

Bachelor’s thesis

DATAFLOW ANALYSIS IN
AZURE DATA FACTORY

Jan Chybík

Faculty of Information Technology
Computer science
Supervisor: Ing. Jan Trávníček, Ph.D.
May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jan Chybík. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Chybík Jan. Dataflow analysis in Azure Data Factory. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abreviations x

1 Goals 1

2 Introduction 3

3 Definitions 5
3.1 Directed graph . 5
3.2 Data flow graph . 5
3.3 Git . 6
3.4 Basic constructs . 6

3.4.1 Alphabet . 6
3.4.2 String over an alphabet . 6
3.4.3 Language . 6

3.5 Grammar . 7
3.5.1 Grammar clasification . 8
3.5.2 Regular grammar . 8
3.5.3 Regular expression . 9
3.5.4 Context-free grammar . 10

3.6 Parse . 10
3.6.1 Left parse . 10
3.6.2 Right parse . 10
3.6.3 Parse tree . 11

3.7 Deterministic finite automaton . 12
3.8 Pushdown automaton . 13

4 Parsing 15
4.1 Lexical analysis . 15
4.2 Syntactic analyzer . 17

4.2.1 Top-down . 17
4.2.2 LL(k) analysis . 18
4.2.3 LL(*) analysis . 19

4.3 Bottom-up . 21
4.4 Semantic analysis . 22
4.5 compiler-compiler . 22

4.5.1 ANTLR . 23

iii

iv Contents

5 Manta 27
5.1 Ways of generating lineage . 27

5.1.1 Manual . 27
5.1.2 Data taging . 28
5.1.3 Data transformation tool . 28
5.1.4 Decoded lineage . 28

5.2 Data flow representation . 28
5.2.1 Indirect data flows . 29

5.3 Architecture . 29

6 ADF 31
6.1 Resource . 31

6.1.1 Pipeline . 32
6.1.2 Dataset . 32
6.1.3 Linked service . 32
6.1.4 Data flow resource (DFR) . 33

6.2 Data representation . 33
6.2.1 Data flow script . 34

6.3 Expression language . 35
6.3.1 Pipeline expressions . 35
6.3.2 Data flow expressions . 36
6.3.3 Similarities in languages . 38

6.4 Extraction . 38

7 Scanner design 39
7.1 Connector . 39

7.1.1 Reader . 39
7.1.2 Parser service . 40
7.1.3 Model . 40
7.1.4 Data flow script processing . 43

7.2 Data flow generator . 44
7.2.1 Connection outside ADF . 47

8 Scanner implementation 51
8.1 Connector . 51

8.1.1 Reader . 51
8.1.2 Parser service . 52
8.1.3 Data flow script processing . 54

8.2 Dataflow generator . 57
8.2.1 Connection outside ADF . 60

9 Testing 63
9.1 Connector . 63

9.1.1 Data flow generator . 64

10 Summary 65

Contents of the attached SD card 71

List of Figures

3.1 Example of directed graph . 5
3.2 Hierarchy of formal languages [8] . 9
3.3 Example of a parse tree [13, p. 226 figure 5.1] . 11
3.4 Finite automaton accepting binary numbers ending with 0 [15] 12
3.5 Example of pushdown automaton accepting palindromes of even length [9] 14

4.1 AST of arithmetic expression a× 2 + a× 2× b 15
4.2 Parsing diagram . 16
4.3 C++ tokenization . 16
4.4 Example of building tree from top to bottom [19, p. 218 figure 4.12] 17
4.5 LL(*) finite automaton [21, p. 3] . 21
4.6 Construction of a tree from bottom to top [19, p. 243 figure 4.25] 22

5.1 Manta data lineage [25] . 27
5.2 Example of ETL data flow . 29
5.3 Example of high-level lineage . 29
5.4 Example of indirect data flow . 29
5.5 Architecture of Manta Flow CLI . 30
5.6 Covered part of Manta Flow CLI . 30

6.1 ADF resource hierarchy . 31

7.1 Connector packages . 39
7.2 Class diagram of a reader . 40
7.3 Sequence diagram of a reader . 41
7.4 Parser service . 42
7.5 Model . 43
7.6 AST of data flow script . 44
7.7 AST of output attribute . 45
7.8 Processing of data flow script . 45
7.9 Data flow script model . 46
7.10 Classes of data flow generator . 48
7.11 Sequence diagram of data flow generator . 49

9.1 Simple DFR data flow . 64

v

vi List of Tables

List of Tables

3.1 Derivations of grammar . 11

4.1 LL(1) parse table . 19
4.2 LL(1) parser run . 20
4.3 First and follow . 20
4.4 First-first conflict . 20
4.5 First-follow conflict . 20

I would like to thank my supervisor Ing. Jan Trávníček, Ph.D. for
his leadership and great help, manta reporting team for their shared
domain expertise, my family for the opportunity on this world, and
finally my girlfriend for all the emotional support. When the times
were dire you were all there for me. Thank you.

vii

Declaration

I hereby declare that I have authored this thesis independently, and that all sources used are
declared in accordance with the “Metodický pokyn o etické přípravě vysokoškolských závěrečných
prací”.

I acknowledge that my thesis (work) is subject to the rights and obligations arising from
Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and on Amendments
to Certain Laws (the Copyright Act), as amended, (hereinafter as the “Copyright Act”), in
particular § 35, and § 60 of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work) and with respect
to all documentation related to the computer programs (“software”), in accordance with Article
2373 of the Act No. 89/2012 Coll., the Civil Code, I hereby grant a nonexclusive and irrevocable
authorisation (license) to use this software, to any and all persons that wish to use the software.
Such persons are entitled to use the software in any way without any limitations (including use
for-profit purposes). This license is not limited in terms of time, location and quantity, is granted
free of charge, and also covers the right to alter or modify the software, combine it with another
work, and/or include the software in a collective work.

In Prague on May 10, 2022 .

viii

Abstrakt

Tato práce se zaměřuje na analýzu datových toků v nástroji Azure data factory. Zkoumá
reprezentaci datových toků projektu Manta. Prozkoumává a popisuje zdrojové soubory Azure
data factory a následně navrhuje způsob, jak analyzovat tyto zdrojové kódy. Všechna zjištění
pak využívá při implementaci prototypu skeneru, který bude součástí projektu Manta.

Klíčová slova Azure data factory, analýza datových toků, parsování data flow skriptu, data
lineage, Manta Tools, s.r.o.

Abstract

This work focuses on data flow analysis of Azure data factory. It examines data flow representa-
tion in the Manta project. It explores and describes azure data factory source codes and designs
a solution on how to analyze those source codes. In the end, it utilizes all findings to implement
a proof-of-concept scanner, which will be part of the Manta project

Keywords Azure data factory, dataflow analysis, data lineage, data flow script parsing, Manta
Tools, s.r.o.

ix

Abreviations

ADF Azure data factory
AST Abstract syntax tree
DFR Data flow resource
DFS Data flow script

EBNF Extended Backus–Naur form
ETL Extract, transform, load
IR Intermediate representation

NPDA Non-deterministic pushdown automaton
PDA Pushdown automaton
PDS Push-down store

x

Chapter 1

Goals

This bachelor thesis aims to analyze the ETL tool Azure data factory (ADF) and implement a
new proof-of-concept scanner for the Manta project, capable of detecting internal dataflows and
dataflows from and to tools that integrate with Azure Data Factory.

The theoretical part of the thesis will focus on analyzing Manta and its dataflow representa-
tion, analyzing ADF its syntax and semantics of source codes that describe data transformations.

The practical part of the thesis will present a way to analyze and represent ADF data transfor-
mations. It will describe the implementation of a proof-of-concept scanner capable of extracting
dataflows from ADF source codes located in git.

The first step will be to analyze the Manta project and its representation of dataflows. Then
the thesis will focus on the study of ADF and research the syntax and semantics of source codes
that describe data transformations. It will explain the syntax and analysis of source codes that
define data transformations in Azure Data Factory and design a way to analyze source codes
mentioned above, capable of detecting its internal dataflows and dataflows from and to tools
that integrate with Azure Data Factory. In the end, it will show the implementation of a proof-
of-concept tool that can extract dataflows from ADF located in a git repository into the Manta
system.

The final result and benefit of the thesis will be a new scanner for Manta. Users of Manta
will be able to use the scanner to analyze their ADF data flows and get the end-to-end lineage
of their data environment.

1

2 Goals

Chapter 2

Introduction

Today’s world is governed by data. It comes in all kinds of shapes and forms. Banks keep
information about bank accounts, social networking sites keep information about their users, a
spreadsheet can be created in order to manage to manage one’s home finances. Everybody is
dealing with data on day-to-day bases. But there is one big difference in how ordinary people
and companies regard data. The volume.

Data represents some information someone wants to store, something important. We as
humans can understand that. There is some object, and we have information about the object.
It could be a name. It could be a purpose. But companies don’t store three or five pieces of
information. They need dozens and hundreds of specific information. And lots of it depends
on other, like in a profile on social media, age is calculated from the date of birth, or a simple
yes or no meaning whether a bank will give you a loan originates from a lots of variables. Data
dependencies and transformations are very common. Companies should not be lost in it.

Organization’s data is a strategic asset. Just like finances and customer relationships, it needs
proper management. However even in industries like finance, where there’s a need to comply
with various regulatory requirements, organizations tend to let data governance slip through the
cracks. Because of that, errors build up. When critical data is disorganized, organizations can
face penalties for not complying with regulations, rising costs for storing and managing duplicate
data, and other expenses. Moreover, they cannot be sure their business decisions are based on
correct information. To minimize those risks, organizations need proper data governance. [1].

Software developed by Manta helps with those problems. It provides data lineage of the
company’s entire data environment. Data lineage represents a detailed map of all direct and
indirect dependencies between data entities in the environment. [2, p. 3] Manta supports over 40
technologies across Modeling, Data integration, programming languages, databases, reporting,
and analysis tools. It helps to understand complex data hierarchies and dependencies.

One of such tools, Manta does not support yet is the Azure data factory (ADF). ADF is
Azure’s cloud ETL service for data integration and data transformation. [3] ETL stands for
Extract, Transform and Load. It is a three-step process that extracts data from data sources,
transforms it into a format satisfying the operational and analytical requirements of the business,
and loads it to a target destination. [4] ADF is a popular cloud alternative to on-premise solutions,
mainly in companies already using azure services. That is why Manta should support ADF to
provide even better data lineage.

3

4 Introduction

Chapter 3

Definitions

This part of the work will clarify the following chapter’s terms and notions. It will explain general
concepts in data lineage and language processing.

3.1 Directed graph

A directed graph (shortly digraph) is an ordered pair (V,E), where V is a nonempty finite set of
vertices (or nodes), and E is a set of directed edges (or also arcs). A directed edge (u, v ∈ E) is
an ordered pair of distinct vertices u, v ∈ V . Thus E ⊆ V × V . We say that u is a predecessor
of v, and v is a successor of u. [5] An example of a directed graph is in figure 3.1.

3.2 Data flow graph
One can imagine data flow as a directed graph where each vertex is an endpoint or some sort
of transformation step data has to move through. A data flow is a path for data to move from
one part of the information system to another. A data-flow may represent a single data element
such as the Customer ID or it can represent a set of data elements (or a data structure). [6] All
data flows joined into one big picture are called data lineage.

v

w

u

(v,w)

(v,u)

Figure 3.1 Example of directed graph

5

6 Definitions

3.3 Git
Git is an open-source distributed version control system designed to handle everything from small
to very large projects with speed and efficiency. [7] It allows to save separate versions of files
clearly and efficiently. Git is used heavily in the programming world because it was developed
primarily as a way to version code. However, it can be used on other mainly text-based resources.
One could wonder if the git allows sharing files with other people. Nevertheless, the git is not a
platform. It is a system, a way to do version control. It does not directly offer data sharing. And
because it is distributed system, there is no central storage of files. To share files in a centralized
way, one has to install git on a server. The server becomes the main source of git repositories.
Nowadays, having own server is not always the best solution. There are cloud services that offer
to host one’s git repositories.

Github is one of those services. ADF uses Github to store source codes of its transformations.
ADF user has to provide a repository to store source codes and authorize the ADF application.
After this, the user can save and version everything they do in ADF.

3.4 Basic constructs
In order to better understand more complex concepts of language processing later in this work,
basic constructs have to be defined first.

3.4.1 Alphabet
An alphabet is a finite set of symbols. Usually, symbols Σ or T represent the alphabet. An
example of an alphabet is binary code or the English alphabet. However, an element of an
alphabet does not need to be only one letter or number. Alphabet can consist of arbitrary
objects. An example of such an alphabet is alphabet Σ = {yes, no}.

3.4.2 String over an alphabet
String is a finite sequence of symbols of an alphabet[8]. An empty sequence is indicated by ε.
Example of a string over and alphabet Σ = {0, 1} is 101010.

Because writing always “String over and alphabet“ is tedious and not effective, it can be
expressed more efficiently by utilizing special symbols ∗ and +. Set of all strings over an alphabet
Σ is Σ∗. Set of all non empty strings over the alphabet Σ is represented by Σ+. Based on the
previous definitions it is true that Σ∗ = Σ+ ∪ {ε}.

3.4.3 Language
Formal language L (a set of strings) over an alphabet Σ is defined as L ⊆ Σ∗. [8] For instance,
the language of english words without special characters is a formal language over an alphabet
{a, b, c . . . , z}. Another example of a formal language is a set of binary numbers that end with
zero. Both languages are infinite because one can put together any number of strings. Although
the first language would not be correct according to English grammar, it would still be considered
a formal language. In order to better work with languages there are few operations:

concatenation - L = L1 ·L2 = {xy : x ∈ L1, y ∈ L2} (L is defined over alphabet Σ = Σ1∪Σ2).

n-th power of language L : Ln = L · Ln−1, L
0 = {ε}.

Kleene star L∗ of language L : L∗ =
∪∞

n=0 L
n.

Grammar 7

Kleene plus L+ of language L : L+ = L · L∗.

[8, p. 3]

3.5 Grammar
Grammar generates a language. It is defined as quadruple G = (N,Σ, P, S), where

N is a finite set of non-terminal symbols. “They are integral to the grammar and allow
expressing the internal structure of generated sentences“ [9].

Σ is a finite set of terminal symbols . (N ∩ Σ = ∅, denoted also by T).

P is a set of production rules. It is a finite subset of (N ∪ Σ)∗ · N · (N ∪ Σ)∗ × (N ∪ Σ)∗,
(element (α, β) of P is written as α → β and called a rule). The dot symbol · expresses
string concatenation.

S ∈ N is the start symbol of the grammar.

[8, p. 12]
An element of generated language is called a sentence. Following grammar G is an example

of a grammar that generates language with sentences abba and aca.

G = ({S,B,C}, {a, b, c}, P, S)
P = {
S → aBa,

S → aCa,

B → bb,

C → c

}

In order to define what generating language means, there is a couple of additional definitions
that need to be clarified.

The first is derivation in one step. “G = ({S,B,C}, {a, b, c}, P, S), x, y ∈ (N ∪ Σ)∗ We say
that x derives y in one step (x ⇒ y) if there exists (α, β) ∈ P and γ, δ ∈ (N ∪ Σ)∗ such that
x = γαδ, y = γβδ (i.e., γαδ ⇒ γβδ).“[8, p. 15] In other words, derivation in one step is an
application of a production rule. If the rule is applied to an x ∈ (N ∪ Σ)∗ then an appearance
of the left-hand side of the rule in x will be replaced by the rule’s right-hand side. Example of
derivation in one step:

G = ({S,B}, {a, b},{S → baBa,B → abBa,B → ε}, S)
baBa⇒ baabBaa (baBa derives baabBaa in one step)

Derivation in one step is helpful, but the notation would be pretty extensive if it would require
to derive only one step at a time. The second type of derivation extends the first to do multiple
steps. “α ⇒k β if there exists a sequence α1, α2, . . . , αk for k ≥ 0 of k + 1 strings such that
α = α0, αi−1 ⇒ αi for 1 ≥ i ≥ k, and αk = β. This sequence is called derivation of string β
from string α that has lenght k in grammar G. “[8, p. 15] We can say the string α derives β in
k steps.

Similar to strings symbols ∗ and + can be utilized to capture any number of lenghts. It
is called transitive and reflexive closure. The + symbol, transitive closure, is used for k ≥ 1.
α ⇒+ β if α ⇒i β for some i ≥ 1. “We read ‘⇒+’ as ’derives in nonzero number of steps’“.
[8, p. 16] The ∗ symbol, transitive and reflexive closure, is used for k ≥ 0. α ⇒∗ β if α ⇒i β

8 Definitions

for some i ≥ 0. “We read ‘⇒∗’ as ’derives in any number of steps’“. [8, p. 16] Using the same
grammar G from previous example the following is true:

S ⇒∗baabBaa

(S derives baabBaa in any number of steps)

Last crucial step is defining sentential form. “String α ∈ (N ∪Σ)∗ is called a sentential form
if S ⇒∗ α“[8, p. 17]. In words, a sentential form is a sequence of the terminal and non-terminal
symbols that can be derived in any number of steps from the start symbol. A particular case of a
sentential form consisting only of terminal symbols is called a sentence generated by a grammar G.

The set of all sentences generated by the grammar G is called the language generated by the
grammar G. Formally: L(G) = {ω : ω ∈ Σ∗, ∃S ⇒∗ ω} is the language generated by grammar
G = (N,Σ, P, S). [8, p. 18]

3.5.1 Grammar clasification
Grammars are classified into four main types.

0. Unrestricted (Type 0) - It satisfies general grammar definition

1. Context-sensitive (Type 1) - Every rule from P is of the form γAδ → γαδ, where γ, δ ∈
(N ∪ Σ)∗, α ∈ (N ∪ Σ)+, A ∈ N , or the form S → ε in case that S is not present in the
right-hand side of any rule

2. Context-free (type 2) - Every rule is of the form A→ α, where A ∈ N,α ∈ (N ∪ Σ)∗

3. Regular (type 3) - Every rule is of the form A → aB or A → a, where A,B ∈ N, a ∈ Σ, or
the form S → ε in case that S is not present in the right-hand side of any rule

[8, p. 5] Languages generated by grammars are classified accordingly. We say language is:

0. Recursively enumerable (Type 0) - if exists unrestricted grammar which generates it. This
class of languages is accepted by the Turing machine

1. Context-sensitive (Type 1) - if ∃ context-sensitive grammar which generates it. This class of
languages is accepted by linear bounded turing machine.

