
Instructions

This work aims to create a tool that would decide for a poem written in Czech what metre it is written 

in. This task can be divided into three steps:

1. Detection of (phonetic) syllable boundaries.

2. Deciding whether a given syllable is an accented or long syllable.

3. Assigning a metre to the given poem.

For each of these steps, perform a search for existing solutions and, if necessary, try to find a solution 

via machine learning using the dataset [1]. Compare the resulting models with existing tools and 

evaluate their performance.

[1] Plecháč, Petr – Ibrahim, Robert (2013). Databáze českých meter. Praha: Ústav pro českou literaturu 
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Abstract

This work is devoted to automatic metrical analysis of Czech syllabotonic verse metrically tagged
inside a large poetic corpus – the Corpus of Czech Verse. First, it reimplements the existing data-
driven approach used by a program called KVĚTA. Later, it models the problem as a sequence
tagging task and solves it using machine learning. The BiLSTM-CRF model is used, representing
the current state of the art for many sequence tagging tasks. Many different input configurations
are tested. In all experiments, the inputted syllables or word tokens are represented by Word2Vec
word embeddings trained on training data. The results are evaluated by computing three dif-
ferent accuracies of the predictions: syllable-level accuracy, line-level accuracy, and poem-level
accuracy. It is shown that using BiLSTM-CRF represents a great success. With the best input
configurations, it produces better results than the KVĚTA reimplementation, with predictions
achieving 99.61% syllable accuracy, 98.86% line accuracy, and 90.40% poem accuracy. The most
interesting finding is that the best results are obtained by inputting sequences representing whole
poems instead of individual poem lines.

Keywords automatic metrical analysis of verse, Czech syllabotonic verse, Corpus of Czech
Verse, KVĚTA, BiLSTM-CRF, Word2Vec
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x Abstract

Abstrakt

Tato práce se zabývá automatickou metrickou analýzou českého sylabotonického verše, jenž je
metricky otagován ve velkém korpusu básní – v Korpusu českého verše. Práce nejprve reimple-
mentuje přístup založený na datech, který využívá program s názvem KVĚTA. Poté si metrickou
analýzu namodeluje jako úlohu tagování sekvencí a řeší ji pomocí strojového učení. Je trénován
model BiLSTM-CRF, který reprezentuje aktuálně nejlepší architekturu pro většinu klasických
úloh tagování sekvencí. Je otestováno mnoho různých vstupních konfigurací. Ve všech experi-
mentech jsou slabiky nebo tokeny slov na vstupu reprezentovány pomocí Word2Vec embeddingů
natrénovaných na trénovacích datech. Výsledky jsou vyhodnoceny pomocí spočítání tří různých
přesností predikce: přesnosti pro jednotlivé slabiky, přesnosti pro jednotlivé řádky básní a přes-
nosti pro celé básně. Je ukázáno, že použití modelu BiLSTM-CRF představuje velký úspěch.
S nejlepšími vstupními konfiguracemi vrací BiLSTM-CRF lepší výsledky než reimplementace
programu KVĚTA s predikcemi dosahujícími 99.61% přesnosti pro jednotlivé slabiky, 98.86%
přesnosti pro jednotlivé řádky básní a 90.40% přesnosti pro celé básně. Nejzajímavější zjištění
představuje fakt, že nejlepších výsledků je dosaženo pro vstupní sekvence reprezentují celé básně
namísto jednotlivých řádků básní.

Klíčová slova automatická metrická analýza verše, český sylabotonický verš, Korpus českého
verše, KVĚTA, BiLSTM-CRF, Word2Vec
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Introduction

Metrical analysis of verse is an important versology task that consists of analysing a poem and
deciding in which metre it is written. This task is challenging not only because of the complexity
of its subtasks (splitting a word into syllables, deciding whether a syllable is accented or long …)
but also due to the fact that poets – as all artists – tend to be creative and do not always follow
the metrical norms precisely. Therefore, all algorithms and proposed approaches must take these
“creative mistakes” into account.

In the past, metrical analysis had to be performed only algorithmically using rule-based ap-
proaches. Nowadays, there exist large corpora containing many semi-automatically tagged po-
ems, and thanks to that, data-driven approaches are possible. In this work, one such corpus
is used – the Corpus of Czech Verse [1]. This work reimplements the statistical approach to
the metrical analysis of Czech syllabotonic verse as performed within the Czech verse processing
system KVĚTA, which was developed by the authors of the Corpus of Czech Verse. Afterwards,
the task is modelled as a sequence tagging task, and further experiments are performed using
a state-of-the-art machine learning approach – the BiLSTM-CRF model for sequence tagging.
The use of this model has been recently proposed by versology researchers [2], but it has not yet
been tested on the Czech syllabotonic verses inside the Corpus of Czech Verse.

Motivation

The results of this thesis will be beneficial to versology researchers, as the BiLSTM-CRF model
is used for the first time with Czech syllabotonic verse. If this work proposes some new in-
put configurations for the BiLSTM-CRF model, the configurations may be beneficial even for
researchers working with verses written in other languages.

Thesis structure

This work begins with a theoretical background. It introduces necessary concepts from the theory
of verse and machine learning (Chapters 1 and 3), describes the Corpus of Czech Verse (Chap-
ter 2) and presents the metrical analysis pipeline with all its subtasks and possible approaches to
solve them (Chapter 4). Later, it continues with a practical part, where the reimplementation of
the KVĚTA program and training of the BiLSTM-CRF model with various input configurations
are described (Chapter 5). Finally, the obtained results are presented and discussed (Chapter 6).

1



2 Introduction

Objectives

The theoretical part of this work aims to build common ground and introduce the reader to the
concepts of verse and machine learning theory used in this thesis. Furthermore, it intends to
present the structure and contents of the Corpus of Czech Verse, the metrical tagging pipeline
with all its subtasks, and the existing approaches to solve this task.

The objective of the practical part is to reimplement the KVĚTA data-driven approach and train
the BiLSTM-CRF sequence tagging model. For the BiLSTM-CRF, the goal is to propose various
input configurations that may be beneficial to the model and to test all of them. Based on the
obtained results, the aim is to decide whether using the BiLSTM-CRF model for the metrical
tagging of Czech syllabotonic verse is successful and has some benefits over using the KVĚTA
approach.



Chapter 1

Verse theory

This chapter introduces essential concepts from verse theory that are used throughout this
thesis and are vital for a better understanding of the rest of this work.

1.1 Poem structure

1.1.1 Verse

Poetry is written in verse. A common misconception is that one verse is equivalent to one line
in a poem. That is not true in all cases. The verse does not have to end with a line end, but
it can be spread across multiple lines. This often occurs, for example, inside dialogues in verse
dramas. When a verse does not end with a line end, it is called an enjambement. [3]

For an example of an enjambement, see Figure 1.1.

Dí paní domu; dítě přiblíží
se těsně k ní, vytáhne z haleny
list složený...

Figure 1.1 Enjambement [4]

1.1.2 Strophe

Verses inside a poem can be organised into strophes. A strophe is a group of verses that form
a semantic unit and tend to be graphically separated. The strophe is then repeated throughout
the poem with similar or almost similar properties (same number of verses, same metrical or
rhyme scheme). Strophes tend to contain 2–14 verses – strophes with an even number of verses
are more common. When shorter and longer verses alternate in a strophe, then usually in such
an order that a longer verse comes before a shorter one. The last verse of a strophe tends to be
shorter or less rhythmically regular. [3] Some strophes even have special names assigned to them,
for example, the Sapphic stanza, the Alcaic stanza, the Second Asclepiad stanza, or the Fourth
Asclepiad stanza. [4]

3



4 Verse theory

1.1.3 Paragraph (Stanza)

However, in many poems, groups of verses can be encountered that are graphically separated;
nevertheless, their internal organisation lacks any regularity. These are not called strophes but
paragraphs (stanzas). [3]

1.2 Versification systems

This section introduces four important versification systems – syllabic, quantitative, tonic, and
syllabotonic – along with the different approaches towards versification. However, only syl-
labotonic versification will be further discussed in the rest of this work, as within the Corpus of
Czech Verse, metres are assigned only to syllabotonic verses. [1]

1.2.1 Syllabic versification system

Probably the oldest versification system used in Indo-European languages, syllabic, distinguishes
verses only by the number of syllables they contain. Syllabic versification does not care whether
the syllables are accented or long, the only important thing is their number. [4] In Czech poetry,
the syllabic verse was used until the end of the 18th century. After that, it appeared only
episodically, especially in folk poetry. [3]

In the excerpt from the poem Co Bůh? Člověk? by Fridrich Bridel (see Figure 1.2), no regularity
can be found in the alternation of long and short syllables or the accented and non-accented sylla-
bles. However, it can be noted that 7-syllable and 8-syllable verses regularly alternate and verses
with the same number of syllables rhyme. Therefore, it represents a syllabic versification. [3]

Ja|ký | boj? | Ja|ké | hnu|tí? (7 syll.)
mně | vstu|pu|jí | na | myš|le|ní? (8 syll.)
Mám|-li | snad | za|hy|nou|ti? (7 syll.)
Či|ji | mdlé | při|ro|ze|ní. (7 syll.)
Což | to? | Věc | vel|mi | rych|lá, (7 syll.)
a|neb | jest|-li | ňá|ké | zdá|ní, (8 syll.)
ros|tou | mně | ja|kás | kří|dla, (7 syll.)
stro|jí | se | vše|cko | k lí|tá|ní. (8 syll.)

