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Abstrakt

Detekce anomálíı v časových řadách hraje hlavńı roli při odhalováńı podvod̊u,
hardwarových závad a daľśıch méně častých událost́ı, které mohou mı́t velký
dopad, avšak je obt́ıžné je odhalit. Tato práce si klade za ćıl prozkoumat exis-
tuj́ıćı metody detekce anomálíı. Skládá se z přehledu algoritmů se zvláštńım
zaměřeńım na autoenkodéry. Praktická část analýzy je provedena na datasetu,
který obsahuje velké množstv́ı nab́ıjećıch cykl̊u elektrických vozidel.

Kĺıčová slova Detekce anomálíı, strojové učeńı, baterie elektrických vozidel,
optimalizačńı metody AI, big data časových řad, Python

Abstract

Time-series anomaly detection plays a starring role in detecting fraud, hard-
ware defects, and other infrequent events that may have great impact but are
hard to find. This thesis sets the goal to research existing outlier identification
methods. It consists of algorithms’ overview, with a special focus on autoen-
coders. The practical analysis part is performed on a dataset, which contains
charging cycles of electric vehicles.
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Introduction

Researchers have been studying anomaly detection for more than a century.
Anomalies occur in a variety of fields, including medicine, finance, cyber-
security and sociology.

In some areas, abnormal behaviour is an indicator of problematic be-
haviour. On the other hand, in some areas, abnormal events can also be
indicators of positive outcomes. For example, if a company’s share price rises
unexpectedly. In other areas it may simply indicate a phenomenon that is
not understood, or an unknown object or process. It is a catalyst for human
inquiry and the exploration of new ideas [1]. Anomaly detection in electric ve-
hicle battery is often connected with recognition abnormal behavior of various
systems.

In time series data, an anomaly or outlier can be termed as a data point
which is not following the common collective trend or seasonal or cyclic pat-
tern of the entire data and is significantly distinct from rest of the data. By
significant, most data scientists mean statistical significance, which in order
words, signify that the statistical properties of the data point is not in align-
ment with the rest of the series [2].

There is an urgent need to track anomalies in various sectors and to contin-
uously investigate the details and causes of these anomalies in order to prevent
system failures or irreversible processes. It has become a natural expectation
for data scientists to track, investigate and analyse anomalous data points and
come up with ways to gain meaningful information.

Businesses at all stages, from supply chain and manufacturing to sales and
marketing, need to be well-informed about these anomalies, in order to shape
processes and maximise productivity and outcomes. It is therefore important
to isolate and examine anomalies with time and attention, as long as there
are common patterns in the data, especially time series data.

Battery management system monitoring contributes to time series data as
well. Battery management systems (BMS) are electronic control circuits that
monitor and regulate the charging and discharge of batteries. The battery
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Introduction

characteristics to be monitored include the detection of battery type, volt-
ages, temperature, capacity, state of charge, power consumption, remaining
operating time, charging cycles, and some more characteristics. Many differ-
ent components contribute to the correct charging of electric cars. This is a
wide field for examining anomalous behaviour.

The battery is still the most expensive component of any electric car and,
if mishandled, its service life can be considerably shortened and under unfa-
vorable conditions, it also presents a safety hazard for the car itself and its
crew. It is important to ensure the right conditions for individual battery cells
and thus for the entire battery, which is what BMS takes care of.

The main contribution of this thesis is an automated anomaly detection
for EV battery management systems which will be further developed in an
automotive company.

Aim of the Thesis

The primary aim of this thesis can be summarized as follows:

1. Analyze existing algorithms for detecting outliers.

2. Compare AI methods for applicability for anomaly detection.

3. Research the state-of-art electric vehicle battery technologies.

4. Research methods for optimizing methods for anomaly detection for big
data.

Structure of the work

This bachelor thesis contains several chapters. Chapter 1 is dedicated to the
introduction to the battery management system of electric vehicles. Chapter
2 provides the theoretical description of basic anomaly detection approaches.
Chapter 3 describes the application of artificial neural networks for anomaly
identification. It also provides basics of the machine learning. Lastly, Chapter
4 shows all of our experimental results and discussion of those results.
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Chapter 1
Battery Management System

Each manufacturer makes the battery slightly differently, uses different chem-
icals, or makes cells with different shapes. Among the various types of bat-
teries in the market, lithium-ions are the most efficient in electrical systems.
This is due to the high energy and power density of this type as well as the
wide temperature operating range, small size, long lifespan, fast recharging
characteristics, and low self-discharge rate [3]. Battery Management Systems
(BMSs) are essentially important for increasing the efficiency of battery state
monitoring and protection from over current and voltage as well as internal
and external short circuits [4]. Although there has been a lot of research and
patents on BMSs and their applications in the last decade, many are still open
for further research.

1.1 Main Fuctions of the BMS

Batteries of electric vehicles have to be protected from overcurrent or over-
voltage during charging or discharging mode, i.e., driving on-road or connected
to grid. Therefore, a battery management in these modes are important to
effectively protect it and prolong its life cycle [5].

When the battery is in the discharging mode, it may be exposed to under-
current and under-voltage. While in the charging mode, the battery may be
exposed to over-current and over-voltage, and consequently, its temperature
will increase rapidly [6]. Therefore, the battery protection is indispensable in
BMS and plays a crucial role. In the past few years, many accidents have been
witnessed and have led to life and financial losses. These issues prompted the
battery manufacturers to develop solutions for temperature control and heat
management that guarantee operations in the permissible and tolerable ranges
of the cells and prevent from thermal runaway and internal short circuit [7].

In order to implement BMS in EV, a combination of hardware and soft-
ware is always needed. With the development of the wireless charging of EVs
over the sparse charging stations in the smart network, communication and
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1. Battery Management System

networking as one of the subsections of BMS will affect the overall battery
performance [8].

It is necessary that the charging always adapts in real time, because the
parameters of the battery itself change over time (oxidation occurs at the
terminals, changes in the capacity of the battery cells, etc.). This requires the
whole system to be intelligent.

1.2 BMS as a part of an electric vehicle

In EVs, series-connected battery cells are used to feed the electric motors
and their accessories. The operating conditions of these cells are different
meanwhile the charging and discharging modes of battery. Each cell might
have different voltage and current from other cells, and can lead to overcharge
or undercharge to some of the cells. These may cause early damage to some
cells and sometimes internal short circuit due to deformation of the battery
anode, cathode and separator. To solve such a problem, cell balancing is used
to equalize the voltage levels of cells and energy distribution in EV [9].

Recording the voltage, current and temperature of the battery cells using
sensors and data acquisition system [10], data can be generated to analyze the
consumption pattern of electric vehicles and the prediction of battery’s future
status by using feature extraction and data-driven methods [11].

This is one of the most important functions for the BMS to tell the driver
how long he can drive. However, determining the state of charge is not as
simple as it may seem. In fact, it is one of the most complicated problems in
BMS development.

1.3 Machine Learning Approaches in BMS

Many studies agree that battery health is affected by temperature, battery
charging current, number of charging cycles and other primary factors. How-
ever, not all processes in the battery are fully known, so there are no precise
methods for determining battery health. As with determining the state of
charge, it is necessary to rely on approximate computer models that take into
account internal resistance, conductivity, self-discharge rate, capacity, energy
received during charging, temperature during use, age, number of cycles, etc
[12].

