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Abstract

This thesis is about the distance edge monitoring set problem. The problem
is first described and then approached from a point of structural parameters.

Algorithm parameterized by vertex cover number was proposed and its
correctness was proven. The algorithm was then implemented and tested.

Algorithm parameterized by the feedback edge set number was proposed,
implemented, and tested.

Keywords Edge Monitoring, Distances, Vertex Cover, Feedback Edge Set
Number, Parameterized Complexity

Abstrakt

Tato práce se zabývá problémem monitorováńı hran pomoćı vzdálenost́ı.Problém
je nejdř́ıve popsán a poté je k němu přistoupeno z pohledu strukturálńıch pa-
rametr̊u.

Algoritmus parametrizovaný velikost́ı vrcholového pokryt́ı byl navržen a
jeho korektnost byla dokázána. Následně byl implementován a jeho rychlost
byla otestována.

Algoritmus, jehož parametrem je velikost feedback edge set byl navržen, a
následně implementovaný a otestovaný.
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Introduction

The Distance Edge Monitoring Set problem is a new concept of network moni-
toring using distance probes. The motivation is to detect a network connection
failure by measuring graph distance from a set of vertices to any other network
vertex. The idea is that this distance should change if any connection fails.

The thesis summarizes the Distance Edge Monitoring Set problem and the
most important known results. The thesis aims to develop a parameterized
algorithm for the problem with respect to the size of the minimum vertex
cover and the minimum size of a feedback edge, implement these, and test
and evaluate their performance.

In the first chapter, some basic terminology is defined, and preliminaries
are given. Also, we formally define the Distance Edge Monitoring Set problem.

The second chapter summarizes known results, gives basic lemmas about
the problem and presents the basic algorithm for the problem and the way of
approximating the problem.

The next chapter offers basic properties of the problem used in algorithms
presented in the fourth and fifth chapters.

The fourth chapter introduces an algorithm for the distance edge monitor-
ing set problem parameterized by the size of the minimum vertex cover of the
input graph. The chapter also presents the implementation of the algorithm
and evaluates the its performance.

Chapter five describes the algorithm parameterized by feedback edge set
number, presents the implementation of the algorithm, and shows the results
of the performance testing of the said algorithm.

Problem Description

In this thesis, we will take a look at the Distance Edge Monitoring Set
problem, which was introduced by Foucaud et al. [1]. This problem consists
in finding a set of vertices which can be used to detect edge failures.
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Introduction

Detecting edge failures is done by measuring the distance between vertices,
at least one of which is in our set. For the distance between vertices u and v to
change after removing edge e, e has to belong to every shortest path between
u and v. Finding any distance edge monitoring set is relatively simple; a trivial
example would be the set of all vertices. However, finding the smallest possible
distance edge monitoring set is more challenging. In fact, Foucaud et al. [1]
have already shown it to be NP-complete.

In this thesis, we will approach this problem with regards to some struc-
tural parameters. The goal is to design an algorithm, where the non-polynomial
part is related to the parameter and not the size of the entire graph.

The first parameter we will take a look at is the vertex cover number of the
input graph. a vertex cover of a graph is by itself a distance edge monitoring
set, though it does not have to be the smallest one. Another parameter we
will consider is the feedback edge set number, where there is already known
an upper bound related to that [1].
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Chapter 1
Preliminaries

In this chapter we first define terms from graph theory that will be used later
in this thesis and then we will provide formal definition of the Distance Edge
Monitoring Set problem.

1.1 Graph Theory Definitions

First, we start by defining what the graph is.

Definition 1 (inspired by Gross, Yellen [2]). All graphs considered for the
purposes of this thesis are simple, i.e., multi-edges and self-loops are not per-
mitted. A graph G = (V, E) consists of sets V and E.

• V is a set of vertices, also referred to as V (G), when there are multiple
graphs.

• E is a set of edges, also E(G), when there are multiple graphs.

• Each edge consists of exactly two vertices, which are called endpoints.
An edge joins its endpoints.

• Vertices are adjacent if and only if there is an edge that joins them.

• Adjacent vertices may be called neighbours, set of all neighbours of a ver-
tex v is called neighbourhood and denoted N(v).

• The degree of a vertex v is the size of its neighbourhood.

• An edge is incident to a vertex v, if and only if v is one of its endpoints.

Since we will be utilizing the fact that monitored edges have to lie on every
shortest path, we need a definition of the path and its length.

3



1. Preliminaries

Definition 2 (inspired by Gross, Yellen [2]). A path in a graph G is an alter-
nating sequence of vertices and edges P = v0, e1, v1, e2, . . . , en, vn, where for
each j ∈ {1, . . . , n− 1, n}, and vj−1, and vj are endpoints of ej , and no vertex
is repeated in the sequence.

• Vertex v0 is the initial vertex.

• Vertex vn is the terminal vertex.

• If a vertex is neither initial nor terminal it is called an internal vertex.

• a u-v-path is a path with initial vertex u and terminal vertex v

• The length of a path u-v-path is the number of edges of such path.

• The length of a shortest path with u as initial and v as terminal vertex
is called distance of u and v and denoted d(u, v).

Since we will be talking about graphs with a vertex or a set of vertices
removed, it will be helpful to have a notation for it.

Definition 3. Given graph G and v ∈ V (G), let S be the set of edges incident
to v, we define G− v := (V (G) \ v, E(G) \ S).

Definition 4. Given graph G, and S ⊆ V (G), let ES be the set of all edges
incident to any vertex from S, let G− S := (V (G) \ S, E(G) \ ES).

Even though we will be talking primarily about connected graphs, it is
essential to define what it means for a graph to be connected or disconnected.

