
Instructions

Cílem práce je vytvořit konfigurovatelné rozhraní, jehož výstupem bude kompilovatelný OpenGL

projekt so zvolenými knihovnami.

1. Analyzujte současné řešení kompilace OpenGL projektů.

2. Pomocí metod softwarového inženýrství navrhněte generování OpenGL projektů se specifickými

knihovnami

3. Implementujte REST API, které bude vytvářet projekt se specifickou konfiguraci

4. Implementujte prototyp webového rozhraní pro vytvořené REST API

5. Vytvořte automatické testovaní projektů generovaných prostřednictvím REST API

Electronically approved by Ing. Michal Valenta, Ph.D. on 28 January 2022 in Prague.

Assignment of bachelor’s thesis

Title: Glub - OpenGL configurator

Student: Jakub Drgoň

Supervisor: Ing. Jiří Chludil

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

GLUB - OPENGL
CONFIGURATOR

Jakub Drgoň

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jǐŕı Chludil
May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jakub Drgoň. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Drgoň Jakub. Glub - OpenGL configurator. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviation list x

1 Introduction 1

2 Analysis 3
2.1 OpenGL build tools . 3

2.1.1 IDE build tools . 4
2.1.2 GNU Make . 5
2.1.3 CMake . 5
2.1.4 Custom build tool . 6
2.1.5 Overview . 7

2.2 REST API technologies . 7
2.2.1 PHP & Laravel . 7
2.2.2 Node.js & Express . 8
2.2.3 Deno & oak . 9
2.2.4 Python & Django . 10
2.2.5 Ruby on Rails . 10
2.2.6 Overview . 11

2.3 REST API hosting . 12
2.3.1 Fly.io . 12
2.3.2 Clever Cloud . 12
2.3.3 Deno Deploy . 12
2.3.4 Overview . 13

2.4 Test environment . 13
2.4.1 GitHub Actions . 13
2.4.2 CircleCI . 14
2.4.3 VPS . 14
2.4.4 Overview . 14

2.5 Web framework . 14
2.6 Functional requirements . 15

2.6.1 Backend . 15
2.6.2 Web interface . 16
2.6.3 Community tools . 17

2.7 Non-functional requirements . 17

iii

iv Contents

3 Design 19
3.1 Workflows within glub . 19
3.2 Use cases . 23
3.3 Wireframe . 26
3.4 Backend . 27

3.4.1 Endpoints . 27
3.4.2 Domain model . 30

4 Implementation 31
4.1 Generation templates . 31

4.1.1 Bare CMakeLists.txt template . 31
4.1.2 Basic OpenGL project template . 33
4.1.3 Library integration . 33
4.1.4 Template structure . 34

4.2 Project generation . 36
4.2.1 Data structure . 36
4.2.2 REST API implementation . 37

4.3 Testing . 38
4.4 Frontend . 39
4.5 Documentation . 40

4.5.1 User guides . 40
4.5.2 Contributions . 41

5 Conclusion 43

A Images 45

Contents of attachment 49

List of Figures

3.1 Activity diagram for usage of glub . 20
3.2 Activity diagram for library requests . 22
3.3 Use case diagram for glub usage . 23
3.4 Test environment use case diagram . 24
3.5 Contributions use case diagram . 25
3.6 Wireframe for web interface . 27
3.7 Libraries endpoint specification . 28
3.8 CMake endpoint specification . 28
3.9 C++ endpoint specification . 29
3.10 Compatible endpoint specification . 29
3.11 REST API domain model . 30

4.1 Structure of files used for project generation . 36
4.2 Web interface for glub . 40
4.3 Interactive user guide . 41

A.1 Collection of questions related to OpenGL compilation 45
A.2 Issue template for submitting an incorrect test result 46
A.3 Issue template for submitting a library request 46

List of Tables

2.1 Build tools comparison . 7
2.2 REST API comparison . 11
2.3 API hosting comparison . 13
2.4 Test environment comparison . 15

3.1 Functional requirements fulfillment for glub . 24
3.2 Functional requirements fulfillment for test environment 25
3.3 Functional requirements fulfillment for glub repository 26

v

List of code listings

1 Laravel controller . 8
2 Node.js endpoint . 9
3 Deno endpoint . 9
4 Django endpoint . 10
5 Ruby on Rails endpoint . 11
6 Svelte component example . 15
7 Basic CMakeLists.txt template . 32
8 Retrieving libraries from GitHub . 35
9 Example response of /libraries endpoint . 37
10 Request example for /cmake and /cpp endpoints 38

vi

First and foremost, I would like to thank my fiancé, who has stood
by me through all the hard times while I was working on the thesis.
She offered her neverending love and support, she was always there
to listen and tried to help whenever she could. A big thanks also
belongs to the supervisor of this thesis, Ing. Jiř́ı Chludil, for his
insightful suggestions on writing this thesis.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46 (6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and all
corresponding documentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit
purposes only, in any way that does not detract from its value. This authorization is not limited
in terms of time, location and quantity.

In Prague on May 10, 2022 .

viii

Abstract

This thesis aims to simplify the compilation of graphical applications built with OpenGL. Since
no solution that would allow the user to set up an OpenGL project with only a few clicks
exists, significant emphasis was put on analyzing the technologies that can be used to build
glub. This document contains a comparison of multiple technologies and clarifies why CMake
is the most suitable one. Based on selected tools in the analysis, the design chapter proposes a
structure of how various components should be built and connected. The implementation details
are described in the following chapter, which thoroughly explains the inner workings of each
component within glub. Despite glub being an open-source project, the implementation chapter
is still worth reading. Because apart from describing how glub works, it contains reasons why it is
implemented a certain way. The glub significantly simplifies the compilation process of OpenGL
projects, so it achieved the main objective. A summary of the whole development process and
future plans can be found at the end of the document in the conclusion.

Keywords OpenGL, CMake, C++, compilation, REST API

Abstrakt

Ciel’om tejto práce je zjednodušit’ kompiláciu grafických aplikácíı, ktoré sú postavené na tech-
nológíı OpenGL. Ked’že doposial’ neexistuje riešenie, ktoré by dovolilo už́ıvatel’om nakonfigurovat’
OpenGL projekt len niekol’kými klikmi, bol kladený vel’ký dôraz na analýzu technológíı, ktoré by
mohli byt’ použité na vytvorenie nástroja glub. Tento dokument obsahuje porovnanie viacerých
technológíı a zdôvodňuje prečo bol vybraný práve CMake. Na základe nástrojov vybraných
v analýze, bol vytvorený návrh komponentov tvoriacich glub a komunikácie medzi nimi. Im-
plementačné detaily sú obsiahnuté v nasledujúcej kapitole, ktorá dôkladne popisuje ako každý
komponent funguje. Napriek tomu že glub je open-source projekt, kapitola o jeho implementácíı
sa vyplat́ı preč́ıtat’. Okrem detailov fungovania vysvetl’uje prečo boli niektoré časti implemen-
tované určitým spôsobom. Ked’že glub výrazne ul’ahčuje kompiláciu OpenGL aplikácíı, hlavný
ciel’ práce bol splnený. Zhrnutie celého vývoja a plány do budúcnosti sa nachádzajú na konci
dokumentu.

Kĺıčová slova OpenGL, CMake, C++, kompilácia, REST API

ix

Abbreviation list

API Application Programming Interface

CPU Central Processing Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

MSVC MicroSoft Visual C++

MVC Model View Controller

MVT Model View Template

OpenGL Open Graphics Library

RAM Random Access Memory

REST REpresentational State Transfer

URL Uniform Resource Locator

vCPU virtual Central Processing Unit

VPS Virtual Private Server

x

Chapter 1

Introduction

This thesis will focus on creating software that addresses particular issues programmers face
when working with OpenGL. First of all, OpenGL must be briefly introduced; afterward, the
focus will shift to identifying complex processes in OpenGL development that take a significant
amount of time and can be automated.

OpenGL specification defines an interface that can access the graphics subsystem without
knowledge of subsystem architecture and its OpenGL implementation. Such a unified API allows
programmers to focus on the graphics development rather than implementing support for as
many graphics component vendors as possible. However, this API is still relatively complex and
low-level, which is why programmers prefer to use libraries for common graphics components.[1]

The integration process of a library into an OpenGL project depends on the tools that are
used for building the project. Usually, the programmer has to visit the library’s official website,
download and unpack the compressed library folder into the project, after which the actual
integration only begins. Library files might require changes to work with the programmer’s
build tools, after which the build tool must be instructed on how to compile and link the library,
leading to a long and tedious process.

Programmers trying to learn OpenGL often struggle to compile the project they are working
on and ask for help on various platforms. These programmers are often met with rude answers,
as popular forums are filled with similar questions which do not seem to stop appearing anytime
soon.1 Programmers with multiple OpenGL projects use one of their previous projects as a
template for a quick start. However, if they want to try a new library, they must go through the
whole process nevertheless.

There are attempts to decrease the time spent on configuring the compilation process in the
form of templates. These templates are publicly available OpenGL project repositories containing
instructions on installing the required libraries and compiling the project. Some of the templates
contain the libraries, so the programmer does not have to install the libraries but can immediately
compile the project. If the libraries are included in the project, this solution significantly decreases
the time needed to start the development. However, it has an apparent limitation; libraries can
not be easily added or removed. As of April 2022, there is still no better solution for decreasing
the complexity of the OpenGL project compilation than the aforementioned templates.

Creating a tool that would help with configuring OpenGL projects must start with clarifying
what is expected from such a tool. In order to be a unique solution, it must allow the user
to select which libraries should be included in the project. Users will be able to compile the
project with selected libraries in only a few simple steps. These steps will be uniform for any
combination of selected libraries the user might choose from the list of available libraries. The
same project must be compilable across various development environments, meaning it should

1Few of these questions are illustrated in Image A.1 in the Appendix.

1

2 Introduction

be fully IDE agnostic, work on Linux and Windows, and be able to utilize various compilers.
This will ensure that the target audience is not limited to a specific development environment
but also enable the collaboration of developers using different environments on the same project.

If the objectives mentioned above are fulfilled, glub will be a unique tool for creating OpenGL
projects. However, it must offer a wide range of libraries to make it an excellent option that pro-
grammers would enjoy using. Considering the estimated amount of work that library integration
will require and the constant releases of new library versions, a single person can not maintain
and expand the list of available libraries for free. One option would be to offer glub as a paid
tool, but among other things, companies that would be able to afford such a tool usually have
their own and more advanced toolchain. The other option would be to distribute glub as an
open-source project. If people enjoy using it and it would save their time, they might be more
willing to implement a newer version of their favorite library into glub.