Machine Learning Approaches in BMS Applications Due to the complex
internal dynamic behavior of the battery and uncertain external operating con-
ditions, is usually difficult to accurately model the battery by equivalent circuit
and physical-based models that are associated with estimating the model pa-
rameters using model-based approaches. Machine learning methods which are
based on mathematical and statistical concepts are considered as reliable and
convenient techniques to be used in BMS. Machine learning techniques use

4



1.3. Machine Learning Approaches in BMS

the battery state-of-health (SOH) data, which can be measured by advanced
sensor technology [13]. Such methods extract appropriate feature information
and build the degradation model to predict remaining useful life (RUL) and
end of life (EOL). These techniques are able to represent degradation-intrinsic
relationships and trends based on history data [14]. Although a huge num-
ber of data are needed during the training phase and the predictive model is
non-transparent [15].

There are some critical issues in the battery management system, includ-
ing protection of over/under voltage and over current, which are a common
fault type of battery systems [16]. In charge/discharge mode, the battery un-
dergoes irreversible chemical reactions that can affect the lithium plating and
dendrite formation, especially in low temperature. In addition, the formation
of dendrite due to the intercalation between anode and cathode can lead to
an internal short circuit, which can affect the battery performance and safety.
Ignoring this critical issue can cause catastrophic faults owing to thermal run-
away. Therefore, a lot of efforts have been done on the fault diagnosis and
safety management using model-based and machine learning methods for the
battery protection [17].

The effectiveness of machine learning approaches using supervised learning
methods is investigated in classification. The algorithms that are evaluated
for diagnosing battery cells are k-nearest neighbors (k-NN), logistic regression
(LR), Gaussian naive Bayes (GNB), kernel vector machine (KSVM) and neural
network (NN). These linear and nonlinear techniques are proven to classify
battery cells that are unbalanced and damaged.
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Chapter 2
Basic Anomaly Detection

Approaches

By definition, identifying an anomaly involves figuring out that a data point
is ”different” from others. This definition is necessarily parameterized by the
data set against which the data point is compared: a person who is five feet
tall may be anomalous among male college basketball players, but not among
horse-riding jockeys.

In continuous spaces where all data attributes are real-valued (possibly
within a bounded range), let’s say a data point is ”different” from others if its
distance to other points is large.

Figure 2.1: Example of distance-based outliers

However, anomaly detection algorithms differ in how this distance is eval-
uated. This is because no consensus exists on which sets of points are to be
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2. Basic Anomaly Detection Approaches

used to compare distances, nor on how to evaluate the distance to a collection
of points, even though most researchers agree to work with the standard and
well-known definitions of the distance between two points [1].

The literature on measuring distances between time series also uses the
term similarity to describe these metrics. In most cases, you can treat these
terms interchangeably, namely as a way to establish which time series are
more or less like one another [18].

Anomaly detection is important in time series for a few reasons: it can be
helpful to remove outliers when fitting models that are not sufficiently robust
to such outliers; it can be helpful to identify outliers for building a forecasting
model specifically to predict the extent of such anomalous events conditional
on knowing whey will happen [19].

2.1 Distance-Based Anomaly Detection
Approaches

If other measures in data set D cannot be compared and the cross-correlation
of is different, then Mahalanobis distance is the preferred measure.

Definition 2.1.1. Mahalanobis distance is defined by next equation√
(p− q)T S−1(p− q), (2.1)

where p, q data points in D, S is the covariance matrix measuring the mutual
correlations between dimensions for all points in the dataset D.

Definition 2.1.2. The Minkowski distance of order l between two points
p = (p1, ..., pd) and q = (q1, ..., qd) ∈ D, where d is a dimension of dataset D,
is defined as (

d∑
i=1
|pi − qi|

) 1
l

, (2.2)

Most often used values of l are 1 and 2; for l = 2 the Minkowski distance
is equal to the Euclidean distance and for l = 1 this distance is equal to
Manhattan distance.

The simplest anomaly detection algorithm evaluates every point p ∈ D for
every point in D. The sub of distances form all points can be used as the
anomalousness metric. Another possible metric is the distance to the nearest
neighbor.

One of the most popular indicators is the average distance to the nearest k
Nearest Neighbors. Adding an additional points can significantly change the
results of the calculation, so the arithmetic mean is not very robust.
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2.2. Clustering-Based Anomaly Detection Approaches

2.2 Clustering-Based Anomaly Detection
Approaches

Clustering can be based on similarity or distance calculations. Although these
two approaches are different, the end result is often the same because the
similarity measurement is strongly negatively correlated with the distance
measurement.

Distance-based clustering techniques are based on the idea that points in
the same cluster are separated by a relatively small distance, while points in
different clusters are apart.

The similarity-based clustering approach suggests that points that are sim-
ilar to each other must belong to the same cluster, as points that are closer
to each other are expected to be more similar.

Figure 2.2: Example of two clusters

Clustering algorithms generally assume that the data resides in a continu-
ous multidimensional space with boundaries and that a measure of similarity
or distance is already selected.

This chapter describes an anomaly detection approach based on the ex-
plicit identification of clusters in a dataset.

Points that are not in the cluster are candidates for anomalies. Variations
between algorithms evaluate relative anomalies at points near (but not within)
the cluster and points around the cluster.

2.2.1 Nearest Neighbor Clustering

The k-Nearest Neighbor algorithm has been proposed for many types of prob-
lems. This algorithm is based on the main idea that an individual must
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2. Basic Anomaly Detection Approaches

resemble most of its k adjacencies, not the centroid or a large set of data. The
algorithm implementation can be written in this pseudo code. 1

Algorithm 1: K nearest neighbors
Input : Test data Dtest, train data Dtrain and non-negative

integer value K.

1 foreach pointtest ∈ Dtest do
/* List of distances between the pointtest and points

from Dtrain */
2 D := ∅ foreach pointtrain ∈ Dtrain do

/* Calculate distance between points pointtest and
pointtrain */

3 d := dist(pointtest, pointtrain)
4 D ← D ∪ {d}
5 end

/* Sort D in non-descending order */
6 D ← sort(D)

/* Choose the first K points from the D and put them
into the DK */

7 DK := D[0..K]
8 assign a class to the pointtest based on the majority of classes

present in the DK

/* Assign a class c to the pointtext based on the
majority of classes present in the DK */

9 Class(pointtest) := c

10 end

Therefore, this approach gives more weight to the local properties of the
data space, but is computationally expensive and contradicts the statistical
philosophy of condensing the properties of large datasets into some numerical
features. This approach can be applied to clustering tasks, as well as class
labels for classification problems, when a set of distant points is initially se-
lected to be labeled with a different cluster ID. The points are labeled the
same as most of the k-nearest neighbors.

A ”Region-growing” heuristic method consists of starting with a single new
point at a time, labeling it with a new cluster-id, and iteratively labeling all
the immediate neighbors of labeled points whose distance (to a labeled point)
is less than a threshold, value of which depends on the distances between
labeled points in that cluster. At the conclusion of this step, ”relaxation”
iterations may be carried out, labeling points based on the majority of their
k immediate neighbors; these iterations may start at the boundaries of the
previously identified clusters, and result in merging some clusters.
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2.2. Clustering-Based Anomaly Detection Approaches

2.2.2 k-Means Clustering

This well-known algorithm iteratively computes the center of each current
cluster, then updates the same after re-associating each data point with the
center of the nearest (current) cluster.

Figure 2.3: K-Means data clustering

This algorithm implicitly identifies each cluster with its centroid, resulting
in symmetric clusters such as for example spheres for three-dimensional data.
The K-means algorithm can be described by the following pseudocode 2.