Definition 5 (West [3]). A graph G is connected if it has a u-v-path for every
u, v ∈ V (G) (otherwise, G is disconnected). If G has a u-v-path, then u is
connected to v in G. The connection relation on V (G) consists of the ordered
pairs (u, v) such that u is connected to v.

The components of a graph G are its maximal connected subgraphs. a com-
ponent (or a graph) is trivial if it has no edges; otherwise it is nontrivial.
An isolated vertex is a vertex of degree 0.

Vertex cuts are crucial for our problem because they divide the graph into
multiple components, where every path going from one component to another
component has to pass through the cut.

Definition 6 (West [3]). A vertex cut of a graph G is a set S ⊆ V (G) such that
G−S has more than one connected component. The connectivity of G, denoted
k(G), is the minimum size of a vertex set S such that G − S is disconnected
or has only one vertex. a graph G is k-connected if its connectivity is at least
k.
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1.2. Other Related Problems

Figure 1.1: An example of a vertex cover. Vertices of the cover are highlighted
in blue.

Like vertex cuts, edge cuts are essential for this problem because they split
the graph into components, where every path from one component to another
has to go through the cut.

Definition 7 (West [3]). A disconnecting set of edges is a set F ⊆ E(G)
such that G− F has more than one connected component. a graph is k-edge-
connected if every disconnecting set has at least k edges. The edge-connectivity
of G, denoted k′(G), is the minimum size of a disconnecting set (equivalently,
the maximum k such that G is k-edge-connected).

Given S, T ⊆ V (G), we write [S, T ] for the set of edges having one endpoint
in S and the other in T. An edge cut is an edge set of the form [S, S], where
S is a nonempty proper subset of V (G) and S denotes V (G) \ S.

If this set contains only one edge, we call this edge a bridge.

Definition 8 (West [3]). A clique in a graph G is a set of pairwise adjacent
vertices. The maximum size of a clique in G is a clique number, denoted ω(G).
An independent set in a graph is a set of pairwise nonadjacent vertices. The
maximum size of an independent set is an independence number.

1.2 Other Related Problems

One of the problems we will utilize is the vertex cover problem. It consists
in finding a set of vertices such that every edge is incident to at least one of
these vertices. It is known, that vertex cover monitors all of the edges, though
it does not have to be the smallest set to do so [1].

Definition 9 (Inspired by Cygan et al. [4]). A vertex cover of a graph G is
a set S ⊊ V (G), such that G − S is an independent set. Size of the smallest
possible vertex cover is called vertex cover number.

In other words, this means that every edge of G has at least one of its
endpoints in S.

Another thing we will use is the Set cover problem. This problem con-
sists in finding the sets, the union of which covers the universe of these sets.

5



1. Preliminaries

In case of our problem, we will deal with the case where the universe is the
edges of a graph, and we need to cover them with sets of edges monitored by
individual vertices.

Definition 10 (Cygan et al. [4]). Let F be a family of sets over a universe U .
For a subfamily F ′ ⊆ F and a subset U ′ ⊆ U , we say that F ′ covers U ′ if
every element of U ′ belongs to some set of F ′, that is, U ′ ⊆

⋃
F ′. In the

Set Cover problem, we are given a family of sets F over a universe U and
a positive integer k, and the task is to check whether there exists a subfamily
F ′ ⊆ F of size at most k such that F ′ covers U .

1.3 Parameterized Problems

Since this thesis looks at the problem with regard to structural parameters, we
need to actually define, what it means for the problem to be parameterized.

Definition 11 (Cygan et al. [4]). A parameterized problem is a language L ⊆
Σ∗ ×N , where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ ×N ,
k is called the parameter.

A fixed-parameter algorithm is an algorithm for a problem such that the
complexity is polynomial with regards to the size of the problem, though it
can be much worse, e.g., exponential, with regards to the parameter. a typical
example of such a parameter is the size of the solution, though Foucaud et
al. [1] have noted that the distance edge monitoring set problem is unlikely to
be fixed parameter tractable with regards to the solution size.

Definition 12 (Cygan et al. [4]). A parameterized problem L ⊆ Σ∗ × N is
called fixed-parameter tractable (FPT ) if there exists an algorithm A, called
a fixed-parameter algorithm, a computable function f : N → N , and a constant
c such that, given (x, k) ∈ Σ∗×N , the algorithm A correctly decides whether
(x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity class containing
all fixed-parameter tractable problems is called FPT.

We will use data reduction rules. These rules allow us to reduce the prob-
lem into a smaller instance of the same problem and do that in polynomial
time. However, it does not have to be able to reduce it into a problem of any
arbitrary size.

Definition 13 (Cygan et al. [4]). A data reduction rule, or simply, reduction
rule, for a parameterized problem Q is a function ϕ: Σ⋆ · N → Σ⋆ · N that
maps an instance (I, k) of Q to an equivalent instance (I0, k0) of Q such that
ϕ is computable in time polynomial in |I| and k. We say that two instances
of Q are equivalent if (I, k) ∈ Q if and only if (I0, k0) ∈ Q.

6



1.4. Formal Definition of The Problem

1.4 Formal Definition of The Problem

Our goal in this problem is to find the smallest set of vertices that would
monitor all of the edges of a graph.

First, we need to define what it means for an edge to be monitored by
a vertex u. We want a distance from u to some other vertex v to change after
removing the edge; thus, the edge must be part of every shortest path between
u and v.

Definition 14 (Inspired by Foucaud et al. [1]). An edge e is monitored by
a vertex u if and only if there is another vertex v such that e is a part of every
shortest path between u and v.

