. According to
the combination of these methods, it was stated that the method of the currently valid
standard – Eurocodes – is not suitable for the slender masonry column check. The results
of the loading capacity of columns obtained by the calculation according to the standards
are conservative. The behaviour of slender masonry columns with various stress-strain
diagrams is quite similar, except for the rigid-plastic model, which was stated as unsuitable.
Based on the previous sections, new recommendations for the design of columns were made.
Second-order analysis should be used; the linear stress-strain diagram can be used for
compression (tensile strength neglected). The compressed area should be at least one-half
of the total area of the cross section.
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Figure 4.12: Final shape of the column (excluding tensioned parts) in the global coordinate
system.
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Figure 4.18: The detail of failure of specimen loaded by force with eccentricities in two
directions.
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Part IV

Masonry vaults
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Chapter 5
Introduction

Masonry arch bridges are some of the oldest types of bridges. Within the last century, these
structures stopped being constructed. Therefore, the arch bridges, which are now still used
as railway or road bridges, are between fifty and one hundred and fifty years old. For this
reason, the tensile strength of the mortar should be considered to be at the level of zero.

It is modelled by an appropriate stress-strain diagram – zero for the tension (the mortar,
which forms the joints, cannot transfer tension). Most of the arch bridge calculation
methods consider the tensile strength zero, such as [BdFG01]. "Arch material is compression
capable with a negligibly small tensile resistance" according to [Web99]. Due to [Lou02],
"Masonry possesses very limited tensile strength and it is usually not possible to make
provisions to cover all zones where tensile stresses may appear". According to [Hey98],
"the necessary assumptions for the application of plastic theory to masonry is that masonry
has no tensile strength". The tensile strength of the material is small, but for example, in
the article [RLP16], the tensile strength is used, and the increase of bearing capacity is
shown.

The opening of cracks, which might occur due to zero tensile strength, impacts the ge-
ometry of a thrust line of an arch. The linear calculation cannot handle the crack opening,
which causes significant changes in the final thrust line. The linear calculation and other
methods are compared in this chapter.

In the Czech Republic, masonry vault bridges represent 35 % of railway bridges. A similar
portion of masonry bridges can be found throughout Europe. According to [Ste12], 80 %
of Czech masonry vault railway bridges are older than 100 years. Furthermore, 85 % of
Czech masonry vault railway bridges are in a "good" structural state, 14 % are in a "bad"
structural state, and 1 % are in a serious, unsatisfactory structural state.

This poor structural state is due to the lack of bridge maintenance and the uncertainty
of the inspectors in the assessment. The consequence of such a structural state is the low
load carrying capacity (hereinafter referred to as ”LCC”), given by the bridge inspection by
multiplying the original LCC by αs, which is ≤ 1. See the general information on the bridge
inspections in Section 11.2.2. Consequently, the bridge manager chooses to replace the vault
with another bridge. However, the real load capacity determined by the calculation is
often significantly higher. The various methods of calculating the LCC and the influence of
individual input calculation parameters on the resulting load capacity are discussed in this
chapter.
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When assessing existing bridges, the requirement for sufficient mechanical resistance

and stability is usually given by the LCC – the maximal load that the structure can carry
safely, i.e., the maximal weight of the vehicle that can pass the bridge under the specified
conditions. The determination of the LCC of the existing bridge is governed by the same
principles as the design of the new structures (see applicable technical standards and
regulations EN, DIN, and MVL). However, some material and load factors have different
values.

Because of the zero tensile strength, the procedures for the determination of the LCC are
non-linear and must involve many parameters with significant variability. Therefore, setting
up a simple analytical model is very difficult and special programs developed directly for
vault structures are usually used.
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Chapter 6
The state of the art

Many methods were used throughout history. Methods are described for example in [Knu17]
and [SSF16]. Our structuring of methods was taken from [PG09] and enhanced:

.Graphical method - is explained in Section 10.6.1 and [Knu17]. According to [Hey95]:
"If the structure is not collapsing, but is in a stable state under the given external
loading, there is, in general, a wide choice of possible positions of the thrust line".
The solution method according to [Lip98], therefore, consists of choosing the position
of a thrust line at the top of the arch and graphically adding the force of the neighbour
element. When this is completed for all the elements, and the thrust line lies in
the chosen part of the cross section, the vault satisfies the verification.. Empirical rules.. Historical rules: Many empirical relations for the design of masonry arch bridges

were suggested. For example, in [PG09], there are twelve relations for the minimal
crown joint thickness of the arch..Modern rules:. MEXE Method – is explained in [MW10]. "The MEXE method is approx-

imate" – [oR17] and a very simple method for the user. "It is generally
accepted that the MEXE method of assessment is derived from Pippard’s
elastic method (with a point load at the crown)" - [WHM13].. Pauser’s Method – "Is a simple analysis tool" [Orb07]. The program was
created that was based on the linear-elastic failure concept. The method
handles just the ULS.. Beam models.. Single beam models – the simplest arch model for the case of consideration of

linear behaviour of the material. See the method of using beam elements with
non-linearities in Section 8.1.2.. Compound beam models – the way of modelling was proposed by [Goc78]. An ex-
ample of such a model can be seen in Section 11.3.1, where the 2D model was
enhanced to 3D to consider spatial behaviour.
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6. The state of the art......................................
. Finite element method: FEM is nowadays the most common method. 2D or 3D

models can be done using the beam, planar, or solid elements; assumption of linear
or non-linear behaviour is possible. In general, the more is the assumption about
material behaviour complicated, the more is complicated the way of observing the input
parameters. The example of the use of 2D planar elements can be seen in a comparison
of two approaches in [BDS08]. The approach of fill modelling by planar elements
with Mohr–Coulomb failure criterion is compared to the approach, where the fill is
modelled by a set of non-linear springs in a horizontal direction to represent active
or passive earth pressure. Both approaches showed good agreement with the experi-
mental collapse load. Another use of 2D planar elements was shown in [PeD07], where
the mortar, stones, backfill, and asphalt-concrete are modelled (micro-modelling). In
the article [FAT03], the 8-node quadrilateral elements are used. The tensile strength
is limited; in the diagram used, it drops to zero when the limit strain is reached. In
the article [ML12], FE discretization of the structure by means of rigid infinitely resis-
tant eight-noded parallelepiped elements and non-linear interfaces is used. The tensile
strength is considered for both masonry and backfill. The skew arches can be analysed
by this approach; the real 3D geometry and stiffening of the arch by spandrel walls are
included..Discrete element method (DEM) – is explained in [TOB09], [FSB17], and [SFL19].
The method is useful for large deformations and for a large opening of cracks, which is
problematic in FEM, especially from the point of view of convergence.. Equilibrium method for rigid blocks – see [GM94] and [Gil07].. LimitState:RING – see [Gil01] and Section 11.3.3.. Specialized elasto-plastic software for masonry arch bridges.. Archie-M - the program uses basic bridge geometry and material properties to

establish the locations of three hinges, followed by calculation of reactions and
vector algebra to position the resultant line of thrust - [Cob18]. It is based
on plastic theorems. According to [HS95], the Archie software gives results
comparable to much more complicated models.. A new method was proposed according to [AFSP08]. The results from Limit-
State:RING, Archie-M and this new method were compared in [AB10].

The way of material modelling (interaction of masonry units and mortar) is discussed in
Section 1.
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Chapter 7
Sensitivity analysis of input parameters for the load
carrying capacity of masonry arch bridges - ULS

Content of this section was taken mainly from the article [VD20].
In this chapter, nine circular-shaped masonry vault railway bridges and a special case of

the Legion Bridge were analysed using the program LimitState:RING [Lim20].
The spans were chosen 6, 12, and 20 m, ratios of v/L (sagitta/intrados span length)

were chosen 0.1, 0.3, and 0.5. In the plot legend, ”06_0.6” means span 6 m, sagitta 0.6 m,
which means ratio 0.1. The ratio p/L (depth of backfill at the top of the arch/intrados span
length) is 0.08333. Therefore, the total depth of the backfill is 0.5 m for the 6 m span, 1 m
for the 12 m span, and 1.666 m for the 20 m span. The default value of the specific weight
of masonry is 25 kN/m3, of backfill is 18 kN/m3, design compressive strength is 5 MPa,
the friction coefficient 0.6, the angle of internal friction of the soil 30 °, and the cohesion of
the soil is considered zero. The thickness of the vault is considered 0.4 m for the 6 m span,
0.5 m for the 12 m span, and 0.6 m for the 20 m span. For further details of the input
parameters of the Legion Bridge, see Section 10.

Average input parameters were used for the nine vault bridges, and then, one parameter
was considered variable and its impact on the final LCC was examined. The resulting LCC
in dependence on this parameter was plotted in a separate graph. This chapter aims to
determine which parameters impact the resulting LCC the most.

7.1 Methodology and methods

The methods used to assess masonry arch bridges are described in [PG09]; for the purpose
of this chapter, the methods can be divided into:. Historical simple methods, such as a graphical method..Methods used for a real-time praxis, which tend to be as precise as possible.. Scientific methods, which might be used mainly for academic purposes.

An example of a scientific method is a fracture model used by the software ATENA,
which is described, for example, in [Som11]. The parameter "Specific fracture energy" Gf is

71



7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...
an important input parameter ("higher values of fracture energy considerably increases both
the limit displacement and the load-bearing capacity"). Despite this fact, the parameter
Gf is practically impossible to obtain. Therefore, this chapter uses real-time methods and
describes how to use them in praxis by showing examples. The sensitivity analysis shows
the importance of obtaining the values of the input parameters.

7.1.1 Methodology of analysing LCC

LCC is described by moving load, which can the bridge safely carry. Conditions, which
must be fulfilled, are specified by current codes – Eurocodes, namely by [PL07]. Eurocodes
define the Serviceability limit state – SLS (which provides the usability and durability of
the structure) and the ultimate limit state – ULS (state of collapse of the structure, but
also ensures the durability of the structure in general). The LCC of the railway bridges
is based on the load model 71 [ÚN05a], which is also used for the design of new railway
bridges. (It consists of forces 4x250 kN and a uniform continuous distributed load of
80 kN/m. See the model view in Figure 9.1). The LCC (in plots named ZLM71 according
to [SŽ15]) is equal to the multiple of load model 71, which can pass the bridge while fulfilling
the conditions of ULS and SLS. The LCC of the new bridges must be at least 1.

7.1.2 Assumptions of analysis, used methods

In this chapter, the program which uses the equilibrium method for rigid blocks (also
called Rigid block analysis) and which was created especially for modelling of masonry arch
bridges was used:

LimitState:RING

This program is designed for collapse analysis – the ultimate limit state. Cracks can open
up, parts of the cross section can crush. See the details of the crushing below in this section
and Section 7.2.1.

The method was proposed in [GM94] and was further described in [Gil07] and [Gil01].
In the program LimitState:RING, the masonry vault is modelled as a system of rigid

blocks. The method is based on computational limit analysis methods (also known as
"plastic" or "mechanism" methods). If the thrust lines lie entirely within the masonry cross
section and the hinges form at the locations, where the lines of thrust touch maximally
the exterior faces of the blocks, the structure does not collapse. A hinge is created if
the thrust lines lie outside the cross section. The formation of a sufficient number of hinges
(and/or planes of sliding) leads to a collapse.

The calculation is carried out in following steps: calculation of internal forces on linear
beam model; finding the points of a vault, where the collapse of masonry block occurs; finding
the collapse mechanism; build up the equation (equilibrium of blocks) with the unknown
of the safety factor – multiple of traffic loads, which cause collapse. These equations are
built upon the theory of rigid bodies, where the vault is divided by the collapsed block.
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.................................. 7.1. Methodology and methods

The number of such a collapsed block has to be as big as to create a moveable mechanism.
See the collapse modes also in [Och02].

The minimal multiple of all load positions shall be selected. This minimal value is called
the "Safety factor". If the Safety factor is greater than or equal to 1, the structure can carry
the specified load. There are two possibilities of modelling: considering masonry blocks as
rigid slabs or considering crushing of masonry blocks at a certain value of stress. Considering
the crushing always decreases the LCC, see Figure 7.4. In this chapter, the value of design
masonry strength fd was considered. See also Section 7.2.1.

The resulting collapse mechanisms can be divided into the following cases:

.Mode I - collapse by the crushing of masonry - see Figure 7.1.

.Mode II - see Figure 7.2; the line of thrust touches the exterior faces of the masonry
blocks and forms the four-hinge mechanism.

.Mode III - collapse by the shearing between the blocks - see Figure 7.3.

Figure 7.1: Collapse by crush of masonry (mode I).

Figure 7.2: Collapse by opening of cracks and forming the four-hinge mechanism (mode II).
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7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...

Figure 7.3: Collapse by shear between the blocks (mode III).

The temperature loads cannot be handled in this program. This comes from the idea that
the temperature effect is minimal if the structure is at a state of collapse due to the crack
opening (or other collapse mechanisms).

The program LimitState:RING gives two options for analysis. The joints transfer
the compressive force in the vault:

(i) Through an infinitely thin strip of stone at the edge of the vault (external when
collapsing towards the inside of the arch, internal when deflecting outside the arch), if
infinite strength of the masonry is assumed.

(ii) Through a rectangular strip representing the stress at which the masonry is crushed.