11



2. Basic Anomaly Detection Approaches

Algorithm 2: K-means
Input : dataset D with data points d.
Initialization: Set the number of clusters k. Initialize k centroids

[µ1, µ2, ..., µk] randomly

1 while stopping criterion has not met do
2 foreach d ∈ D do

// Calculate distances between point d and centroids
3 foreach i ∈ [1..k] do
4 ωi := dist(d, µi)
5 end

// Find the nearest centroid
6 mmin := mj such that (wj == mini∈[1..k](wi))

// Add d to the cluster of the nearest centroid
7 Dµmin ← Dµmin ∪ {d}
8 end

// Recalculate the position of centroids
9 µi ← µDi

10 end

Although this is probably the most widely used clustering algorithm, there
are many problems for which the k-means clustering approach is unsatisfac-
tory. The first difficulty with this algorithm is the final result depends on the
initial choice of the starting points.

An additional difficulty with this algorithm is the determination of the
number of clusters (k). One guideline is that the ratio of the intra-cluster dis-
tance to the intercluster distance should be small. Some implementations start
with a small value of k and work their way up as long as there is significant
and measurable progress, e.g., in terms of the above ratio or the silhouette
measure s:

s = 1− (distance to own centroid)
(distance to next nearest centroid) . (2.3)

In the ”elbow” method, the number of clusters are chosen at the point
where the incremental improvement is small.

12



2.2. Clustering-Based Anomaly Detection Approaches

Figure 2.4: Determining the number of clusters using Elbow method

Another approach is based on rate-distortion theory, with an analytical
expression being used to determine the amount of data compression that can
be achieved. Unfortunately, these latter approaches are computationally ex-
pensive and thus impractical for large sets of data.

2.2.3 Agglomerative Clustering

This approach, described in the Agglomerative or Hierarchical clustering al-
gorithm, starts with many sub-clusters, each containing a single element, and
successively merges sub-clusters to form larger clusters. Two clusters are can-
didates for merging if they are closest to each other, for example, based on the
distance between the centroids of the clusters. The process may be terminated
when the number or size of clusters considered to be is satisfied, or until the
next merge results in a single cluster. The result is a tree representation of
the objects, called a dendrogram.

Definition 2.2.1. A dendrogram is a diagram that shows the hierarchical
relationship between objects.

This algorithm does not need an externally defined parameter for the num-
ber of clusters (k), and is deterministic, i.e. giving the same result for the same
input data, unlike the k-means algorithm. But this algorithm requires more
computational effort and still might need some outside decision to determine
how deep we need to traverse each path from the root before declaring a node
as representing a genuine cluster.

The merge process is binary by default. At each step, the two nodes are
merged. For some problems, a tree with a branching coefficient greater than
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Figure 2.5: Example of a dendrogram

2 may represent the data better. By defining an algorithm variant, multiple
nodes can be merged in one iteration.

2.2.4 Density-Based Agglomerative Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) al-
gorithm helps to discover arbitrarily shaped clusters from noisy datasets.

Figure 2.6: Example of DBSCAN data clustering
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DBSCAN algorithm observes two parameters a distance threshold and
a minimum number of points, based on these parameters points are being
grouped together. One can discover clusters of different shapes and sizes from
a large amount of data, which is containing noise and outliers. This algorithm
establishes accessibility of data points.

Definition 2.2.2. A data point is reachable from another if it lies within a
particular predefined distance from it.

Definition 2.2.3. A Core point is a point that has at least m points within
distance n from itself.

Definition 2.2.4. A Border point is a point that has at least one Core point
at a distance n.

Definition 2.2.5. A Noise point is a point that has less than m points within
distance n from itself.

The algorithm picks up a point from the dataset until all points have
been processed. If chosen point has at least predefined number of neighbors
within a predefined radius, then if can consider the point and all the neigbors
with the radius to be associated with a same cluster. Then, the neighborhood
calculation is being repeated for each adjacent point with the radius and that’s
how the clusters are being expanded 3.
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Algorithm 3: DBSCAN
Input : Database D, a radius ϵ, density threshold minPts

and a distance function dist.
Initialization: Initialize point labels Label(point) := undefined, for

each point from D.

1 foreach point ∈ D do
2 if Label(point) ̸= undefined then
3 continue
4 N := {n : n ∈ D ∧ dist(point, n) ≤ ϵ}
5 if |N | < minPts then
6 Label(point)← Noise
7 continue
8 c := next cluster label
9 Label(point)← c

10 S := N \ {point}
11 foreach q ∈ D do
12 if Label(q) == Noise then
13 Label(q)← c
14 if Label(q) ̸= undefined then
15 continue
16 N := {n : n ∈ D ∧ dist(q, n) ≤ ϵ}
17 Label(q)← c
18 if |N | < minPts then
19 continue
20 S ← S ∪N

21 end
22 end

2.3 Time Series Anomaly Detection Using
Clusters

As mentioned earlier, some clustering algorithms allow data points to be
placed outside the identified cluster. In such cases, points that do not belong
to any cluster can be considered anomalous. The outcome of the approach
depends on the specified threshold, such as the number of clusters and the
minimum number of points required for the cluster. Some algorithms, such as
DBSCAN, explicitly apply a minimum cluster size. However, it is not clear
how to choose this threshold.

In addition, when choosing an anomaly detection algorithm, you need
to consider whether the selected anomaly detection algorithm can be used
in time series of big data. That is, it must be taken into account that the
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data is generated over time and the algorithm should not be computationally
intensive.

2.3.1 Proximity to Nearest Neighbor

Algorithms that rely on the distances to the cluster’s centroid have an implicit
assumption that clusters are ”symmetric”, e.g., circular in two dimensions, be-
cause two points at the same distance from a given centroid must have the
same α values. However, real problems are often characterized by asymmetric
clusters, and these asymmetries could not be fixed or removed by any straight-
forward linear or nonlinear transformations of the data. Thus, the distance
between the point and its nearest neighbor then gives a more useful indica-
tor, whether the data point is anomalous. One of such algorithm is k-Nearest
Neighbor Clustering that has been described above 1. When detecting out-
liers, kNN-based methods only focus on whether the NN number reaches the
threshold but do not care the changes of NN number with time. However,
there may be some cases where the NN number is normal but the distribution
is significantly uneven during a time period. This kind of anomaly cannot
be detected by only counting NN, so that we need time sensitive anomaly
detection algorithm [20].

2.3.2 Proximity to Other Points

A partitioning algorithm, such as the k-means clustering, places every point
in some cluster and every such cluster meets the size constraints; i.e., the size
of each cluster is ≥ the size of the threshold. But some points in the cluster
may be so far from all the others points from the cluster and may be identified
as anomalous.

Since calculating the sum of distances between any two points in a cluster
is computationally expensive, a surrogate is to compute the distance of each
point from the cluster’s centroid. This approach can also be applied with
non-partitioning algorithms, i.e., when some points do not have to belong to
any cluster. For this approach data points should be transformed to a one-
dimensional scale, e.g., defining a function α such that α(p) ∈ R measures the
anomalousness of p ∈ D. We then define

α(p) = minjd(p, µj), (2.4)

where d(p, µj) is the distance between data point and µj and µj is the
centroid of cluster Cj , i.e.,

µj =
∑

pjϵCj

pj

|Cj |
, (2.5)

If α(p) is ‘large’ pj is considered to be an anomaly. This approach can be
applied to time series data for identifying contextual outliers.
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In order to make this approach work well, the number of clusters k must
be correctly chosen; k should not be neither very large, nor very small. If k is
large, to some extent the difficulty may be overcome if a cluster size threshold
is applied to the result. In case k is very small and the intra-cluster distances
are too large and if a small increase of the k can significantly decrease the
intra-cluster distances, then such an increase should be permitted.