Since no advanced tool for simplifying OpenGL project creation with libraries was previously
created, viable tools for compilation will need to be thoroughly analyzed. The selected technology
that glub will be built on must be able to fulfill all the previously defined objectives. There
will have to be a well-thought design that would enable relatively simple library integrations, so
volunteers will not struggle with contributing. Even after thorough analysis, excellent design, and
implementation is done, it still can not be decided that the project was successful. The success
of glub will be decided in the months following its release. It will need constant maintenance,
so it is up to the effort of contributors to decide if glub will be a successful and growing tool or
disappear as an impractical idea.

Chapter 2

Analysis

This chapter will analyze and compare suitable tools for building glub. Since glub can be sepa-
rated into three independent parts, tools will be analyzed for each one of these parts separately.

The central part is the build tool, which will compile the OpenGL project. Which build tool
will be used must be decided first, not just because of the critical role that it plays in the scope
of glub, but also because tools used in other parts of glub will depend on this decision.

In order to keep the list of available libraries up to date, a service providing such a list
alongside instructions for building these libraries will be required. Multiple concepts can be used
to build such backend services; however, only REST API technologies will be considered and
analyzed. REST API is a popular and straightforward concept that provides all the necessary
functionality to be a suitable option for all the build tools that will be analyzed.

The third part of the glub is the interface that users will use to request data necessary to
build the OpenGL project. The technology used to build such an interface will heavily depend
on which build tool was chosen. If glub is integrated into IDE as a plugin, technologies used to
develop plugins for the particular IDE will have to be used. However, the ideal option would be
to create a website so the target audience is not limited to a single IDE or platform.

It is expected that glub will provide OpenGL project generation containing multiple libraries
with various versions. Testing combinations of libraries and versions must be automated. This
service will not be a part of glub, but glub will be requesting test results for specific library
configurations from this service. The technology used for building the test environment depends
entirely on the selected build tool.

Based on selected technologies and expectations from a tool such as glub described in the
introduction, specific functional and non-functional requirements can be established. The last
section of this chapter will be dedicated to listing and describing these requirements.

2.1 OpenGL build tools

The main focus of this thesis is to facilitate the compilation of source code with specific properties.
There are multiple ways of managing source code compilation, but choosing the right tool is
crucial as it must retain certain qualities that will impact all aspects of the final product.

One of the essential qualities of the tool that will be used for the compilation is cross-
compatibility. If the Linux or Windows system that glub is run on has OpenGL support and
a C++ compiler installed, the build tool must be able to compile the source code with the
available compiler on both platforms. If the tool can compile a project on both platforms, it
will receive 2 points. One point will be added when integrating cross-compilation into glub will
be reasonably simple, meaning estimated implementation will take no longer than 4 hours. If

3

4 Analysis

no additional configuration is needed from the user, when migrating the project between the
platforms, another point will be added. The fifth point can be gained if the tool can compile the
project with various compilers.

Since glub will rely heavily on contributions from volunteers, the selected build tool must
have a certain level of popularity. If the build tool would not be a commonly used technology,
volunteers might get discouraged from contributing because of their unfamiliarity with the tool.
Build tools will receive points for popularity based on multiple factors, but mainly on how often
the technology is used in the OpenGL and C++ development.

OpenGL projects are almost always making use of multiple existing libraries, these libraries
can be usually downloaded as a zip file from their website, but many of them have a Github repos-
itory as well. When choosing the build tool, ease of integrating libraries must be considered,
as they play an important role in OpenGL development.

The end user’s perspective must be considered as well, there is no point in using glub if it
will be hard to use and the generation of the project will take a lot of time. The build tool is
influencing how the distribution of glub and the generated project will look like. Depending on
how difficult it is to install and start using the tool, up to 2 points can be added to the score. If
the tool is standalone and does not force the user to use a particular development environment,
1 point will be added. When new libraries are integrated into glub, these updates must be easily
and quickly distributed; another 2 points can be added for this quality.

2.1.1 IDE build tools
IDEs often provide their own build tools (e.g., Microsoft’s MSVC in Visual Studio), in such cases,
glub could be directly integrated into an IDE as a plugin. However, glub will be bound by the
properties of the IDE it is integrated into, so selecting the right IDE would be crucial.

Cross-compatibility
If the right IDE is selected, glub does not have to consider different platforms and compilers.

However, not all IDEs are compatible with Windows and Linux; some do not have a compiler
bundled in, which narrows the options of IDEs to pick from and relies on the user to provide a
compiler supported by IDE. Estimating the time of cross-compatibility implementation might be
a bit difficult, but IDEs like CLion or Visual Studio Code seem to fulfill the cross-compatibility
criteria for all 5 points.

Popularity
Various IDEs use various technologies for developing plugins, for example Intellij uses Java

and Kotlin [2], but Visual Studio Code uses Typescript 1. Despite the popularity of these IDEs
and the development of many plugins for them, the technologies used to build the plugins are
not commonly used in the OpenGL and C++ development, so the score for popularity is 2.

Library integration
It is possible to retrieve library files and configure how they should be linked; however, this

would require quite a bit of additional code for every library. Integrating new libraries should
still be pretty straightforward, which deserves a score of 3.

Distribution
IDEs have their own plugin marketplace, on which glub can be published and regularly

updated. The project would be generated on the user’s system, so no additional downloads
apart from the libraries would be needed. IDE plugin is clearly an excellent option for simple

1JavaScript can be used for Visual Studio Code extension development as well, however TypeScript is recom-
mended [3]

OpenGL build tools 5

distribution of glub itself and the projects it generates, but it will be limited only to the IDE
that glub is built for; therefore, the score is only 3.

2.1.2 GNU Make
GNU Make is a tool that controls the generation of the executable from source code. The whole
generation can be configured in makefile, this is quite beneficial for glub as it would only need
to generate the correct makefile instead of configuring the whole project when used in an IDE. 2

Cross-compatibility
GNU Make itself can be run on Windows and Linux; however, glub will need to perform cer-

tain tasks differently on each platform. When using GNU Make, the number of such tasks seems
substantial, but it can be done in a way that the user will not be required to take any additional
actions when migrating between platforms. Because it will take some effort to implement the
cross-compatibility when using GNU Make, the score is 4.

Popularity
GNU Make is not that easy to use, but people that work with C++ most likely used GNU

Make at some point or at the very least heard of it. Since GNU Make is a well-known tool in
the targeted community, the score for popularity is 4.

Library integration
Libraries can be cloned from their Github repositories; most of them include makefile which

can be used to link and build the library. However, properly building and linking each library
with GNU Make requires additional non-trivial configurations to be made; that is why the score
is 3.

Distribution
In order to compile a project with GNU Make, only makefile is needed. It is possible to

distribute glub as an IDE plugin, but the same generation process can be used for various IDEs.
Since only a single file is required to configure a project’s compilation process, this file can also
be generated by a web service and downloaded by the user. Generating the file in a web service
would also ensure that the user always gets the latest version generated by glub without taking
any additional action. Using GNU Make provides a lot of flexibility in distribution, so the score
is 5.

2.1.3 CMake
CMake is a bundle of tools that uses CMakeLists to control the compilation of projects. It is
not only able to compile a project, but it also generates native makefile or even a Visual Studio
solution. It is designed to support complex directory hierarchies and applications dependent on
several libraries. 3

Cross-compatibility
The same CMakeLists file can generate an executable on both Linux and Windows. Also, it

is simple to configure platform or compiler-specific tasks. It will take minimal effort to imple-
ment cross-compatibility, and the user will not have to worry about any additional work when
migrating the project between platforms. The score for cross-compatibility is 5.

2All the information about GNU Make from section 2.1.2 can be found in the GNU Make manual on the official
GNU Operating System website [4]

3All the information about CMake from section 2.1.3 can be found on the CMake website [5]

6 Analysis

Popularity
CMake is a prevalent tool in the community of OpenGL and C++ enthusiasts. It is well

integrated into popular IDEs. Most members of the community interested in using glub should
have some experience with CMake; therefore, the score is 4.

Library integration
Similar to GNU Make, integrating a library would require a clone from Github; however, most

of the libraries include CMakeLists file, so a library can be integrated just by providing basic
information about the library and library-specific tasks that should be performed. Libraries can
be integrated relatively easily with CMake if they contain the required configuration file, so the
score is 4.

Distribution
The CMake version of glub can be distributed similarly as if it would be built with GNU

Make. The project’s build configuration can be generated inside an IDE plugin and downloaded
from a web service. Leaving CMakeLists generation up to a web service also ensures the latest
version of the file is provided to the user. Because of the distribution flexibility, it is possible to
cover a large number of developers using various tools in their workflow, and the final score is 5.

2.1.4 Custom build tool
A whole new build tool can be developed to satisfy all the requirements. This tool can utilize
commands and APIs available on each platform. Apart from providing all the needed function-
ality, it will require significant work to keep glub up-to-date with all supported systems.

Cross-compatibility
Since everything will be implemented using low-level platform-specific APIs, glub will not be

bound by the availability of 3rd-party software on certain platforms. Since the implementation
and maintenance of cross-compatibility will take a significant amount of effort, one point will be
subtracted from the overall score instead of not adding a point for this quality. This solution
will fulfill all the other qualities, so after subtraction, the score is 3.

Popularity
In this option, glub will be an independent software, which might discourage developers from

using it, as it is not integrated into the development tools that they are using. To enable the
community to contribute to glub, it can be written in C++. Despite this, it will still have to
work with various complicated APIs that the targeted community is unfamiliar with. Combin-
ing the separation of glub from the usual workflow of developers with the difficulty of creating
contributions, the score is 2.

Library integration
Each library will require a significant amount of code to be integrated into glub. This code

might change with every new release of a library. Integrating and maintaining libraries will re-
quire considerable work, which lowers the score to 1.

Distribution
As a standalone software, glub will be available to download and install on its own website,

forcing users to take additional steps before using the tool itself. Whenever the generation of
the project is updated, locally installed glub would have to be manually updated as well. The
advantage of creating a new build tool would be the generation of the project, as it can be entirely

REST API technologies 7

generated directly into a folder the user selected. However, this feature does not compensate for
the many downsides of the glub distribution, and the score is 1.

2.1.5 Overview
From Table 2.1, it is clear that building a custom tool is not suitable from every considered
aspect. Integrating glub into an IDE is a viable option, as glub would be directly integrated into
the users’ workflow. This integration can also be achieved by using GNU Make or CMake, as
the configuration file will be provided by a web service, and an IDE plugin can also request it.
That is why the most suitable tools are GNU Make and CMake. However, CMake is a slightly
more viable tool, as library integration and cross-compatibility can be achieved more easily than
GNU Make.

Table 2.1 Build tools comparison

Build tool Cross-
compatibility

Popularity Library
integration

Distribution

IDE build tools

GNU Make

CMake

Custom tool

2.2 REST API technologies
In order to build the OpenGL project with CMake, only specific text files are required. These
text files will be generated and served by a REST API.