2. Context-free (type 2) - If ∃ context-free grammar which generates it. This class of languages
is accepted by nondeterministic pushdown automaton.

3. Regular (type 3) - if ∃ regular grammar which generates it. This class of languages is accepted
by finite automaton.

[8, p. 6] Formal languages follow hierarchy shown in figure 3.2.

3.5.2 Regular grammar
Regular grammars are the simplest subset of formal grammars. For each regular grammar exists
a finite automaton accepting the language generated by the grammar. [8, p. 6] Actually, regular
grammars and finite automatons are equivalent because, for each finite automaton, there also
is a regular grammar generating the same language. Nevertheless, there is one more equivalent
formalism. It is called regular expression, and it offers another method of, this time, describing
language.

Grammar 9

Regular

Context-free

Context-sensitive

Recursively enumerable

Formal

Type 3

Type 2

Type 1

Type 0

Figure 3.2 Hierarchy of formal languages [8]

3.5.3 Regular expression
Regular expression V over and alphabet Σ is defined as follows:

1. ∅, ε, a are regular expressoins for all a ∈ Σ.

2. If x, y are regular expressions over Σ, then:

(x+ y) (union, alternation),

(x · y) (concatenation), and

(x)∗ (Kleene star)

are regular expressions

Value h(x) of regular expression x is defined as follows:

1. h(∅) = ∅, h(ε)− {ε}, h(a)− {a}, a ∈ Σ

2. h(x+ y) = h(x) ∪ h(y)

3. h(x · y) = h(x) · h(y)

4. h(x∗) = (h(x))∗ , were x, y are regular expressions

[10]
Regular expressions are useful in text processing because they are a quick and short way

of defining language. Regular expression generating language of binary numbers ending with
zero looks like this: (0 + 1)∗0. In this example, it even generates sequences that start with
zeroes. Regular expression has to be modified to limit the language to sequences with one at the
beginning, like so: 1(0 + 1)∗0.

10 Definitions

3.5.4 Context-free grammar
Context-free grammars generate most of the syntactic structures of programming languages.
Another benefit of context-free grammars is that there are known efficient algorithms for the
analysis of sentences of context-free languages. [11] For both of those reasons, they are very
practical. Each context-free language is accepted by a non-deterministic pushdown automaton.
The automaton can be found by methods this work will focus on in chapter 4.

3.6 Parse
Parse of a sentential form α in a grammar G is the sequence of rule numbers used in derivation
S ⇒∗ α. Where G = (N,Σ, P, S) and rules of set P are numbered from 1 to |P |. [12, p. 5
translated by me] In other words it is a sequence of applied rules from the start symbol during
the generation of a sentential form and ultimately the sentence. When rules of the grammar G
are numbered starting from one:

G = ({S,B,C}, {a, b, c}, P, S)
P = {
1 |S → aBa,

2 |S → aCa,

3 |B → bb,

4 |C → c

}

then the parse for each sentential form of grammar G can be seen in table 3.1. One sentential
form can have multiple parses. This is not visible in the grammar G. However next grammar
G1, even it is simpler than the previous grammar G, has multiple parses for the sentence ab.

G1 = ({S,A,B}, {a, b}, P, S)
P = {
1 |S → AB,

2 |A→ a,

3 |B → b

}

The sentence ab has two parses: (1,2,3) and (1,3,2). However, the sentence has only one left
parse and one right parse.

3.6.1 Left parse
Left parse is a parse, with only the leftmost non-terminal symbol’s rewrite rule used in each
derivation step. It means the left parse of the sentence ab from the last example of the previous
section 3.6 is (1,2,3). Derivations were done in the following order: S ⇒ AB ⇒ aB ⇒ ab. A had
to be rewritten before B because it is more to the left.

3.6.2 Right parse
Right parse is an alternative to a left parse but reversed. Derivation uses only the rightmost
non-terminal symbol for a rewrite. The result is that ab also has only one right parse. It is
(1,3,2) S ⇒ AB ⇒ Ab ⇒ ab.

Parse 11

Sentential form Parse
aBa 1
aCa 2
abba 1,3
aca 2,4

Table 3.1 Derivations of grammar

226 CHAPTER 5 Intermediate Representations

analysis, profile data from previous executions, and maps to let the debugger
understand the code and its data. All of these facts should be expressed in a
way that makes clear their relationship to specific points in the ir.

5.2 GRAPHICAL IRS
Many compilers use irs that represent the underlying code as a graph. While
all the graphical irs consist of nodes and edges, they differ in their level of
abstraction, in the relationship between the graph and the underlying code,
and in the structure of the graph.

5.2.1 Syntax-Related Trees
The parse trees shown in Chapter 3 are graphs that represent the source-
code form of the program. Parse trees are one specific form of treelike irs.
In most treelike irs, the structure of the tree corresponds to the syntax of the
source code.

Parse Trees

As we saw in Section 3.2.2, the parse tree is a graphical representa-
tion for the derivation, or parse, that corresponds to the input program.
Figure 5.1 shows the classic expression grammar alongside a parse tree for
a × 2 + a × 2 × b. The parse tree is large relative to the source text because it
represents the complete derivation, with a node for each grammar symbol in
the derivation. Since the compiler must allocate memory for each node and
each edge, and it must traverse all those nodes and edges during compilation,
it is worth considering ways to shrink this parse tree.

Goal → Expr

Expr → Expr + Term
| Expr - Term
| Term

Term → Term × Factor
| Term ÷ Factor
| Factor

Factor → (Expr)
| num
| name

(a) Classic Expression Grammar

Expr

Expr

Term

Goal

Term

Factor

Factor

<num,2>

<name,a>

+ Term

Factor

<name,b>Term

Factor

<name,a>

Term

Factor

<num,2>

×

×

×

(b) Parse Tree for a×2+a×2×b

n FIGURE 5.1 Parse Tree for a×2+a×2×b Using the Classic Expression Grammar.
Figure 3.3 Example of a parse tree [13, p. 226 figure 5.1]

3.6.3 Parse tree
A parse tree or derivation tree shows the structure of a sentence in a context-sensitive grammar. It
is a graphic representation of a parse. The root of the tree is the start symbol. Inner vertexes are
non-terminal symbols, and leaves are terminal symbols or ε. Each rule application is represented
as a parent vertex for the left-hand side of the rule. Its children are on the right-hand side of
the rule. This means that if the rule S → aBa is applied, then the resulting tree would have S
as a parent with children a, B, a. Like so:

S

a B a

If the B has a rule B → bc, the tree is going to look like this.

S

a B

b c

a

This is the parse tree of sentence abca. This is an elementary example. More complex parse tree
that could be actually used in practice is in figure 3.3.

12 Definitions

S0 S1

Start 0

1
1 0

Figure 3.4 Finite automaton accepting binary numbers ending with 0 [15]

3.7 Deterministic finite automaton
Deterministic finite automaton (DFA) is a structure M = (Q,Σ, δ, q0, F), where

Q is a finite set; elements of Q are called states;

Σ is a finite set, the input alphabet;

δ : Q × Σ → Q is the transition function (recall that Q × Σ is the set of ordered pairs
((q, a)|q ∈ Q and a ∈ Σ). Intuitively, δ is a function that tells which state to move to in
response to an input: if M is in state q and sees input a, it moves to state δ(q, a).

q0 ∈ Q is the start state;

F is a subset of Q; elements of F are called accept or final states.

[14, p. 15]
A finite automaton is a simple computation model with a reading head, states, and memory

that stores the current state. Figure 3.4 is a finite automaton accepting binary numbers ending
with 0. Automaton is defined as:

M = ({S0, S1}, {0, 1}, δ, S0, {S1})
δ :

δ(S0, 0) = S1

δ(S0, 1) = S0

δ(S1, 0) = S1

δ(S1, 1) = S0

To formally define what ”to accept a language” means, the work has to define configuration
of a finite automaton and a move.

Configuration of finite automaton M is a pair (q, w) ∈ (Q,Σ∗), where the finite automaton
is M = (Q,Σ, δ, q0, F). It tells what state the automaton is in and what it has on its input.
The configuration (q0, w) is called the initial configuration of an automaton M. Configuration
(q, ε) is called accepting configuration of automaton M iff q ∈ Q. [16, p. 1] The name accepting
configuration is already telling, that it will have something to do with accepting. Accepting
configuration is the configuration where the current state is one of the final states and nothing
is on the input. Invalid configuration (S, αγ), S ∈ Q,α ∈ Σ, γ ∈ Σ∗ is a configuration for which
δ(S, α) is not defined.

Now, when the configuration is succesfully defined a move can be defined as well. “ ⊢M is
relation over Q×Σ∗ (i.e,. subset of (Q×Σ∗)× (Q×Σ∗)) such that (q, w) ⊢M (p, w′) iff w = aw′

and δ(q, a) = p for some a ∈ Σ, w ∈ Σ∗. An element of relation ⊢M is called a move in a
automaton M . “. [16, p. 1] In other words, a move is a possible transition between states for
a given input. The move can be extended to express any number of back-to-back moves. It is

Pushdown automaton 13

denoted by ⊢∗M and it is called transitive and reflexive closure of relation ⊢M . With this closure,
string acceptance can be comfortably defined.

“String w ∈ Σ∗ is accepted by a deterministic finite automaton M = (Q,Σ, δ, q0, F) if
∃(q0, w) ⊢∗M (q, ε) for some q ∈ F“[16, p. 2]. The string is accepted if a finite number of
steps from the initial configuration to some accepting configuration exists. Language L accepted
by the automaton M is set of all strings over an alphabet Σ which are accepted by the automaton
M . Formally written as L(M) = {w : w ∈ Σ∗, ∃q ∈ F : (q0, w) ⊢∗M (q, ε)}. [16, p. 2] String is not
accepted when the automaton gets into invalid configuration.

Now when all is clear, the automaton from figure 3.4 can be revisited. The following paragraph
will illustrate automaton execution on string 1000101: At the start, the automaton will be in
initial configuration (S0, 1000101). The current state is S0, and the first symbol of input is 1.
The next state will be the result of δ(S0, 1). δ(S0, 1) = S0 so the automaton will execute move
(S0, 1000101) ⊢M (S0, 000101). The current state is still the same as the previous one, but the
reading head moved by one position to the right. The automaton will repeat these steps while
there is something to read. (S0, 000101) ⊢ (S1, 00101) ⊢ (S1, 0101) ⊢ (S1, 101) ⊢ (S0, 01) ⊢
(S1, 1) ⊢ (S0, ε). The automaton is now at the end of the input. The automaton will accept the
input sentence if the current state is an element of F . However, in this case, S0 is not in the set
of final states. The automaton will reject the string 1000101, and so it does not belong to the
language accepted by the automaton.

3.8 Pushdown automaton
Non-deterministic pushdown automaton is tuple with seven elements. R = (Q,Σ, G, δ, q0, Z0, F)
where

Q is a finite non-empty set of states.

Σ is a finite input alphabet.

G is a finite non-empty alphabet of PDS symbols.

δ is transition mapping from Q× (Σ ∪ {ϵ} ×G∗) to a set of finite subsets of a set Q×G∗.

q0 ∈ Q is the start state.

Z0 ∈ G is the start symbol in PDS.

F ⊆ Q is a set of final states. [17, p. 156 translated byme]

PDA accepts input sentence if the whole input is read and one of the following is true:

PDA is in a final state (If it accepts by the transition to the final state).

PDA is in an arbitrary state, and its PDS is empty (If it accepts by an empty PDS).

[17, p. 159 translated by me]
A pushdown automaton is an extension of the finite automaton with additional memory. In

addition to the memory that stores the current state, it has an infinite push-down store (PDS).
However, the information can be stored and retrieved only from the top of PDS. The PDA can
accept more complex languages than a finite automaton. Example of pushdown automaton is in
figure 3.5. The notation differs a little from the finite automaton. It has form α|β → γ where
α ∈ Σ, β, γ ∈ (Σ∪ {ε} ×G∗). The α is the required input. β is the required top of the PDS and
γ is what will be pushed to PDS instead of β. The automaton moves to the next state if the
input symbol and top of the PDS correspond to the expected α and β. Then the top of PDS
β is replaced by the γ. Automaton in the figure accepts by transition to the final state and it

14 Definitions

S0
Start

b|ε→ b
a|ε→ a

S1

a|a→ ε
b|b→ ε

ε|ε→ ε
S2

ε|#→ ε

Figure 3.5 Example of pushdown automaton accepting palindromes of even length [9]

accepts palindromes of even length. To look at the automaton execution, configuration of PDA
has to be defined first.

Configuration of PDA is tuple of three items (q, w, s) where q ∈ Q,w ∈ Σ∗, s ∈ G∗. q is the
current state, w is unread input, s is PDS content with the top on the left. Initial configuration
is (q0, w, Z0) w ∈ Σ∗.

δ(q, a, α) = {(p1, γ1), (p2, γ2), . . . , (pm, γm)} : PDA in state q reads symbol a, moves into state
pi, i ∈ {1, 2, . . . ,m}, and string α on top of the PDS is replaced by string γi.

δ(q, ε, α) = {(p1, γ1), (p2, γ2), . . . , (pm, γm)}: transition into a new state and change of PDS
content without reading of the input symbol. [18, p. 2]

The language defined (accepted) by PDA R = (Q,Σ, G, δ, q0, Z0, F)

1. by transition into a final state L(R) = {w : w ∈ Σ∗, ∃γ ∈ G∗, ∃q ∈ F, (q0, w, Z0) ⊢∗ (q, ε, γ)}

2. by empty pushdown store Lε(R) = {w : w ∈ Σ∗, ∃q ∈ Q, (q0, w, Z0) ⊢∗ (q, ε, ε)}

With the use of a configuration, the execution of the PDA can be properly represented.
Definition of the PDA from the figure 3.5:

M = ({S0, S1, S2}, {a, b}, {a, b,#}, δ, S0,#, {S2})
δ :

δ(S0, (a, ε)) = (S0, a)

δ(S0, (b, ε)) = (S0, b)

δ(S0, (ε, ε)) = (S0, ε)

δ(S1, (a, a)) = (S0, ε)

δ(S1, (b, b)) = (S0, ε)

δ(S1, (ε,#)) = (S2, ε)

For this PDA and input string abba the execution will look as follows. Initial configuration is
(S0, abba,#). Because current state is S0, first symbol of input is a and the top of PDS is #,
the next configuration will be defined by δ(S0, a, ε). δ(S0, a, ε) = (S0, a) determines that next
configuration will be (S0, bba, a#). This process repeats until the automaton has input to read:
(S0, bba, a#) ⊢ (S0, ba, ba#) ⊢ (S1, ba, ba#) ⊢ (S1, a, a#) ⊢ (S1, ε,#) ⊢ (S2, ε, ε). The PDA M
accepts by a transition to a final state. State S2 is final so M accepts the string abba. During
the PDA’s run, there were moments when the next step was not clear because there were two
ways how the automaton could move. This is because PDA M is not deterministic. Example
of this is configuration (S0, bba, a#). The automaton can move to (S1, bba, a#) the same way it
can move to (S0, ba, ba#). At this point of the work, it is not important, but in the next chapter
4, non-determinism will be a problem the work has to deal with.

Chapter 4

Parsing

Parsing, also known as syntactic analysis, is the process of analyzing and understanding the
internal structure of sentences of a language. Many Manta scanners use parsers to create a
language’s abstract syntax tree (AST). AST is a data structure describing the internal structure
of a sentence. An example of an arithmetic expression AST is in the figure. 4.1. However,
building an AST is the last step of parsing. Although parsing could be done in one big step,
it is usually divided into multiple stages, where each stage focuses on a different aspect. Stages
are chained together, so the output from one stage is input to the other. The stages are lexical
analysis, syntactic analysis, and semantic analysis. High level diagram is in figure 4.2

4.1 Lexical analysis

Lexical analysis or tokenization is the first step of language processing. It processes input text
into a stream of tokens. Token represents part of input with logical meaning. In example 4.3
there is a C++ code and its resulting tokens. The code declares and initializes a variable to
8 and if the variable is greater than ten, it shows Condition is true. If it is not greater than
ten, it shows Condition is false. In lexical analysis, it does not matter what the code represents.
The only important thing is recognizing sequences of tokens. It is usually accomplished with a
finite automaton and described with regular expressions. Tokens are then passed to the syntactic
analyzer.

5.2 Graphical IRs 227

Minor transformations on the grammar, as described in Section 3.6.1,
can eliminate some of the steps in the derivation and their corresponding
syntax-tree nodes. A more effective technique is to abstract away those
nodes that serve no real purpose in the rest of the compiler. This approach
leads to a simplified version of the parse tree, called an abstract syntax tree.

Parse trees are used primarily in discussions of parsing, and in attribute-
grammar systems, where they are the primary ir. In most other applications
in which a source-level tree is needed, compiler writers tend to use one of
the more concise alternatives, described in the remainder of this subsection.

Abstract Syntax Trees

The abstract syntax tree (ast) retains the essential structure of the parse tree Abstract syntax tree
An AST is a contraction of the parse tree that omits
most nodes for nonterminal symbols.

but eliminates the extraneous nodes. The precedence and meaning of the
expression remain, but extraneous nodes have disappeared. Here is the ast
for a × 2 + a × 2 × b:

b

×

a

×

2

a 2

×

+

The ast is a near-source-level representation. Because of its rough cor-
respondence to a parse tree, the parser can built an ast directly (see
Section 4.4.2).

asts have been used in many practical compiler systems. Source-to-source
systems, including syntax-directed editors and automatic parallelization
tools, often use an ast from which source code can easily be regener-
ated. The S-expressions found in Lisp and Scheme implementations are,
essentially, asts.

Even when the ast is used as a near-source-level representation, represen-
pair

c1 c2
AST Designed for Editing

AST for Compiling

constant

(c1,c2)

tation choices affect usability. For example, the ast in theRn Programming
Environment used the subtree shown in the margin to represent a complex

constant in fortran, written (c1,c2). This choice worked well for the
syntax-directed editor, in which the programmer was able to change c1 and
c2 independently; the pair node corresponded to the parentheses and the
comma.

