
Instructions

Diabetes mellitus is a metabolic disorder that causes abnormal blood glucose (BG) regulation that 

might result in serious health complications if not properly managed. The current preferred treatment 

is primarily based on self-management of the disease, which means actively tracking BG levels and 

managing physical activity, diet, and insulin intake. The recent advancements in diabetes technologies 

and self-management applications have made it easier for patients to have more access to relevant 

data.  

The objective of the thesis is to analyze the impact of physical activity, diet, and insulin intake on BG 

levels. Moreover, the second aim is to research and evaluate suitable machine learning techniques for 

the prediction of BG dynamics.

Electronically approved by Ing. Karel Klouda, Ph.D. on 8 February 2022 in Prague.

Assignment of bachelor’s thesis

Title: Analysis and prediction of blood glucose dynamics using Machine learning

techniques

Student: Ladislav Floriš

Supervisor: Ing. Daniel Vašata, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023





Bachelor’s thesis

ANALYSIS AND
PREDICTION OF BLOOD
GLUCOSE DYNAMICS
USING MACHINE
LEARNING TECHNIQUES

Ladislav Florǐs
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Abstrakt

Tato bakalářská práce se zabývá problematikou predikce hladiny glukózy v krvi u pacient̊u s
diabetem typu 1. V naš́ı práci nejprve analyzujeme změny koncentrace glukózy v krvi, a poté
zkoumáme a vyhodnocujeme vhodné modely pro jej́ı predikci.

Zaměřili jsme se na modely založené na umělých neuronových śıt́ıch a support vector ma-
chines. Tyto modely byly experimentálně hodnoceny na 30minutovém, 1hodinovém a 2hodi-
novém predikčńım horizontu. Data použitá v této práci byla shromážděna jedńım pacientem po
dobu 128 dn̊u a obsahuj́ı hodnoty krevńı glukózy, dávky inzuĺınu, př́ıjem sacharid̊u a fyzickou
aktivitu.

Přesnost modelu byla hodnocena pomoćı Root Mean Square Error (RMSE). K měřeńı klinické
přesnosti byla použita Clarke error grid analýza. Nejlepš́ı dosažená RMSE byla 17,06 mg/dl,
24,32 mg/dl a 27,11 mg/dl pro 30minutový, 1hodinový a 2hodinový predikčńı horizont.

Naše výsledky ukazuj́ı, že je možné vyvinout modely pro predikci krevńı glukózy použitelné v
praxi. Na rozd́ıl od většiny praćı věnuj́ıćıch se predikci krevńı glukózy, jsme použili deľśı soubor
dat, shromážděný po dobu 4 měśıc̊u. Nakonec jsme dataset veřejně zpř́ıstupnili pro daľśı výzkum
v této oblasti.

Kĺıčová slova diabetes typu 1, predikce hladiny krevńı glukózy, prognóza časových řad, kon-
tinuálńı monitorováńı glukózy, dynamika krevńı glukózy

Abstract

This bachelor thesis tries to address the problem of predicting blood glucose (BG) levels of type
1 diabetes (T1D) patients. In our work, we first analyze BG dynamics and then research and
evaluate suitable models for its prediction.

We focused on models based on artificial neural networks, and support vector machines. These
models were experimentally evaluated on 30-minute, 1-hour, and 2-hours prediction horizons.
The data used in this thesis was collected by one patient for 128 days in free-living conditions
and contains BG levels, insulin doses, carbohydrate intake, and physical activity.

Model performance was assessed using Root Mean Square Error (RMSE). Clarke error grid
analysis was used to measure clinical accuracy. The best RMSE achieved was 17,06 mg/dl, 24,32
mg/dl, and 27,11 mg/dl respectively for 30-minute, 1-hour, and 2-hours prediction horizons.

Our results show that it is possible to develop models for BG prediction which perform well
in free-living conditions. Unlike most of the other papers in the academic literature on BG
prediction, we used a longer dataset containing over 4 months’ worth of data for a single patient.
Lastly, we made this dataset publicly available for further research in this area.

Keywords type 1 diabetes, blood glucose prediction, time series forecasting, continuous glu-
cose monitoring, blood glucose dynamics
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Introduction

Type 1 diabetes (T1D) is an autoimmune disorder causing abnormal blood glucose (BG) levels
due to the body’s incapability to produce insulin. The current approach to treatment relies
heavily on the patient’s self-management, which means actively tracking glucose levels, injecting
and dosing insulin, and managing diet and physical activity. It is not possible to cure T1D but
patients can live without complications if they manage to keep their BG levels in the recom-
mended range. Recent advancements in diabetes management technologies and wearable devices
made the collection of relevant data more accessible.

We believe that machine learning (ML) techniques can utilize the available data and help
patients with managing their BG levels. Mainly, we want to demonstrate that ML can be used
for the prediction of BG. BG prediction is instrumental for the development of personalized
decision systems, low and high BG alarms, and closed-loop systems1, all of which aim to reduce
the burden put on the patient and improve the T1D treatment.

The initial motivation for selecting this topic is that the author of this thesis lives with T1D as
well and understands the complexity of managing the disease. There are tenths of research papers
written on the topic of BG prediction but there are still very few real-world applications of these
techniques. It is understandable that it takes time for commercial solutions to be developed as
medical equipment has strict regulations and requires rigorous testing. The research often focuses
on the development of closed-loop systems which do not only predict BG but are also capable of
dosing insulin. Too low or especially too high insulin doses can result in serious complications
and even death, meaning these systems must be safe and reliable. We believe that even a simpler
system like a BG alarm which can alert the patient of a high or low glucose event has a vast
impact on the patient’s T1D management. If the model’s inputs contain information about
insulin and diet, it can even help the patient to make decisions regarding treatment, suggesting
insulin intake or a portion of carbohydrates to consume in order to remain in a safe BG range.

Objectives and Goals
The goal of the thesis is to analyze the impact of insulin intake – both rapid and slow-acting
insulin, diet (focused on carbohydrates), and physical activity on BG levels.

Secondly, we intend to research and evaluate machine learning techniques for the prediction
of BG. Within the evaluation, the performance, and clinical accuracy of individual models is
compared in order to identify the best-performing models for each prediction horizon (PH).

Thirdly, we want to create a dataset, which would be collected directly by the author of
the theses. This dataset will contain glucose levels recorded by a Freestyle libre CGM sensor,

1A system capable of using the sensor glucose readings to calculate insulin dosage and send a signal to an
insulin pump to administer insulin.

1



2 Introduction

insulin, and carbohydrates intake notes – in form of an electronically maintained diary, and
physical activity recorded by a Fitbit Charge fitness tracker. This data will be collected over a
4-month period in free-living conditions.

Thesis Overview
The thesis is structured into the 5 following chapters.