It is possible to plot a graph of the M-N diagram (the combinations of the acceptable
moment and axial capacities of a structural member at the ULS) for both options:

Figure 7.4: The M-N diagram, compressed area.

For the case of infinitely stiff blocks, the curve of the M-N diagram is linear. The black
dot is the point of rotation of the blocks when creating a moveable mechanism.

In the case of infinite strength (i), the task is linear; in the case of finite strength (ii) -
considering crushing - the task is non-linear. The program solves the non-linear crushing
problem as an iterative linear problem with defined boundary conditions under which
sufficient calculation precision is fulfilled. In this chapter, the crushing of masonry is
considered.
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................................... 7.2. Results of the modelling

The live load dispersion (distribution) is done after Boussinesq, see the [Lim20]. The ex-
ample of distribution in the longitudinal direction see in Figure 10.8. The distribution in
the transverse direction see in Section 7.2.9 and 11.3.3. The load is distributed at angle
φBall in the ballast and φBack in the backfill.

7.1.3 Investigated parameters..1. Masonry strength...2. Coefficient of friction in joints of masonry...3. Backfill depth...4. Backfill slope...5. Specific weight of masonry...6. Specific weight of backfill...7. Backfill angle of internal friction...8. Backfill cohesion...9. Effective vault width....10. Poisson number....11. Shape of vault....12. Vault thickness.

7.2 Results of the modelling

7.2.1 Masonry strength

See the equations for calculation of masonry strength in Section 1. The determination of
the characteristic masonry strength according to Equation 1.2 is very sensitive to both
the strengths of the masonry units and strength of the mortar. One can see directly that
the power of 0.7 is higher than that of 0.3, and therefore, the parameter of masonry units
is more sensitive. On the other hand, the values of strength of mortar usually have a much
larger variance.

For the example of Legion Bridge (see Section 10), mortar strength varies from 3.5 −
20 MPa in 59 tests, coefficient of variation equals 54 %, masonry unit strength varies from
100− 164 MPa in 20 tests, coefficient of variation equals 16 %.

See the details of the assessment of masonry unit strength in [Klo16b]. The design
strength of the masonry is calculated according to Equation 1.3.

See the results obtained from modelling in the program LimitState:RING in Figure 7.5.
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7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...
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Figure 7.5: Load carrying capacity in dependence on the design strength of masonry. For
the legend, see Section 7.1.2

7.2.2 Coefficient of friction in joints of masonry

The collapse mode III (the shear mode) might occur if the shear resistance is not satisfactory.
The shear is checked at the ultimate limit state only. The shear resistance is determined
according to Equation 2.2.

The most significant influence on the shear resistance has normal stress multiplied by
the coefficient of friction µ. The normal force arises from the shape of the vault and the load
applied. Figure 7.6 shows the LCC of nine circular bridges depending on the coefficient of
friction. The LCC according to the shear is quite high:
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................................... 7.2. Results of the modelling
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Figure 7.6: Load carrying capacity in dependence on the coefficient of friction.

Figure 7.7 displays the LCC of the Legion Bridge (see Section 10), which is significantly
lower. Differences are due to the shape of an arch. For circular arch shape, the collapse
occurs if the value of µ is zero, for the Legion Bridge the collapse occurs if the value of
µ is 0.3 for the span 4 and 0.03 for the span 5. For the purpose of comparing Figure 7.7
and 7.6, the ZLM71 was calculated for the road bridge.
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Figure 7.7: Load carrying capacity in dependence on the coefficient of friction – Legion Bridge,
spans 4 and 5.

LCC for shear depends strongly on the shape of the arch; LCC of part-of-ellipse is much
lower because of the shear. In general, this is a common problem of ellipse vault bridges.
Therefore, it is necessary to consider the combination of shear forces from transport load
with shear forces from a temperature change (increasing the temperature of structure
is decreasing the LCC). For the sensitivity analysis of vaults of different shapes, see
Section 7.2.11. It can also be seen from Figure 7.7 that for each vault there exists a value
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7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...
of a coefficient of friction, which increasing does not cause an increase of LCC because
collapse mode III does not occur any more.

According to [OET16], the coefficient of friction has the value from 0.597 to 0.705.
According to the LimitState:RING manual, the coefficient value is 0.6. According to
the current standards –[PL07], the coefficient of friction µ is 0.4 and should be divided by
a coefficient γM , which is usually equal to 2. Therefore, the coefficient of friction is equal to
0.2 for new structures. For Legion Bridge, the LCC is around zero according to Figure 7.7.
However, this is not true; the real coefficient of friction is much higher. Current standards
do not specify the value of the coefficient of friction for existing bridges.

7.2.3 Depth of backfill

Figure 7.8 was taken from [oR17]. The depth of backfill impacts the final LCC several
ways:

Figure 7.8: Impacts of backfill on the vault (i – disperse of live load, ii – self-weight of the soil,
iii – active earth pressure, iv – passive earth pressure.

For the vaults of low sagitta (rise of the arch), the LCC decreases when the depth of
backfill is increasing because the compression, which is decisive, is growing. For other
vaults, the LCC is growing because the vault is stabilized; see Figure 7.9.
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................................... 7.2. Results of the modelling

Figure 7.9: Load carrying capacity in dependence on the depth of backfill.

Since the backfill influences the final LCC in many ways, further investigation of some
parameters of backfill are provided:

7.2.4 Backfill slope

The longitudinal slope of the railway or road causes an asymmetric load of the vault. For
ease of construction and considering the fact that the longitudinal slope of the bridge
can be changed during reconstruction, the vault shape has usually not been changed (is
symmetrical). Therefore, the longitudinal slope is a factor that always reduces the final
LCC of the bridge, see Figure 7.10.
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Figure 7.10: Load carrying capacity in dependence on longitudinal slope.
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7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...
7.2.5 Specific weight of masonry

Increasing the symmetric load is positive for the overall stability of the vault, as the effect
of unsymmetric loads (e.g., traffic load) is reduced. Therefore, it usually increases the final
LCC. The calculation assumed a finite compressive strength; a value of 5 MPa was considered.
For the arch, with low sagitta (solid line in the plot), the increase of specific weight causes
that stresses exceed the compressive strength, and crushing failure mode occurs, which
decreases the final LCC, see Figure 7.11.
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Figure 7.11: Load carrying capacity in dependence on the specific weight of masonry.

7.2.6 Bulk density of backfill

The effect of the bulk density of the backfill is similar to the effect of the specific weight of
the masonry. Within the range of relevant specific weight, which can occur, we can say
that the masonry specific weight parameter is less sensitive than the parameter of bulk
density of the backfill, see Figure 7.12.
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Figure 7.12: Load carrying capacity in dependence on the specific weight of the backfill.

7.2.7 Angle of internal friction of soil

Horizontal stress, which acts on the extrados (if the direction of deformation is towards
the soil – see the blue lines in Figure 7.2) is calculated according to [Lim20] as:

σh = mp.Kp.σv +mpc.Kpc.c, (7.1)

where:

Kp = 1 + sinϕ

1− sinϕ = tan2 (45° + ϕ/2) , (7.2)

Kpc = 2
√
Kp, (7.3)

where:.mp = 0.33 – coefficient obtained experimentally,. σV is vertical earth pressure due to dead loads,.mpc = 0.05 – coefficient obtained experimentally,. c is cohesion of the soil,. ϕ is angle of internal friction of the soil.

Values of mp and mpc (see [Lim20]) have been shown to give a reasonable prediction
of collapse load in physical model tests on single-span bridges. By default settings of
the program and according to [Lim20], which arises from experiments, the value of mp.Kp

is greater than or equal to 1, which means, that ϕ ≥ 30. From these assumptions, we obtain
the following plot - Figure 7.13.
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Figure 7.13: Load carrying capacity in dependence on angle of internal friction of soil.

If we consider, that mp.Kp can be lower than 1, we obtain following plot - Figure 7.14:
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Figure 7.14: Load carrying capacity in dependence on angle of internal friction of soil.

As can be seen in Figure 7.14, the increase of the angle of internal friction increases
the final LCC significantly. It is caused by a passive earth pressure, which stabilizes
the vault in the horizontal direction in ULS very well. Note that for arches with low sagitta,
the increase of LCC is minimal because the mode of failure is governed by the crushing of
the masonry, according to Fig. 7.1.
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................................... 7.2. Results of the modelling

7.2.8 Cohesion of soil

As can be seen in Figure 7.15, the increase of soil cohesion slightly increases the final LCC.
Cohesion helps to increase the passive earth pressure (see Equation 7.1) and stabilizes
the vault. Due to the value of mpc, which is equal to 0.05, the increase of LCC is very low.
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Figure 7.15: Load carrying capacity in dependence on cohesion of the soil.

7.2.9 Effective width

For analysis in 2D and specific cases of 3D analysis, program LimitState:RING uses effective
width concept. This method is used because the shear and tensile strength between
the masonry blocks in the transverse direction are unknown and probably very small,
so detailed modelling is usually not possible. The method of graphical assessment of
effective width can be seen in Fig. 7.16. See more ways of assessing the effective width in
Section 11.3.3. In LimitState:RING, the ”classical model” is used.
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68 CHAPTER 8. LOADING MODELS

(a) Automatically computed effective width using default parameters based on sleeper width & mini-
mum loaded sleeper ballast/fill depth

(b) Possible reduced user-specified effective width due to longitudinal cracks

(c) Possible reduced user-specified effective width due to proximity of adjacent track and edge of
bridge

Figure 8.3: Transverse dispersal and effective bridge widths (railway)

c© LimitState Ltd

Figure 7.16: Assessment of the effective width used in the LimitState:RING program.

The effective vault width used in the calculation depends on the load distribution angle
and the depth over which the load can spread. The dependence of LCC on effective width
is linear.

7.2.10 Poisson ratio

The poisson ratio does not impact the normal and shear stresses in the longitudinal
direction of the vault, which are verified. The transverse direction of the vault is not verified.
The standard [PL07] does not demand it.

7.2.11 Shape of the vault

All common or uniquely occurring shapes (according to [Lip98]) of the vault were analysed;
see the shapes in Figure 7.17.
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................................... 7.2. Results of the modelling

Figure 7.17: Considered shapes of vaults.

Parameters marked with * are considered fixed in this study. A vault with intrados
span length L of 5 m and depth of the backfill at the top of 0.25 m and ballast of 0.5 m
was considered. Four different vault heights in the middle of the span (= sagitta) of 2.5,
1.75, 1, and 0.5 m were compared. In building structures, there are special vaults, which
are not considered in this chapter, e.g., arches composed of several circles and ellipses,
rising arch (one support is higher than the second one), or arch of Islamic architecture.
Figure 7.17 shows the assessed shapes of intrados of the vault. The extrados is shown only
for the circular arch for clarity.

The resulting safety factors for different shapes of vaults can be seen in Figure 7.18:
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Figure 7.18: Load carrying capacity in dependence on ratio v/L.

The results are influenced by the fact that all possible failure modes can occur, which

85



7. Sensitivity analysis of input parameters for the load carrying capacity of masonry arch bridges - ULS...
means that the LCC is significantly decreased by shear force, especially for the ellipse.
Depending on the chosen part of the ellipse, the resulting LCC of the ellipsoid bridge is
between the two curves in the plot. The curve "ellipse" represents one-half of the ellipse. For
the ogive (Gothic) shape, only the maximal LCC is plotted. See detailed results of the ogive-
shaped vault in Figure 7.19 (name of set ”0.5” means vault v/L = 0.5). The variable
parameter of the ogive shape is r, see Figure 7.17.
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Figure 7.19: Dependence of LCC on r (see Figure 7.17).

The highlighted value (always the second set from the two sets with the same name)
represents the value of r such that the shape of an arch is circular. For the low ratio
v/L, the circular shape has the highest LCC; for the high ratio v/L, the Gothic shape has
a higher LCC than the circular shape.

7.2.12 Thickness of the vault

The thickness of the masonry blocks of a vault is a very sensitive parameter. Increasing
thickness leads to an increase in the area where the thrust line can develop. It also
increases the compressed area; the stresses from the load decrease rapidly. See the results
of the modelling in Figure 7.20.

7.3 Conclusions

See the conclusions of the sensitivity analysis in Section 8.4.
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Figure 7.20: Dependence of LCC on the ratio H/L.
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Chapter 8
Sensitivity analysis of input parameters for the load
carrying capacity of masonry arch bridges - SLS

The content of this chapter is taken mainly from the article [VD22a]. The motivation and
introduction are given in Section 5.

In this chapter, nine circular-shaped masonry vault railway bridges were analysed.
The parameters of nine vaults were chosen according to the previous chapter, Section 7.
The spans were chosen 6, 12 and 20 m, ratios of v/L (rise/intrados span length) were
chosen 0.1, 0.3 and 0.5. In the legend of the plot, "06_0.6" means span 6 m, rise 0.6 m,
which means ratio 0.1. The ratio p/L (depth of backfill at the top of the arch/intrados
span length) is 0.08333. Therefore, the total depth of the backfill is 0.5 m for the 6 m span,
1 m for the 12 m span, and 1.666 m for the 20 m span. The default value of the specific
weight of the masonry, the specific weight of the backfill, the friction coefficient, the angle of
internal friction of the soil, and cohesion of the soil are the same as in Section 7.1.2 above.
The characteristic compressive strength is 5 MPa. The thickness of the vault is considered
to be 0.4 m for the 6 m span, 0.5 m for the 12 m span, and 0.6 m for the 20 m span.