2.3.3 Distances from Multiple Points

If the algorithm considers distances to multiple data points or multiple clusters
the results obtained tend to be more robust and susceptible to the ”noise” of
the process that generated the data. This approach is being used in anomaly
detection algorithms based on the density 2.2.4. If the distance value chosen
is too low, a significant part of the data will not be clustered. It will be
considered outliers because it doesn’t satisfy the number of points to create a
dense region. From the other point of view, if the value has been chosen too
high, clusters will be merged and the majority of objects will be a part of the
same cluster. The distance should be chosen based on distances between points
in the dataset, but generally small distances are preferable. The DBSCAN
algorithm should be used to find associations and interconnections in the data
that are hard to find manually, but that can be relevant and be used to find
patterns and predict trends in time series.

From the consideration of computational effort, of course, it is best to
choose a small set of values over which averages (or medians) are computed.
This leads to the common pragmatic choice of k = 3 (or 5) used by many
practitioners, who reason that the additional advantage gained by using larger
values of k is not worth the additional computational effort.

In problems where the computational effort considerations are not critical,
however, the choice of k requires greater attention.

2.3.4 Section summary

A large number of anomaly detection algorithms discussed in this chapter are
based on clustering the given data; such an algorithm declares anomalies to
be the data points from the outside of the clusters, or are near the boundaries
of clusters. Although many practitioners restrict themselves to one or two
popular algorithms, there are many cases when the other algorithms discussed
here should have been preferred, e.g., when the clusters in a dataset are not
symmetric, or if densities vary across different regions of data space.

Many clustering algorithms for anomaly detection require the number of
clusters to be predefined. Even though there are many techniques of estimat-
ing the number of clusters, but when we are dealing with time series data, it
is not feasible to dynamically estimate the number of clusters for each series.
Summarizing all pros and cons of algorithms that have been described above,
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density-based anomaly detection algorithm like DBSCAN can be picked up as
the most suitable for identifying anomalies in time series of electric vehicle.
DBSCAN does not group all data points to a cluster, thus, outliers are not
being associated with any cluster.
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Chapter 3
Artificial Neural Network

Approaches

3.1 Artificial Neural Networks

Building a machine or autonomous mechanism endowed with intelligence is an
ancient dream of researchers from the diverse areas of sciences and engineer-
ing. Although the first articles about Artificial Neural Networks (ANN) were
published more than 50 years ago, this subject began to be deeply researched
on the early 90s, and still have an enormous research potential. The appli-
cations involving systems considered intelligent cover a wide range, includ-
ing: Analysis of images acquired from artificial satellites, speech and writing
pattern classification, face recognition with computer vision, control of high-
speed trains, stocks forecasting on financial market, anomaly identification on
medical images, automatic identification of credit profiles for clients of finan-
cial institutions, control of electronic devices and appliances, such as washing
machines, microwave ovens, freezers, coffee machines, frying machines, video
cameras, and so on [21].

The reason, why artificial neural networks is such a good tool for solv-
ing diverse problems, is their ability to map nonlinear systems and learn the
underlying behaviors and internal dependencies just from data received from
such systems. Deep learning for time series is a relatively new endeavor, but
it’s a promising one. Because deep learning is a highly flexible technique, it
can be advantageous for time series analysis. Most promisingly, it offers the
possibility of modeling highly complex and nonlinear temporal behavior with-
out having to guess at functional forms, which could potentially be a game
changer for nonstatistical forecasting techniques. There are many relevant
features related to artificial neural networks applications. Internal parameters
of the network(usually synaptic weights) are being adjusted by examining a
series of successive examples(patterns, samples, or measurements) related to
the behavior of the process, this enabling the learning by experience. Learn-
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ing methods allow networks to extract existing relationships between various
variables in an application. Knowledge of the behavior of specific processes
learned by neural networks is stored at each of multiple synapses between ar-
tificial neurons, improving the robustness of the architecture in case of some
neurons are lost. Depending on the details of your application, most neural
architectures can be easily prototyped in hardware or software, since some
fundamental mathematical operations is enough to acquire results.

3.1.1 Potential Application Areas

Deep learning for time series is a relatively new endeavor, but it’s a promising
one. Because deep learning is a highly flexible technique, it can be advan-
tageous for time series analysis. Most promisingly, it offers the possibility
of modeling highly complex and nonlinear temporal behavior without having
to guess at functional forms, which could potentially be a game changer for
nonstatistical forecasting techniques [18].

Artificial neural networks are computational models inspired by the ner-
vous system of living beings. They have the ability to acquire and maintain
knowledge (information based) and can be defined as a set of processing units,
represented by artificial neurons, interlinked by a lot of interconnections (ar-
tificial synapses), implemented by vectors and matrices of synaptic weights
[22].

Artificial neural networks can be used to solve several engineering and
science problems. The potential application areas can be split into several
categories.

The first category is functions approximation of universal curve fitting.
The objective is to map the functional relationship between variables (usually
real numbers) of a particular system from a known set of meaningful val-
ues. These applications are as diverse as possible, and often involve mapping
processes that are difficult to model using traditional methods.

The second one is called process control. This category consists of iden-
tifying control actions capable of meeting quality, efficiency, and security re-
quirements. Among the multiple available applications, neural controllers are
of particular interest to robotics, airplanes, elevators, appliances, satellites,
and so on.

The next category is a pattern recognition or pattern classification. The
goal is to associate a given input pattern (sample) with one of the known
classes, e.g. image, speech and writing recognition. In this case thus, the
problem’s outcome has a discrete and known set of possible values.

Artificial neural networks also can be used for data clustering. In this
case, the purpose is to detect and identify similarities and particularities of
the several input patterns, and group them together. Some examples, to cite a
few, are applications involving automatic class identification and data mining.
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Artificial neural networks can be also used to build prediction systems.
The goal is to determine future values of a particular process by observation
of previous samples. Among the known applications, it is possible to find
systems for time series prediction, stock market projection, weather forecast,
and so on.

The last but not least category is associative memory. The task is to
restore a pattern even when its inner elements are uncertain or inaccurate.
Some examples include image processing, signal transmission, written charac-
ter identification, and so forth.

3.1.2 Artificial Neuron

The artificial neural network structures were developed from known models
of biological nervous systems and the human brain itself. The computational
components or processing units, called artificial neurons, are simplified models
of biological neurons.

The artificial neurons used in artificial neural networks are nonlinear, usu-
ally providing continuous outputs, and performing simple functions, such as
gathering signals available on their inputs, assembling them according to their
operational functions, and producing a response considering their innate acti-
vation functions [21].

Figure 3.1: The artificial neuron structure

Artificial neuron is composed of seven basic elements.

Definition 3.1.1. Input signals (x1, x2, ..., xn) are the signals or samples com-
ing from the external environment and representing the values assumed by the
variables of a particular application. The input signals are usually normalized
in order to enhance the computational efficiency of learning algorithms.

