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Abstract

This thesis describes an implementation of the debugger of the SECD machine, consisting of the
SECD virtual machine and a frontend part. The tiny-lisp programming language is designed
to serve as a language that will be evaluated by the virtual machine. The thesis discusses how
to compile tiny-lisp expressions, including macros, to the SECD bytecode. The implementation
of the debugger focuses on helping students understand key concepts of the SECD machine by
interactively showing connections between the source code and the SECD bytecode. The thesis
includes a design and implementation of individual parts of the virtual machine and the frontend
module.

Klíčová slova debugger, tiny-lisp, interactive interpreter, teaching of functional programming
languages

Abstrakt

Práce popisuje implementaci debuggeru SECD stroje, sestávajícího se z SECD virtualního stroje
a frontendové části. Programovací jazyk tiny-lisp je navržen jako jazyk, jehož programy budou
interpretovány SECD virtuálním strojem, Práce diskutuje jak přeložit výrazy z jazyka tiny-lisp,
včetně maker, do SECD bajtkódu. Implementace debuggeru se zaměřuje na pomoc studentům
s pochopením klíčových konceptů SECD stroje zdůrazněním souvislostí mezi zdrojovým kódem
a SECD bajtkódem. Práce zahrnuje návrh a implementaci jednotlivým částí virtálního stroje a
frontendového modulu.

Keywords debugger, tiny-lisp, interaktivní interpreter, výuka funkcionálních programovacích
jazyků
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Chapter 1

Introduction

Although functional programming is an essential subfield of computer science, and it is nowadays
a must-known skill for all programmers, it is still not very widely known how functional languages
are implemented. The knowledge of how the functional programming languages are implemented
helps programmers understand the whole functional paradigm.

The Lambdulus system [1] was developed for the BI-PPA (Programming Paradigms) course
to help students understand the lambda calculus. The lambda calculus is an abstract concept,
which makes it harder to learn it. The way how Lambdulus helps is by presenting the lambda
calculus as a real programming language. In the PPA course, functional programming is also
thought. The goal of this thesis is to create a debugger of a functional programming language that
would show an evaluation of programs written in this language and make it seem less abstract
to the students. The tiny-lisp programming language, designed in this thesis, was chosen to be
the language to be evaluated by the debugger.

One of the possible implementations is the so-called SECD virtual machine. It is an influential
virtual machine created in the 1960s by P. J. Landin and focused on the effective implementation
of functional languages. The design of it is fairly abstract and a lot of implementation details
remain undescribed. On the other hand, it is remarkably simple. Commonly used languages
by programmers are usually compiled directly into the machine code that is then evaluated by
the computer. Generated machine code is usually quite big and hard to read. Fortunately,
while the presence of multiple stack registers in the SECD VM used for evaluation might be
confusing, concepts of the SECD machine are often not so hard to understand and generated
SECD bytecode is quite simple in comparison to the common machine code. Hence, it is easier
and more effective to create a visualizer of the SECD bytecode evaluation. Although there are
some SECD evaluators to be found on the internet, they are all very simple and none of them
helps their users to see the connection between the code of the programming language compiled
to the SECD bytecode and the SECD bytecode itself. One of the reasons why SECD is not widely
understood amongst students and the programming community, in general, is the non-existence
of an easy-to-understand visualizer. With such a tool, students could learn key concepts of the
SECD bytecode and improve their functional programming skills fairly quickly.

The tiny-lisp programming language is designed to be quite small. This is possible because
the language supports macros, and many of the language features can be implemented as a
macro.

Chapter 2 of this thesis is devoted to features of the tiny-lisp language. Chapter 3 describes the
SECD virtual machine. Chapter 4 considers possible changes to the standard SECD and provides
an overall design of the debugger. Chapter 5 talks about my implementation of the SECD
debugger, and chapter 6 compares the performance of the implementation to an implementation
of a lambda calculus evaluator. The last chapter 7 evaluates the whole thesis.

1



2 Introduction

1.1 Goals of the thesis
The thesis aims to design the tiny-lisp language based on a functional programming paradigm
and create a visualized SECD virtual machine to evaluate programs written in the tiny-lisp
language.

Tiny-lisp should be designed to be similar to the racket language that students of the BI-PPA
course are expected to know. It should support macros. The SECD machine should be discussed
and its concepts explained.

Both the tiny-lisp language compiler and the SECD virtual machine should be implemented
in the typescript language as a part of the existing Lambdulus system used in the BI-PPA course
at FIT CTU, and the solution should be integrated into this system with a proper user interface.
The solution should also actively help students understand important concepts of the machine.

It is necessary for the implementation to be clean and well documented, so students could
view it to learn more about the implementation of functional programming languages and the
implementation of programming languages in general.



Chapter 2

Tiny-lisp

Tiny-lisp is a simple LISP-like [2] programming language. Since students of the BI-PPA course
are expected to be more familiar with the racket language [3], tiny-lisp expressions tend to be
similar to their racket counterparts.

2.1 Data Types
Tiny-lisp supports just few data types.
Integer An integer value is a signed 64-bit sized number.

Boolean A boolean has two possible values: false declared by #f and true declared by #t.

String A string is a sequence of arbitrary characters.

Cons cells The cons cell is a data structure containing two members. The first is called car and
the second cdr. Both values are either a primitive value(Integer, Boolean, String) or another
cons cell.

List Lists in tiny-lisp work as linked lists. An empty list is called nil. A list is either a nil or a
chain of cons cells, where the cdr of one cons cell points to the next cons cell until the last
cons cell points to nil. The empty list can be created by the null keyword. The figure 2.1
shows an example of a list representing expression (* (+ 1 2) 2)

* NIL

NIL

NIL 3 NIL

+ 1 2 NIL

Figure 2.1 An example of cons cells representing expression (* (+ 1 2) 2)

S-expressions A symbolic expression (S-expression) is recursively defined as follows: It can
either be an atom primitive value (integer, boolean, or string) or a list.

3



4 Tiny-lisp

2.2 Grammar
The tiny-lisp language does not distinguish between statements and expressions, so I will be
using these terms in the following text as synonyms. Moreover, all data and code in tiny-lisp
are S-expressions. Expressions in tiny-lisp are written as lists, where the elements of the list
are separated by whitespace. The evaluation of an expression uses the prefix notation. Thus,
the first element in the list determines the type of the expression and how the expression will
be evaluated. The evaluation of an expression results in a value that can be used as a part of
another expression.

The presented grammar 1 is defined in the so-called Extended Backus–Naur Form (EBNF)
[4]. Tiny-lisp contains two top-level expressions – global functions and macros. They are defined
by using define and define-macro keywords, respectively. Top-level expressions cannot be nested
in other expressions. After their declaration, the names of these functions or macros can be used
anywhere in the code. It is also possible to recursively use the name in the body of the top-level
expression itself.

Other non-top level expressions can be used, both nested in other expressions and not nested.
The fact that data and code are represented in the same way is a very good precondition for

metaprogramming [5] and tiny-lisp macros described below utilize it.

2.3 Expressions
The tiny-lisp program consists of S-expressions that are evaluated from the top of the source code
to the bottom. Here I give a list of expressions that are supported by the tiny-lisp language.
After the name of each expression, there is an example of it and a result of the example separated
by an arrow.

Arithmetical operators
(+ 1 3) -> 4

Tiny lisp supports operators for addition, subtraction, multiplication, and division and pro-
vides multiple options for comparison. An operator expression contains the operator that
is followed by its integer arguments and results in an integer. The right argument of the
operator is evaluated first.

Quote and backquote operators
'(1 (2 3) 4) -> '(1 (2 3) 4)

The expression following the quote is prevented from being evaluated. A list of the values in
the expression is created instead. The backquote operator works the same way as the quote
operator, except that it allows the comma operator to be used inside the quoted list.

Comma operators
`(1 ,(+ 1 1) 3) -> '(1 2 3)

The comma used inside a backquoted list signals that the expression after the comma will be
evaluated.

Cons expressions
(cons 1 2) -> (1 . 2)

The cons expression creates a cons cell. The first element in the cons expression list is the
cons keyword, the second element is the car part of the newly created cons cell and the second
element is the cdr part. The dot in the example above signals that the preceding expression
of the dot is the car part of the cons cell, while the subsequent expression is the cdr part of
the cons cell.