Chapter 1 introduces T1D and factors relevant to the disease. Additionally, a theoretical
model of BG prediction is introduced and research on the existing approaches for BG predic-
tion is conducted.

Chapter 2 describes individual data sources, data collection methodology, and characteristics
of individual features.

Chapter 3 analyzes BG dynamics and effects of various factors on the BG levels.

Chapter 4 describes preprocessing and feature extraction. Furthermore, BG prediction models
are introduced and their performance and clinical accuracy is evaluated.

In Chapter 5 we summarize the achieved results and discuss potential improvements and
applications.



Chapter 1

Theory

1.1 Type 1 Diabetes and BG Dynamics

We have put forward some fundamental facts about T1D in the introduction. This section dives
deeper into the topic and describes the condition in more detail. Afterward, the problem of BG
regulation and dynamics is introduced.

The main purpose of T1D treatment is to keep the BG in a safe range, by that we understand
the observed range of a healthy person. The term for this safe range is euglycemia. The exact
numbers used to classify euglycemia vary across the academic literature, but generally are around
60 mg/dl – 140 mg/dl or 3,3 – 7,8 mmol/l. This range is commonly used for diabetes tests [1].

Hypoglycemia is a condition when BG levels drop below 3,3 mmol/l or 60 mg/dl. Symptoms
of hypoglycemia range from anxiety, sweating, and hunger, to neurological impairments, including
behavioral changes, cognitive dysfunction, and in extreme cases seizures, and coma [2]. Generally,
the lower the glucose, the higher the severity of symptoms. Patients’ objective is to avoid
hypoglycemia, as it impairs their function at best, and threatens their life at worst.

Hyperglycemia is a condition when BG is above 180 mg/dl or 10 mmol/l. Chronic levels of
BG above this threshold can produce noticeable organ damage over time. Symptoms of hyper-
glycemia are usually benign like dry mouth and polyuria but can be more severe if hyperglycemia
develops into ketoacidosis. The greatest danger of chronic hyperglycemia, which is frequent and
prolonged incidents of hyperglycemia are the long-term effects, especially on the microvascular
system. These effects may be life-threatening and include damage to the eye, kidneys, nerves,
heart, and the peripheral vascular system [3].

1.1.1 Insulin
Insulin holds a significant role in T1D diabetes. Currently, most patients with T1D must decide
on the appropriate doses of insulin to take, and/or rely on the doses recommended by their
doctor. This decision-making places a big burden on the patients. Generally, there are two ways
to approach this problem. Patients may decide to have a routine, with a consistent amount
of carbohydrates consumed every day and stable insulin doses. The other option is to eat
and function with fewer restrictions and without a routine but in that case, the patient must
appropriately change the insulin doses as the situation requires. There is no single and exact
equation that patients could use to calculate the appropriate insulin dose and it very often comes
down to experience and trial and error. There are two means of administering insulin: insulin
pumps and insulin pens.

Insulin pen is a reusable syringe with smart controls. Some pens have features like a

3



4 Theory

memory mechanism where the pen can display the time and dosage of the most recent insulin
injection. Patients usually have a set of 2 pens, one containing rapid-acting insulin and the other
a long-acting insulin.

Rapid-acting insulin (further referred to just as rapid insulin) is administered before and/or
after food and its activity usually peaks after 2 hours after administration and ends after 6
hours. The exact times differ between insulin producers and types. Patients generally use rapid
insulin at least 3 times a day (before main meals) but usually more often to administer corrective
injections when BG rises above a safe range.

Long-acting insulin (further referred to just as long insulin) is usually injected before sleep
and has a long but subtle activity. Some long insulins may only be effective for the night for a
time period of around 10 hours and others may be active for as long as 24 hours. Long insulin
from the Toujeo SoloStar pen, which is used by the patient whose data was collected as part of
this thesis, has a 24 hours long activity.

Insulin pump is an electronic device connected at all times to the patient with a cannula.
Insulin pumps usually have a user interface that allows convenient insulin administration and
some additional advanced features. Insulin pumps tend to contain just one type of insulin and the
long-lasting insulin is replaced by more frequent low doses called basal doses. A bolus dose is a
bigger dose pumped to cover for food consumed and for spikes in BG which are to be corrected.
Insulin pumps are the stepping stone for closed-loop systems as they have a mechanism for
automatic insulin administration. However, for a closed-loop system to work, the insulin doses
must be calculated in an automatic manner. For that reason, a precise predictive model has to
be developed which would be capable of controlling the insulin pump doses.

The patient providing data for this thesis uses insulin pens, therefore our data contains records
of rapid and long insulin.

1.1.2 BG Dynamics
Simply said, when studying BG dynamics, factors influence BG in two ways: they make BG rise
or fall. For the purpose of BG dynamics, factors that do not have an influence on the BG levels
are not examined.

The main factor that makes BG rise is carbohydrate consumption. After consumption, car-
bohydrates are broken down in the body into glucose, a very simple carbohydrate that the body
uses as fuel for various physiological processes. The time between meal consumption and glucose
availability in the blood varies between different foods. The length and rate of glucose release
after food consumption for various foods is classified using Glycemic Index (GI) tables [4]. Some
other factors that make BG rise are stress, anaerobic exercise, effects of glucagon – a hormone
that stimulates the release of glucose stored in the liver, and others.

The main factor that makes BG fall is insulin. As previously stated, there are different
insulin types and their activity varies, that is the onset and overall duration. These differences
will translate to diverse effects on BG. Some other factors that make BG fall include aerobic
exercise, alcohol consumption, and others.

It should also be noted that BG response can change depending on the daily insulin dose,
as Davidson et al. demonstrated with adult patients using rapid insulin [5]. This effect can
be summed up as follows: the higher the overall insulin dose taken daily by the patient, the
lower the BG sensitivity to insulin. Furthermore, BG dynamics will vary between patients, for
example, based on the body weight, as was again demonstrated by Davidson et al. [5].

1.2 BG Prediction

It was shown by Martin H Kroll [6] that BG variation includes a deterministic component and
that one can describe it as a nonlinear oscillatory or chaotic system, that can be modeled.
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If only past BG values are used for predictions, then for any time t the model inputs are the s
previous BG measurements. The output is the predicted blood glucose BG(t + PH), where the
Prediction Horizon (PH) is how long into the future predictions are made. The goal is to find a
function that takes a vector x containing past s BG measurements as an input and its output is
the BG at time t + PH.

Since BG dynamics are influenced by factors like insulin, physical activity, and others, it
makes sense to add these features to give the model more context. It is true that to a certain
degree this information is already captured in the BG levels, but it may not provide the full
picture. Therefore the prediction task is extended. The goal is to find a function f(x1, . . . , xn)
which takes an ordered set of vectors as an input and its output is the BG at time t + PH. Each
input vector xi is associated with one of the features (BG, insulin, carbohydrates, . . . ). Each
of the input vectors contains a finite number of elements and in the simple form, it will be the
s successive previous measurements. However, greater input customizability is supported, by
allowing the window of historical measurement to be variable in size between individual feature
vectors. More than that, feature vectors that are transformations of the previous measurements
are also permitted. The transformation may be the sum, mean, or other function applied to
previous values.