Then, LCC was analysed for the road bridge – span 4 of the Legion Bridge in Prague (see
Section 10), which has an elliptic shape, and span 5, which has circular shape. This bridge
was loaded by the railway load model 71 to compare the result with other bridges studied
in this chapter. The finite element program Midas [MID19] was used for modelling, which
allowed us also to mode the temperature load. As a source for this calculation, the real
diagnostic survey is available – see [IPI19]. This survey is very detailed and was quite
expensive. This chapter was created to help save some money for the diagnostic surveys
and to focus only on the most critical parameters.

8.1 Methodology and methods

8.1.1 The method of verification

The equations for the verification at the SLS see in Section 2.2, at the ULS see in Section 2.1.
The first main indicator of how the cross section of the height H is loaded is the position
of the thrust line. The thrust line is a locus of points through which the resultant force
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Figure 8.1: Verification of the position of the thrust line. The state of structure is represented
by the colour.

goes. For each point of the vault, it can be (for the case of beam model) calculated as
eTh = M/N , where M is the bending moment, and N is the normal force applied on
the cross section – from the load in given combination. The higher the bending moment is
applied on the cross section, the higher is eTh, and the more reduced is the compressed area.
To fulfil the criteria of the SLS, eTh must be less than H/3 according to [HD08], to fulfil
the criteria of the ULS, eTh must be less than H/2. Eccentricity larger than H/2 means
that the thrust line lies outside the cross section, leading to the collapse of the structure (if
the tensile strength is neglected); this is illustrated by Figure 8.1.

The method of obtaining the eTh depends on the chosen model. For the case of 2D
planar elements, the verification can be done by checking that the height of the compressed
area is at maximum 0.5 H. For the case of the linear beam model, eTh can be obtained in
a single step. For the case of the non-linear beam model, the eTh varies for each step of
calculation, and only the steps which fulfil the criterion of convergence (and equilibrium
conditions as well as limit strain conditions) can be taken as a final value of eTh.

The second main indicator of the state of the vault is normal stress acting on the cross
section due to the given load. In the SLS, the stress should be less then or equal to 0.45fk.
This criterion ensures that no point of the structures will crush during the usual loading
conditions. On the other hand, the crushing is permitted in the case of the ULS, a state of
collapse of the structure.

8.1.2 The used method - MVo

The algorithm which was created using MATLAB® software, can deal with circular arch
bridges or arch bridges given by the set of points representing arch axis and input of
the desired degree of a polynomial, which will be used to find a smooth geometry of
the arch axis by the least square method. It is assumed that such a set of points can be
obtained, for example, by geodetic measurements. In this chapter, the results of circular arch
bridges will be presented. See the example of the Legion Bridge in the literature [VD19]
(or Section 10.6.3), for which the geometry was fitted by the least square method of
the polynomial of 8th degree. The main property of the model is that it uses beam elements.
From 128 to 256 elements are used. The axis of the original arch is considered for the first
step of the calculation. Then, due to crack opening, the geometry changes. The cross
section properties (area and moment of inertia) are changed correspondingly according to
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Δ

Figure 8.2: The model used in the first step of the calculation.

Figure 8.3: The model used in the second and every other step of the calculation.

these geometry changes. The new geometry of every node in every step is "guessed" as
the geometry of a thrust line of the previous step.

The masonry can be modelled in several ways. The simplest method is to use a homog-
enized model, which merges the mortar and units in one single material. This approach
is also used in the MVo code. See the details of masonry homogenization in Section 1.
The geometric non-linearity is solved only in the created algorithm – MVo code; other used
methods do not consider it. The effect of geometric non-linearity cannot be neglected just
for the case of arches of a large span and low ratio sagitta over span of the arch. In this
chapter, a sensitivity analysis of key input parameters is done using the MVo code.

The initial boundary conditions and model view can be seen in Fig. 8.2. The springings
are supported by hinges (fix both x and z displacements) and rotational springs (partially
fix rotations). The springs representing the backfill behaviour act linearly for compression
in the soil, and the stiffness in the tension is considered to be zero. The fact that the stress
in the soil is either tension or compression is assessed by the deformation from the live load.
The spring acts only in a horizontal direction. The boundary conditions for the next steps
see in Fig. 8.3. The stiffness of the spring is calculated from Edef :

Kspring = Edef .∆Z.B/∆L, (8.1)

91
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where:.Kspring is the stiffness of the spring in the given node,. Edef is the deformation modulus of the soil,. B is the width of the vault. In most cases, the effective width beff is used. See also

Section 11.3.3..∆L is the length of the substituted soil (different for each node), see Figure 9.1..∆Z is one-half of the horizontal projection of the distance between two adjacent nodes
to the given node.

Assumptions of the calculation

. the supports at the arch springing are considered infinitely stiff, no deformation is
allowed, i.e., no uneven settlements of supports are considered.. The Bernoulli-Navier hypothesis (also called the Euler–Bernoulli beam theory) for
beam elements is considered..Only one soil is considered for all points of the backfill.. There is no inflection point in the geometry of the arch in the case of polynomial shape.. The new position of the nodes must lie on a normal line of the curve of the original
axis geometry.. In the study of the sensitivity of input parameters, the arch is symmetric; the longitu-
dinal slope of alignment of a railway is considered zero. The thickness of the arch is
constant.

See the loading conditions in following Figures 8.4, 8.5 and 8.7. The structure is loaded
by self weight, weight of the backfill, ballast, earth pressure, and live loads.

The live load dispersion (distribution) is done in the same way as in LimitState:RING, see
example from the LimitState:RING manual in Figure 10.8. Example of output of MVo code
see in Figure 8.6 and 8.7. The Boussinesq distribution is used, see the [Lim20]. The load
is distributed at angle φBall in the ballast and φBack in the backfill. This distribution
is displayed in Figures 8.6 and 8.7 and it is denoted as "left and right dispersion lines".
The figures are examples of a moveable load position. The "length of model" means
the length of load model 71. In the MVo code, the length is calculated as 4.8+0.8*2=6.4 m
because the concentrated axle forces are considered as distributed in the uniform load.
The nodes, which are between left and right dispersion lines, are loaded by the load model,
the other ones are not loaded by the live load at the examined load position. The length of
the blue vertical lines represents the value of force acting in the node.

The algorithm developed can be used to calculate LCC at the SLS or the ULS. In this
section, only SLS is handled. The collapse load can be calculated in other software, such
as LimitState:RING, see [Lim20] and [VD20]. RING was also used in other sections, such
as 7.1.2.
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Figure 8.4: The load of the model by earth pressure.

γ

Figure 8.5: The load of the model by self-weight of the masonry arch.

The geometric non-linearity is solved by the second-order analysis; the material non-
linearity is modelled by the crack opening and changes of cross section, which are sought
iteratively. The equations used are described in [VD21], [VD18] and Section 2 and 4.3.3.

The smooth geometry is needed for all steps of a non-linear calculation. This is a typical
property of the beam model. Even a small aberration from the smooth geometry causes
the unreal values of internal forces, especially the bending moment and the shear force.
In the algorithm, the small aberration always occurred during tens of steps, which led to
unreal results. There are two ways to deal with this problem. The first is to use many
(at least thousands) elements; the second way of handling this is to smooth all the new
coordinates of nodes. The first way is very time-consuming. Therefore, smoothing was
used. On the grounds of that, in circular arch bridges, the functions of bending moments
are functions of sine and cosine functions; Fourier curve fitting was used. This curve fitting
for the geometry of the new calculation step leads to the fastest calculation convergence.

During the first few steps, the fitted data have some errors. They can be seen in Figure 8.8.
When the calculation converges, the error is equal to chosen precision ε. eTh4Fit means eTh
before fitting, fitted means after the curve fitting. In Figure 8.8, the fitting is performed
for an example of the third step of the vault bridge calculation. In the next steps, the error
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Figure 8.6: Example of live load dispersion and values of nodal forces. q is a nodal load from
the live load, x and z are coordinates of the global coordinate system.

is usually close to ε, and the curves look identical.

Midas

Midas is typical FEM software. Its basic assumption is "small" deformation; see the definition
in [Sad05] and [MR75]. For masonry structures, a small deformation assumption is fulfilled.
It is therefore used to verify structure in an elastic state – at the Serviceability limit state.
For modelling of the Legion Bridge, elastic plate elements were used, see Fig. 10.7. Material
non-linearity is modelled in the joints between masonry blocks only. The model was used,
for example, in [Dra13], see the details about this model in [VD18] and Section 11.3.2.
There are around 20 elastic links in every joint that represent the mortar, which can only
resist shear and compressive forces (tension prevented). The calculation is carried out
iteratively. The load is increased until the capacity of at least one of the cross sections
according to Equation 2.3 or (and) 2.4 is exhausted.

The parameters of this model according to [IPI19]: the modulus of elasticity of masonry is
27.085 GPa, span 4 is 42.5 m, the thickness of the arch is ranging from 1.45 m to 2.1 m, span
5 is 27.9 m, the thickness of the arch is changing from 1.0 m to 1.5 m. The specific weight
of the masonry is considered 26.44 kN/m3 (granite stone blocks), specific weight of soil
19.5 kN/m3, coefficient of thermal expansion 4.5e-06 °C−1, see Figure 8.12 in Section 8.2.1.

8.1.3 Investigated parameters

The investigated parameters are:..1. Using Midas software:
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Figure 8.7: Example of live load dispersion and values of nodal forces...a. Uniform change of temperature...b. Coefficient of thermal expansion...c. Modulus of elasticity...2. Using MVo code:..a. Deformation modulus of the soil Edef ...b. Coefficient of friction µ...c. Ratio H/L – arch thickness over span length (intrados)...d. Characteristic masonry strength fk.

8.2 Results of the modelling – sensitivity analysis of input
parameters

Figures 8.9 to 8.13 have resulted from modelling using the Midas non-linear analysis.

Figures 8.14 to 8.17 have resulted from modelling using the MVo non-linear analysis.
This is related to the article [VD20]. In the cited article and Section 7, the sensitivity of
parameters is calculated at the ULS. In this chapter, the results depicted in the plots are
calculated at the SLS.
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Figure 8.8: Curve fitting of geometry for the next step of the calculation.

8.2.1 Temperature changes, coefficient of thermal expansion, modulus of
elasticity

This section presents the results of modelling of the Legion Bridge in the program Midas.
The final plot of LCC is based on the input parameters from the diagnostic survey.

The bending moments due to the uniform temperature changes – increasing (+) and
decreasing (-) of superstructure temperature can be seen in Figure 8.9:
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Figure 8.9: Bending moment of span 4 due to the uniform change of temperature (absolute
values).

96



................. 8.2. Results of the modelling – sensitivity analysis of input parameters

The bending moments were obtained by integrating of normal stresses over the cross
section at the points of the structure with the highest value of the bending moments –
L/2 and L/4, where L is the length of the span (intrados). The resulting bending moment
was obtained by subtracting the moment caused by a dead load from a combination of
dead load and a change of temperature. An example of the stress distribution in the cross
section is shown in Figure 8.10:
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Figure 8.10: Normal stresses in the middle of span 4. "Cool5" means cooling of the structure
by 5 °C.

An analogy to both-end-fixed beam subjected to uniform temperature gradient is used:

σ = E.αt.∆t, (8.2)

where:. E – modulus of elasticity of masonry,. αt – coefficient of thermal expansion,.∆t – change of temperature.

As ε and σ depends on E, αt and ∆t, because ε = αt.∆t and σ = E.ε, more detailed
analysis is provided for investigation of the effect of temperature change.

The resulting stress arises from the multiplication of three parameters. Afterward, we
will focus on them together. All the three parameters can be considered as parameters
of linear function – if the modulus of elasticity of masonry considered in the calculation
decreases twice, resulting stress also decreases twice. The fact that this rule can be applied
to masonry arch bridges is proven in Figure 8.12. In the Midas model, the coefficient αt was
changed while the ∆t and E are considered constant (which is known from the diagnostic
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survey). As a result, the linear function of the deformation in dependence on the coefficient
of thermal expansion was obtained.

In the case of the Legion Bridge, the geodetic survey was performed several times, w
was measured, and the temperature of the structure was known. The measured vertical
displacement at the top of the arches of span 3 and 4 of the Legion Bridge in the dependence
on temperature can be seen in Figure 8.11. The fitting of curves by the least square method
showed the best accordance with a linear function.
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Figure 8.11: Finding the αt from a geodetic survey.
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Figure 8.12: Finding the αt from a geodetic survey.

In Figure 8.12, w is vertical deformation in the middle of span 4.
The value of the coefficient of thermal expansion could be obtained from the intersection

point of a linear function, and constant w, which was obtained from the measured spans;
the average value of the coefficient was used (the resulting αt equals 4.5e-06 °C−1).

The resulting LCC can be seen in Figure 8.13.
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Figure 8.13: Load carrying capacity in dependence on temperature.

