
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Predicting forex trading signals using methods of image

recognition.

Gleb Fedorov

Ing. Stanislav Kuznetsov

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

The goal of the Thesis is to use image recognition methods to predict trading signals for

buying or selling assets. The student gets trading data of the forex pairs and transforms it

into an image using Fast Fourier methods. Then, they prepare a labelling dataset and

merge it with images. Finally, they use an image recognition approach to prepare

models for predicting trading signals.

1. Prepare a survey in this domain and describe the state-of-the-art methods.

2. Collect the forex assets data Preprocess image and labelling d.atasets.

3. Prepare image recognition models.

4. Evaluate the models and present the results.

Electronically approved by Ing. Karel Klouda, Ph.D. on 24 February 2022 in Prague.

Bachelor’s thesis

PREDICTING FOREX
TRADING SIGNALS
USING METHODS OF
IMAGE
RECOGNITION

Gleb Fedorov

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Stanislav Kuzetsov
May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Gleb Fedorov. All rights reserved..
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Fedorov Gleb. Predicting forex trading signals using methods of
image recognition. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstrakt ix

List of acronyms x

Introduction 1

1 Forex preliminaries 5
1.1 Basics . 5

1.1.1 Currency pairs . 5
1.1.2 Pips . 6
1.1.3 Trades . 6
1.1.4 Orders . 6

1.2 Data . 7

2 Preprocessing background 9
2.1 Technical indicators . 9

2.1.1 Rate of Change . 9
2.1.2 Commodity channel index 10
2.1.3 Relative strength index . 10
2.1.4 Ultimate Oscillator . 11
2.1.5 Stochastic oscillator . 12
2.1.6 Aroon oscillator . 12
2.1.7 Chande Momentum Oscillator 13
2.1.8 Absolute price oscillator . 13

2.2 Discrete Fourier transform . 13
2.3 Filtering . 14

2.3.1 Butterworth filter . 14

3 Deep learning background 15
3.1 Basics . 15

3.1.1 Single-layer perceptron . 15
3.1.2 Multilayer perceptron . 16

iii

iv Contents

3.1.3 Activation functions . 17
3.1.4 Cost function . 17

3.2 Optimizers . 17
3.2.1 Gradient descent . 18
3.2.2 Stochastic gradient descent 18
3.2.3 Adam . 19

3.3 Convolutional neural network . 19
3.3.1 Convolution operation . 20
3.3.2 Convolutional layer . 20
3.3.3 Pooling layer . 21

3.4 Transformer . 22
3.4.1 Self-attention . 22

3.5 Transfer learning . 23

4 Survey 25
4.1 ImageNet . 25
4.2 AlexNet . 25

4.2.1 Going deeper . 26
4.3 ResNet . 27
4.4 DenseNet . 27
4.5 Vision Transformer . 27
4.6 ConvNeXt . 29

5 Implementation 31
5.1 Used technologies . 31
5.2 Preprocessing . 32

5.2.1 Technical indicators . 32
5.2.2 Labeling . 32
5.2.3 Filtering . 34
5.2.4 Fourier extrapolation . 34
5.2.5 Generating images . 35
5.2.6 Summary . 39

5.3 Modeling and evaluation . 39

Conclusion 43

Contents of the attached media 49

List of Figures

1.1 A candlestick chart of EUR/USD for a hundred of days 7

3.1 A diagram of a basic MLP . 16
3.2 Visualization of a convolution operation. 20
3.3 A convolution layer with multiple filters 21
3.4 Illustration of max pooling . 21
3.5 Transformer blocks . 23

4.1 AlexNet architecture . 26
4.2 Inception module from GoogLeNet 26
4.3 A single residual block . 27
4.4 DenseNet architecture . 28
4.5 ViT architecture . 28
4.6 ResNet and ConvNext blocks comparison 29

5.1 An example of FFT extrapolation 35
5.2 ROC sample images . 36
5.3 CCI sample images . 36
5.4 RSI sample images . 36
5.5 Ultimate oscillator sample images 37
5.6 Stochastic oscillator sample images 37
5.7 Aroon oscillator sample images . 37
5.8 Chande Momentum oscillator sample images 38
5.9 Absolute price oscillator sample images 38
5.10 Best test accuracy scores heatmap 8h EUR/USD 40

List of Tables

1.1 Four rows of OHLC data set with 8 hour period from FXCM. . . . 8

5.1 Best test accuracy scores per model 8h EUR/USD 39

v

vi List of code listings

List of code listings

5.1 Labeling algorithm in python . 33

I would also like to express my gratitude to my family and
friends for supporting me all these years. And I would
like to thank my supervisor Ing. Stanislav Kuznetsov, for
his mentorship.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to ethical
principles when elaborating an academic final thesis. I acknowledge that my thesis
is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll.,
the Copyright Act, as amended, in particular that the Czech Technical University
in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2022 .

viii

Abstrakt

Algoritmické obchodováńı je od svého počátku pro mnoho výzkumńık̊u skutečně
atraktivńı oblast́ı, která slibuje okamžitý zisk za jakoukoli vynalézavost, kterou
do něj vlož́ı. Velmi inspirováni úspěchem rozpoznáváńı obrazu a hlubokého učeńı
v posledńıch letech jsme se pokusili zmı́něný úspěch využ́ıt na Forexu. Připravili
jsme přehled současných technik rozpoznáváńı obrazu a aplikovali je na předpov́ıdáńı
signál̊u na Forexu. Stejně jako lidé mohou predikovat nadcházej́ıćı trendy zk-
oumáńım graf̊u; my jsme natrénovali umělou neuronovou śıt’, která dokáže předpov́ıdat
budoućı cenové trendy z graf̊u extrapolaćı vytvořených pomoćı Rychlé Fourierovy
transformace. Výsledný model dosahuje na testovaćıch datech výkonnosti 63%.

Kĺıčová slova Forex, předpov́ıdáńı časových řad, Fourierova transformace, rozpoznáváńı
obrazu, hluboké učeńı

Abstract

Algorithmic trading, since its inception, has been a really attractive field for lots of
researchers, promising an immediate return for any ingenuity put into it. Greatly
inspired by the success of image recognition and deep learning in recent years,
we tried to utilize said success in Forex. We prepared a survey of current image
recognition techniques and applied them to predict Forex signals. Same as people
can conclude upcoming trends by examining graphs; we trained an artificial neural
network that can predict future price trends from graphs of extrapolations created
via Fast Fourier transform. The final model achieves a performance of 63% on test
data

Keywords Forex, time series forecasting, fourier transform, image recognition,
deep learning

ix

List of acronyms

EUR Euro
JPY Japanese Yen

OHLC Open High Low Close
ML Machine Learning

USD United States Dollar
ROC Rate Of Change
CCI Commodity Channel Index
RSI Relative Strength Index

CMO Chande Momentum Oscillator
APO Absolute Price Oscillator
DFT Discrete Fourier Transform
EMA Exponential Moving Average
FFT Fast Fourier Transform
ANN Artificial Neural Network
MLP Multilayer Perceptron
SGD Stochastic Gradient Descent
CNN Convolutional Neural Networks

ILSVRC ImageNet Large Scale Visual Recognition Challenge

x

Introduction

In this section, we will describe our motivation, the problem we are trying to solve,
the goals of the thesis, and the rough structure of the work.

Motivation
Forex stands for the foreign exchange market. It is a decentralized global market
that allows people to buy and sell different currencies. Forex is the world’s largest
market with a volume of $6.6 trillion that determines the foreign exchange rate
for every currency. It operates 24h every day except for the weekends, unlike most
other markets that are open from 9:30 to 16:00. This also makes it more appealing
from the perspective of algorithmic trading.

Forex simultaneously promises an enormous profit and an immense level of
risk to any trader. The idea behind Forex is deceivingly simple: buy low, sell high
(or the opposite of that), so a trader can profit just by predicting a positive or
negative change in the upcoming prices of a currency pair. Nevertheless, the actual
prediction of the trend is an exceptionally challenging task, and a very select few
are able to do it consistently. That is why a tremendous amount of effort has been
put into the Forex price analysis and forecasting research since its inception 50
years ago.

The primary source of our inspiration has been the recent successes of deep
learning in image recognition. So, in this thesis, we will attempt to utilize said
successes in a way more lucrative area of Forex and time series forecasting. For our
experiments, we have chosen the currency pair with, by far, the most significant
volume: EUR/USD.

Problem statement
Stock price analysis techniques can generally be split into two broad groups: tech-
nical and fundamental analysis. The former focuses on prices themselves, believing

1

2 Introduction

that sequences of numbers contain enough information to predict future trends.
The latter evaluates stock values by analyzing related economic and financial fac-
tors like interest rates, earnings, and Elon Musk’s Twitter.

In our thesis, we will attempt Forex trend prediction, focusing exclusively on
technical analysis techniques, more specifically machine learning. Furthermore,
since image recognition has been the most successful field for ML in the last decade,
we will attempt to apply this success to the lucrative field of time series forecasting.

