Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Semantic Clustering of Twitter Data

Jan Petrov

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2022

ctuthesis t1606152353

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 ™
PFijmeni: Petrov Jméno: Jan Osobni Cislo: 492165

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Specializace: Uméla inteligence
. J
Il. UDAJE K DIPLOMOVE PRACI
~
Nazev diplomové prace:
Sémantické shlukovani dat z Twitteru
Nazev diplomové prace anglicky:
Semantic Clustering of Twitter Data
Pokyny pro vypracovani:
The task of the thesis is to experiment with methods of semi-supervised semantic clustering with a focus on Czech Twitter
data. The work should aim at applications in semi-supervised topic detection.
1) Research state-of-the-art NLP methods as well as methods of semi-supervised clustering.
2) Create an appropriate Czech dataset. This will most likely involve the development of an annotation tool or the use of
machine translation methods.
3) Train and evaluate multiple approaches, including neural architectures based on Set Transformer.
Seznam doporucené literatury:
[1] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).
[2] Lee, Juho, et al. "Set transformer: A framework for attention-based permutation-invariant neural networks." International
Conference on Machine Learning. PMLR, 2019.
[3] Lee, Juho, Yoonho Lee, and Yee Whye Teh. "Deep amortized clustering." arXiv preprint arXiv:1909.13433 (2019).
[4] Ibrahim, Rania, et al. "Tools and approaches for topic detection from Twitter streams: survey." Knowledge and Information
Systems 54.3 (2018): 511-539.
Jméno a pracovisté vedouci(ho) diplomové prace:
Ing. Jan Drchal, Ph.D. centrum umélé inteligence FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 02.02.2022 Termin odevzdani diplomové prace: 20.05.2022
Platnost zadani diplomové prace: 30.09.2023
Ing. Jan Drchal, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)
\ J
ll. PREVZETI ZADANI
é Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. h
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v diplomové praci.
S Datum pfevzeti zadani Podpis studenta)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

ctuthesis t1606152353

iv

Acknowledgements

Dear teachers and scientists,

Many thanks for the transformative
years.

With gratitude

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited all
sources of information in accordance with
the Methodological guideline on the ob-
servance of ethical principles in the prepa-
ration of university theses.

Prague, 20 May 2022

ctuthesis t1606152353

Abstract

We address the task of semantic clustering,
using 203K tweets published at Twitter in
the Czech language. We investigated neu-
ral networks models for converting text
data into vectors that encode semantic in-
formation. We developed a software tool
that augments syntactic search by multi-
ple semantic methods for finding content-
related tweets. Using the tool, we anno-
tated 18K tweets and created a dataset
of 65 clusters on particular publicly rele-
vant topics. We based evaluation of mul-
tiple automatic clustering methods on the
dataset. We also created a list of key
lemmas characterizing the automatically
found clusters.

Keywords: semantic similarity,
clustering, Transformer, BERT

Supervisor: Ing. Jan Drchal, Ph.D.
Centrum umélé inteligence FEL
Karlovo nameésti 13

Praha 2

ctuthesis t1606152353

vi

Abstrakt

Zabyvame se ulohou sémantického shlu-
kovani na podkladé 203K tweetd zve-
fejnénych na Twitteru v ceském jazyce.
Zkoumame modely neuronovych siti pro
prevod textovych dat do vektorid nesou-
cich sémantickou informaci. Vyvinuli jsme
softwarovy nastroj, ktery doplnuje syn-
taktické vyhledavani o rizné sémantické
metody nachazejici obsahové souvisejici
tweety. S jeho pouzitim jsme anotovali
18K tweetil a tim vytvorili datovou sadu
65 skupin adresujicich konkrétni verejné
vyznamnd témata. Na jejim zdkladé jsme
vyhodnocovali vice metod automatického
shlukovani. Vytvotili jsme téz seznam kli-
c¢ovych lemat, které tématicky charakteri-
zuji nalezené shluky.

Kli¢ova slova: sémanticka podobnost,
shlukovani, Transformer, BERT

Preklad nazvu: Sémantické shlukovani

dat z Twitteru

Contents

1 Introduction 1l

Part |
Theoretical Background

2 Representing Words and Other
Language Units by Vectors 5|

2.1 One-Hot Encoding

2.2 Neural Network Word Embeddings [6|

2.3 Word2Vec and FastText

2.4 Subword Language Modelling.
WordPieces.

2.5 Contextual Vectors. BERT Family

of Models.
2.6 Sentence Vectors.
3 Sequential Data. RNNs.
Transformers. Set Transformers. 23
3.1 Recurrent Neural Networks
3.2 Transformer Encoders and

Self-Attention 27
3.3 Set Transformer. Generalized

Attention. 33

vii

4 Clustering: Classical and Neural
Network Approaches

41 K-Meansc.oo.... 138
42DBSCAN........... ... 139
4.3 Deep Amortized Clustering

Part Il
Application to Twitter Data

5 Introduction. Representing Tweets
by Vectors

5.1 Twitter Dataset

5.2 Creating Vector Representations

6 Semantic Search and

Annotations 47
6.1 Semantic Search and Annotation
Tool ... 47
6.2 Workflow and User Interface ... 48
6.3 Annotating Groups of Tweets ..

7 Tweet Clustering

55

7.1 K-Means: Quantitative Analysis
7.2 K-Means: List of Topics

ctuthesis t1606152353

7.3 Deep Amortized Clustering

7.4 Conclusion (9
7.5 Future Research Goals 60|
Appendices

A Frequently Used Abbreviations 63|

B Annotated Groups 65|

C Key Lemmas for 100 K-Means
Clusters 67

D Bibliography

ctuthesis t1606152353 viii

Figures

2.1 BERT Transforming Input Tokens
into Output Contextual Embeddings

3.1 RNN Computation Graph
3.2 RNN with Two Bidirectional
Layers.............o .
3.3 Transformer Encoder.......... 29
3.4 Self-Attention Layer...........
3.5 Multi-Head Self-Attention

3.6 Generalized Multi-Head Attention

with Two Inputs.
4.1 K-Means Clustering

4.2 Clusters Unsuitable for K-Means [39

4.3 DBSCAN Clustering
6.1 Annotation Tool Workflow 48
6.2 Search Results 49|
6.3 Annotation App: Manual
(Re)labeling
6.4 Timeline Output

ix

6.5 Scatterplot Output
7.1 Distribution of Tweets and

Clusters according to Size Interval
7.2 Overlap Between Annotated

Groups and K-Means Clusters

ctuthesis t1606152353

Tables

7.1 Key Lemmas for Randomly Chosen
Groups (translated)

ks

ctuthesis t1606152353

Chapter 1

Introduction

In the past ten years, machine learning and neural network methods have
achieved multiple breakthroughs in most natural language processing (NLP)
tasks. Multiple models, pre-trained on huge amounts of text, became available
that can convert words (or other language units such as sub-word tokens or
sentences) to vectors (e.g., with 768 dimensions) encoding various aspects of
semantic information (meaning). For most major NLP tasks, such as trans-
lation, sentiment classification or question answering, vector representation
provides major advantage over syntactic methods, which process text data as
a mere sequence, or sub-sequences, of characters.