Set of all edges, that are monitored by a vertex v is called EM(v). For
a set S ⊆ V (G) we define EM(S) as set of all edges that are monitored by
any vertex from S, i.e., EM(S) = ⋃

xi∈S EM(xi).

Note that every vertex monitors its incident edges.
We consider G to be monitored by some set M when every edge of G is

monitored by M . Since we are often interested in the size of the distance edge
monitoring set, we define it as dem(G).

Definition 15 (Foucaud et al. [1]). A set of vertices M is a distance edge
monitoring set of a graph G if and only if E(G) = EM(M), i.e., every edge
is monitored by at least one vertex from M .

Degree of edge monitoring, denoted dem(G) is the smallest possible size
of a distance edge monitoring set of G.

7





Chapter 2
Known Results

In this chapter we will look at what is known about the problem. Since the
problem was introduced in the year 2021 by Foucaud et al. [1] and there do
not appear to be any new articles dealing with the problem since then, we
summarize the parts of that article that are important for this thesis.

The following lemma shows that we can find out if the edge has failed
and which edge has failed. This is due to the fact that no two edges have
the same sets of pairs of vertices, where at least one of them is a part of the
edge monitoring set such that the edge would belong to every shortest path
between them.

Lemma 16 (Foucaud et al. [1]). Let M be a distance edge monitoring set
of a graph G, and let e1, e2 ∈ E(G) be two distinct edges. Let S1 be the
set of pairs of vertices (x, y), x ∈ M, y ∈ V (G) such that e1 belongs to every
path between x and y and let S2 be the set of pairs of vertices (x, y), x ∈
M, y ∈ V (G) such that e2 belongs to every shortest path between x and y,
then S1 ̸= S2.

Trees are easy to monitor since they can be monitored by one vertex.
However, it means that they are not interesting for the purposes of this thesis.

Lemma 17 (Foucaud et al. [1]). For a graph G, dem(G) = 1 if and only if
G is a tree.

It is not even necessary for the entire graph to be a tree since the edge
being a bridge is enough for it to be monitored by any vertex. See Figure 2.1
for illustration.

Lemma 18 (Foucaud et al. [1]). Let G be a connected graph and let e be
a bridge of G. For any vertex x of G, we have e ∈ EM(x).

It has been proven that for an edge to be monitored by a vertex, the
incident vertex that is further away can not be adjacent to more than one
vertex at the same distance as the closer one.

9



2. Known Results

u1

u2

u3

u4

u5 v1

v3

v4

v2

v5

Figure 2.1: As described in Lemma 18, a bridge is monitored by any vertex
in a connected graph. Every path from vertices u1, . . . , u5 to v1 passes trough
(u5, v1), and every path from vertices v1, . . . , v5 to u5 passes trough (u5, v1).

a
b

c

d

e
f

Figure 2.2: Highlighted edges are monitored by vertex a (highlighted in blue).
Edges (d, f) and (e, f) are not monitored by a, because vertex f is adjacent
to two vertices at a distance of 2 from vertex a.

Lemma 19 (Foucaud et al. [1]). Let x be a vertex of a connected graph G.
Then, an edge (u, v) belongs to EM(x) if and only if d(x, u) and v is the only
neighbour of u at a distance i− 1, from x.

Another trivial example would be monitoring an incident edge since the
path of length 1 is always unique.

Lemma 20 (Foucaud et al. [1]). Let G be a graph and x a vertex of G. Then,
for any edge e incident with x, we have e ∈ EM(x).

One of the consequences of this lemma is that a vertex cover is an example
of a distance edge monitoring set.

Every vertex monitors its incident edges, but it also usually monitors some
other edges unless the following condition is met.

Lemma 21 (Foucaud et al. [1]). Let G be a connected graph and let x be its
vertex. The following two conditions are equivalent.

• EM(x) is the set of edges incident with x.

• For every vertex y of G with y ∈ V (G) \ ({x} ∪ N(x)), there exist two
shortest paths from x to y sharing at most one edge, the one incident
with x.

10



2.1. General Algorithm by Foucaud et al.

2.1 General Algorithm by Foucaud et al.

Foucaud et al. [1] have provided relatively simple algorithm for finding the
distance edge monitoring set. It works as follows:

See Algorithm 1 for illustration.

Algorithm 1
for v ∈ V (G) do

for e ∈ E(V ) do
if Removing e changes the distance from v to endpoint of e then

Add e to EM(v)
end if

end for
end for
Find set cover of these edge monitoring sets

The authors have also provided ln(|E(G)|+1) approximation, which works
by approximating the set cover.

In this thesis, we will attempt to improve this algorithm using reduction
rules.

11





Chapter 3
Basic Properties

In this chapter, we will look at a relations of distance edge monitoring set and
graph structure.

There might be a vertex on every shortest path between 2 other vertices
in some graphs. The following lemma describes what this means for the set
of edges monitored by that vertex.

Lemma 22. For u, v ∈ V (G) and e ∈ E(G). If there is a w ∈ V (G) such that
every shortest path with u as its initial vertex and v as its terminal vertex
contains both e and v, then e ∈ EM(w).

Proof. Since w is in every shortest path between u, v, we can infer that
d(u, v) = d(u, w) + d(w, v). Removing e from a graph changes d(u, v), thus
changing either d(u, w) or d(w, v). Since removing the edge changes the dis-
tance, it must be a part of every shortest path. Therefore e is monitored
by v.

We also know that for an edge to be monitored by some vertex v, it has to
be part of every shortest path from that vertex to the endpoint further away
from v. This is mostly just a weaker version of the Lemma 19, where it is
unnecessary to know the distance to endpoints of the incident vertices.