A positive temperature change of the structure is not considered because it does not
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Figure 8.14: Load carrying capacity in dependence on Edef . For the legend, see Section 8.2.

have an adverse effect on the load carrying capacity at the SLS.
In the legend of Figure 8.13, sigMax and maxE denote two conditions to be fulfilled at

the SLS according to [SŽ15]:..1. Maximal stress (sigMax) according to Equation 2.3...2. Maximal eccentricity (maxE) according to Equation 2.4.

It can be seen from Figure 8.13 that the circular shape of the vault is more sensitive to
cooling.

8.2.2 Deformation modulus of the soil Edef

The chosen scope of Edef corresponds to the variation from the clay-sand to compacted
gravel of ideal grain size. It can be seen that the parameter is the most sensitive for the case
of arch bridges with a high ratio v/L. The lower is the ratio v/L, the lower is the sensitivity
to Edef .

8.2.3 Coefficient of friction µ

The sensitivity analysis of the coefficient of friction between the blocks of masonry elements
is done just for circular bridges. As was shown in the article [VD20], the shear resistance
depends mainly on the shape of the vault. The circular bridges usually have enough shear
resistance. This fact is also proven in Figure 8.15, which shows the results of the calculation
at the SLS. The ratio V/N – shear force over normal force – which should be less than or
equal to 0.4 due to [PL07], and which should be less or equal to 0.6 due to experimental data
according to [Lim20], is for all the investigated arch bridges not higher than 0.225. Hence
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Figure 8.15: Load carrying capacity in dependence on coefficient of friction. For the legend, see
section 8.2.

the LCC is not affected by shear strength. However, for the lower values of the coefficient
of friction, the sensitivity to change of this parameter is high.

8.2.4 The thickness of arch

The thickness of the arch is the most sensitive parameter. That is why there should be
an effort to obtain this parameter during the diagnostic survey. The thickness of the arch is
sensitive both due to maximal stress and eccentricity of the load. The higher is the thickness,
the higher is the range where the thrust line can occur. In the non-linear calculation,
the crack opening is allowed, and therefore, the possibility of finding the ideal geometry
increases with increased thickness. The result of the modelling can be seen in Fig. 8.16.

8.2.5 Characteristic strength of masonry

The characteristic strength of masonry is a parameter with similar sensitivity to the change
to Edef . At the SLS, there is always some limit for which increasing the strength does not
increase the LCC because the maximal eccentricity is a decisive criterion. This can be seen
in Figure 8.17, but mainly from the study and comparison of the three mentioned methods
for handling SLS criteria in Section 9.3.

8.3 Discussion

The comparison of the investigated parameters is carried out in two ways:. In Figure 8.18, the total differences of ZLM71 within the investigated scope of parameters
are compared.
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Figure 8.16: Load carrying capacity in dependence on ratio H/L, the thickness of the arch.
For the legend, see section 8.2.

. In Figure 8.19, the average "normalized" derivatives of resulting functions are compared.
The "Normalized" derivative is used because of differences between the scopes of
investigated parameters. For example, the angle of internal friction varies from 0-55 °,
and the ratio H/L varies from 0.008 to 0.1166. Derivatives are incomparable due
to this fact. The "normalized" derivative means that for all functions, the scope of
the investigated parameter is set to 1.

For both cases, the average of all investigated bridges is displayed.
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Figure 8.17: Load carrying capacity in dependence on characteristic strength of masonry. For
the legend see section 8.2.
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Figure 8.18: Comparison of investigated parameters - total differences between final ZLM71
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Figure 8.19: Comparison of investigated parameters - "normalized" derivatives

8.4 Conclusions

The sensitive parameters identified by this study are the ones, which should be investigated
precisely by the diagnostic survey. The medium-sensitive parameters are good to know,
but few tests are usually enough.

The most sensitive parameters are the masonry strength and thickness of the vault.
Masonry strength is essential, especially for vaults of low sagitta, for which the masonry
crushing of is usually the decisive failure mode.

The coefficient of friction between blocks is not important for circular vaults, but
other shapes, especially ellipse and ogive, are very sensitive to the coefficient of friction.
The Eurocode significantly underestimates the value of the coefficient of friction, especially
the LCC of elliptic shape vaults would be very low according to Eurocode.

The modulus of elasticity, the considered change of temperature, and the coefficient
of thermal expansion are three parameters, which work together on the final stresses in
the structure. The final resulting stresses caused by the temperature load might be so high
as to cause a collapse of the vault due to crushing of the masonry for the low strength
of the masonry or the maximal eccentricity of the load. Therefore, the parameters for
the calculation are also very sensitive.

The depth of the backfill, soil angle of internal friction, the effective width of a vault, and
the shape of a vault are medium-sensitive parameters. The longitudinal slope of a railway,
the specific weight of the masonry, the specific weight of the backfill, the Poisson number,
and the cohesion of the backfill are parameters, that have a low impact on final LCC.
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Comparison of the sensitivity of input parameters due to the SLS (MVo) and the ULS
(RING – see in Section 7 and [VD18]) gives very similar results when comparing the sensi-
tivity to change of Edef in the SLS and the sensitivity to change of angle of internal friction
in ULS. The same applies to the coefficient of friction between the masonry blocks, the ratio
H/L, and the strength of the masonry. Individual curves behave slightly differently, but, in
general, the agreement of the compared plots was very good. There is no obvious breakpoint
between the growing and constant segment in the RING result plots, which can be seen
in SLS methods. The reason is that in the RING analysis, the criteria are different: low
strength arches collapse by the crushing of the whole cross section. The middle range
of strengths is affected by the crushing and, with increasing strength, the crushed area
decreases. When the strength is higher than the usual masonry elements can have or is close
to infinite, the criterion of the maximal eccentricity of the load is decisive, and the constant
segment of the plot occurs.
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Chapter 9
Load carrying capacity of masonry arch railway
bridges - case study

The content of this chapter is taken mainly from the article [VD22a].
The results of four calculation methods are compared:.MVo code – modelling using beam elements (according to previous Section 8.1.2),. Linear (SLS analysis),. Non-linear (SLS analysis),. Scia – planar elements were used (SLS analysis),. RING (ULS analysis).

9.1 Input parameters

The parameters used in the case study using the MVo code: Edef = 40 MPa; Emasonry =
1000 ∗ fk; ε = 10e-8 m; γFill=18 kN/m3 – weight of the backfill; ϕ = 30 ° – angle of
internal friction – cohesionless soil is considered, earth pressure at rest is calculated as:
K0 = 1− sin(ϕ); µ = 0.4 – friction coefficient; γStone=25 kN/m3; hBallast=0.3 m – height
of the rail ballast (under the sleeper); γBal =18 kN/m3 – weight of ballast; LSleeper=2.4 m
– length of sleeper in the transverse direction; ϕBall = 15° – disperse angle of live load
through the ballast; ϕBack = 30° – disperse angle of live load through the backfill.

9.2 The used methods

9.2.1 The MVo method

The algorithm developed (referred to as the "MVo" - described in Section 8.1.2) has two
modes. In the first mode, just one linear calculation is completed, and the forces are
verified directly after the first step. In the second one, the arch verification is done after
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Δ

Figure 9.1: View of whole model using Scia software.

the convergence of the steps of the non-linear analysis. The algorithm developed uses a beam
model; it has two advantages: the algorithm is simplified and there is less computation
time. The non-linear calculation means that the LCC is calculated iteratively for all load
steps of the moveable load, which is time consuming even when using the beam model (for
this chapter, around a hundred arch bridges were analysed using a usual computer, and
the total computation time was around four hundred hours). The disadvantage is that
the model parameters, such as the geometry of nodes and cross section properties, must be
completely renewed in every step of a calculation; therefore, creating the algorithm of such
a calculation was time-consuming for the programmer.

9.2.2 The LimitState:RING method

The method is described in Section 7.1.2 and 11.3.3. The collapse shapes of the vaults are
described in [Och02].

9.2.3 The control method taken from article [VD18] - Scia

The models use 2D planar elements. The model properties are the same as the properties
of model described in Chapter 8.1.2. See the view of the whole model in Figure 9.1 and
the detail of a joint in Figure 9.2. Planar elements with a linear behaviour represent
the masonry blocks. The joints between the blocks are modelled by a set of beam elements
that are "compression-only". The soil is modelled by elements with a modulus of elasticity
equal to Edef , which allows us to model also live load dispersion and all other effects of
backfill, except for passive earth pressure. For the calculation of the SLS, these deformations
are small and the passive earth pressure is not activated. As mentioned above, this analysis
was done using the Scia commercial software [Nem20].

For the details of this model, see [VD19], [VD18] and Section 10.4.3. Scia parameters
used in this chapter: Edef , Emasonry are chosen the same as in the MVo code, νMason = 0.2,
νbackfill = 0.333; ν – Poisson’s ratio.
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Figure 9.2: Blocks of masonry and beam elements representing the joints between the blocks.

9.3 The results of the case study of the set of arch bridges -
a comparison of the four forementioned methods

The LCC of the bridge spans L = 2.5, 5 and 7.5 m was calculated, the characteristic
strength of the masonry was (1 for special cases) 2, 4, 6, 8, and 10 MPa, sagitta v was for
all cases considered to be L/2 and L/4. The depth of backfill p was for all cases considered
to be 0.5, 1, 1.5 m. Owing to the fact that Scia results were considered for a control reason,
the LCC of the medial thickness (of total 3) was not calculated.

The difference between the MVo code and the Scia model is that in Scia, the behaviour
of the backfill is linear – in the horizontal and the vertical directions. In the case of arches,
where the height of the backfill is similar to or even larger than the span of the arch,
the results are significantly impacted by the soil behaviour. The problem becomes more
influenced by the impact of soil and its modelling rather than the behaviour of the masonry
arch. See the result of RING modelling (check of ULS) in Figure 9.3, the MVo non-linear
code (check of SLS) in Figure9.4, the results of the MVo linear code (check of SLS) in
Figure9.6, the results of control Scia calculation (check of SLS) in Figure 9.5 and comparison
of RING method with the MVo code in Figure 9.7.

9.4 Result discussion

It was confirmed that the results of the two models, which should have similar results,
give similar results. The most significant difference is for the smallest arch of the 2.5 m
span. For this geometry, the calculations are significantly impacted by the behaviour of
the backfill. The linear backfill behaviour helps the arch in both vertical and horizontal
directions. For the arch with a high effect of backfill, special modelling should be done
using special geotechnical software.

It should be noted that the results of the control model – the Scia model – are imprecise
due to the reading of the graphical results. Especially the verification of the maximal
eccentricity is sensitive to interpreting the compressed area. Seeking the LCC iteratively
is time-consuming when using the Scia software. On the other hand, the MVo code is
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Figure 9.3: Results from the modelling using the RING software.

created to calculate the LCC, and the results are obtained simply and straightforwardly;
the verification is done with precise numbers.

The linear calculation must obviously give a lower LCC. In the non-linear analysis,
the arch axis is "optimized", the geometry is updated to decrease the bending moments in
the next step. The limits of changing the geometry are given by the arch extrados, intrados,
and SLS criteria. The resulting bending moments depend mainly on the crack opening. If
the height of the cross section decreases and is close to the limit - one-half of the cross
section height, then the moment of inertia decreases eight times. As a result, the bending
moment in the next step decreases up to eight times. The geometry optimization is done
for every load step, every position of the live load, so the non-linear calculation is much
more time demanding.

The authors tried to find the dependence of LCC using RING on LCC using the MVo code.
Such an evident dependence was not found. The curves of the LCC ratio ZRING/ZMV o

are similar in shape, but the tendency to grow or decrease with increasing strength differs
for every analysed arch. For most cases, the ratio is the lowest for the highest depths of
the backfill. For the majority of the cases, the LCC is higher at the ULS, usually up to two
times higher.
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Figure 9.4: Results from the modelling using the MVo software – non-linear analysis.

9.5 Conclusions

Comparison of the sensitivity to change of input parameter due to the SLS and the ULS
gives very similar results. This comparison was made for key parameters, which were
proven to be the most sensitive in the article [VD20]. The comparison of analysis using
Scia software with 2D planar elements to the MVo results showed good agreement, except
for small arch spans, where the behaviour of the backfill significantly affects the final LCC.
For this reason, a further study of backfill behaviour with advanced methods explicitly
designed for soil behaviour should be conducted.

The comparison of the analysis using the MVo non-linear method with the RING results
showed no particular dependence. The LCC from the RING method is mostly higher than
the LCC from the MVo method. The RING results are up to two times higher.

The linear calculation gives very conservative results; LCC is usually from two to three
times lower than from the non-linear model. This is because the non-linear model can
change its geometry to minimize the bending moments, and the only boundary conditions
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Figure 9.5: Results from the modelling using the Scia software – non-linear analysis.

for the geometry of the arch are the extrados and intrados of the assessed arch. The effect
of crack opening, which reduces the bending moment for the critical points of the arch, also
increases the final LCC.
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Figure 9.6: Results from the modelling using the MVo software – linear analysis
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Figure 9.7: The ratio of ZLM71,RING/ZLM71,MV o is simplified as ZRING/ZMV o.
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Chapter 10
Load carrying capacity of stone arches of Legion
Bridge

The content of this chapter is taken mainly from the article [VD19].