We applied the semantic methods to Twitter data: tweets published by
a group of selected Czech users mostly in the last six years. Twitter is the
social network most used, at least in the Czech Republic, for communicating
topics of public interest and general importance. In addition, the limit of
280 characters favors high information density. Accordingly, Twitter is a
reasonably accessible resource of manageable data size that can provide
insights in social issues and tendencies. Moreover, techniques developed on
Twitter can be reasonably extended to newspaper headlines and leads.

To facilitate discovery and analysis of socially important issues, we aimed
at the task of finding groups of tweets related by their topics (semantic
clustering and subsequently topic discovery). Using multiple neural-network
models, we converted 203,057 tweets from the provided dataset to high-quality
vector representations. Thereafter, we developed a tool (web application) for
semantic search and annotations that makes extensive use of the computed
vector representations. The purpose of the tool is twofold:

® to provide multiple semantic search methods when finding all tweets
related to a particular topic; thus, also the tweets can be found that do

1 ctuthesis t1606152353

1. Introduction

not conform to the syntactic pattern, but semantically address the same
topic as tweets already found by syntactic methods; and

B to facilitate manual annotation; reviewing 18,371 tweets, we defined 65
groups of tweets covering particular important topics for further use, in
this thesis and in general.

We experimented with multiple techniques of automatic semantic clustering,
both classic (pre-neural) and neural-network, the latter represented by the
recent Amortized Clustering approach based on the Set Transformers architec-
ture. We used the annotated groups of tweets to evaluate the automatically
generated clusters and for fine-tuning the Set Transformer network (which we
pre-trained at first on batches sampled at random from the provided dataset
and clusters computed by the classic methods). In particular, we evaluated
generated clusters according to their:

B correspondence to human-annotated clusters, examining whether current
automatic methods provide clusters that would include mostly all tweets,
and only those tweets, to particular newsworthy topics; and

® potential of use for topic-detection. To discover important topics, we
generated a list of key lemmas shared by tweets within generated clusters.

This thesis consists of Part I and Part II and the following chapters:

® In Chapter 2 we address the fascinating field of representing words (and
other language units such as sub-word tokens or sentences) by vectors
(embeddings) that encode semantic properties. We proceed from models
(e.g., word2vec) trained to pre-compute distinct vectors for distinct words
to the BERT family of models, which consider context, representing the
same language unit differently in different contexts.

B In Chapter 3 we explore network architectures most relevant to NLP
tasks and this thesis: recurrent networks, Transformers (underlying
BERT), and Set Transformers (underlying Amortized Clustering).

#® In Chapter 4 we outline two classical clustering methods and analyze
Amortized Clustering in detail; we applied all three methods.

® [n Chapter 5 we describe the provided Twitter dataset and the procedure
used to convert provided tweets to vectors.

® In Chapter 6 we address the tool for semantic search and annotations
we developed, both the software solution and features available to users.
We also mention our work on manual annotations and its results.

® [n Chapter 7 we summarize our experiments with K-Means and Deep
Amortized Clustering, evaluate results of this thesis and propose further
research goals.

ctuthesis t1606152353 2

ctuthesis t1606152353

1. Introduction

Part |

Theoretical Background

ctuthesis t1606152353 4

Chapter 2

Representing Words and Other Language
Units by Vectors

Neural networks, and most other machine learning methods (such as clustering,
addressed in chapter 3), cannot operate directly on syllables, words, sentences
or paragraphs. They accept only numbers for input, or their vectors, usually
of a pre-determined size. Accordingly, language units need to be converted to
vectors first, before further stages of an NLP pipeline can follow. We present
in this chapter various methods for converting words and other language units
to vectors, generally proceeding in the order of increasing complexity.

B 21 OneHot Encoding

Every word is assigned a unique index number, a natural number representing
word position in the vocabulary of size |V| (where, e.g., |V| = 30000). For
instance, the word cat can be assigned 1774 and the word computer 15795.
Then, each word is represented by a vector from RV, with as many elements
(dimensions) as the vocabulary size. All elements of the vector are set
to 0.0, except that the element at the position equal to the index of the
represented word has the value of 1.0. Given the example above, the word
cat is represented by the vector:

vii=¢elzs=1[00 00 ... 00 00 1.0 00 00 ... 00 00],

where the 1.0 value is at the position 1774.

5 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

One-hot representation has two major shortcomings, however:

1. Vectors with tens of thousands of dimensions are needlessly large.

2. The representation cannot capture any degree of similarity between
words. Each word (its one-hot vector representation) is orthogonal to
every other word, whether both words are similar or dissimilar, or even
synonyms or antonyms. In one-hot representation, distance between
words, whether dog and doggy, excellent and great, great and awful, or
dog and excavator, is always the same.

B 2.2 Neural Network Word Embeddings

Bengio et al published already in 2003 [6] a method for representing each
word by a vector from R? with much fewer dimensions (e.g., d = 512) than
|V|, the size of the vocabulary. They proposed a 2-layer neural network
trained as a language model, trained to predict P(wy | wi—1,wi—9,..., wi—p),
that is, the probability that a particular word comes in the corpus just after
a particular sequence of words (where n is a pre-determined number, e.g., 4).
The neural network is to answer, for instance, the following question: What
is the probability regarding the sequence “I am glad to e ” that the word see
(or postpone or hippopotamus or any other word in the vocabulary) comes at
the place of 7

The network processes inputs into outputs in the following layers and steps
(let us take a simple feed-forward variant and not complicate notation by
addressing a training batch of multiple inputs and targets):

1. First layer = Embedding Layer. Word vectors coincide with trainable
parameters of the first layer. There are |V| words, and every word is
represented by a vector from R?. Accordingly, the whole vocabulary
(embedding layer) can be repreaccuracsented by M e RIVIxd
trainable parameters.

matrix of

2. Representation of inputs using the embedding layer. Each of
n input words is encoded as a vector from R?. A word, having the
vocabulary index i (e.g., 1774), is represented by the vector coinciding
with i-th line of the M matrix.

3. Second Layer. n vectors from the previous step, each from R?, are
concatenated into a single vector from R™. This concatenated vector is
fed into a fully-connected layer, thus multiplying the matrix F € RIVI>*nd
of trainable parameters.

ctuthesis t1606152353 6

2.2. Neural Network Word Embeddings

Note: We prefer a simple architecture here, although [6] does not adhere
to any particular architecture, and more sophisticated neural networks
may yield better results.

4. Softmax. The resulting vector from RVl is run through softmax to
obtain a probability for each form |V| that it comes in the corpus just
after the input sequence of words.

Training is based on a large text corpus, with the following elements:

® The input consists of n consecutive words (their representations) sampled
from the corpus.

® The target is the word (its representation) that comes in the corpus
just after the input.

8 The loss function is defined as the usual negative log softmax: L =

— —exp(fr) , . ‘ .
log <Zj exp(fj)> , where f; denotes j-th element of the vector with logits

entering softmax, T" denotes the target class index, and thus fr denotes
the logit whose index equals that of the target class.