This pair format, however, proved problematic for the compiler. Each
part of the compiler that dealt with constants needed special-case code
for complex constants. All other constants were represented with a single

Figure 4.1 AST of arithmetic expression a× 2 + a× 2× b

15

16 Parsing

Lexical Analyzer

Syntactic Analyzer

Semantic Analyzer

token stream

AST

AST

character stream

Symbol Table

Figure 4.2 Parsing diagram

1 int id_name = 8;
2 if(id_name > 10)
3 print("Condition is true");
4 else
5 print("Condition is false");

Output tokens:

kw_int
identifier
equals
number
semicolon
kw_if
left_parenthesis
identifier
greater
number
right_parenthesis
identifier
left_parenthesis
string
right_parenthesis
semicolon
kw_else
identifier
left_parenthesis
string
right_parenthesis
semicolon

Figure 4.3 C++ tokenization

Syntactic analyzer 17
218 CHAPTER 4. SYNTAX ANALYSIS

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

)
lm

F

id

T 0

�

id

F T 0

E0

E

T

F

id

T

� F T 0

E0

T 0

id

F

E

T

F

id

T 0

�

E0

+ T

id

id

T 0

�

E0

+ T

F T 0

� F

id

T 0

�

E0

�

FT 0

�

E0

+ T

F

id

T 0

� F

id

T 0

�

E0

E

T

�

T

F

id

T 0

�

E0

E

T

F

id

T 0

�

E0

+ T

EE E

T E0

E

T

F T 0

E0

E

T

F

id

T 0

E0

E0

E0

+ T

F

id

T 0

E0

E

T

F

id

T 0

�

E0

+

�

E

T

F

id

T 0

E0

+ T

F T 0

E0

E

T

F

id

T 0

Figure 4.12: Top-down parse for id+ id � id

For example, consider the top-down parse in Fig. 4.12, which constructs
a tree with two nodes labeled E0. At the �rst E0 node (in preorder), the
production E0 ! +TE0 is chosen; at the second E0 node, the production E0 ! �
is chosen. A predictive parser can choose between E0-productions by looking
at the next input symbol.

The class of grammars for which we can construct predictive parsers looking
k symbols ahead in the input is sometimes called the LL(k) class. We discuss the
LL(1) class in Section 4.4.3, but introduce certain computations, called FIRST

and FOLLOW, in a preliminary Section 4.4.2. From the FIRST and FOLLOW

sets for a grammar, we shall construct \predictive parsing tables," which make
explicit the choice of production during top-down parsing. These sets are also
useful during bottom-up parsing, as we shall see.

In Section 4.4.4 we give a nonrecursive parsing algorithm that maintains
a stack explicitly, rather than implicitly via recursive calls. Finally, in Sec-
tion 4.4.5 we discuss error recovery during top-down parsing.

Figure 4.4 Example of building tree from top to bottom [19, p. 218 figure 4.12]

4.2 Syntactic analyzer
The syntactic analyzer, or the parser, uses tokens produced by the lexical analyzer to create a
tree-like intermediate representation that depicts the grammatical structure of the token stream.
[19, p. 8] Output of the parser is a parse, parse tree, or AST. Parsers can work in one of two
ways: Top-down or bottom-up. Both approaches are implemented with PDA.

4.2.1 Top-down
Top-down analysis (LL analysis) creates a parse tree of a sentence from top to bottom, as seen
in figure 4.4, which follows the left parse. For a given context-free grammar G = (N,Σ, P, S)
PDA R can be constructed, such that L(G) = Lε(R). Resulting PDA R is defined as like this:

R = (q,Σ, N ∪ Σ, δ, q, S, ∅)
δ :

1.δ(q, ε, A)← {(q, α) : (A→ α) ∈ P}, ∀A ∈ N, ▷(Expansion)
δ(q, a, a)← {(q, ε)}, ∀a ∈ Σ. ▷ (Comparison)

[18, p. 4] Because the PDA has only one state, it can be ommited from the PDA’s configuration.
The configuration (q, w, s) where w ∈ Σ∗, s ∈ (N ∪ Σ)∗ will become (w, s). And because we are
interested in getting a parse, the configuration can be extended to contain the desired parse like
so: (w, s,O) where O is a output parse with the most right rule being the most recently used.
From this point forward this work will use this type of configuration to describe parser top-down
parser.

18 Parsing

The LL analysis depending on the PDA uses two operations: comparison and expansion.
These two operations are enough to create a PDA that produces a left parse as its output.
Comparison is a deletion of the same terminal symbol from input and the top of PDS. It is
executed every time a terminal symbol is on the top of PDS. When the terminal symbol on the
PDS does not match the first symbol of input, input is not accepted by PDA. Let the (aβ, aα,
ε) be a configuration of a PDA where a ∈ T, β ∈ T ∗, α ∈ (T ∪ N)∗. The comparison will be
executed because of the terminal symbol on the top of the PDS. The new configuration will be
(β, α, ε).

The second operation, expansion, replaces a non-terminal symbol on top of the PDS with its
right-hand side of the rewrite rule. Expansion is executed every time a non-terminal symbol is
on the top of a PDS. Let the (a, Aα, γ) be configuration of a PDA, where a ∈ T ∗, A ∈ N α ∈
(T ∪N)∗, γ is sequence of rule numbers and n|A→ β ∈ P . Based on the top-down analysis, the
expansion will be executed, and the configuration will change to (a, βα). If the non-terminal on
the top of the PDS has multiple rewrite rules, the top-down analysis is not deterministic. The
same problem was encountered before in section 3.8.

Non-determinism in parsing is not desirable because the parser cannot be easily implemented
by an algorithm. That is why there are deterministic versions of top-down parsing called LL(k)
and LL(*) analysis.

4.2.2 LL(k) analysis
LL(k) analysis is the deterministic version of the top-down analysis. It is achieved by maintaining
a look-ahead to characters from input that follow the already processed part of the input. The
k in LL(k) stands for the number of look-ahead characters.

“To achieve deterministic LL(k) parsing, a parse table is constructed. The parse table contains
the information allowing the PDA“ to determine what rule should be used in the expansion. [9]
The parse table for grammar G = (N,Σ, P, S) is a mapping M : (N × (Σk ∪ {ε})) → n, where
the n is the rule number to use. The simplest is LL(1) parsing. It maintains only one look-ahead
symbol. Grammar G with following rules:

S → aBa

S → c

S → ε

B → bb

is ambiguous without LL(1) parsing because it has multiple rules with the same non-terminal
symbol S on the left-hand side. However, with LL(1) analysis, it is deterministic. Parse table is
in table 4.1. Based on the parse table, a parser can be executed on sentence abba. Process of the
parser execution is in table 4.2.

In the first step S is on the top of the PDS and a is the look-ahead character. S is non-
terminal. This means the parser will perform expansion. There are three rules with S on the
left-hand side. Parse table shows that when S is on the top of the PDS, and a is the look-ahead,
rule 1 should be used.

Parse table is constructed with the help of two functions, FIRST (x) and FOLLOW (A)
where x is any sentential form and A is non-terminal symbol. FIRST (x) returns set of terminal
symbols, including ε, that begin strings generated from x[19, p. 220]. FOLLOW (A) returns a set
of terminals that can appear immediately to the right of A in a sentential form that is generated
by the grammar. [19, p. 221]. FOLLOW of the start symbol always contains ε symbolizing the
end of input that follows it. Sets FIRST and FOLLOW calculated for the grammar G are in
the table 4.3. The table is built in the following way

For each rule, add its number to row with its non-terminal under each element of FIRST .

Syntactic analyzer 19

a b c ϵ
A 1 2 3
B 4

Table 4.1 LL(1) parse table

If FIRST of the rule contains ε. Add the number of a rule under each terminal symbol from
FOLLOW .

The table 4.1 has always only one rule number in each cell. That means the grammar is LL(1).
But there are grammars that are not LL(1). “Generally the grammar G = (N,T, P, S) is LL(1)
if for each pair of rules A→ α|β the following is true:

FIRST (α) ∩ FIRST (β) = ∅

if ε ∈ FIRST (α) then FOLLOW (A) ∩ FIRST (β) = ∅.“

[20, p. 16 translated by me]
Assume a grammar is constructed so that there is a rule A → α|β and FIRST (α) ∩

FIRST (β) ̸= ∅. The grammar is not LL(1). An example can be grammar M with rules:

S → aBa

S → a

B → bb

Its FIRST and FOLLOW with the parse table are in table 4.4. The FIRST (aBa) and
FIRST (a) both contain a. This is called the first-first conflict. The first-first conflict is not
the only type of conflict. Another type is first-follow conflict.

Assume a grammar with rule A→ α|β and ε ∈ FIRST (α) and FOLLOW (A)∩FIRST (β) ̸=
∅. The grammar is again not LL(1), because of the first-follow conflict. An example is grammar
F with rules:

S → aBa

S → ϵ

B → bb

B → Sa

its FIRST and FOLLOW together with parse table are in 4.5. The FIRST (S) contains ε
and a. FOLLOW (S) also contains a. This is first-follow conflict. Both conflict types have
implications.

Another restriction is that a grammar cannot contain left recursion in order to be LL(k)
because it automatically means there is a first-first conflict. Some techniques can remove conflicts.
However, they are not crucial for this work.

4.2.3 LL(*) analysis
LL(*) is similar to the LL(k), but “the key idea behind LL(*) parsers is to use regular expressions
rather than a fixed constant. The analysis constructs a deterministic finite automaton (DFA) for
each non-terminal in the grammar to distinguish between alternative productions. [21, p. 2] That
means the k is computed dynamically based on the result of a finite automaton. The final states
of the automaton dictate what rule should be used during the expansion. “The LL(*) algorithm
yields an exact DFA when the ’look-ahead language’ is regular (the look-ahead language is regular

20 Parsing

Step Input PDS Left parse
1 a b b a S
2 a b b a a B a 1
3 b b a B a 1
4 b b a b b a 1, 4
5 b a b a 1, 4
6 a a 1, 4
7 ϵ ϵ 1, 4

Table 4.2 LL(1) parser run

Rule(A→ α) FIRST (α) FIRST (A) FOLLOW (A)
1 S → aBa a a c ϵ ϵ
2 S → c c
3 S → ϵ ϵ
4 B → bb b b a

Table 4.3 First and follow

Rule(A→ α) FIRST (α) FIRST (A) FOLLOW (A)
1 S → aBa a a ϵ
2 S → a a
3 B → bb b b a

Parse table
a b ϵ

S 1, 2
B 3

Table 4.4 First-first conflict

Rule(A→ α) FIRST (α) FIRST (A) FOLLOW (A)
1 S → aBa a a ϵ ϵ a
2 S → ϵ ϵ
3 B → bb b b a a
4 B → Sa a

Parse table
a b ϵ

S 1, 2 2
B 4 3

Table 4.5 First-follow conflict

Bottom-up 21

s0

s1
ID

s2unsigned

s3=>3
int

s4=>2

=

s5=>4

ID
s6=>1EOF

ID
unsigned

int

Figure 1. LL(*) lookahead DFA for rule s. Notation
sn => i means “predict the ith alternative.”

s0 s1'-'

s2=>1ID

s3=>2
INT

ID

s4'-'

INT

{synpred1_T}?

{true}?

Figure 2. LL(*) parsing decision DFA for rule s2
using mixed k ≤ 3 lookahead and backtracking

programmer has requested this feature by adding syntactic
predicates. As a convenience, option backtrack=true auto-
matically inserts syntactic predicates into every production,
which we call “PEG mode” because it mimics the behavior
of PEG parsers. However, before resorting to backtracking,
ANTLR’s analysis algorithm builds a DFA that adds a few
extra states that allow it avoid backtracking for many input
cases. In the following rule s2, both alternatives can start
with an arbitrary number of - negation symbols; the second
alternative does so using recursive rule expr.

options {backtrack=true;} // auto-insert syntactic preds
s2 : ’-’* ID | expr ’;’ ;
expr : INT | ’-’ expr ;

Figure 2 shows the lookahead DFA that ANTLR constructs
for this input. This DFA can immediately choose the ap-
propriate alternative upon either input x or 1; by looking
at just the first symbol. Upon - symbols, the DFA matches
a few - before failing over to backtracking. The number of
times ANTLR unwinds the recursive rule before backtrack-
ing is controlled by an internal constant m, which we set to
1 for this example. Despite the possibility of backtracking,
the decision will not backtrack in practice unless the input
starts with “--”, an unlikely expression prefix.

3. Predicated Grammars
To describe LL(*) parsing precisely, we need to first formally
define the predicated grammars from which they are derived.
A predicated grammar G = (N,T, P, S,Π,M) has elements:

• N is the set of nonterminals (rule names)

• T is the set of terminals (tokens)

• P is the set of productions

• S ∈ N is the start symbol

• Π is a set of side-effect-free semantic predicates

• M is a set of actions (mutators)

A ∈ N Nonterminal
a ∈ T Terminal
X ∈ (N ∪ T) Grammar symbol
α, β, δ ∈ X∗ Sequence of grammar symbols
u, x, y, w ∈ T ∗ Sequence of terminals
wr ∈ T ∗ Remaining input terminals
ε Empty string
π ∈ Π Predicate in host language
µ ∈M Action in host language
λ ∈ (N ∪Π ∪M) Reduction label
~λ = λ1..λn Sequence of reduction labels
Production Rules:
A→ αi ith context-free production of A
A→ (A′i)=> αi ith production predicated on syntax A′i
A→ {πi}? αi ith production predicated on semantics
A→ {µi} ith production with mutator

Figure 3. Predicated Grammar Notation

Predicated grammars are written using the notation
shown in Figure 3. Productions are numbered to express
precedence as a means to resolve ambiguities. The first pro-
duction form represents a standard context-free grammar
rule. The second denotes a production gated by a syntactic
predicate: symbol A expands to αi only if the current input
also matches the syntax described by A′i. Syntactic pred-
icates enable arbitrary, programmer-specified, context-free
lookahead. The third form denotes a production gated by
a semantic predicate: symbol A expands to αi only if the
predicate πi holds for the state constructed so far. The final
form denotes an action: applying such a rule updates the
state according to mutator µi.

The derivation rules in Figure 4 define the meaning of
a predicated grammar. To support semantic predicates and
mutators, the rules reference state S, which abstracts user
state during parsing. To support syntactic predicates, the
rules reference wr, which denotes the input remaining to be

matched. The judgment form (S, α)
λ⇒ (S′, β), may be read:

“In machine state S, grammar sequence α reduces in one step
to modified state S′ and grammar sequence β while emitting

trace λ.” The judgment (S, α)
~λ

==⇒∗(S′, β) denotes repeated
applications of the one-step reduction rule, accumulating
all actions in the process. We omit λ when it is irrelevant
to the discussion. These reduction rules specify a leftmost
derivation. A production with a semantic predicate πi can
fire only if πi is true of the current state S. A production with
syntactic predicate A′i can fire only if the string derived from
A′i in the current state is a prefix of the remaining input,
written w � wr. Actions that occur during the attempt
to parse A′i are executed speculatively. They are undone
whether or not A′i matches. Finally, an action production
uses the specified mutator µi to update the state.

Formally, the language generated by grammar sequence
α is L(S, α) = {w | (S, α) ⇒∗ (S′, w)} and the language of
grammar G is L(G) = {w | (ε, S) ⇒∗ (S, w)}. Theoretically,
the language class of L(G) is recursively enumerable because
each mutator could be a Turing machine. In practice, gram-
mar writers do not use this generality, and so we consider
the language class to be the context-sensitive languages in-
stead. The class is context-sensitive rather than context-free
because predicates can check both the left and right context.

This formalism has various syntactic restrictions not
present in actual ANTLR input, for example, forcing predi-
cates to the left-edge of rules and forcing mutators into their
own rules. We can make these restrictions without loss of

Figure 4.5 LL(*) finite automaton [21, p. 3]

unless the algorithms encounters recursion in the grammar).“[22] When the DFA construction
algorithm encounters recursive rule invocations in the grammar, it approximates the recursion
with cycles in the DFA. Nevertheless the recursion still cannot be a left recursion. [22] An
example can be following grammar that is not LL(k) and contains a recursive rule:

S → ID

S → ID = A

S → U int ID

S → U ID ID

U → unsigned U

U → ε

The finite automaton which gets the correct k is in figure 4.5. Based on the input sentence, the
finite automaton can find the correct k needed for the sentence. This would not be possible if
the k was fixed. Because if the k was fixed substring unsigned could repeat k+ 1 times, and the
parsing would result in an error.

4.3 Bottom-up
Bottom-up parsing (LR parsing) is the alternative to Top-Down parsing. It constructs the parse
tree from bottom to top. Example of such construction is in figure 4.6. Its output is the
reversed right parse of a sentence. Similar to top-down analysis for a given context-free grammar
G = (N,Σ, P, S) PDA R can be constructed, such that L(G) = L(R). The following operations
determine it :

R = ({q, r},Σ, N ∪ Σ ∪ {#}, δ, q,#, {r})
δ :

δ(q, a, ε)← {(q, a)}, ∀a, a ∈ Σ, ▷(shift)
δ(q, ε, α)← {(q, A) : (A→ α) ∈ P}, ▷(reduce)
δ(q, ε,#S)← {(r, ε)}. (accept).

Oposed to the previous definition of PDA’s configuration, the bottom-up PDA has the top of the
PDS always on the right. [18] Similar to top-down parsing configuration, the state is always
known, because only one state is used during execution and one state is used when the string
is accepted. So again, the configuration can be simplified to ommit state. Output can be also

22 Parsing
234 CHAPTER 4. SYNTAX ANALYSIS

id

F�

id

T

F

Tid

�

E

T

T

F

id

F

id

id

id � id F � id T

F

id

� id T

F

id

� F

Figure 4.25: A bottom-up parse for id * id

a bottom-up parse of the token stream id � id, with respect to the expression
grammar (4.1).

This section introduces a general style of bottom-up parsing known as shift-
reduce parsing. The largest class of grammars for which shift-reduce parsers can
be built, the LR grammars, will be discussed in Sections 4.6 and 4.7. Although
it is too much work to build an LR parser by hand, tools called automatic parser
generators make it easy to construct e�cient LR parsers from suitable gram-
mars. The concepts in this section are helpful for writing suitable grammars
to make e�ective use of an LR parser generator. Algorithms for implementing
parser generators appear in Section 4.7.