Lemma 23. If a vertex u ∈ V (G) monitors an edge e = (v, w), e is part of
every shortest path from u to v, or or it is part of every shortest path form
u to w.

Proof. By Lemma 19, for an edge e to be monitored by a vertex w, the distance
d(u, v) has to differ from d(u, w) by exactly one. Without loss of generality
suppose that distance u, v is lower. No shortest path between u and v contains
the edge (v, w), since the length of that path would be at least d(u, w) + 1 =
d(u, v)+2, thus for the Lemma 23 to hold, e has to be a part of every shortest
path between u and w. Since e is monitored by u, according to Lemma 19

13



3. Basic Properties

v is the only vertex adjacent to w that is closer to u, e has to belong to every
shortest path from u to w.

Since not every graph has to be connected we should consider what that
means for the distance edge monitoring set. It turns out that we can consider
each of the components separately.

Lemma 24. If G is not connected, then let CG be the set of its connected
components. We have dem(G) = ∑

Gi∈CG
dem(Gi).

Proof. For any vertex u ∈ G1 and let e = (v1, v2) be any edge in G2. According
to Lemma 19 for v to monitor e the distance d(u, v1) would have to differ from
d(u, v2) by 1, but since u is in a different connected component than v1 and
v2 these distances are undefined, therefore v does not monitor e.

Vertex cuts are also interesting for distance edge monitoring. Any vertex
on either side of a given vertex cut monitors at most as much on the other
side of a given cut as the vertex cut itself.

Lemma 25. Let C be a vertex cut of a graph G. Let A be one of connected
components of G \ C and let B = (G \ C) \ V (A). Then EM(A) ∩ E(B) ⊆
EM(C) ∩ E(B), in other words, all edges from B monitored by A are also
monitored by C.

Proof. Assume that there is an edge e ∈ E(G) monitored by vertex v ∈ V (A)
not monitored by any vertex from C. Let us say that e is part of every
shortest path between v and u ∈ V (B). Since C is a vertex cut that would
mean that every such path has to include at least 1 vertex vc ∈ C (there can
be multiple such vertices). Since every shortest path from v to u trough vc

contains e which means every shortest path from vc to u also contains e.

As expected, sets of edges monitored by vertices with the same neighbour-
hoods are similar, though not always identical. In fact, they can differ by their
incident edges only.

Lemma 26. Let u and v be two vertices with identical neighbourhoods, then
EM(u) and EM(V ) can differ only by edges incident to u and v.

Proof. For any two vertices u, v ∈ V (G), such that N(u) = N(v) and w ∈
V (G) is not adjacent to either of u, v. Let e ∈ EM(U) be an edge incident to
w, such that w is the vertex with a larger distance from u. Since u and v have
the same neighbourhood, distance from u and v to any other vertex is the
same, thus there is also only one vertex at a distance d(u, w)−1 = d(v, w)−1
(the one incident to e), therefore according to Lemma 19 v monitors e.

14



In case there are multiple vertices with the same neighbourhood, unless
these vertices are of degree 1, we know that these vertices do not monitor
edges incident to other vertices with the same neighbourhood. If these were
of degree 1, we can deal with them later with Reduction Rule 31.

Lemma 27. If there is an independent set S ⊆ V (G), where every vertex
from S has the same neighbourhood N , and |N | ≥ 2, then there is no vertex
u ∈ S that would monitor any edge incident to any v ∈ S \ u.

Proof. Let u1, u2 ∈ S and v1, v2 ∈ N , see Figure 3.1 for illustration. According
to Lemma 19 for any edge e incident to u2 be monitored by u1 there would
have to be exactly one vertex incident to u2 at a distance d(u1, u2) − 1 = 1.
However, there are at least 2 such vertices, namely v1, v2, therefore u1 does
not monitor any edge incident to u2. In other words, no vertex monitors edges
incident to other vertices with the same neighbourhood, unless there is only
1 vertex in that neighbourhood.

u1

u2

v1

v2

v3

v4

v5

v6

Figure 3.1: Illustration for Lemma 27. No edges monitored by vertex u1
(highlighted by thick line) can be incident to u2.

Sometimes there is an independent set of vertices with the same neighbour-
hood. The following lemma states that there can not be an arbitrary number
of vertices from this set in a minimal distance edge monitoring set. Possibil-
ities are limited to all, one or none of the vertices from that set belonging to
any minimal distance edge monitoring set.

Note that the case, where |N | = 1 would mean that any edge between
S and N is a bridge and therefore monitored by any vertex in its connected
component.

Lemma 28. If there is an independent set S ⊆ V (G), where every vertex
from S has the same neighbourhood N , and |N | ≥ 2, then for every smallest
distance edge monitoring set M , we have either S ∩M = ∅, S ∩M = S, or
|S ∩M | = 1.
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3. Basic Properties

Proof. Due to Lemma 26 we know that any vertex v1 ∈ S monitors the same
set of edges as any other vertex v2 ∈ S except those incident to v1, thus
adding v2 into monitoring set M adds only edges incident to v2. This means
that for more than 2 but less than all vertices from S to be a part of a minimal
distance edge monitoring set it would mean that there is a vertex u1 ∈ S that
has all of its incident edges monitored, while u2 ∈ S does not, i.e., there is
an edge (u2, vn), vn ∈ N which is not monitored. Since u1 and u2 have the
same neighbourhoods there has to be an edge (u1, vn) monitored by some
vertex x ∈ V (G). According to Lemma 19 that means that vn is the only
vertex at a distance d(u1, x)− 1 from x adjacent to u1. Since u2 has the same
neighbourhood as u2, vn is the only vertex at a distance d(u1, x)−1 = d(u2, x)
from x adjacent to u2, thus x monitors (u2, vn). Therefore either all edges
incident to vertices from S are monitored or every vertex from S that is not
a part of a distance edge monitoring set has at least 1 incident edge that is not
monitored, hence the minimal distance edge monitoring set contains either 0,
1 or all vertices from S.