Goals

In this thesis, we are going to aim to achieve the following goals:

Prepare a survey of state-of-the-art image recognition techniques.

Collect and preprocess Forex data set into a labeled image data set.

Prepare image recognition models.

Evaluate the models and describe the result.

Previous work

Attempts to transform time-series data into images to ease the prediction are not
new. Wang (1) achieved competitive performance by encoding time series into
images of Gramian Angular Summation/Difference Fields and Markov Transition
Fields.

An approach spiritually similar to ours was taken by Tsai (2) by plotting mul-
tiple moving averages of the prices and using a convolutional neural network to
predict future prices.

Cohen achieved some success in the paper “Visual Forecasting of Time Series
with Image-to-Image Regression” (3) by plotting time series directly and training
an auto-encoder model on the created images.

The main downside of these approaches is that they do not take advantage of
the additional insights gained by using technical indicators widely used for trading
by humans.

This thesis is a continuation of the work conducted by Andrey Babushkin
(4). We expand on all aspects of the work by using different preprocessing and
modeling approaches and focusing on the insight that can be gathered from the
images themselves.

Introduction 3

Structure
In this work, we are going to roughly follow the CRISP-DM (5) standard with
the exception of the deployment phase. So, our thesis is going to be structured as
follows:

In the first chapter, we will discuss the business domain of Forex itself, describ-
ing the quirks of how Forex trading. Chapter two will cover all the theoretical
background necessary for implementing the data preprocessing pipeline. Chapter
three will describe the preliminaries necessary to discuss modern models covered
in chapter four. As previously stated, chapter four will contain a survey of modern
image recognition models. Moreover, in the last chapter, we will describe the data
preprocessing pipeline, modeling, and performance of the created models and draw
some conclusions.

4 Introduction

Chapter 1

Forex preliminaries

This chapter covers basic domain knowledge necessary to discuss Forex trading
and signal predition.

1.1 Basics
In this chapter, we will discuss the basics, necessary to competently tackle the
trend prediction problem.

As has already been stated, Forex is a financial market where currencies can be
bought and sold. Furthermore, Forex is a decentralized network of traders, where,
unlike commodities and shares, Forex trades take place directly between a buyer
and a seller, avoiding exchanges.

Forex is, roughly speaking, split into three markets: the spot market, forward
Forex market, and future Forex market. Spot markets are the largest segment of
Forex, where trades take place instantly at the current price.

Forward market deals with privately-negotiated contracts between a buyer and
seller at a future date at a prior specified price. Future contracts are mainly similar
to forwards in that they are an agreement to buy or sell some assets at a specific
price on a specific date, but unlike forwards, these contracts are marked-to-marked
and are traded on the exchange.

Explaining what that means is way out of the scope of this thesis since we will
focus exclusively on the spot market, and the other two are mentioned for the sake
of completeness.

1.1.1 Currency pairs
Every single currency in the world is traded on Forex. Moreover, all of them can
be bought in exchange for another. That is how currency pairs are formed. The
most widely traded pairs are EUR/USD and USD/JPY, or Euro to United States
Dollar and the United States Dollar to Japanese Yen, respectively. Order within

5

6 Forex preliminaries

these pairs is significant. The first currency in a pair is called base currency; the
second one is called quote currency. The price of a pair is defined as the ratio of
the base currency’s price to the quote one.

For example, in the case of the EUR/USD pair, if Euro rises against the dollar, a
single Euro is worth more dollars. Therefore the price of the pair rises. Conversely,
if the dollar becomes more expensive in regards to Euro, the pair’s value will go
down.

1.1.2 Pips
Pip or percentage in points is a unit of minimal significant change in a pair’s
value. The EUR/USD pair price has stayed roughly the same for the last decade,
oscillating between 1 and 1.5. Therefore, it is not reasonable to assume that this
price will change drastically shortly.

A new measuring unit has been proposed to signify a meaningful change in the
price of a pair to address the issue. Pip is simply a change in some decimal place
of a pair’s price. For most commonly traded currency pairs, like EUR/USD, one
pip is a change in the fourth decimal place, except for the ones that involve the
Japanese yen. For them, a single pip is a unit of change in the third decimal place.

1.1.3 Trades
So how are the actual trades made? When making a transaction, a trader has two
options: they can either go long, i.e., buy the base currency with the expectation
that the pair price will rise in value, or they can do the opposite and go short,
expecting the pair value to decrease.

This whole principle is relatively intuitive. However, there is one additional
nuance in this system: traders have an opportunity to use leverage in their transac-
tions. Leverage is an ability of a trader to borrow money to use in their transaction
while depositing only a fraction of the sum upfront. This deposit is called margin.
When traders use leverage, they multiply their profit or loss by the leverage value.

For example, if a trader interested in the EUR/USD pair goes long with an
initial amount of $10,000, and the price goes up/down by a single pip, their prof-
it/loss would total $1, but if they had used the leverage of 10, their loss or profit
would be equal to $10.

1.1.4 Orders
Forex trades are made via orders. Orders are commands for a broker to make a
trade in the market on a trader’s behalf. It can be scheduled now or sometime
in the future when some condition is met. There are two types of orders: market

Data 7

Figure 1.1 A candlestick chart of EUR/USD for a hundred of days

orders and pending orders. A market order is used to buy or sell at the broker’s
price instantly.

Pending orders trigger a transaction when the price reaches some specific
threshold. This way, traders can automatically take the profit if their prediction
is correct. Similarly, these orders allow traders to cut their losses if the situation
is not going their way.

When placing a pending order for a specific currency pair, traders need to
specify if they are going long or short, the quantity trader wants to buy or sell,
and the expiration date for the order. Typically, traders pick a value in pips that
they consider a reasonable profit and an acceptable loss. Then, these values are
used as a threshold to exit positions via take-profit or stop-loss orders.

1.2 Data
Historical stock data is most widely available in the OHLC data set. The acronym
stands for Open High Low Close. Such data sets contain historical asset price data
samples with a set period. Each row in the data set contains the pair’s price at the
start of the period (Open), the highest price pair has reached during this period
(High), the lowest price for the period (Low), and the price at the end of the period
(Close). Rather frequently, these data sets also contain a volume column. Volume

8 Forex preliminaries

is the number of lots traded within a given period.
These types of data sets can be often seen in the form of a rather popular

candlestick chart, as in figure 1.1.
For the practical part of this thesis, we used historical prices of the EUR/USD

pair provided by FXCM. Example rows from the data set can be seen in the table
1.1.

timestamp Open High Low Close Volume
2021-12-14 06:00:00 1.12931 1.130855 1.13239 1.12663 66376
2021-12-14 14:00:00 1.12839 1.12589 1.13089 1.12538 53322
2021-12-14 22:00:00 1.12639 1.126915 1.127275 1.125395 17900
2021-12-15 06:00:00 1.12713 1.127365 1.127730 1.12559 56045

Table 1.1 Four rows of OHLC data set with 8 hour period from FXCM.

Chapter 2

Preprocessing background

In this chapter we describe all the necessary theory, used to implement the pre-
processing pipeline described in the chapter 5 of the thesis.

2.1 Technical indicators

As has already been stated in the introduction, this thesis is focused solely on
technical analysis. Hayes provides a great definition: “Technical analysis is a
trading discipline employed to evaluate investments and identify trading opportu-
nities by analyzing statistical trends gathered from trading activity, such as price
movement and volume. Unlike fundamental analysis, which attempts to evaluate
a security’s value based on business results such as sales and earnings, technical
analysis focuses on the study of price and volume.” (6)

Specifically, this section covers technical indicators. Chen describes technical
indicators rather comprehensively: “Technical indicators are heuristic or pattern-
based signals produced by the price, volume, and/or open interest of a security
or contract used by traders who follow technical analysis. By analyzing historical
data, technical analysts use indicators to predict future price movements.” (7)

2.1.1 Rate of Change
Technical indicators can be conventionally split into several categories. One of
them is momentum indicators. “Momentum is the difference between two prices
taken over a fixed interval” (8, p. 370). Perhaps the simplest one of them is
ROC (Rate of Change). ROC is a pure momentum expressed in percentage. The
following formula defines it:

ROCt = closet − closet−p

closet−p

· 100, (2.1)

9

10 Preprocessing background

where closet is an asset’s close price at index t at which ROC is calculated and
p is a parameter that represents the period, or the amount of ticks previous and
the current price.

As is seen from the formula, ROC measures the percentage of change between
two prices at the end of two periods n ticks apart. As for its usefulness, Kaufman
states: “Momentum can be used as a trend indicator by selling when the momen-
tum value crosses downward through the horizontal line at zero and buying when
it crosses above the zero line.” (8, p. 373)

2.1.2 Commodity channel index
CCI (Commodity Channel Index) is one of the investors’ most popular technical
indicators. Donald Lambert initially proposed it in 1980. Schlossberg states that
“the prime focus of the CCI was to measure the deviation of the price of the
tradable from its statistical average.” (9, p. 91).

CCI at index t for some period p is given by equation 2.2.

