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Abstrakt / Abstract

Univerzální optimalizátory jsou prak-
tické nástroje, které mohou být apli-
kovány na celou řadu problémů za
předpokladu, že se tyto problémy dají
modelovat příslušným formalismem. V
této práci je navržen heuristický opti-
malizátor založený na metaheuristikách
a lokálním vyhledávání. Lze ho využít
na jakýkoliv problém kombinatorické
optimalizace, jehož řešení lze zapsat
jako seřazenou sekvenci potenciálně
opakujících přirozených čísel libovolné
délky (např. permutaci nebo variaci s
opakováním). Navržený optimalizátor
se ukázal být efektivnější než Gurobi
Optimizer na problémech Capacitated
Vehicle Routing, Quadratic Assignment
a Non-permutation Flowshop ve smyslu
škálovatelnosti a kvality řešení za stej-
ných podmínek. Naopak v Sudoku si
lépe počínal Gurobi Optimizer.

Klíčová slova: kombinatorická opti-
malizace; metaheuristiky; lokální vyhle-
dávání; univerzální optimalizátory;

General-purpose optimizers are con-
venient tools that can be applied to
wide classes of problems, given that
these problems can be modeled using a
given formalism. This thesis proposes
a general-purpose heuristic solver based
on neighborhood-oriented metaheuris-
tics. It can be used on any combinato-
rial problem whose solution can be rep-
resented as an ordered sequence of po-
tentially recurring nodes with arbitrary
length (e.g. permutation/variation with
repetition). The proposed solver proved
to outperform the commercial Gurobi
Optimizer on Capacitated Variable
Neighborhood, Quadratic Assignment,
and Non-permutation Flowshop prob-
lems in terms of scalability and solution
quality given the same computational
budget. However, it could not outper-
form Gurobi in Sudoku.

Keywords: combinatorial optimiza-
tion; metaheuristics; local search;
general-purpose optimizer;
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Chapter 1
Introduction

Combinatorial optimization problems (COPs) represent a vast group of problems that
play a vital role in many different scientific fields. From obvious applications in schedul-
ing [1] and transportation [2] to less apparent applications in computer vision, including
object tracking [3], matching [4], medical imaging [5], or 3D-scene reconstruction [6].

While some of these problems can be solved in polynomial time, many practical
COPs belong to the infamous NP-Hard complexity class. This thesis focuses on general-
purpose optimization methods that can be applied to large groups of NP-Hard COPs.
Many versatile solvers exist, but they are usually much slower than other algorithms
explicitly designed for a given problem. For example, considering the famous Traveling
Salesman Problem (TSP), recent experimental results show that using the Gurobi IP
solver, one can find the optimum for an instance of 229 nodes in approximately three
hours [7]. In opposition, there is a software called Concorde explicitly designed for
solving TSP, and the authors claim on their website that it can solve the same instance
in 38.61 seconds [8]. Of course, these experiments were conducted on non-identical
setups, but that does not undermine the fact that the computation times were different
by three orders.

Sometimes it is needed to solve much larger instances than exact algorithms can in a
reasonable amount of time, so a different approach is required. One option would be to
abandon any guarantees on the quality of the solution and use metaheuristics. Meta-
heuristics are problem-independent strategies that orchestrate cooperation between var-
ious optimization procedures that are usually problem-specific [9]. A metaheuristic al-
gorithm or solver is a particular implementation exploiting the metaheuristic paradigm.
Creating a metaheuristic algorithm tailored to one particular problem can be very time-
consuming. For this reason, it is challenging research goal to develop a general-purpose
metaheuristic solver that would play a similar role to heuristics as IP solvers for exact
algorithms. Such solvers already exist, but they are limited to a common solution repre-
sentation, e.g., permutations, binary, integer, or real vectors, or to modeling paradigms,
such as Integer Programming (IP) or Constraint Programming (CP).

This thesis aims to propose a neighborhood-oriented metaheuristic solver and com-
pare its performance to the IP Gurobi solver on four different NP-hard problems.
Namely, Capacitated Vehicle Routing Problem (CVRP), Quadratic Assignment Prob-
lem (QAP), Non-Permutation Flowshop (NPFS), and Sudoku. The proposed solver is
capable of dealing with problems with dynamic permutative solution representation.
Dynamic permutative representation means that the solution is represented by an or-
dered sequence of potentially recurring nodes and that the length of the permutation
may change during the optimization. The neighborhood-oriented approach is expected
to exploit problem structure while preserving versatility and scalability. Gurobi was
chosen because it is also a multipurpose tool, and this thesis intends to show that
the proposed metaheuristic solver can outperform the exact solver in terms of solution
quality given a limited amount of time.
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Chapter 2
Literature review

In the first section of this chapter, some basic terminology is presented regarding the
types of algorithms used for combinatorial optimization. The second part provides an
overview of general-purpose tools used for solving broad groups of COPs, usually based
on a common problem or solution representation.

All optimization algorithms can be classified into one of three main groups of algo-
rithms: Exact, approximation, and heuristic; see Figure 2.1 for reference. The figure
is not by any means an exhaustive list of algorithms. Instead, it presents some of the
most famous algorithms as a typical representatives of each algorithm type.

Exact algorithms always guarantee to find the optimal solution. Branch-and-bound
and cutting planes are some of the exact algorithms one can use to solve IP. Another
example is breadth-first-search or its improved version Backtracking used in Constraint
Programming [10]. The downside of using exact algorithms is very poor scalability for
solving NP-Hard problems, and so they are used only for small instances.

Approximation algorithms try to deal with NP-hard problems in a more efficient
way in the terms of computation budget. Assuming that P≠NP, a broad class of
optimization problems, cannot be solved optimally in polynomial time. Approximation
algorithms are polynomial algorithms that can find an approximate solution while also
providing a guarantee regarding the quality of that solution. Usually, the guarantee of
such algorithms is expressed as a multiplicative factor, meaning the optimal solution
is always guaranteed to be within a multiplicative factor of the produced solution.
Sadly development of an approximation algorithm is problem-specific and cannot be
generalized. A famous example is Christofides’ algorithm for TSP, which guarantees
that its solutions will be within a factor of 3/2 of the optimal solution [11].

Heuristic algorithms seek for high quality solutions at a reasonable computational
time, but can not guarantee that a problem will be solved in terms of obtaining the exact
solution. They can be used as a stand-alone method, but they are also sometimes used in
exact algorithms to provide an upper bound on solution quality. Some implementations
of already mentioned Branch-and-bound use a heuristic to choose which branch to
explore the first [12].

There are several ways for heuristics classification. Regarding the number of can-
didate solutions handled in each step, heuristics are classified into single-solution and
population-based. Single-solution keep only the best candidate solution. In each iter-
ation, the algorithms search through the candidate’s neighborhood. Then it replaces
the candidate with another, often the best, solution found. Famous single-solution
heuristics include Variable Neighborhood Search [13] and Iterated Local Search [14].
Population-based, on the other hand, maintain a set of candidate solutions and per-
form search in multiple parts of solution space. Evolutionary Algorithms (EA) [15] are
notable representatives of population-based heuristics.

Regarding whether the algorithm maintains some kind of memory of previous steps,
heuristics can be divided into memory-based and memory-less. Memory can serve as a

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 General-purpose optimization paradigms

Figure 2.1. Classification of the combinatorial optimization algorithms.

prevention against stepping into already explored solutions (Tabu Search [16]), or as a
learning mechanism (Ant Colony Optimization [17]).

Another property of heuristic is whether it is a constructive or local search. Construc-
tive start from an empty solution and append it in every iteration until the complete
solution is generated. On the other hand, local search heuristics begins with some ran-
dom initial solution, and then it searches the solution space making local changes to
the previous solution.

Essential property of any algorithm is whether it is deterministic or stochastic. De-
terministic algorithms follow a rigorous procedure. Their progress and final results are
repeatable, meaning they perform precisely the same search in every algorithm run for
a given instance and parameters. A classical example of a deterministic heuristic is
Nearest Neighbor algorithm for TSP.

On the other hand, stochastic algorithms always have some randomness in them.
Evolutionary Algorithms are a good example. EA represent a broad set of population-
based optimization approaches. As the name suggests, they take inspiration from bio-
logical processes, like mutation, recombination, and selection. The solution candidates
in the population will be different each time the algorithm is executed since EAs use
random number generators to simulate recombination and mutation. Though the final
result may be similar or even same, the paths to each result are probably different.
[18–19]. Another popular stochastic heuristic is Simulated Annealing [20], which ran-
domly accepts suboptimal candidates to escape local optimum.

2.1 General-purpose optimization paradigms
In this thesis, the word paradigm means a problem formulation and solution search
pattern. A solver is a particular software that employs such a paradigm. This section
discusses the most renowned general-purpose paradigms for COPs and some algorithms
that are used in solvers that exploit these paradigms.

3



2. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the first two subsections, Integer Programming and Constraint Satisfaction Prob-

lem paradigms are introduced as well as the most generic exact algorithms that solve
them. The third section is focused on multipurpose metaheuristic solvers, some of
which are used as an alternative to the exact algorithms for integer programming and
constraint satisfaction. The last section discusses transformation of COPs into other
well-studied COPs with efficient problem-specific solvers. Rather than optimization
paradigm, it is an important concept allowing reusability of solvers and should also be
considered as a solution approach.

2.1.1 Integer Programming

Probably the most renowned paradigm in combinatorial optimization is Integer Pro-
gramming (IP). It has gained popularity because of the versatility of the integer pro-
gram formulation and because there are efficient algorithms that can solve it. If the
objective function and constraints of the program are linear, it is called Integer Linear
Program (ILP), and it can be formulated as the following minimization problem:

min: 𝑓(𝑥) = 𝑐𝑇𝑥
subject to: 𝐴𝑥 ≤ 𝑏

where: 𝑥 ∈ ℤ𝑛
+

𝐴 ∈ ℝ𝑛×𝑚

𝑏 ∈ ℝ𝑚

𝑐 ∈ ℝ𝑛 (2.1)

A special case, when all the optimization variables 𝑥 are restricted to a value of ei-
ther zero or one, is called 0-1 Linear Programming. Another commonly used term
is Mixed Integer Linear Program (MILP), which stands for linear programs that have
some optimization variables 𝑥 real and some are integers.

Another practical type of IP is Integer Quadratic Program (IQP), that is, integer
program that has quadratic objective function. Nonlinear constraints can make the
problem much harder. In fact integer programming with quadratic constraints is unde-
cidable, i.e., there cannot exist an algorithm to solve this problem [12].

All these types of ILP are mentioned here to demonstrate how versatile it really is.
Because ILP and 0-1 linear programs are special cases of MILP, they can all be solved
using one solver, e.g., Gurobi, CPLEX, or many others. Most generic implementations
of solvers are based on branch-and-bound (B&B) and simplex algorithms. In fact, some
variant of B&B is also used in Gurobi that was used as a comparison to the proposed
solver.

The simplex method is the most commonly used algorithm for solving linear pro-
grams, i.e., programs that have linear constraints and objective functions, but the
optimized variables are real, not integers. It has exponential worst-case complexity,
but amazingly, it was shown to converge in expected polynomial time on various dis-
tributions of random inputs. This fact makes it very useful in practice [21].

At first sight, it might seem that dealing with ILPs might be easier than with LPs
since the set of possible solutions is smaller. Unfortunately, the opposite is true. ILPs
are NP-hard. But fortunately, we can exploit the simplex method to solve ILP faster.

The relaxation of 𝐼𝐿𝑃𝑅 is a linear program that has the same objective function and
constraints as the original ILP, but the domain of optimized variables is changed to real
numbers 𝑥. Since possible solutions of the original ILP are a subset of its relaxation, it

4
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means that 𝑂𝑃𝑇 (𝐼𝐿𝑃𝑅) ≤ 𝑂𝑃𝑇 (𝐼𝐿𝑃). Therefore we can use simplex to find a lower
bound (LB) of the original ILP [22].

Branch-and-bound is an exact deterministic algorithm that utilizes a tree data struc-
ture for candidate solution set exploration. The root node represents the whole set of
solutions. At every iteration, B&B splits into branches of solution subsets. The algo-
rithm solves relaxation in every node to find the lower bound for the current branch
[12]. Each branch’s lower bound is checked against the global upper bound (GUB),
and if the 𝐿𝐵 > 𝐺𝑈𝐵, the whole branch is discarded (pruned) [22]. because it cannot
lead to the optimal solution. If the optimum of the current node is an integer for all
𝑥𝑖 ∈ 𝑥, feasible solution is found and the node is not further branched. It is also used
to update GUB if applicable.

This is the most generic version of B&B, but definitely not the only one. There are
several issues which need attention and which can improve performance of the algorithm
significantly [22], like search strategy [23], i.e., the order in which nodes are explored,
the branching strategy [24], i.e., how the solution space is partitioned to create new
nodes in the tree, and the pruning rules [25], i.e., rules that prevent visiting branches
that can’t contain optimal solution. Currently, the most successful method for solving
integer programs is branch-and-cut. It is obtained by adding a cutting-plane step to
tighten the lower bound before every branching step. For more details consult [12].