This is quite useful, though we can improve on this even further. The
following lemma rules out the possibility of the entire set S being part of
a minimal distance edge monitoring set in case it is too big.

Lemma 29. If there is an independent set S ⊆ V (G), with the same neigh-
bourhood N and |S| > |N |, then every smallest edge monitoring set contains
at most one vertex from S.

Proof. According to Lemma 28 there are either 0, 1 or all vertices from S in
every minimal distance edge monitoring set. Due to Lemma 25 and Lemma 27
we know, that EM(S) ⊆ EM(N). Since |S| > |N |, no distance edge mon-
itoring set containing all vertices from S can be minimal, thus any minimal
distance edge monitoring set has to contain at most 1 vertex from S.

Not only are bridges easy to monitor, but we can also show that we can
search for the smallest distance edge monitoring set rather independently on
either side of it.

Lemma 30. Let G be a connected graph and e ∈ E(G) is a bridge. Let u and
v be endpoints of e. Let Gu and Gv, be connected components remaining
after removing e from G, and u ∈ V (Gu), v ∈ V (Gv). If dem(Gu) ≥ 2 and
dem(Gv) ≥ 2, then we can get smallest edge monitoring set of G by taking the
union of smallest edge monitoring set of Gu containing u and smallest edge
monitoring set of Gv containing v and removing u and v from resulting set.

Note that according to Lemma 17 dem(Gu) = 1 means that Gu is a tree,
same for Gv. We will deal with that case with Reduction Rule 31.
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Proof. We first prove that edge from Gu monitored by a vertex from Gv is
also monitored by u: Since e is a bridge, every path with one terminal vertex
in Gu and other vertex in Gv contains e, thus it also contains its endpoints
u and v, which when combined with lemma Lemma 22 means that all edges
from Gu that are monitored by a vertex from Gv are also monitored by u and
all edges from Gv that are monitored by a vertex from Gu are also monitored
by v.

Next we prove that every edge from Gu monitored by u is also monitored
by any vertex from Gv: Assume there is an edge e1 ∈ E(Gu) that is monitored
by u, i.e, ∃x ∈ V (Gu), e1 is a part of every shortest path with u and x as
terminal vertices, but is not monitored by a vertex y ∈ Gv. That would mean
that there is a shortest path from y to x which does not contain e1. We know
there is such path since G is connected. Since x is in Gu and Gv, that path
has to contain u and since e1 is in Gu, that means that the part of the path
that is different also has to be in Gu, which would mean that e1 is not part of
every path between u and x either. The proof of EM(Gu)∩E(Gv) being the
same as EM(v) ∩ E(Gv) is analogous.

The edge e is monitored according Lemma 18. Due to degree of edge
monitoring of both Gu and Gv being at least 2, there will be at least one
more vertex from both Gu and Gv in the distance edge monitoring set and
as such edges that were monitored by u and v are still monitored, therefore
this approach yields a valid distance edge monitoring set. Since any edge
monitored by other component is also monitored by u or v in its respective
component, thus in order to find any smaller distance edge monitoring set
would we would need to find smaller distance edge monitoring set in at least
one of the components, but due to the fact we have selected minimal distance
edge monitoring set for such component, thus the resulting distance edge
monitoring set is minimal.
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Chapter 4
The Algorithm Parametrized by

Vertex Cover Number

One of the ways we will approach the problem is utilizing vertex cover, or
rather properties of the graph, which are dependent on the vertex cover num-
ber. While the complexity of the resulting algorithm will depend on the vertex
cover number, no part of it requires us to find the vertex cover. One of the
reasons why the vertex cover number was chosen is that it is already known
that there is a relation between these problems—vertex cover is a distance
edge monitoring set, though it does not have to be minimal.

4.1 Reduction Rules

In this section, we will introduce reduction rules that will be utilized.
As was noted before, trees are easy to monitor. This also holds when the

tree is attached to another graph. The following data reduction rule allows
us to get rid of trees attached to the graph, i.e., we get a graph where every
vertex has a degree 2 or higher. In the original article by Foucaud et al. [1]
they use a notion of a base graph introduced by Leah Epstein, Asaf Levin and
Gerhard J. Woeginger [5] for this purpose.

Reduction Rule 31. If G contains a vertex v of degree 1 connected to
a vertex u of degree > 1, remove it. Then new G − v has the same minimal
distance edge monitoring set.

Lemma 32. Reduction Rule 31 is correct.

Proof. Since v is adjacent only to u and u is adjacent to at least 1 other
vertex, {u} is a vertex cut. According to Lemma 25, u monitors all edges
monitored by v, since there is no edge in connected component containing
v after removing u from the graph. Since (u, v) is a bridge, according to
Lemma 18 it is monitored by any vertex in the same connected component
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4. The Algorithm Parametrized by Vertex Cover Number
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Figure 4.1: Graph before and after each application of Reduction Rule 33.
Vertices highlighted in yellow form an independent set with the same neigh-
bourhood (highlighted in green). Due to lemma Lemma 29 we can consider
only vertices highlighted in blue when looking for minimal distance edge mon-
itoring set.

as u. There has to be such vertex in a minimal distance edge monitoring set,
since there is at least one more edge incident to u that needs to be monitored.
Hence we can see that minimal distance edge monitoring set of G− v is also
minimal distance edge monitoring set of G.