8 The whole network is trained at once. In each training pass, both M
matrix (see numbered item 1. above) and F matrix (see numbered item
3. above).

Word vectors (coincident with rows of the M matrix, see numbered item 1.
above), first initiated at random values, gradually change during the training.
Vectors representing words that occur in similar words sequence within the
corpus (such words usually have related meaning) tend to get closer in the
R? space.

It is a common technique to represent a word or other language unit as a
vector coincident with a particular row of the embedding layer of a neural
network (see numbered item 1. above). We will return to the technique in
section [2.5| below. Now, let us consider computational demands related to
rendering probabilities for a large number of classes (e.g., when the vocabulary
size |V| = 30000, or even 150000). In particular, let us consider the number
of parameters in the second layer (numbered item 3. above) and softmax
computed over, e.g., 30 000, or even 150 000, classes (numbered item 4. above).

7 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

. 2.3 Word2Vec and FastText

Mikolov et al published their word2vec algorithm in two breakthrough papers
from 2013 [28, B0]. They devised a considerably more efficient procedure for
computing word vectors, compared to 2.2| above. This allowed Mikolov et al
to train already in 2013 on larger corpora (e.g., full Wikipedia), calculate
first high-quality word vectors, achieve state-of-the-art results at that time,
and demonstrate that word vectors can encode more meaning than expected
before.

Authors experimented with two opposite approaches:

1. Continuous bag-of-words model (CBOW) that answers the question:
If you know the surrounding words (e.g., you know what 20 words are
at one of 10 positions just preceding or 10 positions just following the
central surrounded word) what is the probability for a particular word
from the vocabulary to be the central surrounded word?

2. Continuous skip-gram model that answers the question: If you know
the central surrounded word, what is the probability for a particular
word from the vocabulary that it is one of the surrounding words (e.g.,
occurs as one of 10 words just preceding or 10 words just following the
central surrounded word)?

We address the continuous skip-gram model below, which achieved better
semantic results.

Every word from the vocabulary is, again, represented by a word vector of d
dimensions (where d, e.g., 512, is significantly lower than |V, the vocabulary
size), initialized at random at first. The probability that a particular word w
surrounds the central word c is based on VIU v, the dot product of vectors
representing these two words (the higher the dot product, the higher the
probability). Word vectors gradually change during training. In particular,
vectors that represent words often (or rarely) found near each other in the

corpus tend to change so that their dot product increases (or decreases).

The following batch loss is minimized during the training (the training
is based on negative sampling, a simplification of contrastive estimation
method):

1
@ Z Z —log a(vgvtjj) + Z— log a(—vgva)

ceB \ —w<j<w acA
Jj#0

ctuthesis t1606152353 8

2.3. Word2Vec and Fast Text

where:

1. B is the training batch, a set of positions of central words within the
corpus. Batch sampling is basically uniform, but frequent words are
sampled with somewhat reduced probability, which still exceeds that of
less frequent words. In detail, probability of sampling a word occurring in
the corpus n times is given by the formula 1 —+/t/n, where t is a suitable
constant, such as 10000. This accelerates the training and renders better
results, since training on many co-occurences with high-frequency words,
such as the, would not be very fruitful.

2. wvgzand U5 are vectors (each consisting of d trainable parameters) repre-
senting words that are at the c-th or (¢ + j)-th position of the corpus. By
7 we denote the word that is at n-th position of the corpus (and usually
also at its many other positions).

Note: Authors of [30] use two different vectors for each word, a compli-
cation neither strictly necessary for computing word2vecs nor addressed
here.

3. w denotes the window size around the central word (10 can be a reason-
able value).

4. —logo is negative logarithm of the sigmoid function (applied in the
formula to the dot product of the vectors):

1

W) = —log(1) +log(1+e™ ™) =log(1+e™™)

—logo(z) = —log (

5. A denotes words obtained by sampling at random from all words in the
corpus. Sampling probability of a word w that occurs in the corpus n.,
times is given by the formula n%;®/Z, where Z is the normalizing constant
(=2 .ev n%7). Thus, the higher the frequency, the higher the sampling
probability, but sampling probabilities of frequent and infrequent words
are, again, somewhat squeezed together, by the operation of the exponent.
For small corpora, the optimal size of A can be 15 samples for each
positive word-pair (|.A| = 15-2w), but for larger corpora, the multiple of
5 (]A] =5 - 2w) or even less samples may suffice.

As words from A are sampled at random from the whole corpus, they
are highly unlikely to occur near the central word, thus establishing
negative samples. Accordingly, vector vz (for the word at c-th position
in the corpus) and vector v, (for the word a randomly chosen as one of
negative samples in this pass) are meant to be altered during the training
so that their dot product is low (see the minus sign within the last o
function in the formula).

Word2vec became famous and widely used mainly because of the following
advantages:
9 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

1. The algorithm can compute word vectors fast, requiring neither the
second neural network layer nor softmazr computation over large number
of classes (see section [2.2| above). This made it possible to train on large
datasets and thus obtain vectors of the state of the art quality.

2. Authors made pre-computed vectors available to the public. Thus anyone
could, and can, convert a text sequence into the vector sequence and
feed it into a neural network of chosen design, focusing on the upstream
NLP task. Good results are usually obtained already when pre-computed
vectors are taken as fixed, but the possibility remains to fine-tune the
vectors during neural network back-propagation.

3. It was expected that vectors representing words occurring in similar
contexts would be similar (cosine similarity = % = cos(f) is
usually used here as a measure). Yet word2vec papers have shown that,
in addition, well-trained R space is even more structured. Some vectors
(directions) within the space tend to indicate an important semantic
or syntactic relationship, such as positive-negative, country-capital or
masculine-feminine. For example, a question regarding analogy such as

X is to Paris as Germany is to Berlin can be formalized as

VX — UParis =~ UGermany — UBerlin

VX R VGermany — VBerlin + VParis

That is, if we take the vector representing the word Germany, subtract
from it the vector representing the word Berlin, and add the vector
representing the word Paris, obtaining thus the resulting vector, what
vector (representing what word from the vocabulary) has the smallest
cosine distance to it? (The vector representing the word France, indeed.)

These relationships (substructures) within the R? space are somewhat
surprising given that the only explicit aim during the training is to increase
(or decrease) the dot product of vectors representing co-occurent (or not
co-occurent) words. Accordingly, attempts have been published to explain
why, or under what conditions, these substructures emerge during the training
[25, 1]. In addition, the chance to obtain meaningful vector representations
for other phenomena sparked word2vec-style training in other domains, such
as biology [3].