2.1.2 Constraint Satisfaction Problem
The constraint satisfaction problem (CSP) is a powerful paradigm for solving combi-
natorial problems based on constraints. A constraint is a logical relation between one
or more variables, each taking a value in a given finite domain. The idea of CSP is
that the user defines a set the constraints and a general-purpose constraint satisfaction
solver, like CPLEX[26] or Gecode[27], is used to find a solution that satisfies all of them.
Formally CSP is a triple ⟨𝑋, 𝐷, 𝐶⟩, where

𝑋 = ⟨𝑋1, . . . , 𝑋𝑛⟩ is a set of n discrete variables
𝐷 = ⟨𝐷1, . . . , 𝐷𝑛⟩ is a set of n finite domains such that 𝑋𝑖 ∈ 𝐷𝑖

𝐶 = ⟨𝐶1, . . . , 𝐶𝑡⟩ is a set of t constraints restricting the valid values of 𝑋 (2.2)

and the solution of CSP is n-tuple 𝐴 = ⟨𝑎1, . . . , 𝑎𝑛⟩ where 𝑎𝑖 ∈ 𝐷𝑖 for which each
𝐶𝑗 is satisfied [28]. There are several types of objectives one may pursue using CSP,
e.g., finding any solution, finding all the solutions, and finding an optimal solution
regarding some given objective function. The latter of the three is usually referred to
as the constraint satisfaction optimization problem (CSOP) [29].

The main algorithm for solving CSPs is backtracking search [28]. It is quite similar
to the branch-and-bound algorithm. It is also an exact algorithm that performs a
depth-first search of a gradually generated search tree, where each node represents
an assignment of a value to a variable, and each branch represents a partial solution.
In other words, It builds up partial solutions by choosing values for variables until it
reaches a dead-end, where the partial solution cannot be extended without violating
some constraint. When this happens, it backtracks to the last choice it made and tries
another branch. This is done until the objective is fulfilled, i.e., a feasible or optimal
solution is reached depending on the type of assignment.

Many techniques for improving the efficiency of a backtracking search algorithm have
been suggested and evaluated, including constraint propagation, no-good recording,
back-jumping, heuristics for variable and value ordering, and randomization and restart
strategies [30].

5



2. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CSP is in many ways similar to ILP. If a problem formulation has a linear objective

function and all the constraints in 𝐶 are linear, it can be solved by both CSP and
ILP solvers. The fundamental difference between ILP and CSP is that CSP is not
limited to arithmetic constraints (equalities and inequalities), but can use any relation
𝑅 ⊆ 𝐷1 × . . . × 𝐷𝑛.

An important type of constraint is a so-called global constraint. A global constraint
is a single constraint that represents a highly structured set of constraints. An example
would be an alldifferent constraint that requires a set of variables to take distinct values.
It simplifies the problem formulation as it represents a large set of equations while at
the same time solvers can take advantage of the special structure of the constraint and
therefore can be implemented much more efficiently [31].

2.1.3 Metaheuristic solvers

Metaheuristics are a group of very flexible paradigms that can be used to design heuris-
tics for virtually any combinatorial optimization problem. They are higher-level strate-
gies that combine one or more optimization procedures, typically heuristic but might
be exact as well, and other methods capable of escaping from the local optima trap and
performing a robust search of a solution space [9, 32].

This flexibility also comes at a cost: Researchers usually spend a large amount of
time properly designing and tuning their metaheuristic. As observed in many published
papers, designing an efficient metaheuristic requires a lot of intuition on the part of the
metaheuristic designer [33].

Fortunately, there are some solvers that exploit metaheuristic paradigms while pre-
serving various levels of generality. One of the most notable metaheuristic solvers is
LocalSolver. It is commercial software that does not rely on a single optimization
approach. It combines several exact and heuristic methods dynamically during the
computation. Similar to an ILP solver, “LocalSolver searches for feasible or optimal so-
lutions, computes lower bounds and optimality proofs, and can prove the inconsistency
of an optimization model. But LocalSolver not only achieves this on linear models but
also on highly nonlinear and combinatorial models, involving high-level expressions like
collection variables, arrays, or even external functions” [34].

Another interesting solver is OptaPlanner. It is an open source competitor to Lo-
calSolver developed by Red Hat. “OptaPlanner combines sophisticated Artificial In-
telligence optimization algorithms (such as Tabu Search, Simulated Annealing, Late
Acceptance and other metaheuristics) with very efficient score calculation and other
state-of-the-art constraint solving techniques for NP-complete or NP-hard problems”
[35].

Evolutionary algorithms are a set of metaheuristic population-based optimization
paradigms. There are frameworks that have implemented most popular EAs and let user
define new ones, such as Evolutionary Computation Framework (ECF) [36], Distributed
Evolutionary Algorithms in Python (DEAP) [37], Evolving Objects [38], and many
more. These frameworks let’s user define a fitness function, i.e., equivalent of objective
function in IP, and choose a genotype, i.e., candidate solution representation. This
representation is usually either binary vector, real vector, permutation or a tree-like
data structure.

A less versatile yet powerful solver is LKH-3 [39]. It is an extension to the efficient Lin-
Kernighan-Helsgaun TSP solver (LKH) [40]. “LKH is powerful local search heuristic for
the TSP based on the variable depth local search. LKH has produced optimal solutions
for all solved problems we have been able to obtain; including an 85,900-city instance.”
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[41] LKH-3 extends the original LKH with the possibility to handle constraints and
multiple traveling salesmen which increases the number of problems it can solve to 39.
However, they are all variations of TSP and Vehicle Routing Problem (VRP) [39].

2.1.4 Transformations to Fundamental Combinatorial
Optimization Problems

Another important solution approach is to make use of an efficient problem-specific
solver by transforming the given optimization problem into the problem that was the
solver designed for. This option should be considered before using a general-purpose
solver as specialized solver will most probably offer better results in terms of computa-
tion time and solution quality. For example, Flow Shop Scheduling Problem (FSSP) is
a famous scheduling problem that can be transformed and solved by TSP solver.

The goal of Traveling Salesman Problem is to find Hamiltonian cycle in an undirected
weighted graph that minimizes the sum of distances (weights) of the edges in the cycle.
Instance of TSP can be represented as distance matrix.

FSSP can be briefly described as problem of assigning processing order of N jobs to
M machines where each job consists of M operations. All jobs have the same processing
operation order when passing through the machines but can have different processing
time. The order of jobs must be the same on each machine. The goal of FSSP is to
find such ordering that minimizes the makespan, i.e., total processing time [42].

To formulate FSSP as TSP, it is necessary to formulate FSSP using distance matrix.
To do this, distance can be defined as processing times of both jobs in a following
manner: “The distance 𝐷𝑎,𝑏 is a measure of increase of makespan if job 𝑏 is scheduled
after job 𝑎, taking into account only jobs a and b.”[43]

Another well known example of problem transformation is the Noon-Bean transfor-
mation [44] which can be used to model the General Traveling Salesman Problem as a
standard Traveling Salesman Problem.
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Chapter 3
Methodology

This chapter describes the proposed metaheuristic solver. It also discusses four problems
that were used for its benchmarking, specifically Capacitated Vehicle Routing Problem
(CVRP), Quadratic Assignment Problem (QAP), Non-Permutation Flowshop (NPFS),
and Sudoku. These four problems were selected because their formulations in the
proposed solver are markedly different. But more to that later in this chapter.

The first section of this chapter provides the formal definition of the group of problems
that the proposed solver can address. Additionally, it introduces the four benchmark-
ing problems. The second section describes the generic part of the solver, i.e., the
segment of the solver that facilitates the optimization based only on fitness function
and bounds vectors. It is a neighborhood-oriented framework that offers users to choose
from multiple popular local search algorithms. The last section demonstrates how can
the four problems be formulated and implemented in the proposed solver framework.
Furthermore, it presents MILP formulations used for the comparison with the Gurobi
optimizer.

3.1 Problem definitions

3.1.1 Generic problem definition
The proposed solver addresses problems that can be defined as follows:

Given set of nodes: 𝐴 = {1, . . . , 𝑛}, 𝐴 ⊂ ℤ+ (3.1)
and bounds: 𝐿𝐵 = [𝑙1, 𝑙2, . . . , 𝑙𝑛], 𝐿𝐵 ∈ ℤ𝑛

+ (3.2)
𝑈𝐵 = [𝑢1, 𝑢2, . . . , 𝑢𝑛], 𝑈𝐵 ∈ ℤ𝑛

+ (3.3)
Minimize fitness function: 𝑔(𝑋) : 𝐴𝑚 → ℝ (3.4)

where: 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑚], 𝑋 ∈ 𝐴𝑚 (3.5)
𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑛], 𝐹 ∈ ℤ𝑛

+ (3.6)

𝑓𝑖 =
𝑛

∑
𝑗=1

⟦𝑥𝑗 = 𝑎𝑖⟧, ∀𝑖 ∈ [1, 𝑛] (3.7)

𝑙𝑖 ≤ 𝑓𝑖 ≤ 𝑢𝑖, ∀𝑖 ∈ [1, 𝑛] (3.8)

In other words, given a set of nodes 𝐴 with two vectors of upper bounds 𝑈𝐵 and lower
bound 𝐿𝐵, find a vector 𝑋 that minimizes fitness function 𝑔 while also enforcing node
frequency 𝑓𝑖 to be between bound 𝑙𝑖 and 𝑢𝑖 for every node. Frequency 𝑓𝑖 represents a
number of the nodes 𝑎𝑖 in the solution 𝑋. The fitness function 𝑔 does not need to be
linear or quadratic, as is the case with ILP, but instead can be an arbitrary function
𝐴𝑚 → ℝ. Vector 𝑋 can be a permutation, permutation with repetition, variation,
variation with repetition, or virtually any vector of whole numbers. It can also have
variable length when 𝐿𝐵 ≠ 𝑈𝐵.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Problem definitions

3.1.2 Capacitated Vehicle Routing Problem
Vehicle Routing Problem (VRP) is a generalization of TSP and was first proposed by
George Dantzig, and John Ramser in 1959 [45]. Formally it can be defined [46] as:
Definition 3.1. Let 𝐺 = (𝑉 , 𝐸) be a graph where 𝑉 = {0, 1, 2, . . . , 𝑛 − 1} is a set of
nodes (e.g. customers) and 𝐸 is a set of edges 𝑒 = {𝑖, 𝑗}, 𝑖 ≠ 𝑗 with assigned weight
𝑐𝑒 (e.g. travel cost). Additionally, assume that the available vehicles are based at the
depot 𝐷 ∈ 𝑉. VRP consists of designing a set of routes in such a way that:. Sum of the routes cost is minimized.. Each customer in 𝑉 \ 𝐷 is visited exactly once by exactly one vehicle.. All vehicle routes start and end in the depot.

Capacitated Vehicle Routing Problem (CVRP) is VRP with capacity constraints. In
this specific case, every customer 𝑖 has some quantity demand 𝑞𝑖 ≥ 0 and every vehicle
has capacity 𝑄 > 0. To satisfy the constraint, the sum of demands in each route must
be less or equal to the vehicle’s capacity assigned to this route. By associating a binary
variable 𝑥𝑒 with each edge 𝑒 in the graph and assuming that depot 𝐷 = 0, we obtain
the following formulation [47]:

min ∑
𝑒∈𝐸

𝑐𝑒𝑥𝑒

∑
𝑒={0,𝑗}∈𝐸

𝑥𝑒 = 2𝑘 (3.9)

∑
𝑒={𝑖,𝑗}∈𝐸

𝑥𝑒 = 2, ∀𝑖 ≠ 𝑗 ∈ 𝑉 (3.10)

∑
𝑒={𝑖,𝑗}∈𝐸

𝑥𝑒 ≥ 2𝑏(𝑆), ∀𝑆 ⊂ 𝑉 , |𝑆| > 1, 𝑖 ∈ 𝑆, 𝑗 ∉ 𝑆 (3.11)

𝑏(𝑆) = ⌈
∑𝑖∈𝑆 𝑞𝑖

𝑄
⌉, (3.12)

where Equations (3.9) and (3.10) are degree constraints and Equations (3.11) and
(3.12) enforce the connectivity of the solution, as well as that no route has total demand
exceeding the capacity 𝑄. Figure 3.1 shows an example instance of CVRP.

Figure 3.1. Capacitated Vehicle Routing Problem example [48].
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3.1.3 Quadratic Assignment Problem

Quadratic Assignment Problem (QAP) is a famous combinatorial problem that was
first introduced by Koopmans and Beckmann in 1957 [49]. QAP can be described as
a problem of assigning 𝑛 facilities to 𝑛 locations, with a cost function given by the
product of distance and flow between the facilities. The objective is to minimize the
cost function [2].
Definition 3.2. We are given two matrices 𝐹 = (𝑓𝑖𝑗), 𝐷 = (𝑑𝑘𝑙) ∈ ℝ𝑛×𝑛, where 𝑓𝑖𝑗 is
the flow between the facilities i and j and 𝑑𝑘𝑙 is the distance between the locations k
and l. Problem QAP(𝐹 , 𝐷) can be mathematically formulated as:

𝑚𝑖𝑛
𝜑∈𝑆𝑛

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑓𝑖𝑗𝑑𝜑(𝑖)𝜑(𝑗), (3.13)

where 𝑆𝑛 is a set of all possible permutations 𝜑 of the vector [1, 2, . . . , 𝑛], where 𝜑(𝑖)
represents assigning the facility 𝑖 to the location 𝜑(𝑖). [50]. Figure 3.2 instance of QAP
with four locations and facilities.

Figure 3.2. Quadratic Assignment Problem.

3.1.4 Non-Permutation Flow Shop

In Non-Permutation Flow Shop Problem (NPFS) we are given a set of 𝑚 machines 𝑀 =
{𝑚1, 𝑚2, . . . , 𝑚𝑚} and 𝑛 jobs 𝐽 = {𝑗1, 𝑗2, . . . , 𝑗𝑛}. We are also given the processing
times 𝑝𝑖𝑗, which denote how long the machine 𝑚𝑖 need to process the job 𝑗𝑗. The goal
of NPFS is to find job ordering for every machine that results in minimal makespan
𝐶𝑚𝑎𝑥. Makespan is the time at which the last machine 𝑚𝑚 finishes the last of its jobs.
A valid NPFS solution must also satisfy the following conditions [51]:

. Each machine must process each job without interruption.. At most one machine can process any job at any given instant.. Jobs must finish on machine 𝑚𝑖 before the start of the processing on machine 𝑚𝑖+1.