4.5.1 Reductions

We can think of bottom-up parsing as the process of \reducing" a string w to
the start symbol of the grammar. At each reduction step, a speci�c substring
matching the body of a production is replaced by the nonterminal at the head
of that production.

The key decisions during bottom-up parsing are about when to reduce and
about what production to apply, as the parse proceeds.

Example 4.37 : The snapshots in Fig. 4.25 illustrate a sequence of reductions;
the grammar is the expression grammar (4.1). The reductions will be discussed
in terms of the sequence of strings

id � id; F � id; T � id; T � F; T; E

The strings in this sequence are formed from the roots of all the subtrees in the
snapshots. The sequence starts with the input string id�id. The �rst reduction
produces F � id by reducing the leftmost id to F , using the production F ! id.
The second reduction produces T � id by reducing F to T .

Now, we have a choice between reducing the string T , which is the body
of E ! T , and the string consisting of the second id, which is the body of
F ! id. Rather than reduce T to E, the second id is reduced to F , resulting
in the string T � F . This string then reduces to T . The parse completes with
the reduction of T to the start symbol E. 2

Figure 4.6 Construction of a tree from bottom to top [19, p. 243 figure 4.25]

added to contain the right-parse. From the configuration of format (S, a, α) where S ∈ {q, r}, a ∈
Σ∗, α ∈ N ∪Σ∪ {#} is (a, α,O), where O is the output parse with the most right rule being the
most recent. The configuration will be used to better explain the three operations of bottom-up
analysis.

The shift is the movement of the symbol from the input to the top of the PDS. Let the
(aβ, α, γ) where β ∈ (Σ)∗, a ∈ Σ, α ∈ (N ∪Σ ∪ {#})∗, γ is sequence of rule numbers, be configu-
ration of PDA. After shift operation the configuration will be following: (β, αa, γ).

The next action, reduction, replaces the rule’s right-hand side on the top of PDS with its
left-hand side. Let the (β, αaba, γ) where β ∈ (T)∗, A ∈ N ∪ Σ ∪ {#}, α ∈ (N ∪ Σ ∪ {#})∗, γ is
sequence of rule numbers, be configuration of PDA. And let the grammar contain a rule A→ aba.
After reduction the configuration will be following: (β, αA, γn), where n is number of the rule
A→ aba.

The last action, accept, is an acceptance of the input string. Parse constructed until accep-
tance is the output of the parser. Note that the bottom-up parsing, as defined until this point,
is non-deterministic, and there are deterministic versions too. Those are, for instance, SLR(k),
LALR(k), and LR(k).

4.4 Semantic analysis
Until now, lexical and syntactic analyzers decided whether a sentence is correct grammatically.
A semantic analyzer expands on the checking of the setence in a way that it decides whether
the sentence makes logical sense in its domain. In the context of programming languages, the
semantic analyzer uses the syntax tree and the information in the symbol table to check the source
program for semantic consistency with the language definition. It also gathers type information
and saves it in either the syntax tree or the symbol table for subsequent use during intermediate-
code generation. [19, p. 8] Symbol table contains information about the entire program. [19,
p. 4-5] it can contain, for example, all variable names and their types.

4.5 compiler-compiler
Because designing lexical and syntactic analyzers is a repetitive process, and they are based
entirely on context-free grammars or regular expressions, and these can be transformed into
a finite automaton or PDA, there are tools that can generate lexical and syntactic analyzers
automatically from their description. They are called compiler-compilers. Most well known is
YACC, generating LALR parser, a variant of bottom-up parsing, Bison, which also utilizes LR
parsing, and ANTLR, which uses LL(*) parsing.

This work will further focus only on ANTLR because it is used to implement a proof of
concept scanner.

compiler-compiler 23

4.5.1 ANTLR
ANTLR is LL(*) parser generator. It generates both lexical and syntactic analyzer. It can be
paired with many languages, like Java or C++. The term host language will be used from now
on for them. Grammar is written in Extended Backus–Naur form (EBNF). It is very similar to
grammar used until now. Example of EBNF:

1 A : 'a' B | 'b';
2 B : 'aba';

is equivalent to:
1 A -> aB
2 A -> b
3 B -> aba

EBNF notation can be translated into the context-free grammar. EBNF rules are denoted by
comma and separated by semicolon. Valid right-hand side of an EBNF rule is defined as follows:

1. Terminal symbol (encapsulated inside commas) and non-terminal symbol (without commas)
are valid. Empty string is also valid.

2. If a and b are valid, then: ab, a|b, a*, a+, a?, (a), are all valid.

Let the function L(f) be defined as all left-hand sides of the set of context-free grammar rules
f . Then the resulting context-free rules C(r) of valid EBNF rule r are defined as follows:

C(A: 's';) = {A→ s}, where s is a terminal symbol.

C(A: s;) = {A→ s}, where s is non-terminal symbol.

C(A: ;) = {A→ ε}

C(A: ab;) = {A→ A′B,A′ → L(C(a)), B → L(C(b))} ∪ C(a) ∪ C(b)

C(A: a|b) = {A→ A′, A→ B,A′ → L(C(a)), B → L(C(b))} ∪C(a),∪C(b)

C(A: a*) = {A→ A′A,A→ ε,A′ → L(C(a))} ∪C(a)

C(A: a+) = {A→ A′A,A→ A′, A′ → L(C(a))} ∪C(a)

C(A: a?) = {A→ A′, A→ ε,A′ → L(C(a))} ∪C(a)

C(A: (a)) = {A→ A′, A′ → L(C(a))} ∪C(a)

Where a,b are valid right-hand sides of an EBNF rule and each set of generated rules C(r) has
different non-terminal symbols on the left-hand side,

∩
r∈R L(C(r)) = ∅, where R is set of EBNF

rules.
The translation can be done even the other way around because the EBNF is just another

way to express grammar. It is also used more frequently because it utilizes similar operations as
regular expressions: ∗,+, ?. However, unlike regular expressions, the operations can be applied
even to non-terminal symbols. The usability and popularity are probably reasons ANTLR chose
EBNF as its notation.

ANTLR uses LL(*) analysis. It works as previously described in section 4.2.3, with some
additional features. ANTRL does not use only basic grammar. It uses predicated grammar. A
predicated grammar G = (N, T, P, S, Π,M) has elements:

N is the set of non-terminals (rule names)

T is the set of terminals (tokens)

24 Parsing

P is the set of productions

S ∈ N is the start symbol

Π is a set of side-effect-free semantic predicates

M is a set of actions (mutators)

[21, p. 3].
It also uses additional notation:

A ∈ N : Non-terminal

α ∈ (N ∪ T)∗ : Sentential form

π ∈ Π : Predicate in host language

µ ∈M : Action in host language

Production rules:

A→ αi : ith context-free production of A

A→ (A′
i)⇒ αi : ith production predicated on syntax A′

i

A→ {πi}?αi : ith production predicated on semantics

A→ {µi} : ith production with mutator

[21, p. 3] Predicated grammar introduced new production rules. Every new rule can also be
added to EBNF notation.

A→ (A′
i)⇒ αi is rewritten into A : (A′

i) => αi.

A→ {πi}?αi is rewritten into A : {πi}?αi

A→ {µi} is rewritten into A : {µi}

[23]
The first production rule type is a classic production rule as previously defined in a grammar.

Rule A → (A′
i) ⇒ αi Introduces syntactic predicate. Syntactic predicates allow arbitrary look-

ahead. They are given as a grammar fragment that must match the following input in order to
parse αi. [21, p. 2] This means, that the rewrite rule αi will be used only if the parser will match
A′

i. Following grammar will differentiate between multiple-assignment statements and simple
lists such as:

1 (a,b) = (3,4);
2 (apple, orange);

The grammar could look like this
1 stat: list '=' list ';'
2 | list ';'
3 ;

where list is a rule, defined elsewhere, that recognizes an arbitrarily long list of expressions. The
grammar is not LL(k) for any finite k, unfortunately, due to the common left-factor. [24, p. 12]
When the parser sees input such as (apple, orange, … it does not know which rule to use. “Left-
factoring would resolve this problem, but would result in a less readable grammar.“[24, p. 12] This
can be dealt with by using syntactic predicate

compiler-compiler 25

1 stat: (list '=') => list '=' list ';'
2 | list ';'
3 ;

The predicate specifies that the first production is only valid if ”list ”= is consistent with
(matches) an arbitrarily large portion of the infinite look-ahead buffer. [24, p. 12]

Another new rule type is A→ {πi}?αi. This is the semantic predicate. Semantic predicates
allow the state constructed up to the point of a predicate to direct the parse. Semantic predicates
are given as arbitrary Boolean-valued code in the host language of the parser. Actions are written
in the host language of the parser and have access to the current state. [21, p. 2] Following
grammar shows how the semantic predicate function.

1 A : {isB(getCurrentToken())}? 'b'
2 | {isA(getCurrentToken())}? 'a'
3 ;

Although the example is pretty straightforward, it can illustrate how the semantic predicate
works. Parser will execute code isB(getCurrentToken()). If the code returns true, it will use
rewrite ’b’. But if the isB(getCurrentToken()) returns false, the next rule is checked. It again
starts with semantic predicate. If isA(getCurrentToken()) returns true, the ’a’ is used. Never-
theless, instead of one simple function call, user can define more functions and execute complex
logic, as they would in a host language.

Last rule type is A→ {µi}. This is similar to previous rule type, because it also utilizes host
language. Mutator µi is some arbitrary function written in host language. Example of mutator
is in following grammar.

1 A : a {println("matched a");}
2 | b {println("matched b");}
3 ;

The grammar writes to console matched a if the first rule is used and matched b if the second
rule is used.

Both semantic predicates and mutators have access to the parser state. That means they can
access previously parsed input, or it can access look-ahead.

The output of an ANTLR parser is AST. By default, each non-terminal creates an AST node.
The node has its right-hand side as its children. However, ANTLR3, which is the version this
work uses, offers the additional possibility to define AST directly in grammar. ANTRL3 extends
its grammar by several AST-making symbols it is the right arrow (->), caret symbol (^), and
exclamation mark (!). -> says, following will be the output, ^ stands for create AST node, and !
means do not include this in AST. Example of custom node creation:

1 A : 'a'
2 -> ^(A_NODE ^(CHILD_NODE 'a'))
3 ;

The grammar above will create an AST node called A_NODE with one child node called
CHILD_NODE. The CHILD_NODE contains one child ’a’.

The same way as semantic predicates can be used in rules, they can also be used here.
1 A : 'a'
2 -> {1+1==3}? ^(A_NODE 'child' 'a')
3 -> {1.equals(1)}? ^(A_NODE_WITHOUT_CHILDREN)
4 ;

This grammar will produce an AST node called A_NODE_WITHOUT_CHILDREN, and it
will not have children. Even other non-terminals can be used.

The following grammar will show how to use AST node generated in other non-terminals.

26 Parsing

Furthermore, how to distinguish between two same non-terminals. Let us have grammar.
1 A : 'a' B C
2 ;
3 B : 'b'
4 ;
5 C : 'c'

Add to it manual AST creation
1 A : 'a' B C
2 -> ^(A 'a' B C)
3 ;
4 B : 'b'
5 -> ^(B 'b')
6 ;
7 C : 'c'

Until now, everything was clear. But if the same terminal or non-terminal is used multiple times.
There is a problem.

1 A : 'a' B B C
2 -> ^(A 'a' B B C)
3 ;
4 B : 'b'
5 -> ^(B 'b')
6 ;
7 C : 'c'

Now the parser cannot tell which B it should use in AST creation on line 2. Labels deal with
this problem. Labels are set with equal sign (=) and they are accessed with dolar sign ($).

1 A : 'a' first_b=B second_b=B C
2 -> ^(A 'a' $first_b $second_b C)
3 ;
4 B : 'b'
5 -> ^(B 'b')
6 ;
7 C : 'c'

Chapter 5

Manta

Manta is a software project providing data lineage of complex data environments. At this point,
it supports over 40 technologies across Modeling, reporting, ETL, data analysis tools, databases,
and programming languages. Manta scans every part of the data environment and creates
connected end-to-end lineage across all environments.

Knowing the data lineage has many advantages. The organization that knows how data
is moving across their environment can track why certain decisions were made, or they can
better migrate to a different platform. Everybody can simply look at data lineage and see what
influenced the current data state. An example of Manta’s data flow visualization is in figure 5.1.

5.1 Ways of generating lineage
There are many ways how to generate data lineage. Every way has its positives and drawbacks.
Manta uses decoded lineage, which will be described later in this chapter. Its biggest problem
is that it needs to know every environment very well. That is part of the reason Manta has to
support so many technologies and cannot get any result from environments it does not know.

5.1.1 Manual
One way to create lineage is to do it manually. This approach usually starts by mapping and
documenting the knowledge in people’s heads. Talking to application owners, data stewards, data

Figure 5.1 Manta data lineage [25]

27

28 Manta

integration specialist gives adequate but often contradictory information about data movements in
the organization. [26] It is not efficient but it is simple. It can be enough for smaller companies
or a project, but the more company grows, the more data it produces, and the need for a better
lineage solution arises.

5.1.2 Data taging
Next, a more automated approach is data tagging. The whole idea is that each piece of data
that is being moved or transformed is tagged/labeled by a transformation engine which then
tracks the label all its way from start to the end. [26] Issue of this method is security. The
transformation engine needs to have access to data that is being moved. Another problem is
that transformation changes are not visible without being executed first, and changes outside
the transformation engine are not visible at all.

5.1.3 Data transformation tool
Previous methods were done outside the data transformation tool. However, why not have
everything in one package. Some solutions combine data transformations with data lineage.
ADF is such an example. Nevertheless, its lineage is minimal. This approach deals with security
problems. Because it already works with the data, it is unnecessary to protect it from itself. The
biggest problem here is that it does not see anything outside the tool.

5.1.4 Decoded lineage
Decoded lineage can solve the visibility and security problems. It does not look at data directly.
It decodes metadata. The scanner extracts information and analyzes how the data is flowing.
In order to analyze the whole data environment, the metadata scanner has to understand every
tool that the user is using. This way of analysis is the way Manta uses.

5.2 Data flow representation
Manta represents data flows as an oriented graph. Each appearance of data in some data pro-
cessing tool or a language is represented as a node. This naturally creates duplication of one
piece of data. That is correct, and it is the base for data lineage. The duplicates are tracked
across the graph and connected by an oriented edge. This edge is the data flow. For example,
an ETL tool that loads information about bank accounts. Filters account, so only accounts
with’ Smith’ surname are left. Then it filters once again, so only the account number is left,
and saves it to some database. This would result in a graph in 5.2. These data nodes are then
structured into tables, schemas, transformations, and more tool-specific constructions to create
logical groupings for the data flow graph to make sense. Some of these groups can be seen in
figure 5.1. These groups are also represented as nodes. The relation node belongs to group is also
an oriented graph. The node representing a group is connected to the node which belongs to the
group. The edge leads from the parent group to the child node. This means manta’s data flow
graph is two merged graphs. One graph dictates data groups, and the second graph represents
data flows. Typical node grouping is Transformation tool → conrete transformation → table →
column. The column is the individual piece of data. That is why the term column will be used
to reference individual information from this point forward.

Logical groups can be filtered and provide different levels of detail. One level of detail
represents each column on the lowest level, and another level represents only tools working
together, without the information about specific columns. The high-level lineage of example 5.2
is in 5.3.

Architecture 29

Filter by surname

first name

surname

bank account

...

Load

first name

surname

bank account

...

Store

bank account

Filter only bank account

bank account

Figure 5.2 Example of ETL data flow

Source DB ETL Destination DB

Figure 5.3 Example of high-level lineage

Each node can have attributes that store additional information about the data or the trans-
formation. A transformation that sorts the data would not impact the lineage because the data
is still the same. It is only delivered in a different order. This is nice example where node
Sort transformation would have sort by attribute. The attribute would store based on what the
transformation is sorting data.

5.2.1 Indirect data flows
Besides ordinary data flows, Manta also has the notion of indirect data flows. Indirect data flow
is not data flow per se. However, it indicates that some data is affecting others. Indirect data
can be seen in a filter. In the lineage from figure 5.2 is Filter by surname transformation which
filters data, so only data with some specific surname is left. The surname is affecting all data
from this point on. This is the indirect lineage. Edited figure 5.2 with added indirect flows is in
figure 5.4.

5.3 Architecture
The architecture of manta is split into multiple components. This work is concerting only to
Manta Flow CLI in figure 5.5. This part aims to extract metadata of tools and resources, analyze
them and create data lineage in a graph form. It is formed from two parts. It is an extractor
and analyzer.

This work will skip the extractor part because ADF resources will be extracted manually from
git. However, there are ways how to extract resources automatically via REST API. Section 6.4
will focus more on this topic. Nevertheless, the analyzer is responsible for all the analyses, so it
will not hinder any usefulness of the work. The chapter 7 will show the design of the analyzer.

Filter by surname

first name

surname

bank account

...

Load

first name

surname

bank account

...

Store

bank account

Filter only bank account

bank account

Indirect
lineage

Figure 5.4 Example of indirect data flow

30 Manta

ETL/Reporting
Repository

Content

Config files

Source
Database

DB Dictionary

DDL Scripts

Filesystem

SQL Scripts

Config Files

Manta Flow CLI

Analyzer

DB Dictionary

Input Files

Extractor
Config files

<<delegate>>

SQL Scripts <<delegate>>

Config Files <<delegate>>

<<delegate>>DDL Scripts

<<delegate>>DB Dictionary

Content <<delegate>>

Input Files File

DB Dictionary File

Graph/CSV

File

JDBC

JDBC

File

File

XML

Figure 5.5 Architecture of Manta Flow CLI

The covered part of the architecture looks more like in figure 5.6. The input files are extracted
manually from git and used directly from an input folder on the filesystem with installed manta.
Finally, DB Dictionary is entirely removed because it is crucial mainly for database analyzers.

Filesystem

SQL Scripts

Config Files

Input Files

Manta Flow CLI

<<delegate>>SQL Scripts

<<delegate>>Config Files

Analyzer

Input Files<<delegate>>Input Files

Graph/CSVFile

File

File

Figure 5.6 Covered part of Manta Flow CLI

Chapter 6

ADF

ADF is cloud ETL tool from Microsoft. It offers scale-out serverless data integration and data
transformation. [3] It has two versions, ADF version 1 and current version. This thesis works
only with the current version, so version 1 will be disregarded.