Expressions 5

⟨top-level⟩ ::= ( , define , ( , ⟨iden⟩ , ⟨args⟩ , ) , ⟨expr⟩ , )
| ( , define-macro , ( , ⟨iden⟩ , ⟨args⟩ , ) , ⟨expr⟩ , )
| ⟨expr⟩

⟨args⟩ ::= { ⟨val⟩ }

⟨expr⟩ ::= ( , let , ( , { ( , ⟨iden⟩ , ⟨expr⟩ , ) } , ) , ⟨expr⟩ , )
| ( , letrec , ( , { ( , ⟨iden , expr⟩ , ) } , ) , ⟨expr⟩ , )
| ( , lambda , ( , ⟨args⟩ , ) , ⟨expr⟩ , )
| ( , if , ⟨expr⟩ , ⟨expr⟩ , ⟨expr⟩ , )
| ( , begin , { ⟨expr⟩ } , )
| ( , ⟨unary-operator⟩ , ⟨expr⟩ , )
| ( , ⟨binary-operator⟩ , ⟨expr⟩ , ⟨expr⟩ , )
| ( , ` , ⟨expr⟩ , )
| ( , , , ⟨expr⟩ , )
| ( , { ⟨val⟩ } , )
| ⟨val⟩

⟨val⟩ ::= ⟨bool⟩
| ⟨number⟩
| ⟨iden⟩
| ' , ( , { ⟨expr⟩ } , )
| null

⟨unary-operator⟩ ::= car
| cdr
| consp

⟨binary-operator⟩ ::= +
| -
| *
| /
| <
| <=
| =
| =>
| >
| or
| and
| cons

⟨bool⟩ ::= #t | #f

⟨number⟩ ::= A number is 64-bit valid integer

⟨string⟩ ::= " , sequence of arbitrary characters , "

⟨iden⟩ ::= An identifier starts with a letter. Inside an identifier can be used letters, numbers or
characters ’_’ and ’-’

1 The grammar of the tiny-lisp language in EBNF format



6 Tiny-lisp

Car expressions
(car '(1 2 3)) -> 1

The car expression consists of the car keyword and one argument that is supposed to be a
cons cell. It returns the car member of the cons cell.

Cdr expressions
(cdr '(1 2 3)) -> '(2 3)

The cdr expression consists of the cdr keyword and one argument that is supposed to be
a cons cell. It returns the cdr member of the cons cell.

Consp expressions
(consp '(1 2 3)) -> #t

The consp expression consists of the consp keyword and one argument. It checks whether the
argument is a cons cell. If so, the consp expression returns true. If it is an atomic value, the
consp expression returns false.

If expressions
(if 0 4 5) -> 5

The if expression is the main option for branching in the tiny-lisp language. It is a list of
four elements, where the first one is the if keyword, followed by a condition and the true and
false branches. First, the condition of the expression is evaluated. Depending on the value
returned by this evaluation, one of the branches is chosen to be executed.

Lambda functions
((lambda (x y) (+ x y)) 10 20) -> 30

The lambda function statement creates a local function. After the lambda keyword, there
is a list of parameters of the function. After that, there is an S-expression that contains
the body of the lambda that will be evaluated when the lambda function is called. In the
example above, the lambda function is the first element in a list. That means that the lambda
function is evaluated with other elements of this list as its arguments. Values of arguments
replace variables in the body of the lambda. Then the body of the lambda is evaluated, and
the result is returned from the function.

Let expressions
(let (

(x 1)
(y 2)) -> 9

(* (+ x y) (+ x y))
The let expression is used for binding a variable to an expression. It is possible to bind several
variable-expression pairs in a single let expression. The first element of the let expression is
the let keyword, followed by a list of bindings. Each binding is a list of two elements, where
the first element is a variable that is bound to the expression on the second position. The
last element in the top-level list is the body of the let statement. It is an S-expression and
when a variable from the binding is used here, the expression bound to it is loaded.

Letrec expressions
(letrec((fact

(lambda(n)
(if (= n 0)

1 -> 120
(* n (fact (- n 1)))))))

(fact 5))
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The letrec expression is syntactically used the same way as the let expression, with the
difference of using the letrec keyword instead of the let keyword. The letrec expression has
the same properties as the let expression, but it also allows using the bound variables in
the bound expressions. Hence, when a variable is bound to a function and the variable is
also used in this function, a recursive function is created. The use of another let or letrec
statement in bindings results in an invalid code.

Begin expressions
(begin (+ 1 2) (+ 3 4) (+ 5 6)) -> 11

This is an equivalent of the common-lisp progn expression [2]. In contrast to previously
defined expressions, begin expression starts with the begin keyword followed by an arbitrary
number of arguments. It evaluates all of its arguments and returns the result of the last one.
Thus, it enables sequential evaluation.

Global Functions
(define (cadr lst)

(car (cdr lst))) -> '(2 1)

(cadr '(1 (2 1) 3))

Global functions are lists with the define keyword as their first element. The next element is
a non-empty list, where the first element is the name of the function and the other elements
are the names of parameters of the function. The last element of the global function is the
body of the function, which is an S-expression.

Global functions can be used in the code by creating a list with the function name as the
first element and function argument as other elements.

The function can be used anywhere in the code after its declaration and in the global function
itself. This means that it is impossible to write a valid code like in the listing 2 in tiny-lisp,
where the function foo does not know the function bar used inside it.

(define (foo x)
(if (= 0 x)

0
(+ 1 (bar (- x 1)))))

(define (bar x)
(if (= 0 x)

0
(+ 1 (foo (- x 1)))))

(foo 10)

2 An example of invalid tiny-lisp code with two functions calling each other

A solution to this is to not declare functions as global, but rather use a letrec expression with
both foo and bar defined in the bindings. The variables declared in the letrec statement can
be used in any of the bound expressions. The figure 3 shows this situation. The code is valid,
and its result is 55.
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(letrec((foo
(lambda(x)

(if (= x 0)
0
(+ x (bar (- x 1))))))

(bar
(lambda(x)

(if (= x 0)
0
(+ x (foo (- x 1))))))

)
(foo 10))

3 An example of valid tiny-lisp code with two functions calling each other

2.4 Macros
Tiny-lisp macros are inspired by LISP [6] and racket [3] macros. Most of the features of the
language can be implemented as macros, which allows the language to be quite small in scope.
Here is an example of a tiny-lisp macro and its call.

(define-macro (if-consp val tb fb)
`(if (consp ,val)

,tb
,fb)) -> (+ 1 (if (consp 4) (+ 1 2) (+ 2 3)))

(+ 1 (if-consp 4 (+ 1 2) (+ 2 3)))

Macros are declared as lists starting with the define-macro keyword, followed by a list con-
taining the name of the macro and names of parameters of the macro. This is followed by the
body of the macro which is an S-expression. Similar to global functions, macros can be used any-
where in the code, after the macro declaration and in the macro itself, by creating a list, where
the first element is the macro name and other elements are arguments of the macro. Similarly,
all non-top level tiny-lisp expressions can be used inside the macro.

A big difference between macros and functions is that, while functions are evaluated at
runtime, macros are evaluated already at compile time. Moreover, arguments of macros are not
evaluated, but they are passed quoted instead.

The process of evaluation of a macro during compile time is called a macro expansion. An
S-expression is created as a result of the macro expansion and replaces the macro call in the
source code. The macro call may expand into another call of a macro. This call then needs to
be also expanded.

Very often, programmers use the backquote immediately at the beginning of the body of the
macro. The other common pattern is to use a let statement at the beginning of the body and
then use the backquote at the beginning of the body of the let statement.

2.4.1 Hygienic macros
Hygienic macros are macros whose expansion is guaranteed to expand into a code that uses
unique identifiers that do not interfere with other identifiers in the code.
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Working with unhygienic macros brings potential problems. Let’s take a look at them in the
code listing 4.

(define-macro (cmp a b if-lt if-eq if-ht)
`(let (

(lhs ,a)
(rhs ,b)

)
(if (< lhs rhs)

,if-lt
(if (= lhs rhs)

,if-eq
,if-ht))))

(define (foo x y lhs rhs)
(cmp x y

(+ lhs rhs)
(- lhs rhs)
(* lhs rhs)))

(foo 6 4 100 255) -> 24

4 An example of unhygienic declaration of a macro

Macro cmp compares two numbers and based on the result of the comparison evaluates one
of the branches passed as arguments. Since the variable a is 6 and thus bigger than the variable
b of value 4, we would expect that the last branch evaluates. The last argument of the macro
call is (∗ lhs rhs), so the result should be lhs and rhs multiplied, thus, 25500. This expectation
is wrong, the real result is 24. To understand what happened, we need to take a look at the
function foo after the macro reduction was performed.

(define (foo x y lhs rhs)
(let ((lhs x)

(rhs y))
(if (< lhs rhs)
(+ lhs rhs)
(if (= lhs rhs)

(- lhs rhs)
(* lhs rhs))))

As we can see, variables lhs and rhs are declared as arguments of the function foo, but the
result of the macro expansion also use variables with the same names in its body. That is the
reason, why all instances of variables lhs and rhs refer just to the latest declaration of them.
Therefore, values 6 and 4 are passed into all occurrences of lhs and rhs respectively.

There are several possible solutions to this problem. It is possible to use complicated names
as variable names inside the macro, but it just makes the problem less likely.

Now assume a function gensym that takes no arguments and returns a string that does not
meet requirements for a variable name as defined in the tiny-lisp grammar 1. Moreover, this
string cannot be already used as a variable name anywhere in the code. With this function, we
can change the code to look like listing 5.

Now, the variable names used in the macro are not directly specified by the programmer that
wrote the macro, but they are generated by the gensym function instead. We are also guaranteed
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(define-macro (cmp a b if-lt if-eq if-ht)
(let (

(tmp1 (gensym))
(tmp2 (gensym))
)

`(let (
(,tmp1 ,a)
(,tmp2 ,b)
)

(if (< ,tmp1 ,tmp2)
,if-lt
(if (= ,tmp1 ,tmp2)

,if-eq
,if-ht)))))

(define (foo a b lhs rhs)
(cmp x y

(+ lhs rhs)
(- lhs rhs)
(* lhs rhs)))

(foo 6 4 100 255) -> 25 500

5 An example of the gensym function used in a macro

that the string that is returned from the gensym function is not used as a variable name so far.
Thanks to this guarantee, macros can be created in a way that the programmer can rely on
them that they will not declare any variables that the programmer is already using, so no such
variables will arise in the expanded code. Thus, these macros are hygienic.

