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Abstract

Logistic regression is a classification method used in machine data processing. This thesis deals
with the optimization of the Bayesian estimate of the parameters of the logistic model using
Laplace approximation. The state-of-the-art methods usually rely on suboptimal Laplace-type
approximations. This thesis goes one step further. It investigates the impact of a more precise
approximation on the estimation quality. The results obtained by computationally intensive
optimization are compared with the traditional less intensive but also more imprecise.

Keywords logistic regression, Bayesian inference, binary classification, parameter estimation,
machine learning, Laplace approximation

Abstrakt

Logistická regrese je klasifikačńı metoda použ́ıvaná při strojovém zpracováńı dat. Tato práce se
zabývá optimalizaćı Bayesovského odhadu parametr̊u logistického modelu pomoćı Laplaceovské
aproximace. Dosavadńı metody většinou spoléhaj́ı na suboptimálńı Laplaceovské aproximace.
Tato práce jde ještě o krok dále. Zkoumá dopad přesněǰśı aproximace na kvalitu odhadu.
Výsledky výpočetně náročných optimalizaćı jsou zde porovnány s tradičńımi optimalizacemi,
jež jsou sice výpočetně jednodušš́ı, ale také méně přesné.

Kĺıčová slova logistická regrese, Bayesovská inference, binárńı klasifikace, odhad parametr̊u,
strojové učeńı, Laplaceovská aproximace
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Introduction

Nearly everything in this world can be a source of all kinds of data. With their help, we extend
our knowledge in various fields of interest or improve existing processes in all areas of human
activity. The field of science dedicated to processing data, understanding their structure, and
predicting further behavior of their source is called machine learning and features various models
designed for this purpose.

General linear models are a class unifying several statistical models that describe the connec-
tion between a variable and its regressors. This thesis deals with models used for classification,
more specifically binary classification. Such methods are, for example, logistic regression and
probit regression. There are other methods, but we will leave them aside for the purposes of this
thesis.

The popularity of these models lies in their versatility. They are used in various fields such as
medicine, economics, and risk management [1, 2, 3]. Logistic regression is a model that predicts
the probability that the predicted variable belongs to a particular class (for example, if the value
of the predicted variable is 1 in binary classification).

Parameters of the regression model can be estimated by either frequentist or Bayesian meth-
ods. Frequentist methods are based on processing the whole dataset at once and estimating the
most likely parameters to generate this dataset. This allows us for very precise estimation on
large datasets.

On the other hand, Bayesian estimation works by constantly updating existing information
about the subject, which allows us to use prior knowledge on the matter. This also allows us to
incorporate the data into the model online without processing the whole dataset again.

Goals
The main goal of this thesis is to examine the impact of approximations on the quality of Bayesian
estimators in logistic regression. First, we will introduce the Generalised Linear Models, partic-
ularly the logistic regression model. Then we will describe the estimation methods - specifically
the MLE estimator and the Bayesian estimator. The practical part of this thesis is dedicated to
testing the impact of optimizations on a simulated dataset. After that, the same will be done for
a real-world dataset, comparing the results of the optimized Bayes estimator with the one-step
Bayes estimator and MLE estimator.
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Chapter 1

State of Art

The methods described in this thesis are used for solving the problem of binary classification.
We will deal primarily with supervised-learning classification methods, more precisely generalized
linear models.

Among the other supervised-learning classification methods using the Bayesian methods be-
longs the naive Bayes classifier, which is often used in spam filters [4], or Bayesian Networks
[5].

One of the most popular classification methods is the decision trees [6]. Their main advantage
is their comprehensibility to human observers. They are often used in expert systems, where we
understand the data we want to classify. Due to their versatility, they can be used in various
fields, such as agriculture, text sentiment classification, and medicine [7, 8, 9].

Another classification method is support vector machines [10]. In this method, the data
points are viewed as n-dimensional vectors. We then find the hyperplane, where the margin
between the points belonging to a different class is most significant. The new points will then
be classified by the side of the gap they belong to. Support vector machines are being used in
text categorization [11].

Another popular classification method is k-nearest neighbors (k-NN). Training data are rep-
resented as vectors in n-dimensional space. New data samples are then added to the space and
assigned class corresponding to the class majority of their nearest neighbors - vectors closest to
the one we added according to the selected metric. Further reference in [12]. The advantage
of this approach is that we do not need to teach the model - instead, what is computationally
intensive is the classification itself. These properties make k-nn useful for image segmentation
[13, 14].

Neural networks can also do classification. Neural networks are (as the name suggests)
networks composed of one or more layers of neurons inspired by neurons in the human brain.
Each neuron has its activation function whose input is either input of the neural network (for
the first layer) or the output of one or more neurons from the previous layer (for further layers).
They are used for a large variety of tasks in various fields such as medicine, image classification,
or text classification [15, 16, 17].

Methods that combine several classifiers are called ensemble methods. The most popular
members of this category are bagging (bootstrap aggregating) and boosting. Bagging is based
on separating data into several chunks that we call bootstrap datasets. Each bootstrap dataset
is then processed with a different model. The final result is then the result given by most of

3



4 State of Art

the models. We sequentially process the whole dataset with each model when using boosting
methods. After each fitting, we identify the previously misclassified instances and elevate their
priority for the next model. Boosting gives us more precise results in some cases, but bagging,
on the contrary, is less prone to overfitting.

As said in the introduction, the scope of this thesis is the GLMs. Their class was popularized
by Nelder [18] and features a wide variety of models for both regression and classification. In this
thesis, we will deal particularly with the logistic model. Logistic model invention is according to
Cramer [19] attributed to Verhulst, who in his work La loi d’accroissement de la population first
used the term ”logistic” [20]. It uses the logit link function to deliver the probabilities of data
samples belonging to a particular class.