Word2vec implementation was further developed by the Facebook research
group. It has made several tweaks [20] and enriched word vectors with sub-
word information [7]. Pre-computed word vectors trained using this improved
method, known as FastText, are available at the fasttext.cc| webpage for
157 different languages. FastText surpasses word2vec and GloVe (word
vectorisation algorithm from Stanford University [31]) in various analogy and
classification tasks [29], as well as in stability [8] (that is, in vectors having
similar values irrespective of the random seed during training).

ctuthesis t1606152353 10

https://fasttext.cc

2.4. Subword Language Modelling. WordPieces.

Accordingly, FastText is still the state-of-the-art solution when dealing
with isolated words (see the word vector arithmetic above), or in certain
applications with limited use of computational resources (see, e.g., DAN in
[9]). Yet as regards most NLP tasks, contextual embeddings have prevailed
in the last years. We will turn to them in section [2.5|

B 2.4 Subword Language Modelling. WordPieces.

We have been dealing so far with vectors that represent words (noting that
FastText vectors are enriched by sub-word information [7]). It is due now to
address vectors representing smaller language units, such as letters, syllables,
or other sub-word parts. The main advantages of smaller-than-word language
units are twofold:

1. Morphologically rich languages. In many languages, words have
different forms according to their grammatical function or binding within
the sentence. While we write with a computer, from a computer, or on
a computer in English (always the same spelling computer), we write
s pocitacem, od pocitace, or na pocitaci in Czech (the root pocitac followed
by various suffixes). Training on sub-word vectors allows to encode faster
into vectors that words pocitacem, pocitace and pocitaci are related, and
that the core meaning is borne by the root part pocitac.

2. Misspelled and rare words. It is challenging for the pure word-vector
approach to deal with misspelled words, such as elepant. Elepant and
elephant are simply different words, and the word elepant occurs so
rarely in the corpus (potentially just once) that it is impossible to train
a reasonable word vector representing it. The same may hold for rare
word variants, even if correctly spelled, such as scarceness. The sub-word
approach yields better accuracy for these words, provided they share
sub-word units with higher-frequency words (such as elephant, scarce or
scarcity).

One possible approach is to use the smallest unit possible, a single character,
for the first layer with embeddings (see section 2.2 above). Such character
embeddings were used in the ELMo network, a predecessor of BERT. ELMo,
too, computed context-sensitive word vectors, but was based on the bi-
directional LSTM architecture and not on Transformers yet [32]. Detailed
explanation of the architectures is available in Chapter |3l

The current state of the art, however, is a pre-determined number of sub-
word units of variable character lengths. Then, depending on pre-definition

11 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

of these sub-word units, the sentence Jet makers feud over orders. may be
tokenized to __J et __makers _fe ud __over __orders. (Please see below for
the explanation of the _ sign for tokens denoting word beginnings.) This
mid-point solution, with multiple-character sub-word units, retains flexibility
while being more efficient, carrying more meaning than singular characters
[46]. Arguably the most widely employed algorithm for sub-word tokenization
are BPE and WordPiece[36], which is used also for the BERT-family models
(see section [2.5 below).

The number of desired tokens (token inventory size) is n, a pre-determined
number, e.g., 200 000. The optimization problem is to define n tokens so that
the corpus coded as sequence of tokens has the minimal token length (e.g.,
the word improve, if it can be best coded by WordPieces im, prove included
in the inventory, has the token length of 2). The algorithm in the following
greedy style is used. We address the BPE variant here, whereas the current
WordPiece algorithm uses somewhat more complex criterion, [36, 46l 38]:

1. Initially, the token inventory includes all language characters as tokens
(and nothing more).

2. Two tokens from the inventory are identified that occur most often as a
sequence in the corpus.

3. Concatenation of the two tokens identified in step 2 is added to the
inventory as a new token.

4. The corpus is changed so that any occurrence of two consecutive tokens
identified in step 2 is substituted by the new token created in step 3.

5. The algorithm terminates if the inventory already includes n items,
otherwise the next cycle of steps 2 — 5 is run.

For instance, if the corpus consists of the sentence _this _is _a
_h at (usually a special character is added at the beginning of each word
so that, e.g., are is assigned a different token as a standalone word and as a
part of another word), then ¢ s is identified in step 2, token is is created in
step 3, and the corpus is changed to _t his _4s _a _hat instep 4 See

[38] for minimal implementation in Python (that is more efficient than the
illustrative example above) and [36] for further improvements.

A pre-trained BERT model is usually made available to the public together
with a pre-computed token dictionary and tokenizer that were used for training.
A tokenizer is an executable code that can be used during fine-tuning and
deployment to convert any input text into tokens (into their indices within
the token inventory).

ctuthesis t1606152353 12

2.5. Contextual Vectors. BERT Family of Models.

Tokenization usually takes much less time than subsequent processing steps.
To make the process even faster, Google has recently published an algorithm
that achieves further speedups (8.2x compared to HuggingFace and 5.1x
compared to TensorFlow), based on prefix tries and altered Aho-Corasick
algorithm [39].

B 25 Contextual Vectors. BERT Family of Models.

Deliberately simple models for producing word vectors (see section [2.3 above)
could be trained on large datasets already in 2013. Later, the trend of
ever-larger neural networks and increasing power of GPUs made it viable to
train on large datasets even more expressive representations. Thus in 2018
researchers managed to publish two models: ELMo [33], based on RNNs (see
detailed description of the recurrent architecture in section 3.1 below), and,
more importantly, BERT [13], based on Transformers (see detailed description
of the Transformer architecture in section 3.2/ below). Both ELMo and BERT
encode a language unit not per se, but as used in the context of the given
sequence.

While there is a single non-contextual word vector for the word tree (thus
it can be pre-computed for all future uses), contextual representation of the
word is sequence dependent and differs, e.g., in each of the following three
sentences: I sit under the tree. I cut down our tree. I queried ancestors in the
family tree. Contextual embeddings can naturally disambiguate homonyms
(the word tree has a different meaning in sentences 1 and 2 versus in sentence
3, as follows from the context). But their function is wider: contextual vectors
representing the word tree differ also between sentence 1 and sentence 2.

Especially the BERT model has considerably improved state of the art
results in various NLP tasks. The BERT aArgg variant (with 340M parame-
ters) has exceeded, on average, pre-contextual accuracy in GLUE tasks ([45])
by 8.1 percentage points, and for question answering, the improvement was
33.6 percentage points. The improvement reached by the BERTpagE variant
(with 110M parameters) was smaller, but it still exceeded contemporary state-
of-the-art results by a wide margin. BERT variants published in the following
years (see subsection 2.5.4 below) have improved results even further.

B 2.5.1 BERT Forward Computation

BERT (bidirectional encoder representations from Transformers) is the
encoder-only model. It encodes n input tokens in n contextual embeddings.

13 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

In particular, BERT does not include a decoder, whose task is to take encoder
results and generate ("decode®), usually in a one-by-one manner, tokens of
the output sequence (e.g., in translation tasks), whose number and structure
usually differs from the inputs. Nevertheless, BERT can be made a part of
an encoder—decoder architecture, which goes beyond the topic of this thesis.

Text inputs (e.g. sentences) are processed by the tokenizer: each input
is converted in the sequence of tokens and each token is represented by its
vocabulary number. In addition the BERT model expects that the sequence
starts with the special token [CLS]| (a special item added to the WordPiece
dictionary under a unique ID that has no counterpart in text data) and ends
with the special token [SEP]. BERT can be used for tasks concerning a pair
of sentences (pair of contiguous text sequences), such as whether one sentence
follows from another; an additional [SEP] token is used to separate both
sentences.