Figure 1.2 Syllabic versification

1.2.2 Quantitative versification system

The quantitative versification system differentiates between long and short syllables. The long
and short syllables are annotated according to the rules that take diphthongs, vocals, and syllable-
forming consonants into account. Quantitative verse can be found in Greek and Roman poetry.
In Czech poetry, it was used mainly in the 16th century and then shortly in the 1920s.

In the quantitative versification system, a syllable can be long by nature or long by position.
Syllable long by nature contains a long vocal or a diphthong. Meanwhile, a syllable long by
position contains either a short vocal or a syllable-forming consonant l or r. This short vocal or
syllable-forming consonant is followed by two or more consonants (not necessarily belonging to
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the same syllable). On the other hand, when a syllable contains a short vocal or a syllable-forming
consonant followed by only one consonant, the syllable is classified as short.

When a syllable contains a short vocal or a syllable-forming consonant followed by exactly two
consonants and one of the two consonants is l, r, ř, m or n, the syllable can be long or short
depending on the context.

In the passage from the poem Noční bdění by I. V. Šimko (see Figure 1.3), all long syllables
occupy an odd position – except for the second position in the last verse and the final positions
in all verses except the last one. The final position in verse represented a common exception
and could be occupied by both long and short syllables. Therefore, the poem is classified as
quantitative. [3]

sen | mi|lý | po|koj|ně | lí|tá,
a | v le|sích | zpě|vák | mi|lost|ný
s pří|ro|dou | ce|lou | spo|čí|vá:
teh|dy | já | se | mar|ně | trá|pím
blou|dě | v há|ji | až | do | rá|na

Figure 1.3 Quantitative versification (long syllables are underlined)

1.2.3 Tonic versification system

Tonic versification was the second most important versification system in medieval Europe. The
tonic verse normalises the number of accents in a line. Usage in Czech poetry is very rare,
oftentimes readers confuse it with free verse [4] (verse without a metrical norm [3]).

In the example of a tonic poetic text (see Figure 1.4), every verse has exactly four accents, but
the syllable counts differ. [4]

A | vrá|til | se | Mu|ro|mec | k dob|ré|mu | mlád|ci, (4 acc., 12 syll.)
K mlád|ci | to|mu | dob|ré|mu, | u|bi|té|mu; (4 acc., 11 syll.)
On | vy|ko|pal | hrob | v ší|rém | po|li, (4 acc., 9 syll.)
Do | to|ho | hro|bu | tě|lo | po|lo|žil (4 acc., 10 syll.)

Figure 1.4 Tonic versification (accented syllables are underlined)

1.2.4 Syllabotonic versification system

Syllabotonic versification combines syllabic and tonic versification considering not only the num-
ber of syllables but also whether they are accented or not. [4]

In the excerpt from the poem U studánky by Jan Neruda (see Figure 1.5), every accented syllable,
except the second syllable in the fourth verse, occupies an odd position in verse. Furthermore,
every verse has exactly eight syllables. Therefore, syllabotonic versification is used. [3]

In the rest of this work, the Czech syllabotonic verse will be discussed.
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U | stu|dá|nky | sto|jí | děv|če, (8 syll.)
mla|dé | ja|ko | strů|mek | mla|dý, (8 syll.)
ble|dé | ja|ko | ru|báš | z kmen|tu. (8 syll.)
A | na | ne|bi | bí|lý | mě|síc, (8 syll.)
ko|lem | ně|ho | vod|ní | ko|lo (8 syll.)
jak | by | ze | stu|dá|nky | hle|děl. (8 syll.)

Figure 1.5 Syllabotonic versification (accented syllables are underlined)

1.3 Metrical analysis properties

When performing a metrical analysis of a poem, various properties of the verse can be examined.

1.3.1 Foot

The basic metrical unit of a verse is called a foot. In the syllabotonic verse, it represents a group
of at least two syllables that is repeated regularly throughout the verse. One foot consists of
strong and weak positions. Strong positions are labelled with S, and weak positions are labelled
with W. If there are two weak positions within a foot, the first is labelled using V. Table 1.1
presents all types of feet that can be encountered within the Czech syllabotonic verse. [4]

Table 1.1 Czech syllabotonic verse feet (positions inside brackets can be omitted)

Foot Feet pattern
Iamb W0 S1 W1 S2 … Sn (Wn)

Trochee S1 W1 S2 W2 … Sn (Wn)
Dactyl S1 V1 W1 S2 V2 W2 … Sn ((Vn) Wn)

Dactyl with anacrusis (Amphibrach) W0 S1 V1 W1 S2 V2 W2 … Sn ((Vn) Wn)
Dactylotrochee S1 (V1) W1 S2 (V2) W2 … Sn ((Vn) Wn)

Dactylotrochee with anacrusis W0 S1 (V1) W1 S2 (V2) W2 … Sn ((Vn) Wn)

All standard syllabotonic metrical patterns can be expressed by the following regular expression:

^W?(SWW?)*(SW?)?$ (1.1)

where V and W weak positions are annotated with the same symbol. [5]

It is important to note that foot and word are two different concepts. Their boundaries do not
have to overlap. Two different situations are distinguished:

Caesura The word does not end where the foot ends.

Diaeresis The word ends with a foot end. [4]

The example of a poetic text written in quantitative iamb (see Figure 1.6) might help clarify
both definitions. There, a diaeresis can be found, for example, after the words vidět and není
in the second verse. Caesura occurs, for example, after the word hrozno in the first verse or the
word milence in the fourth verse. [3]
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Tma | jest | a | hroz|no | vů|kol,
vi|dět | ne|ní | sle|dů;
kte|rá | a|si | ste|zi|čka
ve|de | k mi|len|ce | mé?

Figure 1.6 Caesura and diaeresis (long syllables are underlined)

1.3.2 Metre

The repetition of metrical feet in a verse forms a metre – the abstract outline of a verse. [4]

1.3.3 Rhythm versus metre

The main complexity of the metre assignment task lies in the difference between a rhythm and
a metre. When talking about the syllabotonic verse, metre is expressed by the regular alternation
of strong and weak positions. On the other hand, rhythm is the poet’s actual implementation of
the metre using the alternation of accented and non-accented syllables.

For the syllabotonic verse, the underlying concept is that S-positions correspond to accented
syllables and V-positions and W-positions to non-accented ones. However, in reality, all positions
can correspond to both accented and non-accented ones. In many situations, the poet has the
freedom to choose whether to use an accent. As a result, one metre can be expressed by multiple
rhythmical patterns.

For the Czech syllabotonic verse, there exist complex rules determining in which situations it is
possible to use accented or non-accented syllables. The rules were obtained through a thorough
analysis of many poems. Naturally, these rules do not necessarily cover all poems that have ever
existed. Sometimes a poem that violates them can be encountered. [4]

1.3.4 Clause (Line ending)

The ending of a verse is called a clause. In the syllabotonic verse, three types of clauses are
distinguished based on the last position of a verse:

masculine,

feminine,

acatalectic.

Verses with masculine endings end with the S-position. When the verse ends with W-position, it
can either be feminine or acatalectic. The acatalectic verses end with the SVW position pattern,
and the feminine verses with the SW pattern. [4] Moreover, as acatalectic are also annotated
verses that end with the SV pattern. [6]

1.3.5 Verse multimetry and poem polymetry

A verse is labelled multimetric when its rhythmical pattern can correspond to more metres. The
correct metre of such a verse is then selected based on the surrounding context.



8 Verse theory

A similar concept to multimetry is polymetry, but this time regarding a whole poem. A poem
is considered polymetric when some of its verses have different metres assigned than others, and
the occurrences of such metres are more or less predictable. [4]

1.3.6 Metrical tagging example

The metrically tagged Czech syllabotonic poetic text (see Figure 1.7) illustrates some of the
presented verse properties:

First verse Dactyl with four feet and a masculine clause.

Second verse Dactyl with three feet and an acatalectic clause.

Third verse Dactyl with anacrusis with three feet and a feminine clause.

Fourth verse Dactylotrochee with anacrusis with three feet and a feminine clause. Although
accented, the first syllable of the fourth verse represents a weak position. [4]

Pr
S

a|m
V

é|n
W

ek | z
S

az|v
V

o|n
W

il | t
S

i|š
V

e |
W

a | r
S

ád. (D4m)

V s
S

rd|c
V

i | m
W

ém | p
S

oz|d
V

il | s
W

e | l
S

is|t
V

o|p
W

ad (D3a)
W

a | st
S

u|d
V

u|j
W

u | vl
S

a|stn
V

í | sv
W

é | r
S

y|s
W

y (Da3f)

j
W

á | z
S

a|p
V

o|mn
W

ěl |
S

um|ř
W

ít | kd
S

y|s
W

i. (DTa3f)

Figure 1.7 Syllabotonic metrical tagging (Accented syllables are underlined. Strong and weak posi-
tions and line tags containing metre, number of feet, and clause are annotated.)

1.4 Special types of verse

In addition to standard metres (see Table 1.1), some special types of verse can also be found in
the Czech syllabotonic tradition. Some of them, which are discussed further in the thesis, are
presented.