CCIt = TPt − SMATPp, t

0.015 × MDp,t, (2.2)

where TPt is the typical price, defined by equation 2.3, SMATPp,t is simple moving
average of the typical price given by equation 2.4 and MDp,t is mean deviation of
the typical price 2.5. And t is some index from the data set.

TPt = hight + lowt + closet

3 (2.3)

SMATPp,t = 1
p

p∑
i=0

TPt−i (2.4)

MDp,t = 1
p

t−p∑
i=t

|SMATPp,t − TPi| (2.5)

2.1.3 Relative strength index
RSI (Relative Strength Index) is also a momentum indicator. J. Welles Wilder Jr.
first introduced it in his book “New Concepts in Technical Trading Systems”. It is
an indicator that oscillates between the values of 0 and 100. High and low values of
RSI are supposed to signify overbought or oversold states of the asset, respectively.
What to consider “high” and “low” is arbitrary, but conventionally, thresholds of
70 and 30 are used. Calculation of RSI is a multi-step process described in the
section 6 of the book (10, pp. 63-71). Computation of RSI with period p at some
index t, greater than p, goes as follows.

1. Step is to calculate up and down closes Ut and Dt via equations 2.6 and 2.7

Technical indicators 11

Ut = max(0, closet − closet−1) (2.6)

Dt = −min(0, closet − closet−1) (2.7)

2. Calculate the RS (Relative Strength factor) according to the equation 2.8

RSp,t =
Ūp

M,t

D̄p
M,t

, (2.8)

where ŪM,t and ŪM,t are smoothed moving averages of the up and down closes
defined recursively as

Ūp
M,t =

(p − 1)Ūp
M,t−1 + yt

p
(2.9)

D̄p
M,t =

(p − 1)D̄p
M,t−1 + yt

p
(2.10)

Initial values of smoothed moving averages D̄p
M,p+1 and D̄p

M,p+1 are given by

Ūp
M,p+1 = 1

p

p∑
i=0

Ut−i (2.11)

D̄p
M,p+1 = 1

p

p∑
i=0

Dt−i (2.12)

3. Convert the RSt into RSIt via equation 2.13

RSIp,t = 100 − 100
1 + RSp,t

(2.13)

2.1.4 Ultimate Oscillator
The Ultimate Oscillator is a technical indicator that is quite similar to RSI. It
also signifies that an asset is overbought or oversold when it crosses an upper
or lower threshold, respectively. It was first created by Larry Williams in 1976
and published in 1985. The core advantage of Ultimate Oscillator over the other
indicators is that it considers momentum over three different time frames, typically
7, 14, and 28 ticks. Computation of the Ultimate Oscillator described in the
original article (11), for time frame parameters p1, p2, p3 and some index t, greater
than the largest of parameters, is defined as

UltOsct = 100 · 4 · avgp1,t + 2 · avgp2,t + avgp3,t

4 + 2 + 1 , (2.14)

12 Preprocessing background

where
bpt = closet − min(lowt, closet−1) (2.15)

trt = max(hight, closet−1) − min(lowt, closet−1) (2.16)

avgp,t =
p∑

i=0

bpt−i

trt−i

(2.17)

2.1.5 Stochastic oscillator
Stochastic oscillator is also a momentum indicator developed by George Lane in
the late 1950s. In its principle, it compares the prices of an asset to the range of
its prices over some time (12). Value of Stochastic oscillator at tick t with fast
period p and slow period n is computed the following way:

Lp,t = min(closet−1, closet−2, ..., closet−p) (2.18)
Hp,t = max(closet−1, closet−2, ..., closet−p) (2.19)

%Kp,t = closet − Lp,t

Hp,t − Lp,t

× 100 (2.20)

%Dn = 1
n

n∑
i=0

%Kp,i, (2.21)

where %K is the value of the fast stochastic oscillator, and %D is the value of
the slow stochastic oscillator. In the provided formula, a slow stochastic oscillator
is a simple average of n last %Ks, but an exponential average is sometimes used
instead.

2.1.6 Aroon oscillator
Aroon indicator was proposed by Tushar Chande. It is a technical indicator that
signifies the strength of a trend. There are two kinds of Aroon indicators: high
and low. The Aroon-Up indicator measures the number of ticks since the last high
for some period of time. Aroon-Down works analogously with the lows.

The Aroon oscillator is simply the difference between the values of Aroon-Up
and Aroon-Down indicators. Therefore, it can be used to gauge the strength of
the current trend and the likelihood of its change (13). Here is how it is calculated
for some period p at index t greater than p:

AroonUpp,t = p − Ticks since p-tick high
p

× 100 (2.22)

AroonDownp,t = p − Ticks since p-tick low
p

× 100 (2.23)

AroonOscp,t = AroonUpp,t − AroonDownp,t (2.24)

Discrete Fourier transform 13

2.1.7 Chande Momentum Oscillator
Change momentum oscillator (CMO) is another oscillator proposed by Tushar
Chande in his book “The New Technical Trader” (14, pp. 93-94). It is a momentum
oscillator that is supposed to mitigate the weaknesses present in RSI and other
momentum indicators. Calculation of CMO for two period p1 and p2 at some
index t, greater than p1 and p2, is given

CMOp1,p2,t = 100 ×
∑p1

i=0 Ut−i −∑p2
i=0 Dt−i∑p1

i=0 Ut−i +∑p2
i=0 Dt−i

, (2.25)

where Ut and Dt are up and down closes defined in equations 2.6 and 2.7.
This indicator is very similar to RSI, but its values are not smoothed, and

CMO oscillates between +100 and -100.

2.1.8 Absolute price oscillator
Absolute price oscillator is a relatively simple technical indicator. It is just a dif-
ference between an asset’s two close EMAs (Exponential Moving Average). APO
crossing above zero is supposed to signify an upward trend, and analogously, cross-
ing below zero means a downward trend. It can be computed trivially for some
two periods P and T as

APOp1,p2,t = Sp1,t − Sp2,t (2.26)
where Sp,t is am EMA of the close prices with some period p at index x and a
smoothing factor α between 1 and 0, is given by

Sp,x =
close1 if x = 1,

α × closex + (1 − α)Sp,x if x > 1.
(2.27)

2.2 Discrete Fourier transform
Fourier analysis is a significant scientific achievement widely used in engineering,
mathematics, physics, and finance. In addition, it is essential to modern technology
in fields like signal processing. Fourier analysis is based on the research of famous
french mathematician Jean Baptiste Fourier, whose name it inherited.

This short introduction to DFT is condensed from the chapter 10 of the book
“Introduction to biomedical engineering” (15, pp. 576-579) by John Enderle.

Any finite discrete signal can be decomposed into a sum of sine or cosine
waves. Discrete Fourier Transform is a linear transformation, that computes a set
of coefficients necessary for all the simple waves to add up to the original signal.
It essentially converts a series of equidistant signal samples from the time domain
to the frequency domain. Given an input sequence x(n) DFT is defined as

14 Preprocessing background

X(m) =
N−1∑
k=0

x(k)e−j 2πmk
N ; m = 0, 1, ...,

N

2 , (2.28)

where x(k) represents signal samples, k is the discrete time variable and N is the
number of samples of x(k) and m is an index.

And the inverse of the DFT that converts a signal from the frequency domain
back to the time domain is defined as

x(k) = 1
N

N−1∑
m=0

X(m)ej 2πmk
N ; k = 0, 1, ..., N − 1 (2.29)

In practice, instead of using DFT, a more efficient implementation called FFT
(Fast Fourier Transform) is used instead. The outputs of FFT and DFT are
identical, but FFT possesses a much faster execution speed.

2.3 Filtering
Filter is a concept borrowed from the field of signal processing. The term itself
signifies a process that removes unwanted details or noise from a signal.

2.3.1 Butterworth filter
Butterworth filter is a family of filters that belongs to a broader group of linear
continuous-time filters. These filters’ primary purpose is to remove some frequen-
cies from the input signal. Butterworth filter was proposed by British physicist
Stephen Butterworth in his paper “On the Theory of Filter Amplifiers “(16).

The amplitude response of low-pass Butterworth is given by

|H(jω)| = 1
1 + (ω

ωC
)2n

, (2.30)

where ωC is the cut-off frequency, and n is the order of the filter.
Butterworth filter was designed for maximal flatness of frequency response. An

in-depth explanation of signal analysis is way outside of the scope of this thesis.
The flatness of frequency response can be thought of as the purity of the signal.
A more detailed and formal explanation is provided by Mathworks (17).

Chapter 3

Deep learning background

This chapter will discuss the theoretical background on which models from the
following chapter are based.

3.1 Basics
Before diving deeper into the more advanced architectures like convolutional neu-
ral networks and transformers, we will address the basics to lay the necessary
foundation to discuss modern neural network architectures.

3.1.1 Single-layer perceptron
Single-layer perceptron is the simplest kind of artificial neural network (ANN), that
was developed by Frank Rosenblatt in the 1950s. It takes n inputs x = (x1, ..., xn)T

and produces a single output Ŷ . Single-layer perceptron has n real parameters
called weights, denoted w = (w1, ..., wn)T , one for each input, and an additional
real parameter b called bias. Inner potential ξ of a perceptron is given by equation
3.1.