INPUT]\}I'OKENS [CLs] my dog is cute [SEP] he likes play #i#ing [SEP]
each input token is represented by an integer — by index of the token within the token dictionary

TOKEN EMBEDDINGS ticts) tmy tdog tis toute tsery the tikes tplay taing tser)
R each integer i is transformed to a vector from R788 (j-th line of trainable token embedding matrix)

SENTENCE NUMBER EMB. s4 S1 S1 S1 S1 S1 S2 S2 S2 S2 S2

768
R to every token vector from sentence 1 (or 2) a trainable vector for sentence 1 (or 2) is added

POSITION E7Ig!$BEDDINGS Po p1 p2 p3 pa Ps Pe p7 Ps Po P10
R to every token vector a trainable vector representing token position is added

R768

each vector is the sum of token/sentence/position vectors (indicated by light green boxes above it)

SELF-ATTENTION AND FULLY-CONNECTED LAYERS

CONTEXTUAL

R768 contextual embedding of each token as used in the input sequence

Figure 2.1: BERT Transforming Input Tokens into Output Contextual Embed-
dings. Inspired by figure 2 in [15].

As indicated in figure 1.1 above, transformation of input tokens into
contextual embeddings proceeds in the following steps:

1. Converting input token, sentence information and position
information into a non-contextual vector. Each of ¢ input tokens
(where ¢ is the length of the input sequence, and every input token is an
integer representing position of the token within the token dictionary) is
transformed into non-contextual vectors first, using the three trainable
embedding matrices:

ctuthesis t1606152353 14

2.5. Contextual Vectors. BERT Family of Models.

® Token embedding matrix of |[V| x 768, where |V| is the WordPiece
dictionary size and 768 is the dimensionality of embeddings, a

hyperparameter chosen by authors of BERT. (The value of 768
holds for the BERTgagsg variant.)

® Sentence embedding matrix of 2 x 768, where the first line represents
the first, and the second line the second, input sentence.

® Position embedding matrix of 512 x 768, where 512 is the maximum
length of input sequence measured in tokens. (Need for this position
token follows from the nature of Transformers and will be addressed
in section |3.2 below.)

The non-contextual vector is the sum of (1) trainable embedding repre-
senting token ID, (2) trainable embedding distinguishing whether the
token comes from the first or the second input sentence, and (3) trainable
embedding distinguising position of the token within the input.

Using Transformer layers with self-attention mechanism to
obtain contextual vectors. Every non-contextual vector n;, i €
{1,---,¢}, obtained in step 1 above, is run through the self-attention
layer. The layer enables each vector to ”look at* itself and any other
vector and copy its information. This attention is soft, i.e., can be
distributed, e.g., vector nyg can look from 40% at itself, from 42% at ng
and from 18% at nj.

The self-attention layer includes a triplet of trainable matrices (Q, K
a V) used to multiply each input n;, Vi € {1,--- , ¢}, and thus produce
for the particular n; three vectors: q; (query), k; (key) and v; (value).
For every query-key pair q; and k; (query for i-th input and key for
j-th input), logits are computed as the dot product: s;; = q; - k;. The
softmax score 5;; = ﬁ then denotes the amount by which
i-th input vector n; is to be enriched by value v; (which v; was produced

from n; using the V matrix, as described above). Thus, the resulting
i-th contextual vector ¢; = n; + erl’m 4 Siz Vg
This description of computation in stage 2 demonstrates aims at
the fundamental logic of generating context-dependent representations,
while omitting a number of details, such as:
® the attention layer includes not just one (single-head attention), but
multiple (12 in BERTgasg and 24 in BERTLARGE) Q, Kand V
matrices, producing multiple q;, k;, v; values for each input vector
n; (multi-head attention);

® each resulting c; vector is then separately processed though a feed-
forward layer, and its output is added to the c; vector;

B Jayer normalization layers are used; and

® there is not just one attention/feed-forward/normalization block,
but inputs are consecutively processed by more such blocks (12 in
BERTgasE and 24 in BERTARGE)-

15 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

Please find a more detailed explanation, with matrix notation, of the
Transformer encoder in section |3.2] below.

3. Adding the appropriate head. Stage 2 above outputs ¢y, - , ¢, vec-
tors (each from R768 in BERTpasE variant or from R1024 in BERT ARGE
variant). These vector embeddings can be sometimes directly used fur-
ther (e.g., for a clustering task after the BERT model has been finetuned).
Nevertheless, for most NLP tasks, and also for pre-training, the final
layer called head needs to be added. For instance, the pre-training head
consists of a dense layer with 768 (or 1024) input dimension and |V| (size
of the token vocabulary) output dimension, followed by softmax (and
cross-entropy loss). Thus the final output at the pre-training consists of
vectors hy, -+, hy € RIVI

B 25.2 BERT Pre-Training

Training of the BERT model usually proceeds in two stages: initial pre-
training and subsequent fine-tuning. Pre-training starts with the initial
random state of the model and requires vast amounts of data (BERT has
been pre-trained on 3.3M words) and of computational resources (such as
dozens of TPUs). Two pre-training tasks are processed concurrently with the
same input sequences:

® Masked word prediction. On average, 15% of input tokens used
in training are masked or mangled: a token at such randomly chosen
position is substituted by the special [MASK] token (80% probability),
left intact (10% probability) or substituted by a random token (10%
probability). The BERT model is then asked to recover the original token
at each of these chosen positions, using the context of the whole input
sequence. For instance, the input sequence of 99 tokens contained tokens
dog, on, case, fast at positions 21, 38, 45 and 73, but these positions
were randomly chosen for masking/mangling. The model then minimizes
the loss by trying to predict from the context that tokens dog, on, case,
fast fit best these positions. That is, the model is trained to output
from its pre-training head (see stage 3 above) vector hyy (hss, hys, hzs)
with element 144 (51, 833, 2143) approaching 1.0 and other elements
approaching 0.0 (assuming that 144, 51, 833 and 2143 are positions of
words dog, on, case and fast within the WordPiece dictionary).

B Next sentence classification. In addition to token mangling, the
BERT model is asked to render a binary classification whether the second
sentence follows the first or is randomly chosen: with 50% probability
the second sentence actually follows the first one in the training text and
with 50% probability it is taken from a random position. The prediction
is made using the vector ¢ from the second stage (e.g. followed by the

ctuthesis t1606152353 16

2.5. Contextual Vectors. BERT Family of Models.

dense layer 768 — 1 and sigmoid function) that corresponds to the initial
[CLS] token (as explained above, this token is always pre-pended to the
sequence and has no corresponding part in the input text).

Pre-training of BERT is bidirectional and unsupervised, and its key purpose
is transfer learning.

® Bidirectional means that, in order to predict the mangled token, BERT
uses the whole context, both preceding and subsequent tokens. This
bidirectionality increases accuracy of the model and quality of its language
model.