Another popular model for classification from this class is probit model, whose invention
is according to [19] often being attributed to Bliss [21] and Gaddum [22]. It works on similar
principles as the logistic regression, but instead of using the logit link function defined as:

logit(x) = log
(

1
1 − x

)
, (1.1)

it uses the probit link function which is defined as:

probit(x) = Φ−1(x), (1.2)

where Φ denotes the cumulative distribution function of standard normal distribution. It has
uses in economics and risk management [2, 3].

This thesis is focused on the estimation of the parameters of the logistic models. Generally,
there is two approaches - the Bayesian and the frequentist inference.

Frequentist interference is, in most cases, represented by MLE estimation. MLE is based on
the likelihood function, which tells us, how probable are the processed data for our estimated
parameters in the selected model. Maximizing this function gives us the maximal likelihood
estimate.

While the MLE technique gives us parameters that are most likely to generate the dataset
we used it on, the Bayesian approach returns their probability distribution. This distribution is
often not analytically tractable. Thus we have to use approximations.

There are many ways to approximate the posterior distribution, such as Monte Carlo meth-
ods based on numerical sampling or Laplace approximation. From this class, the algorithms are,
for example, Markov Chain Monte Carlo, first introduced in 1949 in [23], sampling importance
resampling algorithm, introduced by Rubin in [24] and the weighted likelihood bootstrap intro-
duced by Newton and Raftery in [25]. The weighted likelihood bootstrap is an extension of the
Bayesian bootstrap algorithm introduced by Rubin in [24].[26] The Markov Chain Monte Carlo
methods include Gibbs sampling, introduced in [27] by Geman and Geman, which can be used
in both logit and probit regression [28].[29]

Lewis in [26] also reviews methods for estimating the predictive distribution needed for making
predictions of the unknown value. The method Lewis states are: the harmonic mean of the output
likelihoods and modifications thereof [25], bridge sampling [30] and path sampling [31].

Another way to approximate the analytically intractable distributions is the variational
Bayesian methods, which can be used as the alternative to Markov Chain Monte Carlo methods.
For further reference see [32]. This thesis deals with optimizations in Laplace approximation.
Laplace approximation works by approximating unknown distribution with a normal distribution
centered in the global maximum of the approximated distribution.



5

Finding the maximum of a function can be done in multiple ways. In this thesis, we will use
two methods. The first one is Newton-Raphson iterative algorithm described in [33, 29] and the
second one is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm described in [33] used
by scipy.optimize.minimize [34].

This subject is loosely related to the research of MacKay, who studied the improvement of
quality Bayesian prediction by changing the basis of Laplace approximation in [35]. Our research
aims to compare the quality of the parameter estimation based on improving the quality of
Laplace approximation by using the real global maximum of the approximated distribution.
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Chapter 2

Generalized linear models

In this chapter, generalized linear models will be introduced. Using their definition, we will
define the logistic model and then look into the two ways we can make estimates for this model
- MLE and Bayes inference.

2.1 GLMs - definition and basic description
First of all, the author will introduce a proper definition of GLMs. The generalized linear models
consist of three components[36]:

Random component.

Linear predictor

Link function

The author will now describe and define each component of a GLM.
Let us suppose we are observing a stochastic process. We are interested in a specific quantity

that is the outcome of the process. The vector containing these observations is called the random
component of a GLM.

▶ Definition 2.1.1 (Random component of a GLM). Let y = (y1, . . . , yn) be a vector of n
observations of a stochastic process with probability distribution from the exponential family. We
then call y the random component of an associated GLM.

Together with the random component, we have acquired the data we suspect are linked to
the observed variable we try to explain. For example temperature of a particular object during
the day would be connected to its size, the thermal conductivity of the material it is made from,
etc. These explanatory variables are called regressors. Each regressor has its coeficients. The
vector of weighted regressors is called the linear predictor of a GLM.

▶ Definition 2.1.2 (Linear predictor of a GLM). Let yt ∈ y be an observation from the random
component of a GLM y. Let xt ∈ Rn be its observable regressor and θ ∈ Rn a vector of unknown
regression coefficients. We then call the product θT xt a linear predictor of a GLM.

7



8 Generalized linear models

We then try to link the observed random component to the linear predictors using what is
called a link function. The model that links these data together is called the Generalized linear
model.

▶ Definition 2.1.3 (Generalized linear model). Let yt ∈ y be an observation from the random
component of a GLM. Let θT xt be a linear predictor. The generalized linear model then has
following form:

ŷt = E[yt|xt, θ] = g−1(θT xt) (2.1)

where ŷt = E[yt|xt, θ] is called expected value of yt and g(·) is a link function of the GLM.

From Definition 2.1.3, we can see that

θT xt = g(E[yt|xt, θ]) = g(ŷt). (2.2)

This is called mean function.
In the following subsection, we will go through a few examples of the link function and present

the usage of the models that use them.

2.1.1 Identity link function
Identity link function has the following formula:

xtθ
T = ŷt. (2.3)

The mean function of the identity link function is

ŷt = xtθ
T . (2.4)

The identity link function is used when the random component has a normal distribution.
The GLM model using this function is called the Linear regression model and is mainly used for
regression due to the range of link function ranging (−∞, ∞).

2.1.2 Negative inverse link fuction
The negative inverse function has the formula:

xtθ
T = −(ŷt)−1. (2.5)

Its mean function has the formula:

ŷt = −(xtθ
T )−1. (2.6)

The negative inverse link function is typically used for random components with exponential
or gamma distribution. Therefore the range of the link function is in (0, ∞).