ξ =
n∑

i=1
wixi + b = wT x + b, (3.1)

and the output of the perceptron is defined by equation 3.2.

Ŷ = f(ξ), (3.2)

where f is a activation function, in the simplest case, a step function, defined in
equation 3.3, but it can be replaced with any non-linear function (18).

f(ξ) =
1 if ξ ≥ 0,

0 if ξ < 0.
(3.3)

15

16 Deep learning background

Single-layer perceptron is not particularly interesting or powerful on its own,
as it is famously incapable of implementing an XOR function. However, it is a
building block that makes more capable models possible.

3.1.2 Multilayer perceptron
Multilayer perceptron (MLP) is a quantitative extension of the single-layer one.
MLP is a model that consists of l layers of neurons, as seen in figure 3.1. Each
layer can contain an arbitrary number of neurons. We will denote the size of each
layer as n1, ...nl and the input size of the whole network as n0.

An output of jth neuron in ith layer can be represented as a function

g
(i)
j : Rni−1 → R,

that receives ni−1 inputs from the previous layer. The output of g
(i)
j is computed

identically to equations 3.1 and 3.2.
A whole ith layer of the network can be denoted as

g(i) : Rni−1 → Rni ,

, where g(i) = (g(i)
1 , ..., g(i)

ni
)T . And, of course, the whole neural network can be

represented as a function
g : Rn0 → Rnl

, that is given by composition of all the layers in the network: g = f (l) ◦ f (l−1) ◦
... ◦ f (2) ◦ f (1) (18).

Figure 3.1 A diagram of a basic MLP

Optimizers 17

3.1.3 Activation functions
We have already glanced upon activation functions but have not yet given them
the attention they deserve. As stated in section 3.1.1 any non-linear function can
serve as activation function. They serve a crucial role in neural networks since
they introduce non-linearity. A whole MLP without activation functions could be
replaced by single matrix multiplication.

Different layers may use different activation functions, but, in practice, the most
common activation function for hidden layers (the ones that are neither input nor
output) is ReLU 3.4.

f(x) = max(0, x) (3.4)

The choice of activation function for the output layer largely depends on the
task. For c class classification softmax is the most popular option. It is described
in the equation 3.5. Moreover, no activation function is used in the last layer for
regression tasks.

fi(ξ) = eξi

eξ1 + ... + eξc
, (3.5)

where ξ = (ξ1, ..., ξc)T is a vector of inner potentials of c neurons and fi(ξ) is the
activation function ith neuron (18).

3.1.4 Cost function
To train a neural network, we need to have some notion of how well the model
performs. This is achieved by introducing a cost (often called loss) function.

There are multiple cost functions, each with applications, drawbacks, and ad-
vantages. For classification tasks the standard one is cross-entropy. For classifica-
tion of c classes, cross-entropy is given by

L(Y, p̂) = −
c∑

j=1
1Y =j log p̂j = − log p̂Y , (3.6)

where p̂i = P̂ (Y = i|X = x) and p̂ = (p̂1, ..., p̂c)T (18).

3.2 Optimizers
There are several different algorithms for training neural networks called optimiz-
ers. An optimizer is an algorithm that updates model parameters during training.
While all optimizers diverge in details and often address different nuances of the
training process, the core idea is the same. Every optimizer is a modification of
the gradient descent algorithm.

18 Deep learning background

3.2.1 Gradient descent
Gradient descent is the algorithm that allows neural networks to learn. The goal of
gradient descent is to iteratively minimize the average output of the cost function
for every item in the training set. To achieve that, we need to compute the vector
of partial derivatives of the cost function C with respect to each weight and bias in
the network called gradient. That is where the algorithm gets its name. Gradient
is denoted as ∇C as seen in equation 3.7.

∇C =
(

∂C

∂w(1) ,
∂C

∂b(1) , ...,
∂C

∂w(l) ,
∂C

∂b(l)

)
, (3.7)

where w(1), ..., w(l) are all the weight vectors and b(1), ..., b(l) are all the bias vectors
for each layer in the network.

After computing the gradient, it is multiplied by learning rate and subtracted
from the weights and biases in the network, thus slightly nudging the network
towards a better solution. Learning rate, often denoted as η, is one of the essential
hyperparameters of a network. It decides how much the network’s weights and
biases get updated in each iteration. A network with a too high value of η can
skip optimal weight values, and a network with a learning rate set too low can train
forever. Therefore η must be selected carefully when training a neural network.

3.2.2 Stochastic gradient descent
Neural networks nowadays are trained on big data sets. Therefore precise calcu-
lation of the gradient can become too computationally intensive even for modern
hardware. Stochastic gradient descent (SGD) is a modified gradient descent algo-
rithm designed to mitigate that.

SGD simplifies the task of calculating gradient by approximating it. Instead
of computing the cost for all entries in the training set, SGD computes gradient
and updates the model’s parameters for entry in the training set separately. The
resulting gradients and, thus, parameter updates are less representative of the
actual data. However, the error is considered negligible in light of the speed-up
achieved by this approach. It was shown that, when we slowly decrease leaning
rate, SGD demonstrates same convergence behavior as the classic gradient descent
(19).

The mini-batch gradient descent is a middle ground between SGD and the orig-
inal algorithm. Instead of computing gradient for every entry in the training set, it
randomly splits the training data into fixed-size batches and performs parameter
updates for each batch. As a result, this approach achieves a more precise gradi-
ent approximation than the SGD and is less computationally intensive than the
gradient descent algorithm. Conventionally, mini-batch gradient descent is also
referred to as SGD.

Convolutional neural network 19

3.2.3 Adam
Adam is considered the sane default optimizer for most neural networks and types
of data sets. Adam was proposed by Diederik in the paper “Adam: A Method
for Stochastic Optimization” (20). Adam’s approach is inspired by two other
optimizers, Adagrad (21) and RMSprop (RMSprop is an unpublished algorithm,
but it is covered by Ruder (19)), and it combines ideas from both of them.

Adam stores an exponentially decaying average of past squared gradients vt

and an exponentially decaying average of past gradients mt u, both of which are
initialized with vectors of zeroes and are updated at each iteration t as defined in
equation 3.8.

mt = β1mt−1 + (1 − β + 1)∇Ct−1

vt = β2mt−1 + (1 − β + 1)(∇Ct−1)2,
(3.8)

where β1 and β2 are optimizer hyper parameters.
To combat the bias, introduced by parameters’ initialization with zeroes, the

vt and mt are corrected as described in equation 3.9.

m̂t = mt

1 − βt
1

v̂t = vt

1 − βt
2
,

(3.9)

Lastly, both parameters are used to update the network’s parameters according
to Adam’s update rule from equation 3.10.

θt+1 = θt − η√
v̂t + ϵ

m̂t, (3.10)

where θt denotes all parameters of the network at iteration t, η is the learning rate
and ϵ is simply a very small number (19).

3.3 Convolutional neural network

Convolutional neural networks (CNN) are a class of artificial neural networks that
can be described as a regularized version of multilayer perceptron. CNN’s are
comprised of convolutional layers and pooling layers, which we will discuss further
in this section, and, typically, some fully connected layers at the end of the network.

CNN’s are most commonly applied to visual data. Unlike MLPs, CNNs are
able to preserve some spatial structure from the input. Therefore they tend to
perform significantly better in most image recognition tasks, where this kind of
information is crucial.

For example, if we wanted to solve an image classification task with the help
of an MLP, we flatten the image to pass it as input to the first layer. As a result,

20 Deep learning background

the network receives a one-dimensional vector of pixel values, thus losing access to
all of the spatial structure that was present in the original image.

3.3.1 Convolution operation
Convolution is an operation performed on images with the use of a smaller weights
matrix called kernel or filter. The kernel is slid systematically over all overlapping
kernel-sized patches of the image to produce the output. The element-wise product
between each patch and kernel is computed and summed. Values of these sums are
the output of the convolution operation. The whole process is better illustrated
by figure 3.2, taken from RiverTail (22) documentation. Convolution operation
has an important quirk: its output is slightly smaller than the input image.

Figure 3.2 Visualization of a convolution operation.

3.3.2 Convolutional layer
As is evident from the name, the convolutional layer employs a convolution oper-
ation. Almost always, it employs several of them. Each layer can have multiple
filters. Each filter is a matrix of weights that are optimized during the training
process of the network. Every filter is used to convolve the input of the layer
separately. Results of these convolutions are called feature maps. So, a single con-
volutional layer outputs a volume of feature maps: one for each filter it contains,
as seen in figure 3.3.

There is a single difference between the convolution operation that we described
in section 3.3.1 and the one used inside CNNs: the latter also adds a bias to the
weighted sum. After computing the linear transformation that is the convolution,
the activation function is applied to each feature map analogously to MLPs.