Definition 3.3. We are given a number of machines 𝑚 and jobs 𝑛 and a matrix 𝑃 = (𝑝𝑖𝑗),
𝑃 ∈ ℝ𝑚×𝑛, where 𝑝𝑖𝑗 is the processing time of job 𝑗𝑗 on machine 𝑚𝑖. Lets denote 𝑥𝑖𝑗
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the starting time of job 𝑗𝑗 on machine 𝑚𝑖. NPFS can be mathematically formulated as
an MILP [52]:

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

𝑠.𝑡. 𝑥𝑚𝑗 + 𝑝𝑚𝑗 ≤ 𝐶𝑚𝑎𝑥 ∀𝑗 ∈ {1, . . . , 𝑛} (3.14)
𝑥𝑖𝑗 + 𝑝𝑖𝑗 ≤ 𝑥𝑖+1,𝑗 ∀𝑖 ∈ {1, . . . , 𝑚 − 1}, ∀𝑗 ∈ {1, . . . , 𝑛} (3.15)
𝑥𝑖𝑗 + 𝑝𝑖𝑗 ≤ 𝑥𝑖𝑗′ + 𝑀(1 − 𝑦𝑖𝑗𝑗′) ∀𝑖 ∈ {1, . . . , 𝑚}, ∀𝑗 ≠ 𝑗′ ∈ {1, . . . , 𝑛} (3.16)
𝑦𝑖𝑗𝑗′ + 𝑦𝑖𝑗′𝑗 = 1 ∀𝑖 ∈ {1, . . . , 𝑚}, ∀𝑗 ≠ 𝑗′ ∈ {1, . . . , 𝑛} (3.17)
𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ {1, . . . , 𝑚}, ∀𝑗 ∈ {1, . . . , 𝑛} (3.18)
𝑦𝑖𝑗𝑗′ ∈ {0, 1} ∀𝑖 ∈ {1, . . . , 𝑚}, ∀𝑗 ≠ 𝑗′ ∈ {1, . . . , 𝑛} (3.19)

where 𝑦𝑖𝑗𝑗′ is a binary variable that represents that the job 𝑗𝑗 precedes job 𝑗𝑗′ on
machine 𝑚𝑖.

In figure 3.3 you can see an optimal solution to the NPFS instance of 6 jobs on 6
machines given by processing time matrix in (3.20) computed using the Gurobi Opti-
mizer.

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 2 2 3 1
3 2 3 1 2 2
2 4 3 4 2 3
3 2 3 2 1 1
3 2 2 1 4 2
2 1 2 1 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.20)

Figure 3.3. Non-Permutation Flowshop Problem example.

3.1.5 Sudoku
Sudoku is a logic-based puzzle designed by Howard Garns. To solve the puzzle, the
player must fill in an 𝑛 × 𝑛 matrix so that each row, column, and 𝑚 × 𝑚 submatrix
contains each integer 1 through 𝑛 exactly once. The most common version of Sudoku is
𝑛 = 9, 𝑚 = 3. However, size 𝑚 can be any positive integer and 𝑛 must satisfy equation
𝑛 = 𝑚2. Each instance of Sudoku has some of the matrix fields given, while others
are to be filled by the player. The number of given fields determines the instance’s
difficulty. [53].
Definition 3.4. A general Sudoku is defined [54] as:. a set 𝓢 of 𝑛2 fields (grid squares),. an index set 𝓘 = {1, 2, . . . , 𝑛},. a collection 𝓑 of conjunctive subsets of 𝓢, e.g. rows, columns, and submatrices.

Each set 𝐵 ∈ 𝓑 consists of exactly 𝑛 fields in 𝓢,. an initial assignment 𝓐 = {(𝑝𝑖, 𝑘𝑖), 𝑖 = 1, . . . , 𝑟}, with field 𝑝𝑖 ∈ 𝓢 assigned index
𝑘𝑖 ∈ 𝓘.
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The goal is to assign indices from 𝓘 to the remaining unassigned fields from 𝓢 so

that all sets 𝐵 contain each index from 𝓘 exactly once. A valid Sudoku instance has
only one correct solution. The solution matrix 𝑋 = (𝑥𝑝𝑘), 𝑋 ∈ ℝ𝑛2×𝑛 can be expressed
mathematically as:

∑
𝑘∈𝓘

𝑥𝑝𝑘 = 1, 𝑝 ∈ 𝓢 (3.21)

∑
𝑝∈𝐵

𝑥𝑝𝑘 = 1, 𝐵 ∈ 𝓑, 𝑘 ∈ 𝓘 (3.22)

𝑥𝑝𝑖,𝑘𝑖
= 1, 𝑖 = 1, . . . , 𝑟 (3.23)

where 𝑥𝑝𝑘 is assignment of index 𝑘 to the field 𝑝. Equation (3.21) forces each field
to hold exactly one index. Equation (3.22) ensures that every block contains all the
indices and Equation (3.23) guarantees that the initial assignment will hold in the final
solution. [54]

In Figure 3.4, an example of 9 × 9 Sudoku is shown. This is the most common
𝑛 = 9, 𝑚 = 3 version of Sudoku. Nevertheless, this thesis addresses any kind of square
Sudoku, i.e., the type of sudoku where only subsets represented by rows, columns, and
square submatrices are allowed.

Figure 3.4. Example of unsolved (left) and solved (right) Sudoku [55].

3.2 Proposed framework design
This chapter gives an overview of the proposed solver building blocks. It consists of
two main components: generic solver and problem-specific component. As the name
suggests, the generic solver component is the problem-independent part of the solver.
It contains three classes: Instance, Solution, and Generic Optimizer. For illustration,
see Figure 3.5.

The Instance is an abstract class that defines mandatory properties that every prob-
lem instance must have defined. Those are fitness function 𝑔, number of nodes 𝐴, and
the lower 𝐿𝐵 and upper bounds 𝑈𝐵 of the node frequency 𝐹 in the solution. To ad-
dress a new problem using the proposed solver, a user has to define a new class, which
inherits from this one. It has to set all the mandatory properties and implement a
corresponding fitness function 𝑔.
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Figure 3.5. Proposed solver class diagram.

The solution class holds the solution vector 𝑋 and the frequency vector 𝐹. It also
contains the fitness 𝑔(𝑋) of the solution vector 𝑋 and the information about whether
this solution is feasible or not. Additionally, it has a function that exports the solution
to JSON. The most important class is the Generic Optimizer. It is the optimization
engine that works without the knowledge of the underlying problem with the exception
of the information that is provided through the Instance class, i.e., number of nodes
|𝐴| and vectors 𝐿𝐵, 𝑈𝐵. It contains five main groups of functions. These are operators
(section 3.3.1), perturbations (section 3.3.2), construction strategies (section 3.3.3),
local search strategies (section 3.3.4), and the metaheuristics (section 3.3.5).

The operators form the basis of the optimization engine. They perform the search
in a given neighborhood and return the solution 𝑋 with the best fitness 𝑔(𝑋) inside
of that neighborhood. In the scope of this thesis, neighborhood 𝒩𝑘(𝑋) is defined as
follows:
Definition 3.5. Given a solution space 𝑆 and an operator function 𝜌(𝑋, 𝑖): 𝑆 → 𝑆,
which represents some transformation of the solution 𝑋 ∈ 𝑆. This transformation is
parameterized by a variable 𝑖, defined on some finite domain 𝐷. Neighborhood 𝒩𝑘(𝑋)
of the solutions 𝑋 is a set of candidate solutions 𝜌(𝑋, 𝑖), where 𝑋 is fixed, and 𝑖 takes
any value from its domain 𝐷:

𝒩𝑘(𝑋) = {𝜌(𝑋, 𝑖) ∈ 𝑆| ∀𝑖 ∈ 𝐷} (3.24)

The function 𝜌 can be an arbitrary function that returns a solution 𝑌 ∈ 𝑆. Note that 𝑌
can even be incomplete solution, i.e., Equation (3.8) can be violated for some indices.
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The proposed solver offers ten different operators, like insert, two-opt, move, swap, and
many more.

The perturbations are randomized operators. They are intended to escape the local
optimum by making a random, usually non-improving, selection of a new solution
𝑋 outside of the previously explored neighborhoods. There are six perturbations to
choose from: Double Bridge, Random-Reverse Double Bridge, Reinsert, Random Move,
Random Swap, and Random Move-All.

The construction strategies are functions that are used to generate an initial solution.
There are three types of construction strategies implemented: greedy, random, and
random replicate. Random creates a random solution that satisfies UBs and LBs.
Random replicate generates one permutation of all the nodes and then appends the
solution with the replicas of this permutation until LBs are satisfied. Greedy constructs
the solution iteratively, evaluating fitness after all possible node insertions and inserting
the best node at every step. Therefore the user-defined fitness function must return a
reasonable value even for incomplete solutions.

Local search strategies are functions that select the order in which the neighborhoods
are explored. They perform the exploration until none of the operators are able to find
an improving solution. The proposed solver implements five variations of Variable
Neighborhood Descent (VND): The Basic Variable Neighborhood Descent (BVND),
Pipe Variable Neighborhood Descent (PVND), Cyclic Variable Neighborhood Descent
(CVND), Random Variable Neighborhood Descent (RVND), and Random Pipe Vari-
able Neighborhood Descent (RPVND).

Finally, the metaheuristics are the most high-level functions that make use of all
the other types of functions in the optimizer. The proposed solver implements some
established neighborhood-oriented metaheuristics, namely Iterated Local Search (ILS)
and Basic Variable Neighborhood Search (BVNS). Additionally, an extension to BVNS
called Calibrated Variable Neighborhood Search is proposed later in this chapter. All
these metaheuristics work on a similar basis. First, they generate an initial solution
using one of the construction strategies. Then they iteratively call local search strate-
gies, which search for the local optimum in the selected neighborhoods, i.e., minimizing
fitness using the operator functions. After reaching a local optimum, the current solu-
tion is randomly altered by a perturbation function to escape the local optimum. The
process is repeated until a timeout is reached.

During the optimization, the generic optimizer collects metadata. This includes a
histogram of improving operators’ calls, and a graph of the fitness w.r.t. the elapsed
computation time. Steps in the graph are made after every improving local search call
because there would be too many records if the graph included all the operators as well.

Users can define which components the optimizer invokes in a JSON configuration file.
There are also other parameters that a user should configure, like the number of threads
in which the optimizer should run or the maximum computation time, which is currently
the only end condition for the optimization loop. Another important setting of the
optimizer decides whether the optimizer should accept infeasible solutions after every
perturbation. If not, it would reset the solution to the state before perturbation and
repeat the perturbation until a feasible solution is acquired. Note that the perturbations
are randomized selection functions, and the set of candidate solutions they choose from
is large, so the probability of choosing an already explored solution is low.

The problem-specific component is the part that is implemented by the user. Never-
theless, this is not a tedious process. The amount of work is comparable to formulating
a problem as an ILP or CSP. The user has to implement a problem-specific Instance
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class. It has to initialize the mandatory properties of the abstract Instance class like
𝐿𝐵, 𝑈𝐵 vectors and the fitness function 𝑔(𝑋). The user should also choose a suit-
able configuration for the given problem. The configuration can be tuned either in the
trial-error manner or by some specialized tuning tool like irace [56].

The fitness function 𝑔(𝑋) should return the fitness of a solution 𝑋 and its feasibility.
The fitness function has to be designed efficiently both in terms of complexity and
implementation as it is the most frequently called function in the whole optimization
process. The overall performance is heavily affected by the fitness function.

Users should also consider adding some kind of penalty 𝑝(𝑋) to the fitness function
𝑔(𝑋). The purpose of penalty functions is to add penalties to infeasible solutions so
that solutions that are close to feasible solutions are penalized less than solutions that
are farther. All the problem-specific components implemented for the purpose of this
thesis use the static penalization function. Static penalization computes penalty based
only on the solution 𝑋, but there are also other types of penalization like dynamic,
which usually increases over time, or adaptive, which depends on the current solution
quality.

3.3 Generic solver components
This section provides a detailed description of individual generic solver components.
Section 3.3.1 describes all the operators. In Section 3.3.2 are presented the perturba-
tions. Section 3.3.3 introduces the construction strategies. Local search strategies are
described in Section 3.3.4. Finally, Section 3.3.5 describes the metaheuristics.

For more clarity some of the frequently used terms in this section are explained. The
elements of 𝐴 = {1, 2, . . . , 𝑛} are the nodes 𝑎 of a given problem. Solution 𝑋 is a
vector with variable length 𝑚 whose elements are the nodes from 𝐴. Solution substring
is a vector 𝑋𝑠𝑢𝑏 = (𝑥𝑖, . . . , 𝑥𝑗) that is equivalent to some part of the original vector
𝑋 = (𝑥1, . . . , 𝑥𝑚), 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. 𝑖-th element of vector 𝑋 is denoted 𝑋𝑖. The
frequency vector is denoted by 𝐹 and corresponds to the original solution 𝑋. 𝐹𝑎 is
frequency of node 𝑎 in the solution 𝑋. Additionally, the 𝐿𝐵𝑎 and 𝑈𝐵𝑎 are lower bound
and upper bound of the frequency 𝐹𝑎.

3.3.1 Operators
This section describes all the implemented operators and provides their pseudocodes
with an example. In the following text, time complexities of find, insert, remove, and
reverse modifications of the vector 𝑋, are considered linear, i.e., 𝑂(𝑚). Please note
the difference between operators and modifications. Modification is an atomic change
performed on a vector 𝑋. Operators try out all possible modifications and select the
best one.