Definition 3.1.2. Synaptic weights (w1, w2, ..., wn) are the values used to
weight each one of the input variables, which enables the quantification of
their relevance with respect to the functionality of the neuron.
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Definition 3.1.3. Linear aggregator (∑) gathers all input signals weighted
by the synaptic weights to produce an activation voltage.

Definition 3.1.4. Activation threshold or bias (θ) is a variable used to specify
the proper threshold that the result produced by the linear aggregator should
have to generate a trigger value toward the neuron output.

Definition 3.1.5. Activation potential (u) is the result produced by the dif-
ference between the linear aggregator and the activation threshold. If this
value is positive, i.e. if u ≥ θ, then the neuron produces an excitatory poten-
tial; otherwise, it will be inhibitory.

Definition 3.1.6. Activation function (g) whose goal is limiting the neuron
output within a reasonable range of values, assumed by its own functional
image.

Definition 3.1.7. Output signal (y) consists on the final value produced by
the neuron given a particular set of input signals, and can also be used as
input for other sequentially interconnected neuron.

The weighing carried out by the synaptic junctions of the network are im-
plemented on the artificial neuron as a set of synaptic weights {w1, w2, ..., wn}.
Analogously, the relevance of each of the {xi} neuron inputs is calculated by
multiplying them by their corresponding synaptic weight {wi}, thus weighting
all the external information arriving to the neuron. Therefore, it is possible
to verify that the output of the artificial cellular body, denoted by u, is the
weighted sum of its inputs.

The two following expressions synthesize the result produced by the arti-
ficial neuron proposed by McCulloch and Pitts [23]:

u =
n∑

i−1
ωi · xi − θ, (3.1)

y = g(u). (3.2)

Thus, the artificial neuron operation can be summarized by the following
steps:

1. Present a set of values to the neuron, representing the input variables.

2. Multiply each input of the neuron to its corresponding synaptic weight.

3. Obtain the activation potential produced by the weighted sum of the
input signals and subtract the activation threshold.

4. Applying a proper activation function to limit the neuron output.
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5. Compile the output by employing the neural activation function in the
activation potential.

Activation functions are a critical part of the design of a neural network.
The choice of activation function in the hidden layer will control how well the
network model learns the training dataset. The choice of activation function
in the output layer will define the type of predictions the model can make.
As such, a careful choice of activation function must be made for each deep
learning neural network project [24].

The activation functions can be categorized into two fundamental groups,
partially differentiable functions, and fully differentiable functions, when con-
sidering their complete definition domains.

3.1.2.1 Partially Differentiable Activation Functions

Partially differentiable activation functions are functions with points whose
first order derivatives are nonexisting. The three main functions of this cat-
egory are the following: step function 3.1.8, bipolar step function 3.1.9, and
symmetric ramp function 3.1.10.

Definition 3.1.8. Results produced by the binary sted function assume a
unitary positive value when the activation potential of the neuron is above
zero. Otherwise, the result is null. This function is defined by next equation:

g(u) =
{

1, if u ≥ 0,

0, if u < 0.
(3.3)

Figure 3.2: Binary step activation function
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Definition 3.1.9. Signal function is described as follows:

g(u) =


1, if u > 0,

0, if u = 0,

−1, if u < 0.

(3.4)

The result produced by Bipolar step function or Signal function will assume
unitary positive values when the neuron activation potential is above zero;
null value, if the potential is null; and negative unitary values otherwise.

Figure 3.3: Bipolar step activation function

Definition 3.1.10. The mathematical notation of the Symmetric ramp is:

g(u) =


a, if u > a,

0, if − a ≤ u ≤ a,

−a, if u < a.

(3.5)

Symmetric ramp functions return the value of the potential itself, if the value
is within the interval [−a, a], and limits the value otherwise.
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Figure 3.4: Symmetric ramp activation function

Definition 3.1.11. The mathematical notation of the Rectified Linear Unit
(ReLU) is:

g(u) =
{

0, if u < 0,

u, if u ≥ 0.
(3.6)

ReLU is the most commonly used activation function in neural networks. It’s
cheap to compute because there’s no complicated math. As a result, the model
may take less time to train or run. Since ReLU is zero for all negative inputs,
there is a chance that a certain unit will not trigger.
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Figure 3.5: Rectified Linear Unit (ReLU) activation function

3.1.2.2 Fully Differentiable Activation Functions

Fully differentiable activation functions are those whose first order derivatives
exist for all points of their definition domain. The four main functions of this
category, which can be employed on artificial neural networks, are the sigmoid
function 3.1.12, hyperbolic tangent 3.1.13, Gaussian function 3.1.14 and linear
function 3.1.15.

Definition 3.1.12. Sigmoid function mathematical expression is given by:

g(u) = 1
1 + e−u

, (3.7)

The result produced by this functions is always a real number within a range
[0, 1].
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Figure 3.6: Sigmoid activation function

Definition 3.1.13. Hyperbolic tangent function is expressed with the follow-
ing mathematical expression:

g(u) = 1− e−β·u

1 + e−β·u , (3.8)

where β is associated with the slope of the hyperbolic tangent function in its
inflection point. The Hyperbolic tangent function, unlike the logistic function,
will output real values within an interval [−1, 1].

Figure 3.7: Hyperbolic tangent activation function
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Definition 3.1.14. Gaussian activation function is given by:

g(u) = e− (u−c)2

2σ2 , (3.9)

where c is the parameter that defines the center of the Gaussian function
and {σ} denotes the associated standard deviation, that is, how scattered
(dispersed) is the curve in relation to its center. In the case of Gaussian
activation functions , the neuron output will produce equal results for those
activation potential values {u} placed at the same distance from its center
(average). The curve is symmetric to this center.

Figure 3.8: Symmetric ramp activation function

Definition 3.1.15. The linear activation function, or identity function, pro-
duces output results equal to the activation potential {u}, having its mathe-
matical expression given by:

g(u) = u. (3.10)

One application of the linear activation functions is in artificial neural net-
works performing universal curve fitting (function approximation), to map
the behavior of the input/output variables of a particular process.
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Figure 3.9: Symmetric ramp activation function

3.1.3 Artificial Neural Networks Architectures

The goal of the artificial neural network architecture is to arrange its neurons
in realtion to each other. These arrangements are made essentially by directing
the neurons synaptic connections.

The topology of a particular neural network within a particular architec-
ture can be defined in terms of various possible structural configurations. That
is, you can use two topologies that belong to the same architecture. The first
topology consists of 10 neurons and the second topology consists of 20 neurons.
Also, one may be composed of neurons having a logistic activation function,
and the other may be composed of neurons having a hyperbolic tangent as an
activation function.

Training on a particular architecture, on the other hand, involves applying
a series of ordered steps to adjust neuron weights and thresholds. Therefore,
such a tuning process, also known as a learning algorithm, aims to tune the
network so that the output is close to the desired value.

In general, artificial neural network can be split into three parts: the input
layer, the hidden (intermediate or invisible) layers, and the layer called the
output layer.

The input layer is responsible for receiving information (data), signals,
functions, or measurements from the external environment. These inputs
(samples or patterns) are usually normalized within the limits created by the
activation function. This normalization improves the numerical accuracy of
the mathematical operations performed by the network.

The second part, called hidden layers, is composed of neurons which are
responsible for extracting patterns related to the process or analyzed system.
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These layers perform most of the internal processing from a network.
Because the output layer is also made up of neurons, it is responsible

for generating and presenting the final network output that results from the
processing performed by the neurons in the previous layer.

The main architectures of artificial neural networks are single-layer feed-
forward network and multilayer feedforward networks.