The convolutional layer has three hyper-parameters: a number of filters, filter
size, and stride. The number of filters is arbitrary as it defines the depth of the
output. Filter size is typically kept between 3 × 3 and 7 × 7. Stride is the step
with which filters are moved across the input. It is almost always kept at 1.

Convolutional neural network 21

Figure 3.3 A convolution layer with multiple filters

3.3.3 Pooling layer
The primary purpose of the pooling layer is to down-sample feature maps. It
addresses a common problem with feature maps being too sensitive to the location
of the features in the input (23). Also, it helps the model to generalize by reducing
the complexity of the deeper layers.

The most common type of pooling method is max pooling. It partitions the
input feature map into rectangle patches and only returns the maximum from
that patch, as seen in figure 3.4 (24). Another commonly used pooling operation
is average pooling. It works similarly to max pooling, but it averages values of the
patch instead of picking the maximum.

Figure 3.4 Illustration of max pooling

22 Deep learning background

3.4 Transformer

Transformer is a relatively new neural network architecture introduced in 2017 in
the famous paper “Attention is all you need” (25) by a team from Google. The ar-
chitecture was intended initially for natural language processing applications, but
later transformers were shown to be effective in other fields, like image recognition
(26).

As the name of the paper suggests, a transformer is an ANN architecture that
relies exclusively on the self-attention, which we will discuss in the next section,
to compute representations of its inputs and output. Another advantage of trans-
former architecture is that it allows a significantly higher degree of parallelization
and thus can be trained significantly faster than previous architectures (25).

Transformers are structured as encoder-decoder models. Encoder-decoder is
a type of ANN architecture that consists of two parts with unsurprising names:
encoder and decoder. Encoder maps a sequence of symbol inputs to a sequence of
continuous representations, sometimes referred to as code. The decoder, given the
code, produces the output of the model.

Encoder, typically, receives the input in the form of embeddings. Embeddings
are vectors of continuous values that represent discrete values. Embeddings are
used to reduce the dimensions of the input. The mapping of input to vectors is
learned, allowing us to map similar continuous vectors to discrete values that are
semantically similar.

3.4.1 Self-attention
As we have already touched upon, the core of transformers is the self-attention.
Self-attention receives embeddings as input and feeds them into three separate
linear layers. These operations produce three distinct vectors, referred to as key,
query and value. Self-attention then computes dot product of the keys and queries.
The output of the dot product is the similarity matrix of keys and queries since
the dot product is proportional to the cosine of two vectors. The similarity matrix
is then scaled down to keep the values of the dot product from exploding. It
would hurt the training performance for the next step. A softmax is applied to
the similarity matrix, and the output of that is multiplied by the value, giving
us the output of the whole self-attention block. Optionally, the attention head
may include a mask. When it is applied to the similarity matrix, all values above
the main diagonal are replaced with negative inf. It is done for autoregressive
models so that they ignore the inputs they have not seen yet. Overall structure is
described more succinctly by the left diagram in figure 3.5 from the paper (25).

This whole computation sounds significantly more complex, than it really is:
once we have our key, query and value vectors, the rest can be described with a
rather simple equation in matrix form from the original paper (25):

Transfer learning 23

Figure 3.5 Transformer blocks

Attenton(Q, K, V) = softmax(QKT

√
dk

)V, (3.11)

where V is the value, K is the value, Q is the value query and dk is the dimension
of the key vector.

In transformers multiple self-attention modules (model, proposed in the original
paper uses 8) are stacked together into blocks called multi-head attention. In multi-
head attention, outputs of all self-attention heads are concatenated together and
passed through yet another linear layer, as seen on the right diagram in figure 3.5.
This allows models to learn multiple connections between the parts of the input.

Why multiple attention heads are needed is better illustrated by an example
from natural language processing. Imagine that we want to compute sentiment
analysis of restaurant reviews. If the model receives as input a sentence “The
food was not terrible”, the transformer has to learn a relationship between the
words “not” and “terrible”. This relationship will be drastically different from the
connection between “terrible” and “food”. Multiple heads in each attention block
allow transformers to learn different relationships separately.

3.5 Transfer learning
Perhaps the most empowering concept discussed in this thesis is transfer learning.
It allows us to achieve competitive performance with insufficient training data and
significantly less powerful hardware. Transfer learning is a process of taking a
model with all of its parameters trained on some data and leveraging it to solve a
task on different data.

There are two approaches to transfer learning: using the trained model as a
feature extractor and finetuning. Finetuning is the more head-on approach: the

24 Deep learning background

output layer is replaced to fit your specific task, and the whole model is simply
trained on the new data. Using model as a feature extractor is also rather simple.
It is the same procedure as the finetuning. However, all model parameters, except
for the output layer, are frozen so that they do not change in the training process.
The output layer is trained to interpret the representation generated by the original
model. Finetuning with a lower learning rate is often applied afterwards.

Obviously, the more similar the training data used to train the model initially
and the one used for the task at hand, the better the model will perform. Nev-
ertheless, since the earlier layers in the model tend to learn simpler, more general
features, transfer learning can demonstrate decent results on even dissimilar data,
especially on smaller data sets.

Chapter 4

Survey

In this chapter, we will describe modern methods employed in image recognition.
We will describe the specific influential models in chronological order, focusing on
more general innovations and improvements proposed with these models.

4.1 ImageNet

The whole field owes a great deal of its success to the famous ILSVRC (27) com-
petition. ILSRVC stands for ImageNet Large Scale Visual Recognition Challenge.
The competition challenges machine learning engineers to train the best model us-
ing the ImageNet data set. ImageNet is a gigantic database of images, containing
hundreds of thousands of images for every 22,000 categories (15 million images in
total). ImageNet has been for a decade and still is the de facto benchmark used to
generally evaluate the performance of any image recognition approach and assign
it the status of state-of-the-art.

4.2 AlexNet

AlexNet (28), created by Alex Krizhevsky, was the winning model of ILSVRC-
2012 competition. It was the first deep learning model to win the competition and
attracted much attention to deep learning by greatly outperforming all traditional
approaches.

AlexNet is a convolutional neural network with eight layers in total first 5 of
which are convolutional and pooling, and the remaining three are fully connected.
The architecture is better described by the figure from the original paper 4.1.

While AlexNet is not as impressive now as it was ten years ago, it set the
framework, of stacking 2 to 3 convolutional layers followed by a pooling layer for
most CNN architectures onward. It still can show great results on simpler kinds
of images.

25

26 Survey

Figure 4.1 AlexNet architecture

4.2.1 Going deeper

ILSVRC-2014 was dominated by two models: VGG (29) and GoogLeNet (30).
Both of these models consolidated the success of AlexNet by becoming signifi-
cantly deeper and wider. Both models are large: VGG consists of 16 layers, and
GoogLeNet has 22, but these models still follow the general framework set by
AlexNet.

Figure 4.2 Inception module from GoogLeNet

Apart from being significantly larger, GoogLeNet introduced a novelty in the
form of the Inception module that allowed running multiple convolution and pool-
ing operations with different filters in parallel, therefore avoiding common trade-
offs faced by the prior architectures (31). An Inception module is illustrated in
figure 4.2 by Alto (31).

ResNet 27

4.3 ResNet

ResNet (32) is a CNN architecture that won 2015 ILSVRC competition. ResNet
introduced the concept of residual learning that significantly mitigates the vanish-
ing gradient problem that plagued networks with a high number of layers.

Figure 4.3 A single residual block

Residual learning is implemented by the addition of shortcut connections be-
tween the layers of the network. These connections simply add inputs of a layer
to the inputs of another layer deeper in the model (32). A single such connection
can be seen in figure 4.3 from the original paper. This novelty made it possible to
train models with hundreds of layers successfully.

While ResNet is outperformed by models discussed further in the thesis on
the ImageNet benchmark, it stays the industry standard. As a result, it is often
selected as a first model in the experiments or as a baseline for a newly proposed
architecture.

4.4 DenseNet

DenseNet (33) is a successful architecture inspired by ResNet. It takes residual
learning to the extreme by densely connecting all layers in the neural network,
hence DenseNet. In other words, in DenseNet, the input of every hidden layer is
formed by concatenating the output of the previous layer with the inputs of all of
the layers before it, as seen in figure 4.4 by Huang (33).

DenseNet achieves competitive performance with the drawback of requiring
significantly more GPU memory to train.

4.5 Vision Transformer

Vision Transfomer or ViT is the only transformer model on this list. It was first
introduced in the paper “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale” by Alexey Dosovitsky (26). While it is not the first attempt

28 Survey

Figure 4.4 DenseNet architecture

at applying immensely popular transformers to image recognition, it is undoubt-
edly the first successful one, beating ImageNet’s state-of-the-art performance at
the time.

Figure 4.5 ViT architecture

The name of the paper is a reference to the model’s architecture, displayed in
the figure 4.5, taken from the paper. The model splits input images into fixed-size
patches (e.g., 16×16). These patches are then linearly embedded, and a position
embedding is added to them so that the models have an understanding of where
these patches are in the image. With an additional learnable embedding prepended
to them, the resulting vectors are then fed into the transformer encoder.