It is expected that with a longer PH, the prediction performance will decrease. The uncer-
tainty increases with the amount of time passed and so does the domain of possible BG values
that come with a larger PH. It takes time for BG to change, and as PH increases, the BG has
further opportunity to develop, thus the domain of possible BG values increases too. Figure
1.1 shows a representation of a prediction window with inputs being the normalized past BG
measurements and true value (label) being the BG two steps (30 minutes) ahead.

Figure 1.1 Example of a BG prediction window with inputs and true values
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1.3 Existing Approaches
The starting point for the research of available literature on BG prediction is a comprehensive
review [7] from Ashenafi Zebene Woldaregay et al. The review gives an insight into the types
of models that were used, prediction horizons, and achieved performance. Further, there is
information about study subjects and inputs used for the models. Figure 1.2 from the review [7]
presents the Root Mean Square Error (RMSE) performance of some of the models’ performances
grouped by class of ML used.

Figure 1.2 Literature review of predictive performance (RMSE) based on the class of ML employed,
validation strategies, and PH considered on real subjects [7]

Models based on artificial neural networks (ANN) are the most common, followed by hybrid
approaches and support vector machines (SVM), with most of the papers being published within
the last ten years [7]. However, the topic of BG prediction is not completely recent. One of the
first investigations was done already in 1999 by Bremer and Gough [8]. The authors showed that
BG values in the near future could be predicted based only on previous BG values.

There are 2 publications that stand out when examining the prediction performance achieved
in Figure 1.2, it is the ANN-based model proposed by Jaouher Ben Ali et al. [9] and the SVM-
based model from Georga et al. [10].

What attracts attention to the SVM model proposed by Georga et al. [10] is its RMSE
prediction performance of 7.62 mg/dl in a PH of 2 hours, which substantially exceeds the other
models reviewed. The inputs used are the subcutaneous glucose profile, the plasma insulin con-
centration, the appearance of the meal-derived glucose in the systemic circulation, and the energy
spent during physical activities. Data from 27 T1D patients collected in free-living conditions
was used. They have proven that the availability of multi-variable data can increase prediction
performance.

The ANN model by Jaouher Ben Ali et al. [9] evaluation has the longest PH of 1 hour,
and even though their performance is worse than the SVM model by Georga et al., they used
previous BG only as inputs to the model. The RMSE prediction performance for 15, 30, 45, and
60 minute PH is 6,43 mg/dl; 7,45 mg/dl; 8,13 mg/dl; and 9,03 mg/dl respectively, whereas SVM
performance for the same prediction horizons is 5,21 mg/dl; 6,03 mg/dl; 7,14 mg/dl; and 7,62
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mg/dl respectively. Therefore, the performance is surprisingly high given that the ANN model
had considerably more limited information for predictions.

It has to be pointed out that it is problematic to compare prediction performance between the
published papers as the model evaluation generally is not performed on the same dataset. This
is problematic because some patients’ BG dynamics may be easier to predict because they follow
the same routine every day and their BG has a regular pattern. That however may not apply
to other patients whose BG is more irregular due to a less predictable lifestyle. Additionally,
the prediction methodology may differ. For example, for any time t and PH Georga et al. [10]
dropped out of their dataset any windows where there was an event (i.e., food intake, insulin
intake, moderate or intense exercise) at the time interval [t, t + PH]. This dropout of training
instances makes sense as they do not represent a rational mapping between the input and the
output [10]. However, it also makes the data less noisy and it is harder to make predictions if
such dropout is not used. The increased difficulty comes from the uncertainty of future events
influencing BG which must be accounted for.
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Chapter 2

Dataset

In order to have as much freedom and control over the dataset as possible, we have decided to
use data captured directly by the thesis author. The second reason for doing so, is that very few
of the published articles include data that was used to perform the experiments. The downside
of this strategy is that our evaluation can only capture the performance of the model on one
patient. All data was captured in free-living conditions and with consumer-grade hardware.
Data collected in a lab environment probably will not capture all the complex dynamics seen
in free-living conditions. Thus, it can be argued, that performance evaluation on data from
free-living conditions is more significant.

The data was collected from 1. 12. 2021 to 8. 4. 2022, which adds up to 128 days worth of
data.

Due to the difficulty of finding an appropriate dataset online, we decided to make the dataset
collected as part of this thesis available on Kaggle [11] [12]. Kaggle allows its users to share
datasets with each other for research and development of ML models.

Our dataset has three sources of data. It is the data captured by a CGM sensor which is
read and stored by a glucose reader. Data from an electronic diary containing information about
insulin intake, carbohydrate intake, an estimate of food glycemic index, and some additional
features which were not used in this thesis. The last data source is a Fitbit fitness tracker which
contains a wide range of features, for the purposes of this theses, heart rate, distance, and burned
calories are used.

2.1 Glucose Reader

The BG data was collected using a CGM developed by ABBOTT Laboratories called FreeStyle
Libre. A more accurate term to use is flash-glucose-monitoring (FGM) because Freestyle Libre
sensors do not stream the collected data. The sensor must be read with a reader that comes
with it or with a phone with NFC using the Librelink app [13]. For the purposes of this thesis,
it can be regarded as if it was a CGM since it still provides a continuous glucose history. The
difference between FGM and CGM is mainly in the real-time streaming abilities which are not
relevant for our purposes.

FreeStyle Libre is implanted under the skin and has to be replaced every 14 days. The
sampling rate of the sensor is 15 minutes. The sensor stores an 8-hour glucose history. Any
data written more than 8 hours ago gets overwritten. Thus, the reader must read the data from
the sensor at least every 8 hours in order to prevent any data loss. The reader is also capable
of displaying charts of blood glucose, trends, and some other useful information. It is possible
to export data from the reader when it is connected to a computer. The reader has a limited

9
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storage capacity, so exports must be done regularly. We have exported data approximately every
2 weeks, which is sufficient to prevent any data loss from the reader.

BG in our dataset is measured in mmol/l units, which is the number of molecules of a
substance within a specified volume. In this case the amount of glucose within 1 liter. In the
published literature on BG prediction, it is common to measure BG in mg/dl which gives the
concentration by the ratio of weight to volume, in this case, milligrams of glucose per decilitre.
In order to convert from mmol/l to mg/dl, the BG values must be multiplied by a conversion
factor of 18,016. The molecular weight of glucose is 180,16 g/mol as per the periodic table. This
number is then divided by 10 because of the change from liters to decilitres, and thus the 18,016
conversion factor is constructed.