2.1.3 Logit link function
The Logit link function can be used with multiple distributions. For the binominal logistic model,
the distribution used is the Bernoulli distribution.
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The link function for the logistic model has the formula:

xtθ
T = log

(
ŷt

1 − ŷt

)
. (2.7)

This is the logit function which will be properly defined in the next section, along with the
The mean function has the formula:

ŷt = 1
1 + e−xtθT . (2.8)

The range of the link function is (0, 1) - the probability of the ŷt being 0.
When the random component is not dichotomic, we call the model a multinomial logistic

model. For multinomial logistic regression, the distribution used is the Binominal distribution.
The link function then has the formula:

xtθ
T = log

(
ŷt

n − ŷt

)
. (2.9)

The mean function has the same formula as the one for the logistic regression model. Here
the output of the model returns the probability of the data sample belonging to the nth class.

2.1.4 Log link function
Log link function is used for Poisson regression and is used for the random component having
Poisson distribution. The negative inverse function has the formula:

xtθ
T = log(ŷt). (2.10)

Its mean function has the formula:

ŷt = extθT

. (2.11)

The output of the model is used, for example, to enumerate the rate of occurrences of indi-
vidual events.

2.2 Logistic regression model

Logistic regression model is used for binary classification, where the observed variable yt is
dichotomous:

yt =
{

1 with probability pt,

0 with probability 1 − pt.
(2.12)

Therefore it can be described by Bernoulli distribution with pt being its parameter:

yt = Bernoulli(pt) (2.13)

with E[yt] = pt. Instead of predicting the value of variable yt, we instead aim to predict the
probability:
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pt = p(xt, θ) = Pr(yt = 1|xt, θ). (2.14)

The logistic regression model uses logit function as a link function.

▶ Definition 2.2.1 (Logit function). Let x ∈ R. Then we define the logit function as:

logit(x) = log
(

1
1 − x

)
. (2.15)

f(x) l o g
x

1-x


0.2 0.4 0.6 0.8 1.0

-6

-4

-2

2

4

6

Figure 2.1 Logit function

The inversion of the logit function is called the logistic sigmoid with the formula

logit−1(x) = σ(x) = 1
1 + e−x

. (2.16)

Using 2.1.3 we can then describe the logistic regression model as:

ŷt = pt = p(xt, θ) = logit−1(θT xt) = σ(θT xt) = 1
1 + e−θT xt

. (2.17)

The logistic sigmoid is widely used in statistics and machine learning methods. Besides the
logistic regression, it can often be found in neural networks as their activation function. Using
the logistic sigmoid, we can assign a probability to variables ranging over (−∞, ∞).
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f(x)
1

e-x+1

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1.0

Figure 2.2 Logistic sigmoid function

2.3 MLE estimators

We search for the parameters that make our model most probable. In the logistic regression
model, we want to find θ that would maximize the probability of the observed data. For the
dataset with random component y and the matrix of its regressors X with coefficient vector θ,
the likelihood L(θ, X, y) for the logistic regression model is measured as:

L(θ, X, y) =
∏
i=1

p(xi, θ)yi(1 − p(xi, θ))1−yi (2.18)

=
∏
i=1

(
1

1 + e−θT xi

)yi
(

1 − 1
1 + e−θT xi

)1−yi

. (2.19)

To find the parameters with maximal likelihood, we have to find the maximum of this function.
To maximize this function, we set its derivative equal to zero. Because the derivative of 2.18
is computationally intensive, we can instead choose to derivate its logaritm - the log-likelihood
function:
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l(θ, X, y) = log
∏
i=1

p(xi, θ)yi(1 − p(xi, θ))1−yi (2.20)

=
∑
i=1

(
yi log

(
1

1 + e−θT xi

)
+ (1 − yi) log

(
1 − 1

1 + e−θT xi

))
(2.21)

=
∑
i=1

(
yiθ

T xi − log(1 + eθT xi)
)

. (2.22)

Then the maximal likelihood estimate for the parameter θ is the solution of the following equation:

∂l(θ)
∂θ

=
∑
i=1

xi(yi − p(xi, θ)) = 0. (2.23)

The solution of this equation can be computed using numerical optimization.

2.4 Laplace approximation
Before describing the Bayesian inference, we will go through the principles of the Laplace ap-
proximation. Note that the approach in this section is inspired by [29] which can be used for
further reference.

Let us suppose a random variable z with its distribution p(z) defined as:

p(z) = 1
Z

f(z), (2.24)

where
Z =

∫
f(z)dz (2.25)

is an unknown normalization coefficient.
Our goal is to approximate the distribution p(z) by placing the normal distribution with the

center in the mode of p(z). The mode of p(z) is the point where its first derivation is equal to 0.
After finding the modus, which can be done by the Newton-Raphson algorithm presented

later in this thesis, we have yet to identify the variance of the normal distribution. For this,
we can utilize the fact that the logarithm of normal distribution is a quadratic function of the
variables. Using this, we can consider a Taylor expansion of log f(z) centered on the mode z0 so
that

log f(z) ≃ log f(z0) − 1
2A(z − z0) (2.26)

where

A = −
(

∂2 log f(z)
∂z2

)
. (2.27)

From that, we can obtain normalized distribution q(z) using standard result of normalization
of a normal distribution

q(z) =
(

A

2π

) 1
2

e− A
2 (z−z0). (2.28)
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From this follows:

q(z) =
(

A

2π

) 1
2

e− A
2 (z−z0) = N (z|z0, A−1). (2.29)

Illustration image of how the approximation could look like can be seen in Figure 2.3.
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0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 2.3 Example of the Laplace approximation. The distribution (orange) is approximated by
normal distribution (blue)

2.5 Bayesian estimators
The Bayesian approach to statistical inference is a more natural process for humans. The idea
behind it is to periodically update previous knowledge, similar to human learning. In this section,
we will go through the basics of Bayesian inference, and then we will focus specifically on its
application in logistic regression.
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2.5.1 Basic principles of Bayesian inference
Haugh in [37] sums up four steps for Bayesian inference:

1. begin with some prior belief statement,

2. use the prior belief and a dynamic model to make a prediction,

3. update the prediction using a set of observations and an observation model to obtain a
posterior belief, and

4. declare the posterior belief our new prior belief and return to 2.