In the following example, we can see how the expanded code looks like, if the gensym function
generated strings ”!ff” and ”!gg”.

(define (foo x y lhs rhs)
(let ((!ff x)

(!gg y))
(if (< !ff !gg)
(+ lhs rhs)
(if (= !ff !gg)

(- lhs rhs)
(* lhs rhs))))



Chapter 3

SECD

In this section, I describe how the SECD virtual machine works. I also list its registers and
instructions. SECD is an abstract computer architecture specialized for interpreting functional
languages. It was developed in 1964 by Peter J. Landin.

3.1 State of the machine
While running, SECD uses four stack registers implemented as lists. List representation of
registers lends itself nicely to the stack API. The top of the register gets the leftmost element of
the list, pop removes the leftmost element of the list from the list, and push creates a new cons
cell with the pushed element as the car part and the original list as the cdr part. [7]

Next I will list registers used by the SECD VM. [7], [8]

Control It is oftentimes also called the code register. The control register is holding a list of
instructions to be executed. They are instructions of the currently evaluated function, if
statement branch or a top-level expression. After the evaluation of most of the instruction
types, the instruction and its arguments in the code register are popped from the code register.
There are however several instructions (used for branching, exiting the branch, function
application, or returning from the function) that construct the content of the new code
register differently, as described below.

Stack The stack register is used for holding expression evaluation results. It is also used for
storing the body of a function and its arguments before its application.

Environment The environment is a list of scopes. A scope is a place in the source code, where
a set of variables is defined. In SECD, the scope is implemented as a list of mutually different
variable names defined in the scope in the source code. When entering a new scope in the
source code, a new scope list is created on the top of the environment register. When leaving
the scope, it is popped. For example, when applying the function, a new list is created with
values of arguments of the function as values of this list. This list is later popped when we
return from the function.
The values are obtained from the environment by using the LD instruction. This instruction
takes a list of two numbers as its argument. The first of the numbers is an index of the
variable scope where the variable lays. If this index is zero, it refers to the list on the top of
the environment register, that is, to the local scope. Similarly, the maximum index refers to
the top scope. The second index determines the index of the element in the scope.

11
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Dump The dump register is used for holding backup copies of other registers. There are two
cases when registers are saved to dump, namely, evaluating if expressions and function ap-
plications. In the former case, only the control register is pushed to dump. In the latter, all
control, stack, and environment are pushed to dump. These backups are later popped when
we leave the if expression or when we return from the function.

Figure 3.1 shows how evaluation of instruction changes the contents of registers. The left
part of the figure shows registers before the evaluation of an LD instruction. The right part
shows, how they look after it is performed. After the name of each register, there is a content of
it. The squared brackets signal the beginning and end of a list. We can see that the evaluated
instruction and its argument are popped from the code register. The result of the LD instruction
is pushed to the stack. A value of a variable was searched for in the environment register. The
result of the search on indices 0, 0 is a value 2. The pictures in the figure are taken from the
implementation created in this thesis.

(a) Register before evaluation of an instruction
(b) Register after evaluation of an instruction

Figure 3.1 An example of an evaluation of an instruction

3.2 Closures
The closure is defined as a list of two elements.

⟨closure⟩ := [⟨function-body⟩, ⟨environment⟩]

[7]
In the SECD virtual machine, closure is a data structure representing functions. It is built

from the function bytecode and the current environment.
The main benefit of closures is that they act as persistent variable scopes. In most program-

ming languages, when we try to load a variable, the language looks for it in the current scope,
then in the parent scope, in the parent of the parent scope, etc. until the root scope is reached.
However, SECD VM uses closures where variables in the scope are tied directly to the function
itself. Thus, any variable present in the scope at the moment of the closure creation can be used
in the function.

Closures can also be recursive and contain a reference to themselves in the environment. This
allows the SECD VM to successfully interpret recursive functions. Recursive closures are created
by RAP and DEFUN instructions which will be described below.

As discussed above, closures are functions with an associated state. Methods in object-
oriented programming can be defined in a very similar manner. A class can be implemented in
the functional world as a set of closures sharing a common state. Whenever a variable lays in the
environment part of the closure but cannot be reached otherwise, we can consider it a private
variable of the class. Therefore, the SECD VM can use closures to support an interpretation of
objects.
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3.3 Instruction set
I will now list the instructions used by the virtual machine.

After each instruction, there is a rule illustrating the effect of the instruction. The definition
of the rule is constructed from two parts, divided by the � symbol. Both parts describe a list
of four elements representing stack, environment, code, and dump registers respectively. The
former part of the rule describes a state of registers before the application of the instruction.
The letter part describes the state of registers after the application of the instruction. These
rules are inspired from [7].

Registers are in these rules represented as lists with the following recursive definition. If the
list is represented just by an identifier, then the whole list is tied to this identifier. If the list is
represented by brackets that contain a dot and other characters, then the part before the dot
describes the car of the list, and the part after the dot describes the cdr of the list. Empty square
brackets describe an empty list.

NIL
(S E (NIL . C) D) -> (([] . S) E C D)
Creates an empty list on the top of the stack register.

LDC
(S E (LDC . x . C) D) -> ((x . S) E C D)
Loads a constant on the stack.

LD
(S E (LD . (i1 . i2) . C) D) ->
(((find value in environment on indices i1 i2) . S) E C D)
Loads a variable from the environment on the stack. After the LD instruction, the code
should contain a list of two numbers describing the position of the value of the variable in
the environment register.

SEL
((cond . S) E (SEL . branch1 . branch2 . C) D) ->

(S E branch1 (C . D)) or (S E branch2 (C . D))
SEL is a branching instruction compiled from an if statement. It assumes that there is a
boolean value on the top of the stack. After the SEL instruction, there are two lists in the
code register representing both branches of the if statement. The code of the branch should
always end with a JOIN instruction. Instructions after the SEL instruction are stored on
the top of the dump register. The code register is then replaced by one of the branches,
depending on the value on the top of the stack.

JOIN
(S E (JOIN . C) (C' . D)) -> (S E C' D)
The JOIN instruction is used for exiting from the if statement. It simply pops at the top of
the dump, where the code following the if statement is stored. Then it pushes it to the code
register.

LDF
(S E (LDF . f . C) D) -> (((f . E) . S) E C D)
The LDF instruction loads a new function on the top of the stack. In SECD, a function is
a closure of the body of the function (f) that is located in the code register after the LDF
instruction and the current environment. The bytecode of the function should always end
with the RTN instruction that is discussed below.
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AP
(((f . e') . args . S) E (AP . C) D) -> ([] (args . e') f (S . E . C . D))
The AP instruction takes care of a non-recursive function application. Namely, it handles
entering the function. First, the current states of the code, the stack, and the environment
registers are stored on the top of the dump register. The AP instruction also expects a
closure of the function code and its environment on the top of the stack and a list of function
arguments under them. The function closure is deconstructed, and its code part is used as the
new code. The environment part of the closure is the new environment. The stack register
is then emptied. Before the execution of the AP instruction, arguments of the function are
stored under the top of the stack register. The AP instruction moves these parameters to
the top of the environment. Hence, we effectively enter a new function scope. It is expected
that the RTN instruction discussed below occurs in the future so that we can return from
the function.

RTN
((x . S) E (RTN . C) (S' . E' . C' . D')) -> ((x . S') E' C' D')
The RTN instruction is the last instruction of a function that takes care of returning from
the function. The value on the top of the stack is the returned value. The code and the
environment registers are both replaced by their counterparts in the dump register. The
stack register is also loaded from the dump register and the returned value is pushed to the
top of it. All three lists of these registers are popped from the dump register.

DUM
(S E (DUM . C) D) -> (S ([] . E) C D)
The DUM instruction creates an empty list on the top of the environment register. This
instruction occurs exclusively after compiling a letrec statement. It aims to create a dummy
environment that would later become the recursive function itself.

RAP
(((f . ([] . E)) . args . S) ([] . E) (RAP . C) D) ->

([] (setcar! (([] . E) args) . E) f (S . E . C . D))
The RAP instruction stands for recursive function application. Similar to the AP instruction,
the RAP instruction firstly saves copies of the code, the stack, and the environment to the
dump register. The other similarity is that it takes a closure of the code of the function and
an environment of the function from the top of the stack register. However, RAP expects
that the value on the top of the environment register is an empty list created by the DUM
instruction. The function setcar! is then called. It removes the car of the environment and
replaces it with arguments of the function. These arguments are typically the functions that
will be recursively applied in the future, while the function closure on top of the stack register
is the expression that calls the recursive function for the first time.
Like the AP instruction, the code part of the closure on the top of the stack is used as the
new code and the environment part as the new environment. Arguments of the function are
under the top of the stack. They are also pushed into the environment and the stack is then
emptied.

Operators SECD contains several unary and binary operators. Arguments of the operator are
popped from the top of the stack register, and the result of the operator evaluation is pushed
to the stack register.