It is essential to mention that CGM sensors actually measure glucose in the interstitial fluid
and not in the blood. There is a lag between BG and interstitial glucose which ranges from 5 to
10 minutes according to an article from diabetes journals [14] and according to a study performed
on an older FreeStyle Navigator sensor, it can go as high as 16,8 minutes in the extremes [15].
This lag does not influence the prediction task but has significance for the patient. It is mainly
important in the events of rapidly rising or falling BG. When BG moves at a high rate, it can
in a short time get to the hypoglycemic or hyperglycemic range. The patient may be feeling
symptoms of hyperglycemia or hypoglycemia even though the sensor is reporting BG values in
a safe range.

2.2 Electronic Diary
The electronic diary was at first realized using the FreeStyle Libre reader as it allows patients to
add notes about insulin and carbohydrate intake. However, we moved to the mySugr mobile app
[16] on 9. 1. 2022 because it supported a broader range of features to capture and was easier to
work with as well.

There are four main features captured in the electronic diary, and for each record, in the
diary, there is a timestamp.

Rapid insulin from Fiasp FlexTouch pen was used. Each rapid insulin record contains a
dosage in units. There are 100 units in 1 ml of Fiasp insulin.

Long insulin from Toujeo SoloStar pen was used. Each record for long insulin also contains
a dosage in units. Toujeo measures units differently and there are 300 units in 1 ml.

Carbohydrates, as an estimate of the grams of carbohydrates consumed, are recorded by
the patient for each meal. The record is noted approximately at the beginning of the meal
consumption.
The patient estimates the carbohydrate load of food that he prepares himself by weighting
individual components of the food which contain carbohydrates and then multiplying the
weight by the percentage of carbohydrates contained in each component. The patient relies
on nutritional information written on the packaging and/or in the database from the app
Kalorické tabulky [17]. It is necessary to point out that the accuracy of these records may
vary based on the accuracy of nutritional information as well as based on the food, where
carbohydrate load is harder to determine.

Glycemic Index (GI) is written down by the patient as an estimate of the consumed meal
GI, for each meal that contains carbohydrates. The GI feature is categorical and is mostly
grounded in the table seen in Figure 2.1 from the International tables of glycemic index [4].
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Figure 2.1 Glycemic Index overview for common food

The GI feature can contain 4 different categorical values: Low, Medium, High, and Very
High. Their relation to the GI is following:

1. Low: 0–30 GI

2. Medium: 30–60 GI

3. High: 60–90 GI

4. Very High: 90–100 GI

The GI estimation is problematic, especially for meals containing many components, and
therefore this feature may not be very reliable. However, it may be beneficial for estimating the
rate of change of BG after meals. Higher GI should result in a more rapid impact on BG whereas
with lower GI a more gradual impact on BG is expected. The GI data acquisition began later
on in the data collection period – on 9. 1. 2022.

2.3 Fitbit Fitness Tracker
Physiological data was collected using a Fitbit Charge 4 fitness tracker. Before the data collection
began, we went over the available literature on the estimation of accuracy of consumer-grade
fitness trackers and smartwatches. In a meta-analysis published in the British Journal of Sports
Medicine, [18] a wide range of consumer-grade fitness trackers were evaluated in their ability
to estimate energy expenditure. Energy expenditure is usually calculated based on heart rate,
distance, and skin temperature. The Fitbit Charge device was chosen due to its affordability
and data export capabilities. Figure 2.2 taken from the meta-analysis shows, that Fitbit devices
do not significantly overestimate or underestimate energy expenditure.

There is a variety of data in the export provided by Fitbit like heart rate, distance, steps,
sleep length and quality, respiratory rate, calories burned, and more.
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Figure 2.2 Overall energy expenditure accuracy comparison between fitness trackers, Fitbit devices
highlighted [18]
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In this thesis, only heart rate, distance, and calories are considered, as these sorts of metrics are
the most readily available in fitness trackers.

Heart rate is measured in beats-per-minute and the tracker produces a heart rate estimate
approximately every 5 seconds.

Distance is measured in centimeters covered and has a minutely sampling rate.

Calories are measured in kcal burned with a 1-minute sampling rate.
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Chapter 3

Analysis

In this chapter, an exploratory data analysis of the collected data is performed in order to
analyze the impact of factors like insulin, carbohydrates, physical activity, and others on the
BG levels. The data manipulation and visualizations were created in JupyterLab computational
environment [19]. Pandas library [20] is used for data manipulation and matplotlib [21] and
seaborn [22] libraries for visualizations.

3.1 Basic Exploratory Analysis and BG Behavior

In Table 3.1 basic descriptive statistics are shown, like the number of samples, mean, standard
deviation, minimum and maximum, and 25, 50, and 75 percentile values. This presents an initial
insight into the feature properties. The standard deviation indicates the carbohydrates consumed
are spread out the most. Insulin doses, especially for long insulin, are less dispersed, meaning
the patient does not tend to change the doses very often.

Table 3.1 Descriptive statistics of BG, Rapid Insulin, Long Insulin, and Carbohydrates

BG [mg/dl] Rapid Insulin [units] Carbohydrates [grams] Long Insulin [units]
count 11970 640 1372 126
mean 137,69 5,01 16,01 12,55
std 51,06 2,84 13,27 2,24
min 50,44 1 2 5
max 340,5 10 70 15
25% 99,09 2 7 11
50% 131,52 5 11 13
75% 169,35 8 20 15

To get a better idea of the underlying distributions, BG and carbohydrates distributions are
shown in Figure 3.1. It is visible that carbohydrates distribution has a longer tail than BG.

Long-term BG behavior is shown in Figure 3.2 with important thresholds highlighted. In
order to get a better insight into the causes of BG changes, a single day of BG behavior is
displayed in Figure 3.3 with a scatter-plot on top indicating events of meals and insulin injections.
Each scatter point also contains the number of grams of carbohydrate or insulin dosage. All
scatter points are min-max normalized.

15
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Figure 3.1 Distribution of BG levels and carbohydrates consumed

Figure 3.2 Long-term BG behavior with purple line threshold for hypoglycemia, orange for eug-
lycemia, and red for hyperglycemia



Blood Glucose Sensitivity to Insulin & Carbohydrates 17

Figure 3.3 Short-term BG behavior labeled with insulin and carbohydrates

3.2 Blood Glucose Sensitivity to Insulin & Carbohydrates

In this section, BG changes are explored in response to insulin injections and carbohydrate
consumption. Changes are investigated in 30-minute and 1-hour windows, t+ 1

2 hour and t+1hour,
with an insulin or carbohydrate record at the beginning t of the window. In order to minimize
the effect of other events, any windows with an insulin or carbohydrate event in time interval
[t − 4hours, t] and [t − 2hours, t] respectively will not be considered. The 4-hour filter was chosen
for rapid insulin because the effect of Fiasp insulin lasts 3 to 5 hours [23]. For carbohydrates,
a 2-hour filter was chosen as this is the time it should take for carbohydrates to digest and
turn into blood glucose [24]. Histograms of BG change over 30 minutes and 1 hour following a
carbohydrate or insulin event are available in Figure 3.4.