Reduction Rule 33. If G contains an independent set I, where all vertices
in I have the same neighbourhood N , where |N | − |I| ≥ 2 then for v ∈ I,
G− v has the same minimal distance edge monitoring set.

Lemma 34. Reduction Rule 33 is correct.

Proof. Since N is the neighbourhood of vertices from I, it is a vertex cut.
Therefore due to Lemma 25, EM(I) is a subset of EM(N). Due to Lemma 28
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4.2. Final Algorithm

there will be either 0, 1, or all vertices from I in any minimal distance edge
monitoring set. Since |I| − |N | ≥ 2, There can not be all vertices from I in
any minimal distance edge monitoring set and it will stay that way even after
removing v from G. Due to Lemma 26 it does not matter which vertex from
I we choose to remove from G, the size of the resulting minimal distance edge
monitoring set will stay the same.

If we are only interested in the size of the distance edge monitoring set
and not the individual vertices, we might remove a vertex from I even if
|N | − |I| = 1.

Even though Reduction Rule 33 does not require us to find the vertex
cover, the number of vertices left after applying this reduction rule as much as
possible is related to the vertex cover number because having a small vertex
cover limits the number of possible neighbourhoods.

Lemma 35. Reduction Rule 33 reduces the number of vertices
to O

(
k + 2k · (k + 1)

)
, where k is the vertex cover number of G.

Proof. Every vertex outside of the vertex cover can only have edges to vertices
that are part of the vertex cover, hence there are 2k possible neighbourhoods
for any given vertex outside of vertex cover. These vertices form an inde-
pendent set. After applying Reduction Rule 33 as many times as possible,
there will be at most one more vertex in each independent set than the size
of its neighbourhood. Since no vertex can be connected to more vertices than
k (all vertices in the vertex cover), there are at most k + 1 vertices per unique
neighbourhood. Since there are at most 2k unique neighbourhoods, there are
at most k + 2k · (k + 1) vertices.

We would need all vertices from I to monitor all edges between I and S.
This can be done using all vertices from S. This has been shown in Lemma 25.
Thus as long as there are more vertices in I than in S, at most one will be
part of the smallest distance edge monitoring set.

However, it might be better to remember that all but one vertex from I can
be ignored when making the set cover. Edges incident to marked vertices will
have to be kept part of the universe.

4.2 Final Algorithm

We first apply the reduction rules, which might, depending on the input graph,
result in a significantly smaller graph. In such graph we can proceed as normal
by constructing edge monitoring sets for each vertex of the reduced graph and
then finding the set cover of these sets. For more details see Algorithm 2.
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4. The Algorithm Parametrized by Vertex Cover Number

Algorithm 2 An algorithm parameterized by the vertex cover number.
while G contains vertex of degree 1 do

Apply Reduction Rule 31 on G
end while
while Reduction Rule 33 can be applied do

Apply Reduction Rule 33 on G
end while
for v ∈ V (G) do

for e ∈ E(G) do
if Distance from v to at least one of the endpoints of e changes

when e is removed from G then
Add e to the set of edges monitored by v

end if
end for

end for
Find set cover, with universe being E(G) and sets being edges monitored
by individual vertices.

4.3 Implementation and Testing

The C++ language was chosen for the implementation because of its perfor-
mance benefits. The generator of the test data and given algorithms were
implemented. The algorithm parameterized by vertex cover number can be
found as binary vc dem solver.out. It expects the input graph on the stan-
dard input in the following form:

The first line contains the time limit in milliseconds, after which the pro-
gram is forced to stop. The second line contains a single integer n - the number
of vertices. The following n lines contain the id of the vertex and a list of its
neighbours.

The application returns the degree of edge monitoring for a given graph on
the standard output. It returns -1 in cases where the time limit was exceeded.

The testing aimed to evaluate the performance of the implementation and
efficiency of the reduction rules. The 2020 model year Macbook Air with an
M1 CPU and 8GB RAM was used for the testing.

4.3.1 Test Data

Since the complexity of this algorithm depends on the size of the vertex cover,
we have to use a graph G with a relatively small vertex cover. Otherwise,
the modifications might not even help. We start with a vertices in the vertex
cover and then continue adding vertices to the graph that are adjacent only
to vertices in the vertex cover. (See Algorithm 3.)

The utility for generating graphs can be found as vc graph generator.out
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4.3. Implementation and Testing

Algorithm 3 Generating random graph with n vertices and a vertex cover
number k and an edge probability P .

Generate a random graph G of a size k, let vertices of G be u1, u2, . . . , uk

while |V (G)| < n do
Add a new vertex vi to G
for ui ∈ {u1, u2, . . . , uk} do

With probability P add an edge (ui, vi) to G
end for

end while

takes three parameters: the size of the vertex cover, number of vertices, and
edge probability. The last number is the integer for time limit in millisec-
onds, so that the output of this utility can be redirected to the solver without
modification.

these should be in order, on the standard input, separated by whitespace
characters.

We have experimented with those three parameters. We have generated
graphs with vertex cover of sizes ranging from 2 to 9, edge probability from
0.2 to 0.9 and a total number of vertices from 10 to 100.

4.3.2 Measured Results

The results were not surprising; the algorithm worked reasonably well on
graphs with lower vertex cover numbers. We can see the dependency of appli-
cation’s run-time on the number of vertices in the graph with a fixed vertex
cover number of four in Fig. 4.2. As expected, the run-time increases rapidly.
However, it does not keep increasing like this forever; there is a limit on the
number of vertices remaining after applying Reduction Rule 33, though these
cases would have exceeded the time limit (in this case, 20 seconds).