6.1 Resource
ADF works with a couple of different resources. Each resource serves some purpose. It is stand-
alone component and can be edited independently of other resources. However resources can use
and reference other resources, which is in fact very common. Not every resource can reference
every resource. Resources create hiearachy which can be seen in figure 6.1. Each edge which has
inline dataset note, means that dataset is created directly in the resource it uses it. Otherwise
it is only referenced.

Each resource can have parameters. Parameter can be used inside the resource instead of
constant value. When resource is referenced from another resource, the referencing resource has
to specify values for each parameter. Exception for this rule is data flow resource (DFR)1. When

Pipeline

Data flowDataset

Linked service

inline
dataset

inline
dataset

Figure 6.1 ADF resource hierarchy

1The resource is called data flow. Because it could be missinterpreted as data flow as in data lineage data
flow, the thesis will use DFR until now on.

31

32 ADF

DFR references dataset or linked service it cannot specify values for their parameters. These
values are specified when DFR is referenced by a pipeline.

6.1.1 Pipeline
A pipeline is a logical grouping of activities that together perform a task[27]. It serves as an
orchestration unit. The task could be to load information about customers, backup it into file,
analyze their spending and save the results into database. Step of the task is called activity
and it is the basic block of a pipeline. Each pipeline contains multiple activities, which together
complete desired task.

An activity takes zero or more input datasets and produce one or more output datasets. [27]
Dataset is resource representing some data. Example of dataset could be table or delimited file.
More about datasets will be in section 6.1.2. Input of copy activity is dataset which is coppied
into output. Output is temporary dataset which can be used from other activites by specifing
@activity“(<name of activity”>).output.

Activites are divided into three categories: Data movement, data transformation and data
control. Data movement category contains only copy activity. It serves to copy data from a
source to a sink (destination). Source and sink are specified as datasets or inline linked services.
Both will be explained in next section 6.1.3. Data transformation activities are Mapping data
flow, which references DFR and executes its logic, and Wrangling data flow which utilizes power
query to prepare data for future use. Power Query is the data connectivity and data preparation
technology that enables to import and reshape data from a wide range of Microsoft products.
[28] The last group, data control, contains activites such as foreach, execute pipeline, filter, set
variable and more.

6.1.2 Dataset
Dataset, as already mentioned in previous section, is a resource representing some data. To be
more specific it is a named view of data that points or references the data somebody wants to use
in activities as inputs and outputs. [29] They exist because pipelines are general orchestration
units. They don’t care where the data is coming from. They just need to know what format
it uses and what operations they can do with it. On top of that datasets identify data within
different data stores, such as tables, files, folders, and documents. [29] Each type of data store
data will have separate dataset. Example of datasets are: Excel, delimited text, Azure storage,
Azure postgresql and many more.

Each dataset needs to have reference to linked service. Linked service specifies concrete
implementation of the dataset and it will be described in next section 6.1.3. But it does not
need to have defined schema. The schema can be deduced during run time. The operation of
deducing is called column drift and columns are called drifted columns. This makes sense, if
data transformations are not on column level. However even if they are on column level there
are specific aproaches how to retrieve the drifted column data. In DFR you can get column data
by expression byPosition or byName where you specify position of column or its supposed name.

6.1.3 Linked service
Linked service is the simplest form of resource. Because pipelines and datasets are still general
concepts and they do not specify, where exactly is the data stored, there needs to be concept
that stores data about concrete data source. Realization of this concept is linked service.

Linked service can be of many types. It mirrors dataset types. There are database linked
services, that define hostname, port and dabase name. There are many file storage types like
Azure blob storage, google drive or azure datalake, that specifies path to the folder or file.

Data representation 33

Linked services are usually used together with datasets. Typical use is that DFR or pipeline
use load component, which loads some dataset. The dataset has underlying linked service and
based on the linked service real data is retrieved from the data source. However linked service
can be used without dataset. When DFR or pipeline would reference dataset it can reference
linked service instead and provide dataset information together with the reference. It is called
inline linked service.

6.1.4 Data flow resource (DFR)
There are two types of DFR. Mapping DFR and wrangling DFR. Wrangling DFR is outside the
scope of this work. Every time DFR is mentioned it is used as alias for Mapping DFR.

It is the main tool for data transformation. Pipelines also have some data transformation
capability, but the DFR is the primary way of doing transformations on column level. Pipelines
are not suited to do that.

Similar to pipelines DFR is split into smaller chunks. They are called transformations. Each
transformation has specific purpose. Based on the purpose of transformation they can be di-
vided into groups: Schema modifier, row modifier, formatters and multiple inputs/outputs. Two
transformations which are not included in any of the groups are Source transformation and Sink
transformation. These two transformations are special and at least one of each need to be in
each DFR.

Source transformation is the entry point of data in DFR. There can be many source transfor-
mations, but at least one needs to be in DFR. It uses datasets or inline linked service to define
concrete data source. The transformation copies the schema of dataset the first time DFR is
executed. When dataset does not contain schema, the schema can be generated (drifted). Drift-
ing can be disabled and columns won’t be used. Sink transformation is very similar to source
transformation. It utilizes datasets or inline linked service to specify data destination. There
needs to be at least one, but there can be many.

6.2 Data representation
Manta scanners create decoded lineage. In order to create decoded lineage the scanner needs to
analyze metadata of analyzed tool. It is often saved in JSON or XML format. ADF scanner
is not different and it will follow the same pattern. ADF itself uses JSON format for its re-
sources. However in DFR’s JSON file, there is a field called scriptlines which contains definition
of transformations. More on Data flow script in the next section 6.2.1. Example of dataset file:

1 "name": "<name of dataset>",
2 "properties": {
3 "type": "<type of dataset: DelimitedText, AzureSqlTable etc...>",
4 "linkedServiceName": {
5 "referenceName": "<name of linked service>",
6 "type": "LinkedServiceReference",
7 },
8 "schema":[
9

10],
11 "typeProperties": {
12 "<type specific property>": "<value>",
13 "<type specific property 2>": "<value 2>",
14 }
15 }

34 ADF

Example of DFR file:
1
2 "name": "filter",
3 "properties": {
4 "type": "MappingDataFlow",
5 "typeProperties": {
6 "sources": [
7 {
8 "dataset": {
9 "referenceName": "AzurePostgreSqlTable1",

10 "type": "DatasetReference"
11 },
12 "name": "source1"
13 }
14],
15 "sinks": [
16 {
17 "dataset": {
18 "referenceName": "DelimitedText1",
19 "type": "DatasetReference"
20 },
21 "name": "sink1"
22 }
23],
24 "transformations": [
25 {
26 "name": "filter1"
27 }
28],
29 "scriptLines": "source(output(\n\t\ttrue as string\n\t),\n\tallowSchemaDrift:

true,\n\tvalidateSchema: false,\n\tisolationLevel: 'READ_UNCOMMITTED',\n\
tquery: 'select col_name as \"true\" from table_name;',\n\tformat: 'query')
~> source1\nsource1 filter(true == '\"Column name is 42\"') ~> filter1\
nfilter1 sink(allowSchemaDrift: true,\n\tvalidateSchema: false,\n\
tskipDuplicateMapInputs: true,\n\tskipDuplicateMapOutputs: true) ~> sink1"

30 }
31 }

There are similarities accross all resources, mainly names and how resources are referencing
other resources. Otherwise each resource has distinct attributes. Some attributes are important
some are not. Some are basic strings and some are complex data types, like objects.

Most attribute values are written as expressions. This means every value has to be processed
before it gives its actual value. Exception to this are names, which are constant. More on
expressions in section 6.3.

6.2.1 Data flow script
Data flow script is a language which is used to represent DFR transformations. It is located in
DFR JSON definition file under scriptLines attribute as seen in the DFR file example in section
6.2. The language uses its custom syntax with data flow expressions. More on expressions will
be in next section 6.3. Transformations in data flow script have always, except for one exception,
the same format.

1 <input stream> <transformation name>(attributes) ~> <output stream>

Every transformation has output stream. And every transformation except source transformation

Expression language 35

has input stream. The output stream is usually name of the transformation. If transformation
has multiple outputs they are distinguished by at symbol (@) like so:

1 <input stream> <transformation name>(attributes) ~> <output stream>@(out1,out2)

Outputs are separated by comma. Input stream is always an output stream of some other
transformation. That is the reason source does not have an input stream, because it is the only
transformation without an input. Example of simple script with source and one transformation:

1 source(attributes) ~> source1
2 source1 transformation1(attributes) ~> transformation_name

Each transformation has different attributes. Source transformation needs to have infor-
mation about query, or specific file. Filter transformation needs information about the filter
condition. Nevertheles some attributes are shared. Shared attributes are most often describing
optimization to perform better in a certain context. Attributes tend to have following syntax.

1 <attribute name> : <attribute value>

Attributes are separated by comma. The <attribute value> is almost always data flow expression.
Sometimes there are exceptions, but those have the same syntax as expressions so it is not a
problem for the parser. The other type of attribute has following syntax:

1 <attribute name>(specific attribute information)

This syntax is used mainly in transformation specific attributes, that need to be specified further.
The attribute specification is inserted inside the parenthesis. It has varied syntax based on
the attribute. Some of these attributes are however shared between certain transformations.
Example of such attribute is each. Which is used by transformations that map input columns to
output columns. The each attribute tells that each column that matches certain condition will
be mapped and in what way.

1 MoviesYear derive(
2 Rating = toInteger(Rating),
3 each(
4 match(startsWith(name,'movies')),
5 'movie' = 'movie_' + toString($$)
6)
7) ~> CleanData

The above example defines a derived column named CleanData that takes an incoming stream
MoviesYear and creates two derived columns. The first derived column replaces column Rating
with Rating’s value as an integer type. The second derived column is a pattern that matches each
column whose name starts with ’movies’. For each matched column, it creates a column movie
that is equal to the value of the matched column prefixed with ’movie_’. [30]

6.3 Expression language
Data flow expressions are functional expression language used to pass dynamic values to re-
sources. There are two types of expressions languages: Pipeline expressions and Data flow
expressions. The name is already telling that both can be used only on specific places.

6.3.1 Pipeline expressions
pipeline expressions is expression language used in pipelines, datasets and linked services. Ex-
pressions can appear anywhere in a JSON string value and always result in another JSON value.
If a JSON value is an expression, the body of the expression is extracted by removing the at-sign

36 ADF

(@). If a literal string is needed that starts with @, it must be escaped by using @@. [31] An
example of pipeline expression:

1 {
2 "type": "@if(equals(1, 2), 'Blob', 'Table')",
3 "name": "@toUpper('myData')"
4 }

The first expression, which is used for type, compares two numbers one and two, and based on the
result of the compare it will return either Blob or Table. The second expression that calculates
name converts string myData to upper case. As already mentioned, the expression is denoted by
at symbol (@). The same is true for datasets and linked services. Expressions can also appear
inside strings, using a feature called string interpolation where expressions are wrapped in @{ ...
}. For example:

1 "name" : "'first-@{toUpper('John')}, last-@{concat('Smi','th')}'"

Pipeline expressions offer a variety of different functions divided into six categories. The cat-
egories are: Date functions, String functions, Collection functions, Logical functions, Conversion
functions and Math functions. All categories could be found in some form in all programming
languages, however there are more specific constructs which can be used in pipeline expressions.

Pipelines can use global parameters. Global parameters are constants across a data factory
that can be consumed by a pipeline in any expression[32]. They are accessed by

1 pipeline().globalParameters.<parameterName>

However there are not only global parameters. Pipelines, datasets and linked services can access
their own parameters by.

1 @pipeline().parameters.<parameterName>
2 @dataset().<parameterName>
3 @linkedService().<parameterName>

In this piece of code one could see that datasets and linked services do not use the .parameters.
inside its syntax unlike pipelines. That is because pipelines have more special variables than just
parameters. Datasets and linked services don’t.

The variables, are called system variables. They contain, for instance, name of data factory
and name of the pipeline.

1 @pipeline().DataFactory
2 @pipeline().Pipeline
3 @pipeline().TriggerTime

They return ordinary string as a result. Trigger-related date/time system variables (in both
pipeline and trigger scopes) return UTC dates in ISO 8601 format, for example, 2017-06-
01T22:20:00.4061448Z [33]. However pipeline expressions can use more types than just strings.

All possible types are: String, Integer, Float, Boolean, Array, Dictionary, Object, XML, JSON
native type. Return types of functions have to be ultimately compatible with JSON, because it
will be put into a JSON file. However, some types are not visibly compatible with JSON. Those
types are most of the time not used alone. They are used together with other functions that
extract data from them and the final value is used inside JSON as string. Neverheles if someone
uses for example XML, it will be converted to string.

6.3.2 Data flow expressions
Data flow expressions are alternative to pipeline expressions. They are used mainly in DFR but
they can be used in pipelines when passing parameters to DFR activity. In contrast to pipeline
expressions, data flow expressions are not used in JSON, they are used in data flow script as a

Expression language 37

way to work with columns and to dynamically decide attributes of transformation. Expression
functions are separated into multiple categories. Some expressions are allowed to be used only in
certain DFR transformations. The category list is following: aggregate functions, array functions,
cached lookup functions, conversion functions, date and time functions, expression functions, map
functions, metafunctions, window functions. From this list agregate functions can be used only
in transformations: aggregate, pivot, unpivot, and window transformations. This restrictions
seems a little unnecesary, because it means that ,for instance, filter transformation cannot use
function which calculates average of a column. This could be a problem for expression evaluation
later in implementation of the scanner. However because function names are not overloaded, this
won’t cause a problem and implementation could evaluate the function no matter where it is
used.

Functions are however overloaded based on type and number of arguments. A great example
of this is function add. It adds a pair of strings or numbers. Adds a date to a number of days.
Adds a duration to a timestamp. Appends one array of similar type to another. Same as the +
operator.

1 add(10, 20) -> 30
2
3 10 + 20 -> 30
4
5 add('ice', 'cream') -> 'icecream'
6
7 'ice' + 'cream' + ' cone' -> 'icecream cone'
8
9 add(toDate('2012-12-12'), 3) -> toDate('2012-12-15')

10
11 toDate('2012-12-12') + 3 -> toDate('2012-12-15')
12
13 [10, 20] + [30, 40] -> [10, 20, 30, 40]
14
15 toTimestamp('2019-02-03 05:19:28.871', 'yyyy-MM-dd HH:mm:ss.SSS') + (days(1) + hours(2)

- seconds(10)) -> toTimestamp('2019-02-04 07:19:18.871', 'yyyy-MM-dd HH:mm:ss.SSS'
)

[34] From the example above it is clear it accepts many different types and also returns many
types. In comparison to pipeline, the data flow expressions have more complex types. Nevertheles
data flow expression do not contain only functions.

Expressions need a way to reference columns the transformation is working with. Column
names are not restricted in any way. Simple, simple name with spaces, very = complex{{{ + _
name with special symbols are all valid column names. If a column name has any special symbol
including space it has to be encapsulated inside braces {…}. This is the reason only symbol that
is not allowed is closing brace }, because it is messing with the internal representation of DFR
and the whole DFR wil be deleted if someone puts the } symbol in the name of a column. Here
is example of why this happens:

1 source1 derive(name = 'value') ~> derivedColumn1

Code above defines derive transformation which can create new columns. The part name = '
value' has name of the column on the left and its value on the right. When the name changes
to na}me the definition changes to:

1 source1 derive({na}me} = 'value') ~> derivedColumn1

Everything looks correct from the ADF web application. Validation of DFR is also not signaling
any errors. But when the DFR is saved and loaded again, the data flow script is loaded with
{na}me}. The internal parser recognizes na to be the name and it should be followed by equals.
But because the me} is next, the DFR does not know how to create all transformations and

38 ADF

the file loading fails. It either deletes one transformation, whole DFR or the DFR is considered
corrupted and cannot be opened.

Columns in expressions are referenced by their name. If the column name is complex, the
expression has to contain enclosing braces too. Following expressions are all valid.

1 column == 'expected name'
2 toUpper({column name})
3 concat({very = complex{{{ + _ name with special symbols}, '.txt')

This is not the only problem with unrestricted column names, because there are expressions
without parenthesis that are not columns. They are called literals. To be specific two literals in
dataflow expressions could cause problems. They are true and false. Meaning of these literals
changes based on a context. When there are no columns with names true or false, it is considered
boolean literal. When there are columns named true or false, it is considered column name. In
the second case boolean values have to be expressed as true() or false().

6.3.3 Similarities in languages
Both pipeline and data flow languages are very similar. They even contain functions with same
name. Example of such function is addDays. The function does the same thing in each language,
but it accepts different data types and number of parameters. Pipeline expression:

1 addDays(<timestamp> : String, <days> : Integer, <format>? : String) => String

Data flow expression:
1 addDays(<date/timestamp> : datetime, <days to add> : integral) => datetime

An interesting thing to note is different naming conventions for types. Pipeline expresions use
big first letter, meanwhile data flow expressions use small.

Even though pipeline and data flow expressions use same functions, which could cause prob-
lems in parsing later on, they are not conflicting in any syntactic structures, so it will not be a
problem to parse them.

6.4 Extraction
Source codes of data transformations can be retrieved in two ways. First is manual, and the
second one is via REST API. Although REST API is the automatic way, focus of this work is
on the analysis of data from git repository, which is the manual way of extraction.

Manual extraction is done by downloading whole git repository. It contains all important files
the scanner needs to properly analyze a data factory. The strucutre of repository is following:

Repository root
dataflow
dataset
factory
linkedService
templates

In each folder is corresponding resource (dataflow folder - DFR, pipeline - pipeline resource,
…). Factory folder contains one JSON file, which holds all the information about the data factory
environment. Templates folder stores templates, which are used to aid DFR creation. The JSON
files in each folder are almost the same as if the files would be extracted via REST API.

Chapter 7

Scanner design

Scanners at Manta are usually divided into two parts: connector and data flow generator. The
connector processes input files and creates the model. Model classes are then passed to the data
flow generator, which creates a data flow graph. Both are further divided into more packages.