® Unsupervised means that no human labeling is needed (unlike in
training of usual CNN models for image classification tasks). BERT
pre-training as well as training of word2vec or FastText) is fascinating
for using easily available resources (e.g., texts scraped from the internet)
without any further requirement on human knowledge or labor. Text ma-
nipulations needed to prepare training data (such as mangling randomly
chosen words) are fully automatic.

B Transfer learning means that the model pre-trained on one tasks is
then used for another. Mostly, we are not really interested in predicting
what words were at mangled positions. Nevertheless, pre-training on
this task (which is not directly applicable but requires no labeled data)
teaches the model to store in parameters rather complex knowledge of
language as used. Pre-trained once on 3.3M words on Google’s hardware
and made available to the public, the BERT model can be then fine-tuned
for a particular task.

B 25.3 BERT Fine-Tuning

Fine-tuning a BERT model for a particular task usually requires much less
computation than the pre-training stage. Also, it requires much less compute
and labeled data than training a randomly initialized model for the task. To
fine-tune, one needs to discard the pre-training head (see subsection 2.5.1}
step 3, above), whose parameters serve the specific pre-training task (masked
word and next-sentence prediction). The structure of the new head depends
on the particular NLP task; mostly, it is just a fully connected layer followed
by softmax (and cross-entropy loss). There are two options for using the
pre-trained model with the new head:

1. to train the new head only. In this case, only forward passes are computed
regarding Transformer layers. Accordingly, this option is cheaper than
full backpropagation (already BERT pasg has 110M parameters), but
usually renders sub-standard results.

17 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

2. to train the new head and also backpropagate gradients in Transformer
layers (the term fine-tuning mostly denotes only altering parameters
in Transformer layers). To fine-tune, and not to destroy, parameters
learned during pre-training, one can recommend a reduced learning rate
and warm-up epochs (i.e, the learning rate schedule that starts at zero
and linearly approaches the target level).

These are examples of NLP tasks that can be solved by fine-tuning a BERT
model (see [13], appendix B, for further details):

B Sentiment classification. The task is to classify the sentiment of the
input sentence as positive, neutral or negative. Either the cg output
(representing the [CLS] input token) or the average of all cs is fed into
the head consisting of 768 x 3 (or 1024 x 3, for BERTaArgE) dense layer
and softmax.

® Natural Language Inference. The task is to classify if the second
sentence (separated by the [SEP] token) is the entailment of (follows
from), contradiction to, or neutral to the first sentence. Either the cg
output (representing the [CLS] input token) or the average of all cs is
fed into the head consisting of 768 x 3 (or 1024 x 3, for BERTArGE)
dense layer and softmax.

B Extractive question answering. The task is to decide where in
the second sentence/paragraph (separated by the [SEP] token) is the
answer to the question posed in the first sentence. Two separate 768 x 1
dense layers, S and E, are used. For each input token in the second
sentence/paragraph, its contextual embedding n is fed into S (or E),
and softmax over the results determines the probability that the answer
starts (or ends) at a particular token.

Unlike such eztractive question answering task, abstractive question
answering requires that the model generates the answer (using the
encoder—decoder architecture instead of a single BERT model).

B 2.5.4 BERT Variants

After the original BERT model [13], a number of its variants were made
available as pre-trained models and published as research papers. Apart from
Sentence Transformers and ColBERT models, addressed in section [2.6, we
mention some variants below:

® RoBERTa [26], which improves on BERT results in particular by:
training on 10x more text (160GB for RoOBERTa vs 16GB for BERT),

ctuthesis t1606152353 18

2.6. Sentence Vectors

training for considerably more iterations (it has shown that the original
BERT model was somewhat under-trained), using a better word-masking
procedure (dynamic masking vs static masking), and doing without the
next sentence classification subtask.

= XLM-RoBERTa [12], a multilingual model trained (unlike English-
only BERT and RoBERTa) on 2494 GB of text from 100 languages;
16.3 GB (0.65%) was in Czech. XLM-Roberta has demonstrated that a
multilingual model can be competitive to monolingual models, and that
multilingual models can largely learn a shared language representation.

= RobeCzech [40], a RoBERTa-style model trained solely on Czech data
that surpasses XLM-Robertapargg in 7 out of 8 NLP tasks measured

in the paper (even though RobeCzech has 125M parameters whereas
XLM-Robertar,ArcE 559M).

® Longformer [5], a model designed to process long sequences. It is based
on a local windowed attention to achieve linear time and memory com-
plexity in sequence length ¢, whereas the standard attention architecture,
with its everyone-looks-at-everyone nature, is O(¢2). In addition, a larger
position embedding matrix in longformers supports 4096 token positions
(BERT and RoBERTa only 512); in one ablation, the number of token
positions was extended even to 16K.

. 2.6 Sentence Vectors

Many real-world applications deal with sentences or paragraphs, not with
word and sub-word units, addressed so far. The application can be to cluster
given sentences (paragraphs) in multiple coherent groups or to find sentences
(paragraphs) most semantically similar to the given one. With a large corpus,
it usually is prohibitively time consuming to run each sentence pair through a
fine-tuned neural network (BERT can accept a pair of sentences separated by
the [SEP] token). Frequently, the only workable solution is to pre-calculate a
vector for each sentence, and than calculate cosine similarity of such vectors
as needed.

The following are the main approaches to getting from word or sub-word
vectors to sentence (or paragraph) vectors:

1. Averaging word or sub-word vectors. The basic approach is to
average all vectors (whether computed by FastText, GloVe, or pre-trained
BERT model) that represent words (or sub-word tokens) of the particular
sentence (or paragraph). This single averaged vector, representing the
whole sentence (or paragraph), is then used for upstream NLP tasks.

19 ctuthesis t1606152353

2. Representing Words and Other Language Units by Vectors

However, results of this approach are usually considerably below the
current state of the art. The BERT pre-training task (see subsection
2.5.2| above) is not aimed at computing embeddings that make a good
sentence representation when averaged. Accordingly, averaging outputs
of a pre-trained BERT usually does not yield better results than averaging
non-contextual vectors, such as FastText or GloVe [34].

2. Fine-tuning a single BERT network. The quality of BERT sentence
embeddings (computed as the average of all output embeddings) can
be significantly improved by fine-tuning BERT on tasks where the head
operates on the average of all Transformer outputs [9]. Fine-tuning on
a wide range of such single-sentence NLP tasks teaches the network to
produce high-quality sentence representations that are generally useful
also for other tasks. Further fine-tuning for the particular task is, of
course, possible.

3. Fine-tuning Siamese BERT networks. This approach (see [34]) is
aimed at two-sentence tasks, such as calculating semantic similarity. The
term Siamese denotes (at least for explanatory purposes) two parallel
networks with shared weights, each of them processing one of the input
sentences to obtain its sentence vector (by averaging token vectors, as
described above in item 2). Usually, the implementation consists of a
single network, and each of the sentences is processed through it; the
gradient then propagates back through each of both sentence vectors
and reaches the same BERT (Transformer) parameters.