The post-carbohydrate BG change distributions are shifted towards positive values, indicating
there is an increase in BG, as expected after consuming carbohydrates. Also, the 1-hour win-
dow is shifted more towards positive values than the 30-minute window, therefore BG keeps on
increasing after 30 minutes. The same effect is seen in the post-insulin BG change distributions,
except it is shifted towards negative values.

One downside of this analysis is that there are not many events where the effects of fac-
tors influencing BG levels can be analyzed in isolation. Specifically, it is 47 and 38 events for
carbohydrates for 30-minute and 1-hour windows respectively, and 60 and 33 events for rapid
insulin.

3.2.1 Blood Glucose Change Behavior
Instead of looking only at the BG change between two time instances, in Figure 3.5 and Figure
3.6 complete curves of BG behavior are shown. The logic for filtering remains the same as
previously for the BG change distributions, but the BG change is plotted over the whole 1-hour
window. All windows were moved so that they start at 0. The value plotted is thus the BG
change.
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Figure 3.4 Effect of carbohydrates and rapid insulin on BG change

Figure 3.5 BG behavior after carbohydrates consumption with the red-highlighted average
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Figure 3.6 BG behavior after rapid insulin injection with red-highlighted average

3.3 The Effect of Physical Activity on BG
Another factor that is important for BG dynamics is physical activity. The most readily available
physical activity indicators on fitness trackers are distance, heart rate, and on more advanced
trackers, energy expenditure. Investigation of the impact of these features on BG levels is
assessed.

Table 3.2 shows basic descriptive statistics for these features, all of which were resampled to
15-minute frequency.

Table 3.2 Descriptive statistics of Distance, Heart rate, and Calories Burned

Calories [kcal] Distance [meters] Heart rate [bpm]
count 12289 12289 12289
mean 26,49 65,37 71,07
std 15,76 148,62 13,24
min 6,46 0 47,02
max 135,29 1151,1 142,87
25% 16,4 0 60,31
50% 19,94 4,8 69,53
75% 29,61 54,8 78,84

To see if there is a relationship between physical activity and BG levels, the correlation
between physical activity and BG levels is examined. Specifically, it is the correlation between
current BG and 1-hour and 3-hour physical activity history. The sum is used as an aggregating
function for distance and calories burned and mean for heart rate. The correlations can be seen
in Figure 3.7.

There is not a strong correlation between BG levels and previous physical activity. it was
mentioned in Chapter 1 that physical activity may both increase and decrease BG, depending on
the nature of the activity. It is possible that this is the reason for the weak correlation observed.
However, there is a strong correlation between distance, calories, and bpm.
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Figure 3.7 Correlation between BG levels and previous physical activity

Figure 3.8 BG Fast Fourier transform

3.4 Blood Glucose Periodicity
Meals, insulin injections, and times of higher physical activity tend to have daily patterns.
Furthermore, E. Van Cauter et al. [25] have shown that circadian rhythm and sleep influence
BG levels as well. They further discovered that periodicity may also come from hormones like
the growth hormone, whose increased morning secretion was correlated with an absolute rise in
BG levels.

BG periodicity is assessed in Figure 3.8 by calculating a Fast Fourier transform over BG
levels sampled in a 15-minute frequency. The amplitudes are significantly higher at 1-day and
half-day frequencies suggesting daily and day-night periodicity.



Chapter 4

Model Implementation &
Evaluation

ANN-based models and SVMs were implemented and evaluated. In particular, it is feed-forward
neural networks (FFNN), recurrent neural networks (RNN), and SVM regression models with
radial basis function (RBF) kernel. Both ANNs and SVMs with RBF kernel have the ability
to model non-linear phenomena like BG dynamics. Implementation, training, and evaluation of
ANN models was realized with the support of the Tensorflow library [26] and with the Scikit-
learn library [27] for SVM-based models. The evaluated prediction horizons are 30 minutes, 1
hour, and 2 hours.

4.1 Model Evaluation Strategy
Two metrics are used to quantify the prediction performance of models. A Root mean squared
error (RMSE) and for clinical accuracy, it is the Clarke error grid analysis (CEGA) [28].

For a series of BG measurements Y and BG predictions Ŷ , both having an equal length n,
RMSE is defined as

RMSE =

√√√√ 1
n

n∑
i=1

(
Yi − Ŷi

)2
(4.1)

CEGA is a common tool used to evaluate the clinical accuracy of BG prediction models. It
is a scatterplot of reference BG values and predicted BG values and is divided into five zones.

Zone A contains predicted BG values that are no more than 20% deviated from the actual
BG measurements,

Zone B contains those points that are outside of 20% but would not lead to inappropriate
treatment,

Zone C are points that would lead to unnecessary treatment,

Zone D contains points indicating a potentially dangerous failure to detect hypoglycemia or
hyperglycemia, and

Zone E contains clinical errors where hyperglycemia is confused for hypoglycemia and vice
versa.

21



22 Model Implementation & Evaluation

Figure 4.1 Clarke error grid

In short, A is the ideal zone and our target is to have all points in it, B contains benign errors
and the rest of the zones should contain as few points as possible. An example of how CEGA
looks can be seen in Figure 4.1.

4.2 Data Manipulation
For the purpose of this section, the following capitalized terms are used when talking about
dataset features: RapidInsulin, LongInsulin, Carbohydrates, Distance, Calories – calories burned,
Bpm, and BG.

4.2.1 Preprocessing
Firstly, individual data sources (the CGM readings, data from an electronic diary, and physical
activity from a fitness tracker) are concatenated into one. Afterward, all features not utilized by
the models are thrown away.

The next step is to identify missing values. As mentioned in Chapter 2, the glucose sensor
needs to be replaced every 14 days. The newly inserted sensor needs a 1-hour warm-up period
before it can start providing BG readings. Additionally, if the sensor is not read with the reader
at least every 8 hours, data gets overwritten and lost. This may happen if a patient sleeps for
more than 8 hours. In such a case, some BG readings may be missing at the sleep onset. Glucose
readings are expected every 15 minutes but occasionally may get delayed. Any gaps between BG
measurements larger than 20 minutes (1 third of the expected sampling rate) are identified. The
total amount of such gaps was 61, with the average gap duration being 1 hour and 14 minutes.
Time periods without BG readings make up approximately 2,5 % of the whole 128-day-wide
dataset.

Gaps in physical activity were identified by first up-sampling to a 15-minute sampling rate
(the rate of CGM) and then looking at samples with no data. There were no missing data for
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Calories and Distance and only 0,7 % of missing Bpm readings. All missing data is filled using
linear interpolation, but for BG values, interpolation is done only on the train and validation
dataset, not on the dataset used for final testing.