1.4.1 Imitations of hexametre, pentametre, elegiac couplet

Hexametre

Hexametre originally comes from ancient Greek poetry, where it was one of the most widely used
metres. Later, it was adopted by the Romans and, from them, spread to medieval Europe. It
represents a quantitative dactyl consisting of six feet. An important element of the hexametre
verse is a caesura. In the Czech syllabotonic tradition, hexametre imitations began to appear in
the 19th century during the Czech National Revival. [4] In the syllabotonic hexametre every line
contains 12 to 17 syllables, and its metrical pattern must match the following regular expression
(V and W weak positions are annotated with the same symbol):

^SWW?SWW?SWW?SWW?SWW?SW$. [5] (1.2)



Special types of verse 9

For one of the syllabotonic hexametre poems tagged inside the Corpus of Czech Verse – Komu
platí přízvuk. by František Vladislav Hek – see Figure 1.8. [6]
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Figure 1.8 Syllabotonic hexametre (Accented syllables are underlined. Strong and weak positions
and line tags containing number of feet and clause are annotated.)

Pentametre

The pentametre contains, perhaps surprisingly, not five, but again six dactylic feet. It was rarely
used alone; instead, it was used in combination with hexametre inside an elegiac couplet. [4] In
the syllabotonic pentametre, every line must contain 10 to 15 syllables, and its metrical pattern
must match the pentametre regular expression (V and W weak positions are annotated with the
same symbol):

^SWW?SWW?SW?SWW?SWW?S$. [5] (1.3)

For an example of a syllabotonic pentametre poem annotated within the Corpus of Czech Verse
– PODZIM V PARKU by Jaroslav Vrchlický – see Figure 1.9. [6]

M
S

o|d
V

er|n
W

ích | č
S

i|v
V

ů | t
W

y’s | v hn
S

ě|d
W

é | k
S

á|p
W

i | zp
S

o|v
V

ěd|n
W

ík, | v
S

ím, (6m)

tl
S

u|m
V

o|č
W

íš | v
S

ěr|n
W

ě, | m
S

lč|k
W

y |
S

a | v
V

áž|n
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Figure 1.9 Syllabotonic pentametre (Accented syllables are underlined. Strong and weak positions
and line tags containing number of feet and clause are annotated.)

Elegiac couplet

In the syllabotonic elegiac couplet, the hexametres and pentametres alternate regularly. All odd
lines correspond to the metrical pattern of the hexameter, and all even lines correspond to the
metrical pattern of the pentametre. [5]

1.4.2 Ghazal poems

Ghazals are poems in which the first and every even line contains a so-called radif – repeating
word or a group of words at the end of the line. The lines containing the radif are then assigned
a combination of two different metrical patterns, one pattern for the part without the radif and
one pattern for the part containing the radif. Therefore, the resulting metric pattern does not
need to correspond to any standard syllabotonic metre. [5]
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In the ghazal poem Vavřín by Jaroslav Vrchlický (see Figure 1.10), which is annotated within the
Corpus of Czech verse, the radif is represented by the word vavřín. The part without the radif
corresponds to the trochaic metrical pattern. [6] When concatenated with the metrical pattern
of the radif part, the resulting metrical pattern does not correspond to any standard syllabotonic
metre, as two strong positions next to each other are not allowed (see regular expression (1.1)).
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Figure 1.10 Ghazal poem (Accented syllables are underlined. Strong and weak positions and line
tags containing number of feet and clause are annotated.)



Chapter 2

Corpus of Czech Verse

This chapter presents the Corpus of Czech Verse.

The Corpus of Czech Verse is lemmatised, phonetically, morphologically, metrically, rhythmically,
and rhyme annotated corpus of Czech poetry from the 19th century and the beginning of the
20th century. [7] It contains 66 428 poems, 2 310 917 lines and 12 636 867 words. [6] It is one of
the largest poetic corpora in the world. [7]

2.1 Poem-level annotation

Every poem record stored within the corpus starts with metadata containing information about
the poetic book in which the poem was published and the author of the poem. The poem itself
is then encoded as a list of lists that divide the poem into stanzas and lines. For a concrete
example of the poem-level annotation, see Figure 2.1. [6]

2.2 Line-level annotation

For every line in a poem, the record contains the exact text of the line, a rhyme annotation,
and a dictionary that holds all the punctuation. Stress (rhythm) is encoded as a pattern of
accented and non-accented syllables. The assigned metres are stored inside a list, allowing for the
annotation of multimetric verses. For all possible values of the metrical annotation parameters,
see Table 2.1. For an example of the line-level annotation, see Figure 2.2. [6]

At this moment, only syllabotonic verses are metrically annotated. Quantitative, syllabic, and
free verses, which also occur in Czech poetry, are classified as “not recognised”. [1] However,
annotated syllabotonic verses represent the majority of all verses in the corpus – 60 458 (91.01 %)
annotated poems, 2 088 508 (90.38 %) annotated lines. [6]

In terms of verse multimetry, 12 182 (0.53 %) lines have more metres assigned. When examining
poem polymetry, 2 619 (3.94 %) poems contain more metres. [6]

11
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{
# Metadata on the author of the poem
'p_author': {

'born': 1821, # The year author was born
'died': 1856, # The year author died
'name': 'Havlíček Borovský, Karel', # Name as printed in the book (it

differs from 'identity' in case of a pen name)↪→

'identity': 'Havlíček Borovský, Karel' # Real name of the author
},

# Metadata on book and poem
'biblio': {

'motto_aut': None, # Author of the motto
'b_subtitle': 'Jehly, špičky, sochory a kůly stesal, zkoval, zostřil,

sebral k vůli vojně s hloupostí a zlobou místo šavel Borovský
Havel.', # Subtitle of the book

↪→

↪→

'publisher': 'Dolenský, Antonín; Unie', # Publisher of the book
'edition': '[1.]', # Edition description
'motto': None, # Motto of the book
'p_title': 'Pražské Vysoké Školy.', # Title of the poem
'place': 'Praha', # Place where published
'dedication': None, # Dedication of the book
'b_title': 'Epigramy', # Title of the book
'pages': '[80]', # Page range of the poem
'year': '1921', # Year when published
'signature': 'ÚČL AV ČR; 52 VIII 2' # Library info

},
'book_id': '0176', # ID of the book
'poem_id': '0001-0004-0000-0001-0000', # ID of the poem
# Metadata on the author or the editor of the entire book
'b_author': {

'born': 1821, # The year author was born
'died': 1856, # The year author died
'name': 'Havlíček Borovský, Karel', # Name as printed in the book (it

differs from 'identity' in case of a pen name)↪→

'identity': 'Havlíček Borovský, Karel'}, # Real name of the author
# The poem itself encoded as a list of lists (stanzas x lines)
'body': [

[
"LINE-LEVEL ANNOTATION",
...

],
[...]

]
}

Figure 2.1 Corpus of Czech Verse: Poem-level annotation
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Table 2.1 Corpus of Czech Verse: Metrical annotation parameters values

Parameter Possible values

Metre

J (iamb)
T (trochee)
D (dactyl)
A (amphibrach)
X (dactylotrochee)
Y (dactylotrochee with anacrusis)
hexameter
pentameter
N (not recognized)

Clause
f (feminine)
m (masculine)
a (acatalectic)

Foot Number of feet
Pattern Pattern of strong (S), weak (W), and undetermined (X) positions

{
# Text of the line
'text': 'Dvě fakulty v Klementině,',
# Dict holding punctuation marks
# Punctuation marks are stored under the key which corresponds to the

index of a word which the punctuation precedes↪→

'punct': {'4': ','},
# List of words and their metadata
'words': ["WORD-LEVEL ANNOTATION", ...],
# Rhyme index (the lines that rhyme all share the same value here)
'rhyme': 1,
# List of metres assigned to the line
'metre': [

{
'foot': '4', # Number of feet
'clause': 'f', # Type of line ending
'pattern': 'SWSWSWSW', # Pattern of strong and weak positions
'type': 'T' # Type of metre

}
],
'stress': '11001000' # Bitstring encoding accented and non-accented

syllables↪→

}

Figure 2.2 Corpus of Czech Verse: Line-level annotation
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2.3 Word-level annotation

On the word level, the corpus provides a lemma (the basic dictionary form), phonetic tran-
scription, and a morphological tag (in the Prague positional tagset format [8]) that contains
information on various grammatical categories (part of speech, number, case …). The authors
published the phonetic transcription using two formats. [6] The common X-SAMPA [9] format
and their own simplified PhoEBE [10] format. For a concrete example of word-level annotation,
see Figure 2.3.

{
'token_lc': 'karolínské', # Lowercased token
'xsampa': 'karoli:nskE:', # X-SAMPA phonetic transcription
'morph': 'AANS1----1A-----', # Morphological tag
'phoebe': 'karolInskE', # PHoEBE phonetic transcription
'token': 'Karolínské', # Word as appears in the text
'lemma': 'karolínský' # Lemma

}

Figure 2.3 Corpus of Czech Verse: Word-level annotation



Chapter 3

Machine learning theory

This chapter aims to familiarise the reader with the machine learning concepts used within
this thesis.