Since the API will be performing only elementary tasks, it should also be built with simple
technology. That is why the most important quality for the backend is simplicity of the used
technology. The code must be readable and with minimal obfuscation; since the size of the API
will be small, keeping related functionalities close together in the source code will be helpful.

Some updates to add new functionalities might be required, and used technology must provide
simple extensibility of the API. Adding a new endpoint or a section into the generated files
must take as few lines of code as possible.

Size of the minimal working REST API of the technology is also essential. Since glub will
not use advanced functionalities of the technologies, it is counter-productive to store and compile
big applications.

2.2.1 PHP & Laravel
PHP is a well-established scripting language in web development. By combining it with the
Laravel framework, it becomes a powerful tool for developing web APIs. Laravel provides its
own packaging system and helps structure the project into an MVC application but still keeps
the simplicity, making it a viable option for a smaller web API. 4

Simplicity
4All the information about Laravel from section 2.2.1 can be found in the documentation of Laravel[6]

8 Analysis

Laravel follows an MVC design pattern, which might be a disadvantage in such a small ap-
plication as it might cause slight obfuscation. Starting the development with Laravel is not that
simple, it requires a considerable amount of dependencies to be installed apart from PHP and
Laravel itself. If set up correctly, this technology might be simple enough, but it still brings
unnecessary complexity, and the score is 2.

Extensibility
Laravel offers reasonable opportunities of extending the API, thanks to the MVC design

pattern. Adding a new endpoint would require registering it in the router and referencing a new
Controller. For illustration, an example controller is shown in Code listing 1. For an MVC design
pattern, the amount of work needed to add an endpoint is reasonable; however, for the size of
API that glub requires, it might be a bit long, so the score is 2.

1 <?php
2
3 namespace App\Http\Controllers\API;
4
5 use App\Http\Controllers\Controller;
6 use Request;
7
8 class CMakeController extends Controller {
9 public function getCMake() {

10 return response()->json(
11 ['cmake' => 'Generated CMake contents']
12);
13 }
14 }

Code listing 1 Laravel controller

Size
The size of a basic API itself is 40 MB in size, but in order to start developing in PHP using

Laravel, a considerable amount of packages need to be installed beforehand. This is not very
suitable for such a small API, and the score is 2.

2.2.2 Node.js & Express
Node.js is a JavaScript runtime environment that allows building web APIs with JavaScript.
JavaScript itself is a highly readable language, which in combination with the Express frame-
work, makes building APIs a very fast process.5

Simplicity
Starting to build an API with Node.js and Express takes a few minutes. The only prerequi-

sites are installing Node.js itself and a package manager like npm, through which Express can be
installed. Setting up a project using Node.js is reasonably simple, it also uses easy-to-understand
scripting language, so the score is 4.

Extensibility

5All the information about Express from section 2.2.2 can be found on the official Express website[7]

REST API technologies 9

Any required changes that need to be made will be straightforward and will not take any
more work than necessary. Adding a new endpoint to the API can be accomplished by adding
only a few lines of code, as can be seen in Code listing 2. Complex extensions to the API will
require proper designs to be made before being implemented, as Express does not enforce any
kind of project structure, and it might lead to obfuscation. For a simple API that glub will
require extensibility is sufficient and straightforward, so the score is 4.

1 app.get('/cmake', (req, res) => {
2 res.send('Generated CMake contents');
3 });

Code listing 2 Node.js endpoint

Size
The size of all the components needed to develop an API with Node.js and Express is minimal.

Node.js is a small program of 20 MB, and the size of a basic API with Express is 2 MB. Necessary
tools do not take any unnecessary space, so the score is 5.

2.2.3 Deno & oak
Deno is a new tool heavily inspired by Node.js, Ryan Dahl 6 is public about addressing issues of
Node.js in Deno. Compared to Node.js, Deno is written in Rust instead of C, but mainly it does
not uses a package manager. Dependencies are imported by providing a URL. Also, it does not
require any additional packages to support TypeScript. Framework oak further simplifies the
API development by providing a quick and easy way to set up an HTTP server.7

Simplicity
Installing Deno is enough to start working on the API. Dependencies like oak will be included

via URLs in the source code. In many ways, TypeScript is similar to JavaScript, the main dif-
ference is that TypeScript allows specifying data types of variables, which is quite helpful when
dealing with objects provided by the user. Creating a Deno project could not be simpler; type-
script is also as readable as JavaScript but offers more flexibility, so the score is 5.

Extensibility
Deno will face similar issues with extensibility as Node.js, mainly that the future work on

extensions will depend on the current design and quality of code. Deno might have an advantage
by using data types, as APIs are working with a considerable amount of variables with different
data types, so having them well defined should make future updates to the API easier. Extending
the API with a new endpoint takes a similar effort as in Node.js, which is demonstrated in Code
listing 3; based on this, the score is 4.

1 router.get('/cmake', ({ response }) => {
2 response.body = 'Generated CMake contents';
3 });

Code listing 3 Deno endpoint

6Developer of Node.js and Deno.
7All the information about Deno from section 2.2.3 can be found on the official Deno website[8]

10 Analysis

Size
Deno itself takes up 20 MB, all the required dependencies are cached and not directly included

in the project, so the size of the basic API is only a few KB. Since there are no unnecessary
components that would take space in the project, the score is 5.

2.2.4 Python & Django
Another high-level readable popular language is Python, as a general-purpose language, it en-
ables building a web API. Django is an open-source web framework that helps with fast and
straightforward web application development. Django is using MVT architecture, which will not
be utilized in glub API, as it does not require any access to a database.8

Simplicity
Python is already a great programming language for small and simple projects, which is the

case of glub API. Web framework Django simplifies the building of web APIs even further. How-
ever, first Python must be installed in the development environment, after which Django can
be manually installed, which slightly slows down preparations for the development compared to
Deno, so the score is 4.

Extensibility
Python is a highly readable language, which is always an advantage when adding new fea-

tures. Django defines a structure of the API source code, adding a new endpoint would require
registering it in the list of URLs and creating a new view for the endpoint, which is demonstrated
in the Code listing 4. Implementing a new endpoint seems fairly simple, but it requires a bit of
redundant work considering the size of the API, so the score is 3.

1 import json
2 from importlib import import_module
3 from django.http import HttpResponse
4
5 def index(request):
6 return HttpResponse(json.dumps({\
7 "cmake": "Generated CMake contents"\
8 }), content_type="application/json")

Code listing 4 Django endpoint

Size
The size of an API build with Python and Django is minimal; however, installing all the tools

required will take 100 MB, which is still a reasonable amount, so the score is 4.

2.2.5 Ruby on Rails
High-level, general-purpose languages are usually readable and easy to work with, which benefits
the simple glub API. Ruby belongs to the group of languages with these properties; therefore,
it should not be left out. Ruby on Rails is a web application framework that utilizes the MVC

8All the information about Django from section 2.2.4 can be found on the official Django website[9]

REST API technologies 11

pattern to help with building the front and back end of application.9

Simplicity
Even though Ruby takes a different take on programming language design, the simplicity

and ease of use in both languages are comparable. However, Ruby on Rails is optimal for more
extensive applications and brings a bit of unnecessary complexity into very small applications,
so the score for simplicity is 3.

Extensibility
Since glub will utilize only the controllers from the MVC or MVT patterns, the extensibility

of Ruby on Rails is the same as with Python and Django. An example of a simple endpoint can
be seen in the Code listing 5, and the score is also 3 for the same reasons as Python and Django.

1 class Api::CMakeController < ApplicationController
2
3 def index
4 render json: { "cmake": "Generated CMake contents" }
5 end

Code listing 5 Ruby on Rails endpoint

Size
In order to have working Ruby on Rails installed on the system alongside Ruby itself, it will

take over 700 MB, which might cause problems with some very limited API hosting services, so
the score is 2.

2.2.6 Overview
The glub API will be minimalistic, only serving generated text files. Based on the comparison
in Table 2.2, the most suitable tools are Node.js and Deno. Node.js is already a widely used
tool that has been proven to work well, but Deno offers some new out-of-the-box features that
work well, especially on small projects like glub. API used by glub will be developed in Deno,
as it has more to offer than Node.js, and minimalistic APIs like glub do not need to be built on
technology that has been around for decades.

Table 2.2 REST API comparison

Technology Simplicity Extensibility Size

PHP & Laravel

Node.js & Express

Deno & oak

Python & Django

Ruby on Rails

9All the information about Ruby on Rails from section 2.2.5 can be found in the Ruby on Rails documenta-
tion[10]

12 Analysis

2.3 REST API hosting
Deno is a relatively new technology, and not many hosting services support it yet. That is why
it must be easy to deploy a Deno application on the selected hosting service. It is not expected
that glub will be generating significant traffic, so the pricing of the hosting service is a critical
parameter. Since for version control GitHub will be used, a possibility of deploying the API
directly from GitHub to the hosting service (GitHub integration) would be helpful.

2.3.1 Fly.io
In order to deploy the Deno application onto Fly.io, it requires a command-line tool to be installed
and a configuration file included in the application folder. The deployment itself is launched from
the command line tool, the steps necessary to deploy are simple, but the initial configuration
requires some additional actions. Hence, the score for ease of deployment is 3.

Fly.io offers a limited free usage of the hosting service, in which 160 GB of bandwidth can be
used each month, 3 GB of permanent storage are available, and 3 shared CPUs can be used for
over 2 000 hours every month. These limits are more than enough for API that will glub use, so
the score for pricing is 5.

Deno application stored on GitHub can be deployed onto Fly.io by using GitHub Actions. A
configuration file will be added to the GitHub repository, including commands for deploying the
application onto Fly.io. Since GitHub integration is achievable by providing one configuration
file, the score is 4.10

2.3.2 Clever Cloud
Deployment onto Clever Cloud looks very similar to deployment onto Fly.io. Installation of
Clever-tools CLI will be required, and a configuration file must be provided. The score for ease
of deployment is, therefore, the same - 3.

Clever Cloud does not offer free usage of its services. The cheapest service Clever Cloud
offers costs 4.50 AC per month. This service includes 256 MB of RAM and 1 shared CPU. These
prices are pretty high considering provided resources, so the score for pricing is 2.

Via the Clever-tools CLI, an application can be created. This application is then used to
track the repository and automatically deploy it. Since only set up with Clever-tools is required
to automatically deploy from GitHub, the score for GitHub integration is 4.11

2.3.3 Deno Deploy
Deno Deploy is a hosting service developed by the team that is developing Deno itself. This is
a great advantage, as Deno is a still-growing technology, in case of any changes, hosting will be
compatible with Deno since they will be aware of the changes. If the repository is hosted on
GitHub, the deployment can be done through the Deno Deploy website with only a few clicks.
Therefore the score for ease of deployment is 5, since it can not be any simpler.