3.3.1.1 Insert

Insert is an operator that is used mainly but not exclusively during the initial solution
generation. It tries to insert one node 𝑎 ∈ 𝐴 to all possible locations 𝑖 in the solution
𝑋. After iterating through all possibilities, it returns the solution with the best fitness
𝑔(𝑋best). If there was no improving modification the algorithm returns the original
solution. Pseudocode is shown in the Algorithm 3.1. On lines 6-7, the function also
checks that the frequency 𝐹𝑎 of the node 𝑎 is not greater than or equal to 𝑈𝐵𝑎. If
that is the case, it does not try to insert node 𝑎. An example insert operation, where
𝑖 = 2 and 𝑎 = 4, is illustrated in Figure 3.6. The time complexity of the insert operator
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is 𝑂(|𝐴|𝑚2), where |𝐴| is the number of nodes and 𝑚 is the length of 𝑋. Note that
the length of the solution increases, so this operator cannot be used for problems with
𝑈𝐵 = 𝐿𝐵 with the exception of initial solution construction.

1 function insert(𝑋)
2 𝑋best ← 𝑋
3 for 𝑖 in range from 0 to 𝑚
4 𝑋new ← 𝑋
5 for node 𝑎 ∈ 𝐴
6 if 𝐹𝑎 ≥ 𝑈𝐵𝑎
7 continue
8 insert node 𝑎 into 𝑋new at position 𝑖
9 if 𝑔(𝑋new) < 𝑔(𝑋best)

10 𝑋best ← 𝑋new
11 return 𝑋best

Algorithm 3.1. Insert operator pseudocode.

Figure 3.6. Insert operator example where 𝑖 = 2 and 𝑎 = 4.

3.3.1.2 Remove

Remove is a counterpart to the insert operator. It tries to remove one of the nodes
𝑋𝑖 from all possible locations 𝑖 in the solution 𝑋. After trying out all possibilities, it
returns the solution with the best fitness 𝑔(𝑋best). If no improving modification was
made, the algorithm returns the original solution. Pseudocode is shown in Algorithm
3.2. On lines 6-7, Remove also skips the node 𝑎 if the frequency 𝐹𝑎 is less than or equal
to 𝐿𝐵𝑎. An example remove operation, where 𝑖 = 2 and 𝑎 = 4, is illustrated in Figure
3.7. The time complexity of the remove operator is 𝑂(𝑚2), where 𝑚 is the length of
the 𝑋. Note that the length of the solution decreases, so this operator cannot be used
for problems with 𝑈𝐵 = 𝐿𝐵.

1 function remove(𝑋)
2 𝑋best ← 𝑋
3 for i in range from 0 to m
4 𝑋new ← 𝑋
5 𝑎 ← 𝑋𝑖
6 if 𝐹𝑎 ≤ 𝐿𝐵𝑎
7 continue
8 remove node from 𝑋new at position 𝑖
9 if 𝑔(𝑋new) < 𝑔(𝑋best)

10 𝑋best ← 𝑋new
11 return 𝑋best

Algorithm 3.2. Remove operator pseudocode.
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Figure 3.7. Remove operator example where 𝑖 = 2.

3.3.1.3 Move

Move is an operator that attempts to move all possible solution substrings 𝑋sub of
length 𝑛 to all possible locations 𝑗 and performs the most improving move. If no move
improves the fitness 𝑔(𝑋best), the original solution is returned. Pseudocode is shown
in the Algorithm 3.3. On lines 4-6, a substring 𝑋sub is selected from 𝑋 and 𝑋new
is created that is identical to 𝑋 except for the 𝑋sub which is missing. On lines 7-9,
𝑋sub is inserted to all possible destination locations 𝑗. An example move operation,
where 𝑖 = 3 and 𝑗 = 1, is illustrated in Figure 3.8. The time complexity of the move
operator is 𝑂((𝑚 − 𝑛)3), where 𝑚 is the current solution length and 𝑛 is the length of
the substring. The proposed solver also offers a second version of the Move operator
that is called Reverse Move, which not only moves the substring but also reverts it.

1 function move(𝑋, 𝑛)
2 𝑋best ← 𝑋
3 for 𝑖 in range from 0 to (𝑚 − 𝑛)
4 𝑋reduced ← 𝑋
5 𝑋sub ←substring of 𝑋 at position 𝑖 with length 𝑛
6 remove 𝑋sub from 𝑋reduced
7 for 𝑗 in range from 0 to (𝑚 − 𝑛)
8 𝑋new ← 𝑋reduced
9 insert 𝑋sub into 𝑋new at position 𝑗

10 if 𝑔(𝑋new) < 𝑔(𝑋best)
11 𝑋best ← 𝑋new
12 return 𝑋best

Algorithm 3.3. Move operator pseudocode.

Figure 3.8. Move operator example where 𝑖 = 3 and 𝑗 = 1.

3.3.1.4 Move all

Move all operator moves all occurrences of some node 𝑎 up to some maximal distance 𝑑
and chooses the most improving solution 𝑋best. Pseudocode is shown in the Algorithm
3.4. Positions 𝑝 of all the occurrences of 𝑎 in 𝑋 are found on line 4. Then, on lines
5-9, for every distance 𝑖 in the range from −𝑑 to 𝑑 (except 0), the function removes
the node 𝑎 from position 𝑝 and inserts it back at position 𝑝 + 𝑖. An example move all
operation, where 𝑎 = 3 and 𝑖 = 2, is illustrated in Figure 3.9. Time complexity of the
move all operator is 𝑂(|𝐴|𝑑𝑓𝑚), where |𝐴| is the number of nodes, 𝑚 is the length of
the 𝑋, and 𝑓 is frequency of node 𝑎.
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1 function move_all(𝑋, 𝑑)
2 𝑋best ← 𝑋
3 for node 𝑎 in 𝐴
4 pos ← find all positions of node 𝑎 in 𝑋
5 for 𝑖 in [−𝑑, ..., −1, 1, ..., 𝑑]
6 𝑋new = 𝑋
7 for 𝑝 in pos
8 remove node 𝑎 from 𝑋new at position 𝑝
9 insert node 𝑎 into 𝑋new at position 𝑝 + 𝑖

10 if 𝑔(𝑋new) < 𝑔(𝑋best)
11 𝑋best ← 𝑋new
12 return 𝑋best

Algorithm 3.4. Move All operator pseudocode.

Figure 3.9. Move All operator example where 𝑖 = 2 and 𝑎 = 3.

3.3.1.5 Swap

The Swap operator takes two arguments, 𝑛, and 𝑝. It tries to swap all possible sub-
strings 𝑋sub1 and 𝑋sub2 of length 𝑝 and 𝑞 in all possible locations 𝑖 and 𝑗 of the 𝑋.
After iterating through all possibilities it returns the most improving solution 𝑋best.
Pseudocode is shown in the Algorithm 3.5. On lines 5-6, the algorithm checks that
the selected substrings in positions 𝑖 and 𝑗 are not overlapping. On lines 8-9, the two
substrings are selected, and on lines 10-13, the swap is performed by removing and then
reinserting both substrings into the former location of the other substring. An example
Swap operation, where 𝑝 = 2, 𝑞 = 1, 𝑖 = 3, and 𝑗 = 1, is illustrated in Figure 3.10.
Time complexity of the Swap operator is 𝑂(𝑚(𝑚 − 𝑝)(𝑚 − 𝑞)), where 𝑚 is the length
of the 𝑋, and 𝑝 and 𝑞 are lengths of the substrings 𝑋sub1 and 𝑋sub2 respectively. The
proposed solver also offers a second version of the Swap operator that is called Reverse
Swap, which not only swaps the two substrings but also reverts them.

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Generic solver components

1 function swap(𝑋, 𝑝, 𝑞)
2 𝑋best ← 𝑋
3 for 𝑖 in range from 0 to (𝑚 − 𝑝)
4 for 𝑗 in range from 0 to (𝑚 − 𝑞)
5 if ((𝑖 ≥ 𝑗 and 𝑖 < 𝑗 + 𝑞) or (𝑗 ≥ 𝑖 and 𝑗 < 𝑖 + 𝑝))
6 continue
7 𝑋new ← 𝑋
8 𝑋sub1 ← substring of 𝑋 at position 𝑖 with length 𝑝
9 𝑋sub2 ← substring of 𝑋 at position 𝑗 with length 𝑞

10 remove 𝑋sub1 from 𝑋new at position 𝑖
11 insert 𝑋sub2 into 𝑋new at position 𝑖
12 remove 𝑋sub2 from 𝑋new at position 𝑗
13 insert 𝑋sub1 into 𝑋new at position 𝑗
14 if 𝑔(𝑋new) < 𝑔(𝑋best)
15 𝑋best ← 𝑋new
16 return 𝑋best

Algorithm 3.5. Swap operator pseudocode.

Figure 3.10. Swap operator example where 𝑝 = 2, 𝑞 = 1, 𝑖 = 3, and 𝑗 = 1.

3.3.1.6 Exchange Nodes

Exchange Nodes operator iterates over all possible node pairs (𝑎, 𝑏) and exchanges all
occurrences of these nodes in 𝑋. After iterating through all possibilities it returns the
best solution 𝑋best. The key part of the Algorithm 3.6 is on lines 6-10 where it iterates
over the elements of 𝑋 and swaps any node 𝑎 for node 𝑏 and vice versa. An example
Exchange Nodes operation, where 𝑎 = 3 and 𝑏 = 5, is illustrated in Figure 3.11. The
time complexity of Exchange Nodes operator is 𝑂(|𝐴|2𝑚), where 𝑚 is the length of the
𝑋, and |𝐴| is the number of nodes. Note that the values of 𝑓𝑎 and 𝑓𝑏 also swap.

1 function exchange_nodes(𝑋)
2 𝑋best ← 𝑋
3 for node 𝑎 in 𝐴
4 for node 𝑏 < 𝑎 in 𝐴
5 𝑋new ← 𝑋
6 for 𝑖 in range from 0 to 𝑚
7 if 𝑋𝑖 = 𝑎
8 𝑋𝑖

new = 𝑏
9 else if 𝑋𝑖 = 𝑏

10 𝑋𝑖
new = 𝑎

11 if 𝑔(𝑋new) < 𝑔(𝑋best)
12 𝑋best ← 𝑋new
13 return 𝑋best

Algorithm 3.6. Exchange Nodes operator pseudocode.
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Figure 3.11. Exchange Nodes operator example where 𝑎 = 3 and 𝑏 = 5.

3.3.1.7 Exchange First n Nodes

Exchange First n Nodes operator is a generalization of Exchange Nodes operator. The
main difference is that this operator also iterates over the allowed number of exchanges
𝑛. Each iteration makes only exchanges of the first 𝑛 occurrences of nodes 𝑎 and 𝑏,
leaving the other occurrences at their original position. Pseudocode is shown in the
Algorithm 3.7. On line 7, the counters 𝐶𝑎 and 𝐶𝑏 are initialized. On lines 11 and 14,
the relevant counters are incremented if 𝑎 is exchanged for 𝑏 or 𝑏 is exchanged for 𝑎.
The conditions on lines 9 and 12 are extended by a condition that the relevant counter
does not exceed the value of 𝑛. An example Exchange First n Nodes operation, where
𝑎 = 5, 𝑏 = 3, and 𝑛 = 2, is illustrated in Figure 3.12. This generalization comes at the
price of increased time complexity. The time complexity of the Exchange First n Nodes
operator is 𝑂(|𝐴|2𝑚𝑓), where 𝑚 is the length of the 𝑋, |𝐴| is the number of nodes, and
𝑓 is the biggest element of 𝐹. Note that 𝐹 may change if the frequency 𝑓𝑎 > 𝑓𝑏.

1 function exchange_first_n_nodes(𝑋)
2 𝑋best ← 𝑋
3 for node 𝑎 in 𝐴
4 for node 𝑏 < 𝑎 in 𝐴
5 for 𝑛 in range from 1 to 𝐹𝑎
6 𝑋new ← 𝑋
7 𝐶𝑎 ← 0, 𝐶𝑏 ← 0
8 for 𝑖 in range from 0 to 𝑚
9 if 𝑋𝑖 = 𝑎 and 𝐶𝑎 < 𝑛

10 𝑋𝑖
new ← 𝑏

11 𝐶𝑎 ← 𝐶𝑎 + 1
12 else if 𝑋𝑖 = 𝑏 and 𝐶𝑏 < 𝑛
13 𝑋𝑖

new ← 𝑎
14 𝐶𝑏 ← 𝐶𝑏 + 1
15 if 𝑔(𝑋new) < 𝑔(𝑋best)
16 𝑋best ← 𝑋new
17 return 𝑋best

Algorithm 3.7. Exchange First n Nodes operator pseudocode.

Figure 3.12. Exchange First n Nodes operator example where 𝑎 = 5, 𝑏 = 3, and 𝑛 = 2.
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3.3.1.8 Two-opt

The Two-opt operator tries to reverse all possible substrings 𝑋sub of the original solution
𝑋. If one of the reverses results in improved fitness 𝑔(𝑋new), the function returns a new
solution 𝑋new, otherwise it returns the original solution. Pseudocode is shown in the
Algorithm 3.8. On lines 3-4, the boundaries 𝑖 and 𝑗 of the substring 𝑋sub are selected,
and then, on line 6, the substring is reversed. An example Two-opt operation, where
𝑖 = 1 and 𝑗 = 4, is illustrated in Figure 3.13. The time complexity of the Two-opt
operator is 𝑂(𝑚3), where 𝑚 is the length of the 𝑋.

1 function two_opt (𝑋)
2 𝑋best ← 𝑋
3 for 𝑖 in range from 0 to (𝑚 − 2)
4 for 𝑗 in range from 2 to 𝑚
5 𝑋new = 𝑋
6 reverse 𝑋new between positions 𝑖 and 𝑗
7 if 𝑔(𝑋new) < 𝑔(𝑋best)
8 𝑋best ← 𝑋new
9 return 𝑋best

Algorithm 3.8. Two-opt operator pseudocode.