Fig. 4.3 shows the dependency of the run-time on the edge probability.
The vertex cover size was fixed at 4, and the number of vertices was fixed
at 50. The time limit was set to 6 minutes; examples with such run-time
have reached the limit and did not finish the calculation. As you can see,
the run-time increases with increasing edge probability, but only up to some
point.

Figure 4.4 shows dependency of the implementation’s run-time on the
vertex cover number with a number of vertices fixed at 100, and an edge
probability fixed at 0.4. As expected, the run-time increases rapidly. Since
the run-time exceeded 10 minutes with a vertex cover number of 5, we also
show dependency of the number of vertices remaining after application of
Reduction Rule 33 on the vertex cover number, though in that case we have
started with 1000 vertices. (See Fig. 4.5.) There is an exponential correlation
between the number of vertices and the run-time, although it is not perfect.
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4. The Algorithm Parametrized by Vertex Cover Number

Figure 4.2: Relation between the number of vertices and run-time.

Figure 4.3: Relation between edge probability and run-time.
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4.3. Implementation and Testing

Figure 4.4: Relation between vertex cover number and runtime.

You can see more details about the performance in Table 4.1. Timeout for
examples shown in there was set to 10 seconds.

The data shown on Fig. 4.3, Fig. 4.4, and Fig. 4.2 were visualized using
Matplotlib [6] library in the Python programming language.
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4. The Algorithm Parametrized by Vertex Cover Number

|V (G)| edge probability vertex cover # |V (G′)| dem(G) time
10 0.4 3 6 2 0.001
30 0.4 3 10 3 0.017
50 0.4 3 11 3 0.032
70 0.4 3 12 3 0.055
90 0.4 3 12 3 0.05
110 0.4 3 12 3 0.051
130 0.4 3 12 3 0.052
150 0.4 3 12 3 0.056
170 0.4 3 12 3 0.044
190 0.4 3 12 3 0.049
10 0.4 4 8 3 0.005
30 0.4 4 16 4 0.362
50 0.4 4 20 4 5.467
70 0.4 4 24 - -
90 0.4 4 24 - -
110 0.4 4 31 - -
130 0.4 4 29 - -
150 0.4 4 31 - -
170 0.4 4 31 - -
190 0.4 4 31 - -
10 0.4 5 10 3 0.015
30 0.4 5 24 - -
50 0.4 5 29 - -
70 0.4 5 45 - -
90 0.4 5 43 - -
110 0.4 5 56 - -
130 0.4 5 56 - -
150 0.4 5 65 - -
170 0.4 5 66 - -
190 0.4 5 68 - -
10 0.4 6 9 3 0.011
30 0.4 6 25 - -
50 0.4 6 40 - -
70 0.4 6 51 - -
90 0.4 6 70 - -
110 0.4 6 79 - -
130 0.4 6 96 - -
150 0.4 6 87 - -
170 0.4 6 97 - -
190 0.4 6 118 - -
10 0.4 7 9 4 0.013
30 0.4 7 26 - -

Table 4.1: Performance of the Algorithm 2.
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4.3. Implementation and Testing
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Figure 4.5: Efficiency of Reduction Rule 33 with relation to vertex cover
number.
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Chapter 5
Parametrization By the

Feedback Edge Set Number

Let G be a connected graph with no vertices of degree 1. We can get such
a graph with the same distance edge monitoring set from any connected graph
by iterative application of Reduction Rule 31 unless such graph is a tree. Let
v ∈ G be a vertex of degree 2 adjacent to at least 1 other vertex of degree 2
and its neighbours are not adjacent. Then we can remove v from the graph
and join its neighbours by an edge. Let k be the feedback edge set number.
Repeating this step until no longer possible gives a graph G′ with at most
5k − 5 vertices [1]. This is because in such graph are at most 2k − 2 vertices
of degree ≥ 3 and at most 3k − 3 vertices of degree 2k − 2.

The set V (G′) is an edge monitoring set of G, however it does not have to
be minimal. Note that this is not a reduction rule; Fig. 5.1 shows examples
where applying this step can both increase and decrease the degree of edge
monitoring.

Lemma 36. Set V (G′) monitors all edges of G.

Proof. Every edge (u, v) from G′ was either part of G, in which case it is
monitored, since every vertex monitors incident edges, or it was originally an
induced path. If the path had an odd number of vertices, or the endpoints
are not adjacent, all of the edges on it are monitored by the endpoints, since
every edge lies on the only shortest path between the closer endpoint and the
middle vertex. If it had an even number of vertices, all of the edges except
the middle one are monitored by the closer endpoint, since every path to the
middle vertex that would not use only vertices from this path would have to
go trough the other endpoint which would be longer by at least 1. We prove
that middle edge (v1, v2) of such path is monitored by any vertex w on the
path, assume that v2 is further away from w, than v1 when endpoints of the
path are not used, i.e., on the path containing (v1, v2). Since both v1 and v2
were at the same distance from both endpoints when going trough the other
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5. Parametrization By the Feedback Edge Set Number
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Figure 5.1: Dividing an edge can both increase and decrease size of a distance
edge monitoring set. First graph is monitored by {1,5}, second by {1,5,7} and
third one is monitored by {1,5}. In all cases these are optimal.

endpoint as when going trough (v1, v2) and distance between w and v2 along
the path has to be at least 1 shorter, while distance using endpoints is at least
1 longer, w monitors (v1, v2).

We can further improve this by finding smallest subset of V (G′) that is
still a distance edge monitoring set.