We will now go through all the steps and further describe each point.
Let y be a random component as defined in 2.1.1.Let us remind that y is dichotomous random

variable with the Bernoulli distribution with probability p. The prior belief in our case is our
information about the parameter p. Let us consider the following four examples of the prior
distribution of parameter p:
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1.0

f(p
)

D

Figure 2.4 Examples of prior distributions

In graph A, the prior distribution tells us nothing about the parameter p. All values in the
range (0, 1) are equally probable. Graph B shows the case where we suppose that the value of
p is more likely to be around 0.5, and the values on both sides are equally probable. Case C
presents the situation where we suspect that the value of p is closer to zero and much less likely
to have any value close to one. Graph D is a special case of a prior distribution. Here the value
is fixed at 0.2, and no amount of data can change this belief. This distribution is called the Dirac
Delta distribution.

For random component y, regressor X and regression coeficients θ, the Bayes theorem gives
us following formula for posterior distribution:

π(θ|x0:t, y0:t) = f(yt|xt, θ) · π(θ|x0:t−1, y0:t−1)
f(yt|x0:t, y0:t)

, (2.30)

where:

f(yt|xt, θ) is the data model,

π(θ|x0:t−1, y0:t−1) is the prior distribution,

f(yt|x0:t, y0:t) is normalizing term.

Note that t is the number of actual steps and notation π(θ|x0:t−1, y0:t−1) means that we are using
posterior distribution for the data samples x0, x1, . . . , xt and their respective random component
members.
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We want to avoid rewriting the normalizing term in each equation adjustment, so instead of
equality (=), we use the proportionality sign (∝), which denotes equality up to the normalizing
constant. Therefore we can write:

π(θ|x0:t, y0:t) =f(yt|xt, θ) · π(θ|x0:t−1, y0:t−1)
f(yt|x0:t, y0:t)

(2.31)

∝f(yt|xt, θ) · π(θ|x0:t−1, y0:t−1). (2.32)

In the next section, we will apply this estimate to the logistic model.

2.5.2 Bayesian estimation in logistic regression
Now let’s look into how the Bayesian estimation works with the logistic model. In Equation 2.17
we have defined the logistic model as:

ŷ = logit−1(θT xt). (2.33)

We try to predict the distribution of parameter θ based on the prior knowledge and the data
likelihood. The probability function for the Bernoulli distribution that the random component
has is

f(yt|θ, xt) = pyt(1 − p)1−yt . (2.34)

This is the likelihood of the data.
Prior distribution in this case is the posterior distribution from the previous step

π(θ|x0:t−1, y0:t−1). (2.35)

The new posterior distribution will then be computed as:

π(θ|x0:t, y0:t) ∝ f(yt|θ, xt) · π(θ|x0:t−1, y0:t−1) (2.36)

∝ pyt(1 − p)1−yt · π(θ|x0:t−1, y0:t−1). (2.37)

The problem with this update is that the posterior distribution is not analytically tractable.
We have to estimate the value. In this thesis, it is done by the Laplace approximation.

The Laplace approximation is used in both the estimation of the θ parameters and the final
prediction.

The simulation of the posterior distribution is done by a multivariate normal distribution
centered on the maximum of the posterior distribution. This means that the mean is our estimate
of the θ parameter (denoted θ̂). The variance of the normal distribution, Σ is computed as the
inverse of the second derivative of log-likelihood of θ estimate from the previous step (θ̂t−1) with
the formula:
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Σt = −

(
∂2l(θ̂t−1)

∂θ̂t−1∂θ̂t−1

)−1

. (2.38)

The prior distribution is then approximated by the multivariate normal distribution described
above as follows:

π(θ|x0:t−1, y0:t−1) ∼N (θ̂t−1, Σt−1) (2.39)

=
|Σ−1

t−1| 1
2

(2π) e− 1
2 (θ−θ̂t−1)T Σ−1

t−1(θ−θ̂t−1). (2.40)

When combining the above equation with the equation 2.36, we get following formula for the
posterior distribution:

π(θ|x0:t, y0:t) ∝ f(yt|θ, xt) · π(θ|x0:t−1, y0:t−1) (2.41)

∼ f(yt|θ, xt) · N (θ̂t−1, Σt−1) (2.42)

∝ pyt(1 − p)1−yt · N (θ̂t−1, Σt−1) (2.43)

∝ pyt(1 − p)1−yt ·
|Σ−1

t−1| 1
2

(2π) e− 1
2 (θ−θ̂t−1)T Σ−1

t−1(θ−θ̂t−1). (2.44)

New θ̂ is then found as MAP of π(θ|x0:t, y0:t), which is found by numerical optimization
methods.