Chapter 4

Design

In this chapter, I discuss extensions to the original SECD machine in my implementation and
the overall design of the debugger. The debugger consists of several smaller modules that will
be described in detail.

4.1 Extensions to the SECD
In addition to the standard SECD instructions discussed in Chapter 3, there are two more
instructions in my implementation. They allow me to compile some expressions of tiny-lisp more
practically.

POP
((x . S) E (POP . C) D) -> (S E C D)

The POP instruction removes the top of the stack register. It is compiled from the begin
statement, and it is placed after every compiled expression of the begin statement, except
the last one. It serves for removing the result of the expression from the stack.

DEFUN
(((f . e'). S) E (DEFUN . C) D) -> (S ((f . e') . E) C D)

The DEFUN instruction is compiled from a global function. In my implementation, an empty
list is created at the beginning of the evaluation for these global functions. The DEFUN
instruction expects a closure on the top of the stack and moves it to the current scope in the
environment register. Since the DEFUN instruction is compiled from global functions, the
current scope will be always the top scope. Before the DEFUN is executed, the function has
to be loaded by the LDF instruction. That means that after LDF evaluates, the environment
part of the closure on top of the stack will be the global scope. Then, when the DEFUN
instruction is executed, a closure whose environment is the global scope is put to the global
scope. Hence, a recursive closure is created, and it is possible to create recursive global
functions.
The DEFUN instruction also enables extending the debugger with the Read–eval–print loop
(REPL) environment in the future.

15
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4.2 Debugger
The debugger is integrated into the Lambdulus system. Projects in the Lambdulus system consist
of two modules. The core module acts as a back-end module and takes care of the processing
of the source code and performing evaluation steps. The front-end part takes care of displaying
information to the user, taking commands from the user and calling the core module. The 4.1
figure shows how the user, back-end (core) module and front-end module interact with each other
in a Lambdulus project.

Sends source code

Sends AST and registers

Commands to perfrorms interpreter step

Sends AST and registers

Frontend Backend

User

Sends source code

Clicks on the step button

Figure 4.1 Lambdulus architecture

4.2.1 Core module
The core module should have its compiler part that takes care of processing the source code.
The compiler uses the lexer part, to transform the source code into syntactic tokens. Then
the compiler compiles these tokens to the SECD bytecode. It is possible to first compile the
source code to S-expressions and only then compile these S-expressions to SECD bytecode. This
approach would be cleaner since tiny-lisp expressions are S-expressions. Implementation of macro
expansions would also be more natural. However, it turns out that this intermediate step can
be skipped without any trouble, so the compiler in my implementation compiles the source code
directly to the SECD bytecode.

While compiling, the core module should be able to ensure the syntax correctness of the source
code. When the source code is invalid, the core module should form a helpful error message if
possible.

The core module should also construct a representation of the source code and pass it to
the front-end module. The representation should be modifiable, while always remembering the
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original structure of the source code. There are two possible ways how this representation can
be implemented.

The first option is to represent the source code as S-expressions. The first benefit of this
approach is easier implementation, particularly if the compiler is implemented to perform an
intermediate step to create S-expressions from the source code. The rendering of source code
would be also easier on the front-end since the source code is made from S-expressions.

The second option is to represent the source code as an abstract syntax tree (AST). In contrast
to S-expressions, the AST consists of nodes of different types. I chose this approach because I
want the source code representation to be modifiable by evaluation steps. The AST is more
straightforward in this and allows treating every node differently when it comes to modifying the
AST or performing operations over the AST. Another benefit is that the AST is probably the
most often used solution when it comes to representing the source code.

There should be an AST and compiled SECD code at the end of the compilation process.
The core module should contain an SECD virtual machine part. The SECD VM will con-

tain stack registers and the AST. It should be able to perform an evaluation step based on an
instruction and change states of registers and AST in the process. It should offer methods to
perform the next instruction evaluation and whole program evaluation.

The core module should also include a macro expander. The macro expander allows the
evaluation of macros during the compile time. If the compiler finds a macro call, it should use an
instance of the SECD VM to evaluate the macro expansion. The result of this evaluation should
be an S-expression, and it should be printed to a string and treated as a replacement for the
macro call in the source code. It is possible to prepend this result to the part of the source code
that was not yet compiled and continue the evaluation. However, my implementation simply
starts a new compiler for the expanded code, and after it is compiled, it continues compiling the
source code. This is possible because the result of the expansion should be an S-expression, thus
valid tiny-lisp code

The figure 4.2 shows how the compilation of macros and functions differ. Functions are simply
compiled to the SECD bytecode, while macros are expanded during compile time by the macro
expander and then compiled. It is important to note that the figure shows a compilation of just
one macro or function, but the macro expander may produce a call to another macro that also
needs to be expanded.

4.2.2 Front-end module
The front-end module should take care of rendering the screens of the debugger to the user.
There should be a submit screen, where the user submits their code and a debug screen where
they can interact with the state of the debugger and perform new evaluation steps.

The front-end evaluation should start with the submit screen. In the submit screen, the
front-end receives a source code from the user and sends it to the core module to compile it and
return the AST and registers. Then the front-end should render the debug screen.

After that, the front-end needs to be ready to accept requests from the user to perform
evaluation steps. If the request is received, it asks the core module for the result of the step
and re-renders the screen. It should be able to highlight parts of the source code and the SECD
bytecode that are important for the evaluation of the next expression. The user should also be
able to interact with the source code to be able to see connections between the source code and
the bytecode when the mouse hovers over the source code.
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Function in the
source code

Tokens

SECD bytecode

Lexer

Compiler

Macros in the
 source code

Expanded macro

SECD VM

Lexer

Lexer

Compiler

Tokens

SECD bytecode

Compiler

Figure 4.2 A comparison between compilation of a function call and compilation of a macro call



Chapter 5

Realization

The main objective of this thesis is to create a debugger of the SECD machine. This chapter
describes, in detail, how individual parts of the machine are implemented. Since the debugger
utilizes the Lambdulus system [1] that is written in the typescript programming language [9],
both the front-end and the back-end modules of the debugger are also implemented in typescript.

5.1 Core module
As a part of the Lambdulus system, the back-end part of the debugger is implemented as a
Lambdulus core module. The first responsibility of the core module is to parse the source code
and to create a debugger state consisting of all four stack registers and the AST. The second
responsibility is to be able to perform evaluation steps that can modify registers and the AST
and pass it back to the front-end.

All data and instructions in SECD registers are implemented via an abstract class named
SECDElement. The SECDElement class is extended by classes SECDValue, SECDArray and
SECDHidden. The first one represents primitive data and instructions, while the second one
represents lists and the third one is used just to store additional information for function appli-
cation.

Every SECDElement has a variable that stores its colour and a pointer to an AST node.
The colour is stored for rendering purposes and will be further described in the 5.2.3.1 section.
Multiple elements can point to the same node.

Every SECDElement can also be printed by the print method. The method clone returns a
new instance of the element that has the same values of member variables as the original element.
There is also a method called removeReduction that will be described in the 5.2.2.2 section.

SECDElements are divided into these types:

SECD values An SECDValue may be a number, a string or an instruction. All boolean values
declared in the source code are converted to either number 0 or number 1.
Numbers and strings are implemented via primitive types provided by typescript. Instructions
are implemented via the class Instruction. The Instruction class contains instructionShortcut
member variable of enum type InstructionShortcut that identifies the type of the instruction.
Moreover, the Instruction class exports multiple methods that handle the printing of the
instruction for debugging and rendering purposes.

SECD arrays SECD lists are implemented via the class SECDArray. This class uses compo-
sition over a typescript array to store its elements. It supports most of the standard array
operations. SECD registers are implemented as SECDArrays. The array was chosen as the
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container, because it is the default container in the typescript language, and it supports
simple syntax for the creation of an array and getting an element on an index. If this im-
plementation proves to be unnecessarily time-consuming, the container can be changed to a
linked list.

SECD hidden elements The SECDHidden element is used for storing additional information
about a function application, and it is not being shown to the user. It is pushed to the dump
register when the evaluation of the function begins, and it is popped from there when we
return from the function. It contains a pointer to another node beside the one inherited from
the SECDElement class. This pointer is called callNode. The callNode represents the part
of the AST, from where the function is called. This pointer is stored to update this part of
AST when returning from the function with the result of the function.
The second pointer points to the body of the applied function. This pointer is necessary to
prepare the AST of the function for another application of this function. It will be further
discussed in the 5.2.2 section.

5.1.1 SECD Compiler
The SECD compiler contains several parts. The lexer splits the source code into tokens. The
parser ensures the syntax correctness of the program. The main compiler part compiles the
source code to the SECD bytecode. The parser and the compiler are implemented in the same
class, and the parsing and compiling processes are performed together at the same time.

5.1.1.1 Lexer
The lexer is implemented via the class Lexer. It splits the source code into tokens represented via
a variable of enum type called LexerTokens. Tokens can be keywords, types of values, operators
or special characters like brackets. The lexer exports a method called getNextToken that returns
the next token from the source code. Besides this, the lexer also remembers the last identifier
and the last number loaded. The other method that is exported is called loadExpr. This method
loads the next expression from the source code and returns it as a string. It is needed for a
compilation of let or letrec statements.

5.1.1.2 Parser
The parser is implemented in the Parser class. It implements a LL(1) syntactic analyser [10]
with recursive descent to detect programming errors.