Deno Deploy is currently in its initial public beta release and offers free but limited deploy-
ment. There can be a maximum of 1 000 requests per minute, only 512 MB of RAM is available,
and the CPU is available only for 50 ms per request. These limits are quite strict, but still more
than what glub API would require, so the score is 4.

GitHub repository can be deployed onto Deno Deploy with only a few clicks. However, if any
further building steps are required, it is possible to include a GitHub Action and perform these

10All the information about Fly.io from section 2.3.1 can be found on the Fly.io website[11]
11All the information about Clever Cloud from section 2.3.2 can be found on the Clever Cloud website[12]

Test environment 13

steps. Deno Deploy works well with GitHub, it is simple to use but not limited in functionality.
the score for GitHub integration is 5.12

2.3.4 Overview
Fly.io offers many resources for free, but Deno Deploy is easier to use and has a certain guarantee
of working well with Deno. For the purposes of glub API, Deno Deploy is the ideal candidate.
In case the traffic to the API increases, hosting can be switched to Fly.io at any time. The
comparison of API hosting services can be found in Table 2.3.

Table 2.3 API hosting comparison

Hosting service Deployment Pricing GitHub integration

Fly.io

Clever Cloud

Deno Deploy

2.4 Test environment

Verification of various library configurations would be a lengthy manual process, considering
there are constantly newer versions of libraries being released. That is why it is vital that testing
for library compatibility is an automated process. The parameters that need to be tested are the
success of the build process and the ability to execute the output of the compilation on Linux, and
on Windows, the visual output of the project does not have to be tested. This can be done with
one of the continuous integration services. However, the options are limited, as many of them do
not provide an environment with access to a GPU. In some cases, this problem can be overcome
by using an implementation of OpenGL that requires only a CPU to run, like Mesa[14]. Since
most likely additional work will be required to test OpenGL programs, the important quality of
the test environment is simplicity of preparing the environment to run the tests. In order to
build a project, the test environment must download all the necessary libraries and compile them,
which can take a significant amount of time. That is why price should be considered as well.
Compiling the libraries and the project itself will take a significant amount of time, which will
depend heavily on the performance of used CPU. CMake supports multithreaded compilation,
which might decrease the build time of the project mainly if it consists of multiple independent
parts like libraries. So not only the frequency at which the CPU operates should be considered
but also the count of the CPU cores provided.

2.4.1 GitHub Actions
Since glub API will be open-sourced and hosted on GitHub, it might be convenient to have the
source code and tests in one place. GitHub Actions can be run on Linux and Windows; however,
GPU is not accessible. As part of the test process, Mesa has to be installed before building the
project, which will increase the usage of resources. Apart from this complication setting up a
GitHub Action is a simple process, so the score for simplicity is 4.

12All the information about Deno Deploy from section 2.3.3 can be found on the Deno Deploy website[13]

14 Analysis

GitHub offers a plan for students, which includes 3 000 execution minutes per month. The
initial amount of tests needed to be executed is high, but after they are processed, this limit
should be sufficient, so the score for price is 5.

GitHub-hosted runners provide a 2-core CPU, for which 2 points will be added to the score.
However, no more information on this topic is available in the documentation. In January 2022,
Magno Logan published an article in which he analyzed the security of GitHub runners. From his
Ubuntu runner reconnaissance, it seems the runner uses an Intel Xeon Platinum CPU running
at 2.6 GHz, which will be evaluated only with one point.[15] The total score for CPU is 3.13

2.4.2 CircleCI
CircleCI provides access to a GPU, but first, CUDA must be installed. The configuration files
of CircleCI are no more complicated than the configuration files of GitHub Actions, so the score
for simplicity is 4.

CircleCI has a free plan offering 6 000 minutes. However, in this plan, access to GPU is not
provided. The amount of execution minutes is sufficient, so the score for price is 5.

In the free plan, CircleCI provides only 2 vCPUs, so the compilation might take a while. It
is hard to estimate the exact performance of the vCPU, but if a rough approximation is set and
the performance of a vCPU is similar to the performance of one CPU core, then 2 points can
be added to the CPU score. Since details of the used hardware are not available, an average
frequency of 2.5 GHz will be assumed, and one point will be added to the CPU score, which
sums to 3.14

2.4.3 VPS
Using VPS to run tests is a viable option, as it is possible to run tests as long as needed.
However, setting up the whole environment to run the tests will take a considerable amount of
time. Therefore the score for simplicity is 2.

Since the tests must be run on Linux and Windows, there is a need for 2 separate VPS, which
doubles already fairly high price. The price is usually a few hundred dollars per month. The
cheapest services like VPS Mart starts from 45$ per month.[18] There are options of VPS that
provide access to a GPU, but for obvious reasons, those costs even more than the VPS without
any access to GPU. VPS is an expensive option, so the score for price is 1.

In their cheapest plan, VPS Mart provides an Intel Xeon X3440 CPU with 4 cores running
at 2.53 GHz.[18] The CPU frequency will add one point to the score, but 4 CPU cores are a
significant advantage, and 3 points will be added, so the score for CPU is 4.

2.4.4 Overview
Running a VPS would be a time-consuming and expensive choice. Despite the freedom it pro-
vides, it is not a viable option. GitHub Actions and CircleCI provide very similar services. Since
there are no significant differences, GitHub Actions can be used as a test environment due to the
convenience of keeping it in one place with the source code of glub API.

2.5 Web framework
There are countless web frameworks available. No matter in which one the glub web interface
will be written in, there will always be a web framework that is arguably slightly better. Since

13All the information about GitHub Actions from section 2.4.1 can be found in the GitHub Actions documen-
tation[16]

14All the information about CircleCI from section 2.4.2 can be found in the CircleCI documentation[17]

Functional requirements 15

Table 2.4 Test environment comparison

Test environment Simplicity Pricing CPU

GitHub Actions

CircleCI

VPS

the glub will require only a small website with no advanced capabilities like user registration, a
suitable web framework should provide fast and simple website creation. One such web framework
is Svelte, it does not enforce any complex project structure, and thanks to its component system,
it is modular and easily extensible.15

Parts of the website that create one logical component are kept in a single file that consists
of an HTML template, a style that is used, and a script that will be executed. An example of
such component structure can be seen in the Code listing 6.

1 <script>
2 // logic goes here
3 </script>
4
5 <!-- markup (zero or more items) goes here -->
6
7 <style>
8 /* styles go here */
9 </style>

Code listing 6 Svelte component example

Each component can be used as an HTML tag anywhere on the website. Apart from great
modularity, Svelte makes good use of logic-less templates inside the HTML that will greatly
simplify the presentation of data gathered from the glub API. Despite being a fairly new web
framework, it has readable and concise documentation, but more importantly, it is effortless to
work with. Alongside other good qualities of Svelte, using it for the development of the glub
website will be quite efficient.

2.6 Functional requirements

2.6.1 Backend
F1.1 Provide library metadata

Information about all the included libraries can be requested, and the response will include
a list of available libraries. Each library in the list will provide metadata about the library, like
the category it belongs to and available versions of the library.

F1.2 CMake file generation
The backend will be capable of generating CMake file needed to build a project based on

the configuration provided in the request. The request will have to contain libraries and their
15All the information about Svelte from section 2.5 can be found in the Svelte documentation[19]

16 Analysis

versions that will be included in the project, but also additional project metadata like the name
of the project, path to source files, and more. Based on this request, the backend will find frag-
ments of code needed to build the library with the specified version and combine these fragments,
which can be afterward inserted into the correct place in the CMakeLists.txt and returned in the
response.

F1.3 Additional C++ files generation
In order to make project generation even quicker, the backend will be providing additional

C++ files containing source code to a simple OpenGL showcase program so that it can be im-
mediately built and executed after project generation. C++ files will be generated separately
from CMakeLists.txt but will work on the same basis as the generation of CMake files, meaning
based on the configuration in the request, certain fragments of code will be inserted into specific
places in the C++ file templates and returned in a response with a file structure that is expected
in the project.

F1.4 Library configuration testing
Tests to ensure CMake and C++ source code fragments are compatible with other libraries

will be done on the backend. Based on the list of libraries with their versions, a project will be
generated with CMakeLists.txt and C++ files. This project will be built, then executed, and the
result will be recorded.

F1.5 Test results management
After a library configuration test is performed, the result must be stored. These results can

be retrieved by making a request with a list of libraries with their versions. Indicating only
if the test was successful or unsuccessful for a given library configuration is insufficient. The
backend must provide information on whether the given configuration was already tested or not,
if libraries are incompatible by design, or if the source code fragments need to be fixed.

F1.6 New library releases detection
Library repositories need to be periodically checked for new releases. In case a new release is

detected, it should be tested. This way, it will be ensured that source code fragments for libraries
are always up to date or need to be updated.

2.6.2 Web interface
F2.1 Project configuration

Users must be able to configure the project structure to suit their needs. This includes param-
eters like the name of the project, version, description, but also in which directory the resources
and source code should be located.

F2.2 Library selection
When accessing the web interface, a list of available libraries must be retrieved from the

backend and displayed in an organized manner. Users will be able to select and deselect libraries
that will be used for project generation.

F2.3 Library version selection
Next to each library in the list, a dropdown with available versions for the given library will

be displayed. Users will be able to choose a version of any selected library that will be used for
project generation.

F2.4 Library compatibility

Non-functional requirements 17

After any changes to library or library version selection were made, the result for the selected
library configuration will be retrieved and displayed.

F2.5 CMake download
User will be able to request a CMakeLists.txt generation. A request to a backend will be

made with all the project metadata and library configuration made by the user. Users can either
download generated CMakeLists.txt or copy its contents into the clipboard.

F2.6 Project zip file download
Similarly to requesting CMakeLists.txt generation, the user can request a generation of the

whole project. In this case, two requests will be made, one for generating CMakeLists.txt and
the other for generating the additional C++ files. A zip file will be generated from retrieved files
containing all the necessary files in a structure defined by the user.

2.6.3 Community tools
F3.1 User guide

If the user finds glub confusing or has no experience using CMake, a brief user guide will be
provided with all the necessary information.

F3.2 Request a library
If the user uses a library but does not find it in the list of available libraries, a request to

integrate the library into glub can be made. This request will be submitted in the form of a
GitHub issue. In order to be considered a valid request, it will require the user to provide all the
necessary information about the library, like the GitHub repository with source code that can
be easily built with CMake.

F3.3 Guides for library modifications
Contributors willing to help with improving glub can integrate the new library into glub or

modify outdated source code fragments for newer versions of already integrated libraries. Docu-
mentation of how all the files are generated is needed, but also to make the work of contributors
as easy as possible, simple guides containing examples of common library integration procedures
will be included alongside instructions on how the final pull request should look like.