3.1 Sequence tagging models

Sequence tagging is an important natural language processing task consisting of receiving a text
sequence on input and outputting it tagged. The most famous sequence tagging tasks with
defined benchmarks represent, e.g. part of speech (POS) tagging or named entity recognition
(NER) tagging, which aims to identify named entities within a text (people, locations, organi-
zations …). [11]

3.1.1 Recurrent neural network (RNN)

The basic model used for sequence tagging is the recurrent neural network. The RNN model has
an input layer x, a hidden layer h and an output layer o. It maintains a “memory” (hidden layer
h) containing preliminary information that enables it to predict the output based on previously
seen inputs. In the time step t, the following equations are computed:

ht = f(Wxhxt +Whhht−1) (3.1)
ot = g(Whoht), (3.2)

where

f(z) =
1

1 + e−z
(3.3)

g(zm) =
ezm∑m
k=1 e

zk
. (3.4)

The input to the input layer at time t, xt, is a vector. The hidden layer updates its value by
entering the current input xt and the previous value of the hidden layer ht−1 into the sigmoid
activation function f , which returns values between 0 and 1. The recurrent connection between

15
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the previous hidden layers and the current hidden layer represents the “memory” of the model.
An output at time t, ot, is a probability distribution over all possible tags. The distribution is
obtained from the output of the hidden layer ht using the softmax activation function g. W
represent weight matrices computed during training time. [11] For a graphical illustration of the
network, see Figure 3.1.

Figure 3.1 RNN [11]

3.1.2 Long short-term memory network (LSTM)

Long short-term memory network represents an upgrade of the RNN network that uses a purpose-
built memory cell that contains various gates. The memory cell is represented by an input gate
i, a forget gate f , an output gate o, and a cell c. Due to this approach, LSTM might be more
successful than RNN in identifying long-range dependencies in data.

In time t the following equations are computed:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.5)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.6)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (3.7)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.8)

ht = ot tanh(ct). (3.9)

In the equations, h denotes the hidden vector, W the weight matrices computed during training,
σ the sigmoid activation function, and b the bias. The weight matrices from the cell to the gates
(e.g. Wcf ) are diagonal, and because of this, every element in each gate vector is updated only
with the value of the corresponding element in the cell vector. [11]

For an LSTM memory cell schema, see Figure 3.2. For a network schema, see Figure 3.3.

3.1.3 Bidirectional LSTM network (BiLSTM)

Using RNNs and LSTM networks has one major flaw: for each input, the output is predicted using
only the previous input information. Information about future inputs cannot be incorporated.
The bidirectional LSTM network solves this problem.

The BiLSTM network contains two LSTM networks: forward, which processes the input sequence
from left to right, and backward, which processes it from right to left. The output for a time
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Figure 3.2 LSTM memory cell [11]

Figure 3.3 LSTM network [11]
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step is then obtained using information encoded in both networks. The entire network can be
trained using the backpropagation through time algorithm. [11] For a network illustration, see
Figure 3.4.

Figure 3.4 BiLSTM network [11]

3.1.4 Conditional random fields network (CRF)

Unlike the previous approaches, conditional random fields focus on the entire sequence rather
than individual positions when finding the optimal tagging. In this model, the inputs and
outputs are directly connected. There are no recurrent cells as in the previous approaches (see
Figure 3.5). [11] For details, see [12].

Figure 3.5 CRF network [11]

3.1.5 LSTM-CRF network

LSTM-CRF network combines the LSTM and the CRF network into one model. When predicting
the current tag, it can use information on previous inputs from the LSTM layer, as well as
sequence-level information on past and future tags from the CRF layer. [11] For an illustration,
see Figure 3.6.

3.1.6 Bidirectional LSTM-CRF network (BiLSTM-CRF)

The bidirectional LSTM-CRF network combines the BiLSTM and the CRF network into one
model. Unlike the LSTM-CRF network, it uses information about future inputs when predicting
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Figure 3.6 LSTM-CRF network [11]

the current tag. It represents the current state-of-the-art model for standard sequence tagging
tasks such as POS or NER tagging. [11] For an illustration of the network architecture, see
Figure 3.7.

Figure 3.7 BiLSTM-CRF network [11]

Training procedure

The BiLSTM-CRF network is trained using the procedure described in Figure 3.8. Multiple
training epochs are performed. In each epoch, the training data are divided into equal-sized
batches processed independently. First, the BiLSTM network performs forward passes for both
its LSTM networks, forward and backward. As a result, the output score fθ(w) is obtained
for all tags at all positions, where θ represents the parameters of the BiLSTM network and w
represents the input sequence. After that, a CRF layer forward and backward passes are run to
compute gradients for the BiLSTM network output and state transition edges in the CRF layer.
The errors are then backpropagated to the input using the backward passes of the BiLSTM
network. Finally, all network parameters – the state transition matrix of the CRF layer and the
parameters θ of the BiLSTM network – are updated. [11]

Input features

Representation of a word inputted into the BiLSTM-CRF network can consist of multiple
concatenated vectors: word embedding, capitalisation feature, and character-based represen-
tation. [13] For illustration, see Figure 3.9.
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for each epoch do
for each batch do

bidirectional LSTM-CRF model forward pass:
forward pass for forward state LSTM
forward pass for backward state LSTM

CRF layer forward and backward pass
bidirectional LSTM-CRF model backward pass:

backward pass for forward state LSTM
backward pass for backward state LSTM

update parameters
end for

end for

Figure 3.8 BiLSTM-CRF network: Training procedure

Figure 3.9 BiLSTM-CRF network: Input features [13]
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Word embeddings

Word embeddings can be used already pre-trained on large text corpora or can be pre-trained
on the training data. Popular algorithms for training word embeddings are, for example, GloVe,
FastText (which uses n-grams of words) [13], Word2Vec [14], or ELMo [15].

Capitalisation feature

Since pre-trained word embeddings usually exist only for lowercase words, a one-hot vector
representing the original capitalisation tends to be used. It can preserve information about
whether the inputted word is entirely or mainly numeric, has all characters upper or lowercase,
starts with an uppercase character, or contains some digit. [13]

Character-based representation

Information about the characters of a word can also be added to the input. Two different
methods can be used: to derive embedding representing characters of a word using BiLSTM or
use convolutional neural networks (CNN). [13]

Training hyperparameters

When training the BiLSTM-CRF, various hyperparameters of the network can be fine-tuned.

Optimizer

While training the network, an objective function is minimised using some optimizer. A com-
monly used optimizer represents stochastic gradient descent (SGD). However, SGD can be quite
sensitive to selecting the learning rate and can have trouble navigating ravines and saddle
points. Therefore, other gradient-based optimization algorithms have been proposed, such as
Adagrad, Adadelta, RMSProp, Adam, or Nadam (Adam variant that incorporates Nesterov
momentum). [13]

Dropout

Dropout is a method that helps prevent overfitting when training a neural network.

Naive dropout The naive dropout strategy applies a randomly selected dropout mask to each
LSTM output. Different masks are generated for each time step, and recurrent connections are
not dropped. It was noted that this form of dropout is suboptimal for recurrent neural networks.

Variational dropout The optimal dropout for recurrent neural networks represents the vari-
ational dropout. It uses the same dropout mask for all time steps. Moreover, it drops the
recurrent connections as well. [13]
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Gradient clipping and normalization

When a recurrent neural network is trained, two common issues can be encountered: vanishing
gradient and exploding gradient problem. The vanishing gradient problem is countered by using
LSTM networks instead of RNNs. To deal with the exploding gradient problem, two common
strategies can be applied: gradient clipping and gradient normalization.

Gradient clipping Gradient clipping clips the gradient’s components element-wise so that
they do not exceed a defined threshold.

Gradient normalization Gradient normalization has a better theoretical justification than
gradient clipping. It rescales the gradient whenever the norm of the gradient goes over a defined
threshold. [13]



Chapter 4

Metrical analysis of Czech
syllabotonic verse

This chapter describes the pipeline to follow when performing the metrical analysis of Czech
syllabotonic verse. It presents all subtasks along with possible approaches to solve them.

4.1 Syllabification

When performing a metrical analysis of verse, the first step is to split the text into syllables.
Perform the so-called syllabification.

4.1.1 Syllable in Czech

For a native speaker, the question of how many syllables are there in a word is generally relatively
easy to answer. Why? Inside every syllable, there is a sonority peak. In Czech, the sonority
peak can be expressed by:

1. Vocal or diphthong.

2. Sonorant r or l when positioned between two consonants or at the end of a word after at
least one consonant, e.g. krk, vlk.

3. In some exceptional cases also nasals or sibilants, e.g. osm, pst, sedm.

Words without the sonority peak – non-syllabic prepositions v, k, s, and z – form one syllable
with the first syllable of the following word.

On the other hand, determining syllable boundaries is a challenge even for a native speaker.
For example, the Czech word houska. It obviously consists of two syllables, but how to split it?
Hou-ska or hous-ka? There is no correct answer. [4]

23
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4.1.2 Syllabification using phonetic transcription

So, native speakers can easily determine the number of syllables in a word, but how to do it
using a computer? The KVĚTA [5] program applies a sequence of rules to the input words and
obtains their phonetic transcriptions. This is possible because the Czech orthography is highly
phonemic. The only words that cannot be transcribed using a set of rules are words containing
bigrams and foreign words.