3.1.3.1 Single-Layer Feedforward Architectures

It is a network having processing units/nodes in layers and all the nodes in a
layer are connected with the nodes of the previous layers. The connection has
different weights upon them. There is no feedback loop means the signal can
only flow in one direction, from input to output [25]. A single-layer feedforward
architecture is the simplest ANN architecture. In this type of network, there
are only two layers input layer and output layer however the input layer isn’t
being counted due to the fact no computation is executed in this layer.

Figure 3.10: Single-Layer Feedforward Architecture

3.1.3.2 Multiple-Layer Feedforward Architectures

A multi-layer feedforward network consists of one or more hidden neural lay-
ers. They are used to solve various problems such as function approximation,
pattern classification, system identification, process control, optimization, and
robotics.

The main networks that use the multi-layer feedforward architecture are
the multi-layer perceptron (MLP) and the radial basis function (RBF), and
the learning algorithms used in the training process are respectively based on
the generalized delta rule and the competitive/delta rule.
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The number of neurons that make up the first hidden layer is usually dif-
ferent from the number of signals that make up the input layer of the network.
In fact, the number of hidden layers and the set of each neuron depends on the
nature and complexity of the problem mapped by the network, and the quan-
tity and quality of data available about the problem. Nevertheless, even in a
single-layer feedforward network, the set of output signals always corresponds
to the number of neurons from each layer.

Figure 3.11: Example of Multiple-Layer Feedforward Architecture

Feed forward networks are good tests for whether there really are complex
time-axis dynamics in your sequence. Not all time series really are time series
in the sense of having time-axis dynamics, where earlier values have a specific
relationship to later values. It can be good to fit a feed forward neural network
as one baseline, apart from a simpler linear model [18].

3.1.4 Training Processes and Properties of Learning

One of the most important functions of artificial neural networks is their
ability to learn from representations of patterns (templates) that describe the
behavior of a system. So, once the network learns the relationship between
inputs and outputs, it can generalize the solution. That is, the network can
produce an output that is close to the expected output for a given input value.

In means that the training process of a neural network consists of applying
the required ordinated steps for tuning the synaptic weights 3.1.2 and thresh-
olds 3.1.4 of its neurons, in order to generalize the solutions produced by its
outputs.
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Definition 3.1.16. The calculation of the output from a neural network by
propagating an input signal through each layer until the output layer outputs
its values is called forward-propagation.

In forward-propagation phase predictions are generated during training
process. These predictions need to be corrected by backpropagation.

Definition 3.1.17. The learning method adopted for training multi-layer
feedforward networks is called backpropagation.

The backpropagation algorithm can be applied to multi-layer feedforward
networks. This is a supervised learning algorithm that continuously adjusts
the weights of connected neurons to reduce the difference between the output
signal and the target output.

In this method, the deviation (error) between the output value of the
output layer and the expected value is propagated from the output layer back
to the previous layer.

Definition 3.1.18. Each iteration when the whole dataset go forward and
backward through the neural network is called epoch.

The count of epochs is a hyperparameter that defines the number of iter-
ations which consist of forward phase and backward phase.

3.1.4.1 Supervised Learning

A supervised learning strategy is to achieve the desired result for a given
set of inputs, hence each training sample consists of an input signal and a
corresponding output signal.

Therefore, the application of supervised learning only depends on the avail-
ability of that corresponding output value, and it behaves as it learns with
the coach what is the correct response for each sample presented for its input.

Usually, the complete set containing all available samples of the system
behavior is divided into two subsets, which are called training subset and test
subset. The training subset, composed of 60–90 % of random samples from
the complete set, will be used essentially in the learning process. On the other
hand, the test subset, which is composed of 10–40 % from the complete sample
set, which will contain 30-50% of validation data, will be used to verify if the
network capabilities of generalizing solutions are within acceptable levels, thus
allowing the validation of a given topology. Nonetheless, when dimensioning
these subsets, statistical features of the data must also be considered.

3.1.4.2 Unsupervised Learning

Unlike supervised learning, applying an unsupervised learning algorithm does
not require any knowledge of the desired outcome.
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Therefore, networks must self-organize by identifying clusters that repre-
sent similarities if there is an existing feature between the elements that make
up the entire sample set. The learning algorithm adjusts the synaptic weights
and thresholds of the network to reflect these clusters in the network itself.

Alternatively, the network designer can specify the maximum number of
such possible clusters using their knowledge of the problem.

3.1.5 Autoencoders

An autoencoder is a special type of neural network that copies an input value
to an output value. It does not require target variables like traditional Y , so
it is classified as unsupervised learning.

The number of neurons in the hidden layer is less than the number of
input layers. The hidden layer extracts important information from the input
values. This condition causes the hidden layer to learn most of the data
patterns and ignore ”noise”. Therefore, in the autoencoder model, the hidden
layer dimension must be less than the input or output layer. If the number
of neurons in the hidden layer is greater than the number of input layers, the
neural network has too much capacity to train the data. In extreme cases,
you can simply copy the input to a noisy output value without extracting
important information.

Definition 3.1.19. Encoder compresses the input data into an encoded low-
dimensional representation that is typically several orders of magnitude smaller
than the input data.

Definition 3.1.20. Bottleneck is a middle layer that contains the compressed
knowledge representations. The bottleneck exists to restrict the flow of in-
formation to the decoder from the encoder, thereby allowing only the most
important information to pass through.

Definition 3.1.21. Decoder is a feedforward network with the same struc-
ture as the encoder, it decompresses the knowledge representations and re-
constructs the data back from its encoded representation. The output data is
then compared with a ground truth (input data). When it uncompresses, it
tries to reach close to input, but the output is not the same.
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Figure 3.12: Example of Autoencoder Architecture

3.1.5.1 Applications of Autoencoders

Autoencoders can be employed to solve many kinds of problems. The most
popular of them is the problem of dimensionality reduction. The information
from the input has been compressed and stored in the bottleneck layer. Each
node can now be treated as a variable. Thus, by removing the decoder part, an
autoencoder with the bottleneck layer as output can be used for dimensionality
reduction.

Once the main pattern is identified, the outliers become apparent. Many
distance-based techniques (such as KNN) suffer from the curse of dimension-
ality when calculating the distance of each data point across feature space.
It is necessary to reduce the high dimensionality. Interestingly, outliers are
identified during the dimensionality reduction process. Outlier detection is a
by-product of dimensionality reduction.

Another application of autoencoder is feature extraction, which is basically
connected to dimensionality reduction. The encoding part of the autoencoder
helps to extract hidden features presented in the input data.

Definition 3.1.22. Reconstruction error is the distance between the original
data point and its projection onto a lower-dimensional subspace.

It learns with the reconstruction function that works with normal data.
Thus, the reconstruction error of normal data is low, and the reconstruction
error of abnormal data is high.

There are already many useful tools like Principal Component Analysis
(PCA) for detecting outliers. Remember that PCA uses linear algebra to
transform. In contrast, autoencoder technology with a non-linear activation
function and multiple layers can perform non-linear transformations. It is
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more efficient to train multiple layers using an autoencoder than to train a
huge transformation using a PCA. Therefore, autocoder techniques show their
benefits when data problems are complex and non-linear.
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Chapter 4
Realisation

This chapter is dedicated to the practical application and comparison of re-
searched methods. Due to conclusion from Chapter 2, the first selected model
that is trained is DBSCAN 3. The second model is Autoencoder 3.1.5.