Figure 3.13. Two-opt operator example where 𝑖 = 1 and 𝑗 = 4.

3.3.2 Perturbations
Perturbations are very similar to operators because every perturbation is associated
with some neighborhood, but instead of exploring the neighborhood exhaustively, the
perturbation returns a random solution from the given neighborhood. All the pertur-
bations also accept a parameter 𝑘, which is used to parameterize the perturbation’s
“strength.” A larger parameter 𝑘 corresponds to a larger neighborhood from which a
solution is chosen. This section describes the six perturbations that are implemented in
the proposed solver. Namely, Double Bridge, Reinsert, Random Swap, Random Move,
and Random Move All.

3.3.2.1 Double Bridge

Double Bridge perturbation splits the original solution 𝑋 into 𝑘 substrings and reverts
them. Pseudocode is shown in the Algorithm 3.9. On lines 2-4, the algorithm generates
𝑘 random indices plus the first and the last index of 𝑋 and stores the indices in a
sorted array 𝐼. Then on lines 5-6, the function reverses the 𝑘 + 1 substrings bounded
by the indices. An example Double Bridge perturbation, where 𝑘 = 2 and 𝐼 = {2, 5},
is illustrated in Figure 3.14. The proposed solver also offers a second version of Double
Bridge called Random-Reverse Double Bridge, which randomly reverses only some of
the substrings with probability 𝑝 = 0.5.
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1 function double_bridge (𝑋, 𝑘)
2 𝐼 ← generate a set of 𝑘 random indices
3 𝐼 ← 𝐼 + {0, 𝑚 − 1}
4 sort 𝐼 in ascending order
5 for 𝑖 in |𝐼|
6 reverse 𝑋 between positions 𝐼𝑖 and 𝐼𝑖+1
7 return 𝑋

Algorithm 3.9. Double Bridge perturbation pseudocode.

Figure 3.14. Double Bridge perturbation example where 𝑘 = 2 and 𝐼 = {2, 5}.

3.3.2.2 Reinsert

Reinsert randomly selects 𝑘 nodes, deletes all of their occurrences in 𝑋, and then
reinserts them at random locations. Pseudocode is shown in the Algorithm 3.10. First,
𝑘 nodes are randomly selected on line 2. Then between lines 4-8, the algorithm iterates
over selections of node 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝑋. If 𝑎 = 𝑏 the node 𝑏 is removed from 𝑋 and
the counter 𝐶 is incremented. Finally, on lines 9-10, the algorithm inserts the node 𝑎
into random positions of 𝑋 for every previously removed node. An example Reinsert
perturbation, where 𝑘 = 1 and 𝐼 = {3}, is illustrated in Figure 3.15.

1 function reinsert (𝑋, 𝑘)
2 𝐼 ← generate 𝑘 random nodes from 𝐴
3 for node 𝑎 in 𝐼
4 𝐶 ← 0
5 for node 𝑏 in 𝑋
6 if 𝑎 = 𝑏
7 𝐶 ← 𝐶 + 1
8 remove node 𝑏 from 𝑋
9 for 𝑖 in range from 0 to 𝐶

10 insert node 𝑎 into 𝑋 at random position
11 return 𝑋

Algorithm 3.10. Reinsert perturbation pseudocode.

Figure 3.15. Reinsert perturbation example where 𝑘 = 1 and 𝐼 = {3}.
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3.3.2.3 Random Swap

Random Swap perturbation selects two nodes from 𝑋 and swaps them. This is repeated
𝑘 times. Pseudocode is shown in the Algorithm 3.11. An example Random Swap
perturbation, where 𝑘 = 2 is illustrated in Figure 3.16. The first iteration swaps nodes
at positions 𝑖 = 1 and 𝑗 = 5, and the second iteration swap the nodes at positions 𝑖 = 3
and 𝑗 = 6. Note that if the Swap operator is used during the local search, parameter 𝑘
should be larger than 1. This should prevent the solver from reverting the perturbation
step by a single call of the Swap operator.

1 function random_swap (𝑋, 𝑘)
2 repeat 𝑘 times
3 𝑖 ← random position from 𝑋
4 𝑗 ← random position from 𝑋
5 swap nodes from 𝑋 at positions 𝑖 and 𝑗
6 return 𝑋

Algorithm 3.11. Random Swap perturbation pseudocode.

Figure 3.16. Random Swap perturbation example where 𝑘 = 2.

3.3.2.4 Random Move

Random Move perturbation randomly selects 𝑘 nodes from 𝑋 and moves them to ran-
dom locations. Pseudocode is shown in the Algorithm 3.12. An example Random Move
perturbation, where 𝑘 = 2 is illustrated in Figure 3.17. In the first iteration, node 7 at
positions 𝑖 = 1 is moved to 𝑗 = 4 and in the second iteration, node 8 is moved to 𝑗 = 2.
Note that if the Move operator is used during the local search, parameter 𝑘 should be
larger than 1. This should prevent the solver from reverting the perturbation step by
a single call of the Move operator.

1 function random_move (𝑋, 𝑘)
2 repeat 𝑘 times
3 𝑖 ← random position from 𝑋
4 remove node 𝑎 from 𝑋 at position 𝑖
5 𝑗 ← random position from 𝑋
6 insert node 𝑎 into 𝑋 at position 𝑗
7 return 𝑋

Algorithm 3.12. Random Move perturbation pseudocode.
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Figure 3.17. Random Move perturbation example where 𝑘 = 2 and 𝐼 = {2, 5}.

3.3.2.5 Random Move All

Random Move All is similar to the Move All operator, but it moves every node by a
different distance. It moves all occurrences of a node 𝑎 up to some maximal distance 𝑘.
Pseudocode is shown in the Algorithm 3.13. On lines 3-4, a random node 𝑎 is selected,
and all occurrences of 𝑎 in 𝑋 are found. Then on lines 5-8, every occurrence of 𝑎 is
removed from 𝑋 and moved by a random distance dist. An example Random Move All
perturbation, where 𝑘 = 1 is illustrated in Figure 3.18. In this example, the distance
dist sequentially takes following values: −1, 0, 1

1 function random_move_all (𝑋, 𝑘)
2 repeat 𝑘 times
3 𝑎 ← random node from 𝐴
4 𝑃 ← find all positions of node 𝑎 in 𝑋
5 for 𝑝 ∈ 𝑃
6 𝑑 ← random integer from interval [−𝑘, ..., 𝑘]
7 remove node 𝑎 from 𝑋 at position 𝑝
8 insert node 𝑎 into 𝑋 at position 𝑝 + 𝑑
9 return 𝑋

Algorithm 3.13. Random Move All perturbation pseudocode.

Figure 3.18. Random Move All perturbation example where 𝑘 = 2 and 𝐼 = {2, 5}.

3.3.3 Construction strategies

The construction strategies generate an initial solution that is used later as a starting
point in all the metaheuristics. This section describes the three construction strategies
implemented in the proposed solver. They are greedy, random, and random-replicate.
All of them are guaranteed to return a valid solution. A valid solution is a solution
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that is not necessarily feasible with respect to the optimized problem definition, but it
satisfies the lower and upper bounds (Equations (3.8)).

3.3.3.1 Greedy

The greedy construction strategy repeatedly calls the insert operator until a valid solu-
tion is created. If the user wants to use the greedy construction strategy, it is necessary
to deal with invalid solutions in the fitness function 𝑔. This means that the fitness 𝑔(𝑋)
should decrease if the frequencies 𝐹𝑛𝑒𝑤 of the new solution 𝑋𝑛𝑒𝑤 are closer to the 𝐿𝐵
or 𝑈𝐵 than frequencies 𝐹 of the original solution 𝑋. This can be expressed as:

ℎ(𝑓, 𝑙𝑏, 𝑢𝑏) =
⎧{
⎨{⎩

𝑙𝑏 − 𝑓 for 𝑓 < 𝑙𝑏,
0 for 𝑙𝑏 ≤ 𝑓 ≤ 𝑢𝑏,
𝑓 − 𝑢𝑏 for 𝑓 > 𝑢𝑏

𝑔(𝑋𝑛𝑒𝑤) < 𝑔(𝑋) 𝑖𝑓𝑓
𝑛

∑
𝑖=1

ℎ(𝐹 𝑛𝑒𝑤
𝑖 , 𝐿𝐵𝑖, 𝑈𝐵𝑖) <

𝑛
∑
𝑖=1

ℎ(𝐹𝑖, 𝐿𝐵𝑖, 𝑈𝐵𝑖) (3.25)

3.3.3.2 Random

This is the most straightforward construction strategy of the three. It inserts nodes,
one by one, to random locations until all lower bounds are satisfied. So the returned
solution always has 𝐹 = 𝐿𝐵. If the problem has 𝐿𝐵 ≠ 𝑈𝐵, it is recommended to use
insert and remove operators later during the local search. The random construction
strategy addresses problems where greedy construction isn’t efficient in terms of a trade-
off between computation time and fitness improvement per iteration.

3.3.3.3 Random-replicate

This construction strategy generates a random permutation of all nodes, and then it
repeatedly appends its copies to the initial solution until all lower bounds are satisfied.
In one of the node frequencies reaches the upper bound before all the other nodes reach
the lower bound, it is not included in the replica, so the result of this construction
strategy is always a valid solution. The random-replicate strategy is proposed in this
thesis to address problems represented as several permutations that are similar to each
other. Non-Permutation Flowshop is an example of such a problem.

3.3.4 Local search strategies
Local search strategies are functions that choose the order in which the operators are
invoked and after reaching a local optimum they return the acquired solution. All
the implemented local search strategies are variations of the Variable Neighborhood
Descent (VND) [57]. This section describes the five local search strategies implemented
in the proposed solver: The Basic VND, Pipe VND, Cyclic VND, Random VND, and
Random Pipe VND. All the algorithms expect a list of available operators 𝒪.

3.3.4.1 Basic Variable Neighborhood Descent

BVND iterates through the list 𝒪 sequentially. If the fitness does not improve after
the selected operator 𝑂𝑖, it selects the following operator 𝑂𝑖+1 and tries again. If the
fitness 𝑔(𝑋) improves after the call of the selected operator 𝑂𝑖, it returns to the first
operator 𝑂1 in the list. Once it reaches the end of the list without any improvement,
it returns the solution 𝑋. The pseudocode is shown in the Algorithm 3.14.
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1 function BVND(𝑋, 𝒪)
2 do
3 𝑋prev ← 𝑋
4 for 𝑂 ∈ 𝒪
5 𝑋new ← 𝑂(𝑋)
6 if 𝑔(𝑋new) < 𝑔(𝑋)
7 𝑋 ← 𝑋new
8 break
9 while 𝑔(𝑋) < 𝑔(𝑋prev)

10 return 𝑋

Algorithm 3.14. Basic Variable Neighborhood Descent pseudocode.

3.3.4.2 Pipe Variable Neighborhood Descent

PVND iterates through the list 𝒪 sequentially as well. Also, same as BVND, if the
fitness 𝑔(𝑋) does not improve after the selected operator 𝑂𝑖, it selects the following
operator 𝑂𝑖+1 and tries again. The main difference is that if the fitness 𝑔(𝑋) improves
after the call of the selected operator 𝑂𝑖, the algorithm calls the same operator repeat-
edly as long as the operator improves the solution 𝑋. If PVND reaches the end of the
list without any improvement, it returns the solution 𝑋. The pseudocode is shown in
the Algorithm 3.15. Note that the operation list 𝒪 can be large, and therefore on lines
6-7, the algorithm checks whether it reached the last improving operator. If that is the
case, it stops, so it does not have to go through the rest of the list.

1 function PVND(𝑋, 𝒪)
2 do
3 𝑋prev ← 𝑋
4 𝑂last ← ∅
5 for 𝑂 ∈ 𝒪
6 if 𝑂 = 𝑂last
7 return 𝑋
8 𝑋new ← 𝑂(𝑋)
9 while 𝑔(𝑋new) < 𝑔(𝑋)

10 𝑋 ← 𝑋new
11 𝑋new ← 𝑂(𝑋)
12 𝑂last ← 𝑂
13 while 𝑔(𝑋) < 𝑔(𝑋prev)
14 return 𝑋

Algorithm 3.15. Pipe Variable Neighborhood Descent pseudocode.

3.3.4.3 Cyclic Variable Neighborhood Descent

CVND also iterates through the list 𝒪 sequentially. The difference between PVND and
CVND is that regardless of whether the fitness 𝑔(𝑋) improves or not after the call of
the selected operator 𝑂𝑖, CVND moves to another operator 𝑂𝑖+1. CVND remembers
the last improving operator 𝑂last and if 𝑂𝑖+1 = 𝑂last, it stops and returns the solution
𝑋. The pseudocode is shown in Algorithm 3.16. Note that on lines 6-7, the algorithm
checks whether it reached the last improving operator, and if that is the case, it stops,
so it does not have to go through the rest of the list 𝒪.
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1 function CVND(𝑋, 𝒪)
2 do
3 𝑋prev ← 𝑋
4 𝑂last ← ∅
5 for 𝑂 ∈ 𝒪
6 if 𝑂 = 𝑂last
7 return 𝑋
8 𝑋new ← 𝑂(𝑋)
9 if 𝑔(𝑋new) < 𝑔(𝑋)

10 𝑋 ← 𝑋new
11 𝑂last ← 𝑂
12 while 𝑔(𝑋) < 𝑔(𝑋prev)
13 return 𝑋

Algorithm 3.16. Cyclic Variable Neighborhood Descent pseudocode.