As there seems to be no efficient algorithm to automatically decide which instances of the bigrams
au, ou and eu represent a diphthong (e.g. koule) and which represent two standalone vowels
(e.g. pouliční ), KVĚTA transcribes them using a manually built token-diphthong library and
applying a few additional rules. Another problem is irregularities when, for example, words like
nauka or Zeus are treated in some poems as disyllabic and in other poems as monosyllabic. Such
irregularities are revealed when KVĚTA tries to assign the most probable metre to a poem. The
correct variant must then be selected manually.

When dealing with words from other languages, a possible approach would be to identify the
most probable donor language and apply the transcription rules of this language. However, since
there are many counterexamples as to why this approach would not be efficient, KVĚTA authors
decided to also transcribe foreign words using a manually built library. For some words where
the number of syllables differs depending on the case (e.g. Shakespeare) or depending on the
pronunciation (e.g. Baudelaire) the selection of the right variant is also done manually. [5]

4.1.3 Syllabification using hyphenation tools

Thus, for each word, the number of syllables can be obtained from its phonetic transcription.
However, is there no way to obtain the number of syllables in a word without having its phonetic
transcription? And to also extract the individual syllables? [6]

There exist some tools for the hyphenation of Czech texts. Hyphenation seems like a task similar
to syllabification but, in fact, it is something a little different. Hyphenation is nowadays used
within every document preparation system (e.g. TEX or any modern web browser) to decide where
a word can be split to continue on the following line. There are two approaches to hyphenation:

etymology-based,

phonology-based.

Etymology-based systems cut words on the border of a compound word or the border of the
stem and ending or prefix or negation. Phonology-based systems cut words based on the pro-
nunciation of syllables. [16] However, they do not cut words directly into individual syllables.
Other typographical rules are applied, such as that the first and the last letter of a word cannot
be hyphenated (e.g. the word italština is hyphenated as ital-šti-na) or that words containing less
than five letters are not hyphenated. [17]

The approach of using hyphenation tools for syllabification has already been tested by researchers
when performing metrical analysis of English and German verse using machine learning. For
English verse they decided to train BiLSTM-CRF syllabification model instead, for German
verse they used an ensemble of hyphenation tools and heuristic corrections. [18]
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4.2 Detecting accented syllables

4.2.1 Accent in Czech

When talking about accent in Czech, usually, each initial syllable of a polysyllabic word is
considered accented, while each non-initial non-accented. For monosyllabic words, the rules
are not as clear. The general tendency is that the content words (nouns, adjectives, numerals,
interjections, and verbs, except for forms of the lemma být) are accented, while the function
words are non-accented.

A special case is monosyllabic prepositions proper (MPPs), which usually behave as forming
a single word with the following one and taking over its accent. However, sometimes MPPs can
also be used as standard non-accented function words. This has been largely exploited by poets,
especially in the second half of the 19th century. [5] Also the longer the subsequent word, the
greater the tendency to have an accent not only on the MPP but also on the subsequent word,
e.g. na mezinárodní letiště. [4] MPPs are represented by these prepositions: před, od, ob, ku, ke,
do, ve, po, nad, přes, při, bez, se, ze, za, u, pod, pro and zpod. In the case of two subsequent
MPPs, the first is considered a standard function word. [5]

4.3 Metre assignment

In this section, two approaches to the metrical tagging of Czech syllabotonic verse are presented:
a rule-based approach that the KVĚTA program used in the past [19] and a data-driven approach
that the current version of the KVĚTA program is using. [5]

4.3.1 Rule-based KVĚTA algorithm

All the following information is taken from [19].

Prosodic analysis

The first step of the rule-based algorithm is to represent a line of verse as a string containing
symbols 0, 1 and +, where 1 represents an accented syllable, 0 a non-accented syllable, and
a + a monosyllable. Monosyllables can be both accented and non-accented. In the case of
a monosyllabic preposition, the preposition itself is treated as an initial syllable of a polysyllabic
unit and the following syllable as a non-initial syllable of a polysyllabic unit. For the transcription
rules, see Table 4.1.

Table 4.1 Rule-based KVĚTA algorithm: Prosodic transcription rules

Syllable type Symbol
First syllable of a polysyllabic unit 1

Non-initial syllable of a polysyllabic unit 0
Monosyllable +

The sentence “Za trochu lásky šel bych světa kraj” is represented by a primary string:

10010++10+.
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The problem is that poets do not produce purely metrical lines. Therefore, in addition to the
primary string, the algorithm also analyses three alternative strings applying the three most
common stress alterations:

1. Treating the sequence of a monosyllabic preposition and another unit as having the stress
located not on the first syllable (preposition) but on the second one (100 -> +10).

2. Relocating the stress of a polysyllabic unit (incidental prepositions included) to the immedi-
ately preceding monosyllable (+10 -> 100).

3. Tolerating that stress of one polysyllabic unit occupies one of the forbidden positions.

Metrical analysis

The metrical analysis is based on the following simplified rules of Czech syllabotonic verse:

1. A line is iambic (I) if no odd position except the first (allowing dactylic incipits) is occupied
by the stress of a polysyllabic unit.

2. A line is trochaic (T) if no even position is occupied by the stress of a polysyllabic unit.

3. A line is dactylic (D) if for each n = 0, 1, 2, . . .

a. no (3n+3)rd position is occupied by the stress of a polysyllabic unit and

b. no (3n+2)nd position is occupied by the stress of a unit consisting of three or more syllables
and

c. every stress occupying a (3n+2)nd position is preceded by a monosyllabic unit.

4. A line is dactylic with anacrusis (Da) if for each n = 0, 1, 2, . . .

a. the first position is occupied by a monosyllabic unit and

b. no (3n+4)th position is occupied by the stress of a polysyllabic unit and

c. no (3n+3)rd position is occupied by the stress of a unit consisting of three or more syllables
and

d. every stress occupying a (3n+3)rd position is preceded by a monosyllabic unit.

5. A line is dactylo-trochaic (DT) if a “virtual syllable” can be inserted into the line after some
of the 3n+2 nd positions (at least once) in order to meet the conditions specified in 3.

6. A line is dactylo-trochaic with anacrusis (DTa) if the “virtual syllable” can be inserted into
the line after some of the 3n+3rd positions (at least once) in order to meet the conditions
specified in 4.

The metrical tagging procedure is visualised on a sample from Karel Hynek Mácha’s Máj – an
iambic poem, yet with iambic constraints frequently violated in various ways. Row 0 shows
the primary string, and rows I-III show the alternative strings that allow for stress alterations.
Positions within the string that violate the constraints of a given metre are highlighted. The
first string in a column that does not violate the constraints of a given metre or violates it only
once (row III) is underlined:
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Zhasla měsíce světlá moc,

Row Iamb Trochee Dactyl Dactyl with anacrusis
0 1010010+ 1010010+ 1010010+ 1010010+
I 1010010+ 1010010+ 1010010+ 1010010+
II 1010010+ 1010010+ 1010010+ 1010010+
III 1010010+ 1010010+ 1010010+ 1010010+

Output: Iamb / Trochee

i hvězdný svit a kol a kol

Row Iamb Trochee Dactyl Dactyl with anacrusis
0 +10+++++ +10+++++ +10+++++ +10+++++
I +10+++++ +10+++++ +10+++++ +10+++++
II 100+++++ 100+++++ 100+++++ 100+++++
III +10+++++ +10+++++ +10+++++ +10+++++

Output: Iamb / Trochee / Dactyl / Dactyl with anacrusis

je pouhé temno, širý dol
Row Iamb Trochee Dactyl Dactyl with anacrusis

0 +101010+ +101010+ +101010+ +101010+
I +101010+ +101010+ +101010+ +101010+
II 1001010+ 1001010+ 1001010+ 1001010+
III +101010+ +101010+ +101010+ +101010+

Output: Iamb / Dactyl

co hrob daleký zívá.

Row Iamb Trochee Dactyl Dactyl with anacrusis
0 ++10010 ++10010 ++10010 ++10010
I ++10010 ++10010 ++10010 ++10010
II +100010 +100010 +100010 +100010
III ++10010 ++10010 ++10010 ++10010

Output: Iamb / Trochee

The final metre for the poem is selected based on a “metrical index” value. The metrical index
of a line is computed as follows:

If at any step a line is assigned a metre, the metrical index of that metre has the value of
100.

Every stress of a disyllabic unit according to rules 3b/3c or 4b/4c except for the second
position (allowing iambic incipits in the dactylic verse) lowers the metrical index value by 20.

If the metre is assigned at row I, metrical index is lowered by 40.

If the metre is assigned at row II, metrical index is lowered by 60.

If the metre is assigned at row III, metrical index is lowered by 80.

Negative values are set to 0.

For every metre, the arithmetic mean of the line metrical indices is computed. The metre with
the highest mean value, that further meets the condition of having the mean value higher than
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50 and containing no line with a metrical index of 0, is finally selected. For the Mácha’s Máj
example, Iamb is selected:

Iamb Trochee Dactyl Dactyl with anacrusis
Zhasla měsíce světlá moc, 20 20 0 0
i hvězdný svit a kol a kol 100 40 100 100
je pouhé temno, širý dol 100 0 20 0

co hrob daleký zívá. 40 20 0 0
Arithmetic mean 65 20 30 25

Multimetric lines

In this approach, the metre for a multimetric line is selected depending on the context: the
metres of other lines. For multimetric poems that can be assigned multiple metres to an equal
degree, preference rules are applied.