10.1 Introduction

In the case of road bridges in Czech Republic, three kinds of load carrying capacity (referred
to as ”LCC”) are to be calculated (according to [ÚN13b]):. V n - normal LCC of the bridge – represents the maximum weight of one typical lorry,

which may pass the bridge without any restrictions (position limited by safety barriers
or curbs only).. V r - exclusive LCC – represents the maximum weight of one vehicle, which can pass
the bridge as a single vehicle in any position or lane, respectively (no other traffic load
except pedestrians is permitted).. V e - exceptional LCC - which represents the maximum weight of a special heavy
vehicle, which can pass the bridge under special conditions (specified velocity, specified
path, and eccentricity to the axis of the bridge).

If the LCC V n is lower than 26 t or V r is lower than 48 t, the traffic sign must be placed
on the bridge to signal the LCC, and drivers of heavier trucks must avoid the bridge. For
the bridge reconstruction, the minimal LCC is V n=32 t, V r=80 t and V e=180 t (lower
values show the need for strengthening or a demolition and replacing it with another object).

The determination of each LCC presents a separate calculation in both of the limit states
(SLS and ULS), considering all other relevant loads (temperature, wind, flood, etc.).

10.2 Brief history and description of bridge

The Legion Bridge connects the Old Town with the Lesser Town of Prague through
the Střelecký Island. The foregoer bridge of Legion Bridge was the Bridge of Emperor
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Figure 10.1: Longitudinal section of the whole bridge.

František, and it was the second bridge in Prague finished in 1841. The Legion Bridge was
constructed at the position of the Bridge of Emperor František. The construction of a new
bridge ran from 1898 to 1901.

In contrast to the original bridge, the superstructure is a massive stone vault structure.
The construction of the bridge consists of nine flat (with a low rise) vaults of different
spans: 26.6 + 34.3 + 38.5 + 42.0 + 27.8 + 27.8 + 31.9 + 28.7 + 25.6 m. Two vaults
above the Střelecký Island are vaults of circular segments, and the other vaults are elliptical.
According to [IPI19], the vaults of the bridge are made of granite blocks with a gap of 12 -
15 mm filled with cement mortar. The stone facade of front walls of light sandstone and
red granite symbolizes national colors. The bridge has wide pathways and motorway lanes.
Electric tracks were also built on the bridge; trams run along an existing bridge from June
17, 1901.

The Legion Bridge is listed as an immovable cultural heritage and is therefore protected
according to the law on State Monument Care, as amended. Furthermore, because it is
a building located in the territory of the Prague Historical Reserve (PPR), it is protected
by the provisions of the Government Decree On the Historical Heritage in the Capital City
of Prague. The historic monument in Prague, representing the historical center of Prague,
was included in the UNESCO World Heritage List in 1992.

See the cross section view in the midspan of span 4 in Fig. 10.11 and the longitudinal
section in Fig 10.1.

10.3 Diagnostics of the bridge

In order to find the geometric and material properties of the bridge, the following procedures
were carried out. For detailed results see [IPI19]:..1. detailed mapping of all visible damages,..2. topographic survey,..3. geotechnical investigation,..4. core boreholes to the superstructure (to obtain E, fb, fm),..5. georadar survey of thickness of arches,..6. continuous measurement of temperatures,
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Figure 10.2: Mapping of visible damage in the spandrel wall near pier No. 2...7. diving survey of substructure,..8. static and dynamic load test – see Section 10.6.5.

10.3.1 Detailed mapping

As an example of detailed mapping of visible damages, which was done together with
the acoustic test of degradation of stones of arches, Figure 10.2 is shown.

Because of the cracks in the spandrel walls, the wall is considered just as a load in
the models, not as a carrying element.

10.3.2 Geotechnical boreholes

Piers number 2, 3, 4, 6, and 8 were drilled from the bridge deck to the foundations. From
this we obtain information about the thickness and material properties of asphalt layers,
the backfill, the masonry of piers, and the foundation ground. It was found that the masonry
of a pier has much lower strength than the superstructure, see section 10.3.3.

10.3.3 Core boreholes

The compressive strength was tested on 34 granite samples of the superstructure. The mea-
sured mean strength was fb = 132 MPa. The superstructure mortar has an average strength
fm =25.8 MPa, tested on 114 specimens.
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Figure 10.3: Georadar method in span No. 9.

The compressive strength was tested on 131 granite and sedimentary rock samples of
the substructure. The measured average strength was fb = 86 MPa. The substructure
mortar has an average strength fm =25.2 MPa, tested on 169 specimens.

The input parameters for assessing the fk of the superstructure are: αm = 0.7 for
the usual mortar, β = 0.3 for the usual mortar, Kz = 0.45 for blocks of natural stone.

The characteristic compressive strength of the masonry was calculated according to
Equation 1.2, its value is 28.9 MPa for the superstructure and 22.8 MPa for the substructure
(which are very high values),

The granite modulus of elasticity of superstructure was found 41.3 GPa on 17 specimens,
and the granite modulus of elasticity of substructure was found 31.1 GPa on 29 specimens.

10.3.4 Georadar survey of the thickness of arches

The Georadar method (GPR) is based on the principle of transmitting high-frequency
electromagnetic waves into the examined environment and then registering the wave image
of the reflected waves. The wave image is affected by local inhomogeneities, especially with
different conductivity and other electromagnetic properties. Inhomogeneities can have both
planar character (discontinuity surfaces, structural interfaces) and local character (e.g.,
cavities, etc.). Inhomogeneities are manifested by amplification of the registered reflected
signal amplitude. In Figure 10.3, the blue lines represent the arch shape taken from
the topographic survey. The yellow area and the white lines are taken from the Georadar
method.

The measurements in the longitudinal direction of the bridge were in good agreement
with the archive documentation. On the vault of span 7, a 0.15-0.2 m concrete layer was
found, which was not expected. The measurement in the transverse direction showed
constant thickness, which was expected.
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10.4 Methods of calculation - arch

In all the methods, the masonry is homogenized; see the details of homogenization in
Section 1. Methods used in this chapter:..1. Graphical method (checking of all the requirements)..2. Linear calculation using FEM (controls all the requirements)..a. Beams – 2D or 3D (checking of all the requirements)..b. 3D solid elements (controls all the requirements)..3. Non-linear calculation..a. 2D – plane elements (checking of SLS requirements)..b. 2D – beam elements - MVo code (controls all the requirements)..4. Equilibrium method — LimitState:RING (checking of collapse of the structure only)

The requirements of codes see in Section 2.

10.4.1 Graphical methods

Various graphical methods had been used until computer-aided design came to engineering
practice. It provides a simple and quick design approach independent of arch bridge shape.
Graphical methods are based on the thrust line determination. The thrust line of the cross
section can be found as the centroid of the axial stress diagram. When the thrust line is
known, the stress at the cross section can be calculated as well. The method of finding
the thrust line runs in the following order (symmetric arch according to [Lip98]):..1. Divide the arch into 2 symmetric parts, find the weight of one-half, and from the arch

geometry, we find the force Hf (horizontal force at the top of the arch)...2. Divide one-half of the arch into several partitions (vertical lines can be used to divide)...3. Draw a graphical representation of all parts – Fi - the size of vector in chosen scale,
acts in its centroid...4. Force Hf we locate, for example, in the upper bound of cross section core and reaction
in the lower bound of cross section...5. To obtain the resulting force R1 in the first partition, we graphically add the force Fi
to Hf ; to obtain the following resulting forces in each partition, we graphically add
the forces Fi to the previous resulting force.

The basic principle of the calculation is shown in Fig. 10.4 and [Vok18].
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Figure 10.4: Basic principle of the graphical method.

Figure 10.5: Linear 2D beam model.

10.4.2 Linear calculation

Structural analysis using the linear calculation method was done in two different options.
In the first one, the arch was represented by a sequence of beams in its center-line. Vertical
beams placed at the appropriate longitudinal distance represent the backfill; see Figure 10.5.
While modelling using linear calculation, one should not forget that this calculation method
does not take into account material non-linearity (and geometry changes due to excluding
the tensioned part of cross section).

For the second option, the arch and backfill were modelled by the 3D solid elements with
various mechanical properties – see Figure 10.10.
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Figure 10.6: Non-linear behaviour of masonry.

Figure 10.7: Elastic links between nodes in joints of masonry.

10.4.3 Non-linear calculation

For performing a non-linear analysis and assessment of the structure, the material – mortar
and masonry elements - is homogenized to preserve its properties concerning the real
behaviour of the structure or its part. It is assumed that the dimensions (thickness) of
the masonry elements and the joints between them do not significantly affect the distribution
of stress in the masonry element. See the details of homogenization in Section 1. The real
stress-strain diagram of the masonry shows non-linear behaviour (see [Vok17]), particularly
due to negligible tensile strength. In this chapter, it is considered that the material acts
only in compression, and when the tensile stress occurs, the cracks open up, see Figure 10.6).
If subsequently (e.g., in another load combination), the tensile stresses in the cross section
disappear, the cracks close, and the cross section acts again as full.

Non-linear calculation using Midas

The structural model in the program Midas was prepared using plane-stress elements.
The joints between the granite blocks were modelled as a set of elastic links with the prop-
erty "Compression only", see Figure 10.7. For another example of such a model see in
Section 11.3.2.
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Figure 10.8: Vertical traffic load distribution (dispersion) to the vault considered for arch
modelling in LimitState:RING software.

Non-linear calculation using MVo code

For the details of the model see Section 8.1.2. The geometry of the model and the results
can be seen in Figure 10.17. A beam model with geometric and material non-linearity was
used.

10.4.4 Equilibrium method on rigid blocks

LimitState:RING is a special analysis software for checking the LCC of the vault in
the plane of the longitudinal section of the bridge structure, including the load distribution
by the backfill. The load distribution is considered according to Bousinesq, see the example
in Figure 10.8. For more details, see Section 7.1.2 and [Dra14].

10.5 Methods of calculation - transverse direction

10.5.1 Linear calculation

Beam elements

Modelling using this method is done by representing the arch by beams in its middle line and
dividing the backfill in a chosen interval to represent it by beams as well, see Figure 10.5.
If the model shown in Figure 10.5 is copied several times in the transverse direction,
the analysis model representing the arch as a 3D body can be arranged. The stiffness of
the transverse beams, which connect the beams in the longitudinal direction, is chosen
as the stiffness of the arch; the beams have both bending and shear stiffness. Such a 3D
linear model can be used to study the effect of the eccentricity of a live load on the load
distribution in the transverse direction – see Figure 10.9.
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Figure 10.9: Linear 3D beam model.

Figure 10.10: 3D solid model.

Solid elements

Another option for linear analysis is to model the body of the structure using 3D solid
elements – see Figure 10.10. This way can model both longitudinal and transverse directions.
In this model, we assume that the backfill is connected to the masonry arch; there are
just different material properties. The precise way of modelling includes the frictional
connection between these two materials, but the real friction between the masonry arch
and the fill is unknown; this way was, therefore, not used.

10.5.2 Effective width

The principles of "modelling" of the bridge span 4 in the transverse direction using effective
width can be seen from Figure 10.11. This way of modelling is used in most codes. According
to [Har06], the "classical" model was used. Other possibilities of considering the effective
width can be seen in Figure 11.8. The classical model considers the conservative idea that
the non-loaded part of the arch does not carry any load. So the shear and bending stiffness
between loaded and non-loaded elements are considered to be equal to zero. This approach
is applied to 2D modelling methods; the effective width is used for the third dimension.
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Figure 10.11: Graphical calculation of effective width is carried out on the view of cross section
in the bridge midspan.

Figure 10.12: Graphical solution of the span 4 from the archive documentation.

10.6 Results

10.6.1 Graphical method

The result of the graphical method for span 4 is shown in Figure 10.12. The red line
represents the thrust line, see its values also in Figure 10.22. In Figure 10.12, the stress
distribution is displayed at the point d (the arch springing) by the red triangle. The structure
is loaded just by self-weight.

10.6.2 Linear calculation

The bending moments on the beams representing the vault are shown in Figure 10.13.
The stress of the linear model of solid elements can be seen in Figure 10.14. The positive

sign means tension; the results are taken from the lower edge of midspan 4.
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Figure 10.13: Bending moment Mmax on the beams representing arch in longitudinal direction.
(The load model V r is on the right side of the bridge).

The linear model of solid elements, which included the spandrel walls, showed that stress
in the spandrel walls from the decrease of temperature by 10 °C reached 3.2 MPa. This
explains the vertical cracks in almost all of the spandrel walls.

10.6.3 Non-linear calculation

Non-linear calculation using Midas

Principal stress in the arch of span 4 can be seen in Figure 10.15.
The legend of curves in Figure 10.16 is the following:

. sw means self-weight,.N^means non-linear combination,. ohr means heat-up,. och means cooling,. 4V nT ! means load by live load,. number 1 or 2 means the position of live load.

Non-linear calculation using MVo code

The shape of the arch with the excluded tensioned areas can be seen in Figure 10.17.
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Figure 10.14: Resulting normal stress from the 3D solid model loaded by the exclusive load
model V r on the right side of the bridge.

Figure 10.15: The principal stress from the non-linear model.

10.6.4 Shear between the blocks

As a demonstration of failure mode, the picture of span 4 from program LimitState:RING
is attached (see Figure 10.18).