3.3.4.4 Random Variable Neighborhood Descent

RVND iterates through the list 𝒪 in random order. Regardless of whether the fitness
𝑔(𝑋) improves or not after the call of the selected operator 𝑂𝑖, RVND moves to another
operator 𝑂𝑖+1. If at least one operator improves fitness 𝑔(𝑋), the list of operators 𝒪
is again randomly reordered, and all of the operators are called in the new order. The
algorithm ends when none of the operators improved fitness. The pseudocode is shown
in the Algorithm 3.17. This strategy can be beneficial if the optimization is often getting
stuck in the same local optimum as it adds extra stochasticity to the optimization.

1 function RVND(𝑋, 𝒪)
2 do
3 𝑋𝑝𝑟𝑒𝑣 ← 𝑋
4 shuffle the list 𝒪
5 for 𝑂 ∈ 𝒪
6 𝑋𝑛𝑒𝑤 ← 𝑂(𝑋)
7 if 𝑔(𝑋𝑛𝑒𝑤) < 𝑔(𝑋)
8 𝑋 ← 𝑋𝑛𝑒𝑤
9 while 𝑔(𝑋) < 𝑔(𝑋prev)

10 return 𝑋

Algorithm 3.17. Random Variable Neighborhood Descent pseudocode.

3.3.4.5 Random Pipe Variable Neighborhood Descent

RPVND, as the name suggests, is a combination of RVND and PVND. It goes through
the operation list 𝒪 in random order, but if an improving operator is found, the al-
gorithm repeats the operator call until a non-improving call occurs. The algorithm
ends when none of the operators improved fitness. The pseudocode is shown in the
Algorithm 3.18.
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1 function RPVND(𝑋, 𝒪)
2 do
3 𝑋𝑝𝑟𝑒𝑣 ← 𝑋
4 shuffle the list 𝒪
5 for 𝑂 ∈ 𝒪
6 do
7 𝑋𝑛𝑒𝑤 ← 𝑂(𝑋)
8 while 𝑔(𝑋𝑛𝑒𝑤) < 𝑔(𝑋)
9 𝑋 ← 𝑋𝑛𝑒𝑤

10 while 𝑔(𝑋) < 𝑔(𝑋prev)
11 return 𝑋

Algorithm 3.18. Random Pipe Variable Neighborhood Descent pseudocode.

3.3.5 Metaheuristics
The metaheuristics are the high-level strategies that use the previously described algo-
rithms. They systematically balance between exploitation and exploration optimization
components. Exploitation means to focus on the search in a local region by exploiting
the information that a current good solution is found in this region, while exploration
means to generate diverse solutions to explore the search space globally ??.

The metaheuristics implemented in the proposed solver work on a similar basis. First
step is to generate initial solution 𝑋 using one of the construction strategies 𝐶 from
Section 3.3.3. Then the metaheuristics repeatedly call one of the local search strategies
𝐿 from Section 3.3.4 and perturbation 𝑃 from Section 3.3.2. The difference between
particular metaheuristics is in the way the perturbations are handled.

3.3.5.1 Iterated Local Search

ILS is the simplest out of the three metaheuristics. The pseudocode in Algorithm 3.19
shows that the perturbation 𝑃 is called with a constant parameter 𝑘. Also, note that
the perturbation 𝑃 on line 8 is called on the best-known solution 𝑋best instead of the
last acquired solution 𝑋.

1 function ILS(𝐶, 𝐿, 𝒪, 𝑃 , 𝑘)
2 𝑋 ← 𝐶()
3 𝑋best ← 𝐿(𝑋, 𝒪)
4 do
5 𝑋 ← 𝑃(𝑋best, 𝑘)
6 𝑋 ← 𝐿(𝑋, 𝒪)
7 if 𝑔(𝑋) < 𝑔(𝑋best)
8 𝑋best ← 𝑋
9 while timeout not reached

10 return 𝑋best

Algorithm 3.19. Iterated Local Search pseudocode.

3.3.5.2 Basic Variable Neighborhood Search

BVNS is an extension to the ILS where the perturbation parameter 𝑘 is a variable.
The pseudocode of BVNS is given in Algorithm 3.20. The function expects two extra
parameters 𝑘min and 𝑘max. The algorithm starts with 𝑘 set to 𝑘min, but it is incremented
by one up to the maximal value of 𝑘max after every local search that does not improve
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the best-known solution 𝑋best . On the other hand, if the local search finds a new
best-known solution, the parameter 𝑘 is again assigned the value of 𝑘min.

1 function BVNS(𝐶, 𝐿, 𝒪, 𝑃 , 𝑘min, 𝑘max)
2 𝑘 ← 𝑘min
3 𝑋 ← 𝐶()
4 𝑋best ← 𝐿(𝑋, 𝒪)
5 do
6 𝑋 ← 𝑃(𝑋best, 𝑘)
7 𝑋 ← 𝐿(𝑋, 𝒪)
8 if 𝑔(𝑋) < 𝑔(𝑋best)
9 𝑋best ← 𝑋

10 𝑘 ← 𝑘min
11 else if 𝑘 < 𝑘max
12 𝑘 ← 𝑘 + 1
13 while timeout not reached
14 return 𝑋best

Algorithm 3.20. Basic Variable Neighborhood Search pseudocode.

3.3.5.3 Calibrated Variable Neighborhood Search

Sampling from a too large neighborhood in perturbation 𝑃 may result in long runs of
local search algorithms. Therefore it might be desirable to increase the neighborhood
size only when the local search algorithms converge to the same optimum as the last
iteration. CVNS is an extension to the BVNS where the perturbation parameter 𝑘
is a variable. The pseudocode of CVNS is shown in Algorithm 3.21. The function
expects two extra parameters 𝑘min and 𝑘max. The only difference to BVNS is that
CVNS extends the condition on line 11 with the expression 𝑋 = 𝑋best.

1 function CVNS(𝐶, 𝐿, 𝒪, 𝑃 , 𝑘min, 𝑘max)
2 𝑘 ← 𝑘min
3 𝑋 ← 𝐶()
4 𝑋best ← 𝐿(𝑋, 𝒪)
5 do
6 𝑋 ← 𝑃(𝑋best, 𝑘)
7 𝑋 ← 𝐿(𝑋, 𝒪)
8 if 𝑔(𝑋) < 𝑔(𝑋best)
9 𝑋best ← 𝑋

10 𝑘 ← 𝑘min
11 else if 𝑋 = 𝑋best and 𝑘 < 𝑘max
12 𝑘 ← 𝑘 + 1
13 while timeout not reached
14 return 𝑋best

Algorithm 3.21. Calibrated Variable Neighborhood Search pseudocode.

3.4 Problem-specific components
This section provides implementation details about the problem-specific solver compo-
nents used in the benchmarking experiments. Namely, the lower bound vector 𝐿𝐵,
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the upper bound vector 𝑈𝐵, the solution representation, and the fitness function
𝑔(𝑋) = 𝑝(𝑋) + ̂𝑔(𝑋). The function 𝑔(𝑋) consists of two parts: The penalty func-
tion 𝑝(𝑋) and the actual fitness function ̂𝑔(𝑋). The purpose of the penalty function is
to score infeasibility of solutions 𝑋 so that the optimizer can make steps from infeasible
towards feasible solutions.

Additionally, this section provides MILP formulations used in the Gurobi Optimizer.

3.4.1 Capacitated Vehicle Routing Problem
Lets assume that we are given distance matrix 𝐶 = (𝑐𝑖𝑗) ∈ ℝ𝑛×𝑛, the number of
available vehicles 𝑘, and the depot node 𝐷. A solution of the CVRP is a set of 𝑘
variations 𝜙 = {𝜑1, . . . , 𝜑𝑘} of the nodes 𝑉. In the proposed solver, however, the
solution must be defined in the form of one permutation with repetition. This can
be done by forming the solution as 𝑋 = [𝐷, 𝜑1, 𝐷, 𝜑2, 𝐷, . . . , 𝐷, 𝜑𝑘, 𝐷]. The CVRP
Instance class is initialized based on the following formulation:

𝐴 = {1, . . . , 𝑛} (3.26)
𝐷 = 1 (3.27)

𝐿𝐵 = [𝑘 + 1, 1, 1, . . . , 1] (3.28)
𝑈𝐵 = [𝑘 + 1, 1, 1, . . . , 1] (3.29)

̂𝑔(𝑋) =
𝑚−1
∑
𝑖=1

𝐶(𝑋𝑖, 𝑋𝑖+1), (3.30)

𝑝(𝑋) = 𝑀1 ∑
𝑎∈𝐴\{𝐷}

(1 − 𝑓𝑎) + 𝑀2⟦𝑋1 ≠ 𝐷⟧ +

𝑀2⟦𝑋𝑚 ≠ 𝐷⟧ + 𝑀3|𝑘 − (𝑓𝐷 − 1)| (3.31)

Where 𝐴 is the set of available nodes, 𝑋𝑖 is the i-th node in the solution 𝑋. Note
that node 1 is the depot 𝐷, and therefore the first elements1 of upper and lower bound
vectors 𝑈𝐵 and 𝐿𝐵 are set to 𝑘 + 1. The 𝑀1, 𝑀2, and 𝑀3 are some large constants.
As described in Section 3.1.2, all the nodes, except the depot, must be visited exactly
once. This is expressed by the sum in the first term in the penalty function. The second
and the third term ensure that the solution 𝑋 starts and ends with the depot node.
The last term enforces that a feasible solution has exactly 𝑘 tours.

3.4.1.1 MILP formulation

For the comparison with the Gurobi Optimizer, the Miller-Tucker-Zemlin formulation
was used. They proposed the following MILP[58]:

min ∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑐𝑖𝑗𝑥𝑖𝑗

s.t. ∑
𝑖∈𝑉

𝑥𝑖𝑗 = 1 𝑗 ∈ 𝑉 \ {𝐷} (3.32)

∑
𝑗∈𝑉

𝑥𝑖𝑗 = 1 𝑖 ∈ 𝑉 \ {𝐷} (3.33)

∑
𝑖∈𝑉

𝑥𝑖𝐷 = 𝑘 (3.34)

1 The elements of vectors 𝐿𝐵 and 𝑈𝐵 are indexed by the nodes 𝐴
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∑
𝑗∈𝑉

𝑥𝐷𝑗 = 𝑘 (3.35)

𝑦𝑗 − 𝑦𝑖 + 𝑄(1 − 𝑥𝑖𝑗) ≥ 𝑞𝑗 𝑖, 𝑗 ∈ 𝑉 \ {𝐷} (3.36)
𝑥𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈ 𝑉 (3.37)
𝑦𝑖 ∈ ℝ 𝑖 ∈ 𝑉 (3.38)

Where 𝑥𝑖𝑗 is a binary decision variable which represents whether some of the routes
goes through the edge (𝑖, 𝑗). The real variables 𝑦𝑗 represent the sum of the quantity
demands 𝑞𝑖 of the nodes that precede the node 𝑗 in the current tour plus the quantity
demand 𝑞𝑗 of the node 𝑗.

Equations (3.32) and (3.33) represent the indegree and outdegree constraints for all
the nodes except the depot 𝐷. Equations (3.34) and (3.35) represent the indegree and
outdegree constraints for the depot node and Equation (3.36) enforces the continuity of
the tours while also ensuring that the quantity demands in each route does not exceed
the capacity 𝑄.

3.4.2 Quadratic Assignment Problem
In the following text, lets assume we are given flow matrix 𝐹 = (𝑓𝑖𝑗) ∈ ℝ𝑛×𝑛 and
distance matrix 𝐷 = (𝑑𝑖𝑗) ∈ ℝ𝑛×𝑛. Solution of the QAP is a permutation 𝜑 of the
nodes 𝐴. This makes formulation in the proposed solver quite straightforward as we can
directly map 𝑋 to 𝜑. Following formulation was used for the benchmarking experiments:

𝐴 = {1, . . . , 𝑛} (3.39)
𝐿𝐵 = [1, 1, 1, . . . , 1] (3.40)
𝑈𝐵 = [1, 1, 1, . . . , 1] (3.41)

̂𝑔(𝑋) =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑓𝑖𝑗𝑑𝑋𝑖𝑋𝑗
(3.42)

𝑝(𝑋) = 𝑀 ∑
𝑎∈𝐴

(1 − 𝑓𝑎) (3.43)

where 𝐿𝐵 = 𝑈𝐵 are unit vectors. The only penalization of the infeasible solutions is
the number of unused nodes in the solution 𝑋 multiplied by some large constant 𝑀.
The fitness function ̂𝑔(𝑋) is identical with the definition in section 3.1.3.

3.4.2.1 MILP formulation

The Xia Yuan linearization [59] was used for the experiments with the Gurobi Opti-
mizer. Using the binary decision variables 𝑥𝑖𝑗 and real variables 𝑦𝑖𝑗 we obtain following
MILP:

min
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

(𝑦𝑖𝑗 + 𝑓𝑖𝑖𝑑𝑗𝑗𝑥𝑖𝑗)

s.t. 𝑦𝑖𝑗 ≥ 𝑙𝑖𝑗𝑥𝑖𝑗 𝑖, 𝑗 = 1, 2, . . . , 𝑛, (3.44)

𝑦𝑖𝑗 ≥ 𝑢𝑖𝑗𝑥𝑖𝑗 − 𝑢𝑖𝑗 + ∑
𝑘≠𝑖

∑
𝑙≠𝑗

𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑘𝑙 𝑖, 𝑗 = 1, 2, . . . , 𝑛, (3.45)

𝑋 = (𝑥𝑖𝑗) ∈ Π𝑛 𝑖, 𝑗 ∈ 𝑉 (3.46)
𝑦𝑖𝑗 ∈ ℝ 𝑖 ∈ 𝑉 (3.47)
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where 𝑋 is a permutation matrix and 𝑙𝑖𝑗 and 𝑢𝑖𝑗 are lower and upper bounds defined
as:

𝑙𝑖𝑗 = min ∑
𝑘≠𝑖

∑
𝑙≠𝑗

𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑘𝑙 (3.48)

𝑢𝑖𝑗 = max ∑
𝑘≠𝑖

∑
𝑙≠𝑗

𝑓𝑖𝑘𝑑𝑗𝑙𝑥𝑘𝑙 (3.49)

For a detailed description of the MILP derivation discuss [59–60].