2.5.3 Prediction in Bayesian logistic regression
The Bayesian prediction of the members of the random component is made by the predictive
distribution. Unfortunately, like the posterior distribution, the predictive distribution is not
analytically tractable. Therefore we will again use the Laplace approximation for the predictive
distribution. The predictive distribution for the random component y′ with the regressor x′ takes
the form [26]:

f(y′|x′, x0:t, y0:t) =
∫

f(y′|x′, x0:t, y0:t, θ) · π(θ|x0:t, y0:t)dθ (2.45)

≈2 · π ·

(
det ∂2l(θ̂t)

∂θ̂t∂θ̂t

)
· f(y′|x′, θ) · π(θ|x0:t, y0:t), (2.46)

where:

π(θ|x0:t, y0:t) is the posterior distribution from 2.36,

f(y′|x′, θ) is the likelihood of a random component,

θ we be approximated by θ̂t.

After that, we get y′ which is the probability of ŷt being 1. Therefore after receiving the
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results of predictive distribution, the prediction of ŷt will be assigned as follows:

ŷt =
{

1 if y′ >= m,

0 if y′ < m,
(2.47)

where m is our chosen threshold which usually has the value of 0.5.

2.5.4 Newton-Raphson algorithm
In both MLE and Bayesian estimators, we need to maximize functions; the likelihood function
in the MLE estimator and the posterior distribution in Bayesian estimation. This can be made
using numerical approximation methods. The method used for experiments in this thesis was
one step of the Newton-Raphson algorithm. For a description of the algorithm, we first have to
define the Hessian matrix.

▶ Definition 2.5.1 (Hessian matrix). Let β be a vector of n parameters (β1, β2, . . . , βn). Let
E(β) be a function of β. The matrix H has its members defined as

Hi,j = ∂2E(β)
∂βi∂βj

. (2.48)

We then call H the Hessian matrix for E(β).

The Newton-Raphson update for minimizing a function E(β) than takes the form [29]

βnew = βold − H−1 ∂E(β)
∂β

, (2.49)

where H is the Hessian matrix for E(β).
The details of the Newton-Raphson are beyond the scope of this thesis. They can be found,

e.g., in [29].
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Chapter 3

Experiments

The state-of-the-art algorithms that approximate the posterior distribution using the Laplace
method described earlier usually perform only one step of the Newton-Raphson optimization.
They rely on the fact that with an increasing number of measurements, the posterior sufficiently
concentrate at a tiny region, and the optimization thus reaches some point very close to the
maximum. Alternatively, the methods are stuck in a local minimum, as shown in 3.1.

0 2 4 6 8 10 12

0.007

0.008

0.009

0.010

0.011

Figure 3.1 The algorithm can get stuck in local maximum (red) instead of the global maximum
(green)

19
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This can negatively affect the quality of the parameter estimation. The experimental part of
this thesis examines this hypothesis first on simulated data, then on a real-life dataset.

3.1 Used metrics
To see the impact of chosen approximation and inference method, we compare the estimators
by whether they visually converge to the real value (or the maximal likelihood estimate for the
whole dataset in the case of real-life data) and three metrics:

RMSE,

Brier score,

Confusion matrix.

First, the metrics will be briefly described here; then, we will go through the results of our
experiments.

3.1.1 RMSE
RMSE is a metric used to evaluate the quality of an estimator based on the deviation of its
parameters from real parameters. The formula for computing the RMSE is

RMSE =

√√√√ n∑
i=1

(θ̂i − θi)2, (3.1)

where θ̂ is the estimate of parameter vector and n number of values in the parameter vector.
In the experimental part of this thesis, the RMSE will be recounted sequentially after incor-

porating each data point into our model and updating the estimate.

3.1.2 Brier score
While RMSE compares the estimators by the parameters they give us for the model, the Brier
score compares the model estimates of the random component. For N predictions ŷ of the
random component y, we define the Brier score as

B = 1
N

N∑
i=1

(ŷi − yi)2
. (3.2)

In this thesis, the Brier score will be computed only once, for the model that uses the final
estimate of parameters.

3.1.3 Confusion matrix
The confusion matrix shows us the results of the prediction (the same one we made to compute
the Brier score) in the form described in Table 3.1.
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Pred. true Pred. false Sum
True True positive False negative Sum true
False False positive True negative Sum false
Sum Sum pred. true Sum pred. false Total sum

Table 3.1 Confusion metrix have following form in this thesis

Thus, we can see how many data samples were misclassified and whether the model tends to
return false positives or negatives.

These metrics will help us fully understand the models we create and explain their behavior.

3.1.4 Used models
For our experiments, we will compare three estimators, which we have labeled:

MLE estimator,

One-step Bayes estimator,

Optimized Bayes estimator.

The MLE estimator uses the MLE algorithm to determine the most probable parameters for
a given dataset. For it is impossible to work with small amounts of data, its plot may start
slightly later than those of the other two estimators.

One-step Bayes estimator will use Laplace approximation with Newton-Raphson algorithm
from Section 2.5.4 for estimation of the MAP estimate of parameter θ. As the name suggests,
only one iteration of the Newton-Raphson algorithm will be made.

Optimized Bayes estimator will instead use scipy.optimize.minimize function from the SciPy
package [34], which uses BFGS algorithm mentioned in Chapter 1. This function, as the SciPy
documentation tells us, is used to find the local minimum of a given function. It is not guaranteed
to find the global minimum of a function; however, during our tests, it gave the same results as
other methods in the SciPy package that claimed to find the global minimum of a function in a
fraction of the time used by these algorithms.

3.2 Simulated datasets experiments
For the purposes of this thesis, we used following set of parameters for generating the linear
predictors of our model:

regressor lowest val highest val
intercept 1 1

x1 18 60
x2 -20 20
x3 -4 30

As for the θ coeficients, we have used two sets described in Table 3.2. Then, using these
linear predictors and (2.4), we have generated the random component y. For the first set of θ

coefficients, the values in the random component were distributed to classes in a ratio close to
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2:1, whether for the second one, the ratio was closer to 1:1. The number of generated samples
was 5,000 and 10,000.