The resulting shear force acting on the cross section depends on the geometry of the arch.
In the beam model, it depends on the geometry chosen of the axis of the beams. In the solid
model, it depends on the choice of material model – linear or non-linear. Figure 10.19
shows examples of moving the center-line of a beam near the bottom of the arch. e = M/N
is the eccentricity of the load. The higher is the eccentricity, the lower is the resulting shear
force. In Fig. 10.20 it can be seen that changes in the geometry of a beam model according
to material non-linearity affect the resulting shear force highly.

The Legion Bridge was also assessed in other sections of this thesis. The sensitivity
to change of coefficient of friction on the resulting LCC was carried out in Section 7.2.2
and 8.2.3.
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Figure 10.16: Normal stress distribution in the middle of span 4 versus the cross section height.
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Figure 10.17: Span 4 - final shape of the vault, thrust line. The vault is loaded just with
self-weight.

10.6.5 Static load test

Six vehicles of weight 31.6, 31.2, 31.7, 31.5, 31.7, 31.5 t were used for the static load test.
The test was carried out according to [ÚN13a] in spans 3, 4, 5, 6. In this article, only
results of span 4 are presented. The measured displacements are pretty small compared to
the precision of the measurement, which is equal to 0.25 mm. Four functions of transverse
vertical displacement are compared in Figure 10.21:..1. linear beam model,..2. linear solid model,..3. "non-linear beam model",..4. "non-linear solid model".
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Figure 10.18: Failure mode of span 4.

Figure 10.19: Changes in the geometry of the beam axis depending on the eccentricity of
the load. The effect on resulting shear force see in Figure 10.20.

Results from the effective width calculation are not presented in the plot because it is
evident that it is very conservative – the resulting displacement on the left and right edges
would be zero, which is not valid. The function "non-linear beam model" and "non-linear
solid model" was created by multiplying the linear result by knon, which was calculated
as knon = wnon−linear/wlinear, where wnon−linear is displacement from the 2D non-linear
model loaded by self-weight and wlinear is displacement from the linear solid model loaded
by self-weight.

The resulting "non-linear" calculated displacements are in the range of measured displace-
ments +- preciseness (equal to 0.25 mm). The results approve the non-linear behaviour of
the bridge.

10.7 Comparison of methods and discussion

10.7.1 Self-weight – the main load

In Figure 10.22 we can see the eccentricity obtained from the linear, non-linear model
and the graphical solution (the archive documentation). Eccentricity from the non-linear
model is higher, as expected, because tension, which is allowed in the linear model, pushes
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Figure 10.20: Resulting shear force depending on the eccentricity of load e = M/N (in the arch
springing). For the eccentricity of the load see Figure 10.19.

the resultant thrust line to the centroid of the cross section. The non-linear analysis is
more time-consuming (on the engineer’s effort and the computer’s effort). Still, the real
behaviour of the structure is better described by the non-linear model (see the behaviour of
masonry in Figure 10.6). The results from the non-linear model are more non-conservative
and are closer to the limit states.

10.7.2 Traffic load and its distribution in transverse direction

The load distribution in the transverse direction was compared on three models – 3D
solid, 3D beam, and effective width. The result can be found in Figures 10.13, 10.14
and 10.11. The 3D linear solid model assumes linear behaviour in all directions; it, therefore,
gives the most non-conservative results. The most conservative model is the effective
width model because it entirely excludes part of the cross section. The real behaviour is
somewhere between. The beam model gives results between the two mentioned methods;
in author’s opinion is, therefore, the most real. The beam model is much simpler, and
the stiffness in the transverse direction can be easily changed. The real 3D solid model
(which considers non-linear behaviour) is complicated with the fact that we do not know
many crucial characteristics of masonry – such as bending and shear stiffness of mortar
between the blocks – neither in longitudinal nor in the transverse direction. For this reason,
we do not recommend the 3D solid model for the practical calculations; it is also not used
for calculating the final results of LCC.

10.7.3 Final results of load carrying capacity

The final results of LCC reflect both the results of modelling the arch itself and modelling
of the transverse direction. When using the effective width method, the live load is
concentrated to a small strip of the arch, but in the 3D beam model all the beams carry
part of the load.

The LimitState:RING in general gives non-conservative results, which was also stated,
for example, in [NB17] and [Cob18]. The non-linear model is conservative because of
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Figure 10.21: Comparison of the calculated displacements with the displacements obtained by
the static load test.

Arch model Transverse model V n V r V e

Linear 3D beam 21 53 104
Non-linear Midas effective width 32 83 185
Non-linear MVo effective width 37 92 194
LimitState:RING effective width 46 105 182

Table 10.1: Resulting LCC

assessing the load distribution in the transverse direction. The linear model gives the most
conservative results, because the thrust line is not optimized to find the highest LCC (thrust
line is optimized only in the non-linear model).

10.8 Conclusion

Several models of the Legion Bridge were carried out. In the opinion of the author, the most
realistic behaviour of arches describes the non-linear model, because it considers the non-
linearity, which impacts the calculation the most – negligible strength in tension. The results
from modelling are non-conservative in comparison to other methods. Modelling of load
distribution in the transverse direction showed that the 3D solid model gives the upper
bound (non-conservative), the effective width gives the lower bound (conservative results),
and the 3D beam model is somewhere between, which is the most realistic behaviour.
However, the use of an effective width is precise enough for small spans (spans of 90 % of
stone arch bridges are less than 10 m). Still, it leads to very conservative results for such
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Figure 10.22: Comparison of linear, non-linear and graphical methods for span 4.

a bridge with a very large span (the span of the Legion Bridge is the largest in the Czech
Republic).

Verification of shear resistance also showed the importance of considering the material
non-linearity. The shear forces resulting from the linear beam model, which does not
consider the non-linearity,were shown to be unreal; the structure collapsed even loaded
by self-weight. When assessing the shear, we can say that the non-linear model and
LimitState:RING model are in good agreement, considering that weight of models of traffic
loads (V n, V r, V e) is relatively small in comparison to self-weight.
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Chapter 11
Load Carrying Capacity of Stone Arch Bridge in
Karlovy Vary

The content of this chapter is mainly taken from the article [VD22b].

11.1 Introduction

The load carrying capacity (referred to as LCC) can be explained as the gross weight of
a vehicle, which can pass the bridge under specific conditions. For road bridges (which is
the case of the Cheb Bridge), three types of LCC are to be assessed – see [ÚN13b] and
Section 10.1:

Conditions, that must be fulfilled for the masonry elements, are specified in [HD08]
and [PL07]. See the equations for the check in Section 2. This chapter deals with
a description and comparison of results from various computational models of vault bridges.

Throughout history, many methods have been used for the modelling of arch bridges; see
Section 6.

In this chapter, the following methods described in chapter 11.3 are used:. Linear beam model according to [Goc78] - which is the most common in practise - was
enhanced to 3D,. Non-linear 2D analysis using planar elements - the similar model was described
in [BDS08],. LimitState:RING (see below),. Non-linear 2D analysis using beam elements – this method was proposed by [SF14] and
used, for example, in [ZPTP20]. These models use a non-linear stress-strain diagram
but do not consider the geometry change by the opening of the cracks. The method,
which considers the geometry change due to the non-linear behaviour of the material
and takes into account also the second-order effects, was introduced by [VD17] for
slender columns. This concept was used for arch bridges in [VD18] for the first time.
In this thesis, it is called the ”MVo code”.
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In this thesis, the Rigid-body method is used for the verification of the ULS - ultimate

limit state according to [PL07] and the non-linear analysis is used for the verification
of the SLS according to [HD08]. The linear stress-strain diagram is used for the SLS;
"inelastic strains are associated with permanent deformations of the arch which is allowed
in the ULS design, the safety assessment of a masonry bridge at the SLS should avoid any
inelastic strain to develop in the structure" [BM07]. Masonry is considered to be suitably
homogenized, and the basic material of bricks and stones is considered to be isotropic
according to the current standard. See the details of homogenization in Section 1.

The opening of cracks, which might occur, is modelled by an appropriate stress-strain
diagram, which is in this chapter linear for the compression and zero for the tension (at
the SLS check) because the joints cannot transfer tension.

The used analysis methods are simplified compared with the complicated 3D non-
linear models. These simplified methods are proposed for practical verification, in which
the structural engineer does not know all the input parameters of the 3D non-linear model.
The real tensile strength in the structure or the real friction between the masonry arch
and the fill are examples of parameters that cannot be stated by the real diagnostic survey.
The same applies to the biaxial stress tests of spandrel walls – for such testing, large
samples must be taken. Basically, the whole spandrel wall must be tested destructively; see
the example of such a test in [FFMS19]. As an input for this calculation, destructive and
non-destructive tests were carried out. See the non-destructive testing methods in [OG09]
and destructive testing method in [FFMS19].

11.2 Diagnostic survey

This chapter gives a summary of the diagnostics of the bridge which was available: [ssro20].

11.2.1 Brief description, history

The bridge was constructed in 1869. It is located between the "Namesti Republiky" square
and "Sokolovska" in the historic city of Karlovy Vary, Czech Republic. The span of all
five arches is 17.5 m, sagitta 2.25 m ("sagitta" is also in literature referred to as "rise" of
arch intrados). The width of the arch is 6.88 m; the thickness of the arch varies from
1.1 m (springing) to 0.79 m (midspan). The thickness of the spandrel walls is 0.73 m.
The height of the piers is 5.5 m. See the simplified view of the longitudinal section of
the bridge in Figure 11.7. At the beginning of the 20th century, the bridge was widened by
a steel cantilever. In the 1980s, the corrosion of the steel structure caused a collapse of
the widening. In 1986, reconstruction was done by adding reinforced concrete panels (see
the cross section of the bridge in Figure 11.9). These slabs were added across the entire
width and length of the bridge. The substructure is massive, made of granite blocks on
a surface. The piers and abutments are filled with compact weak masonry. The foundation
of the bridge is lain on wooden piles.

The diagnostic survey proved this description. Today, the bridge administrator plans to
renew the bridge; the original historical arrangement of the bridge should be restored.
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(a) : The mortar in the joints of the substruc-
ture is missing up to 200 mm deep.

(b) : The salt leaching and deposits on the in-
trados of the vault (black because of SO2−

4 .)

Figure 11.1: The most important defects of the bridge.

11.2.2 Detailed bridge inspection

The bridge inspection does not have a numerical output, but it is an important method of
the diagnostic survey. Detailed visual inspection of the bridge can quantify defects, assess
quality of materials, bring classification of structural state, and set the scope of works of
the diagnostic survey. The two most severe defects can be seen in Figure 11.1a and 11.1b.

11.2.3 Core sampling

The core samples were carried out according to [ssro20]:

. Through the pier vertically (thickness of the pavement, as well as the foundation of
the bridge, were investigated),

. through the abutment horizontally,

. through the arch.

See the compressive strengths, which were obtained by testing, in Table 11.1.
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compressive strength of the masonry compressive strength of the mortar

element cylinder / [MPa] cylinder / [MPa]
68.5 20
75.2 15.9
63 22.1
70.4 10
59.2
91.7
117
79.7
94.1
48.2

Table 11.1: The compressive strength of the core samples

According to [PL07], the characteristic compressive strength should be calculated accord-
ing to Equation 1.2, for the Cheb Bridge, we obtained values of:

. αm = 0.7 for usual mortar,. β = 0.3 for usual mortar,.Kz = 0.45 for blocks of natural stone,. fb = 76.7 MPa (mean value),. fm = 17 MPa (mean value).

The resulting masonry characteristic compressive strength fk was 19.3 MPa. The design
compressive strength was calculated according to Equation 1.3, for the case of the Cheb
Bridge, the following factors were used:

. γM1 = 2.0 is the basic value of safety factor, value for clay masonry elements,. γM2 = 1.1 for the level of brickwork,. γM3 = 1.2 for the considered moisture around 60 %,. γM4 = 1.1 for the case of local cracks in the stone blocks.

The final design compressive strength of masonry fd was 6.64 MPa, which is quite a high
value compared to other vault bridges in the Czech Republic.

11.2.4 Temperature, geodetic survey

The temperature of the air in the shade, arch intrados (number 2) and extrados (number 1)
was measured – see the positions of temperature gauges in Figure 11.9. See the measured
temperature in Figure 11.2:
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Figure 11.2: The temperature measured.

A detailed topographical survey of the whole bridge was carried out. Eight points on
the bridge cornice were measured in four time periods. These points were fixed in the chosen
midspans and on the support axes. Based on these measurements, which were carried out
during different (and measured) air and bridge temperatures, the dependence of the bridge
deformation due to a temperature change was plotted in Figure 11.3:
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Figure 11.3: The vertical displacement of the arch top in dependence on the temperature of
the superstructure.

The vertical displacement of the arch midspan was determined as the difference between
the deformation of the arc top and the deformation of the pillar. For the plot, the least
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square method was used. The linear function was used for the approximation due to
the measurement and calculation of the Legion Bridge – see Figure 8.11 and [VD19]. In
the 2D non-linear model, the coefficient of thermal expansion was determined by the previous
plot; its value was 5e-06 1/°C. The change of temperature has been considered in two ways
in the following models:. Uniform temperature change – the value of the temperature change considered was

taken from the measurement – the value in the middle of the cross section height,
calculated as an average value from the arch extrados and intrados. The difference
between extrados and intrados was not greater than 5 ° C.. Linear temperature gradient - only the linear beam model was loaded by the linear
temperature change. The value of the temperature considered was taken from the cur-
rent standard because this value is larger. The period of measuring the temperature
was not long enough to show the maximal temperature gradient, which can occur.