Conclusion

To conclude, this algorithm can be used for the metrical tagging of Czech syllabotonic verse.
Because of the inability of the algorithm to decide whether a monosyllable is accented or not,
distinctions among some rare types of dactylo-trochee may not be recognised. Polymetric poem
tagging is also not possible. Furthermore, this algorithm does not tag hexametre and pentametre
poems, which are tagged within the Corpus of Czech Verse.

4.3.2 Data-driven KVĚTA algorithm

All the following information comes from [5].

Syllable classes

Table 4.2 Data-driven KVĚTA algorithm: Syllable class structure

Parameter Values

initial 1 (word-initial syllable)
0 (non-initial syllable)

final 1 (word-final syllable)
0 (non-final syllable)

contentWord 1 (content-word)
0 (function word)

preposition 1 (MPP preposition)
0 (other word)

prevPreposition 1 (preceded by MPP preposition)
0 (preceded by other word)

prevInitial 1 (preceded by word-initial syllable)
0 (preceded by non-initial syllable)

nextlong 1 (followed by syllable containing long vowel or diphtong)
0 (followed by other syllable)
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The data-driven KVĚTA approach represents every syllable as a so-called Syllable class. The
Syllable class is a data class containing Boolean parameters (see Table 4.2) extracted from the
Czech accent rules. A poem is then internally represented as a list of lists of Syllable classes, the
division into stanzas is not taken into account.

In theory, there are 128 different combinations of parameter values, but in practise many of those
are discarded as, e.g. {initial: 0, preposition: 1} or {final: 0, preposition: 1}. An-
other example is the contentWord parameter, which is used only for monosyllabic words that are
not preceded by MPP preposition {initial: 1, final: 1, prevPreposition: 0}. In addi-
tion, the parameters nextLong and prevInitial are taken into account only for a word-initial syl-
lable of a polysyllabic word {initial: 1, final: 0} or MPP preposition {preposition: 1}.
More such reductions are applied, resulting in only 12 recognised Syllable class instances.

For example, the Syllable class instance for the third syllable (Zná) of a line: “Aj! kdo zná ji, tu
osobu” is:

{
initial: 1,
final: 1,
contentWord: 1,
preposition: 0,
prevPreposition: 0,
prevInitial: 1,
nextLong: 0

}.

Metre generation

The next step of the algorithm is to take for each poem only the number of syllables in each
line and generate all possible metres that could fit it. Not only standard syllabotonic metres
are generated, but also syllabotonic imitations of quantitative syllabic strophes and syllabotonic
imitations of the quantitative hexametre, pentametre, and elegiac couplet. Ghazal poems are
generated as well. The V-positions are not distinguished and are represented as W-positions.

Standard syllabotonic metres

The maximal number of syllables in one line max_syll must be determined when generating all
standard syllabotonic metres for a poem. All possible metres are then generated as strings of
length max_syll that match the regular expression (1.1).

This regular expression represents all valid combinations of Czech syllabotonic feet. For example,
if max_syll for a poem is equal to 6, the following metres are generated:

[‘SWSWSW’, ‘SWWSWS’, ‘SWSWWS’, ‘SWWSWW’, ‘WSWSWS’, ‘WSWSWW’, ‘WSWWSW’].

For every metre generated, a two-dimensional array of metrical positions is created, where the
metrical pattern of each line is a prefix of the generated metre. For metre 'SWWSWS' and a
poem consisting of a 5-syllable line, a 6-syllable line, and a 3-syllable line, the following array is
generated:
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metre['SWWSWS'] = [
['S', 'W', 'W', 'S', 'W'],
['S', 'W', 'W', 'S', 'W', 'S'],
['S', 'W', 'W']

].

Imitations of quantitative syllabic strophes

The algorithm supports the four most commonly imitated quantitative syllabic strophes: the
Sapphic Stanza, the Third Asclepiad Stanza and two types of the Alcaic Strophe. When the
poem meets the syllabic requirements and can be divided into one of these strophes, the algorithm
includes this option in the generated metres. For the metrical patterns of the strophes, see
Figure 4.1.

metre['sapphic'] = [
['S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'W', 'S', 'W']

]

metre['asclepiad'] = [
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['S', 'W', 'S', 'W', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'W']

]

metre['alcaicA'] = [
['W', 'S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['W', 'S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W']

]

metre['alcaicB'] = [
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'W', 'S', 'W', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'W'],
['S', 'W', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W']

]

Figure 4.1 Syllabotonic imitations of quantitative syllabic strophes: Metrical patterns

Imitations of hexametre, pentametre and elegiac couplet

For a poem that imitates the quantitative hexametre, every line must match the hexametre
regular expression (1.2). That implies that the length of every line varies from 12 to 17 syllables.
Moreover, when the length of the line lies between 13 and 16 syllables, there is more than one
possible metrical pattern. There are five different patterns for lines of lengths 13 and 16 and
ten patterns for lines of lengths 14 and 15. Therefore, a three-dimensional array instead of
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a two-dimensional array must be generated. For a poem consisting of a 13-syllable line and a
12-syllable line, the following array is generated:

metre['hexametre'] = [
[

['S', 'W', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W', 'S', 'W'],
['S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'W', 'S', 'W']

],
[

['S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W', 'S', 'W']
]

].

For imitation of the quantitative pentametre, the situation is analogous. This time, all lines
must match the pentametre regular expression (1.3). Line lengths range from 10 to 15 syllables,
again resulting in a three-dimensional array.

In imitation of the elegiac couplet, all odd lines must match the hexametre regular expression,
and all even lines must match the pentametre regular expression. Again, a three-dimensional
array is returned.

Ghazal poems

When a poem is identified as a ghazal poem, the algorithm splits the poem into two separate
parts – part without the radifs and a part containing only the radifs. Possible metrical patterns
are generated for each part separately, and the final metrical patterns are returned as their
Cartesian product.

Metre assignment

Metrical coefficient

To be able to assign metres, the algorithm must pre-calculate the values of “metrical coefficient”
from the corpus data. For every Syllable class, the metrical coefficient value is represented as
the conditional probability that the Syllable class is realised by a strong or weak position in the
corresponding metrical pattern. For the jth syllable of the ith line of a poem, and a metre w
(which was generated for this poem as a possible metre in the previous step of the algorithm)
let µw,i,j be the value of the metrical coefficient for that syllable and metre w, σi,j the Syllable
class assigned to that syllable and xw,i,j the strong or weak position in the metrical pattern of
metre w.

The authors of the paper use Bayes’ Theorem (under a naive independence assumption):

µw,i,j = P (xw,i,j |σi,j) =
P (σi,j |xw,i,j) · P (xw,i,j)

P (σi,j |S) + P (σi,j |W )
(4.1)

and argue that since xw,i,j is a binary value with possible values S or W, the probability of which
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may be considered equal, they can internally compute µw,i,j just as:

µ̃w,i,j =
P (σi,j |xw,i,j)

P (σi,j |S) + P (σi,j |W )
. (4.2)

Moreover, the algorithm also takes into account that the probabilities can vary greatly depending
on the time period or individual authors. Therefore, for each author, the Yates χ2 test is
performed to determine whether the probabilities obtained from his work differ statistically
significantly from the probabilities of the entire corpus. If they do, his values of the metrical index
are set as a geometric mean of the probabilities from the whole corpus and of his probabilities
(PA) with a weight ratio of 1 to 3:

µw,i,j =
4

√
P (xw,i,j |σi,j) · (PA(xw,i,j |σi,j))3. (4.3)

Metre selection

When selecting a metre, the metrical coefficients of the individual line patterns and the overall
metrical coefficient must be determined for every generated metre.

For the ith line of a poem and a metre w, the metrical coefficient of the line pattern Lw,i represents
the probability of this line being realised by the metre w. It is computed as a product of metrical
coefficients of all individual syllables on the line, and it is normalised by the length of the line
denoted as ni, so lines of different lengths are comparable:

Lw,i = ni

√√√√ ni∏
j=1

µ̃w,i,j . (4.4)

In the case of the three-dimensional hexametre, pentametre, or elegiac couplet arrays, the line
pattern with the highest value of Lw,i is selected (out of k possible patterns):

Lw,i = max{Lw,i,1, Lw,i,2, . . . , Lw,i,k}. (4.5)

The overall metrical coefficient Tw of the metre w is calculated as a geometric mean of the
metrical coefficients of all line patterns:

Tw = m

√√√√ m∏
i=1

Lw,i, (4.6)

where m is the number of lines.

Finally, the metre w with the highest metrical coefficient Tw is selected. Inside KVĚTA, various
checks must be passed to annotate the poem automatically. For example, if the value of Tw or
some Lw,i is too low, or the standard deviation of Lw,1, Lw,2, . . . is too high, manual control is
required. This approach minimises the incorrect annotations of polymetric or non-syllabotonic
poems and reveals possible mistakes in phonetic transcriptions. When the same metrical pattern
is generated with different metre names (e.g. hexametre and trochee), standard syllabotonic
metres are preferred.
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Conclusion

In conclusion, this algorithm seems to be more suitable for metrical tagging of Czech syllabotonic
verse than the rule-based one. It can distinguish whether a monosyllable is accented or not,
it allows for more advanced rules as e.g. the MPPs are also taken into account, and it also
tags hexametres and pentametres, which are tagged within the Corpus of Czech Verse. Again,
polymetric tagging of poems is not possible.