The encoder consists of alternating layers of multiheaded self-attention and
multilayer perceptron blocks, both of which we have discussed in the previous
chapter, with Layernorm (34) normalization applied before every block. Finally,

ConvNeXt 29

the output of the encoder is passed into a multilayer perceptron that does the
classification.

4.6 ConvNeXt

ConvNeXt (35) is a CNN that Takes ResNet as a base and heavily modifies it by
applying some modern techniques inspired by transformers. ConvNeXt is partially
inspired by the paper “ResNet strikes back: An improved training procedure in
timm” (36), which demonstrates that ResNet can achieve much greater perfor-
mance when trained with the use of more modern techniques.

ConvNext is trained with AdamW (37) optimizer on data augmented with the
newer techniques. They also swapped out heavily overlapping 7×7 convolutions
with a stride of 2 at the beginning of the network for non-overlapping 4×4 layers
with a stride of 4, mimicking the split into patches done by transformers like ViT.

Figure 4.6 ResNet and ConvNext blocks comparison

Figure 4.6 is part of the diagram from the original paper that compares blocks
of ResNet and ConvNeXt. As seen in the figure, blocks use larger 7×7 kernels in
the convolutional layers. Inverted bottlenecks, also typical in transformers, were
introduced to the blocks of the ConvNext. An inverted bottleneck is a sequential
pair of layers where the dimension of the first layer is significantly smaller than
the dimension of the second one. In the case of ConvNext, it is four times.

Just like transformers, ConvNeXt has fewer activation functions and fewer
normalization layers. Also traditionally used in CNNs ReLU activation function
and BatchNorm (38) normalization are replaced with GELU (39) activation and

30 Survey

simpler Layer Normalization (34). ConvNeXT also has separate downsampling
layers.

Chapter 5

Implementation

In this chapter, we will describe the practical part of the thesis. We will cover all
steps of preprocessing the data, generating image data sets, and modeling, and
then we will discuss the results.

5.1 Used technologies
The whole practical part of the thesis is entirely written in Python. Python is
an interpreted programming language initially created by Guido van Rossum. It
has taken off as the de facto standard programming language for most scientific
and ML-related purposes in recent years. What sets Python apart from the other
languages is an excellent ecosystem of libraries and packages for any computing
task, from the web to physical simulations.

In this thesis, we heavily take advantage of Python’s ecosystem throughout the
implementation. Most work with data is done using the Pandas library. Pandas
is an excellent data manipulation package created by Wes McKinnley that allows
us to work with large tables of data. All the numeric work, like Fourier transform,
is done via the NumPy library. Numpy is a numerical computing library created
by Travis Oliphant. Numpy is a very performant package that adds support for
n-dimensional arrays and a plethora of mathematical functions and data transfor-
mations. To compute the values of technical indicators, we used TA-Lib. TA-Lib
is a popular technical analysis library widely used by trading software develop-
ers. And finally, to generate the images, we used matplotlib. Matplotlib is an
extremely powerful library for creating visualizations in Python, initially created
by John D. Hunter.

PyTorch handles the deep learning side of the implementation. PyTorch is
a framework for deep learning models. It is a python re-implementation and
extension of a Lua package called Torch, hence the name. It is primarily developed
by Facebook. Since its release, PyTorch has been quickly adopted by the academic
community, and it has become the most used deep learning framework.

31

32 Implementation

5.2 Preprocessing
For the experiments, we have chosen an OHLC EUR/USD data set with 8 hour
period, downloaded from FXCM.

5.2.1 Technical indicators
As a first step in the preprocessing pipeline, we will compute values of every
technical indicator that we have discussed in the section 2.1 for the whole data
set. Most indicators produce NaNs at the beginning of the data set, so we will
have to drop those rows, which is not a big issue since those are the least relevant
data points in the data set.

Used technical indicator parameter values
RSI: p = 24

ROC: p = 10

Ultimate oscillator: p1 = 7, p2 = 14, p3 = 28

Stochastic oscillator: fast %k period p = 10, slow %d period n = 3

CCI: p = 24

APO: fast period p1 = 12, slow period p2 = 26

Aroon oscillator: p = 28

Chande oscillator: p = 28

The whole data set is then split into windows of size w (for our experiments,
we chose w = 20). Each window will be used further down the pipeline to generate
a single image for our models.

5.2.2 Labeling
We have to discuss labeling in a separate subsection due to the specificity of the
task. As stated in the title of the thesis, we will attempt to predict Forex signals,
in other words, an upcoming change in the Forex pair’s prices for each window.
Nevertheless, what precisely to consider a change and for how many ticks into the
future is up for debate.

There are multiple viable ways to mark a window of values as preceding a
positive or negative trend. The most obvious way would be to simply consider
the value right after the window and decide solely on the change in its value. An

Preprocessing 33

analogous approach is to pick the nth value after the window and label windows
based on the change in its value. Finally, a more involved approach is to take
n values after the window, fit a line to them, and use its slope as a determining
factor. All of the described approaches were used in the previous works related
to our topic, but we believe that our approach will lead to better results in a
real-world setting.

Our labeling method is based on nuances of the Forex domain, more specifically,
how trade orders are placed and executed. Trades and orders are covered in chapter
1. We are going to have three labels: long, short and hold. Both long and short
labels imply a significant positive or negative trend in the upcoming values. On
the other hand hold means that there is no significant change in the near future
prices.

To define what “significant change” is and how many ticks into the future is
the “near” future, we will use two hyperparameters: d and l, where d is a threshold
in pips, by which currency pair’s value has to change to be considered significant,
and l is the number of ticks into the future, that we will consider relevant for a
single window.

We are going to label a window (and all images generated from it) as long if
the first price in the next l ticks that deviates from the last value of the window
by more than d pips is greater than the last value of the window Analogously with
short labels, but the change has to be negative. If there is not a single price in the
next l ticks that changes by more than d pips than the last value of the window,
we are going to label the window as hold. A sample python implementation of the
algorithm is provided in the code listing 5.1.

Code listing 5.1 Labeling algorithm in python
import numpy as np

def get_label (close_values , w_end , l, d):
label = "HOLD"
diff = close_values [w_end +1:l] - close_values [w_end]
diff_in_pips = diff * 10000 # 10000 for EUR/USD
trigger = diff_in_pips [np. argmax (abs(diff_in_pips) > d)]
if abs(trigger) > d:

label = "LONG" if trigger > 0 else "SHORT"
return label

The reasoning behind this labeling approach is as follows: when traders com-
mit to a transaction, they also place pending orders that trigger when the price
increases or decreases by d pips to take profit, while the situation has not wors-
ened or as a safety net to prevent uncontrollable losses. Therefore, our labeling
approach marks windows based on which order will be triggered first.

There are some fees associated with the transaction on all the trading platforms,
so the point of the hold label is to save traders money on meaningless trades when
there are no opportunities for profit.

34 Implementation

5.2.3 Filtering
When working with any market data, filtering is an essential part of the prepro-
cessing pipeline, especially in the case of Forex, due to the sheer volume of trades
happening simultaneously on the market. Filtering is essential because of large
amounts of noise inside Forex data sets that obscure more general trends behind
unimportant features. In this work, we are going to remove unimportant signal
details using the Butterworth filter that we have covered in section 2.3.1.

Butterworth filter was chosen because it produces a smooth curve with no
ripples. These qualities are precious for the next preprocessing step, where we are
going to extrapolate indicators into the future, using discrete Fourier transform
and for machine learning models in general since it makes input data more similar
and helps models to generalize better by preventing overfitting.

5.2.4 Fourier extrapolation
While people do draw some insight from graphs, and some traders successfully
use technical indicators on their own, we are going to take it one step further by
extrapolation indicators’ values into the future using FFT. There are two points
behind this approach’s intuition.

Firstly, a person, who is experienced in signal processing, can, with a high
degree of accuracy, predict if the value of the signal will grow or shrink in the
future by examining a graph of the signal’s extrapolation done with FFT. We hope
that ML models will be able to learn cues contained in the graphs and manage to
use them to improve trend prediction.

Secondly, technical indicators are easily interpreted in hindsight, but only some
traders are able to create a successful trading strategy using only technical indi-
cators. However, by extrapolating values of the indicators into the future with
at least some degree of accuracy, we can use technical indicators as a standalone
trading signal, And DFT allows us to do just that.

As has already been covered in section 2.2, Discrete Fourier Transform allows
us to decompose signals into a sum of a series of sine or cosine terms. This allows
us to extend a series of values by applying FFT to them, forecasting individual
components separately, and reassembling the signal by summing together the pro-
longed components. An example of such extrapolation on simple data can be seen
in figure 5.1.

Since Forex prices are not well-behaved by any stretch, we should expect the
extrapolation to stay accurate only for a short term, so the extrapolation should
only be done for some small number of ticks r.

Preprocessing 35

Figure 5.1 An example of FFT extrapolation

5.2.5 Generating images
All images that we are going to generate can be split into two groups: the ones
that have thresholds that hold special meaning and the ones that do not.