4.2.2 Feature Extraction
In Chapter 3 daily BG periodicity was identified, for that reason, the hour of day feature is added
with values from 1 to 24, it will be referred to just as Hour.

As stated in Chapter 2 since 9. 1. 2022 the patient recorded values of GI associated with the
consumed meal. GI notes are first transformed to numeric values using the following mapping:
Low → 15, Medium → 45, High → 75, V eryHigh → 95. GI values are then transformed into a
new feature GlycemicLoad, calculated as

GlycemicLoadi = (GIi · Carbohydratesi)
100 (4.2)

for any meal i recorded in the electronic diary.
All features are resampled to a 15-minute sampling rate. The sum is used as an aggregating

function for RapidInsulin, LongInsulin, Carbohydrates, GlycemicLoad, Distance, and Calories.
For Bpm, Hour, and BG, the mean aggregating function is used. Thus, an evenly spaced multi-
variate time series is created, which will be easier to work with later on.

To capture data about insulin sensitivity, a RapidInsulin6d feature is created, which contains
the 6-day mean total daily insulin dose, and any data missing at the first 6 days of the dataset
is back-filled.

As stated in Chapter 1, the long insulin used in this study has an approximately 24-hours
long activity period. So that it is known at any point in time, what was the last LongInsulin
dose, the last LongInsulin dose is forward-filled over the dataset until the next LongInsulin dose,
and so on all the way to the end of the dataset.

4.2.3 Normalization and Split
The data is split into a training, validation, and testing dataset, and each feature value Xi at
time i is min-max normalized.

Xi = Xi − Xmin

Xmax − Xmin
(4.3)

where Xmin and Xmax are respectively, the minimum and the maximum value of feature X seen
in the training dataset.

The train-validation-test split percentages are 70 %, 20 % and 10 %. There are 8602, 2458,
and 1187 rows in the training, validation, and testing dataset respectively, which translates to 89,
25, and 12 complete days. Data is not being randomly shuffled before the split. It ensures that
slicing the data into windows of consecutive samples will be possible and it makes validation and
test results more realistic, as models are evaluated on data collected after the model training.

4.2.4 Insulin Activity Curves
Georga et al. [10] used meal and insulin compartmental models instead of raw carbohydrate
and insulin samples. The meal compartmental model estimates the rate of appearance of meal-
derived glucose in the systemic circulation [29] and the insulin compartmental model estimates
the plasma insulin concentration [30]. They used values from these models that expand up to
the time for which the prediction is to be made, i.e., t + PH. The upcoming values within the
time interval [t, t + PH] are computed by the compartmental models using the insulin and meal
recordings until the current time t [10].
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Due to the complexity of these mathematical compartmental models and difficulty finding
appropriate parameter values for them, we decided to use a simplistic insulin model, inspired by
the DIY closed-loop system LoopKit [31]. The model used is capable of estimating the active
insulin in the body by using an exponential decay function that models the insulin activity. This
function will be different between different types of insulin and is determined by two parameters,
td and tp. td is the total duration in minutes when the injected insulin is active and tp is the
time to peak insulin activity in minutes. The IOB(t) (insulin-on-board) function is defined the
same as in LoopKit [31]. It takes a parameter t, the time since insulin injection, and returns a
value from interval [0, 1] which is the estimated percentage of remaining active insulin.

τ = tp
(1 − tp

td )
1 − 2 tp

td

a = 2 τ

td

s = 1
1 − a + (1 + a) · exp(− td

τ )

IOB(t) = 1 − s(1 − a)
(( t2

τ · td · (1 − a) − t

τ
− 1
)

· exp
(

− t

τ

))
(4.4)

where τ is the time constant of exponential decay, a is the rise time factor and s is the auxiliary
scale factor.

IA(t) is a function for insulin absorption and shares the td and tp parameters with IOB(t).
td and tp should be chosen so that IA(t) models the real insulin absorption as close as possible.

IA(t) = s

τ2 · t ·
(

1 − t

td

)
· exp

(
− t

τ

)
(4.5)

Figure 4.2 shows plotted IOB(t) and IA(t) with parameters ta = 55 and td = 300 which were
picked for our insulin model.

Figure 4.2 Insulin-on-board and insulin absorption curves

A new feature called rapid insulin IOB (RIOB) is created and is calculated as follows. First
a new column is created for the feature with the same length as the entire dataset and is filled
with zeros. Next, for each non-zero RapidInsulin sample D at time t, a slice of RIOB values
is taken from time interval [t, t + td] and each RIOBi for i ∈ [0, td] from the slice is filled as
RIOBi = RIOBi + D · IOB(i). As visible in the equation, if RIOBi is not zero, we do not
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overwrite, but add to it, so that if insulin activity from two or more separate insuline injections
overlap, we compound the expected RIOB. The quantity measured by RIOB is the estimate of
insulin units active in the circulation.

The benefit of RIOB is that our models can now use ”future values” as inputs. If a prediction
is to be made at time t of BG at time t + PH, RIOB can be calculated for the whole [t, t + PH]
time interval from rapid insulin samples seen before t. The next benefit is that the insulin model
is defined by only 2 values, which makes it much simpler than compartmental models.

4.2.5 Creating windows
For any time t and PH, our models should predict BG value at time t + PH based on historical
samples seen before time t. In order to do that, there must be a way of preparing windows of
historical values as model inputs and future BG as model targets. For that reason, a Window-
Generator class was created. It can create windows of input and output tensors in the form of a
TensorFlow dataset. The main parameters of WindowGenerator are:

The features used (BG, Carbohydrates, etc.).

Width of the input (in time steps), could also a be a list of widths, with each width corre-
sponding to a different feature.

The PH, also measured in number of time steps, e.g. PH of 4 means 1 hour (15-minute
sampling frequency),

Batch size – ANN-based models are usually trained on batched data, this parameter sets the
number of windows per batch.

The windows are created with a stride equal to 1. So, for a total window size equal to 5, the
window intervals wi will be w0 = [0, 4], w1 = [1, 5], . . .

If all features have an equal input width, the shape of the input tensor is
(BatchSize, InputWidth, NumberOfFeatures), where the BatchSize refers to the number of win-
dows in a single batch, InputWidth is the number of historical samples used and NumberOfFea-
tures is how many dimensions are used to represent data in one time step (sample). However, if
the input width is not the same for all features the shape will be(

BatchSize,

n∑
i=1

InputWidthi

)
(4.6)

for n being the number of features used. In other words, for variable feature input widths,
individual feature inputs are flattened and then concatenated into a single tensor.