F3.4 Pull request testing
After a contributor submits a pull request, an automatic test should be performed before

the source code is reviewed. The test can be launched via GitHub Action and prove that the
contributor’s implementation integrated the library correctly and is ready for source code review.

F3.5 Bug reporting
Suppose a user cannot compile only a particular library configuration, but the web interface

shows the given configuration as successfully tested. In that case, the user can submit a bug
report in the form of a GitHub issue. This issue will contain a predefined template, requiring
the user to fill out all the necessary information to identify the problem. This information can
contain the user’s environment, requested library configuration, and build process output.

2.7 Non-functional requirements
NF1 Platform compatibility

Compatibility with Windows and Linux must be established across all parts of glub. Each
library configuration test must be performed on Linux and Windows to ensure generated projects

18 Analysis

will work on both platforms. User guides will also require separate instructions for both plat-
forms, and similarly, all contribution guidelines will have to take cross-compatibility into account.

NF2 Project generation time
The idea behind glub is time-saving compared to existing solutions for OpenGL project gen-

eration. That is why a generation of the project must be quick and efficient, but also because,
as an open-source project, there will not be any high-end hardware available, which means pro-
cessing each request must take less than a second, even on a slower CPU.

NF3 Easy to follow guidelines
User guides must be clear and simple enough so that even a user with no prior experience

with CMake must be able to follow them. Similarly, guidelines for contributors must leave no
space for ambiguity and specify precisely what is needed from the contributor.

NF4 Technology requirements
Based on the previous analysis of multiple technologies, the most suitable technologies should

be used to build glub. As the core build tool, use CMake to build the backend that provides
the generation functionality, use Deno for frontend development, use Svelte, and use GitHub’s
Actions for creating the test environment.

Chapter 3

Design

3.1 Workflows within glub
In order to design the architecture of glub, it must be determined what interactions will be
taking place between glub and user, but also inside the various components of the tool. These
interactions will be modeled with a UML activity diagram, which allows modeling processes as
activities and actions. The activity diagram will reveal the overall workflow, which will later
help design smaller glub components.[20]

Activity diagram 3.1 showcases processes that take place when using glub. When an OpenGL
programmer that wants to use glub visits the glub website, it will display the website contents
and request the latest list of available libraries from the backend. When everything is loaded,
the user can configure the project. On any change to selected libraries, the frontend will request
library compatibility status from the backend. The response to this request will non-intrusively
notify the user if the libraries are compatible.

If the user is satisfied with configurations to the project, generation of only the CMakeLists.txt
or the whole OpenGL project can be requested. This request will be processed on the backend,
which will first generate requested files and send the results in the body of the response. When
generating the whole project, the generation of CMakeLists.txt can run in parallel with the
generation of C++ files. However, before sending back a response, both parallel processes must
be finished to insert the generation results into the same response body.

Upon receiving the generated files, the frontend can display them as downloaded. However,
in the case of OpenGL project generation, it will first create a zip file and further work only
with the zip. After saving the files, the user can either place the CMakeLists.txt into the existing
OpenGL project or extract the contents of the zip file into the desired directory. The generated
project is now ready for compilation, which can be started by running CMake. The output of
the compilation will be an executable OpenGL application.

19

20 Design

Figure 3.1 Activity diagram for usage of glub

Workflows within glub 21

One more activity diagram is needed, this diagram is modeling a very different process related
to glub, but since glub will be open-source software, it is a vital process. Activity diagram 3.2
focuses on processes that will ensure smooth and organized integration of new libraries or updates
required to support a new release of a library.

When an OpenGL programmer that uses glub notices that one of the commonly used libraries
is not available in glub, the user can submit a request, so the library is integrated into glub. This
request will require specific information about the library to be filled, mainly a URL pointing to
a library repository that can be compiled using CMake.

Before starting the integration of the requested library, the request will be verified. If the
library is not relevant to the OpenGL development or is not commonly used, the request can
be dismissed. If it has missing or incorrect information, the contributor can request the user
to update the request and block the library integration until the information is complete and
correct.

After the library request is verified, it can be accepted. A contributor can pick up an accepted
library request and integrate the library into glub. If the contributor is done with integrating
the library, a pull request can be submitted. The test environment will automatically run tests
on the branch with the new library integration. These tests will decide if changes are required
or if the library is ready to be reviewed. If the source code also does not require any changes,
the library can be merged into the main branch and deployed, after which it will appear in the
glub’s list of available libraries.

22 Design

Figure 3.2 Activity diagram for library requests

Use cases 23

3.2 Use cases

Section 3.1 provides a detailed overview of processes taking place within glub. Based on these
processes, actions available to various actors that can interact with glub can be determined.
Actions will comprise of multiple processes from activity diagrams in section 3.1. To concisely
represent actions and actors, use case diagrams will be used. Use case diagrams utilize use cases
to present actions connected to actors. The simplicity of use case diagrams allows to effortlessly
verify that the designed system fulfills all the functional requirements. Each use case will fulfill
one or more requirements. If a requirement is not fulfilled by any use case, either the design
should be changed to fulfill this requirement, or it should be determined if the requirement is
needed for glub to function properly.

First, the use cases of users will be modeled. The users of glub will be OpenGL program-
mers that wish to create a new OpenGL application. Available use cases for programmers that
relate to creating a new project are presented in the Use case diagram 3.3. Programmer can
either configure properties of the generated project, request generation of the OpenGL project,
or generate the CMake file only. Backend will react to the programmer’s actions, before the
programmer starts editing the configuration, it will provide the programmer with an up-to-date
list of available libraries. If the programmer changes the selection of libraries included in the
project, the backend will verify the compatibility of a particular library configuration.

Figure 3.3 Use case diagram for glub usage

Use cases from diagram 3.3 can be used to verify the fulfillment of functional requirements
related to project generation. UC1.1 provides the OpenGL programmer with possibility to con-
figure the OpenGL that will be generated. Configuration of project metadata (F2.1), libraries
(F2.2) and library versions (2.3) will be available. OpenGL programmer will be able to gen-
erate whole OpenGL project (UC1.6) or only the CMake configuration file (UC1.5), which
fulfills the requirements F1.2 and F1.3. Backend will be providing up-to-date list of available
libraries (UC1.2) and compatibility verification of selected libraries (UC1.3), which will fulfill
requirements of providing library metadata (F1.1), test results management (F1.5) and library
compatibility verification (F2.4). Whole overview of requirements fulfilled by Use case diagram
3.3 is represented by Table 3.1.

24 Design

Table 3.1 Functional requirements fulfillment for glub

Use Case

Requirement UC1.1 UC1.2 UC1.3 UC1.4 UC1.5 UC1.6

F1.1

F1.2

F1.3

F1.4

F1.5

F1.6

F2.1

F2.2

F2.3

F2.4

F2.5

F2.6

The test environment will be testing various project configurations by compiling and executing
them. A test can be triggered manually by a contributor to glub’s repository or automatically
by a new library release as seen in the Use case diagram 3.4. The test result will be stored in the
REST API and used by the user interface to inform the user about the compatibility of selected
libraries.

Figure 3.4 Test environment use case diagram

Requirements for executing the tests (F1.4, F1.6) are fulfilled by Use case UC2.1. The
management of the test results (F1.5) is included within the Use case 2.2 as illustrated in Table
3.2.

Use cases 25

Table 3.2 Functional requirements fulfillment for test environment

Use Case

Requirement UC2.1 UC2.2

F1.1

F1.2

F1.3

F1.4

F1.5

F1.6

Apart from generating OpenGL projects, the programmer will have the opportunity to con-
tribute to glub. Library requests can be submitted if the OpenGL programmer uses a library
that is not in the list of available libraries. This library request will be verified by a contributor,
who will check if the library request contains all the necessary information and if it is appropriate
to be integrated into glub. If the contributor accepts a library request, the requested library can
be integrated into glub, after which a pull request with this integration can be created. Pull
request will be reviewed by a reviewer and tested in the test environment. Similar to a library
request, a bug report can be submitted if provided compatibility results do not match the out-
put of the programmer’s project compilation. The user interface of glub will be intuitive, but
programmers that use glub may be beginners; to help them out, user manuals will be available.
For contributors, contribution guidelines will be provided, as library integration is a well-defined
process.

Figure 3.5 Contributions use case diagram

Most of the use cases from diagram 3.5 will be realized within the GitHub repository of
glub. Integration of a library (F3.2) and bug fix (F3.5) can be requested by creating an issue on
GitHub (UC3.1, UC3.5). The request can be verified (UC3.2) and the library can be integrated

26 Design

(UC3.3) within the process of a library request (F3.2). After the library is integrated, a pull
request can be created, which will be reviewed by a reviewer (UC3.4), who will review the source
code and request a test in the test environment (F3.4). If the user or a programmer runs into any
problems, documentation will be available (UC3.6). User guide (F3.1) will demonstrate how
the glub should be used, and contribution guidelines will document all the necessary processes
within library integrations (F3.3).

Table 3.3 Functional requirements fulfillment for glub repository

Use Case

Requirement UC3.1 UC3.2 UC3.3 UC3.4 UC3.5 UC3.6

F3.1

F3.2

F3.3

F3.4

F3.5

3.3 Wireframe

Interactions between OpenGL programmer and glub are now clearly defined; based on these
requirements, a wireframe for glub’s web interface can be constructed. As can be seen in Figure
3.6 the website will be split into multiple sections. Section with number 1 is used to configure
project metadata, like name, version, or source code directory. Sections marked with the number
2 are lists with available libraries that can be added or removed from the generated project.
Each library entry will also provide a dropdown containing available library versions. Section
3 includes buttons to generate configured project and displays test result of selected libraries.
This section also contains useful links, like a link to glub’s GitHub repository, bug report form,
or library request form. If the user is unsure how to use glub properly, section 4 will provide
an interactive guide walking the user through project configuration all the way to compiling the
generated project. The user might not be aware that multiple useful libraries used in OpenGL
development exist. Section 5 displays a website preview of the last selected library, after clicking
the preview, the website will open, and the user can find more details about the library.

Backend 27

Figure 3.6 Wireframe for web interface

3.4 Backend

The website will be retrieving the required data from REST API endpoints described in Section
3.4.1. Section 3.4.2 defines the structure of data within the REST API and how a response to a
request will be formed.

3.4.1 Endpoints

To cover all the functionalities provided by glub, REST API will serve four endpoints. Design
proposal for these endpoints will be made by using the tool Swagger, which bases endpoint
definitions on OpenAPI specification. Images 3.7, 3.8, 3.9 and 3.10, each contain specification
to one of the REST API endpoints.