4.4 Machine learning approaches

The metrical analysis can be modelled as a sequence tagging task and solved using machine
learning. In the paper [18], conditional random fields, BERT model and BiLSTM-CRF model
are tested on English and German verse corpora. The paper [2] tests perceptron, hidden Markov
model (HMM), conditional random fields, and BiLSTM-CRF on English and Spanish verse
corpora. Both articles evaluate syllable-level and line-level accuracies and obtain the best results
using BiLSTM-CRF.

4.4.1 BERT

The authors of [18] assume that BERT’s transformer architecture cannot compete against other
models, possibly because of an improper syllable representation, as BERT’s word-piece tokenizer
creates word chunks that are not equivalent to syllables.

Another experiment is performed in which BERT should learn the verse label (e.g. iambic pen-
tameter) for a given sequence of word tokens. BERT detects frequent classes like the iambic
pentameter or the trochaic tetrameter well but fails to learn measures other than iamb, trochee
and irregular verse with inversions. The authors assume that BERT probably mainly predicts
based on the length of lines in this setting.

4.4.2 BiLSTM-CRF

In [18], individual syllables are sent to the input and custom syllable embeddings are pre-trained
from verse corpora using the Word2Vec algorithm. BiLSTM-CRF uses three BiLSTM layers with
100 recurrent units in each layer and uses a linear-chain CRF classifier. Variational dropout is
used, with 25 % dropped in output and recurrent connections. No character-based representation
of syllables is used, as it, according to the authors, hurts both speed and accuracy.

Unlike the intuition denoted in [18], in [2], BiLSTM-CRF is used with BiLSTM character-based
representation of input tokens. Three different input types are tested: individual syllables, word
tokens, and individual syllables with word boundaries. For English, the best results are obtained
for individual syllables with word boundaries in the input. For Spanish, the best results are
obtained when word tokens are inputted.
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Chapter 5

Implementation

This chapter discusses approaches aiming to solve the metrical analysis task. First, the
reimplementation of the KVĚTA data-driven approach, later using machine learning and
training the BiLSTM-CRF model.

5.1 Used datasets

Two different datasets obtained from the Corpus of Czech Verse data are used.

The first dataset contains no polymetric poems, no multimetric verses, no unrecognised metrical
positions, and no annotation errors. This dataset contains 57 339 poems.

The second dataset contains no unrecognised metrical positions, no multimetric verses, and no
annotations errors as well. However, this time, polymetric poems can be present. This dataset
contains 59 661 poems.

Both datasets are divided into training, validation, and testing data using a ratio of 70:15:15.
The KVĚTA reimplementation is trained on the training and validation data and tested on the
testing data. The BiLSTM-CRF model is trained on the training data, finetuned during training
on the validation data, and final results are obtained for the previously unseen testing data.

5.2 KVĚTA reimplementation

5.2.1 Syllabification using X-SAMPA transcription

In the reimplementation of the KVĚTA data-driven approach, a phonetic transcription algorithm
is not implemented. Instead, phonetic transcriptions already generated by KVĚTA and published
within the Corpus of Czech Verse are used. The X-SAMPA format is parsed to obtain the number
of sonority peaks and, therefore, the number of syllables for each word. For the X-SAMPA
symbols that are counted, see Tables 5.1, 5.2, 5.3, and 5.4.
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Table 5.1 X-SAMPA: diphthongs

X-SAMPA Transcription Example Czech Word Word Transcription
a_u auto (car) a_uto / ?a_uto
E_u neuron (neuron) nE_uron
o_u soud (court) so_ut

Table 5.2 X-SAMPA: vocals

X-SAMPA Transcription Example Czech Word Word Transcription
a sad (orchard) sat
E pes (dog) pEs
I list (leaf) lIst
o rok (year) rok
u sud (barrel) sut

Table 5.3 X-SAMPA: long vocals

X-SAMPA Transcription Example Czech Word Word Transcription
a: sám (alone) sa:m
E: lék (medicine) lE:k
i: sýr (cheese) si:r
o: tón (tone) to:n
u: sůl (salt) su:l

Table 5.4 X-SAMPA: syllabic consonants

X-SAMPA Transcription Example Czech Word Word Transcription
= krk, vlk (throat, wolf) kr=k, vl=k
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5.2.2 Syllable classes

In the paper [5] explaining the KVĚTA data-driven approach, the final Syllable class count is
reduced to only 12 different Syllable classes. As not all the reductions applied are properly
explained in the paper, the reimplementation got to the number of 15 different Syllable classes.

5.2.3 Metre generation

The reimplementation generates the same metres as KVĚTA – the standard syllabotonic metres;
imitations of quantitative syllabic strophes; imitations of hexametre, pentametre, and elegiac
couplet; and ghazal poems.

5.2.4 Metre assignment

In the reimplementation, the conditional probability of a Syllable class being realised by a strong
or weak position P (xw,i,j |σi,j) is not counted using Bayes’ Theorem as it is inside KVĚTA (see
Equation (4.2)), but is counted directly. In my opinion, counting the probability using Bayes’
theorem is, in this case, unnecessary and does not add any benefit compared to counting it
directly. Moreover, in my opinion, the probabilities of strong and weak positions should not be
considered equal, as the weak position is a bit more likely to occur depending on the structure
of all the syllabotonic feet. Probabilities are estimated from training and validation datasets.
Yates’ χ2 test is not performed as it adds another complexity to the task, and, therefore, the
probabilities are not modified for outlier authors (see Equation (4.3)).

When selecting the metre, the metrical coefficients of the individual line patterns and the overall
metrical coefficients are calculated the same as in KVĚTA (see Equations (4.4), (4.5), and (4.6)).
When the same metrical pattern is generated with different metre names, standard syllabotonic
metres are selected with priority as in KVĚTA.

5.3 BiLSTM-CRF

Based on the research of machine learning approaches done in Section 4.4, the BiLSTM-CRF
model is selected for training.

5.3.1 Used implementation

One of the publicly available implementations of BiLSTM-CRF for sequence tagging [20] is used
to train the BiLSTM-CRF model. The same implementation is used in the paper [18]. It uses
Keras version 2.2.0 with Tensorflow 1.8.0 as the backend. It must be run using Python 3.6 or
lower to be compatible with the Tensorflow version. [20]

5.3.2 Input data format

When training the BiLSTM-CRF model, two different input data formats are tested:

token-level,
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syllable-level.

Both formats are inputted using two different approaches:

one input sequence represents a line in a poem,

one input sequence represents a whole poem.

For the token-level input data format, the model is inputted a sequence of individual tokens
(words) from the poem. For each token, a sequence of metrical positions is predicted. This
sequence can be empty as well, when the token is non-accented.

For the syllable-level input data format, the model is inputted a sequence of individual syllables
from the poem. For every syllable, exactly one metrical position is predicted. Because the
Corpus of Czech Verse lacks annotation of the syllable boundaries, two approaches to obtain
syllable-level data are tested: syllabification using hyphenation tools and X-SAMPA syllables.

Syllabification using hyphenation tools

Approach to syllabification using phonology-based Czech TEX hyphenation patterns [21] with
Frank Liang’s hyphenation algorithm [22] is tested. The implementation of Frank Liang’s al-
gorithm published by Ned Batchelder [17] is modified to support Czech patterns. The problem
encountered is that, for example, the word houska is hyphenated as hou-s-ka due to the ambi-
guity of the syllable boundaries where both hous-ka and hou-ska represent valid syllable splits.
Therefore, the output has to be further processed to identify and merge these splits.

The next hyphenation tool tested is the Pyphen [23] program, which uses Hunspell hyphenation
dictionaries and supports the Czech language. It does not annotate both syllable boundaries in
case of ambiguity, as Czech TEX hyphenation patterns do.

For the training data of the second dataset used (see Section 5.1) the average difference from
the correct number of syllables in one token is 0.21 for Czech TEX hyphenation patterns, 0.06
for Pyphen and 0.15 for Czech TEX hyphenation patterns with applied heuristics, that one-letter
syllables are merged into the previous ones. For Czech TEX hyphenation patterns, on average,
21.63 % of tokens in one line have an incorrect number of syllables assigned, for Pyphen 6.18 %
and for Czech TEX hyphenation patterns with heuristics 15.31 %. The referential syllable counts
are obtained by splitting X-SAMPA transcriptions using sonority peak symbols (see Tables 5.1,
5.2, 5.3, and 5.4).

As the differences between the referential syllable counts and the syllable counts obtained by
the hyphenation approaches are not so insignificant, it is decided not to use the hyphenation
tools at the moment. Furthermore, knowledge about non-syllabic prepositions would have to be
incorporated when using these approaches.

X-SAMPA syllables

As the hyphenation approaches to syllabification are rejected, X-SAMPA phonetic transcriptions
are parsed to obtain syllable representations with correct syllable count. For each word, its X-
SAMPA transcription is divided into X-SAMPA syllables using transcriptions of sonority peaks
(see Tables 5.1, 5.2, 5.3, or and 5.4). For non-syllabic words without a sonority peak, no X-
SAMPA syllables are generated.