Another feature of the WindowGenerator class is that it filters out windows with noise in
the time interval [t, t + PH]. Noise is anything that can significantly affect the BG levels and
therefore would alter the mapping of inputs seen until time t onto the BG at time t + PH
as an output. The noise events are insulin injection, carbohydrate intake, and higher physical
activity. The threshold for high physical activity is a calory output of 81 kcal per 15 minutes.
Approximately 1,8 % of our samples are above this threshold.

WindowGenerator also filters out any windows containing gaps of missing BG data, this is
only necessary for the testing dataset, as it is not interpolated.

Without dropping noisy windows and windows with missing data there are approximately
8600, 2460, and 1190 windows for training, validation, and testing respectively. This drops down
by approximately 64 %, 45 %, and 29 % for 2-hours, 1-hour, and 30-minutes PHs respectively
after the reduction.
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4.2.6 Feature Selection
The quality of some of the features is assessed before creating and optimizing hyper-parameters
of the models. This would ideally be done as part of the model optimization process, where
for each model type, the best-performing set of features and input widths would be identified.
However, it would significantly increase the required computational resources. For that reason,
the quality of the features is assessed either in pairs or by comparing the performance of a model
before and after adding a new feature.

The quality of the RIOB feature was assessed in pair with the RapidInsulin feature. Two
LSTM models were used, both having the same hyper-parameters and the same window input
width. An approximate 3 % gain in prediction performance was seen when using RIOB compared
to the RapidInsulin feature.

Pair assessment was also performed on GlycemicLoad and Carbohydrate features using FFNN
models, both having the same parameters and input widths. There was no performance gain in
using GlycemicLoad. The failure of GlycemicLoad to increase performance might be attributed
to low quality of GI notes or to the fact that GI was collected only after 9. 1. 2022.

A reference FFNN model trained on windows with BG, Carbohydrates, and RIOB as features
was compared with 3 other models where RapidInsulin6d, LongInsulin, and Hour were added in
isolation, all having an input width of 1. There was about 1 % performance gain when using
LongInsulin and Hour, but no performance was gained when using RapidInsulin6d.

Lastly, the same reference FFNN model was compared to a model where calories were added
as input. There were no performance gains seen when using the calories feature, even when
the reference model parameters were altered by adding more neurons to the hidden layer. The
failure of calories to increase the prediction performance was seen again in LSTM models. 2
LSTM models were created, both having the same window input width, and with only one
having access to the calories feature. Hyper-parameter tuning was performed on both models
and no performance gain was seen in the LSTM model using calories.

4.3 Model Selection and Evaluation

For each of the ML models implemented, hyper-parameters tuning is performed. ANN-based
models are tuned using a relatively novel HyperBand hyper-parameter tuner [32] implemented
in TensorFlow. Each ANN model has a maximum of 70 training epochs with early stopping
if validation loss fails to decrease in 2 consecutive epochs. The early stopping helps us save
resources as well as keep the model from overfitting the training data. HyperBand algorithm is
always run 8 times. All models use adaptive learning rate optimizer Adam [33]. The learning rate
for Adam is determined experimentally using the HyperBand tuner with 1 ·10−2, 1 ·10−3, 1 ·10−4,
being the possible values.

4.3.1 Baseline
Before implementing any more complicated models for BG prediction, a naive baseline is con-
structed as a point of comparison. The baseline model assumes BG will remain the same and it
always returns the current BG as a prediction. It takes time for BG to change, so for short PHs,
this assumption is not a bad starting point. Of course, for longer PHs the baseline will not work
very well. The baseline was evaluated on the test dataset. The results for 30-minute, 1-hour,
and 2-hour PHs can be seen in Table 4.1.
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Table 4.1 Baseline performance evaluation by PH

PH RMSE [mg/dl] Zone A Zone B Zone C Zone D Zone E
30 minutes 22,99 0,83 0,16 0 0,01 0

1 hour 33,12 0,66 0,30 0,005 0,03 0,005
2 hours 43,69 0,44 0,42 0,02 0,12 0

4.3.2 Feed Forward Neural Networks
The proposed FFNN uses Rectified Linear Unit (ReLU) activation function in its hidden layers
and a linear activation function in the output layer with one neuron. The number of hidden
layers as well as the number of neurons in each layer is determined in hyper-parameter tuning.
Another hyper-parameter is dropout after each hidden layer determined by the dropout rate,
which can be either 0; 0,05; 0,10, or 0,15. Dropout is used in order to prevent the model from
overfitting.

For each PH, the FFNN models were trained on the following features: BG, Carbohydrates,
LongInsulin, Hour, and RIOB with feature input widths: 8 (2 hours) for BG and Carbohydrates,
1 for Hour and LongInsulin, and 8 (2 hours) of estimated future RIOB values. Individual feature
inputs are flattened and concatenated into a single tensor input.

The optimal hyper-parameters for 2-hours, 1-hour, and 30-minutes PHs can be seen in Table
4.2.

Table 4.2 Optimal FFNN hyper-parameters per each PH

PH 1. layer neurons 2. layer neurons 1. dropout 2. dropout learning rate
30 minutes 40 0 0 0 1 · 10−3

1 hour 48 8 0 0 1 · 10−3

2 hours 40 24 0,05 0,1 1 · 10−3

The performance of the best FFNN model for each PH can be seen in Table 4.3.

Table 4.3 FFNN performance evaluation by PH

PH RMSE [mg/dl] Zone A Zone B Zone C Zone D Zone E
30 minutes 18,26 0,87 0,12 0 0,01 0

1 hour 25,52 0,73 0,21 0 0,06 0
2 hours 27,11 0,52 0,27 0 0,21 0

4.3.3 Recurrent Neural Networks
A Long-short-term memory (LSTM) recurrent neural network is used. It was developed by Sepp
Hochreiter and Jürgen Schmidhuber [34]. The property of LSTM is that it can store information
over extended time intervals, which makes it suitable for applications in machine translation,
image captioning, and time-series forecasting.

In contrast with the FFNN, inputs can not be flattened before passing them as an input
to the network. The LSTM network expects the input to be a 3-dimensional tensor with a
shape (BatchSize, InputWidth, NumberOfFeatures). Because of this limitation, LongInsulin and
Hour features were not applicable. So, for each PH, the LSTM models were trained on BG,
Carbohydrates, and RIOB. The input width is 20 (5 hours) for all of the features.

The main LSTM parameter is ”units”, this however does not refer to the number of LSTM
cells nor the number of time steps, but to the dimension of state output from the LSTM cell.
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Figure 4.3 shows a graphical interpretation. Units parameter is chosen in hyper-parameter
tuning. The dropout rate is determined in hyper-parameter tuning as well and has the same
domain of values as FFNN models.

Figure 4.3 LSTM architecture and explanation of number of units parameter

The optimal LSTM hyper-parameter can be seen in Table 4.4.