For example, RSI value crossing the upper or lower threshold signifies that
an asset is overbought or oversold. We want to make this additional information
available to the models. Therefore when the oscillator’s value crosses a threshold,
we will highlight the area between the curve and the threshold line with a different
color, as seen in figure 5.4. For all indicators with the thresholds, we chose 60 and
40 as upper and lower values instead used 30 and 70, which are commonly used
for daily trading, because we are working with higher frequency data.

For other technical indicators like ROC, we will simply color the area under
the graph green if the value is greater than zero and red if it is less than zero, as
seen in figure 5.2.

All generated images are 224 × 224 pixels. Such specific size is dictated by the
fact that 224 × 224 is the lowest resolution that most pre-trained models are able
to accept. Samples of generated images for each indicator is displayed in figures
5.2 through 5.9.

36 Implementation

(a) Hold (b) Long (c) Short

Figure 5.2 ROC sample images

(a) Hold (b) Long (c) Short

Figure 5.3 CCI sample images

(a) Hold (b) Long (c) Short

Figure 5.4 RSI sample images

Preprocessing 37

(a) Hold (b) Long (c) Short

Figure 5.5 Ultimate oscillator sample images

(a) Hold (b) Long (c) Short

Figure 5.6 Stochastic oscillator sample images

(a) Hold (b) Long (c) Short

Figure 5.7 Aroon oscillator sample images

38 Implementation

(a) Hold (b) Long (c) Short

Figure 5.8 Chande Momentum oscillator sample images

(a) Hold (b) Long (c) Short

Figure 5.9 Absolute price oscillator sample images

Modeling and evaluation 39

5.2.6 Summary
Our preprocessing pipeline consists of the following steps:

1. Compute values of technical indicators for the whole data set.

2. Apply Butterworth filter to each indicator.

3. Split data set into windows of size w.

4. Set label for each window. Using d and l.

5. Extrapolate each window r ticks into the future using the FFT.

6. Create images of extrapolation’s plots, as covered in the section above.

In our experiments we landed on the following combination of parameter values:
w = 20, d = 50, l = 20 and r = 10.

5.3 Modeling and evaluation
Instead of coming up with yet another neural network architecture, we are going
to experiment on all the models that we have already discussed in the survey 4
chapter of the thesis.

As our performance metric, we are going to simply use accuracy. It is a simple,
easy-to-understand performance benchmark and the most suitable for our problem
domain. Even incorrect predictions of missing trends result in losses for traders in
the form of trading platform fees. While those are not as significant as incorrect
predictions of opposite trends, we should still avoid them as much as possible.

All models were trained on image data sets generated for each indicator. When
splitting data into training, validation, and test sets, we made sure not to shuffle
the windows. The model’s performance is evaluated based on predicting the future
while being trained on the examples from the past.

AlexNet VGG ResNet DenseNet ViT ConvNeXt
APO 52.0% 38.6% 35.6% 41.1% 53.4% 50.7%
Aroon 45.1% 31.0% 38.4% 31.5% 30.1% 26.0%
CCI 59.0% 43.0% 45.2% 52.1% 46.6% 32.4%
Chande 53.0% 41.0% 43.8% 45.2% 32.9% 27.4%
ROC 63.0% 49.3% 53.4% 52.1% 54.8% 57.5%
RSI 60.3% 46.6% 43.8% 49.3% 43.6% 46.6%
Stochastic 57.0% 31.5% 31.5% 37.0% 32.9% 30.1%
Ultimate 58.4% 47.0% 45.2% 46.6% 34.2% 34.2%

Table 5.1 Best test accuracy scores per model 8h EUR/USD

40 Implementation

Best reached accuracy scores are summarized in table 5.1. To achieve them,
AlexNet, VGG, ResNet, and DenseNet were fine-tuned with Adam optimizer and
a learning rate η = 10−4. For more advanced ViT and ConvNext, we opted for
AdamW (37), since it is the optimizer that was used to train them in the first
place, and a lower learning rate of η = 3 × 10−6. All models were trained using
cross-entropy loss.

The highest accuracy score we achieved is 63% with AlexNet and ROC images.
Broader conclusions can be drawn from the heat map of the same table in figure
5.10.

As is evident from the heat map, ROC, the simplest out of all technical indica-
tors, was the most successful across the board, reaching high accuracy scores across
all the tested architectures. RSI attained the second-best scores. On the other
hand, all models showed subpar performance when trained on images generated
from Aroon oscillator.

Figure 5.10 Best test accuracy scores heatmap 8h EUR/USD

The best-performing architecture across all indicators is AlexNet. However,
ViT and ConvNeXt displayed terrible results on most indicator data sets, with
performance on par with a random classifier.

Overall, results seem to get worse with the complexity of the model. That does
make sense due to the following two factors. Firstly, all generated images of the

Modeling and evaluation 41

technical indicator plots are not highly complex. They contain simple geometric
shapes in four colors. Therefore an exceedingly deep network might be prone to
overfitting.

Secondly, there are only so many 8-hour periods in the year. Moreover, we have
less than 20 years’ worth of data, which is insufficient to train complex models.
This especially hurts transformers, which require more data than convolutional
neural networks. The situation is further worsened by the fact that we are not
able to apply any data augmentation techniques to artificially increase the size of
the data set since it would interfere with the semantics of the generated plots.

42 Implementation

Conclusion

In this thesis, we tried to achieve two main goals: surveying currently used image
recognition methods and applying them to predict upcoming Forex trends. The
first three chapters were dedicated to all the Forex domain and theory preliminaries
necessary for chapters 4 and 5. The First goal was fulfilled in chapter 4 of the
thesis, where we covered the top neural network architectures of the last decade.
To apply models described in chapter 4 to Forex signal prediction, we created a
preprocessing pipeline for transforming time-series data into image data sets.

Chapter 5 described the data preprocessing pipeline used to create images.
Further, in the same chapter, we described finetuning process of the models from
the survey, presented results, and drew some conclusions from the results. The
highest accuracy score achieved by us with this approach is 63.0%. This result
has been reached using a simpler model and a relatively straightforward technical
indicator: AlexNet and ROC. While it might not be an astounding success, Forex
asset prices are famously hard to predict, and this result demonstrates that there
is at least some merit to the employed approach.

This task allows a tremendous amount of possibilities for improvements. The
most obvious one would be to combine models and indicators described in this
thesis into an ensemble. Another approach would be to explore event more tech-
nical indicators, not focusing solely on momentum and volatility. One could also
dive deeper into the more complex indicators to find a more fitting set of hyper-
parameters. The way images are generated could also be improved. For exam-
ple, every image could contain multiple indicators simultaneously, and overlapping
their graphs may hold special meaning for future prices. An even more involved
approach would be to use a sequence of images for each prediction. This would
allow models to capture the movement of the Forex prices and could lead to better
results.

The approach showed promising results and, with further development, could
be tested in a real-world setting.

43

44 Conclusion

Bibliography

1. WANG, Zhiguang; OATES, Tim. Imaging Time-Series to Improve Classifica-
tion and Imputation. CoRR. 2015, vol. abs/1506.00327. Available from arXiv:
1506.00327.

2. TSAI, Yun-Cheng; CHEN, Jun Hao; WANG, Jun-Jie. Predict Forex Trend
via Convolutional Neural Networks. CoRR. 2018, vol. abs/1801.03018. Avail-
able from arXiv: 1801.03018.

3. COHEN, Naftali; SOOD, Srijan; ZENG, Zhen; BALCH, Tucker; VELOSO,
Manuela. Visual Forecasting of Time Series with Image-to-Image Regression.
CoRR. 2020, vol. abs/2011.09052. Available from arXiv: 2011.09052.

4. BABUSHKIN, Andey. Market signal algorithm based on image recognition.
2019. Bachelor’s Thesis. Czech Technical University in Prague, Faculty of
Information Technology,

5. WIRTH, R.; HIPP, Jochen. CRISP-DM: Towards a standard process model
for data mining. Proceedings of the 4th International Conference on the Prac-
tical Applications of Knowledge Discovery and Data Mining. 2000.

6. HAYES, Adam. Technical Analysis [Investopedia] [online]. 2022-03-14 [visited
on 2022-03-14]. Available from: https://www.investopedia.com/terms/t/
technicalanalysis.asp.

7. CHEN, James. Technical Analysis [Investopedia] [online]. 2021-09-29 [visited
on 2021-09-29]. Available from: https://www.investopedia.com/terms/t/
technicalindicator.asp.

8. KAUFMAN, Perry J. Trading Systems and Methods, + Website. 5th. Wiley
Publishing, 2013. isbn 1118043561.

9. SCHLOSSBERG, Boris. Technical analysis of the currency market. Nashville,
TN: John Wiley & Sons, 2006. Wiley Trading.

10. WILDER, J.W. New Concepts in Technical Trading Systems. Trend Research,
1978. isbn 9780894590276. Available also from: https://books.google.cz/
books?id=WesJAQAAMAAJ.