28 Design

Figure 3.7 Libraries endpoint specification

Figure 3.8 CMake endpoint specification

Backend 29

Figure 3.9 C++ endpoint specification

Figure 3.10 Compatible endpoint specification

30 Design

3.4.2 Domain model
Image 3.11 illustrates the structure of data within the REST API, which will be generating
responses from this data. Library compatibility data will be stored elsewhere, but the diagram
contains all the data required for OpenGL project generation. The endpoint that provides
libraries will utilize function getLibraries() in the Category class to group libraries together
and pass them to the frontend. Endpoints for generating CMakeLists.txt and C++ files will be
able to retrieve necessary data based on the version tags of selected libraries in the request by
utilizing function getVersion(tag) in the Library class and retrieving the code snippets and
files from the Version class.

Figure 3.11 REST API domain model

Chapter 4

Implementation

Analysis and design are important processes in software development, but implementation is the
process that previous work was leading towards. This chapter will describe the build process of
glub using tools selected in analysis based on the designs from the previous chapter. Since no
similar tool has been created so far, there is a chance that the realization of glub might not be
viable or possible as designed. The output of the implementation process will serve as a proof of
concept, and even if glub does not fulfill the requirements to become an effective tool, it might
still create a space for further build automatization of projects that use low-level APIs.

4.1 Generation templates
In the analysis, it was decided that CMake will be the most viable tool to distribute the build
instructions. Before generating the required textitCMakeLists.txt file, there must be a well-
defined template into which each library will be able to insert instructions needed to link and
build the library.

First, a plain CMakeLists.txt that is able to compile OpenGL applications without any li-
braries will be created in the section 4.1.1. Alongside the plain CMakeLists.txt a basic OpenGL
project will be created in the section 4.1.2, it will also use no libraries and created CMakeLists.txt
will be able to compile it.

The basic templates can then be extended to link and compile with a library. CMakeLists.txt
including instructions needed to link and compile a project with a library will be described in
section 4.1.3. Finally, in the section 4.1.4 files used to compile the project will be analyzed, and
the structure that can be used for generating these files will be defined.

4.1.1 Bare CMakeLists.txt template
To construct a simple CMakeLists.txt that is capable of compiling an OpenGL project without
any libraries, commands needed for this minimal configuration will be introduced. After neces-
sary command definitions, commands can be combined into a working CMakeLists.txt example.

There are two commands that do not directly specify the compilation or linking process
but define the behavior of CMake. cmake_minimum_required() defines policies that CMake
will use for configuring the project. Specifying a minimal CMake version that can be used to
build the project ensures that all the needed commands will be present and policies from newer
versions that could break the building process will not be enabled.[21] Picking the right minimal
CMake version is not a critical decision, so version 3.16, released in late 2019, will be used. Since
version 3.16 was not released recently, most users should be able to use it and can easily change

31

32 Implementation

it to one of the newer versions. Using command project() metadata about the project can
be provided. The user will specify the project name, version, and description in the frontend.
These metadata will be inserted as arguments of this command alongside an argument specifying
the programming language used in the project. CMake enables C and C++ by default, but by
specifying that only C++ will be used in the project, CMake will not have to waste time by
detecting available C compilers.[21]

1 cmake_minimum_required(VERSION 3.16)
2
3 project(glub VERSION 1.0.0 DESCRIPTION "glub description" LANGUAGES CXX)
4
5 if(UNIX)
6 add_compile_definitions(UNIX)
7 elseif(WIN32)
8 add_compile_definitions(WINDOWS)
9 else()

10 message(FATAL_ERROR "Detected platform is not supported!")
11 endif()
12
13 if(EXISTS ${PROJECT_SOURCE_DIR}/res/)
14 message(STATUS "Copying resources...")
15 file(COPY ${PROJECT_SOURCE_DIR}/res/
16 DESTINATION ${CMAKE_BINARY_DIR}/res/)
17 endif()
18
19 message(STATUS "Setting up build options...")
20 file(GLOB_RECURSE SRC_FILES "./src/*.h" "./src/*.cpp")
21
22 if(UNIX)
23 add_executable(glub ${SRC_FILES})
24 elseif(WIN32)
25 add_executable(glub WIN32 ${SRC_FILES})
26 endif()
27
28 message(STATUS "Linking...")
29 find_package(OpenGL REQUIRED)
30 target_link_libraries(glub ${OPENGL_LIBRARIES})
31
32 if(UNIX)
33 target_link_libraries(glub X11)
34 endif()

Code listing 7 Basic CMakeLists.txt template

The next important step is to add an executable target. C++ files passed as an argument
of this command will be compiled and included in the generated executable. Each file can be
provided as a separate argument, but glub will group all files with extension .cpp or .h located
in the source code directory specified by the user and pass them as an argument to the command.

Even though this CMakeLists.txt example is not using any additional libraries, as an OpenGL
application, it will still need to link OpenGL API. First OpenGL package will be found by using
the command find_package(OpenGL REQUIRED) . After locating the OpenGL package, it can

Generation templates 33

be linked with the target by using the command target_link_libraries() .
The commands mentioned above are sufficient to compile an OpenGL application. Code

listing 7 demonstrates a simple CMakeLists.txt configuration, that is capable of compiling an
OpenGL application without any additional libraries. Apart from already presented commands,
it contains a few more useful configurations. To effortlessly determine the operating system in the
C++ source files, CMake will define a suitable macro using command add_compile_definitions() .
If the project contains any resources, glub will insert them into the output directory alongside
the compiled executable. And finally, in case the target is compiled for the Unix system, glub
will link X11 libraries to enable execution in environments that use X Window System.

4.1.2 Basic OpenGL project template
To verify that the CMake configuration from Code listing 7 is capable of generating a work-
ing OpenGL application, a simple OpenGL project should be created and compiled using the
configuration. The generated application will be only capable of creating a window, initializing
OpenGL context, and freeing allocated resources after the window is closed.

The source code of the OpenGL application will consist of two parts. A main file that will
contain the main() function, which will be using CWindow class to create a window. The other
part will be the implementation of CWindow class. By using the macros from the section 4.1.2
it can be determined if implementation of the window will be using the X Window System API
or the Windows API. Implementation of the CWindow using both APIs will be based on the
OpenGL documentation by The Khronos Group Inc.[22]

4.1.3 Library integration
Working CMakeLists.txt can now be expanded to link a library that is commonly used in OpenGL
development. Integrating a library into glub will help identify all the procedures that need to
occur before using the library in the application. A library that will be integrated is GLFW.
GLFW will remove the need to call platform-specific APIs and demonstrate multiple procedures
that libraries might need to be integrated into glub. Simplicity will not be as important as
extensibility when integrating GLFW because the integration of other libraries will use the same
pattern.

Currently, the project does not include any source files of a library. The source code of libraries
will be retrieved from the GitHub repository by using Git. Command find_package(Git) can
be used to detect Git on the user’s system, after which variable GIT_EXECUTABLE will contain a
path to a file that can be used to execute Git commands. Before running Git commands in the
project directory, Git must be initialized in the particular directory. If directory .git exists in
the project directory, it means Git already is initialized, but if it does not, glub will have to run
init command for Git.

Now the libraries can be retrieved from GitHub repositories as submodules. Each submodule
can be updated with Git command submodule update . If the submodule update was not
successful, it might mean that submodule was not yet added to the project. By executing Git
command submodule add , the submodule will be added to the project, and submodule update
can be attempted again. If the submodule update was successful, the project now contains the
library with the most recent changes. However, users might not want the library API to change
while working on their project, so only a specified version of the library should be included in
the project. This can be done by utilizing GitHub releases. Each release has a tag that can be
used to switch the repository to the same state as when the new version was released by using
checkout command. The complete process of adding libraries to the project is demonstrated

in the Code listing 8.

34 Implementation

Libraries with user-defined versions are now present in the project, their compilation and
linking can be configured. Libraries might need some specific configuration, mainly defining
include directories. It must be ensured there will be space reserved for these configurations.
After the necessary configurations, the library can be linked with the project, which concludes a
library integration.

In the sample project source code, libraries should demonstrate a simple functionality to
verify that they were linked and compiled correctly. In the case of GLFW, it can be window
management. The main source code file does not have to change, but the platform-specific im-
plementations of CWindow class must be overwritten by an implementation that utilizes GLFW
window management.

4.1.4 Template structure
Working examples of OpenGL projects with and without libraries were presented. These ex-
amples were created to propose a structure of files generated by the glub REST API. Sections
that will be common across files generated with or without libraries will be kept in a template.
Library-specific sections will be inserted into the templates by the REST API.

In the CMakeLists.txt are three sections that will need to be inserted by the REST API. The
submodules update from Code listing 8 should be inserted only if the project uses at least one
library. Each library will be required to provide the library’s name, version, and repository URL
so that the library can be added to the project. Another section that REST API will have to
insert is configurations that each library requires to be performed. And lastly, libraries should
be linked to the project.

In the main C++ source file, REST API should allow libraries to initialize before entering the
update loop. Also, if a library needs to perform any updates, it should be able to add required
tasks into the update loop. Libraries should be able to add additional header files into the project
and overwrite existing ones.

Generation templates 35

1 find_package(Git)
2
3 if(GIT_FOUND)
4 if(NOT EXISTS "${PROJECT_SOURCE_DIR}/.git")
5 message(STATUS "Initializing git repository...")
6 execute_process(COMMAND ${GIT_EXECUTABLE} init WORKING_DIRECTORY
7 ${PROJECT_SOURCE_DIR} RESULT_VARIABLE GIT_INIT_RESULT)
8
9 if(NOT GIT_INIT_RESULT EQUAL "0")

10 message(FATAL_ERROR "Unable to initialize git repository.")
11 endif()
12 endif()
13
14 message(STATUS "Retrieving git submodules...")
15
16 set(SUBMODULES lib/glfw;)
17 set(REPOSITORIES https://github.com/glfw/glfw.git;)
18 set(RELEASES 3.3.7;)
19
20 foreach(UPD_SUB IN LISTS SUBMODULES)
21 execute_process(COMMAND ${GIT_EXECUTABLE} submodule update --init
22 --recursive --remote -- ${UPD_SUB} WORKING_DIRECTORY
23 ${PROJECT_SOURCE_DIR} RESULT_VARIABLE GIT_SUBMOD_RESULT)
24
25 list(FIND SUBMODULES ${UPD_SUB} SUB_INDEX)
26 list(GET REPOSITORIES ${SUB_INDEX} SUB_URL)
27 list(GET RELEASES ${SUB_INDEX} SUB_RELEASE)
28
29 if(NOT GIT_SUBMOD_RESULT EQUAL "0")
30 execute_process(COMMAND ${GIT_EXECUTABLE} submodule add ${SUB_URL}
31 ${UPD_SUB} WORKING_DIRECTORY ${PROJECT_SOURCE_DIR})
32 execute_process(COMMAND ${GIT_EXECUTABLE} submodule update --init
33 --recursive -- ${UPD_SUB} WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
34 RESULT_VARIABLE GIT_SUBMOD_RESULT)
35
36 if(NOT GIT_SUBMOD_RESULT EQUAL "0")
37 message(FATAL_ERROR "Unable to retrieve submodule ${UPD_SUB}")
38 endif()
39 endif()
40
41 execute_process(COMMAND ${GIT_EXECUTABLE} checkout ${SUB_RELEASE}
42 WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/${UPD_SUB}
43 RESULT_VARIABLE GIT_SUBMOD_RESULT)
44
45 if(NOT GIT_SUBMOD_RESULT EQUAL "0")
46 message(SEND_ERROR "Unable to checkout branch ${SUB_RELEASE}
47 of repository ${UPD_SUB}")
48 endif()
49 endforeach()
50 else()
51 message(ERROR "Git not found.")
52 endif()

Code listing 8 Retrieving libraries from GitHub

36 Implementation

4.2 Project generation
The project will be generated by REST API built with Deno using Typescript. The generation
will be based on generation templates proposed in the section 4.1. CMakeLists.txt will be used as
a template, containing keywords at strategic positions identified in section 4.1.4, which libraries
will utilize to insert library-specific source code. A strict structure of data used for project
generation must be defined to keep library integrations as simple as possible.