Table 4.4 Optimal LSTM hyper-parameters per each PH

PH units dropout rate learning rate
30 minutes 32 0,15 1 · 10−3

1 hour 32 0 1 · 10−2

2 hours 56 0,05 1 · 10−2

The performance of the best LSTM model for each PH can be seen in Table 4.5. Furthermore,
visualizations of predictions for 2-hours PH are shown in Figure 4.4. Figure 4.5 shows multiple
consecutive predictions made with 30-minute PH on a slice of the time series.

Table 4.5 LSTM performance evaluation by PH

PH RMSE [mg/dl] Zone A Zone B Zone C Zone D Zone E
30 minutes 17,06 0,9 0,09 0 0,01 0

1 hour 24,32 0,78 0,19 0 0,03 0
2 hours 30,2 0,55 0,27 0 0,18 0
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Figure 4.4 LSTM predictions for 2-hours PH

Figure 4.5 Multiple LSTM predictions for 30-minute PH
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4.3.4 Support Vector Machines
SVMs are investigated as an alternative to ANN-based approaches. In particular, it is support
vector regression [35], as the issue of BG prognosis is estimating a real number (the BG level at
some point in time). SVMs may be beneficial in cases of limited datasets and are computationally
less expensive than the ANN-based approaches. The same as ANNs, SVMs are capable of
modeling non-linear phenomena, like BG dynamics.

RBF kernel function is used in the SVM and the parameters are C, ϵ and γ. ϵ is the maximal
error, where no penalty is associated in the training loss function with points predicted within a
distance ϵ from the actual value. C is the regularization parameter, and simply speaking, as C
increases, our tolerance for points outside of ϵ also increases. Lastly, γ is a RBF kernel coefficient.
The inputs of SVM models are exactly the same as inputs of FFNN models.

SVM hyper-parameters were tuned by simply iterating over all combinations and choosing
the best-performing one. The optimal SVM hyper-parameters can be seen in Table 4.6.

Table 4.6 Optimal SVM hyper-parameters per each PH

PH γ ϵ C
30 minutes 0,27 0,02 1

1 hour 1 0,02 1
2 hours 1 0,06 1

The performance of the best SVM model for each PH can be seen in Table 4.7.

Table 4.7 SVM regression performance evaluation by PH

PH RMSE [mg/dl] Zone A Zone B Zone C Zone D Zone E
30 minutes 17,41 0,9 0,09 0 0,01 0

1 hour 24,9 0,8 0,17 0 0,03 0
2 hours 27,48 0,6 0,25 0 0,15 0

4.3.5 Multi-output Predictions
The goal of the thesis was to predict single BG values at a pre-defined PH, however, it is possible
to predict not only the single BG value but also a BG curve – multiple consecutive future BG
values. Proposed ANN-based models can be simply modified to predict BG curves, by adding
more output neurons, one for each future BG value. Figure 4.6 shows a plot of targets and
predictions from a LSTM model trained to predict the next 8 BG values (2 hours).

4.4 Results

RMSE results indicate that the best model for a 30-minute PH is LSTM with 17,06 mg/dl RMSE.
LSTM also performs the best on a 1-hour PH with 24,32 mg/dl RMSE. However, for 2-hours
PH, the best model is a FFNN with 27,11 mg/dl RMSE. When inspecting which models had the
highest percentage of points in Zone A of the CEGA grid, SVMs had the best performance for
all PHs, having 90 %, 80%, and 60 % of points in Zone A respectively for 30-minute, 1-hour, and
2-hours PHs. The individual CEGA plots for each PH can be seen in Figure 4.7, 4.8, and 4.9.

When comparing the performance achieved with our models to the performance of existing
approaches, our models tend to perform better in the long-term PHs and worse in the short-term
30-minute PH. The only publications with a better result for 2-hours PH are the ones from
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Figure 4.6 Multi-output prediction of next 8 BG samples

Georga et al. [10] [36]. Our results for 2-hours PH outperform all of the other publications from
the review by Ashenafi Zebene Woldaregay et al. [7] as seen in Figure 1.2.

Usage of insulin and meal models capable of modeling the insulin activity and estimating
the velocity of meal-derived glucose release seems to help with the prediction performance. We
have also verified this by seeing better results with the RIOB feature than with raw RapidInsulin
samples.

We believe that further improvement to the performance can be made by using a more
granular sampling frequency. All of the used features were resampled to a 15-minute sampling
frequency as this is the sampling frequency of the CGM sensor. This causes information loss,
especially in RapidInsulin and Carbohydrates features, because the time of insulin injection or
meal consumption will be less precise.
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Figure 4.7 SVM CEGA plot for 2-hour PH

Figure 4.8 SVM CEGA plot for 1-hour PH



Results 33

Figure 4.9 SVM CEGA plot for 30-minute PH
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Chapter 5

Conclusion

The goal of this thesis was to analyze BG dynamics, research and evaluate models for BG
prediction and to collect a dataset containing BG levels, insulin and carbohydrates intake notes,
and physical activity.

The author fully met all of these goals. Firstly a rich and extensive dataset with features
relevant to BG analysis and prediction was collected. The dataset contains over 4 months’ worth
of data collected in free-living conditions. We went further than required by adding additional
features to the dataset.

We analyzed the dataset in order to identify and quantify the effects of various factors on BG
levels. It was done by studying how BG changes in response to these factors in isolation.

We implemented ANN-based and SVM-based models for BG prediction for 30-minute,
1-hour, and 2-hours prediction horizons. With regard to the reviewed academic literature on BG
prediction, our models for 2-hours PH are amongst the best-performing.

To our knowledge, exponential decay functions as an insulin model were not previously used
with SVMs and ANNs. We explored them as an alternative to compartmental models and
confirmed that they can improve the performance of ML models.

Since our prediction models are solely trained on data from consumer-grade hardware cap-
tured in free-living conditions, we believe that there is a clear path forward to start using them as
a real-time decision-support system. Of course, it must be done with due diligence and caution as
models still make errors, but the clinical accuracy, especially for short PHs, suggests these errors
are in a tolerable range. We believe, that the prediction performance can be further improved
with new approaches and by using more and/or different features. That is why we decided to
make our dataset available publicly to foster open collaboration and competition in developing
the best models for BG prediction.
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figures.....................................all of the figures and visualisations generated
models.................................exports of all best-performing trained ML models
dataset.py..............................python source code for reading the data exports
fitbit visualisations.ipynb .............................. visualisations of Fitbit data
visualisations.ipynb...........................visualisations used in Chapter Analysis
prediction models.ipynb.....................data preprocessing and ML model creation
requiremets.txt....................................................list of dependencies
data

fitbit data........................................exports from Fitbit fitness tracker
mySugr data.........................................exports from mySugr mobile app
reader data........................................exports from CGM Freestyle libre

thesis text
thesis.pdf..........................................text of the thesis in PDF format
thesis.zip ................................................. LATEX thesis source code
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