It calls the getNextToken method of the lexer to get tokens and expects the tokens to be in
a certain order arising from the syntax of the tiny-lisp language defined in the chapter 2. The
parser asks for the first token at the beginning of the compilation. Then, each time the type of
the token needs to be checked, the parser calls the compare method that compares the expected
token with the actual one and if they are the same it asks the lexer for a next token. If the
expected token differs from the received token, a syntax error is detected, and the parser stops
and throws an exception.

The parser contains a member variable symbTable that is an instance of the class SymbTable.
The SymbTable class represents a variable scope and contains all variables declared in this scope.
It can also have a pointer to another SymbTable instance that represents a previous scope. When
the use of a variable needs to be compiled, the parser calls the getPos method of the SymbTable
that returns two numbers. The first one is the index of the scope, where the variable was found,
and the second is the index of it within the scope.

During parsing, the parser also remembers, for each declared variable, how many arguments
it expects. This is the reason why the parser is not only able to detect trivially detectable
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errors such as the use of an undeclared identifier or invalid syntax but is also able to spot many
other programming errors like a call of an identifier that is not a function, or a wrong number
of arguments to a function or an operator. If an error is found, the parser creates an error
message and the front-end module shows it to the user. The figure 5.1 shows an example of
an error message shown by the front-end module when a function got an insufficient number of
arguments. The figure 5.2 shows an example of a front-end error message after the use of an
undeclared identifier.

Figure 5.1 An example of invalid tiny-lisp code with too few arguments to a function and an error
message shown by the front-end module

Figure 5.2 An example of use of an undeclared identifier in tiny-lisp and an error message shown by
the front-end module

5.1.1.3 Compiler
The compiler is implemented in the Parser class. While compiling, the syntax correctness of
the program is checked at the same time, as discussed in the section 5.1.1.2. It compiles the
source code represented as a string to the SECD bytecode. It also creates an AST representation
of the source code. The structure of the AST will be discussed in detail in the 5.2.2 section.
The compiler generates the SECD bytecode based on the rules defined in [7]. In the rest of the
section, I will show these rules. The left side of each code listing presented is the source code
of an expression in the tiny-lisp language, while the right part is the generated bytecode. The
square brackets symbolize a list. The rules may contain a function called compile that takes an S-
expression as its argument and compiles the expression with another compilation rule, depending
on the exact type of this expression.

Constants
const -> LDC const
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Constants are compiled into the LDC instruction followed by the constant. The code listing
6 shows an example of a compilation of the number 5.

5 [ LDC 5 ]

6 An example of a constant compilation

Variables
identifier ->
LD [<index of the list of values in the environment register>

<index of the value in the list of values>]

Whenever the use of a defined variable is detected, it is compiled to the LD instruction,
followed by a list containing two indices. The former index is an index of the list of values
in the environment register. The latter index specifies where the value of the variable can be
found in the list of values. These indexes are obtained by the method getPos in the SymbTable
class. The code listing 7 shows an example of a compilation of a variable x, assuming it was
already defined in the source code. The variables i1 and i2 represent indices of the value of
the variable x in the environment register.

x [ LD [ i1 i2 ] ]

7 An example of the load of a variable compilation

Operators
(op arg1 arg2) -> compile(arg1) + compile(arg2) + op

All tiny-lisp operators have their SECD instruction counterpart that they are compiled into.
The SECD operators are working in the postfix notation. Therefore, the arguments of the op-
erator must precede the operator itself. The code listing 8 shows an example of a compilation
of a cons expression.

(cons 1 (- (* 2 3) 4)) [ LDC 4 LDC 3 LDC 2 MUL
SUB LDC 1 CONS ]

8 An example of operators compilation

Quote and backquote
'expr -> LDC expr

The expression after the quote operator is not being evaluated, but it is loaded as a constant
instead. The backquote operator works similarly, but it also supports the comma operator
inside. The code listing 9 shows an example of a compilation of the quote operator that
creates a list of values 4, 5 and 6.

Comma
,expr -> compile(expr)

The expression after the comma is evaluated. The result of the evaluation remains in the
same place in the list where was the original expression. The code listing 10 shows an example
of the compilation of the comma operator.
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'( [ NIL
4 LDC 4 CONS
5 LDC 5 CONS
6 LDC 6 CONS

) ]

9 An example of the quote operator compilation, resulting in a creation of list containing numbers
4, 5 and 6

`( [ NIL
1 LDC 1 CONS
,(+ 1 1) LDC 1 LDC 1 ADD CONS
3 LDC 3 CONS

) ]

10 An example of the comma operator inside of a backquoted list

If statements
(if cond branch1 branch2) -> compile(cond) + SEL +

[compile(branch1) + JOIN] [compile(branch2) + JOIN]
The compiled if statement starts with its compiled condition, followed by the branching
instruction SEL and both compiled branches. These branches are parts of additional lists
that contain the JOIN instruction at the end. The code listing 11 shows an example of the
compilation of an if statement.

(if 0 [ LDC 0 SEL
1 [ LDC 1 JOIN ]
2) [ LDC 2 JOIN ]]

11 An example of the if statement compilation

Lambdas
(lambda (args) body) -> LDF + [compile(body) + RTN]
Lambdas are compiled into the LDF instruction, followed by a list containing the compiled
body of the lambda and the RTN instruction at the end of the list. The code listing 12 shows
an example of the compilation of a lambda function.

(lambda (x y) [ LDF
(+ x y)) [ LD [ 0 1 ] LD [ 0 0 ] ADD

RTN ]]

12 An example of the lambda function compilation

Function arguments
(args) -> NIL + for each in args get (arg -> compile(args) + CONS)

Function call
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(func args) -> compile(args) + compile(func) + AP
When calling a function, first its arguments are put into a list on the top of the stack register.
That means that the first generated instruction is the NIL instruction to create an empty list.
Then each argument is compiled followed by the CONS instruction to move the argument to
the list created by the NIL instruction.
Then the function is compiled and at the end, the AP instruction is added. The code listing
13 shows an example of the compilation of a lambda statement with arguments 10 and 20.

( [ NIL LDC 20 CONS LDC 10 CONS
(lambda (x y) LDF

(+ x y)) [ LD [ 0 1 ] LD [ 0 0 ] ADD RTN ]
10 20) AP ]

13 An example of compilation of the function call

Let statements
(let (bindings) body) -> NIL + for each in bindings get

(binding -> compile(binding value) + CONS) +
[compile (lambda(bindings vars) body) + RTN] + AP

The let statement compiles into the NIL instruction, followed by compiled values of bindings
in the let statement. Every compiled value is followed by the CONS instruction. Variables of
these bindings are then considered arguments of the lambda statement, with the body of the
let statement being the body of this lambda. This newly created lambda is then compiled.
The code listing 14 shows an example of a compilation of a let statement declaring variables
x and y and using them in its body.

(let ( [ NIL
(x 1) LDC 1 CONS
(y 2)) LDC 2 CONS

LDF
(+ x y) [ LD [ 0 0 ] LD [ 0 1 ] ADD RTN ]
) AP ]

14 An example of the let statement compilation

Letrec statements
(letrec (bindings) body) -> DUM + NIL + for each in bindings

get (binding -> compile(binding) + CONS) + LDF +
[(lambda(bindings vars) body) + RTN] + RAP

The letrec statement is compiled almost the same way as the let statement. Since bound
variables of the bindings can also be used in the bound expressions, the Parser class needs
to compile variables first before compiling the expression. This is achieved by utilizing the
function loadExpr of the lexer. The parser calls it instead of compiling the expressions. Then,
when all bindings are loaded and variables are added to the symbTable, it starts a new instance
of the Parser class that compiles the expression.
There are two differences between the generated bytecode of the let expression and the letrec
expression. The first difference is that the last instruction is the RAP instead of the AP, and
the second one is the additional DUM instruction at the beginning. The combination of DUM
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and RAP instructions allows the creation of recursive functions, as discussed in section 3.3.
The code listing 15 shows an example of the compilation of a letrec statement that creates a
recursive function named func that computes factorial numbers.

(letrec((fact [ DUM NIL
(lambda(n) LDF

(if (= n 0) [ LDC 0 LD [ 0 0 ] EQ SEL
1 [ LDC 1 JOIN ]
(* n (fact (- n 1))))))) [ NIL LDC 1 LD [ 0 0 ] SUB

CONS LD [ 1 0 ] AP
LD [ 0 0 ] MUL JOIN ]

RTN ]
(fact 2)) CONS LDF [ NIL LDC 2 CONS

LD [ 0 0 ] AP RTN ] RAP ]

15 An example of the letrec statement compilation

Begin statements
(begin exprs last) -> for each in exprs

get (expr -> compile(expr) + POP) + compile(last)

Expressions in the begin statement are compiled one by one. There is a POP instruction
placed after each compiled expression except the last one. The code listing 16 shows an
example of a compilation of a begin statement that consists of three expressions.

(begin [
(+ 1 2) LDC 2 LDC 1 ADD POP
(+ 3 4) LDC 4 LDC 3 ADD POP
(+ 5 6) LDC 6 LDC 5 ADD

) ]

16 An example of the letrec statement compilation

Global functions
(define (name args) body) ->

LDF + [compile(body) + RTN] + DEFUN

The global function is compiled the same way as a lambda function, but the DEFUN instruc-
tion is added at the end. The code listing 17 shows an example of a compilation of a global
function, declaring a function cadr that takes one argument and assumes it is a list of at least
two elements. It returns all members of the list except the first one and the last one.