4.2.1 Data structure
All the necessary library-specific source code should be kept together. Each library will have
a separate directory containing folders with version tags of the library. It is expected that
source code that is able to add a library into the project might be changing over time, but
glub should be able to add older versions of the library into the project. The folder for every
released library version is redundant, as the library integration will mostly not change. Version
folder will integrate specific release of a library, every newer release of a library will use the same
integration. If the integration does not work with one of the more recent releases, a new version
folder will be added with new library integration, which will be used in the same manner for
newer releases.

Library integration will consist of code snippets that should be inserted into the CMake-
Lists.txt template, C++ files, and header files that should be added or replaced in the project.
CMake code snippets will be located in the files with extension .txt , C++ code snippets will
be in the files with .cpp extension and header files in .h files. CMake and C++ files will
match the file’s name with a keyword in the template and replace it with its content. Some
of the keywords might be reserved, and instead of replacing the keyword in the template, code
snippets from all included libraries will be combined and inserted in place of the keyword.

Libraries do not have to implement all the keywords in the templates. In case no library
replaces a keyword in the template, the keyword might still need to be replaced by a default
code snippet. The default code snippets will be defined in a separate folder but in the same way,
as library integration was defined. The default CMake snippets can define different code snippets
for projects containing at least one library and for projects that do not contain any library by
including the code snippet in a file [keyword]_raw.txt .

Figure 4.1 Structure of files used for project generation

data
default..default code snippets

[cmake keyword].txt..........................replaces keyword in CMakeLists.txt
[cmake keyword] raw.txt...........replaces cmake keyword if no library is present
[cpp keyword].cpp replaces keyword in C++ files
[file name].h..........................adds [file name].h to the generated project

libraries
[library name]

[version]
[cmake keyword].txt....................replaces keyword in CMakeLists.txt
[cpp keyword].cpp replaces keyword in C++ files
[file name].h adds or replaces [file name].h in the generated project

meta.json..library metadata
CMakeLists.txt .. CMake template

Testing 37

4.2.2 REST API implementation
REST API will include four endpoints; one endpoint will provide a list of available libraries with
their versions, another endpoint will provide test results, and the other two endpoints will accept
generation requests. The endpoint that provides test results will be implemented in section 4.3,
the other endpoints will work with files described in section 4.2.1. Reading the files on each
generation request would significantly slow down the response time. Therefore, all the data
should be loaded into memory on startup. Code snippets for library integration are specified
only for a certain range of library versions. All library releases should be retrieved from GitHub
API and assigned code snippets that are necessary to add a particular library version to the
project. Since the number of releases can be overwhelming, glub will only consider major or
minor version changes. Patch version changes will be discarded, and only the most recent patch
version will be used. Apart from loading library-specific code snippets into memory, the default
code snippets should be loaded as well.

After all the data is ready, the server can start responding to requests. Endpoint /libraries
will be a simple GET endpoint, which returns list of available libraries in JSON format. Libraries
will be categorized by their functionality, and each library will include a list of detected releases.
An example of a response with a single category and library with multiple versions is demon-
strated in Code snippet 9.

1 {
2 "Utility": {
3 "glfw": ["3.3.7", "3.2.1", "3.1.2", "3.0.4"]
4 }
5 }

Code listing 9 Example response of /libraries endpoint

Endpoint /cmake will return a plain text response containing generated CMakeLists.txt.
Generation of the CMakeLists.txt will start with the CMake template. Keywords from the
template will be replaced with code snippets from various sources. Some keywords like name ,
version or srcPath will be replaced with data provided in the request. Other keywords

will require combining code snippets from included libraries and replace the keyword with the
generated code snippet. Combined code snippets are used in multiple places, like linking the
libraries to the project or a list of included library repositories in the submodule update process.
The rest of the keywords should be replaced with code snippets from the default folder. These
default code snippets will get replaced if a library provides a code snippet with the same keyword.

Endpoint /cpp will be providing C++ files of a basic OpenGL project in a JSON format.
The JSON in the response will contain name of the file as a key with the contents of the file as
its value. The keyword insertion will work the same way as in the CMake generation, but it will
need to go through all the included files. Also, the libraries will have to be able to add files to
the project and replace the default files.

Endpoint /cmake and endpoint /cpp will be POST endpoints. The request for both
endpoints will contain the same data. It will include metadata for the generated project and
a list of library releases that should be compiled with the project. Request example for these
endpoints is illustrated in Code snippet 10.

4.3 Testing
Once the REST API is ready to serve responses, the library configuration tests can be imple-
mented. The test environment uses the REST API to generate a project of a configuration that

38 Implementation

1 {
2 "name": "glub",
3 "version": "1.0.0",
4 "description": "glub test",
5 "resPath": "res/",
6 "srcPath": "src/",
7 "libraries": [
8 {
9 "name": "glfw",

10 "version": "3.0.4"
11 }
12]
13 }

Code listing 10 Request example for /cmake and /cpp endpoints

is being tested. The result of the project’s compilation and execution will be saved and later
used to verify library compatibility. The test environment will be implemented via GitHub Ac-
tions, and it will require two separate workflows. One workflow will be triggered manually with
a specific library configuration, and the other will periodically check for new releases of libraries.

To test a specific library configuration, a list of selected libraries must be present in the
inputs of the action. The action will start two different jobs, one running on Ubuntu and the
other on Windows. The job running Ubuntu will first install packages necessary to build the
generated project, but afterward, both jobs will perform the same tasks. The selected libraries
from the workflow input will be passed into a script as an argument. The script will request
project generation from the currently deployed REST API and place the generated project into
the current working directory of the job. The generated project can then be compiled with
CMake and executed. However, the execution is consistently falling on Ubuntu runner. The
program fails to create a window and returns with exit code 1. The documentation on this topic
is lacking, but it can be assumed that the Ubuntu runner is a limited environment that does not
allow window creation with OpenGL context; therefore, the application will be executed only on
the Windows runner.

The last step of each job will be to set a flag indicating a successful test on the runner’s
platform. The third job will read these flags and write the final result of the test into the
file data/compatibility.json . The output file will consist of an object containing library
configuration as a key and test result as a value. The key will always contain tested versions
of all libraries in alphabetical order. If a library was not present in the tested configuration,
the character ”0” will be used instead of a version. Some libraries may be incompatible by
design, which makes all the configurations containing such libraries incompatible no matter
which versions of the libraries are used. In these cases, the character ”*” can be used to define
test results for a configuration containing the library at any version.

The second workflow will be triggered automatically once a week. It will compare each
library’s most recent release tag available on GitHub with the latest tested release tag. If there is a
newer release on GitHub, the automatic workflow will trigger the previously described workflow
with the new library release as an input. The latest tags will be retrieved from GitHub and
compared to the latest tested tags by using JavaScript. Upon completing the list of libraries that
should be tested, the list will be transformed from a JSON object into a GitHub Action matrix.
This matrix can be used to start a separate job for each library that should be tested. Each job
will trigger the manual workflow and pass the received library configuration as a workflow input.
However, triggering a different workflow from a job created by a matrix and passing an item of

Frontend 39

the matrix as an input into the workflow proved to be a complex task to implement. The error
logs from the job runs are not just ambiguous and do not provide any meaningful information,
but also GitHub lacks detailed documentation for these specific issues. Based on these grounds,
the development of automatically triggered tests will have to be postponed.

The test endpoint mentioned in section 4.2.2 can now be implemented since the source of test
results is available. /compatible will be a POST endpoint, requiring a list of libraries with their
versions in the request. The test result will be retrieved from data/compatibility.json by
creating a regular expression that will match a key that follows previously mentioned formatting.
If it does not match any key, it means the configuration was not yet tested, which should be
stated in the response. If a key was matched, the value of this key can be returned in the
response.

4.4 Frontend

The web interface that the user will access will be built with the framework Svelte. The website
will contain a single page designed in section 3.3. As seen in the Image 3.6, the page will be
split into multiple sections. Each section will be contained within a reusable Svelte component.
Each component will contain all the necessary data needed to correctly display the component,
including styles and scripts.

Most of the components will be either reading or modifying the project configuration. There-
fore, the whole configuration will be provided to the components by utilizing Svelte’s store
contract. The store contract will define the properties of the project; this way, the components
will be able to modify the project configuration and subscribe to changes in any of the properties.
Component with inputs for the project’s metadata will be writing any changes to properties in
the store. Similarly, components that provide library selection will add and remove selected
libraries from the store or change their selected version. The compatibility status function will
subscribe to any changes made to the library selection and retrieve compatibility for the current
selection with a debounce.

The website is accessible at https://glub.drgy.dev/ by using GitHub pages. GitHub pages
can deploy only static pages, since the glub website is created with Svelte, it will require a build
step. This will be done via a GitHub action triggered by any new commits on the main branch.
The action will build the Svelte website, which will generate a static website that can be deployed
on GitHub pages.

40 Implementation

Figure 4.2 Web interface for glub

4.5 Documentation

4.5.1 User guides
It is straightforward to generate an OpenGL project using glub. However, some prerequisites
must be met. It is recommended to generate a project using glub’s website, but a direct request
to glub API can also be made. The website can be accessed using software capable of rendering
HTML documents with JavaScript. The compilation of generated projects requires CMake and
access to CMake compatible compiler. Compilation and execution are possible only on Windows
and Linux-based operating systems that implement OpenGL API.