First set of coeficients Second set of coeficients
θ0 -1.6 θ0 -1.6
θ1 0.03 θ1 0.5
θ2 0.04 θ2 -1
θ3 -0.02 θ3 -1.2

Table 3.2 Two sets of coeficients used in our experiments

The results can be described in the following three cases:

All estimators’ parameters converge to the real values.

One-step Bayes estimator fails to converge/converges considerably slower than MLE/opti-
mized Bayes estimator.

All estimators fail to converge in 10,000 steps.

3.2.1 Simulated data case 1: All estimators converge to
real values

In this case, all estimators converge successfully to the real values of θ with their RMSE being
generally lower than 0.1, which shows a perfect fit to the dataset. With the first set of θ

coefficients, this was the case most of the time. In the case presented in Figure 3.2 the final
RMSE was lower than 0.01 for the optimized Bayes estimator (as can be seen in Table 3.3). For
the second set of θ coefficients, the convergence was slightly worse for both Bayes estimators
and sometimes did not happen at all (this will be further discussed in the next subsection). The
RMSE was generally a bit higher for this set of coefficients.

In Figures 3.2 and 3.3, we can see that in the beginning, the estimates all deviated significantly
from the real coefficients due to the low amount of data samples. After this, the convergence is
more or less the same for all models. Final RMSE, as well as the Brier score, are depicted in
Table 3.3.

Method Brier score RMSE
MLE 0.208971 0.018007

one-step Bayes 0.208969 0.007455
Optimized Bayes 0.208970 0.016361

Table 3.3 Simulated data case 1: Final Brier score and RMSE

We can see that the RMSE is great for all models, with the one using the optimized Bayes
estimator slightly lower. This confirms that all estimators give us parameters that converge to
the θ vector.

In cases similar to this one, the optimized Bayes estimator converged faster than the one-step
Bayes estimator for smaller amounts of data. After receiving enough data samples, they usually
merge.
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Figure 3.2 Simulated data case 1: All values converge to real values of θ

Last property of the models we will look at are confusion matrices in tables 3.4, 3.5 and 3.6.
As the Brier score from Table 3.3 suggests, the number of misclassified samples is similar for all
estimators. What may be surprising is that the number is rather big. From the matrices, we can
see that 30% of the samples were misclassified. For the less represented class members, this was
the case for more than 60% samples. To further examine this phenomenon, we took real values
of θ and made the prediction using them - the Brier score was still near the value of 0.2. Thus
while making further assumptions about the quality of the estimations, we can consider values
around 0.2 to be the best achievable results for the dataset generated using the first θ parameter
vector.

pred 0 pred 1 sum
0 5660 820 6480
1 2500 1020 3520

sum 8160 1840 10000

Table 3.4 Simulated data case 1: Confusion matrix for MLE
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pred 0 pred 1 sum
0 5670 810 6480
1 2511 1009 3520

sum 8181 1819 10000

Table 3.5 Simulated data case 1: Confusion matrix for one-step Bayes

pred 0 pred 1 sum
0 5661 819 6480
1 2506 1014 3520

sum 8167 1833 10000

Table 3.6 Simulated data case 1: Confusion matrix for optimized Bayes
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Figure 3.3 Simulated data case 1: RMSE showing perfect convergence

3.2.2 Simulated data case 2: Both Bayes estimators fail to
converge in 10000 steps

In this example, the Bayes estimators have not converged to the real θ. This has happened
almost exclusively for the data generated using second set of θ parameters where the random
component had its values distributed more evenly. In Figure 3.4 both Bayes estimators show
slowing convergence as opposed to MLE estimator that converges almost perfectly.
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Figure 3.4 Simulated data case 2: None of the estimators converges in 10000 steps

Method Brier score RMSE
MLE 0.0206762 0.117725

One-step Bayes 0.02418352 0.598492
Optimized Bayes 0.02164621 0.460211

Table 3.7 Simulated data case 2: Final Brier score and RMSE

RMSE in Table 3.7 confirms better convergence for the MLE. In the Figure 3.5 the third
graph (RMSE Bayes(opt)) illustrates the slow convergence very well.

In Table 3.7 we could notice that the Brier score is very low. Compared to the Brier score in
the first case (Table 3.3), the values here are almost ten times lower.

Confusion matrices in tables 3.8, 3.9 and 3.10 confirm this, showing us that almost 98% of
the samples were classified correctly and that the error is akin for both classes. We may want
again to look at how the classification using real θ would look in this case. The Brier score, in
this case, was again close to 0.02. This brings us to a thing that the balanced distribution of
the values in the random component affects the prediction more than the perfect convergence to
parameters used to generate the random component. This may happen due to the element of
randomness in generating the data we then classify.
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pred 0 pred 1 sum
0 4166 144 4300
1 141 5549 5700

sum 4307 5693 10000

Table 3.8 Simulated data case 2: Confusion matrix for MLE

pred 0 pred 1 sum
0 4173 137 4300
1 148 5542 5700

sum 4321 5679 10000

Table 3.9 Simulated data case 2: Confusion matrix for one-step Bayes

pred 0 pred 1 sum
0 4168 142 4300
1 139 5551 5700

sum 4307 5693 10000

Table 3.10 Simulated data case 2: Confusion matrix for optimized Bayes
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Figure 3.5 Simulated data case 2: RMSE shows that none of the estimators converges
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3.2.3 Simulated data case 3: One-step Bayes estimator
shows unstandard behaviour

There are cases when the one-step Bayes estimator oscillates wildly around the true values
of θ. Although it always converged in 10000 steps for data generated with both coefficient
parameters, the convergence did not sometimes occur for smaller datasets. An example of the
behavior mentioned can be seen in Figure 3.6. In Figure 3.6 the one-step Bayes estimator deviates
extremely for more than 1500 samples. After that, it starts converging to the real values.
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Figure 3.6 Simulated data case 3a: One-step Bayes estimator deviates before converging

We may want to look into the RMSE and Brier score of the final estimates. Due to extreme
deviations from the real values, the graph does not show the convergence quality for other models.
We can get some idea about it from the graphs depicting the RMSE evolution, shown in Figure
3.7 which shows us that the convergence of other models was similar to other cases with no
anomalies. We notice that the MLE estimates were atypically good, but that seems to be a
coincidence.