(define (cadr lst) [ LDF
(car (cdr lst))) [ LD [ 0 0 ] CDR CAR RTN ]

DEFUN]

17 An example of the global function compilation
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5.1.2 Macro expander
The macro expander is also implemented inside the Parser class. The parser can detect macro
reductions that need to be performed during the compile time. A macro is compiled the same
way as a global function. The code listing 18 shows an example of a compilation of a macro
called if-consp.

(define-macro (if-consp val tb fb) [ NIL
`(if (consp ,val) LDC "if" CONS NIL LDC "consp"

CONS LD [ 0 0 ] CONS CONS
,tb LD [ 0 1 ] CONS
,fb)) LD [ 0 2 ] CONS]

18 An example of a macro expression compilation

The parser contains a map member variable called macros, where keys are macro names
and values are codes of these macros. The parser adds a new entry to the map each time a
define-macro statement is compiled.

When the parser later finds an identifier that is either a function call or a macro call, the
parser searches for the identifier in this map. If it gets a value, it is a macro, otherwise, it is a
function.

When a call of a macro is detected, its arguments are simply quoted instead of directly
compiled to the SECD bytecode.

The code of the macro is bound to the macro name in the macros map. An instance of class
Interpreter that serves as the SECD VM is then created. The class will be further discussed in
the 5.1.3 section. The code of the macro is used as the code register of the SECD VM. Dump
and stack registers are empty lists. A list with two elements is used as the environment register.
The former element is a list of SECD bytecodes of all global functions and macros that were
already parsed, the latter element contains arguments of the macro. The evaluation process is
then started by using the run method of the interpreter.

At the end of the evaluation, there should be an S-expression on the top of the stack. This
expression is then printed from the SECDArray or SECDValue representation to a string. The
string is then passed to a new parser, so it must represent a valid tiny-lisp code. This is the result
of the macro expansion. The left part of the code listing 19 shows the macro if-consp called with
some arguments. The right part of the code listing, separated from the left part by the arrow,
shows the code created by the macro reduction. In the example, the if-consp macro is called,
and we can see that its second and third arguments are expressions that would get evaluated if
this was a call of a function. Then, inside the macro, these arguments replace fb and tb variable
names that are after comma.

(if-consp 4 (+ 1 2) (+ 2 3)) -> (if (consp 4) (+ 1 2) (+ 2 3))

19 An example of code genereted from a macro reduction

5.1.2.1 Gensym
As discussed in the section 2.4, the gensym function is very important for writing hygienic macros
in tiny-lisp. It generates a random string that was not used as an identifier so far. Since tiny-lisp
does not support char data type and there are also no utilities for the generation of random
strings, the call of the gensym function is evaluated at runtime by a special built-in function.



Front-end module 27

The function is called, by invoking the LD instruction with indexes -10, -10. It is impossible
to load a variable with negative indices, so we are guaranteed that these indices can not be
generated in any other way. Hence, the compiler has to be modified to generate LD [ -10 -10 ]
bytecode, when it sees the (gensym) function in the code. The string generated by the gensym
function is then pushed on top of the stack.

The string generated by the gensym function has one to fifteen characters. The first character
is the ’!’ symbol. The other characters are lower and upper case letters, numbers or characters
’-’ or ’_’. Moreover, the guarantee that the gensym function always returns a different string is
implemented.

5.1.3 SECD VM
The SECD VM is implemented via the class Interpreter. It is a part of the core module re-
sponsible for performing evaluation steps. It contains a member variable interpreterState of type
InterpreterState. The InterpreterState class is encapsulating four SECD stack registers imple-
mented as SECDArrays and the AST. The code register is initialized with the parsed SECD code
as described in the section 5.1.1. The environment is initialized with just one empty SECDArray
inside. It is prepared for storing global functions. The stack and dump registers are empty at the
beginning of the evaluation. The variable lastInstruction is initialized to DUMMY. The boolean
variable finished is initialized to false.

The SECD VM exports two different debugging functions, namely step and run.
The more important of them is the step method. Several things happen each time it is

invoked. If lastIntruction is not a DUMMY instruction, then lastIntruction is evaluated and
states of the registers change according to the rules described in the chapter 3. When this is
done and the code is not empty, the head of the code register is copied to the lastIntruction
variable. If the code register is empty, the member variable finished is set to true, thus informing
about the end of the evaluation.

The DUMMY instruction does not modify any registers or AST so the first trigger of the
step method, does not perform any evaluation step. However, the front-end part can use this
step to highlight important parts of the next evaluation, as I will further discuss in 5.2.

Besides the step method, the interpreter also exports a run method that runs the step method
repeatedly until the variable finished is set to true.

There is an InterpreterUtils class that exports the evaluateLoad method that loads a value
from the environment register based on 2 indexes. This method is used in the Interpreter call
and also in the front-end module in the Painter class.

An error may occur during interpretation. An example of this is calling the CDR instruction
on an empty list. The Interpreter class is in many cases able to provide a helpful error message.
This message is thrown in as an exception to the front-end module.

5.2 Front-end module
The front-end module is responsible for rendering the user interface. It is implemented using the
typescript language and its React library [11]. The front-end module renders one of two screens.

The first screen of the debugger is the submit screen. The user writes the source code into
the field and finishes by clicking the submit button. The figure 5.3 shows an example of a source
code prepared to be submitted.

Then the debug screen is shown. On this screen, the user sees the source code and bytecode
of all four registers. They can either click on the debug button and perform a debugger step, or
they can finish the evaluation by using the run button. The figure 5.4 shows an example of a
program being debugged in the debug screen.
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Figure 5.3 The submit screen on front-end

Figure 5.4 The debug screen on front-end

If there is an error during evaluation and an exception is thrown by the core module, the
front-end module changes the screen to the submit screen and shows an error message to the
user, as can be seen in the figure 5.5.

Figure 5.5 An example of an interpreter error message shown by the debugger
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5.2.1 Registers
Rendering of registers is the responsibility of the ReactSECDPrinter class. The ReactSECD-
Printer is initialized with an argument of the type SECDArray that contains the code of a
register and with two callback functions. A React element is then constructed by calling the
method getElements with the register as its argument. The method getElements takes an ar-
gument of type SECDElement so any subclass of the SECDElement class can be passed. The
React element might be also assigned a Cascading Style Sheets (CSS) [12] style based on the
value of the colour variable of the element. The instruction that is currently being evaluated is
coloured in red. Arguments of the currently evaluated instruction are coloured in green, blue or
yellow. It will be further discussed in the 5.2.3.1 section.

If a SECDHidden is passed, an empty React element is created.
If a SECDValue is passed, a React element is created from the value.
If a SECDArray is passed, the getElements is called for each element of the array. A new

React element is created from the results of these calls.

5.2.1.1 Placeholders
A SECDArray can contain references to itself somewhere inside. The primary cause of it is
recursive closures. It means that the rendering of arrays could end up in an infinite cycle.
For this reason, SECDArrays that were already rendered are replaced by placeholders with a
convenient name if they are to be rendered for the second time. They also will not recursively
call the getElements method on its elements.

What is a convenient name for a placeholder? Luckily, SECDArrays containing themselves
occur just in two specific cases. The former is a global function or macro, and the name of the
placeholder can be taken from its name. The latter is a letrec expression that uses the bound
variable name is the bound expression. In this case, the placeholder can be named after the
variable name. The ReactSECDPrinter class uses the static getFunctionName method from the
GeneralUtils class to deduct the placeholder name.

The SECDArray class has a member variable called printedState of enum type PrintedState.
It has 3 possible values – Not, Once and More. The Not value is saying that this array has not
been rendered yet, the Once value means that it was rendered just once so far and the More
value means that it has already been rendered multiple times.

The first declaration of the array is rendered with additional ’name-of-the-placeholder’: pre-
ceding it. Other occurrences of the array are then rendered just as [’name-of-the-placeholder’].
The figure 5.6 shows an example of a placeholder named fact in the environment register.

Figure 5.6 An example of a placeholder called fact in the environment register

When the getElements method is called with a SECDArray as an argument then, before
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the recursive calls on members of the array are performed, the printedState variable is checked
and if the value is not None, meaning this array was already rendered, a placeholder is used.
Regardless of this check, the printedInc method of this array is called. If the printedState was
None, it changes to Once, otherwise it is set to More.

After the getElements method is called on all members of the array, the printedState variable
is checked again. If the value is More, it means that the array contains a reference to itself and
therefore a placeholder has to be declared here.

5.2.2 AST
During the compilation of the source code, the abstract syntax tree (AST) is also constructed.
AST is a tree-like data structure that remembers the structure of the source code.

Every AST node is implemented as a subclass of the abstract class Node. There are two basic
types of nodes. The Topnode is the root node of the tree and does not directly represent any
code. Inner nodes, implemented via the class InnerNode, represent a specific part of tiny-lisp
language, and there are many types of them. Every inner node has a pointer to its parent and
also stores a piece of information about its colour. The figure 5.7 shows an example of an AST
representing a lambda function application.