7.1 Connector
The connector consists of three parts: Reader, Model, Resolver that are shown in figure 7.1. The
reader reads the input and creates the model. The package called model represents the interfaces
of the model. Their implementation is located inside the resolver package.

7.1.1 Reader
Reader’s purpose is to read ADF’s JSON files from the downloaded git repository. It traverses
its folder structure and creates model classes for pipelines and DFRs. After the DFR model is
created, it contains references to datasets and linked services. The reader then loads correspond-
ing datasets and linked services from the input. The output of the reader is class ADF that is
passed to the data flow generator to create a data flow graph.

Reader

Model

Resolver

Figure 7.1 Connector packages

39

40 Scanner design

Reader

readFile(file: File): IADF

<<Abstract class from Manta>>

AbstractFileInputReader

<<interface>>
ParserService

parseFactory(node: JsonNode): IFactory

parsePipeline(node: JsonNode): IPipeline

 parseDFR(node: JsonNode): IDataFlow

 parseDataset(node: JsonNode): IDataset

parseLinkedService(node: JsonNode): ILinkedService

ParserServiceImpl

Figure 7.2 Class diagram of a reader

To process each resource, the reader uses parser service, which is part of resolver package.
Parser service has methods to process each type of resource. This is shown in figure 7.2. After
the service creates model for resource it is added to the output class. Sequence diagram for
reader is in figure 7.3

7.1.2 Parser service
Parser service is integral for the reader. It is a facade that the reader can easily use. The
parser service delegates JSON processing to specialized classes because each ADF’s resource has
a slightly different structure. Even the same resource has a varied format based on the specific
resource type. They parse JSON and create corresponding classes. The class structure of parser
service is in figure 7.4. The function of all parsers is pretty similar. They accept a JSON node on
the input and they output model created from the JSON. A pipeline expression parser parses each
field that could contain a pipeline expression. A slight exception is the DFR parser because its
JSON contains a data flow script. Hierarchy of datasets and linked service parsers was designed
by Kyrylo Bulat, who was working on the scanner before this bachelor thesis began.

Data flow script, pipeline expressions, and data flow expressions are parsed by a parser
generated by ANTLR. Because data flow expressions are an integral part of the script and
pipeline expressions use very similar syntactic constructs, they are all in one grammar.

7.1.3 Model
The whole ADF input is represented by one interface IADF. It provides parsed pipeline or DFR
with datasets, linked services and optional information about the factory. Hierarchy can be seen
in figure 7.5. In the hierarchy is interface IADF with relation to all interfaces that represent a
resource. Similar to the design of datasets and linked service parsers, model for datasets and
linked services was designed by Kyrylo Bulat.

Because input files are not always complete and can contain errors, there is a possibility that
some resources will be missing. This is why all resources are not required. The only necessary

Connector 41

loop pipelines

[Read all pipelines in a folder]

loop DFRs

[Read all DFRs in a folder]

loop Datasets

[Read referenced datasets]

loop linked services

[Read referenced linked services]

loop activities

[Parse pipeline activities]

:Reader :ParserService :PipelineParser :ActivityParser :DFRParser :DatasetParser LinkedServiceParser

:IPipeline

parseLinkedService(node)

addDFRToResult(dfr)

addPipelineToResult(pipeline)

parseDataFlowScript(script)

addDatasetToResult(dataset)

:IDFR

parseDFR(node)

:IDataset

parseLinkedService(node): :ILinkedService

parsePipeline(node)

readFile(): IADF

parseDataset(node)

parse(node): :IPipeline

parseDataset(node): :IDataset

parseDFR(node):
IDFR

ParseActivity(): IActivity

:ILinkedService

addLinkedServiceToResult(linkedService)

Figure 7.3 Sequence diagram of a reader

42 Scanner design

<<interface>>
ParserService

parseFactory(node: JsonNode): IFactory

parsePipeline(node: JsonNode): IPipeline

 parseDataFlow(node: JsonNode): IDataFlow

 parseDataset(node: JsonNode): IDataset

parseLinkedService(node: JsonNode): ILinkedService

<<interface>>

DatasetParser

ParserServiceImpl

<<interface>>

LinkedServiceParser

<<interface>>

PipelineParser

<<interface>>

DFRParser

<<interface>>

FactoryParses

FactoryParserImplDFRParserImplPipelineParserImpl
<<abstract class>>

LinkedService

ParserImpl

<<abstract class>>

DatasetParserImpl

AmazonRedshiftTable

DatasetParser

AzurePostgresSqlTable

DatasetParser

...
parser for
each type
of dataset
resource

...

AmazonRedshift

LinkedServiceParser

GoogleBigQuery

LinkedServiceParser

...
parser for
each type
of linked
service

resource

...

<<interface>>

ActivityParser

CopyActivityParser

ExecuteDataFlow
ActivityParser

...
parser for
each type
of activity

...

Figure 7.4 Parser service

Connector 43

<<interface>>

IADF

<<interface>>

ILinkedService

<<interface>>

IPipeline

<<interface>>

IDataset

<<interface>>

IDFR

<<interface>>

IFactory

0..1

0..1

1AmazonRedshift

LinkedService

...
one class
for each
linked service
...

GoogleBigQuery

LinkedService

<<interface>>

IFileDataset

<<interface>>

IDBDataset

<<interface>>

ILocation

0..1

Snowflake

Dataset

...
one class
for each
database
dataset
...

OracleTable

Dataset

JSON

Dataset

0..n
0..n

...
one class
for each
file
dataset
...

Excel

Dataset

AzureBlob

StorageLocation

AmazonS3

Location

...
one class
for each
location
...

<<interface>>

IActivity

Copy

Activity

DFR

Activity

...
one class
for each
Activity
...

DFR

<<interface>>

IDFRProperty

WranglingMapping

DataFlowScript

1

0..n

XOR

1

Figure 7.5 Model

resource is Pipeline or DFR. However, there cannot be both. This fact is denoted in the hierarchy
by XOR between relations from IADF to IPipeline and IDFR.

IPipeline provides all activities in a pipeline. Because the pipeline can be empty, its activities
are not required. IDFR on the other hand, provides the required property. The Property can be
of two types wrangling and mapping. Nevertheless, the most important thing the property has
is DataFlowScript. The DataFlowScript is the representation of the data flow script, and it is
crucial for the analysis of DFR. More about DataFlowScript in the next section 7.1.4.

The next resource which requires a closer look is the dataset. Unlike linked services, where
there is no common ancestor, datasets are split into two groups: File datasets and database
datasets, because each has something in common. For instance, database datasets have a schema,
and a table and file datasets have a location. The location stores information about the specific
folder and a file. It is separated into multiple classes because each type of location has a few
different attributes. It can be URL, bucket name, file system, and other information based
entirely on the type of location.

7.1.4 Data flow script processing
The data flow script, which was described in section 6.2.1 of the previous chapter, is not generally
used file format. This means there is no already created third-party parser that could be used.
The parser has to be built from scratch. Luckily there are technologies that can generate parsers
from the grammar of the parsed language. These technologies were described in section 4.5. The
parser generator used for this work is called ANTRL, and its syntax and inner workings were
also in the section 4.5. More specifically, ANTLR3 because it offers to define AST directly in
the grammar. Processing of data flow script is split into two steps: Creating AST and creating
a model from the AST.

AST is created by the parser. Each AST node implements one interface that defines resolve
method. The method takes IDataFlowScript as its parameter and returns updated version
of it. Design of AST is in figure 7.6. The concreteTransformation node represents concrete
transformation. Nodes visible in the tree under the concrete transformation node are common
to all the transformations. However, each transformation will be slightly different. It will add

44 Scanner design

DataFlowScript

Parameters

Parameter Parameter...

DataType Value ...

Transformations

Transformation Transformation...

Concrete

Transformation InputStreams...

StreamName StreamName...

TransformationName SubstreamNameSubstreamName ...

...

Transformation

Attributes

Transformation

Attribute

Transformation

Attribute...

Attribute

Name ...

Expression Expression...

Expression

Expression

<<inteface>>
DataFlowASTNode

resolve(script: DataFlowScript): DataFlowScript

EveryASTNode

Figure 7.6 AST of data flow script

more types of attributes. The output attribute, which defines columns for the whole DFR, is in
figure 7.7. Output transformation defines columns, their data type, and format for data types.

When the AST is created it needs to be processed into the model by the resolve method.
Sequence diagram of this is in figure 7.8. Each node implements resolve differently. However it
always ends with the creation of model class and addition of the class to the DataFlowScript. Ex-
tension of the model from figure 7.5 is in figure 7.9. Extension includes DataFlowScript. The data
flow script contains parameters and a transformation table. The table can deliver transformation
based on its name. This is used later in the data flow generator to find transformations.

Each transformation has information about its name and previous and following transforma-
tions. It also contains a table of its columns. Columns are divided into three types: Column
definition, a column reference, and column matching. Column definition is the type that source
transformation uses. Column reference is used by every transformation that explicitly specifies
columns from the previous transformation. By default, transformations reuse all columns from
the previous transformations. Nevertheless, this is not always true. When the transformation
uses only specific columns, it will use the column reference. Column matching is the most com-
plicated type. It is used by the same transformations as the Column reference. However, because
transformations can use conditions and pattern matchings instead of ordinary references, this
type must exist.

7.2 Data flow generator
The data flow generator is the second part of the analyzer. Its purpose is to create a graph
of the ADF from the input model IADF. This work will focus only on the data flow of DFR
because pipelines do not describe data transformations in a such big way as DFRs do, so they
are considered out of the scope of the work.

Data flow generator 45

Output
Attribute

Column

Definitions

Column

Definition...Column

Definition

Column

Name DataType DataType

Format

Figure 7.7 AST of output attribute

DFRParser

:DataFlowScriptParserService Parser Generated
By ANTLR

:DataFlowScriptASTNode OtherASTNodes

resolve(dataFlowScript):
DataFlowScript

resolve(dataFlowScript):
DataFlowScript

parseScript(script):
DataFlowScript

getScriptNode(script):
DataFlowScriptASTNode

resolve(dataFlowScript):
DataFlowScript

Figure 7.8 Processing of data flow script

46 Scanner design

DataFlowScript

Parameter
Transformation

Table

1

0..n

Transformation

name: String

inputs: Collection<ADFStream>

outputs: Collection<String>

Transformation

name: String

inputs: Collection<ADFStream>

outputs: Collection<String>

Indirect
association

via stream
or name

 <<interface>>

Column

Table

ColumnReferenceColumnDefinition ColumnMatching

Figure 7.9 Data flow script model

Data flow generator 47

DFR transformations are analyzed one by one. Each transformation has its analyzer class
that creates graph nodes of the transformation. The output of the analyzer is column nodes of
the analyzed transformation. Column nodes are passed to the analyzer of the following trans-
formation so it can connect its new columns to previous ones. Because of this, transformations
have to be analyzed in the correct order. The order is established at the beginning of the data
flow generator by topologically sorting transformations.

Which columns are created and how the columns are connected is determined by the category
of columns (see figure 7.9). If the transformation does not contain any table, the columns from the
previous transformation are copied and connected to the original. If there is ColumnDefinition,
a new column is created, and it is not connected to anything. ColumnReference copies referenced
column and connects the new column to it. This is very similar to the transformation without
any columns. The difference is that the new column can have a different name than the referenced
one. ColumnMatching creates columns defined in the matching and connects to it based on some
condition. All this is achieved by visitor pattern. Each type of column has a visit method, and
the visitor creates and connects columns. This ensures that future column types and connections
can be easily added to the scanner without changing any functionality or interface.

7.2.1 Connection outside ADF
Besides transformation that transforms data. DFR contains sources and sinks. Both have to
be connected to the corresponding endpoint. The endpoint could be a database, filesystem, or
service that can deliver and accept data. Datasets and linked services define endpoints.

Each source and sink transformation has a dataset or linked service reference. This reference
can be used to retrieve a real dataset or linked service from the analyzer context. Analyzer context
is a class that holds data necessary for the analysis. Datasets and linked services are types of data
saved inside the analyzer context. Analyzer context is passed to every transformation analyzer.
So even source and sink analyzers have access to it.

Source and sink analyzer also have another dependency. It is EndpointConnector. Endpoint
connector is interface that provides two methods: ConnectToDataset and ConnectToLinkedService.
There are two implementations of EndpointConnector one connects columns to the input endpoint,
and one connects them to the sink endpoint. Both are realized by a visitor because every dataset
and linked service has a different way of connecting to their respective technology. There are
some similarities which are also taken into account. The visitor was chosen because there will be
more technologies that will be added in the future. The visitor also ensures type safety which is
beneficial. Class diagram of data flow generator is in figure 7.10. Sequence diagram of data flow
generation in 7.11.

48 Scanner design

DataFlowGeneratorTask

doExecute(model: IADF, outputGraph: Graph)

<<interface>>
TransformationAnalyzer<T>

analyze(transformation: T, inputs: Collection<Node>, context: AnalyzerContext): Collection<Node>

0..n

SourceAnalyzer<Source>

AbstractAnalyzer<T>

SinkAnalyzer<Sink> <transformatoin>Analyzer<transformation>

<<interface>>
IEndpointConnector

connectToDataset(dataset: IDataset, transformation: ITransformation, context: AnalyzerContext)

connectToLinkedService(service: ILinkedService, transformation: ITransformation, context: AnalyzerContext)

1 1

InputConnector OutputConnector

<<interface>>
AnalyzerContext

findDataset(name: String): IDataset

findLinkedService(name: String): ILinkedService

1

DatasetInputConnectorVisitor

connectoTo(dataset: GoogleBigQueryDataset)

...

connectTo(dataset: ExcelFileDataset)

LinkedServiceInputConnectorVisitor

connectoTo(dataset: GoogleBigQueryLinkedService)

...

connectTo(dataset: AzureBlobStorageLinkedService)

1 1

DatasetOutputConnectorVisitor

connectoTo(dataset: GoogleBigQueryDataset)

...

connectTo(dataset: ExcelFileDataset)

LinkedServiceOutputConnectorVisitor

connectoTo(dataset: GoogleBigQueryLinkedService)

...

connectTo(dataset: AzureBlobStorageLinkedService)

1

1

<<interface>>
ColumnCreator

createColumns(: ITransformation, :AnalyzerContext) : Collecton<Node>

1

ColumnVisitor

visit(: ColumnDefinition)

visit(: ColumnReference)

visit(: ColumnMatching)

Figure 7.10 Classes of data flow generator

Data flow generator 49

loop transformations

[Analyse all transformations]

loop columns

[All columns in a table]

:DataFlowGeneratorTask :ConcreteTransformationAnalyzer :ColumnCreatorVisitor :IEndpointConnector :I/OVisitor

topologicalSort()

analyze(transformation, inputs, context)

visit(column)

createColumn(column)

if(should connect to dataset):
connectToDataset(dataset, transformation)

visit(linkedService)

if(should connect to linked service):
connectToLinkedService(linkedService, transformation)

visit(dataset)

if(table is empty):
copy input columns

doExecute(model, outputGraph)

Figure 7.11 Sequence diagram of data flow generator

50 Scanner design

Chapter 8

Scanner implementation

This chapter will focus on the implementation of the proof-of-concept scanner. It will present
code examples and provide essential details about the implementation which were not considered
in the design. Not everything designed was needed for the proof-of-concept scanner. Another
aspect this section will present is self-reflection about what could be done better or differently.

8.1 Connector
The connector is separated into three packages as stated in the design of connector 7.1. The
original design is to put the parser service into the resolver package. However, the better solution
would be to put it inside the package together with reader because only the reader calls parser
service, and it handles only JSON data which is directly connected to the reader.

8.1.1 Reader
ADF reader extends abstract reader from Manta. It works in Manta’s standard fashion. File is
passed into readFile method. Which file is chosen is determined by the setInputfile method.

1 @Override
2 public void setInputFile(File inputFile) {
3
4 // Filters so only important resources are scanned
5 List<IOFileFilter> resourceFilters = Arrays.asList(
6 new ParentIsFilter(PIPELINE_FOLDER),
7 new ParentIsFilter(DATAFLOW_FOLDER));
8
9 super.setInputFile(inputFile);

10
11 // Set all the filters
12 setFilter(
13 new OrFileFilter(
14 new AndFileFilter(
15 new SuffixFileFilter(".json"),
16 new OrFileFilter(
17 resourceFilters)),
18 DirectoryFileFilter.DIRECTORY)}

Filters are set so only JSON files in folders PIPELINE_FOLDER and DATAFLOW_FOLDER are scanned.
These constants stand for pipeline and dataflow folders. Example of readFile method is below.

51

52 Scanner implementation

1 @Override
2 protected IADF readFile(File file) throws IOException {
3 LOGGER.info("Reading file: " + file.getPath());
4
5 IADF adf = new ADF();
6 try{
7 // Setup reader
8 ObjectMapper mapper = new ObjectMapper();
9 JsonNode rootNode = mapper.readTree(file);

10
11 // Check what kind of resource we are dealing with
12 if(parentIs(file, PIPELINE_FOLDER)) {
13 return readPipeline(rootNode);
14 }
15 else if(parentIs(file, DATAFLOW_FOLDER)){
16 return readDataFlow(rootNode);
17 }
18 else {
19 LOGGER.log(Categories.inputStructureErrors().unsupportedResourceType().file(

Paths.get(file.getAbsolutePath()).normalize().toString()));
20 return adf;
21 }
22 } catch (IOException | NullPointerException e) {
23 LOGGER.log(Categories.inputStructureErrors().parsingJson().file(Paths.get(file.

getAbsolutePath()).normalize().toString()).catching(e));
24 return adf;
25 } catch (UnsupportedOperationException e) {
26 LOGGER.log(Categories.inputStructureErrors().unsupportedResourceType().file(

Paths.get(file.getAbsolutePath()).normalize().toString()).catching(e));
27 return adf;
28 } catch (Exception e) {
29 LOGGER.log(Categories.inputStructureErrors().parsingJson().file(Paths.get(file.

getAbsolutePath()).normalize().toString()).catching(e));
30 return adf;
31 }
32 }

readFile is split into two additional methods, which read pipeline or dataflow, respectively.
readPipeline throws UnsupportedOperationException for now, because pipelines are not required
to analyze transformations inside DFR. readDataFlow calls the parser service to process DFR
and after that calls the parser service again to process dataset and linked service references.
The output of all these methods is the IADF which represents the scanned DFR or pipeline with
datasets and linked services.