11.2.5 Modulus of elasticity

The modulus of elasticity used for granite is Em = 28.607 GPa, which is the value of
modulus of elasticity of granite from the experimental tests of the substructure of the Legion
Bridge [VD19]. According to [oR17], the modulus of elasticity of masonry is lower due to
the fact that the modulus of elasticity of granite blocks is combined with the impact of
the mortar:

Ecm = 5000 + 300fb = 24125MPa. (11.1)

In the case of the bridge in Karlovy Vary, the original lime mortar was supplemented
(partially) with cement mortar within the reconstruction in 1986, [SSZ85]. Therefore,
the following value of modulus of elasticity of masonry with the lime-cement mortar is used
according to [oR17]:

ELcm = 0.8Ecm = 19300MPa, (11.2)

where:. Em – mean value of granite modulus of elasticity,. Ecm – mean value of the modulus of elasticity of masonry with joints made of cement
mortar,. ELcm – mean value of the modulus of elasticity of masonry with joints made of
lime-cement mortar.

11.3 Methods of modelling

One of the significant differences between all modelling methods is dealing with the backfill
impact on an arch bridge. In general, the backfill impacts the bridge in several ways
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described in Figure 7.8. In this section, the following methods are compared (and their
ways of modelling the backfill are explained).

. Linear beam model,

. Non-linear 2D analysis using planar elements,

. LimitState:RING,

. Non-linear 2D analysis using beam elements.

The backfill properties were known from few samples; the real composition of all parts
of the backfill and reinforced concrete slabs, which cover the entire bridge, is unknown
and therefore also the real load dispersion is unknown. All the methods deal with this
problem and in a different manner. The linear model contains the slab modelled by beam
elements of real material and dimensions. The remaining methods use the effective width
concept justified by the position of resultant force of live and dead loads - see Section 11.3.3.
Assessing of the effective width uses a conservative idea that axle load distributes through
the concrete panel and then backfill, see Figure 11.10. The concrete slab is in the concept
of effective width used just as a layer with larger disperse angle.

11.3.1 Beam model with linear behaviour

The model, which represents the arch, backfill, and substructure as a beam, was created
in 3D to model the transverse direction as well as the behaviour of the arch in its plane.
The view of the model (longitudinal section) is shown in Figure 11.4.

Figure 11.4: The longitudinal section of the beam model.

See the 3D model of the bridge with the real thickness of the elements in Figure 11.5.
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Figure 11.5: The axonometric view of the beam model.

The direction of the backfill beams limits the modelling of the backfill in this type of
model. The arch is not loaded by earth horizontal pressure, which is not true. The horizontal
stiffness of the backfill is also not modelled. On the other hand, the value of the horizontal
pressure and backfill stiffness is much smaller than the value of the vertical one, at least for
such arches of low ratio v/L.

The arch and the pier have been modelled by their axis, and they have real dimensions. All
the materials are considered to behave linearly in both tension and compression. The specific
weight of the masonry and the backfill was taken from the diagnostic survey, as well as
the strength of the masonry. The supports are considered infinitely stiff in all models; no
uneven settlement of the supports is considered. The model can be used to check the ULS
and SLS; the internal forces obtained can be directly compared with the resistance of
the structure.

11.3.2 2D non-linear model using plane-stress elements in program Midas

Midas software was chosen for this analysis. The non-linearity is modelled in the joints
between the masonry blocks by the use of non-linear elastic links. The backfill is modelled
by the elastic elements. In this way, the dispersion of the concentrated load is modelled as
well as the impact of self-weight of the backfill and horizontal earth pressure. The modulus
of elasticity of backfill is considered 100 MPa (was taken from the diagnostic survey –
the average value), which is much smaller than the modulus of elasticity of masonry -
19.3 GPa. The found backfill soil is compacted sand with the debris. Since this 2D model
was proposed for the modelling of the behaviour of the bridge in the SLS (the usual daily
loading of the bridge), the structure deformations must remain small; the stresses should not
exceed a certain value; excessive crushing cannot occur. Therefore, the stress-strain diagram
used is zero in tension and linear for the compression. It is also justified by the verification
that the acting stress is less than allowable stress. The fill is considered to be joined to
the arch, especially because the SLS is checked by this model. Another approach can be
seen in [GF16] where the author used contact elements at the interface between the masonry
and fill with an isotropic Coulomb friction model; this allows the material to ‘stick’ and
then ‘slide’ when the shear stress exceeds the limiting frictional stress. The passive earth
pressure, which might act in the ULS, will not activate in the SLS. For assessing the width
of the structure, the effective width was used; see the following section. See the model view
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in Figure 11.6; the detail of model of similar bridge see in Fig. 10.7.

Figure 11.6: The longitudinal section of the 2D non-linear model.

The model can be used in general also for the ULS, as can be seen in [Knu17] and others.
The disadvantage is that the real stress-strain diagram is hard (almost impossible) to obtain,
and the current standard [PL07] does not recommend any diagram.

11.3.3 2D rigid-body model using the program LimitState:RING

LimitState:RING is a program for the assessment of the LCC of a vault in the longitudinal
section, including all the impacts of the backfill, such as the dispersion of a concentrated
load (see in Figure 7.8 and 10.8). The method is described in Section 7.1.2. Considering
the crushing always decreases the LCC. In this chapter, the value of fd was considered (see
Section 11.2.3). See the model view in Figure 11.7.

Figure 11.7: 2D model at collapse load.

The input parameters of the calculation are the following: masonry unit weight 25.9 kN/m3,
backfill weight 18 kN/m3, coefficient of friction 0.4, angle of internal friction of the soil
30 °, cohesion 0 kPa, disperse angle see in Figure 11.9. This software does not handle
the temperature loading.

This program and the 2D non-linear analysis assume that the width of the structure that
carries the load is assessed from the effective-width calculation. It comes from the idea that
in a transverse direction, the point or axle load disperses in the same way as in a longitudinal
direction (see Figure 11.9). This simplified method is used in many standards. Usually,
this method is applied at the arch top (where the height of the backfill is minimal), and
the effective width is considered constant for the entire length of the arch (the classical
model, see Figure 11.8). In the calculation, it is considered that only the effective part of
the arch carries the live load. For this reason, this method of modelling the load dispersion
in the transverse direction is conservative. It considers that the blocks of masonry have
neither bending nor shear bearing capacity in the transverse direction.
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The basic approaches to considering load spread according to [Har06], can be seen in

Figure 11.8.

Figure 11.8: Ways of assessing the effective width.

For a determination of the effective width of the Cheb Bridge graphically see Figure 11.9
and 11.10. The "classical" model according to Figure 11.8 was used.

Figure 11.9: Assessing the effective width - cross section of the bridge.

To use the effective width concept, the resultant force of the live load and the dead load
must be in the middle of the studied width beff . Since both the resultant force of the live
load and the resultant force of the dead load of the structure have eccentricity to the axis
of the effective width (and not the same), the resulting stress diagram of the studied width
beff has, for example of V n, the trapezoidal shape, see Figure 11.10.
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Figure 11.10: Stress diagram of the bridge cross section.

The calculation is based on the spacing of the wheels of the load model. The effective width
beff considered for assessing the LCC V n is 3.427 m, for V r and V e is 3.835 m, the final
effective width strip was taken 0.5 m and the stress sigF considered for the assessment was
taken as average stress in the strip of the width 0.5 m, i.e., sigF = (sig1 + sig2)/2.

11.3.4 2D non-linear model using beam elements

For analysing the masonry arch bridges, the MATLAB® code was developed – the MVo
code. It is described in Section 8.1.2. Compared to non-linear analysis using Midas and its
plane-stress elements, the advantage of this model is that user input is less time-consuming,
and the calculation is variable and versatile. In this model, the arch is represented by
the beams in its axis. The number of beams, in which the arch is divided, can be chosen;
usually, around 256 or 512 elements are used. The tensioned part of the cross section is
excluded from the calculation, resulting in a changed geometry and stiffness of the beam.

11.4 Results of modelling

11.4.1 Linear beam model

In Figure 11.11, eccentricities of the load are compared from the linear model (shortcut
"lin"). The structure is loaded by:. sw – self-weight,. uc – uniform temperature change – cooling,
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. uh – uniform temperature change – heating,. lc – linear temperature change – cooling,. lh – linear temperature change – heating.
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Figure 11.11: Eccentricities from the self-weight and temperature loading of a linear beam
model.

See the results of the bending moments in the transverse direction in Figure 11.12.
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Figure 11.12: Bending moments Mmin (minimal) for the load case V r (position of V r is at
the right edge of the bridge).

The diagram of the bending moments shows that all the strips of the vault carry some
part of a live load. This fact has also been proven by the static load test of the Legion
Bridge [VD19], see also Section 10.6.5.

11.4.2 2D non-linear model in Midas

The stress distribution is non-linear, see Figures 11.13, 11.14a, 11.15 and 11.14b. Only
at the midspan, the stress distribution is almost linear for example of self-weight load. It
can be seen that at L/4 and springing, the stress distribution from the traffic load nearly
satisfies the criterion of maximal permitted eccentricity according to Equation 2.4 (almost
one-half of the cross section height is compressed), which shows the desirable shape of
the arch. In combination with self-weight, the criterion of maximal eccentricity is fulfilled
easily. The maximal load (LCC), for which the eccentricity of the resultant force is equal
to maximal eccentricity allowed, is sought iteratively. See the LCC result comparison in
Section 11.4.5.

Figure 11.13: Graphical output of arch stresses – load case "tr4".

Legend – in figures, the following denotation is used:. tr – means the traffic load alone, the maximum of the load model V n, V r, V e is
considered,. N ^– means a non-linear combination,
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Figure 11.14: Resulting stress in dependence on the height of the cross section.

. uc – means uniform cooling of the structure,

. uh – means uniform heating of the structure (usually a positive effect for the stress
and eccentricity),

. number means the position of moveable traffic load.
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Figure 11.15: Stresses at the arch springing.

11.4.3 Results of non-linear model using beam elements

As an output of the MVo coding, internal forces and deformations are shown in Figure 11.16.
The arch is loaded only by self-weight. The dash-dotted line is axis of the arch. Units
are metres and it is relevant only for the axis of the arch. The blue lines representing
the deformation and internal forces are illustrative; only the shape of the curve is relevant.
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Figure 11.16: Internal forces and deformations from the MVo code.

The final shape of the cross section, which reflects the excluded tensioned parts of
the cross section, was plotted in Figure 11.17:

Figure 11.17: Final thrust line and shape of the arch from the MVo code.
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11.4.4 Comparison of linear beam model, non-linear beam model, and 2D
non-linear model

In the following plots – Figures 11.18, and 11.19 – eccentricities of the load are compared
from the linear beam model (shortcut "lin"), the non-linear model in Midas (shortcut
"non-linM"), and the non-linear beam model (shortcut "non-linB"). The structure is loaded
by self-weight (sw), uniform temperature change – cooling (uc), and traffic load (tr). Traffic
load means the maximum of load models V n, V r, V e.
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Figure 11.18: Load eccentricities from the linear and non-linear model. eMax is the maximal
eccentricity due to the SLS criteria.

149



11. Load Carrying Capacity of Stone Arch Bridge in Karlovy Vary ...................

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 2.5 7.5 12.5 17.5ec
ce

n
tr

ic
it

y
 /

 [
m

]

length of the arch / [m]

eMax -eMax

lin sw+tr e+ lin sw+tr e-

non-lin sw+tr e- non-lin sw+tr e+

tr e+ tr e-

Figure 11.19: Load eccentricities from the linear and non-linear model. e+ means the eccentricity
from the minimal negative moment, e− means the maximal positive bending moment.

Even when the lower modulus of elasticity is considered, the bending moments from
the temperature change from the linear model are so high that the eccentricity exceeds
the SLS conditions, the eccentricity of the load is larger than half of the height of the cross
section, the thrust line out of the cross section, which means a collapse of the structure;
this is not true.

The maximal stress criterion is not considered; it is not decisive. The maximal ratio
V/N (shear force from the load over normal force from the load) is around 0.1-0.2 from
the beam model and 0.15-0.26 from the non-linear model. This shows that the criterion,
that the ratio should be less than 0.4, is satisfied easily. However, the result values are
quite different.

11.4.5 Result summary

The final LCC see in the table 11.2:
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Type of analysis V n - normal V r - exclusive V e - exceptional
1) 2D Non-linear model in Midas 41 126.0 215
2) 3D beam linear model 33 68 144
3) 2D Non-linear beam model 39 119 191
4) LimitState:RING 69 170 217

Table 11.2: Comparison of all the methods used.

11.4.6 Discussion

The LCC from the 3D beam model was assessed by neglecting the temperature effect.
Temperature loading of the linear beam model results in theoretical collapse of the structure,
which does not reflect the real behaviour of the structure. Therefore, this model is not
suitable for modelling of temperature load. The LimitState:RING software does not handle
temperature loading, which seems to be reasonable. It was shown that the crack opening
significantly decreases the temperature effects. In the collapse state, the cracks are open
wide.