Since dataset with charging cycles of electric vehicles cannot be published,
the example of training process will be done on open-source dataset. Re-
sults and evaluation of the training process will be done for both open-source
dataset and the dataset which is gathered for the EV replicating charging
cycles profiles of batteries.

The computation was done on the CPU Intel (R) Xeon(R) 2.20 GHz with
x86 64 ISO architecture. The processor supports both 32-bit and 64-bit op-
modes. This is a single-core processor with two threads. Additional hardware
accelerators such as GPU weren’t used. The size of RAM is 13 GB.

4.1 Used tools

Python was selected as the programming language for the implementation
mostly because it is the most popular language for machine learning, thus it
has a lot of dedicated frameworks and libraries. Such libraries and frameworks
were used:

• Pandas: data manipulation control

• NumPy: data manipulation and high-level math functions

• Matplotlib: data visualization

• Seaborn: data visualization

• Scikit-learn: machine learning

• TensorFlow: machine learning and artificial intelligence
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4.2 Datasets

4.2.1 ECG Dataset

The following dataset is used as a benchmark for experiments.
The original dataset for ”ECG5000” is a 20-hour long ECG downloaded

from Physionet. The data was pre-processed in two steps: (1) extract each
heartbeat, (2) make each heartbeat equal length using interpolation. This
dataset was originally used in paper ”A general framework for never-ending
learning from time series streams”, DAMI 29(6). After that, 5,000 heartbeats
were randomly selected. The patient has severe congestive heart failure and
the class values were obtained by automated annotation [26].

ECG (electrocardiogram) is a test that measures the electrical activity of
the heartbeat. There are 5000 rows in the dataset. Each row corresponds
to one electrocardiogram. In this experiment is used all normal cardiograms
(2919) and 200 anomalous cardiograms to imbalance dataset for making data
more suitable for anomaly detection. Dataset has 141 columns. One electro-
cardiogram contains of 140 sensor signals by time. The first column contains
label of the electrocardiogram:

• label == 1: electrocardiogram is normal

• label > 1: electrocardiogram is abnormal

Figure 4.1: Example of data in ECG dataset

4.2.2 Charging Cycles Dataset

BMS signals (see Chapter 1) contain a significant amount of data. For an-
alyzing charging cycles total voltage is extracted. Thus, each charging cycle
will be presented as the value of voltage over time.

Synthetic charging cycles were generated and labeled automatically for this
experiment to enable testing of the algorithms for anomaly detection. Data
are labeled as normal (1080 cycles) and anomalous (77 cycles) charging cycles.

For data synthesis Synthetic Minority Over Sampling Technique (SMOTE)
was used. For SMOTE a new synthetic sample is created by selecting a random
point in feature-space along a line intersecting k randomly chosen samples of
the same class [27]. SMOTE has the advantage of not creating duplicate data
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points, but rather synthetic data points that differ slightly from the original
data points. SMOTE is a superior oversampling option [28].

The SMOTE algorithm works like this:

1. Select a random sample from the minority group.

2. Determine the k nearest neighbours for the observations in this sample.

3. Then, using one of those neighbours, determine the vector between the
current data point and the chosen neighbour.

4. The vector is multiplied by a random number between 0 and 1.

5. Add this to the current data point to get the synthetic data point.

This operation is essentially the same as moving the data point slightly in
the direction of its neighbour. This ensures that your synthetic data point is
not an exact replica of an existing data point, while also ensuring that it is
not too dissimilar from known observations in your minority class [28].

Since each charging cycle length is different, data were normalized and
unified to length of 250 data points. Here is the example of normal and
anomalous charging cycle of the synthetic data 4.2. The increasing of voltage
in non-anomalous charging cycles is smooth, while anomalous charging cycles
have oscillations.

Figure 4.2: Example of normal and anomalous charging cycles

4.3 Applying Techniques

In this section, selected techniques are applied for anomaly detection, then
they are compared and results are analyzed. The first step that should be
done is defining metrics that is used for comparing results.
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4.3.1 Introduction of Used Metrics

The main reason for training these models is to correctly recognize anomalous
events. Thus, the confusion matrix and F1 score were selected as suitable
metrics for the given use case.

Definition 4.3.1. Confusion matrix for binary anomaly classification is de-
fined as follows:

Predicted Class

A
ct

ua
lC

la
ss Negative

(Normal)
Positive

(Anomalous)
Negative
(Normal) TN FP

Positive
(Anomalous) FN TP

Table 4.1: Confusion matrix

Values TP, FP, TN and FN correspond to:

True Negative (TN) Actual event is normal and predicted as normal

False Positive (FP) Actual event is normal, but predicted as anomalous

False Negative (FN) Actual event is anomalous, but predicted as normal

True Positive (TP) Actual event is anomalous, and predicted as anomalous

Definition 4.3.2. The F1 score is defined as the harmonic mean of precision
and recall [29]. F1 score can be describes with next equation:

TP

TP + F N+F P
2

(4.1)

Definition 4.3.3. The precision is described with the next equation:

TP

TP + FP
(4.2)

Definition 4.3.4. The recall is described with the following equation:

TP

TP + FN
(4.3)
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4.3.2 DBSCAN

DBSCAN has two parameters that need to be defined: min samples, which
refers to minimum samples and eps, which refers to maximum distance be-
tween two samples 3.

Definition 4.3.5. The dimension of a dataset corresponds to the number of
attributes/features that exist in a dataset. A dataset with a large number of
attributes, generally of the order of a hundred or more, is referred to as high
dimensional data [30].

The min samples value cannot be determined automatically for DBSCAN.
Nonetheless, there is an implicit rule that if the dimension of a dataset ≥ 2,
then min samples should be chosen as

min samples = 2 · (dimension of a dataset). (4.4)

Hence, min samples value for ECG dataset is set to 280.
One technique for choosing the value of eps, which is described in the

following paper [31], is to calculate the average distance between each two
point and its k-nearest neighbors, where k = min samples. The average k-
distances are then plotted in ascending order. The optimal value for eps is
located at the point of maximum curvature. In this case 4.3 the value of eps
is around 0.7 .

Figure 4.3: The curve of k-distances (ECG dataset)

min samples 280
eps 0.7

Table 4.2: DBSCAN hyperparameters (ECG dataset)
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Figure 4.4: Confusion matrix for DBSCAN results (ECG dataset)

F1 score Precision Recall
0.63376 0.46495 0.99500

Table 4.3: DBSCAN metrics values (ECG dataset)

Looking at metrics, and confusion matrix 4.4, one can conclude that this
model proved to produce accurate prediction on the ECG dataset and thus it
can also be used to the charging cycles dataset.

min samples 500
eps 0.9

Table 4.4: DBSCAN hyperparameters (Charging cycles dataset)

Results of the model trained on charging cycles data are presented in 4.5
and 4.5.
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Figure 4.5: Confusion matrix for DBSCAN results (Charging cycles dataset)

F1 score Precision Recall
0.61883 0.47260 0.89610

Table 4.5: DBSCAN metrics values (Charging cycles dataset)

DBSCAN performs worse on the charging cycles dataset. One of the reason
is that DBSCAN struggles with the curse of dimensionality. The curse of
dimensionality is the problem caused by the exponential increase in volume
associated with adding extra dimensions to Euclidean space.