High-accuracy results have been obtained by fine-tuning a pre-trained
BERT model on natural language inference (NLI) datasets [34], in par-
ticular on Stanford NLI (SNLI), containing 570 000 sentence pairs, and
on MultiNLI, containing 430 000 sentence pairs, where each sentence
pair is assigned a label entailment (one sentence follows from the other),
contradiction, or neutral. The main approach was to:

® use the Siamese network to get a vector for the first sentence (vector
u € R%) and for the second sentence (vector v € R%) of the sentence-
pair drawn from SNLI/MultiNLI.

® compute additional vector as difference of u and v (vector u — v)
® concatenate these three vectors, u, v and u — v into t € R3¢

® run t through a fully connected layer to obtain vector 1 € R? (i.e.,
multiply the trainable matrix of parameters M € R3*3¢ by t)

® run 1 through softmax to finally obtain p € R®, denoting the
probability of entailment, contradiction, or neutral for the two input
sentences.

® compare p against the label from SNLI/MultiNLI and train the
network using the standard negative log loss over p (cross-entropy
loss over 1).

ctuthesis t1606152353 20

2.6. Sentence Vectors

Pre-trained neural networks that can compute high-quality sentence vectors,
also in a multilingual setting, are available at jsbert .net|and huggingface.co
webpages.

Finally, we briefly mention the ColBERT model [21], a good alternative to
sentence vectors for some tasks. ColBERT represents a computational middle
ground between (1) running a full BERT forward computation whenever a pair-
of-sentences task needs to be evaluated and (2) using as simple an interaction
as cosine similarity on pre-computed sentence vectors. The ColBERT model is
usually trained by finetuning BERT and used to pre-compute for a particular
document (e.g, the document number 1730) its embeddings e§1730)’ e ’91(1730))
where [is the pre-set number of per-document embeddings. The query is
converted in embeddings qi,--- ,q;, and the similarity score between the
query and the particular document d € {1,--- ,n} (where n is the number of
documents) is determined as the sum of the highest cosine similarities.

T

q e
2aefar,ac} MaXec (el ... o(®} Tallz Tell2

The score regarding the query can be computed also for other documents
(usually for all documents in the dataset), especially when their ColBERT
embeddings have already been pre-computed. The system can, e.g., display
documents with top 10 scores.

21 ctuthesis t1606152353

https://sbert.net
https://huggingface.co

ctuthesis t1606152353

22

Chapter 3

Sequential Data. RNNs. Transformers. Set
Transformers.

We treat here the Transformer architecture in more detail, as it is a basis
both for BERT-family models (see 2.5) and for deep amortized clustering we
will focus on in the next chapter.

. 3.1 Recurrent Neural Networks

Transformer architecture (section [3.2]below) is a reaction to, and improvement
over, recurrent neural networks (RNNs). These naturally model sequential
data (such as texts, if text units are represented by vectors, as addressed
in chapter 1) and are still in use, in particular for smaller datasets, as
Transformers often require pre-training on large data to achieve superior
results.

Bl 3.1.1 RNN as a Computation Graph

A clear understanding of RNNs is, in my opinion, acquired more easily without
using somewhat confusing concepts of “recurrence® or "unrolling a single RNN
cell in time*. In fact, the key aspect of RNNs is that for each input sequence
a particular computation graph is built with as many computation nodes as
there are items in the sequence. The following figure depicts such computation

23 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

graph built for a sequence with 3 items (whereas if the sequence had 5 items,
the graph would be built with 5 cells).

The key aspects of the computation graph are as follows:

® Each RNN cell is merely a computation node, transforming inputs into
outputs. In particular, the cell contains no trainable parameters of its
own.

® There is a single trainable weights matrix W (we omit the bias term for
simplicity) that is shared by all cells.

® Each cell receives the input vector i, and a state vector s,, concatenates
them into vector c,, and multiplies the trainable weights matrix W by
the concatenation c,. The result is both the output of the current cell
and the state of the next cell (0, = sp41).

We use here the formulation with a single weight matrix W and
calculation of f(Wc,), where f is the activation function, instead of
the equal formulation with matrices A and B (where [A B] = W) and
calculation of f(Ai, + Bs,)

As the first cell has no previous cell to receive its state from, the
initial state needs to be chosen arbitrarily, e.g., as a zero vector.

OUTPUT OF CELL N, IS ALSO THE STATE OF CELLN+1 @ MULTIPLICATION OF WEIGHT MATRIX BY

(the state of cell 1 must be given, e.g., all zeros) CONCATENATED INPUT AND STATE VECTORS
N ALL RNN CELLS SHARE THE SAME TRAINABLE f ACTIVATION FUNCTION (e.g., tanh)
PARAMETERS
INPUT 1 INPUT 2 INPUT 3
(vector) (vector) (vector)
initial
state
o —f o —f e —»;
4 i | 4

OUTPUT 3
(vector)

OUTPUT 1
(vector)

OUTPUT 2
(vector)

Ix1 Sx1 (1+8)x1 -(I+S)xS

Figure 3.1: RNN Computation Graph: for input sequence of 3 items (vectors)

® Whereas I, the dimension of input vectors, is given, S, dimension of
the state, is a hyperparameter, chosen according to requirements of the
upstream task or with respect to the balance of memory and computation
requirements and network representation power.

ctuthesis t1606152353 24

3.1. Recurrent Neural Networks

® It depends on the task whether to use only the last output (output 3 in
the example of a sequence above) or all outputs. The last output only
may be fed into a dense layer and softmax if the task is to classify the
whole input sequence (e.g., sentiment classification). Every output needs
to be fed into a dense layer and softmax if the task requires to classify
every input word (e.g. semantic tagging).

® Standard rules for gradient backpropagation in computation graphs apply.
If, in the example above (see also figure 2.1), output 3 is followed by the
final layer L consisting of softmax and cross-entropy loss, then:

1.

Ly (gradient of loss w.r.t. input of the final layer L) equals s—t (out-
put of the softmax minus the vector, usually one-hot, representing
the target).

Eyg (gradient of loss w.r.t. input of the activation in cell 3) equals

fi(e) ® LY (derivatives of the activation function applied element-
wise to input elements multiplied element-wise by Eg).

ECVS (gradient of loss w.r.t. concatenated vector c in cell 3) equals
the product WT EX,, whereas E\Y% (contribution of layer 3 to the
gradient of loss w. r. t. weight matrix W) equals the outer product
LY cl.

f3 73
Please note that the vector CZ is a concatenation of
vector EZ, which can be backpropagated into inputs of the
RNN layer (if the network consists of more layers); and
vector ESV,, which is backpropagated into the previous cell.
There, £ o £Cz and 5\7\/2 can be then computed using steps 2
and 3 (and subsequently [,JYl, Ecvl and L\le can be computed
using steps 2 and 3 again.)

As the same weight matrix is used in ("flows into*) each of n cells,
Ly, =3r, E\Yvi. Gradient of loss w. r. t. weight matrix equals
the sum of contributions from each cell.