The behaviour of the linear beam model loaded by a traffic load and a self-weight is
different from that of the 2D non-linear model. It is caused by an opening crack and
changes in stiffness and geometry (mainly in the arch springing), proven by the non-linear
model. This causes different bending moments in the arch midspan – higher compared to
the non-linear model. Consequently, the linear model gives the lowest LCC. The thrust line
is not optimised, the critical point of the arch does not move with the increasing load. This
impact is not included in the linear model. Even in the linear model, the tension occurs,
and the crack (joint between the blocks) should open, but it is not allowed. The linear
model might be used just to assess the load distribution in the transverse direction.

In the transverse direction, the load distribution is solved in two ways – the beam model
shows that all arch parts carry some part of the live load. The effective width calculation
results in leaving out large parts of the vault; for the mentioned example of load position
and wheel spacing of the model, around one-half of the vault was left out. These are
two extreme cases; the true behaviour must be somewhere between. From all of these
models, the maximal ratio V/N (shear force over normal force) is 0.26. However, the result
values are quite different from the beam and the non-linear model. Since it was proven
that the linear model is not suitable, the values from the non-linear are closer to the real
behaviour. The ratio 0.26 is low, which shows that the arch shape is desirable.

The results of the LCC assessment obtained by the program LimitState:RING are
the highest. It is used for ULS assessment. It is evident that movement of the thrust line
from H/3, where H is the height of the cross section to H/2 (the maximal eccentricity in
the SLS is H/3, collapse occurs when the thrust line reaches H/2), is caused by a much
higher permitted traffic load. A significant increase of the LCC is also caused by the fact
that after the thrust line reaches H/2 at one point, the hinge is created, and the loading
continues until the four hinges are activated to create a moveable mechanism. That is why
the LCC calculated by the program LimitState:RING is much higher than the one calculated
by the other methods. In the standards, which admits the method of LimitState:RING,
much higher coefficients are recommended, and then the SLS criteria must not be assessed
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(see, for example, [fRB19]).

The discussed methods are used for arch bridges of a large span; many calculation
methods are limited by the maximal span, which is similar to the span of the Cheb Bridge.
It was shown that the methods examined, usually used for the assessment of small-span
bridges, could also be used for the large-span bridges.

11.4.7 Conclusions

The results of the modelling of the arches of the Cheb Bridge were compared. The simple,
real-time methods, which can be used in practical bridge assessment, were used. The fully
non-linear 3D analysis demands real tensile strength in the structure, biaxial stress diagram
of masonry, and the real friction between the masonry arch and the fill, which are examples
of parameters that the real diagnostic survey cannot state; these parameters are also hardly
derivable from other parameters. It is also a problem of the current standards – values
of these parameters, such as non-linear stress-strain diagram, are not provided and no
recommendation is given. The second problem of the standard is that the ULS is verified
by a fully rigid-plastic check, being an unlikely collapse mode of the Cheb Bridge, which
has such a high strength of the granite blocks of the arch.

It was shown that the linear model, which is still the most used model, is not suitable
for the vault modelling, especially for the assessment of longitudinal direction; the collapse
caused by the usual temperature loading is not real. The model allows high tension
between the masonry block, which is impossible (150 year old bridge). The linear model
is the most conservative; the resulting LCC is the lowest. In the non-linear models,
the cracks in the arch can open, which means a redistribution of internal forces away from
the critical arch point. The iterative search for the state of cracks is how the thrust line is
"optimized". Consequently, the non-linear model gives much better results and higher LCC.
The non-linear model should be used. The only benefit of the 3D linear beam model is
the possibility of investigation of the load distribution in the transverse direction. It shows
the maximal load distribution in all arch parts; the effective width method is conservative
and gives the minimal load distribution. For the practical calculations, the author of this
thesis recommends using the LimitState:RING for the ULS criteria and the non-linear
calculation for the SLS. For this calculation, considering the linear stress distribution for
compression and neglecting the tensile strength is recommended and required by the current
standard [PL07]. The LCC from the LimitState:RING is the highest; the collapse load
must consume much more energy than just the opening of crack up to one-half of the cross
section height, even when using a different (ULS) set of partial safety factors.

The temperature loading of the non-linear planar elements increases the pressure from
the self-weight 1.7-2.7 times. The increase in the linear beam model is about 3-6 times.
Therefore, the effects of the temperature loading of the linear model are about two times
higher than the effect from the non-linear model. The linear model should not be used for
temperature loading.
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Chapter 12
Results of experiments according to [Lim20]

In appendix G of the publication [Lim20], the behaviour of vaults loaded by a force (which
is close to an axle load) was investigated; 15 experiments were performed and the results of
the LimitState:RING program were compared with the real collapse load. The result can
be seen in the table 12.1. The ratio of the collapse load from the LimitState:RING software
over the real experimental collapse load was on average 94.1 %, i.e. the real collapse load
was mostly slightly higher than the collapse load by the software (when all the safety
coefficients are equal to one). The agreement of the two mentioned results is very good.
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sample 

No.

RING / mean 

experimental result  

[%]

appendix G.1 sample 1 82

laboratory full scale sample 2 80

sample 3 100

appendix G.2 sample 1 93

laboratory small scale sample 2 94

sample 3 96

sample 4 104

sample 5 95

sample 6 103

appendix G.3 sample 1 97

laboratory full scale sample 2 104

appendix G.4 sample 1 81

field test sample 2 100

sample 3 92

sample 4 90

average 94.1

minimum 80

maximum 104

coefficient of variation 8.2

experiment according to 

+ description

Table 12.1: Results of experiments.
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Part V

Discussion and conclusions
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A new algorithm was created for handling the slender masonry elements. It is based on
a beam model with material and geometric non-linear behaviour. The code was used for
calculating the bearing capacity of masonry columns and vaults.

Columns

The newly proposed method was implemented in Matlab, and a study of resistance of
various columns was carried out. Then, the results of the mathematical modelling were
compared with the experimental program. The behaviour of the columns in the experimental
program was linear until the collapse, this behaviour fits with the computation methods;
comparison of behaviour of slender masonry columns with six various stress-strain diagrams
is quite similar until the collapse. The rigid-plastic model is an exception; it was stated as
inappropriate (because of assumption of infinite rotation of the cross section and unreal
height of the compressed area of the cross section).

The methods and results found in the literature were also considered and used for the eval-
uation of the new method; methods found in the literature are mostly very conservative
(multiplying 2 reduction factors of requiring the whole cross section to be compressed).
According to the results of methods used, it was stated that the rigid-plastic check (used,
for example, in the current standard – Eurocodes) is not suitable for the slender masonry
columns, especially the ones loaded in 2 planes; the rigid-plastic check is suitable only for
new masonry structures with very small slenderness. The results of the loading capacity of
columns obtained by the calculation according to the standards are mainly conservative.

On the basis of the previous sections, new recommendations for the assessment of columns
were made: Second-order analysis should obviously be used; linear stress-strain diagram
can be used for compression (tensile strength neglected). The compressed area of the cross
section should be at least one-half of the total area of the cross section, even for the case of
biaxial bending. The 3D effect can be neglected only if one of the bending moments My

and Mz is much lower than the other.

Vault bridges

The results of the arch bridge modelling were compared with each other; limited comparison
with experiments was also carried out. Simple, real-time methods, which can be used in
practical bridge assessment, were used. The fully non-linear 3D analysis demands many
parameters which are almost impossible to obtain, even with the diagnostic survey. The real
tensile strength in the structure, the real stress-strain diagram, the biaxial stress diagram of
the masonry, the fracture energy, and the real friction between the masonry arch and the fill
are examples of parameters that the real diagnostic survey cannot state; these parameters
are also hardly derivable from other parameters.

In the case study and also for the case of two assessed bridges of a large span, the LCC
values from the Rigid block analysis were the highest. The Rigid block analysis (evaluating
the collapse load) results are up to two times higher than the results of the MVo code
(diagram linear for the compression and zero for tension used for the SLS). The reason is
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that the collapse load must consume much more energy than just the opening of the crack
up to one half of the cross section height, even when using a different (ULS) set of partial
safety factors. A significant increase of the LCC is caused also by the fact that after
the thrust line reaches H/2 at one point, the hinge is created, and the loading continues
until the four hinges are activated to create a moveable mechanism.

The linear beam model gives the lowest LCC, and the non-linear model gives mostly
values of LCC between the two above-mentioned methods.

The linear calculation gives very conservative results; LCC is usually from two to three
times lower than from the non-linear model. This is because the non-linear model can change
its geometry to minimize the bending moments in the critical points, and the only boundary
conditions for the geometry of the arch are the extrados and intrados of the assessed arch.
The iterative search for the crack state is how the thrust line is "optimized" and controlled
as one of the crucial safety conditions. Consequently, the effect of redistribution of internal
forces and the crack opening increases the final LCC.

Finally, it was shown that the linear model, which is still the most used model, is
not suitable for vault modelling, especially for the assessment of longitudinal direction;
the collapse caused by usual temperature loading is not real. When comparing the effects
of temperature loading of a non-linear model of planar elements and the linear beam model,
we find out that the stress of the linear model is 2-3 times higher than the non-linear
model. Therefore, the linear model should not be used for modelling of temperature loading.
The model allows for high tension between the masonry block, which is not possible.
Loading by self-weight showed non-conservative results and loading by the axle load showed
conservative results.

The experiments that were carried out to assess the behaviour of vaults loaded by
a force (which is close to an axle load) until the collapse showed very good agreement with
the LimitState:RING results.

Verification of shear resistance also showed the importance of considering the material
non-linearity. The shear forces resulting from the linear beam model, which does not
consider the non-linearity, showed to be unreal; for example elliptical structures collapse
even loaded by self-weight. From the point of view of the shear, the non-linear model and
the Rigid block analysis model agree well. It is also essential to know the accurate angle
between the joints and the vault surface.

The coefficient of friction between blocks is not important (decisive) for circular vaults,
but other shapes, especially ellipse and ogive, are very sensitive to the coefficient of friction.
For example, the Eurocode significantly underestimates the value of the friction coefficient
(with recommended value of ≈ 0.4/2=2), especially the LCC of elliptic shape vaults would
be very low according to the Eurocode. The value of the coefficient of friction from
the literature is between 0.6 and 0.7.

Modelling of the load distribution in the transverse direction, which was compared with
the static load test, showed that the 3D solid model gives an upper bound (non-conservative),
the effective width gives the lower bound (conservative results), and the 3D beam model is
somewhere between. Using effective width is precise enough for small spans (spans of 90 %
of masonry arch bridges are lower than 10 m) but leads to very conservative results for
a bridge with a very large span (30 - 40 m). The non-linear model of longitudinal direction
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was in the best agreement with the result of the test.
The positive effect of spandrel walls on LCC was neglected in all models. The cracks,

which occurred on all the spandrel walls of the Legion Bridge, are caused by the temperature
loading. This was shown on the 3D solid linear model. The fact that the spandrel walls
are cracked and their stiffness decreases rapidly is the reason for neglecting the effect of
spandrel walls on LCC.

The most sensitive input parameters for the calculation of LCC are the masonry strength
and the thickness of the vault. Masonry strength is important, especially for vaults of low
sagitta (rise), for which the crushing of masonry can be decisive failure mode.

The modulus of elasticity, the considered change of temperature, and the coefficient
of thermal expansion are three parameters, which work together on the final stresses in
the structure. The final resulting stresses caused by the temperature load might be so
high as to cause a collapse of the vault in case of the wrong choice of model parameters.
Therefore, the parameters for the calculation are also very sensitive.

The depth of the backfill, the soil angle of internal friction, the effective width of
a vault, and the shape of a vault are medium-sensitive parameters. The longitudinal
slope of the backfill, the specific weight of the masonry, the specific weight of backfill, and
the cohesion of the backfill are parameters, which have a low impact on the final LCC.

Comparing the sensitivity to change of the input parameter in the SLS and the ULS gives
very similar results, even though the methods used were different. This comparison was
provided for all key parameters, which were proven to be the most sensitive. The comparison
of analysis using Scia software with 2D planar elements with the MVo results showed good
agreement except for small arch spans, where the behaviour of backfill significantly affects
the final LCC. The soil model used was completely different. For this reason, further study
of the backfill behaviour should be conducted with advanced methods explicitly designed
for soil behaviour.

The finding that the behaviour of slender masonry columns with various stress-strain
diagrams is quite similar, except for the rigid-plastic model (which was stated as inappro-
priate) also fits for the vault bridges. Plastic check of the ULS controls normal stress in
the cross section of unreal compressed area height, and it does not fit the real collapse
mechanism (the collapse occurred in vast majority by forming the 4-hinges mechanism).
For the practical calculations, the author of this thesis recommends using Rigid block
analysis (such as LimitState:RING software) for the ULS criteria and non-linear analysis
for the SLS. For SLS assessment, we recommend considering linear stress distribution for
compression and neglecting the tensile strength, which is also required by the current stan-
dard. The compressed area of the cross section should be at least one-half of the total area
of the cross section. Second-order analysis should be used only for the case of vault bridges
with a large span and a low ratio of rise over the span length; otherwise, the second-order
effects can be neglected.

It can be stated that the current standards are insufficient for assessment of slender
masonry structures. The main problems are insufficient recommendation on the use of
the stress-strain diagram, which is not provided, and no recommendation is given even on
the topic of calculation methods. Another example is verification of the ULS by a fully
rigid-plastic check, which is not valid.
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