5.1 Performance Testing

Since this approach is proven only to provide a distance edge monitoring set,
we need to check if it usually results in a minimal one. We might use the
approach parameterized by vertex cover number to get the correct answer
slightly faster, though that might not help too much for many graphs. For
this we generate random graphs with low feedback edge set numbers and then
compare the results to the approach that is proven to give correct results.
Together with comparing results, we will also compare the performance of this
algorithm compared to that of the original algorithm by Foucaud et al. [1].

As for the vertex cover number solver, the C++ language was used for
the implementation. The binary executable of this implementation can be
found as binary fes dem solver.out. The application expects the graph on
the standard input in the same format as the vc dem solver.out.

For the data generation there is a binary named fes generator.out. It
uses Algorithm 5 and expects input in the following format:
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5.1. Performance Testing

Algorithm 4 Approach parameterized by FES number
while G contains vertex of degree 1 do

Apply Reduction Rule 31 on G
end while
G′ ← G
while There are 2 adjacent vertices u, v of degree 2 in G′, and N(u)∩N(v) =
∅ do

Add edge between u and the other neighbour of v to G′.
Remove v from G′

end while
▷ Construct monitoring sets of G for vertices present in G′

for v ∈ V (G′) do
for e ∈ E(G) do

if Distance from v to at least one of the endpoints of e changes
when e is removed from G then

Add e to the set of edges monitored by v
end if

end for
end for
Find set cover, with universe being E(G) and sets being edges monitored
by individual vertices.

An integer for the number of vertices in a graph before dividing edges. A
decimal number for edge probability of such graph. An integer for the number
of edge divisions. The last number is the integer for time limit in milliseconds,
so that the output of this utility can be redirected to fes dem solver.out.

5.1.1 Test Graph Generation

For this approach to help, we need to have a graph with a relatively low
feedback edge set number. We start with a random graph and then divide
some of its edges to get such a graph. Such division would be done by removing
the edge and adding a new vertex adjacent to its endpoints.

See Algorithm 5 for illustration.

Algorithm 5 Generating graph with low FES number
Generate a random graph G with k vertices
for i ∈ {1, 2, ..., n− k} do

Select random edge e ∈ E(G) with endpoints u, v
Add a new vertex w to G
Add edges (u, w) and (v, w) to G
Remove e from G

end for
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5. Parametrization By the Feedback Edge Set Number

|V (G)| dem(G) time default |V (G′)| dem(G) per Algo-
rithm 4

time Algo-
rithm 4

20 1 0.011 3 1 0.002
24 2 0.011 9 2 0.006
28 1 0.035 7 1 0.012
32 2 0.415 13 2 0.091
36 2 0.147 12 2 0.051
40 - - 18 3 0.668
44 - - 25 1 10.448
48 - - 27 - -
52 - - 28 3 6.352
56 - - 30 - -
60 - - 33 - -
64 - - 43 - -

Table 5.1: Table showing efficiency of FES based approach and a case where
it has failed.

5.1.2 Results

As you can see on Table 5.1, there can be a significant reduction in run time, if
Algorithm 4 is used, assuming suitable data for its use. Unfortunately this also
sometimes leads to a distance edge monitoring set, that is not minimal, as can
also be seen on Table 5.1. Data for this table were generated with 0.2 as edge
probability, for results with much more reasonable parameters see Table 5.2.
For this table we have started with a graph with an edge probability of 0.4
and then we have added three times the number of the original vertices by
dividing random edges. Cells without values mean, that the time limit was
exceeded.

Since there already is an approximation that runs in polynomial time [1],
we do not see much use for this algorithm in the future.
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5.1. Performance Testing

|V (G)| dem(G) time |V (G′)| dem(G) per Algo-
rithm 4

time using
Algo-
rithm 4

20 1 0.012 3 1 0.002
24 2 0.011 9 2 0.006
28 1 0.035 7 1 0.012
32 2 0.424 13 2 0.094
36 2 0.155 12 2 0.053
40 - - 18 3 0.68
44 - - 25 1 10.458
48 - - 27 - -
52 - - 28 3 6.414

Table 5.2: Table showing efficiency of FES based approach on graphs with
more reasonable parameters.
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Conclusion

The goal of the thesis was to summarize the Distance Edge Monitoring Set
problem and the most important known results about it. The thesis aimed to
develop a parameterized algorithm for the problem with respect to the size of
the minimum vertex cover and the minimum size of a feedback edge and to
implement these, test and evaluate their performance.

We got familiar with the distance edge monitoring set problem as intro-
duced by Foucaud et al. [1] and what makes the problem difficult. We also
looked at the concept of parameterized complexity with relation to this prob-
lem.

Various reduction rules for the problem were proposed, and their correct-
ness was proven. An algorithm parameterized by the vertex cover number was
proposed, and its correctness was proven. The algorithm was implemented in
the C++ language, tested and evaluated. Unsurprisingly it performs best on
graphs with a small vertex cover number and a comparatively vast number
of vertices, where the reduction of the number of vertices that need to be
considered was significant.

An algorithm parameterized by the feedback edge set number was also
developed and implemented in the C++ language. The implementation of
the algorithm was tested, and the dependency of the implementation’s run-
time on various parameters of the input graph was examined.

Possible Improvements

Other structural parameters could be considered; for example, the feedback
vertex set and the approach parameterized by the feedback edge set could
probably be improved. The implementation here mainly was to evaluate the
real-world performance of these algorithms. Thus, could be packaged as a li-
brary with a friendly interface to make it usable by other people.
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Appendix A
Contents of enclosed SD card

Readme.md.................... the file with SD card contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

implementation ............................ implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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