In the future, the DFR could be read only when the pipeline references it. This would lead
to the edit of input filters and readFile method. It would be treated similarly to datasets and
linked services in how they are read. Datasets and linked services could also be cached when
they are read. The current implementation always rereads them when multiple DFR reference
them. This would be naturally extended to DFRs.

8.1.2 Parser service
The parser service is a facade for all the resource parsing needed. In reality, there are many
small specialized parsers for each JSON structure. The implementation of the dataset and linked
service parsers was done partly by Kyrylo Bulat. An example of an abstract dataset parser, the
parent class for all the dataset parsers, is in the code below.

Connector 53

1 public final T parseDataset(JsonNode datasetNode) {
2 T dataset = null;
3 if (JsonUtil.isNotNullAndNotMissing(datasetNode)) {
4 String name = JsonUtil.pathAsText(datasetNode, "name");
5
6 JsonNode propertiesNode = datasetNode.path("properties");
7
8 String type = JsonUtil.pathAsText(propertiesNode, "type");
9

10 IReference lsName = referenceParser.parseReference(propertiesNode.path("
linkedServiceName"), ReferenceType.LINKED_SERVICE);

11
12 if(lsName == null){
13 LOGGER.log(Categories.parsingErrors().missingLinkedServiceReferenceOfDataset

().datasetName(name));}
14
15 IParameters parameters = null;
16 if (parametersParser != null) {
17 parameters = parametersParser.parseParameters(propertiesNode.path("

parameters"));}
18 dataset = parseDatasetSpecificFields(
19 name,
20 type,
21 lsName,
22 parameters,
23 parseSchema(propertiesNode.path("schema")),
24 propertiesNode.path("structure"),
25 propertiesNode.path("typeProperties")
26);
27 }
28 return dataset;
29 }

Although having specialized parsers can be great if the parsing is done in a lot different places
and classes are reused, it proved to be unnecessary in the case of ADF’s proof-of-concept scanner.
Every parser is saved in a map with the key being type of the resource the parser processes. This
results in many steps in the configuration. Example of the configuration file for the parser service:

1 <util:map id="datasetParserMap"
2 map-class="java.util.HashMap"
3 key-type="eu.profinit.manta.connector.datafactory.model.dataset.DatasetType"
4 value-type="eu.profinit.manta.connector.datafactory.resolver.service.dataset.

DatasetParser">
5 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

ORACLE_TABLE }"
6 value-ref="oracleTableDatasetParser"/>
7 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

AZURE_SQL_DW_TABLE }"
8 value-ref="azureSqlDWTableDatasetParser"/>
9 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

AZURE_POSTGRESQL_TABLE }"
10 value-ref="azurePostgreSqlTableDatasetParser"/>
11 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

NETEZZA_TABLE }"
12 value-ref="netezzaTableDatasetParser"/>
13 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

AMAZON_REDSHIFT_TABLE }"

54 Scanner implementation

14 value-ref="amazonRedshiftTableDatasetParser"/>
15 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

DB2_TABLE }"
16 value-ref="db2TableDatasetParser"/>
17 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

GOOGLE_BIGQUERY_OBJECT }"
18 value-ref="googleBigQueryObjectDatasetParser"/>
19 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

GREENPLUM_TABLE }"
20 value-ref="greenplumTableDatasetParser"/>
21 <entry key="#{ T(eu.profinit.manta.connector.datafactory.model.dataset.DatasetType).

HIVE_OBJECT }"
22 value-ref="hiveObjectDatasetParser"/>

A similar idea of using the map to hold specialized classes was used in the data flow generator
for transformation analyzers. However, the key to the map was replaced by a more automatic
way, without the explicit declaration. More in the section 8.2.

8.1.3 Data flow script processing
The data flow script, as described in the design in section 7.1.4, is realized by the ANTLR3
parser. The parser is split into three grammars: Lexer, parser, and reserved keywords. The lexer
grammar generates a lexical analyzer. Example of the grammar:

1 ARRAY_DECIMAL : 'DECIMAL[]';
2 ARRAY_STRING : 'STRING[]';
3 DECIMAL_TYPE
4 : KW_DECIMAL LEFT_PARENT (DIGIT)* COMMA (DIGIT)* RIGHT_PARENT
5 ;
6
7 AT_SIGN : '@';
8 DOLLAR_SIGN: '$';
9 LEFT_PARENT : '(';

10 RIGHT_PARENT : ')';
11 LEFT_BRACKET : '[';
12 RIGHT_BRACKET : ']';
13 LEFT_BRACE : '{';

It is a simple grammar capable of creating tokens for the parser. Nevertheless, this does not mean
every grammar rule is straightforward. Here is an example of a more complex rule recognizing
floating-point literals:

1 INTEGER_LITERAL
2 : (MINUS_SIGN | PLUS_SIGN)? DIGIT+
3 ;
4
5 FLOATING_POINT_LITERAL
6 : (MINUS_SIGN | PLUS_SIGN)? DIGIT* PERIOD INTEGER_LITERAL (('e' | 'E')

INTEGER_LITERAL)?
7 | (MINUS_SIGN | PLUS_SIGN)? DIGIT* ('e' | 'E') INTEGER_LITERAL
8 ;

The rule does not represent the syntactically correct ADF floating-point literal completely. The
problem comes with the string -12.-34e-56. The rule allows such string, and the ADF does not.
However, this rule is good enough because the scanner can recognize a superset of a language.

Tokens created by the lexer are passed to the parser. The parser grammar contains all syn-
tactic rules of the data flow script. The proof-of-concept scanner does not need every expression

Connector 55

or construct to be processed. That is the reason not everything is implemented. However, the
grammar has to contain everything necessary. The grammar rule for the transformation looks
like this:

1 transformations
2 : (tran+=transformation OUTPUT_STREAM sn+=stream_name)+
3 -> ^(AST_TRANSFORMATIONS ^(AST_TRANSFORMATION<AstTransformation>[contextState]

$tran OUTPUT_STREAM $sn)+)
4 ;
5 transformation
6 : st=source_transformation
7 -> $st
8 | is=inputStreams twi=transformation_with_inputs
9 -> $is $twi

10 ;
11
12 source_transformation
13 : KW_SOURCE ta=transformation_attributes
14 -> ^(AST_CONCRETE_TRANSFORMATION<AstSourceTransformation>[contextState]

KW_SOURCE $ta)
15 ;
16
17 transformation_with_inputs
18 : ft=filter_transformation
19 -> $ft
20 | jt=join_transformation
21 -> $jt
22 | st=sink_transformation
23 -> $st
24 | gt=general_transformation
25 -> $gt
26 ;

The example describes the following syntactic structure below.
1 source(attributes)~><outputSource>
2 <input> transformation(attributes) ~> <output>
3 ...
4 <input2> transformation2(attributes) ~> <output2>

The grammar is not yet complete. However, all transformations are parsed because of the rule
general_transformation. It allows transformations to be partially parsed and get their name and
attributes. General transformation grammar can be seen below.

1 general_transformation
2 : SIMPLE_ID ta=transformation_attributes
3 -> ^(AST_CONCRETE_TRANSFORMATION<AstGeneralTransformation>[contextState]

SIMPLE_ID $ta)
4 ;
5 transformation_attributes
6 : LEFT_PARENT cta=common_transformation_attributes? RIGHT_PARENT
7 -> LEFT_PARENT $cta? RIGHT_PARENT
8 ;
9

10 common_transformation_attributes
11 : ta1=transformation_attribute (COMMA ta2+=transformation_attribute)*
12 -> ^(AST_TRANSFORMATION_ATTRIBUTES<AstTransformationAttributes>[contextState]

$ta1 (COMMA $ta2)*)
13 ;

56 Scanner implementation

14
15 transformation_attribute
16 : oa=output_attribute
17 -> $oa
18 | id=all_identifier COLON de=df_expression
19 -> ^(AST_TRANSFORMATION_ATTRIBUTE<AstTransformationAttribute>[contextState] ^(

AST_ATTRIBUTE_NAME<AstIdentifier>[contextState] $id) COLON $de)
20 | de=df_expression
21 -> $de
22 ;

Every attribute is a data flow expression. Expressions are not fully implemented yet. However,
the current implementation deals with basic constructs such as literals, arithmetic, boolean
expressions, and function calls. Implementation of complex expressions was not necessary for
the proof-of-concept scanner.

After the parser is generated, it is used inside DFSParserService, which executes the parser
to get the AST. Part of DFSParserService is in the following code snippet.

1 public IDataFlowScript processScript(String script) {
2
3 DFSParser dfsParser = parseDFS(script);
4 DFSParser.dfs_return dfsReturn = null;
5
6 try {
7 dfsReturn = dfsParser.dfs();
8 } catch (RecognitionException e) {
9 LOGGER.log(Categories.parsingErrors().DFSParsingFailure()

10 .input(script)
11 .catching(e));
12 return createFailedDFS();}
13
14 Object astRoot = dfsReturn.getTree();
15
16 if (!(astRoot instanceof IAstDFS)) {
17
18 LOGGER.log(Categories.parsingErrors().malformedAst()
19 .message("Parsing output was not a DFS"));
20
21 return createFailedDFS();}
22 else{
23 IAstDFS rootNode = (IAstDFS) astRoot;
24
25 IDataFlowScript dfs = rootNode.resolve(new DataFlowScript(Collections.emptyList

(), Collections.emptyMap()));
26
27 if (dfsParser.getNumberOfSyntaxErrors() > 0) {
28 dfs = dfs.updatedParsedWithoutErrors(false);
29 }
30
31 return dfs;}
32 }

After the return from the function processScript, the AST is processed via its resolve function.
The function transforms it to the IADF representation. Example of the resolve function of root
node.

Dataflow generator 57

1 public IDataFlowScript resolve(IDataFlowScript currentDFS) {
2
3 // Fill DFS with parameters
4 List<IAstParameter> parameters = findParameters();
5 for(IAstParameter parameter : parameters){
6 currentDFS = parameter.resolve(currentDFS);
7 }
8
9 // Fill DFS with transformations

10 List<IAstTransformation> transformations = findTransformations();
11 for(IAstTransformation transformation : transformations){
12 currentDFS = transformation.resolve(currentDFS);
13 }
14
15 return currentDFS;
16 }

In the code above, someone could spot how the AST is splitting into two branches, the parameters
branch, and the transformation branch. This is according to the design of the AST that was in
figure 7.6.

8.2 Dataflow generator
Data flow generator starts from the dataFlowTask class, where IADF input model is recieved
together with the output parameter graph.

1 protected void doExecute(IADF input, Graph outputGraph) {
2
3 if(input == null || !input.isValid()){
4 LOGGER.log(Categories.dataFlowErrors().dataFactoryInputIsInvalid());
5 return;
6 }
7
8 ADFGraphHelper graphHelper = new ADFGraphHelper(
9 outputGraph,

10 getScriptResource(),
11 getScriptResource(),
12 NodeType.COLUMN_FLOW,
13 locationNodeCreator,
14 nodeCreator);
15
16 // Create context
17 AnalyzerContext context = new AnalyzerContextImpl();
18
19 analyzer.analyze(input, context, null, graphHelper);
20
21 }

First, the input is tested whether it is correct or not. Then graph helper and analyzer con-
text are created. Graph helper helps to create the output graph. It contains methods like
addTransformationNode and connectNodesByName, …. Analyzer context was already described a
little in the previous chapter about design. It contains everything that could be needed during
analysis. Example of analyzer context code:

58 Scanner implementation

1 @Override
2 public void setDatasets(Collection<IDataset> datasets) {
3 for(IDataset dataset : datasets){
4 this.datasets.put(dataset.getName(), dataset);
5 }
6 }
7
8 @Override
9 public void setLinkedServices(Collection<ILinkedService> linkedServices) {

10 for(ILinkedService linkedService : linkedServices){
11 this.linkedServices.put(linkedService.getName(), linkedService);
12 }
13 }

These methods add datasets and linked services. They are used only at the beginning of the
analysis to set everything needed.

After the context is configured, the DFR can be analyzed. Mapping DFR is analyzed in the
following method.

1 private void analyzeMappingDF(IMappingDataFlowProperties properties, AnalyzerContext
context, Node parentNode, ADFGraphHelper helper){

2 LOGGER.info("Analyzing mapping data flow");
3
4 //Analyze Sources and Sinks
5 Map<String, IDataFlowEndpoint> sources = properties.getSources();
6 Map<String, IDataFlowEndpoint> sinks = properties.getSinks();
7
8 Map<String, IDataFlowEndpoint> endpoints = new HashMap<>(sources);
9 endpoints.putAll(sinks);

10 context.setDataflowEndpoints(endpoints);
11
12 List<String> transformations = new ArrayList<>(properties.getTransformationNames())

;
13 transformations.addAll(endpoints.keySet());
14 List<ITransformation> sortedTransformations = sortTransformations(transformations,

properties.getScript().getTransformations());
15
16 for(ITransformation transformation : sortedTransformations){
17 analyzerDispatcher.analyzeTransformation(transformation, context, parentNode,

helper);}
18 }

In the beginning, sources and sinks are retrieved from the model of mapping DFR. After that,
endpoint datasets and linked service names are registered in the context. Finally, the names
of transformations are transformed into transformation models. The correct analyzer is chosen,
and all transformations are analyzed in a for loop.

How the correct analyzer is chosen was already mentioned in the section about parser service.
The analyzer is chosen by a class called AnalyzerDispatcher. The AnalyzerDispatcher contains
a map of analyzers. The map is set in the following way:

1 public void setAnalyzers(Collection<TransformationAnalyzer<?>> analyzersToAdd) {
2 for (TransformationAnalyzer<?> analyzer : analyzersToAdd) {
3 analyzers.put(analyzer.getAnalyzedType(), analyzer);
4 }
5 }

The map is configured in a much simpler way than the dataset and linked service map from the

Dataflow generator 59

section 8.1.2. Example of the configuration:
1 <property name="analyzers">
2 <list>
3 <ref bean="datafactorySourceAnalyzer" />
4 <ref bean="datafactorySinkAnalyzer" />
5 <ref bean="datafactoryFilterAnalyzer" />
6 <ref bean="datafactoryJoinAnalyzer" />
7 <ref bean="datafactoryUnknownTransformationAnalyzer" />

The disadvantage of this approach is that one has to define what kind of class the analyzer
analyzes in the constructor of the analyzer, like so:

1 class AbstractAnalyzer<T extends ITransformation>{
2 protected TransformationAnalyzer(Class<T> analyzedType) {
3 this.analyzedType = analyzedType;
4 }
5 }
6
7 class FilterAnalyzer extends AbstractAnalyzer<IFilterTransformation>{
8 public FilterAnalyzer() {
9 super(IFilterTransformation.class);

10 }
11 }

Nevertheless, this is not a big problem because it also has an enormous advantage, unlike the
method used with datasets and linked services. The type of analyzed model will always match
with the type analyzer analyzes. The previous method would result in a runtime exception if
this would ever happen.

Analyzers analyze transformations one by one. Transformations are topologically sorted.
When the transformation is analyzed, all its preceding transformations are already analyzed.
The analyze function of UnkownTransformationAnalyzer can be seen below.

1 public Map<IADFStream, ProcessedStream> analyze(IUnknownTransformation toAnalyze,
AnalyzerContext context, Node parentNode, ADFGraphHelper helper) {

2
3 LOGGER.info("Analyzing unknown transformation");
4 Node transformationNode = helper.addNode(toAnalyze.getName(), NodeType.

DATAFACTORY_TRANSFORMATION, parentNode);
5
6 Map<IADFStream, ProcessedStream> processedStreams = createStreams(toAnalyze,

context, transformationNode, helper);
7
8 return processedStreams;
9

10 }

It creates a node for the transformation. After that, it calls the createStreams method, which
creates columns of the transformation and connects it to the previous transformation. The
ProcessedStream represents the output stream of the transformation. The next transformation
that will be analyzed can connect to this ProcessedStream. createStreams method is in the
following code snippet.

1 protected Map<IADFStream, ProcessedStream> createStreams(T transformation,
AnalyzerContext context, Node transformationNode, ADFGraphHelper helper){

2
3 Collection<IADFStream> streams = transformation.getStreams();
4
5 Map<IADFStream, ProcessedStream> processedStreams = new HashMap<>();

60 Scanner implementation

6
7 for(IADFStream stream : streams){
8
9 String substreamName = stream.getSubstreamName();

10 if(substreamName.isEmpty())
11 substreamName = DEFAULT_STREAM_NAME;
12
13 Node streamNode = helper.addSchemaNode(substreamName, transformationNode);
14
15 List<Node> columnNodes = createColumns(transformation, context, streamNode,

helper);
16 processedStreams.put(stream, new ProcessedStream(streamNode, columnNodes));
17
18 }
19 return processedStreams;
20 }

It creates a node for each output of the transformation. Inside the node are columns. The node
is generated for each stream. In the future, it would be enough if only one node was created for
all streams. The multiple streams would reference the one node and its columns.

Columns are created in the following way. First, column names are retrieved by column
visitor. The visitor visits column definition, column reference, or column matching as described
in the design. In the future, this will create columns directly. In the current implementation,
the visitor only retrieves names and creates columns based on the name. After columns are
created, the analyzer connects columns to available streams. The important thing to note is
that available input streams are not passed as a parameter to the analyzer but are saved in the
context. This differs from the design. The decision was made because having it in the context
makes sense, and it gets rid of one parameter from the analyze method, which already has a few
complex parameters.

8.2.1 Connection outside ADF
Connection outside ADF is realized by IEndPointConnector. Both transformations responsible
for the input and output outside ADF use this interface. The interface uses visitors to connect
to datasets and linked services. An example of usage from the SourceEndpointConnector can be
seen in the following code.