As an example, for the token blýskajícím with X-SAMPA transcription bli:skaji:t_si:m the
following four X-SAMPA syllables are obtained: [bli:, ska, ji:, t_s:m].
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5.3.3 Input features

In accordance with the intuition of the paper [18] no character-based representation of the input
is used. The decision is made not to use the capitalisation feature, as the capitalisation of words
seems to be of minor importance for this task, and words inside poems usually do not contain
numerals.

As word embeddings, Word2Vec embeddings are pre-trained on the training data. By mistake,
for the syllable input, Word2Vec embeddings are pre-trained also on the non-syllabic tokens that
are not inputted to the model. Due to time reasons, the models are not retrained. However, the
assumption is that it should not affect the results significantly.

The implementation supports inputting other features in addition to the input tokens. Following
intuition from [5], author of a poem, year of publication, POS tag, or lemma is also inputted.
An embedding of size 10 is assigned automatically to every input value and concatenated with
other input embeddings.

5.3.4 Training

Training loop denoted in Figure 3.8 is performed.

The implementation is optimised for speed, it groups sentences with the same lengths together
during training, and thanks to that, it is much faster than other BiLSTM-CRF implementa-
tions. [20] Even though the implementation is highly configurable, the hyperparameters are not
further fine-tuned, as training of one input configuration takes 1 to 2 days (CPU is used, training
on GPU is not tested).

5.3.5 Training hyperparameters

The hyperparameters are set according to the recommendations in [18] and [13].

Following intuition from [18], variational dropout is used, which drops 25 % in the output and
recurrent connections, and three BiLSTM layers with 100 recurrent units are trained inside each
layer.

In accordance with the findings of [13], Nadam optimizer is utilised. Thirty-two sentences are
used for mini-batch training, as the training set is relatively large. To fight the exploding gradient
problem, no gradient clipping, but gradient normalization is performed with threshold value 1.
Models are trained for 15 epochs. Training is stopped earlier if the best validation score does
not increase for more than five training epochs.

5.3.6 Example configuration of hyperparameters

For a concrete example of the configuration of hyperparameters, see Figure 5.1.
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{
"dropout": [0.25, 0.25],
"classifier": ["CRF"],
"LSTM-Size": [100, 100, 100],
"optimizer": "nadam",
"earlyStopping": 5,
"miniBatchSize": 32,
"charEmbeddings": None,
"clipvalue": 0,
"clipnorm": 1,
"featureNames": ["tokens", "lineIdx", "author", "year", "pos", "lemma"],
"addFeatureDimensions": 10

}

Figure 5.1 BiLSTM-CRF library: Example configuration of hyperparameters



Chapter 6

Results

6.1 Accuracies

When testing the metrical analysis approaches implemented, the following accuracies are taken
into account:

Syllable-level accuracy : Testing for all individual syllables whether the metrical position
assigned to that syllable is the same as the referential.

Line-level accuracy : Testing for all individual lines whether the metrical pattern assigned to
that line is the same as the referential.

Poem-level accuracy : Testing for all individual poems whether the metrical pattern assigned
to that poem is the same as the referential.

For BiLSTM-CRF models with token input, syllable accuracies cannot be evaluated because the
reference syllable counts and predicted syllable counts tend to differ.

6.2 Results

For the results on both datasets used (see Section 5.1), see Tables 6.1, 6.2.

It can be seen that BiLSTM-CRF represents a great success, as with the best input configurations,
it returns better results than the KVĚTA reimplementation, comparing all evaluated accuracies
(syllable-level, line-level, and poem-level).

Not surprisingly, the syllable input returns better results than the token input, especially when
comparing the poem-level accuracy. However, when only the line-level accuracy is looked at,
the results for token input are not that bad. Therefore, these results seem promising; as for
token input, prior syllabification is not needed during preprocessing. An interesting observation
is that inputting a lemma significantly improves the results for token input. Generally, the more
additional features inputted (author of a poem, year of publication, POS tag, lemma), the better
the results.

However, the most interesting finding of this work is how much inputting sequences representing
whole poems rather than poem lines improves the results (especially the poem-level accuracy and
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perhaps surprisingly even the syllable-level accuracy). The best results are obtained inputting
sequences representing whole poems with all additional features and poem line indices on the
input. Poem line indices allow the model to distinguish different lines of a poem.

Table 6.1 Results for the first dataset (no polymetric verses, no verse multimetry)

Approach Syll. acc. Line acc. Poem acc.
KVĚTA reimplementation 97.02 81.88 69.83

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables

Max epochs: 15
97.93 95.67 66.78

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years

Max epochs: 15
98.14 95.97 66.29

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years, POS tags

Max epochs: 15
98.69 96.85 72.34

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years, POS tags,

lemmas
Max epochs: 15

98.74 96.94 72.98

BiLSTM-CRF with X-SAMPA syll. embeddings
poem as line

Input: line idxs, X-SAMPA syllables, authors, years,
POS tags, lemmas
Max epochs: 15

99.71 99.17 92.51

BiLSTM-CRF with tokens embeddings
Input: tokens

Max epochs: 15
- 74.38 8.69

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years

Max epochs: 15
- 75.91 10.29

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years, POS tags

Max epochs: 15
- 76.94 11.17

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years, POS tags, lemmas

Max epochs: 15
- 90.01 31.83

BiLSTM-CRF with tokens embeddings
poem as line

Input: line idxs, tokens, authors, years, POS tags,
lemmas

Max epochs: 15

- 95.47 55.74
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Table 6.2 Results for the second dataset (polymetric verses, no verse multimetry)

Approach Syll. acc. Line acc. Poem acc.
KVĚTA reimplementation 96.08 80.64 68.26

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables

Max epochs: 15
97.78 95.31 62.91

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years

Max epochs: 15
98.21 96.09 67.20

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years, POS tags

Max epochs: 15
98.72 96.96 73.41

BiLSTM-CRF with X-SAMPA syll. embeddings
Input: X-SAMPA syllables, authors, years, POS tags,

lemmas
Max epochs: 15

98.83 97.12 73.06

BiLSTM-CRF with X-SAMPA syll. embeddings
poem as line

Input: line idxs, X-SAMPA syllables, authors, years,
POS tags, lemmas
Max epochs: 15

99.61 98.86 90.40

BiLSTM-CRF with tokens embeddings
Input: tokens

Max epochs: 15
- 72.14 7.56

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years

Max epochs: 15
- 76.60 9.64

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years, POS tags

Max epochs: 15
- 78.40 11.27

BiLSTM-CRF with tokens embeddings
Input: tokens, authors, years, POS tags, lemmas

Max epochs: 15
- 91.42 35.39

BiLSTM-CRF with tokens embeddings
poem as line

Input: line idxs, tokens, authors, years, POS tags,
lemmas

Max epochs: 15

- 95.91 58.98
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Conclusion

The defined objectives of this work are to reimplement the KVĚTA data-driven approach, train
the BiLSTM-CRF sequence tagging model with various proposed input configurations, and decide
– based on the obtained results – whether using the BiLSTM-CRF model for the metrical tagging
of Czech syllabotonic verse is successful and has some benefits over using the KVĚTA data-driven
approach.

Regarding the KVĚTA approach, it is reimplemented, but with minor changes to the original
functionality, so the obtained predictions are probably a bit worse than they would be with the
original program.

The BiLSTM-CRF model is successfully trained on many different input configurations, and with
the best input configurations, it returns better results than the KVĚTA reimplementation with
respect to all evaluated accuracies (syllable-level, line-level, and poem-level). Many observations
about the BiLSTM-CRF input are made such that, not surprisingly, the syllable input yields
better results than the token input (especially for the poem-level accuracy), but results for the
token input, which does not need prior syllabification, are promising (particularly for the line-
level accuracy). Another observation is that inputting a lemma significantly improves results for
the token input, and the more additional features inputted (author of a poem, year of publication,
POS tag, lemma), the better the predictions. The most interesting finding is that the best results
are obtained by inputting sequences representing whole poems with line indices on the input that
allow a model to distinguish different lines (especially the poem-level accuracy is significantly
improved). The approach of inputting sequences representing whole poems may never have been
tested before.

Overall, using the BiLSTM-CRF model for metrical tagging of Czech syllabotonic verse repre-
sents a great success and has many benefits over using the KVĚTA approach. It does not need to
encode any complicated expert knowledge, as everything is learnt automatically by the machine
learning model. The machine learning model can even encode its expert knowledge that humans
do not understand. Furthermore, it is completely automatic, unlike the KVĚTA approach, which
sometimes needs human assistance. On the other hand, with the KVĚTA approach, one has the
confidence that for every poem, the returned metrical pattern is justified.

In the future, further experiments could be performed with the BiLSTM-CRF model, such as
fine-tuning the model hyperparameters (optimizer with its settings, number of BiLSTM layers,
number of recurrent units in one BiLSTM layer …), using character-based representations of
the word embeddings, or training and using different word embeddings (e.g. GloVe, FastText,
ELMo …). Syllabification without the need for phonetic transcription could be tried either by
using hyphenation approaches or by training own machine learning model. Another interesting
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experiment could be multitask learning (e.g. predicting the metrical pattern and the POS tag
together), predicting the name of the metre (dactyl, trochee …) instead of or alongside the metrical
pattern in multitask setup, or transfer learning between poetic corpora in different languages.
Furthermore, other machine learning architectures (e.g. transformers) could be tested.
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