Method Brier score RMSE
MLE 0.209024 0.001846

One-step Bayes 0.209030 0.002502
Optimized Bayes 0.209029 0.011509

Table 3.11 Simulated data case 3a: Final Brier score and RMSE



28 Experiments

The RMSE in table 3.11 shows better convergence for the one-step Bayes estimator with
RMSE lower than 0.005. This occurred every time the one-step Bayes estimator showed similar
behavior; the final RMSE was as low or even lower than in the cases when the convergence
started early.

The next thing we can look at is the predictions. As the Brier score suggests, confusion
matrices will not give us any new information. The prediction quality is similar to other cases
when the first set of θ was used.

What may interest us more is how the prediction would be affected if we used the result where
the one-step Bayes estimator has not converged at all as in figure 3.8. Here, the estimate for θ0
(coefficient for the intercept) is receding from its real value. On the contrary, other parameters
oscillate around the true θ values. Overall RMSE shown in figure 3.9 does not show any sign of
convergence.
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Figure 3.7 Simulated data case 3a: RMSE shows convergence after 2000 samples for one-step Bayes.

RMSE for one-step Bayes estimator shown in Table 3.12 is extremely high compared to other
two. The Brier score is still at approximately 0.6. The value may still seem small, but we have
to keep in mind that even if the estimator classified all samples into one class, it would still have
the Brier score at about 0.7 for the first set of θ coefficients.

When comparing the confusion matrices in Tables 3.13 and 3.14, we see that the one-step
Bayes estimator tends to assign most of the samples to the class 1, as opposed to the optimized
version. While the behavior of the optimized version makes sense because of the elements of
randomness and abundant representation of 0 elements in the random component, the behavior
of the one-step version points to the values of the random component of the model being extremely
high, thus deviating the estimates towards 1.
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Figure 3.8 Simulated data case 3b: One-step Bayes estimator not converging on smaller datasets

Method Brier score RMSE
MLE 0.208173 0.401960

One-step Bayes 0.612693 840.694971
Optimized Bayes 0.208631 0.368250

Table 3.12 Simulated data case 3b: Final Brier score and RMSE

pred 0 pred 1 sum
0 39 297 336
1 10 154 164

sum 49 451 500

Table 3.13 Simulated data case 3b: Confusion matrix for one-step Bayes

pred 0 pred 1 sum
0 292 44 336
1 127 37 164

sum 419 81 500

Table 3.14 Simulated data case 3b: Confusion matrix for optimized Bayes
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Figure 3.9 Simulated data case 3b: RMSE shows that one-step Bayes estimator diverges from the
real θ

In this section, we went through the most typical cases of the behavior of the logistic model
that was encountered during our experiments on simulated data samples. We could see that
the optimized version of the Bayes estimator had similar results to its one-step counterpart. Its
benefits fully manifested in the third case, where it was visible that the optimized Bayes are
less prone to extreme deviations for smaller amounts of data (there was no such case in our
experiments where the optimized version would behave this way).

What could affect the comparison quality was that the data were generated randomly and
had no real correlation. In the next section, we will provide the results from the experiments on
a real-life dataset.

3.3 Experiments on real data

The Skin-NonSKin dataset (Bhatt and Dhall [38]) was chosen for experiments on real-life data.
The dataset contains 245057 samples (50859 skin and 194198 non-skin samples - the ratio is
roughly 20:80) of pixels that either do or do not belong to a human face. The samples consist of
BGR values of the pixel, which are our regressor and the classification labels - they will create
the random component of our models. To differentiate the results, the dataset was shuffled
randomly.

Because for real-life datasets, we usually do not have the real θ values available, thus we are
unable to compute RMSE. For this reason, in this section, we will compute the RMSE from
the maximum likelihood estimate we receive from using MLE estimator on 100,000 samples.
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Predictions using this estimate have a Brier score of about 0.06, and the logistic model has a
more than 91% success rate in classifying the samples. For clarification will call it an overall
MLE estimate in the following text.

During the prediction, we have encountered situations similar to the one described in subsec-
tion 3.2.3 more often than with a randomly generated dataset. This can be because the ratio of
elements of the random component is even more unbalanced than in the data generated by the
first set of θ parameters.

We will now present two cases - one with all estimators converging and one with one-step
Bayes deviating.