1 Optional<IDataset> datasetOpt = context.getDataset(endpointReference);
2 if(datasetOpt.isPresent())
3 return datasetOpt.get().accept(datasetConnector);
4 else{
5 LOGGER.log(Categories.dataFlowErrors().datasetNotFound().name(endpointReference.

getReferenceName()));
6 return Optional.empty();
7 }

Return value of this code is ProcessedSchema of the transformation. ProcessedSchema exists
because transformations can have a dynamic schema, which is determined during the runtime of
ADF. The schema cannot be retrieved before the actual run from ADF’s metadata. The only
way to retrieve the schema is to use a query service, Manta’s way of evaluating queries. The
visitor datasetConnector calls the query service. Here is an example of the creation of columns
from the query:

Dataflow generator 61

1 protected Optional<ProcessedTransformation> connectByQuery(Connection connection,
String query){

2
3 DataflowQueryResult queryResult = queryService.getDataFlow(processedTransformation.

getTransformationNode(), "QUERY", query, connection);
4
5 // Updated processed streams
6 Map<IADFStream, ProcessedStream> newProcessedStreams = new HashMap<>(

processedTransformation.getProcessedStreams());
7
8 // If schema drift is allowed generate additional columns
9 if(allowSchemaDrift){

10 newProcessedStreams = generateDriftedStreamsFromResultset(queryResult,
processedTransformation.getProcessedStreams());

11 }
12
13 // Connect result with transformation by name
14 for(ProcessedStream stream : newProcessedStreams.values()){
15 queryResult.connectAllResultsetsTo(stream.getColumnNodes(), DataflowQueryResult.

MatchStrategy.MATCH_BY_NAME_CI);
16 }
17
18 Node merged = queryResult.mergeTo(graphHelper.Graph());
19
20 processedTransformation.getTransformationNode().addAttribute("QUERY", query);
21
22 return (merged != null)
23 ? Optional.of(new ProcessedTransformation(processedTransformation.

getTransformationNode(), newProcessedStreams))
24 : Optional.empty();
25 }

The code above calls the query service. Behind the query service is another analyzer similar to
this work’s analyzer. However, the analyzer behind the query service analyzes the database or
Kafka. After processing the query, the query service returns a resultset. The resultset contains
a graph of the query. If the transformation allows it, new columns are generated from the
resulset, and at the end, the resultset graph is merged into ADF’s graph. An updated current
transformation node is returned in case new columns were generated.

62 Scanner implementation

Chapter 9

Testing

The code was tested by unit and integration tests. The whole implementation was also tested
on real-world data.

9.1 Connector
The connector is covered only by unit tests. The reader was tested on the three data flows, eight
different datasets, ten linked services, and five pipelines. Example of dataset:

1 {
2 "name": "DelimitedText1",
3 "properties": {
4 "linkedServiceName": {
5 "referenceName": "AzureBlobStorage1",
6 "type": "LinkedServiceReference"
7 },
8 "annotations": [],
9 "type": "DelimitedText",

10 "typeProperties": {
11 "location": {
12 "type": "AzureBlobStorageLocation",
13 "container": "testcontainer"
14 },
15 "columnDelimiter": {
16 "value": "@variables('comma')",
17 "type": "Expression"
18 },
19 "escapeChar": "\\",
20 "quoteChar": "\""
21 },
22 "schema": []
23 },
24 "type": "Microsoft.DataFactory/factories/datasets"
25 }

Unit tests also covered all essential classes from the resolver package. One of the most critical
parts of this thesis, the data flow script parser, was tested on the real-world data used in the
industry. It was shown to be very effective in the initial stages of the development, and many
bugs were fixed because of the real-world samples. However, even artificial samples had to be

63

64 Testing

made to cover every aspect of the language. The parser is tested on eight data flow scripts.
Example of data flow script testing sample:

1 parameters{
2 parameter1 as string ('Default value'),
3 parameter2 as date
4 }
5 source(output(
6 normal as integer '$###',
7 {as with __ {{ and $)!*%)@&)!#* more} as timestamp 'yyyy-MM-dd\'T\'HH:mm:ss

\'Z\'',
8 {} as decimal(13,3) '000,000,000.000',
9 second_normal as ()

10),
11 allowSchemaDrift: true,
12 validateSchema: false,
13 ignoreNoFilesFound: false,
14 wildcardPaths:[($parameter1),'second_value',('third_value')]) ~> Source1@(

streamone, streamTwo, streamThree)

This sample aims to test the parsing of the column names.

9.1.1 Data flow generator
The data flow generator is covered by unit and integration tests. Unit tests are used for the
analyzer context. However, integration tests that cover the whole implementation and test
output graph with the expected graph are more interesting. Inputs of the scanner are in the test
resource folder. The inputs have the same structure as the actual input would have. The only
difference is that testing folders contain a file with the name <resourceName>_expected.txt
with the expected graph for the resource. Example of the implemented proof-of-concept scanner
inside manta is in figure 9.1.

Figure 9.1 Simple DFR data flow

Chapter 10

Summary

The goal of this thesis was to analyze the Manta project and its representation of dataflows , study
ADF and research the syntax and semantics of source codes that describe data transformations.
Design a way to analyze them so the resulting scanner would be able to detect ADF’s internal
dataflows and dataflows from and to tools that integrate with it. The last goal was to implement
the proof-of-concept scanner, so it is able to extract ADF’s dataflows from git repository into
the Manta system.

Every goal of the work was acomplished. Manta and ADF constructs were successfuly ana-
lyzed. A way to extract dataflows from transformation source codes, located in git, was designed.
And it was later implemented into a proof-of-concept scanner integrated that will be later inte-
grated with Manta.

The proof-of-concept scanner will be maintained from now on as part of Manta. The imple-
mentation will be later extended to analyze pipelines and even more transformations. Parts of
the scanner could also be used for other tools such as Azure synapse analytics, because it shares
the same language for data transformations and for it’s internal expressions.

65

66 Summary

Bibliography

1. TIERNEY, Mike. What Is Data Governance: Definition, Advantages and Process Flow
[online] [visited on 2022-04-11]. Available from: https://blog.netwrix.com/2019/09/19/
data-governance/.

2. MANTA. The Ultimate Guide to Data Lineage [online] [visited on 2022-04-12]. Available
from: https://getmanta.com/library/documents/.

3. Azure Data Factory documentation [online] [visited on 2022-04-12]. Available from: https:
//docs.microsoft.com/en-us/azure/data-factory/.

4. NAEEM, Tehreem. What is an ETL Tool: Definition, Uses, and Use-Cases [online] [visited
on 2022-04-12]. Available from: https://www.astera.com/type/blog/what-is-etl-
tool/.

5. SAUMELL, Maria. Connectivity, Graph Traversal, Digraphs, Trees [online] [visited on 2021-
05-09]. Available from: https://courses.fit.cvut.cz/BIE-AG1/media/lectures/BIE-
AG1-lec2-handout.pdf. the file is accesible after loging to CTU network - copy of the file
is saved on the attached SD card.

6. What is Data Flow Diagram? [Online] [visited on 2022-04-15]. Available from: https :
//www. visual- paradigm.com/guide/data- flow- diagram/what- is- data- flow-
diagram/.

7. Git [online] [visited on 2022-04-26]. Available from: https://git-scm.com/.
8. HOLUB, Jan. Basic notions [online] [visited on 2021-04-27]. Available from: https://

courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-01-zakladni_pojmy-4.pdf. the file
is accesible after loging to CTU network - copy of the file is saved on the attached SD card.

9. TRÁVNÍČEK, Jan [personal communication]. 2022.
10. HOLUB, Jan. Regular expressions [online] [visited on 2021-04-28]. Available from: https:

//courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-04-regularni_vyrazy-4.pdf.
the file is accesible after loging to CTU network - copy of the file is saved on the attached
SD card.

11. HOLUB, Jan. Context-free Grammars [online] [visited on 2021-04-28]. Available from: https:
//courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-07-bezkontextove_gramatiky-
4.pdf. the file is accesible after loging to CTU network - copy of the file is saved on the
attached SD card.

12. JANOUŠEK, Jan. LL SYNTAKTICKÁ ANALÝZA [online] [visited on 2021-04-27]. Avail-
able from: https://courses.fit.cvut.cz/BI- PJP/lectures/files/pjplecture2_
2020.pdf. the file is accesible after loging to CTU network - copy of the file is saved on the
attached SD card.

67

https://blog.netwrix.com/2019/09/19/data-governance/
https://blog.netwrix.com/2019/09/19/data-governance/
https://getmanta.com/library/documents/
https://docs.microsoft.com/en-us/azure/data-factory/
https://docs.microsoft.com/en-us/azure/data-factory/
https://www.astera.com/type/blog/what-is-etl-tool/
https://www.astera.com/type/blog/what-is-etl-tool/
https://courses.fit.cvut.cz/BIE-AG1/media/lectures/BIE-AG1-lec2-handout.pdf
https://courses.fit.cvut.cz/BIE-AG1/media/lectures/BIE-AG1-lec2-handout.pdf
https://www.visual-paradigm.com/guide/data-flow-diagram/what-is-data-flow-diagram/
https://www.visual-paradigm.com/guide/data-flow-diagram/what-is-data-flow-diagram/
https://www.visual-paradigm.com/guide/data-flow-diagram/what-is-data-flow-diagram/
https://git-scm.com/
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-01-zakladni_pojmy-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-01-zakladni_pojmy-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-04-regularni_vyrazy-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-04-regularni_vyrazy-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-07-bezkontextove_gramatiky-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-07-bezkontextove_gramatiky-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-07-bezkontextove_gramatiky-4.pdf
https://courses.fit.cvut.cz/BI-PJP/lectures/files/pjplecture2_2020.pdf
https://courses.fit.cvut.cz/BI-PJP/lectures/files/pjplecture2_2020.pdf

68 Bibliography

13. COOPER, Keith D.; TORCZON, Linda. Engineering a Compiler. Second. 2012. isbn 978-
0-12-088478-0.

14. KOZEN, Dexter C. Automata and computability. Springer, 1997. isbn 0387949070.
15. GEEKSFORGEEKS. Introduction of Finite Automata [online] [visited on 2022-04-19]. Avail-

able from: https://www.geeksforgeeks.org/introduction-of-finite-automata/.
16. HOLUB, Jan. Deterministic and nondeterm. finite automata [online] [visited on 2021-04-

28]. Available from: https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-02-
konecne_automaty-4.pdf. the file is accesible after loging to CTU network - copy of the
file is saved on the attached SD card.

17. ŠESTÁKOVÁ, Eliška. Automaty a gramatiky Sbírka řešených úloh. Harlow: ČVUT, 2020.
isbn 978-80-01-06306-4.

18. HOLUB, Jan. Pushdown automata [online] [visited on 2021-04-28]. Available from: https:
//courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-08-zasobnikove_automaty-
4.pdf. the file is accesible after loging to CTU network - copy of the file is saved on the
attached SD card.

19. AHO, Alfred V. et al. Compilers: Principles, Techniques, and Tools. Second. Greg Tobin,
2007. isbn 978-0321486813.

20. JANOUŠEK, Jan. LL SYNTAKTICKÁ ANALÝZA - IMPLEMENTACE, VLASTNOSTI
LL GRAMATIK [online] [visited on 2021-04-29]. Available from: https://courses.fit.
cvut.cz/BI- PJP/lectures/files/pjplecture3_2020.pdf. the file is accesible after
loging to CTU network - copy of the file is saved on the attached SD card.

21. PARR, Terence; FISHER, Kathleen S. LL(*): The Foundation of the ANTLR Parser Gener-
ator [online] [visited on 2022-04-20]. Available from: https://www.antlr.org/papers/LL-
star-PLDI11.pdf.

22. PARR, Terence. LL(*) grammar analysis [online] [visited on 2022-04-29]. Available from:
https : / / theantlrguy . atlassian . net / wiki / spaces / ~admin / pages / 524294 / LL +
grammar+analysis.

23. PARR, Terence. Grammars [online] [visited on 2022-04-30]. Available from: https : / /
theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687027/Grammars.

24. PARR, Terence J.; QUONG, Russell W. Adding Semantic and Syntactic Predicates To
LL(k): pred-LL(k) [online] [visited on 2022-04-22]. Available from: https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.26.427&rep=rep1&type=pdf.

25. Manta live [online] [visited on 2022-04-25]. Available from: https://service.getmanta.
com/manta-dataflow-server-gallery/viewer/dataflow?revision=1&olderRevision=
0&object=&selectedItems=216&level=BOTTOM&direction=BOTH&filter=2&depth=3&
hint=column-data-lineage.

26. KRÁTKÝ, Tomáš. Different Approaches To Data Lineage [online] [visited on 2022-04-
15]. Available from: https://getmanta.com/blog/different-approaches-to-data-
lineage/.

27. Pipelines and activities in Azure Data Factory and Azure Synapse Analytics [online] [visited
on 2022-04-25]. Available from: https://docs.microsoft.com/en- us/azure/data-
factory/concepts-pipelines-activities.

28. Power Query documentation [online] [visited on 2022-04-25]. Available from: https://
docs.microsoft.com/en-us/power-query/.

29. Datasets in Azure Data Factory and Azure Synapse Analytics [online] [visited on 2022-04-25].
Available from: https://docs.microsoft.com/en-us/azure/data-factory/concepts-
datasets-linked-services.

https://www.geeksforgeeks.org/introduction-of-finite-automata/
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-02-konecne_automaty-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-02-konecne_automaty-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-08-zasobnikove_automaty-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-08-zasobnikove_automaty-4.pdf
https://courses.fit.cvut.cz/BIE-AAG/lectures/bie-aag-08-zasobnikove_automaty-4.pdf
https://courses.fit.cvut.cz/BI-PJP/lectures/files/pjplecture3_2020.pdf
https://courses.fit.cvut.cz/BI-PJP/lectures/files/pjplecture3_2020.pdf
https://www.antlr.org/papers/LL-star-PLDI11.pdf
https://www.antlr.org/papers/LL-star-PLDI11.pdf
https://theantlrguy.atlassian.net/wiki/spaces/~admin/pages/524294/LL+grammar+analysis
https://theantlrguy.atlassian.net/wiki/spaces/~admin/pages/524294/LL+grammar+analysis
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687027/Grammars
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687027/Grammars
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.427&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.427&rep=rep1&type=pdf
https://service.getmanta.com/manta-dataflow-server-gallery/viewer/dataflow?revision=1&olderRevision=0&object=&selectedItems=216&level=BOTTOM&direction=BOTH&filter=2&depth=3&hint=column-data-lineage
https://service.getmanta.com/manta-dataflow-server-gallery/viewer/dataflow?revision=1&olderRevision=0&object=&selectedItems=216&level=BOTTOM&direction=BOTH&filter=2&depth=3&hint=column-data-lineage
https://service.getmanta.com/manta-dataflow-server-gallery/viewer/dataflow?revision=1&olderRevision=0&object=&selectedItems=216&level=BOTTOM&direction=BOTH&filter=2&depth=3&hint=column-data-lineage
https://service.getmanta.com/manta-dataflow-server-gallery/viewer/dataflow?revision=1&olderRevision=0&object=&selectedItems=216&level=BOTTOM&direction=BOTH&filter=2&depth=3&hint=column-data-lineage
https://getmanta.com/blog/different-approaches-to-data-lineage/
https://getmanta.com/blog/different-approaches-to-data-lineage/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipelines-activities
https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipelines-activities
https://docs.microsoft.com/en-us/power-query/
https://docs.microsoft.com/en-us/power-query/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-datasets-linked-services
https://docs.microsoft.com/en-us/azure/data-factory/concepts-datasets-linked-services

Bibliography 69

30. Derived column transformation in mapping data flow [online] [visited on 2022-04-25]. Avail-
able from: https://docs.microsoft.com/en-us/azure/data-factory/data-flow-
derived-column.

31. Expressions and functions in Azure Data Factory and Azure Synapse Analytics [online]
[visited on 2022-05-02]. Available from: https://docs.microsoft.com/en-us/azure/
data-factory/control-flow-expression-language-functions.

32. Global parameters in Azure Data Factory [online] [visited on 2022-05-02]. Available from:
https : / / docs . microsoft . com / en - us / azure / data - factory / author - global -
parameters.

33. System variables supported by Azure Data Factory and Azure Synapse Analytics [online]
[visited on 2022-05-02]. Available from: https://docs.microsoft.com/en-us/azure/
data-factory/control-flow-system-variables.

34. Data transformation expression usage in mapping data flow [online] [visited on 2022-05-03].
Available from: https://docs.microsoft.com/en-us/azure/data-factory/data-flow-
expressions-usage.

https://docs.microsoft.com/en-us/azure/data-factory/data-flow-derived-column
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-derived-column
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions
https://docs.microsoft.com/en-us/azure/data-factory/author-global-parameters
https://docs.microsoft.com/en-us/azure/data-factory/author-global-parameters
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-system-variables
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-system-variables
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-expressions-usage
https://docs.microsoft.com/en-us/azure/data-factory/data-flow-expressions-usage

70 Bibliography

Contents of the attached SD card

readme.txt.....................................Brief description of the content of the card
src

implementation...Implementation source codes
thesis.......................................Source codes of the thesis in LATEX format

text...Text of the thesis
lectures..........................Lectures from FIT CTU, that were used in the thesis
thesis.pdf..Text of the thesis PDF format

71

	Acknowledgments
	Declaration
	Abstract
	Abreviations
	Goals
	Introduction
	Definitions
	Directed graph
	Data flow graph
	Git
	Basic constructs
	Alphabet
	String over an alphabet
	Language

	Grammar
	Grammar clasification
	Regular grammar
	Regular expression
	Context-free grammar

	Parse
	Left parse
	Right parse
	Parse tree

	Deterministic finite automaton
	Pushdown automaton

	Parsing
	Lexical analysis
	Syntactic analyzer
	Top-down
	LL(k) analysis
	LL(*) analysis

	Bottom-up
	Semantic analysis
	compiler-compiler
	ANTLR

	Manta
	Ways of generating lineage
	Manual
	Data taging
	Data transformation tool
	Decoded lineage

	Data flow representation
	Indirect data flows

	Architecture

	ADF
	Resource
	Pipeline
	Dataset
	Linked service
	Data flow resource (DFR)

	Data representation
	Data flow script

	Expression language
	Pipeline expressions
	Data flow expressions
	Similarities in languages

	Extraction

	Scanner design
	Connector
	Reader
	Parser service
	Model
	Data flow script processing

	Data flow generator
	Connection outside ADF

	Scanner implementation
	Connector
	Reader
	Parser service
	Data flow script processing

	Dataflow generator
	Connection outside ADF

	Testing
	Connector
	Data flow generator

	Summary
	Contents of the attached SD card