The website contains an interactive user guide that walks the user through the whole process of
generating and compiling the OpenGL project. All the functionalities and actions that users can
take within glub’s website are described in section 3.3. After downloading the OpenGL project, it
can be compiled with CMake. There are multiple ways of compiling a project with CMake. The
simplest one is to create a folder in the project directory and run the following commands from
the created folder: cmake ../ && cmake --build . . On Windows, it is recommended to use
Visual Studio for compilation. If the C++ development components and CMake are installed
within the Visual Studio, after opening the generated project, it can be compiled simply by
clicking the ”run” button. All of this information and more is included in the interactive user

Documentation 41

Figure 4.3 Interactive user guide

guide on glub’s website as shown in the Image 4.2. Apart from the project’s build instructions,
the user guide describes steps for generating the OpenGL project and draws the user’s attention
to the section related to the currently displayed step by highlighting the section’s borders. This
can be seen in the Image 4.3.

4.5.2 Contributions
Users can influence further development of glub by reporting wrong test results or submitting
library requests. To encourage users to take these actions, they are present on the website right
next to buttons for project generation. Users will be redirected to a form for submitting a new
issue. These templates state what information is expected to be present in the issue in order to
be accepted. Template issue for incorrect test results is in the Image A.2 and library request is
in the Image A.3.

For contributors that would like to integrate a library into glub, Wiki pages in the repository
will be helpful. Wiki pages contain detailed information on the keywords substitution in the
templates, a list of available keywords, and an example of the library integration process. Readme
files of the glub and glub-web repositories contain information on running glub on the local
machine.

42 Implementation

Chapter 5

Conclusion

The motivation for creating glub was the lack of solutions for a simple compilation of OpenGL
applications. Even though glub fulfills the requirements for an efficient compilation tool, it can
not be determined if it solved all the existing issues with OpenGL compilation, as user feedback
and usage statistics are not available as of yet. However, glub can still be compared to other
solutions that programmers use. Visual Studio provides a GUI for configuring the compilation
and linking of libraries. Because of the number of available compilation configurations, the GUI
becomes obscure and also requires the user to know how the library should be compiled and
linked. This solution is obviously limited only to programmers that use the Visual Studio IDE
for the development. Anyone else that would decide to contribute to the project would have to
configure the compilation themselves or use the Visual Studio IDE.

Some of the programmers share their project templates that are able to compile an OpenGL
project with predefined libraries, usually configured with CMake. Most of the templates still
require the user to download the required libraries or change the configuration if any library
should be removed or added. Configuring the project by using GUI tools like Visual Studio or
searching for the already created template are inefficient ways of OpenGL project configuration
compared to using glub. With glub, it is possible to generate a configuration with only a
few clicks. No knowledge of how the included libraries are compiled and linked is required.
Also, the user does not even have to download the libraries manually, the generated project
will automatically download everything needed. Libraries can be easily added or removed, the
selection is limited only to libraries integrated into glub. However, if a popular library is missing,
the user can submit a library request or integrate the library by following the contribution
guidelines. Since the compilation configuration can be generated through a web service, it is not
limited to programmers using only a specific set of development tools.

Creating a tool like glub is a task that needs to be broken down into smaller objectives. It
was important to analyze available technologies for building glub, especially the technology used
for the compilation configuration. In the chapter 2 technologies for each component of glub were
analyzed, and CMake was determined as the most viable technology for configuring the compila-
tion process. Chapter 3 defines how the user will interact with glub and communication of glub’s
components with each other. Following the designs from chapter 3, all of the components were
implemented. Details of the implementation process are described in chapter 4. The structure
of templates used for the generation of compilation configuration was defined in a way that al-
lows simple library maintenance and addition. REST API that uses these templates to generate
compilation configurations and projects requested by users was implemented with Deno. The
REST API is currently deployed via Deno Deploy and serves requests on https://glub.deno.dev/.
Deployed REST API is used to generate projects for the test environment, which is running on
GitHub Actions and verifies that various libraries and library versions are working together. The

43

44 Conclusion

test results from the test environment and endpoints that the REST API provides are utilized
by a website built with the Svelte framework, which currently serves as an interface that users
can use to generate an OpenGL project on https://glub.drgy.dev/. Source code of all the glub
components is freely available on GitHub, containing user guides and documentation for library
integration, which allows users to integrate their favorite OpenGL libraries into glub.

All of the crucial objectives are fulfilled, and glub is available for all the OpenGL programmers
on https://glub.drgy.dev/. The success of glub depends on the number of people that decide to
use it and maintain the libraries. The hope is that glub will become helpful for many people,
which will, in return, update outdated integration of libraries or integrate libraries that they use.
To better blend into user’s workflows, glub will be available as a plugin to popular IDEs in the
future. Thanks to the practical design, creating a glub plugin will not be difficult, as all the
necessary data can be retrieved from the REST API. If glub becomes a popular tool amongst
OpenGL programmers, it is extendable to support other graphical APIs like Vulkan or DirectX.

Appendix A

Images

Figure A.1 Collection of questions related to OpenGL compilation

45

46 Images

Figure A.2 Issue template for submitting an incorrect test result

Figure A.3 Issue template for submitting a library request

Bibliography

[1] G. Sellers, J. Richard S. Wright, and N. Haemel, OpenGL Superbible: Comprehensive Tu-
torial and Reference, Seventh Edition. New Jersey, USA: Pearson Education, Inc., 2016,
isbn: 9780672337475.

[2] JetBrains s.r.o., The IntelliJ Platform, 2022. [Online]. Available: https : / / plugins .
jetbrains.com/docs/intellij/intellij-platform.html.

[3] Microsoft Corporation, Visual Studio Code - Extension API, 2022. [Online]. Available:
https://code.visualstudio.com/api.

[4] Free Software Foundation, Inc., GNU Make manual, 2022. [Online]. Available: https :
//www.gnu.org/software/make/manual/make.html.

[5] Kitware, Inc., CMake, 2022. [Online]. Available: https://cmake.org/.
[6] Laravel LLC, Laravel documentation, 2022. [Online]. Available: https://laravel.com/

docs/9.x.
[7] StrongLoop, Express, 2022. [Online]. Available: https://expressjs.com/.
[8] L. Casonato, R. Dahl, et al., Deno, 2022. [Online]. Available: https://deno.land/.
[9] Django Software Foundation, Django, 2022. [Online]. Available: https://www.djangoproject.

com/.
[10] R. M. França, A. Patterson, et al., Ruby on Rails documentation, 2022. [Online]. Available:

https://api.rubyonrails.org/.
[11] Fly.io LLC, Fly.io, 2022. [Online]. Available: https://fly.io/.
[12] Clever Cloud, Clever Cloud, 2022. [Online]. Available: https://www.clever-cloud.com/.
[13] L. Casonato, R. Dahl, et al., Deno Deploy, 2022. [Online]. Available: https://deno.com/

deploy.
[14] M. Blumenkrantz, A. Rosenzweig, E. Anholt, M. Oľsák, et al., Mesa documentation, 2022.

[Online]. Available: https://docs.mesa3d.org/index.html.
[15] M. Logan, GitHub Actions Runners, 2022. [Online]. Available: https://www.trendmicro.

com/vinfo/us/security/news/cybercrime-and-digital-threats/github-action-
runners-analyzing-the-environment-and-security-in-action.

[16] GitHub, Inc., GitHub Actions documentation, 2022. [Online]. Available: https://docs.
github.com/en/actions.

[17] Circle Internet Services, Inc., CircleCI documentation, 2022. [Online]. Available: https:
//circleci.com/docs/.

47

https://plugins.jetbrains.com/docs/intellij/intellij-platform.html
https://plugins.jetbrains.com/docs/intellij/intellij-platform.html
https://code.visualstudio.com/api
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://cmake.org/
https://laravel.com/docs/9.x
https://laravel.com/docs/9.x
https://expressjs.com/
https://deno.land/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://api.rubyonrails.org/
https://fly.io/
https://www.clever-cloud.com/
https://deno.com/deploy
https://deno.com/deploy
https://docs.mesa3d.org/index.html
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/github-action-runners-analyzing-the-environment-and-security-in-action
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/github-action-runners-analyzing-the-environment-and-security-in-action
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/github-action-runners-analyzing-the-environment-and-security-in-action
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://circleci.com/docs/
https://circleci.com/docs/

48 Bibliography

[18] Database Mart LLC, VPS Mart - GPU VPS, 2022. [Online]. Available: https://www.vps-
mart.com/gpu-server.

[19] R. Harris, Svelte documentation, 2022. [Online]. Available: https://svelte.dev/docs.
[20] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical Object-Oriented Anal-

ysis and Design, Second Edition. New Jersey, USA: Pearson Education, Inc., 2005, isbn:
9780321321275.

[21] R. Świdziński, Modern CMake for C++. Birmingham, UK: Packt Publishing Ltd., 2022,
isbn: 9781801070058.

[22] The Khronos Group Inc., Khronos OpenGL documentation, 2022. [Online]. Available: https:
//www.khronos.org/opengl/wiki/Main_Page.

https://www.vps-mart.com/gpu-server
https://www.vps-mart.com/gpu-server
https://svelte.dev/docs
https://www.khronos.org/opengl/wiki/Main_Page
https://www.khronos.org/opengl/wiki/Main_Page

Contents of attachment

glub...REST API source code
.github

ISSUE TEMPLATE.......................................templates for GitHub issues
workflows..GitHub Actions source code

data
default.......................................code snippets for project generation
libraries ... library specific code snippets
CMakeLists.txt...template for generation
compatibility.json..test results

src...REST API implementation
tests..scripts used by test environment
README.md................................... instructions for running glub API locally

glub-web..web interface source code
.github

workflows..GitHub Actions source code
src ... glub website implementation
static...static resources for glub website
README.md................................instructions for running glub website locally

glub.wiki.............................contribution guides from glub’s GitHub repository
thesis.pdf .. thesis document

49

	Acknowledgments
	Declaration
	Abstract
	Abbreviation list
	Introduction
	Analysis
	OpenGL build tools
	IDE build tools
	GNU Make
	CMake
	Custom build tool
	Overview

	REST API technologies
	PHP & Laravel
	Node.js & Express
	Deno & oak
	Python & Django
	Ruby on Rails
	Overview

	REST API hosting
	Fly.io
	Clever Cloud
	Deno Deploy
	Overview

	Test environment
	GitHub Actions
	CircleCI
	VPS
	Overview

	Web framework
	Functional requirements
	Backend
	Web interface
	Community tools

	Non-functional requirements

	Design
	Workflows within glub
	Use cases
	Wireframe
	Backend
	Endpoints
	Domain model

	Implementation
	Generation templates
	Bare CMakeLists.txt template
	Basic OpenGL project template
	Library integration
	Template structure

	Project generation
	Data structure
	REST API implementation

	Testing
	Frontend
	Documentation
	User guides
	Contributions

	Conclusion
	Images
	Contents of attachment