45

https://arxiv.org/abs/1506.00327
https://arxiv.org/abs/1801.03018
https://arxiv.org/abs/2011.09052
https://www.investopedia.com/terms/t/technicalanalysis.asp
https://www.investopedia.com/terms/t/technicalanalysis.asp
https://www.investopedia.com/terms/t/technicalindicator.asp
https://www.investopedia.com/terms/t/technicalindicator.asp
https://books.google.cz/books?id=WesJAQAAMAAJ
https://books.google.cz/books?id=WesJAQAAMAAJ

46 Bibliography

11. WILLIAMS, Larry. The ultimate oscillator. Technical Analysis of Stocks and
Commodities. 1985, vol. 3, no. 4, pp. 140–141.

12. HAYES, Adam. Technical Analysis [Investopedia] [online]. 2021-06-25 [visited
on 2021-06-25]. Available from: https://www.investopedia.com/terms/s/
stochasticoscillator.asp.

13. MITCHEL, Cory. Technical Analysis [Investopedia]. 2021-08-24. Available
also from: https://www.investopedia.com/terms/a/aroonoscillator.
aspp.

14. CHANDE, T.S.; KROLL, S. The New Technical Trader: Boost Your Profit
by Plugging Into the Latest Indicators. Wiley, 1994. Wiley Finance. isbn
9780471597803. Available also from: https://books.google.cz/books?id=
uPMJAQAAMAAJ.

15. ENDERLE, John. Introduction to biomedical engineering. Academic press,
2012.

16. BUTTERWORTH, Stephen et al. On the theory of filter amplifiers. Wireless
Engineer. 1930, vol. 7, no. 6, pp. 536–541.

17. THE MATHWORKS, Inc. What is Frequency Response? [MathWorks]. Avail-
able also from: https : / / www . mathworks . com / discovery / frequency -
response.html.

18. KLOUDA, Karel; VAŠATA, Daniel. Vytěžováńı znalost́ı z dat: Neuronové
śıtě [online]. 2022 [visited on 2022-03-23]. Available from: https://courses.
fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf.

19. RUDER, Sebastian. An overview of gradient descent optimization algorithms.
arXiv, 2016. Available from doi: 10.48550/ARXIV.1609.04747.

20. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Opti-
mization. arXiv, 2014. Available from doi: 10.48550/ARXIV.1412.6980.

21. DUCHI, John; HAZAN, Elad; SINGER, Yoram. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of machine learn-
ing research. 2011, vol. 12, no. 7.

22. KUPER, Lindsey. Bringing Parallelism to the Web with River Trail [online].
2016 [visited on 2022-04-24]. Available from: http://intellabs.github.
io/RiverTrail/tutorial/.

23. BROWNLEE, Jason. A Gentle Introduction to Pooling Layers for Convolu-
tional Neural Networks [online]. 2019-07-05 [visited on 2021-04-25]. Available
from: https : / / machinelearningmastery . com / pooling - layers - for -
convolutional-neural-networks/.

24. ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understand-
ing of a convolutional neural network. In: 2017 international conference on
engineering and technology (ICET). 2017, pp. 1–6.

https://www.investopedia.com/terms/s/stochasticoscillator.asp
https://www.investopedia.com/terms/s/stochasticoscillator.asp
https://www.investopedia.com/terms/a/aroonoscillator.aspp
https://www.investopedia.com/terms/a/aroonoscillator.aspp
https://books.google.cz/books?id=uPMJAQAAMAAJ
https://books.google.cz/books?id=uPMJAQAAMAAJ
https://www.mathworks.com/discovery/frequency-response.html
https://www.mathworks.com/discovery/frequency-response.html
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
https://doi.org/10.48550/ARXIV.1609.04747
https://doi.org/10.48550/ARXIV.1412.6980
http://intellabs.github.io/RiverTrail/tutorial/
http://intellabs.github.io/RiverTrail/tutorial/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/

Bibliography 47

25. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob;
JONES, Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLOSUKHIN, Illia.
Attention Is All You Need. arXiv, 2017. Available from doi: 10 . 48550 /
ARXIV.1706.03762.

26. DOSOVITSKIY, Alexey; BEYER, Lucas; KOLESNIKOV, Alexander; WEIS-
SENBORN, Dirk; ZHAI, Xiaohua; UNTERTHINER, Thomas; DEHGHANI,
Mostafa; MINDERER, Matthias; HEIGOLD, Georg; GELLY, Sylvain; USZKO-
REIT, Jakob; HOULSBY, Neil. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. arXiv, 2020. Available from doi:
10.48550/ARXIV.2010.11929.

27. RUSSAKOVSKY, Olga; DENG, Jia; SU, Hao; KRAUSE, Jonathan; SATHEESH,
Sanjeev; MA, Sean; HUANG, Zhiheng; KARPATHY, Andrej; KHOSLA,
Aditya; BERNSTEIN, Michael; BERG, Alexander C.; FEI-FEI, Li. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV). 2015, vol. 115, no. 3, pp. 211–252. Available from
doi: 10.1007/s11263-015-0816-y.

28. KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems. 2012, vol. 25.

29. SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv, 2014. Available from doi:
10.48550/ARXIV.1409.1556.

30. SZEGEDY, Christian; LIU, Wei; JIA, Yangqing; SERMANET, Pierre; REED,
Scott; ANGUELOV, Dragomir; ERHAN, Dumitru; VANHOUCKE, Vincent;
RABINOVICH, Andrew. Going deeper with convolutions. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–
9.

31. ALTO, Valentina. Understanding the Inception Module in Googlenet. Avail-
able also from: https://valentinaalto.medium.com/understanding-
the-inception-module-in-googlenet-2e1b7c406106.

32. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual
Learning for Image Recognition. arXiv, 2015. Available from doi: 10.48550/
ARXIV.1512.03385.

33. HUANG, Gao; LIU, Zhuang; MAATEN, Laurens van der; WEINBERGER,
Kilian Q. Densely Connected Convolutional Networks. arXiv, 2016. Available
from doi: 10.48550/ARXIV.1608.06993.

34. BA, Jimmy Lei; KIROS, Jamie Ryan; HINTON, Geoffrey E. Layer Normal-
ization. arXiv, 2016. Available from doi: 10.48550/ARXIV.1607.06450.

https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/ARXIV.1409.1556
https://valentinaalto.medium.com/understanding-the-inception-module-in-googlenet-2e1b7c406106
https://valentinaalto.medium.com/understanding-the-inception-module-in-googlenet-2e1b7c406106
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1608.06993
https://doi.org/10.48550/ARXIV.1607.06450

48 Bibliography

35. LIU, Zhuang; MAO, Hanzi; WU, Chao-Yuan; FEICHTENHOFER, Christoph;
DARRELL, Trevor; XIE, Saining. A ConvNet for the 2020s. arXiv, 2022.
Available from doi: 10.48550/ARXIV.2201.03545.

36. WIGHTMAN, Ross; TOUVRON, Hugo; JÉGOU, Hervé. ResNet strikes back:
An improved training procedure in timm. arXiv, 2021. Available from doi:
10.48550/ARXIV.2110.00476.

37. LOSHCHILOV, Ilya; HUTTER, Frank. Decoupled Weight Decay Regulariza-
tion. arXiv, 2017. Available from doi: 10.48550/ARXIV.1711.05101.

38. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv, 2015.
Available from doi: 10.48550/ARXIV.1502.03167.

39. HENDRYCKS, Dan; GIMPEL, Kevin. Gaussian Error Linear Units (GELUs).
arXiv, 2016. Available from doi: 10.48550/ARXIV.1606.08415.

https://doi.org/10.48550/ARXIV.2201.03545
https://doi.org/10.48550/ARXIV.2110.00476
https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1606.08415

Contents of the attached media

README.md................................description of the media contents
src

impl...implementation source
thesis......................................thesis text sources in LATEX

text...text of the thesis
thesis.pdf.......................................thesis in PDF format

49

	Acknowledgments
	Declaration
	Abstrakt
	List of acronyms
	Introduction
	Forex preliminaries
	Basics
	Currency pairs
	Pips
	Trades
	Orders

	Data

	Preprocessing background
	Technical indicators
	Rate of Change
	Commodity channel index
	Relative strength index
	Ultimate Oscillator
	Stochastic oscillator
	Aroon oscillator
	Chande Momentum Oscillator
	Absolute price oscillator

	Discrete Fourier transform
	Filtering
	Butterworth filter

	Deep learning background
	Basics
	Single-layer perceptron
	Multilayer perceptron
	Activation functions
	Cost function

	Optimizers
	Gradient descent
	Stochastic gradient descent
	Adam

	Convolutional neural network
	Convolution operation
	Convolutional layer
	Pooling layer

	Transformer
	Self-attention

	Transfer learning

	Survey
	ImageNet
	AlexNet
	Going deeper

	ResNet
	DenseNet
	Vision Transformer
	ConvNeXt

	Implementation
	Used technologies
	Preprocessing
	Technical indicators
	Labeling
	Filtering
	Fourier extrapolation
	Generating images
	Summary

	Modeling and evaluation

	Conclusion
	Contents of the attached media