3.4.3 Non-Permutation Flowshop
Lets assume we are given processing time matrix 𝑃 = (𝑝𝑖𝑗) ∈ ℝ𝑚×𝑛 of the Non-
Permutation Flowshop instance with 𝑚 machines and 𝑛 jobs. Solution of the NPFS is
𝑚 permutations 𝜋𝑖 of length 𝑛. The solution 𝑋 is a vector [𝜋1, 𝜋2, . . . , 𝜋𝑚]. Following
formulation was used for the benchmarking experiments:

𝐴 = {1, . . . , 𝑛} (3.50)
𝐿𝐵 = [𝑚, 𝑚, 𝑚, . . . , 𝑚] (3.51)
𝑈𝐵 = [𝑚, 𝑚, 𝑚, . . . , 𝑚] (3.52)
̂𝑔(𝑋) = 𝐶max (3.53)

𝑝(𝑋) = 𝑀1 ∑
𝑎∈𝐴

(𝑚 − 𝑓𝑎) + 𝑀2 ∑
𝜋∈𝑋

∑
𝑎∈𝐴

|1 − 𝑓𝜋
𝑎 | (3.54)

where 𝐿𝐵 = 𝑈𝐵 are vectors with all elements equal to 𝑚, 𝐶max is the end time of
processing on the last machine, 𝑓𝜋

𝑎 is the frequency of node 𝑎 in the permutation 𝜋
and 𝑀1 and 𝑀2 are some large constants. The first term of the penalty function 𝑝(𝑋)
penalizes the solution if the frequency of any node 𝑎 is not within the bounds 𝑚. The
second term enforces that the solution 𝑋 consists of permutations, not variations with
repetitions, i. e., each machine processes each job exactly once.

For the experiments with Gurobi optimizer, the formulation introduced in the section
3.1.4 was used. The MILP is defined by Equations (3.14) to (3.19).

3.4.4 Sudoku
Lets assume that we are given the initial assignment 𝓐 = {(𝑝𝑖, 𝑘𝑖), 𝑖 = 1, . . . , 𝑟}. A
solution to Sudoku is an assignment of the remaining free fields. The solution is a
vector 𝑋 ∈ 𝓘𝑛2−|𝓐|. In other words, the solution 𝑋 contains the indices from 𝓘 of all
the free fields. The following formulation in the proposed solver framework was used
for the benchmarking experiments:

𝐴 = 𝓘 = {1, . . . , 𝑛} (3.55)
𝐿𝐵 = [𝑛 − 𝑓𝓐

1 , 𝑛 − 𝑓𝓐
2 , . . . , 𝑛 − 𝑓𝓐

𝑛 ] (3.56)
𝑈𝐵 = [𝑛 − 𝑓𝓐

1 , 𝑛 − 𝑓𝓐
2 , . . . , 𝑛 − 𝑓𝓐

𝑛 ] (3.57)
̂𝑔(𝑋) = 0 (3.58)

𝑝(𝑋) = ∑
𝐵∈𝓑

∑
𝑖∈𝓘

|1 − 𝑓𝐵
𝑖 | (3.59)

𝑓𝓐
𝑖 is the frequency of index 𝑖 in the initial assignment 𝓐. 𝓑 is the set of 𝑛 rows,

𝑛 columns, and 𝑛 square submatrices. The frequency 𝑓𝐵
𝑖 represents the number of
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occurrences of the index 𝑖 in the block 𝐵. Note that Sudoku is not a typical optimization
problem but rather a constraint satisfaction problem. Therefore, the fitness function

̂𝑔(𝑋) equals zero and the overall fitness 𝑔(𝑋) consists solely of the penalty function
𝑝(𝑋). This is understandable because we only care about the feasibility of solutions
rather than their quality.

3.4.4.1 MILP formulation

For the experiments with Gurobi, the three-index binary variable ILP[53] was used. If
we denote 𝑥𝑖𝑗𝑘 assignment of the index 𝑘 to the field in row 𝑖 and column 𝑗, we obtain
following ILP:

min 0

s.t.
𝑛

∑
𝑘=1

𝑥𝑖𝑗𝑘 = 1 𝑖, 𝑗 = 1, 2, . . . , 𝑛 (3.60)

𝑛
∑
𝑖=1

𝑥𝑖𝑗𝑘 = 1 𝑗, 𝑘 = 1, 2, . . . , 𝑛 (3.61)

𝑛
∑
𝑗=1

𝑥𝑖𝑗𝑘 = 1 𝑖, 𝑘 = 1, 2, . . . , 𝑛 (3.62)

𝑚𝑞

∑
𝑗=𝑚(𝑞−1)+1

𝑚𝑝

∑
𝑖=𝑚(𝑝−1)+1

𝑥𝑖𝑗𝑘 = 1 𝑘 = 1, 2, . . . , 𝑛, 𝑝, 𝑞 = 1, 2, . . . , 𝑚 (3.63)

𝑥𝑖𝑗𝑘 = 1 ∀(𝑖, 𝑗, 𝑘) ∈ 𝓐 (3.64)
𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀(𝑖, 𝑗, 𝑘) ∉ 𝓐 (3.65)

Equation (3.60) enforces that every field has to have assigned some value 𝑘. Con-
straints (3.61), (3.62), and (3.63) ensures that each value 𝑘 is in every row, column, and
square submatrix exactly once.
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Chapter 4
Results

The proposed solver described in Section 3.2 was implemented in C++ [61] for the pur-
pose of benchmarking experiments. Gurobi is a commercial exact solver which can also
be used to find approximate solution as it provides best-so-far solution obtained during
the optimization. Therefore, it is reasonable to compare Gurobi to the proposed solver
on a limited time span. To compete fairly with the Gurobi optimizer, the proposed
solver was parallelized using the OpenMP library. In fact the only components that
were parallelized are the operators, so the logic of all algorithms stayed the same but
some serial computations were parallelized in order to increase efficiency. Both Gurobi
and the proposed solver were configured to run on eight threads.

Ten instances of gradually increasing difficulty were used for each problem bench-
marking. There are three small, three medium, and four large instances for every
problem in the dataset. The optimization timeout was empirically set to 10 minutes
for small instances, 30 minutes for medium instances, and one hour for large instances.
More detailed description of the instances can be found in the following sections.

Since the proposed solver is based on stochastic algorithms, the experiments were
repeated 𝑅 = 50 times with a random seed for each instance and the final fitness
results were then averaged. Another measured metrics are the average time of the last
improving step and the histogram of the improving operator calls. The averages were
calculated simply as

𝑔(𝑋) = 1
𝑅

𝑅
∑
𝑖=1

𝑔(𝑋𝑖), ̅𝑇 = 1
𝑅

𝑅
∑
𝑖=1

𝑇𝑖, �̅� = 1
𝑅

𝑅
∑
𝑖=1

𝑂𝑖,

where 𝑔(𝑋𝑖), 𝑇𝑖, and 𝑂𝑖 are the final solution’s fitness, the time of last improvement, and
the number of improving calls of the operator 𝑂 produced by the i-th solver run. The
𝑔(𝑋), ̅𝑇, and �̅� are their averages over all trials. Gurobi Optimizer, on the other hand,
is deterministic, and therefore only one optimization run was needed for comparison.

The result tables in the following sections contain columns with percentage difference
GAPBKS of the proposed solver’s average fitness w.r.t. best known solution and per-
centage difference GAPBKS of the Gurobi Optimizer solution 𝑋GRB w.r.t. best known
solution. The values of BKS were taken from the relevant literature. The relative
percentage differences are computed as follows:

GAPBKS = 100(𝑔(𝑋) − BKS
BKS

), GAPBKS = 100(𝑔(𝑋GRB) − BKS
BKS

),

Another tracked result reported by Gurobi Optimizer is its internal Gap. It is the
percentage difference between Gurobi’s lower bound (LB) and the best solution found
so far computed as:

GAPLB = 100(𝑔(𝑋GRB) − LB
𝑔(𝑋GRB)

)

This value is important because it gives an estimate of how far the Gurobi is from
reaching optimum.
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Ideally, the configurations used for each problem would be selected by some auto-
mated parameter tuning tool like the already mentioned iRace. But that is a rather
time consuming task and would notably increase the computation time required for
the experiments. Therefore, we decided to choose the configuration in a trial-and-error
manner. Each of the following sections contain a list of configurations used for that
given problem. The experiments were conducted on machines completely dedicated to
these experiments with following equal setups:

. OS: Ubuntu 18.04. CPU: Intel Core i7-7700
. Architecture: x86_64
. Frequency: 3.6GHz (Turboboost 4.2GHz)
. Total Cores: 4
. Total Threads: 8
. L3 Cache: 8MB. Memory: 32GB. Swap memory: 34GB

4.1 Capacitated Vehicle Routing Problem
The CVRP experiments were conducted on instances drawn from two different datasets.
The small instances come from the dataset proposed by Philippe Augerat in 1995 [62].
These instances consist of up to one hundred nodes. The medium and large instances
were taken from the dataset proposed by Eduardo Uchoa et al. [62–63] which provides
problems with up to 1001 nodes. The following solver configuration was used on all
CVRP instances:

. Metaheuristic: BVNS (𝑘min = 4, 𝑘max = 8). Local search: PVND. Construction: Greedy. Perturbation: Double bridge. Operators: Two-opt, Move(1), Move(2), Move(3), Move(4), Move(5), Swap(1, 1),
Swap(1, 2), Swap(2, 2), Swap(2, 3), Swap(2, 4), Swap(3, 3), Swap(3, 4), Swap(4, 4)

The optimization results from the proposed solver and the Gurobi Optimizer are
listed in the Table 4.1. Note that the instance names consist of one letter followed
by the number of nodes 𝑛 and tours 𝑘. The best known solutions for computation of
the percentage difference were taken from CVRPLIB [62]. The results show that the
proposed solver is superior to the Gurobi Optimizer in solving the capacitated vehicle
routing problems in multiple aspects. The Gurobi Optimizer was able to find feasible
solutions for only the three smallest problems and failed to obtain it on the medium
and large instances in the given time span. On two out of three small instances the final
fitness was more than 10% larger than the optimum. On the other hand, the proposed
solver was able to find feasible solutions for all the problems. Moreover, the average
fitness 𝑔(𝑋) of the solutions to the small instances was within 0.2% of the optimal
solution and 1.5% of the medium instances optima.

Figure 4.1 displays GAPBKS over time obtained by the proposed solver on four dif-
ferent problems. It also shows the average time of a last improving local search. It
is apparent that on the large instances (X-n561-k42 and X-n1001-k43) the solver was
making improving local search steps until the very end of the allocated time and would
have probably continued improving the fitness if a bigger timeout was set. On the other
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Proposed solver Gurobi Optimizer

Instance T[s] 𝑔(𝑋) 𝜎(𝑔(𝑋)) GAPBKS 𝑔(𝑋) GAPLB GAPBKS

*P-n050-k10 600 697.22 1.09 0.18% 715 20.70% 2.73%
*P-n076-k05 600 628.04 0.81 0.17% 714 20.59% 13.88%
*A-n65-k09 600 1176.24 1.60 0.19% 1515 45.74% 29.05%
*X-n148-k46 1800 43662.76 101.23 0.49% - - -
*X-n204-k19 1800 19786.20 58.93 1.13% - - -
*X-n251-k28 1800 39227.28 102.21 1.40% - - -
X-n351-k40 3600 27039.46 142.99 4.42% - - -
X-n561-k42 3600 44117.96 156.54 3.28% - - -
X-n749-k98 3600 81682.94 319.72 5.71% - - -
X-n1001-k43 3600 78878.78 400.11 9.02% - - -

Table 4.1. CVRP optimization results. The rows starting with the symbol * are instances
with known optimal solution.

Figure 4.1. CVRP fitness minimization steps of four different instances.

hand, the average of last improvement in X-n148-k46 is suggests that the optimizer was
getting stuck before reaching the timeout.

Histogram 4.2 shows that the Two-opt operator was the most improving operator
from small to large instances. You can notice a slight increase in the Move(1) and
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Swap(1, 1) bins on the instance “X-n1001-k43” but the rest of the operators in both
histograms have very similar distribution. Since the Pipe Variable Neighborhood De-
scent selects the operators sequentially, we cannot simply state that Two-opt is the
most effective operator on CVRP because the algorithm always starts with it. To prove
this statement, more experiments over more instances and configurations are needed
which was not feasible because of the time limitations.

Figure 4.2. CVRP Operators Histogram.