3.3.1 Real-life data case 1: All estimators converge to the
MLE

In this case, all values have converged, as can be seen in figure 3.10.
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Figure 3.10 Real-life data case 1: All estimators converge to the overall MLE estimate

All estimators have deviated initially, which often happened with this dataset. Then we
can see that the convergence was relatively slow for all of them, with the one-step Bayes being
slightly slower. RMSE graphs in figure 3.11 also confirm this. The RMSE graphs show that both
optimized Bayes and MLE estimator reached the overall MLE estimate very quickly and then
deviated a bit before converging. The next thing to notice is that the one-step Bayes estimator
does not get as close to the overall MLE estimate as the optimized version does. This is similar
in most cases, where the estimators have all converged.
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The metrics show in Table 3.15 confirm better convergence for MLE and optimized Bayes
estimator. The Brier score also corresponds with the Brier score of the overall MLE estimate.
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Figure 3.11 Real-life data case 1: RMSE shows good convergence for all estimators, slightly worse
for one-step Bayes

The confusion matrices in Tables 3.16 3.17 and 3.18 show that the MLE and optimized Bayes
estimators have almost identical prediction with the same number of misclassified samples. The
one-step Bayes estimator may seem to return slightly more false positives than the other two,
but repeating the experiments has shown that this is a coincidence; the estimators seem to have
similar quality of predictions for the 10,000 samples when it has converged

Method Brier score RMSE
MLE 0.068342 0.005086

One-step Bayes 0.068641 0.0780082
Optimized Bayes 0.068436 0.009305

Table 3.15 Real-life data case 1: Final Brier score and RMSE

This section has reviewed the case when all estimators converge relatively early. We can see
that the final prediction is almost the same quality.
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Pred skin Pred non-skin sum
Skin 1642 373 2015

Non-skin 436 7549 7985
sum 2078 7922 10000

Table 3.16 Real-life data case 1: Confusion matrix for MLE

Pred skin Pred non-skin sum
Skin 1641 374 2015

Non-skin 435 7550 7985
sum 2076 7924 10000

Table 3.17 Real-life data case 1: Confusion matrix for one-step Bayes

Pred skin Pred non-skin sum
Skin 1641 374 2015

Non-skin 442 7543 7985
sum 2083 7917 10000

Table 3.18 Real-life data case 1: Confusion matrix for optimized Bayes

3.3.2 Real-life data case 2: One-step Bayes estimator does
not converge

In this case, the one-step Bayes deviates significantly from the overall MLE estimate. In Figure
3.12 we can see that the convergence has not begun even after the model processed 10,000
samples. Instead, the intercept value recedes from the overall MLE estimate while the other
values oscillate around it. Figure 3.13 shows that the RMSE of the on-step Bayes estimator is
instead growing as for the 10,000 samples. On the contrary, the other two graphs show very good
convergence. This has not happened with the simulated data - the convergence always begins
before reaching 10,000 samples for four regressors.

Method Brier score RMSE
MLE 0.064811 0.086263

One-step Bayes 0.1441 0.059961
Optimized Bayes 0.064841 7281.710264

Table 3.19 Real-life data case 2: Final Brier score and RMSE

The metrics in the table 3.19 show us that although the RMSE is extremely high for the
one-step Bayes estimator, the Brier score is lower than in most cases from the estimations made
on simulated datasets.
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Figure 3.12 Real-life data case 2: Bayes estimator fails
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Figure 3.13 Real-life data case 2: RMSE
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Pred skin Pred non-skin sum
Skin 1750 355 2105

Non-skin 428 7467 7895
sum 2178 7822 10000

Table 3.20 Real-life data case 2: Confusion matrix for MLE

Pred skin Pred non-skin sum
Skin 1972 133 2105

Non-skin 1308 6587 7895
sum 3280 6720 10000

Table 3.21 Real-life data case 2: Confusion matrix for one-step Bayes

Pred skin Pred non-skin sum
Skin 1750 355 2105

Non-skin 428 7467 7895
sum 2178 7822 10000

Table 3.22 Real-life data case 2: Confusion matrix for optimized Bayes

Confusion matrices in tables 3.20, 3.21 and 3.22 show us that the MLE and optimized Bayes
estimator give us identical predictions, comparable to the ones in previous case (tables 3.16 and
3.18). On the other hand, the one-step Bayes tends to give us many false positives, which we
suppose not to be the actual property of the one-step Bayes estimator on this dataset - in other
cases where one-step Bayes has diverged, the situation was inverse. The model returned a higher
number of false negatives.

This section has reviewed the case where the one-step Bayes estimator have not converged.
This case was often in our experiments on the Skin non-skin datasets, happening in more than
50% of all cases.
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Chapter 4

Conclusion

This thesis aimed to observe the impact of the quality of the approximation of the posterior
distribution in Bayesian logistic regression on the estimation of parameters of the logistic model.

Our observations were made on simulated datasets, generated using two different coefficient
parameter vectors, and then on a real-life dataset. From the results of the experimental part of
this thesis, we can see that the quality of the estimation of the parameters is heavily affected
by the distribution of the members of the random component of a used model. With the ratio
approaching 1:1, we could see that the convergence was slow compared to the cases where the
ratio was closer to 35:65, where the convergence was faster and always happened.

Actual predictions made with estimated parameters showed that even though the convergence
was better, for simulated datasets, the number of misclassified samples rose with the inequality
in the distribution of members of the random component. This did not happen with the real-life
dataset, even though the ratio was close to 1:4. The Brier score was low, and the predictions
were good. This leads us to think that the problem is in the random generation of the data, and
the missing correlation damages the prediction.

The next thing that could be noticed is that the one-step Bayesian estimator was prone to
deviate from the real values of the estimated parameters, as can be seen in 3.6. This did not
happen with the optimized version nor with the MLE estimator. All deviations were just for the
first few samples, then the convergence began. On the real-life dataset, the deviations were often
and happened in more than half of the cases.

In the cases where the convergence occurred, all estimators returned similar results. One
could ask why was not the optimized Bayes estimator always better than the one-step version.
The problem here could be that even though we have used an algorithm much more likely to
find a global maximum, we are still working with approximations. As such, there will always be
irregularities and mistakes.

The results of this thesis show advantages of optimizations in Bayes logistic regression, and
further work can be done to research its impact combined with other optimization methods, such
as the ones described in [35].
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