Application

x y

Composite

Composite

Lambda

Binary 
Expr

+ x y

10 20

Figure 5.7 An example of nodes representing expression ((lambda (x y) (+ x y)) 10 20)

5.2.2.1 AST Reduce Nodes
The user of the debugger should be able to see whether a given expression from the source
code was already evaluated or not and should be able to check where the potential result of
the evaluation currently appears in the bytecode. That means that AST should not only reflect
the original structure of the source code but temporary evaluation results as well. In other
words, the information about the source code must remain valid while the information about
temporary evaluation results is added. This is the idea behind the class ReduceNode. Insertion
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of a ReduceNode to the AST or removal of a ReduceNode is the only way how the structure of
nodes in the AST can be modified.

The class ReduceNode extends the class InnerNode. It stores a pointer to a subtree of AST
called original and a pointer to a subtree of AST called reduced. The original subtree represents
the structure of the source code, and the reduced subtree reflects temporary evaluation results
of expressions corresponding to the original subtree.

The reduced subtree corresponds directly to a specific value created either from an evaluation
of an operator, the value returned from a function, or a loaded value to a variable. The figure
5.8 shows a ReduceNode created from an evaluation of an operator.

The first case, when insertion of a ReduceNode occurs, is an evaluation of an operator. The
original subtree of the ReduceNode is the subtree of the evaluated expression. The reduced subtree
is the result of the evaluation. The second case for insertion of a ReduceNode is returning from
the function. The original subtree is the subtree representing the application of the function,
while the reduced subtree is the value returned from the function. The third case, when insertion
of a ReduceNode occurs, will be discussed in the section 5.2.2.3.

*

Binary 
Expr

5 4

(a) Nodes of the binary expression before the evaluation
of the expression

*

Binary 
Expr

5 4

Reduce

9

(b) Nodes of the binary expression after the evaluation
of the expression

Figure 5.8 An example of a creation of a ReduceNode

5.2.2.2 AST and functions
When returning from a function, a node representing the call of the function should be updated by
the node corresponding to the returned value. To remember which node should be updated, the
AP or RAP instructions that start the evaluation of the function push an element of SECDHidden
type to the dump register. The SECDHidden stores a node of the place from where the function
is called and a node of the function itself. The figure 5.9 shows an example of a ReduceNode
creation, after returning from the function.

Functions are usually used by programmers in the hope to use the same code multiple times.
The AST subtree representing the code of the function should on the other hand occur just
once. When the function is applied, some expressions presumably get evaluated in the function
and their nodes are updated. When the function is applied for the second time, nodes of the
function should not contain these results computed in the previous application of the function.
Therefore, the AST should be prepared to remove ReduceNodes before the next evaluation of the
function. That means that ReduceNodes inside AST subtree belonging to the function code have
to be removed and replaced by the original subtree of the ReduceNode once we return from the
function. This is the responsibility of removeReduction method of abstract class Node.
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This method is implemented in the abstract class Node. When it detects that one of the
children of the node is a ReduceNode, it replaces the ReduceNode with the original subtree of
the ReduceNode. When all children are checked, removeReduction is called on every child. Thus,
it recursively runs from parent nodes to leaf nodes. The method is called on the node of the
function body. This node is taken from the SECDHidden element. The figure 5.9 shows, how a
call of removeReduction method modifies the AST.
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(a) An example of nodes representing expression
((lambda (x y) (+ x y)) 10 20) updated by the result
of the expression
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(b) An example of nodes representing expression
((lambda (x y) (+ x y)) 10 20) updated by the result
after removeReduction is called

Figure 5.9 An example of a creation of the removeReduction method called when returning from a
function

At this point, some node pointers of SECDelements can point to ReduceNodes that are re-
moved by the removeReduction method. This is the reason why another method with the same
name of removeReduction is also present in the SECDElement class. It changes the pointer from
the ReduceNode to the original subtree of the ReduceNode when called.

5.2.2.3 Loading values of variables to the AST
It is important that after a value is loaded to a variable, the user can see what the value of the
variable is when hovering with a mouse over the variable.

This is the third case when ReduceNode is created. A load of a value of a variable to the AST
is triggered by the LD instruction. The InnerNode class offers a method called loadVariable. The
method takes a variable name and a value and recursively searches for the first occurrence of the
node of the variable. If it finds such a node, it creates a ReduceNode with the found node as an
original subtree. The reduced subtree is a node created from the received value.

If the variable is found, the method returns true, otherwise false. The method call subtrees
of the current node in the same order in which the expressions they represent in the source
code are evaluated. For example, tiny-lisp binary expressions evaluate the second argument
first. Similarly, the node of the binary expression calls first the loadVariable method of the right
argument subtree. Then, if the result was false, it calls the loadVariable method of the left
argument.

If the loadVariable method is called on a ReduceNode, it searches for the variable just in the
reduced subtree, so nodes cannot be updated multiple times. The figure 5.10 shows a ReduceNode
created by a load of a value to a variable.

The method is usually not called on the whole AST, but just on a subtree. The root node of
this subtree is the node of the current code register. The reason behind it is that this is the node
of the function or if statement branch that is currently being evaluated. The values of variables
are then loaded to the AST, each time the LD instruction is executed. However, it is important
to remember that, when we return from a function, ReduceNodes are removed from the function.
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(a) Nodes of the expression (+ x (* x y))
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(b) Nodes of the expression (+ x (* x y)) after a load of
value 5 to variable x.

Figure 5.10 An example of a load of value 5 to variable x in the AST

So assume that the called function was the same as the caller function, and now the caller
function continues evaluating itself. Now assume that we want to load a value to a variable. It
is possible that the variable already occurred in the function and the ReduceNode was created.
Then the same function was called recursively, and when returning from it, the ReduceNode
was removed. That means that we should call the loadVariable method not on the node of the
function, but on the parent node of the place, where the recursive call to the function occurred.
This node of the function call is stored in the SECDHidden element. From this point, the parent
of this node will be used as the root node of the subtree, on which the loadVariable method will
be called.

Figure 5.11 shows this situation. After returning from the recursive call to a factorial, the
ReduceNode in the condition of the factorial is removed. The next invocation of the loadVariable
method should load the value 9 to a node of variable n in the multiplication binary expression
node. Thus, it can not be called on the whole body of the function. The parent node of the
node representing the recursive call is the multiplication binary expression node. There are now
two nodes of the variable n in this subtree. However, one of them is in the original subtree of a
ReduceNode, so no value will be loaded to it. That means that the value will be correctly loaded
to the node of the variable n in the multiplication binary expression.

It is important to note that this solution does not solve all possible situations that can occur.
One example is a program computing Fibonacci numbers in the code listing 20. Since it calls
itself recursively multiple times in the function, some interactive features of the debugger will
not work properly.

5.2.3 Source code
The source code is being rendered from the AST via the visitor class ReactTreePrinter. The
ReactTreePrinter class implements the ASTVisitor class and have a visit method for every type
of AST node. Nodes are recursively visited from the top node to the leaves in the infix search.
Leaf nodes create a React element based on their values, while non-leaf nodes combine React
elements created by their subnodes and possibly even add some keywords that were used in the
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(a) An example of AST of a body of a factorial function
before a recursive call to factorial

=

Binary 
Expr

n 0

If 

1 Binary 
Expr

Application

n*

- n 1

Reduce

40320

(b) Body of the factorial after returning from a recursive
factorial call

Figure 5.11 An example of AST of a body of a factorial function before a recursive call to factorial
and after returning from the factorial

(letrec((fib
(lambda(n)

(if (<= n 1)
1
(+ (fib (- n 2)) (fib (- n 1)))))))

(fib 2))

20 An example of fibonacci program in tiny-lisp, where user interactions with the code might not
work properly

source code. The final element is constructed by the top node, and it is rendered for the user.
Because the AST remembers only the structure of the source code and not the detailed syntax,

user-defined cosmetic whitespaces are ignored.

5.2.3.1 Colouring
As discussed back in section 5.2.2, nodes may have a colour. In the case that the colour of the
node is not None, the ReactTreePrinter underlines the React element generated by the node with
this colour.

Depending on the _lastIntruction in the Interpreter class, the colouring of the AST and
registers is performed. Colouring is a process that is performed by the Painter class that is a
part of the front-end module. The front-end module calls the painter when it gets the state of
the virtual machine from the back-end module after the evaluation step was performed. Both
SECDElement and Node classes have a member variable named colour. This variable is of enum
type ColourType. The variable signals in which colour elements should be either highlighted or
underlined. In most situations, elements are underlined. I will be further discussed in the 5.2.3.2.
If the colour is None, the element or node will not be coloured, otherwise, they will be coloured
in a colour depending on the exact value of the colour variable.

At the start of the colouring process, the colours of all nodes in AST and all SECDElements
in all registers are set to None. Then depending on the _lastIntruction, those SECDElements
and AST nodes that would be important in the _lastIntruction evaluation will get assigned a
colour. The figure 5.12 shows an example of a colouring of the source code and registers when
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applying a function. The function is underlined by the red colour, while the arguments are in
the green colour.