4.2 Quadratic Assignment Problem
The QAP experiments were conducted on instances taken from Taillard’s [64] dataset
downloaded from QAPLIB [65]. The instances Taixxa have uniformly generated flow
and distance matrices while the instances Taixxb are asymmetric and randomly gener-
ated. The “xx” in the instance name represents the number of nodes in that instance.
The following solver configuration was used on all QAP instances:

. Metaheuristic: CVNS (𝑘min = 2, 𝑘max = 5). Local search: RPVND. Construction: Random. Perturbation: Random Swap. Operators: Two-opt, Move(1), Move(2), Reverse Move(2), Move(3), Reverse
Move(3), Swap(1, 1), Swap(1, 2), Reverse Swap(1, 2), Swap(2, 2), Reverse Swap(2,
2), Swap(2, 3), Reverse Swap(2, 3), Swap(3, 3), Reverse Swap(3, 3), Swap(3, 4),
Reverse Swap(3, 4)

Table 4.2 shows the optimization results from both optimizers. The GAPBKS and
GAPBKS values were computed based on best known solutions reported on QAPLIB
website [65]. The results show that the proposed solver achieved significantly better
results in the given time window on all ten QAP instances. The proposed solver’s
GAPBKS is ranging between 0-2% on all the instances and two of the small instances
(tai20b and tai30b) were solved optimally in every run. Interesting observation is
that when two instances had the same number of nodes but one was symmetrical
and the other was asymmetrical, the Gurobi Optimizer achieved better result on the
symmetrical while the proposed solver performed better on the asymmetrical. On
the other hand, there were only two such pairs in the used instances and so more
experiments are needed to make such conclusion.
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Proposed solver Gurobi Optimizer

Instance T[s] 𝑔(𝑋) 𝜎(𝑔(𝑋)) GAPBKS 𝑔(𝑋) GAPLB GAPBKS

*tai20b 600 122455319.00 0.00 0.00% 123009513 65.99% 0.45%
*tai25a 600 1174472.16 3626.37 0.62% 1224160 20.51% 4.88%
*tai30b 600 637117113.00 0.00 0.00% 665957832 93.54% 4.53%
tai40a 1800 3179448.64 9252.10 1.28% 3301646 24.37% 5.17%
tai50b 1800 459578778.16 835883.75 0.17% 493998253 91.56% 7.67%
tai60a 1800 7335806.12 20420.90 1.80% 7612652 27.01% 5.64%
tai80a 3600 13754440.64 31644.24 1.89% 14618165 28.07% 6.39%
tai80b 3600 828040446.16 5216147.84 1.18% 924292399 90.21% 12.94%
tai100a 3600 21427931.28 45379.38 1.78% 23526234 32.73% 11.75%
tai100b 3600 1197988925.88 12875802.95 1.01% 1422944733 87.67% 19.98%

Table 4.2. QAP optimization results. The rows starting with the symbol * are instances
with known optimal solution.

Figure 4.3. QAP fitness minimization steps of four different instances.

Figure 4.3 shows the GAPBKS over time of two pairs of instances with the same node
count. It is interesting that the asymmetrical instances resulted in larger standard de-
viation 𝜎(GAP) than the symmetrical. The average last improvement times 𝑇 suggests
that the optimizer could have been getting stuck in some local optima so maybe a more
suitable perturbation could be selected for this problem.s
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Histogram 4.4 shows that the Swap(1, 1) operator was the most improving operator
on two instances; one small and one large. On the larger instance the other operators
become less efficient than on the smaller one. The Random Pipe Variable Neighborhood
Descent selects the operators randomly so we can state that Swap(1, 1) is the most
effective operator on QAP instances.

Figure 4.4. QAP Operators Histogram.

4.3 Non-permutation Flowshop
Instances from the data set proposed by Vallada et al. [66] were used on the NPFS
experiments. It contains problems ranging from very small instances (10 jobs on 5
machines) to large instances (800 jobs on 60 machines). The data set is originally
proposed for permutation flowshop scheduling problem (FSSP), which is almost the
same problem as NPFS with the only one difference that each machine must use the
same permutation of jobs. The input of FSSP is the same as NPFS, and therefore can
be used for NPFS as well. The following solver configuration was used on all NPFS
instances:

. Metaheuristic: ILS (𝑘 = 3). Local search: BVND. Construction: Random Replicate. Perturbation: Random Move All. Operators: Exchange Nodes, Move all (10), Exchange First N Nodes

The optimization results of the proposed solver and the Gurobi Optimizer are listed
in the Table 4.3. The instance names have following format: “VFRxx_yy_id” where xx
is the number of jobs, yy is the number of machines and the id is an integer in range 1-10
as the VFR dataset contains 10 different instances for every job and machine number
selection. The best known solutions for computation of the percentage difference were
taken from Libralesso’s iterative beam algorithm results [67] which are, to our best
knowledge, the best known solutions to FSSP. Even though these values are not NPFS
solutions they can be used as upper bound because every feasible solution of FSSP
is feasible solution to NPFS as well, that is, the fitness of optimal solution of FSSP
is larger or equal to NPFS on the same input. That is why for “VFR20_15_1” the
proposed solver was able to find even better solution and has negative GAPBKS.
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Proposed solver Gurobi Optimizer

Instance T[s] 𝑔(𝑋) 𝜎(𝑔(𝑋)) GAPBKS 𝑔(𝑋) GAPLB GAPBKS

VFR20_5_1 600 1193.72 1.69 0.14 1267 36.11 6.29
VFR20_15_1 600 1916.08 11.85 -1.03 2090 32.49 7.95
VFR40_5_1 600 2396.00 0.00 0.00 2554 43.15 6.59
VFR100_20_1 1800 6363.86 22.20 3.11 7860 55.78 27.35
VFR100_20_2 1800 6466.70 24.27 3.19 7902 73.17 26.09
VFR200_20_1 1800 11577.96 31.60 3.25 13731 32.49 22.46
VFR400_40_1 3600 24253.24 62.60 4.72 - - -
VFR400_60_1 3600 26549.72 73.63 4.70 - - -
VFR600_40_1 3600 34905.18 95.97 4.55 - - -
VFR600_60_1 3600 37573.98 106.20 4.60 - - -

Table 4.3. NPFS optimization results.

Table 4.3 shows that the proposed solver performs better on NPFS than the Gurobi
Optimizer. The Gurobi Optimizer was able to find feasible solutions for only the small
and medium problems and failed to even construct the model for the large instances
because it ran out of memory. The proposed solver was able to find better solutions on
all of the tested instances.

Figure 4.5. NPFS fitness minimization steps of four different instances.
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Figure 4.5 displays GAPBKS over time obtained by the proposed solver on four dif-
ferent problems including the average time of a last improving local search call ̄𝑇. The
displayed plots suggest that the solver was making improving local search steps until
the timeout was reached and would have probably continued improving the fitness if a
bigger timeout was set even though the slope seems to be very flat when approaching
the timeout.

Histogram 4.6 shows that the most improving operator was Exchange Nodes. On
the small instances the other operators also played important role while on the large
ones they become less significant. The Basic Variable Neighborhood Descent selects the
operators sequentially so the dominance of Exchange Nodes operator can be caused just
by this. We empirically found out that the other available operators were significantly
less efficient on this problem in the terms of time complexity and the number of im-
provements. Therefore, only these three operators were used for the final experiments.

Figure 4.6. NPFS Operators Histogram.

4.4 Sudoku
Sudoku instances used for the experiments were taken from a data set created by Huw
Lloyd [68]. There are three types of sudoku instances: 9x9, 16x16, and 25x25. The
Names of the instances have following format: “inst𝑁x𝑁_𝑝_id” where 𝑁 is the size
of the Sudoku and 𝑝 is the percentage of the assigned fields. The following solver
configuration was used on all Sudoku experiment:

. Metaheuristic: BVNS (𝑘min = 2, 𝑘max = 6). Local search: PVND. Construction: Greedy. Perturbation: Double bridge. Operators: Move(1), Two opt, Swap(1, 1)

From the results in Table 4.4 it is apparent that the Gurobi Optimizer performed
better on all Sudoku instances. Not only it found the the optimal solution of each
instance, it only needed couple of seconds to achieve that. The number of times in
which the proposed solver was able to find optimum is denoted |Opt|. This is also
equal to the number of times in which a feasible solution was found as the only feasible
solution is optimal. The proposed solver was able to find optimum of all 9x9 instances
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in all runs. The 16x16 instances were optimally solved in only some cases and 25x25
instances were never solved. The reason for the poor results of the proposed solver
might be the fact that heuristic algorithms generally do not aim to find optimal solution.
Another interesting observation is that while Gurobi Optimizer needed more time to
solve Sudoku with lower assignment percentage 𝑝, the proposed solver performed better
when 𝑝 was lower.

Proposed solver Gurobi Optimizer

Instance T[s] 𝑔(𝑋) 𝜎(𝑔(𝑋)) |Opt| 𝑔(𝑋) Gap Runtime[s]

inst9x9_5_0 600 0.00 0.00 50 0.00 0.00 0.01
inst9x9_5_1 600 0.00 0.00 50 0.00 0.00 0.01
inst9x9_5_2 600 0.00 0.00 50 0.00 0.00 0.01
inst16x16_5_0 1800 0.40 0.81 40 0.00 0.00 1.51
inst16x16_10_0 1800 0.88 1.29 32 0.00 0.00 1.10
inst16x16_15_1 1800 1.92 1.56 14 0.00 0.00 0.02
inst25x25_5_0 3600 13.92 4.01 0 0.00 0.00 33.25
inst25x25_10_0 3600 16.40 4.49 0 0.00 0.00 15.67
inst25x25_15_0 3600 17.00 3.75 0 0.00 0.00 15.80
inst25x25_20_0 3600 23.28 4.69 0 0.00 0.00 11.07

Table 4.4. Sudoku optimization results.

Figure 4.7 shows fitness 𝑔(𝑋) over time obtained by the proposed solver on four
different problems. On the 25x25 instances, we can see that the proposed solver was
making improving steps until reaching the timeout. On the 16x16 instances, the average
last improvement ̄𝑇 appears to be in the first half of the allocated time. This is probably
caused by the fact that some of the experiments reached the optimum prior to the
timeout.

Histogram 4.8 shows that the most improving operator was Move(1) but Swap(1, 1)
and Two-opt also made significant amount of improving calls. We can see that this
distribution doesn’t shift between 9x9 and 25x25 instances. This operator histogram
is also affected by the fact that the PVND selects operators sequentially. Again, we
empirically found out that the other available operators were less efficient and therefore
only the three operators were used for the final experiments.
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Figure 4.7. Sudoku fitness minimization steps of four different instances.

Figure 4.8. Sudoku Operators Histogram.
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Chapter 5
Conclusion

General-purpose optimizers are convenient tools that can be applied to wide classes
of optimization problems with shared representation. A typical examples are inte-
ger programming solvers like Gurobi or constraint satisfaction solvers like CPLEX.
We proposed a representation formalism which allows to address a large group of prob-
lems whose solutions can be represented using the dynamic permutative representation.
Then we designed a neighborhood-oriented heuristic solver that exploits this represen-
tation. It adapts multiple well-established metaheuristics that can be used on virtually
any combinatorial optimization problem and combines them into one powerful opti-
mizer.

We compared the solver to the commercial IP solver Gurobi Optimizer on four prob-
lems: CVRP, QAP, NPFS, and Sudoku. Each problem was formulated using both the
proposed solver framework and the integer programming paradigm. The experimen-
tal results showed that the proposed solver implemented in C++ [61] outperforms the
Gurobi Optimizer on CVRP, QAP, and NPFS problems in terms of scalability and
solution quality, given a fixed computational budget. However it did not outperform
Gurobi on Sudoku. This might be caused by a poor choice of the proposed solver com-
ponents (operators, perturbation, etc.) or because heuristic algorithms generally do not
excel in finding the optimum solution, and the only feasible solution of Sudoku is the
optimum.

Concerning future work, we plan to extend the list of operators and perturbations.
For example, NPFS has a very specific structure that was hard to exploit using the
currently implemented neighborhoods. Additionally, other metaheuristics like Tabu
Search or Simulated Annealing could be easily incorporated in the solver and might
improve the performance on some problems.

Our solver contains a number of metaheuristics, local search strategies, initial solution
construction strategies, perturbations, and operators. It can be assumed that the solver
performs best with a different setup for each problem. We selected the configuration
manually using our intuition and several small experiments however this could also be
done by an automated parameter tuning tool. This would release the user from the
responsibility of providing the configuration. On the other hand, such tools are usually
very computationally intensive.

We performed experiments with a fixed timeout but Gurobi is exact solver and by
definition it will find better or equal solution than the proposed solver given unlimited
amount of time. Another interesting question is how much time it takes the Gurobi
Optimizer to obtain such solution on the CVRP, QAP, and NPFS problems. Therefore
we suggest experiments with longer timeouts should be made.

The proposed solver is primarily designed for COPs and Sudoku experiments showed
that the solver might not be suitable for solving CSPs. The tested optimization prob-
lems do not have many constraints so it is reasonable to carry out experiments with
more constrained optimization problems e.g. Capacitated Vehicle Routing with Time
Windows or Flowshop Scheduling with Resources Constraints.
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Appendix A
Glossary

BKS . Best Known Solution
B&B . Branch-and-Bound
BVND . Basic Variable Neighborhood Descent
BVNS . Basic Variable Neighborhood Search
COP . Combinatorial Optimization Problem
CSOP . Constraint Satisfaction Optimization Problem
CSP . Constraint Satisfaction Problem
CVNS . Calibrated Variable Neighborhood Search
CVRP . Capacitated Vehicle Routing Problem
DEAP . Distributed Evolutionary Algorithms in Python
EA . Evolutionary algorithms
ECF . Evolutionary Computation Framework
EO . Evolving Objects
FSSP . Flow Shop Scheduling problem
GUB . Global upper bound
ILP . Integer Linear Programming
ILS . Iterated Local Search
IP . Integer Programming
IQP . Integer Quadratic Programming
LB . Lower bound
LKH . Lin-Kernighan-Helsgaun
MILP . Mixed Integer Linear Programming
NPFS . Non-Permutation Flow Shop
PVND . Pipe Variable Neighborhood Descent
QAP . Quadratic Assignment Problem
RPVND . Random Pipe Variable Neighborhood Descent
RVND . Random Variable Neighborhood Descent
TSP . Traveling Salesman Problem
UB . Upper bound
VRP . Vehicle Routing Problem
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