The curse of dimensionality basically means that the error increases with
the increase in the number of features. It refers to the fact that algorithms are
harder to design in high dimensions and often have a running time exponential
in the dimensions. A higher number of dimensions theoretically allow more
information to be stored, but practically it rarely helps due to the higher
possibility of noise and redundancy in the real-world data [32].

4.3.2.1 Application for Big Data

DBSCAN is one of the most efficient clustering algorithms that can efficiently
identify noise. However, its complexity makes it unfeasible and not scalable
for applications involving big data clustering. DBSCAN has a worst-case run-
time complexity of O(n2). A large part of DBSCAN’s computation time is
occupied by finding neighbours, which becomes the bottleneck for its perfor-
mance. Moreover, as data increase, new clusters can be formed. However,
trained model may identify new normal clusters as a noise. For this use case
the best choice is the model, that will learn and improve prediction with the
increase of the data. One of such models is neural network based Autoencoder.
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4.3.3 Autoencoder

Firstly, the concrete architecture of the Autoencoder used for this application
needs to be defined.

All the layers use the ReLU activation function 3.6, as it is the standard
with deep neural networks. The last layer uses the sigmoid activation 3.7
because we need the outputs to be between [0, 1]. The input is also in the
same range.

The number of layers and neurons in each layer was determined experi-
mentally. The number of neurons in the last layer is equal to the dimension
of a dataset, so the comparison of ground truth and prediction can be done.

# of layers 8
# of neurons in each layer [16, 8, 4, 2, 4, 8, 16, 140]

Loss function Mean Absolute Error (MAE)
Optimizer Adam

# of epochs 15

Table 4.6: Autoencoder hyperparameters (ECG dataset)

In the section 3.1.5.1 there was discussed that the reconstruction error
will be greater for anomalous data, since most of data are not anomalous. For
identifying outliers the threshold for the reconstruction error has to defined.
Looking at the histogram of reconstruction errors 4.6, one can mention that
there are two peaks around 0.025 and 0.11. The threshold can be located in
the place where the first distribution ends and the second one starts, e.g. in
this case the threshold was set to 0.08.

Figure 4.6: The histogram of reconstruction errors (ECG dataset)
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Electrocardiograms that have the reconstruction error greater than a thresh-
old are labeled as anomalous. In this case the confusion matrix is following
4.7:

Figure 4.7: Confusion matrix for Autoencoder results (ECG dataset)

In this case metrics values are 4.9:

F1 score Precision Recall
0.63502 0.47202 0.97000

Table 4.7: Autoencoder metrics values (ECG dataset)

As results show, there is no big difference in prediction quality for both
Autoencoder and DBSCAN, that were trained on the ECG dataset.

The model trained on charging cycles dataset has the following hyperpa-
rameters.

# of layers 8
# of neurons in each layer [64, 32, 16, 8, 16, 32, 64, 250]

Loss function Mean Absolute Error (MAE)
Optimizer Adam

# of epochs 50

Table 4.8: Autoencoder hyperparameters (Charging cycles dataset)

There is a gap in the histogram of the reconstruction errors 4.8 around
0.028. This value is set as a threshold.
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Figure 4.8: The histogram of reconstruction errors (Charging cycles dataset)

From results presented in 4.9 and 4.9 and one can conclude that the Au-
toencoder model performs significantly better than DBSCAN model on charg-
ing cycles dataset. This can be explained with the fact that the behaviour of
charging cycles of electric vehicles can be described as non-linear. Moreover,
unlike DBSCAN, the Autoencoder model does not struggle with the curse of
dimensionality.

Figure 4.9: Confusion matrix for Autoencoder results (Charging cycles
dataset)
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F1 score Precision Recall
0.90058 0.81915 1.00000

Table 4.9: Autoencoder metrics values (Charging cycles dataset)

4.3.3.1 Application for Big Data

Feed forward networks are highly parallelizable, which means they are quite
performant. If one can find a reasonably good feed forward model for your
purposes, one can compute it very quickly [18]. The neural network based
Autoencoder is suitable for gradual learning. Autoencoder can help to build
a non-linear mathematical model, which is more useful for a great amount of
time-series data from the real world.

4.4 Results summary

As part of this experiment the generation of synthetic data was done using
SMOTE algorithm 4.2.2. For both the DBSCAN and the Autoencoder models
the hyperparameter tuning was done. After training models the exploratory
analysis of reconstruction errors had been done.

In the experimentation part four experiments were done with two models
for anomaly detection: the DBSCAN and the Autoencoder, these models were
applied to ECG and charging cycles datasets. The metrics summary for all
experiments is provided in the following tables 4.10, 4.11.

F1 score Precision Recall
DBSCAN 0.63376 0.46495 0.99500

Autoencoder 0.63502 0.47202 0.97000

Table 4.10: Metrics summary (ECG dataset)

F1 score Precision Recall
DBSCAN 0.61883 0.47260 0.89610

Autoencoder 0.90058 0.81915 1.00000

Table 4.11: Metrics summary (Charging cycles dataset)

Autoencoder and DBSCAN models had similar results on the ECG dataset
4.4, 4.7 and 4.10, in other words none of the analyzed methods is significantly
better than another.

In the experiment on charging cycles dataset the Autoencoder model demon-
strated significantly better results. This method is also more suitable for big
data analysis, especially for data with non-linear behaviour, this is exactly
the description of charging profiles. The DBSCAN model trained on ECG
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dataset had also better results, than the same model trained on charging cy-
cles dataset. This can be explained with the fact that the DBSCAN struggles
with the curse of dimensionality, while the dimensionality of the charging
cycles dataset is bigger, than the dimensionality of the ECG dataset.
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Conclusion

In this chapter, the summary of the thesis is provided, and results are con-
cluded.

In Chapter 1, the background for Battery Management System was dis-
cussed.

The main focus of Chapter 2 is basic anomaly detection approaches. Ad-
vantages and disadvantages of each algorithm were described. Moreover, there
were shown which algorithms can be applied to time series data. DBSCAN
was selected as the algorithm for practical analysis.

In Chapter 3 the background for artificial neural networks were provided.
Such special architecture of neural networks as Autoencoder was described
with the special focus. The Chapter 4 was dedicated for analyzing and com-
parison of experiments that were done on the two different datasets for both
the DBSCAN and the Autoencoder model.

Recapitulation of thesis goals

The summarized primary aims of this thesis are:

1. Analyze existing algorithms for detecting outliers.

2. Compare AI methods for applicability for anomaly detection.

3. Research the state-of-art electric vehicle battery technologies.

4. Research methods for optimizing methods for anomaly detection for big
data.

The first two goals was discussed in Chapter 2 and 3. Such algorithms
as K-means, DBSCAN and Autoencoder were described and compared. The
applicability for anomaly detection in time series was provided. In the Chapter
1 the state-of-the-art of Battery Management System, which corresponds to
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the third goal, was provided. The last goal was discussed in the Chapter 4.
The aim of this goal was also the part of the implementation and can be found
on the enclosed SD card.
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Appendix A
Acronyms

AI Artificial intelligence

ANN Artificial neural network

BMS Battery management systems

EV Electric vehicle

SOH State-of-health

RUL Remaining useful life

EOL End of life

ID Identification number

DBSCAN Density-Based Spatial Clustering of Applications with Noise

KNN K-nearest neighbors

PCA Principal Component Analysis

ECG Electrocardiogram
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Appendix B
Contents of enclosed SD

readme.txt........................the file with SD contents description
notebooks........................the directory with Jupyter notebooks
thesis........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
src ................. the directory of LATEX source codes of the thesis
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