If the SECDArray have different colour than None, then the global boolean variable en-
closingArrayColoured in ReactSECDPrinter is set to true. It is done before the recursive calls of
getElements on its elements, and it will cause that colours of these elements will behave as None
regardless of the value. After the calls, enclosingArrayColoured is set back to false. The reason
why this functionality is included is to render the whole array in a single colour and prevent
unnecessary confusion of the user.

Figure 5.12 An example of colouring of the source code and registers when applying a function

5.2.3.2 Mouse interactions with source code
When the user does not interact with the code, coloured SECDElements are just underlined with
their colour.

The front-end module remembers the global variable called mouseOver. It represents the
node of the AST, where the mouse currently hovers over. Each time the mouse hovers over
another node, the node is assigned to this variable. The whole screen is then re-rendered.

To give the user a better idea about which parts of the bytecode correspond to some parts
of the source code, whose SECDElements, whose nodes are either the mouseOver node or the
mouseOver node is their predecessor in the tree, are highlighted. If these elements also have
a colour assigned, they are highlighted in this colour, otherwise, they are highlighted in the
turquoise colour.

The figure 5.13 shows a situation when the user hovers with the mouse over the value 10 in
the source code. This action highlights the value 10 in the stack register.

Assume that the user is hovering with the mouse over a function that is underlined. Since this
whole function is important in the evaluation of the current instruction, it is expected that the
user rather wants to highlight the bytecode of the function and not a bytecode of an expression
inside the function. To support this idea, the following rule is added.

In the case that a predecessor of the node that has mouse over itself is coloured, this prede-
cessor is assigned to the mouseOver variable instead.

There is yet another reason why instead of the node that the mouse is currently hovering over,
a predecessor node can be chosen. It is when the expression of the node was already evaluated
into a result. AST should be able to reflect this fact with a predecessor of the node being
ReduceNode. In this case, the top ReduceNode predecessor is chosen instead. If a ReduceNode is
assigned to the mouseOver, the elements, whose nodes point to the reduced subtree of this node,
are highlighted. The figure 5.14 shows the situation when the mouse hovers over the variable
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Figure 5.13 An example of mouse interacting with number 10 in source code

y, whose value is 20. These occurrences of the value 20 are highlighted in registers. They are
highlighted in the turquoise colour since they are not important in the evaluation of the current
instruction.

Figure 5.14 An example of hovering with mouse over the variable y, after the value 20 was loaded
into it



Chapter 6

Evaluation

The main objective of the thesis was to create a debugger of the SECD machine in the Lamb-
dulus system. In this section, the implemented solution will be compared to a lambda calculus
evaluator.

Table 6.1 shows the number of instructions that are executed when the factorial of x is
computed. The SECD debugger is compared with the already existing lambda calculus evaluator
from the Lambdulus website [1]. The numbers in the first line of the table represent the argument
of the factorial in the experiment. The values in the second line show a number of steps of the
SECD debugger for the program computing factorial of the number in the same column in the
first line. The values in the third line represent the number of steps of the lambda calculus
evaluator for a program computing factorial of the number in the same column in the first line.
The simplified evaluation of the lambda calculus is disabled.

The code in figure 21 was used as lambda calculus source code at the Lambdulus website.

R := (\ f n . ZERO n 1 (* n (f (- n 1))));
Y R x

21 An example of a program computing factorial of x in lambda calculus

The code in figure 22 was used for computing factorial in tiny-lisp.

(letrec((fact
(lambda(n)

(if (= n 0)
1
(* n (fact (- n 1)))))))

(fact x))

22 An example of a program computing factorial of x in tiny-lisp

We can see from the table 6.1 that the number of instructions SECD VM executes is
20 + x * 15. As we can see, the SECD machine is a big improvement over the lambda calculus
in terms of program speed, and in contrast to the lambda calculus, the amount of generated
instructions depends linearly on the variable x. The lambda calculus wins for the factorial of
zero, while the SECD VM wins for all other arguments of the factorial. This is probably because
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the tiny-lisp letrec expression compiles into quite a lot of instructions that have to be executed,
even though they are not needed, since there is no recursive call to the factorial in the end.

Table 6.1 Number of evaluation steps of (fact x)

evaluator / x 0 1 2 3 4
SECD VM 20 35 50 65 80
lambda calculus 14 47 207 1057 6247

Table 6.2 shows the number of instructions that are executed when computing the Fibonacci
number of x.

The code in figure 23 was used as lambda calculus source code at the Lambdulus website.

R := (� f n . <= n 1 1 (+ (f (- n 2)) (f (- n 1))));
Y R x

23 An example of a program computing fibonacci number of x in the lambda calculus

The code in figure 24 was used for computing factorial in tiny-lisp.

(letrec((fib
(lambda(n)

(if (<= n 1)
1
(+ (fib (- n 2)) (fib (- n 1)))))))

(fib x))

24 An example of a program computing fibonacci number of x in tiny-lisp

We can see from the table that, while the Fibonacci of zero and one takes a different amount
of instructions in the lambda calculus, the amount is the same in the SECD VM. This is probably
due to the fact, that the speed of loading of a number in the lambda calculus depends on the
size of the number. This is not a case in the SECD VM, where the number of instructions
generated for an evaluation of an operator is always the same and does not depend on the size
of the numbers.

Table 6.2 Number of evaluation steps of (fib x)

evaluator / x 0 1 2 3 4
SECD VM 20 20 48 76 132
lambda calculus 28 31 134 281 640

We can also see from the tables that the Fibonacci in lambda calculus is surprisingly signifi-
cantly faster than the factorial in lambda calculus, while the factorial is faster in the SECD VM.
This is probably because factorial produces bigger numbers than Fibonacci and that increases the
number of steps for the lambda calculus as stated earlier. On the other hand, for the SECD VM,
the size of numbers does not influence the number of generated instructions. The computation
of Fibonacci numbers has more instructions than the computation of factorial in the SECD VM
since the Fibonacci program is creating more recursive calls. For the same reason, the number
of instructions generated for the Fibonacci program rises more quickly than for the factorial in
the SECD VM.



Chapter 7

Conclusion

’ The thesis provides an overview of the tiny-lisp language and its features. The language is
designed to be similar to the racket language, thus it is easy to understand for students of the
BI-PPA course. The SECD machine is presented and its concepts and instructions are described.
The thesis describes, in detail, how to compile a tiny-lisp program to the SECD bytecode. The
design and implementation of the debugger are discussed.

The implementation provided in the thesis can parse the source code to the SECD bytecode
and evaluate the bytecode step-by-step. It is also able to compile and evaluate macros in the
compile time. Macros can use the gensym function that can ensure that the macro is hygienic.

The frontend part of the debugger is also provided. It shows the user both the source code
and the state of the SECD machine, and actively highlight for the user important parts of the
source code and the bytecode in the evaluation of the current instruction. The user can also
interact with the source code, to see connections between it and the bytecode.

The thesis also offers a comparison of the performance of the SECD machine and the lambda
calculus.

The debugger is easy to understand and people that want to experiment with the SECD ma-
chine can already do so. The codebase can be found on GitHub at the address https://github.com
/lambdulus.

7.1 Future work
Extending tiny-lisp More primitive types such as char or double can be added to the tiny-lisp.

The string data type can be changed to be a list of chars. The tiny-lisp can also be extended
to support record types or structs to allow the creation of more complex data types.

Some already existing features can be improved. For example, global functions can be changed
to support the use of a global function before its declaration. The gensym function can be
implemented properly in tiny-lisp.

More elegant compiler The compiler can be redesigned to compile the source code to
S-expressions first before compiling them to the SECD bytecode.

Addition of more SECD instructions It is also possible to implement some SECD optimiza-
tion, such as adding the TRAP instruction that handles the interpretation of tail-recursive
functions. [7] Supporting this instruction, the debugger can clearly show how tail-recursive
functions can be interpreted without the overhead from a lot of calls to a function.
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The debugger can support IO operations, which would require adding another frontend field
for the console. It would also require extending tiny-lisp and implementing SECD IO instruc-
tions that were part of the original SECD VM but were not included in my implementation.

Improvements to the frontend As already stated in the 5.2.2.3 section, the design of AST
proved to be insufficient for recursive functions. The feature should be at least partly re-
designed.
The visualization of the source code and registers in the debug screen can be improved.
Another very interesting extension would be a creation of a frontend REPL evaluation envi-
ronment. The user would be able to submit functions or expressions one by one and not as
a whole program, which would greatly improve the user experience.
Currently, the debugger shows just the result of macro expansions. The user might want to
use the debugger to ensure that their macro is correct. If it is not, they can see it, but can
not use the debugger to see where the mistake is. That means that the debugger would be
much more useful if the user could see the evaluation of the macro expansion step by step.
Moreover, the front-end module can be extended by providing more options to control the
evaluation. There can be for example new buttons for restarting the evaluation or cancelling
the evaluation. Breakpoints can also be added.
There can also be more evaluation buttons. For example, a button to evaluate a current
expression or current function.
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Contents of the enclosed flash
disk

readme.md ...................................... the file with flash disk contents description
src........................................................... the directory of source codes

core ....................................... the directory of source codes of core module
dist................................the directory of compiled JavaScript source code

frontend..............................the directory of source codes of front-end module
build...........................................the directory of built static web-site

thesis.................................the directory of LATEX source codes of the thesis
text...............................................................the thesis text directory

thesis.pdf .............................................. the thesis text in PDF format
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