B 3.1.2 Bidirectional and Multilayer RNNs

The architecture illustrated above does not enable looking back. For instance,
the computation of output 2 is based only on inputs 1 and 2, but cannot
make use of input 3. It is often beneficial, however, to use the whole context
(e.g., classifying a word in a sentence into one of linguistic categories is more

accurate when both preceding and following words are taken into account).

Accordingly, the predictive power of RNNs is increased by using

a bidirectional layer, consisting of a forward layer (which receives input
elements in the order from the first to the last) and a backward layer

25 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

(which receives input elements in the order from the last to the first);
every output of the forward layer is summed (or, in some architectures,
concatenated) with the corresponding output of the backward layer; and

2. more such bidirectional layers, with output of a RNN cell in one layer
being the input of a corresponding RNN cell in another layer. (It is usual
to include skip connections and layer normalization, too, but we omit
these in the figure below.)

=N e el el e N
I | I I i i N
L) E) B BBl

[

[[

il

e i
=

Figure 3.2: RNN with Two Bidirectional Layers: processing the input sequence
of 6 elements at the top into 6 outputs at the bottom

B 3.1.3 Simple RNN, GRU and LSTM

As the explanation above focused on the structure and function of an RNN
network, it used the most basic kind of an RNN cell. However, this simple
RNN cell is rarely, if ever, employed in real-world applications. One of the key
reasons is that consecutively multiplying vectors by the same matrix W can
easily result in exploding or vanishing gradients (see, e.g., [I7]). To address
the issue, various architectures of more complex cells have been published.
The LSTM variant (long short-term memory), devised already in 1997 and
updated in 1999 (see [18] and [16]), is still the state of the art solution, even
though some simplifications, such as the GRU cell (gated recurrence unit),
see [I0] and [IT], can frequently achieve comparable results with somewhat
lower computational demands.

The following key points regarding the LSTM cell compared to the simple
RNN cell:

ctuthesis t1606152353 26

3.2. Transformer Encoders and Self-Attention

8 Whereas the simple RNN cell gets input i,, and state s, = 0,1 vectors
and produces the single vector o, = s,1, the LSTM cell receives input
i,, state s,, and memory m,_; vectors and produces o,, = s,,+1 and m,,
vectors.

® Whereas a simple RNN layer has a single W trainable matrix, a LSTM
layer has 4: W¢, Wy,, W; and W,. (We omit here bias terms accom-
panying each of the trainable matrices.) As described below, each of
these matrices is multiplied by c¢,, (a concatenation of input i, and state
Sn = Op—1 vectors, see subsection 3.1.1| above) to produce the forget
mask, memory storage candidate, input mask and output mask.

® The forget mask is calculated as f; = 0(W¢c;). The sigmoid function
o makes each f; element lie between 0 (full forgetting of information at
the position) and 1 (full retention).

® The candidate for being stored in the memory (the new potential memory
contents) is computed as m,, = tanh(Wy, c,,).

® The input mask, determining to what extent the candidate will be in
fact stored in the memory, is computed as iy = o(Wjcy).

B m, =m, 10 f; + m;®i, where ® denotes element-wise multiplication.
In words, the memory vector resulting from n-th LSTM cell is determined
by: (1) the previous memory vector and partial forgetting of its contents
according to the forget mask; and (2) adding the new contents according
to the input mask.

® [t remains to compute o,, the output vector produced by cell n. It is
determined as a masked readout from now-computed memory: o, =
tanh(m,,) © (W, ct).

. 3.2 Transformer Encoders and Self-Attention

Recurrent neural networks (in LSTM or GRU variant) are still a powerful
and used technology. They have been, however, largely superseded by the
new Transformer architecture, originating in the Attention Is All You Need
breakthrough paper [42] from 2017, one of the most cited resources in the
history of neural-networks research. Popularity of the Transformer architec-
ture has been increasing fast in the last 5 years, and now Transformers are a
major architecture also in computer vision (see, e.g., [14]). Accordingly, one
can reasonably claim that current major structural architectures of neural
networks (or their major layers) are: dense, convolutional (CNN), recurrent
(RNN), and Transformer.

27 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

B 3.2.1 Transformer Model and its Advantage

Transformer architecture was devised in [42] to process sequential data and
have more favourable properties regarding:

1. Parallelization. RNNs are less suitable for parallelization as the compu-
tation represented by the RNN cell needs to be applied to input elements
sequentially: computing output n + 1 depends on the state vector com-
puted in step n. This sequential nature of RNNs, even if alleviated to
some extent by certain "tricks“ (see, e.g., [22]), limits the amount of
training data or training steps that can be processed in a still reasonable
time frame.

To the contrary, Transformer architecture is well-suited for training
even with dozens of GPUs or TPUs. Given these resources, Transformer
models, such as BERT (see section 2.5 above), can be trained even on
full Wikipedia and Book Corpus datasets (3.3 billion words in total, see
[13]). Whereas the BERT model was originally trained in days, recent
experiments have demonstrated (see [48]) that with 1024 TPUs, batch
size of 32k and LAMB optimizer (which is more suitable for large batches
than Adam) training time can be reduced to 101 minutes while achieving
superior F1 score (or to 76 minutes while still achieving a better F1 score
than the original BERT).

2. Long-term dependencies. RNNs accumulate information while con-
secutively processing elements of the input sequence. This makes RNNs
more efficient at representing relationships of elements closer in the
sequence, whereas information regarding a distant element may be grad-
ually overshadowed.

To the contrary, Transformers can explicitly represent relationships
between any pair of elements within the input sequence (this, however,
makes complexity of Transformers quadratic in input length, whereas
such complexity of RNNs is linear). In addition, Transformers use
multiple attention heads, which allows to explicitly model different kinds
of mutual relationships.

Bl 3.2.2 Top-Level Structure of Transformer Encoder

The Attention Is All You Need model consists of both encoder and decoder
(see also section 2.5/ above). However, given the assignment regarding this
thesis (encoding text tokens into vectors to be clustered, with no need to
generate another sequence of tokens), we will focus below on the encoder part
only.

ctuthesis t1606152353 28

3.2. Transformer Encoders and Self-Attention

Self-Attention
Layer FC Layers
Trainable Positional
Embedding information
Layer (optionally) Output
Encoded
: Contextual
inputs
(token IDs) Vectors
-] []
e B S I
+ + L +
P ¢
REPEATED N TIMES dmodel
v (12x for BERTBase)
v
dmodel
¢ input sequence length D layer normalisations at original positions (post-LN)
V] token vocabulary size
dmoder model size (e.g., 768) . layer normalisations at now preferred positions (pre-LN)

Figure 3.3: General Structure of Transformer Encoder

Token vectors resulting from the embedding layer can be enriched with
the positional information (we will address this at the end of this section)
or some other additional information depending on the task (see sentence
number embeddings in the BERT model, section above). Resulting
vectors are then processed by the self-attention layer, the key component of
the architecture (addressed in detail below). Output of the self-attention
layer is then run through a couple of fully-connected layers, which operate
separately on each of ¢ rows (i.e., separately on each of 1 x ¢ row vectors
going into the fully-connected layers) as follows:

Vixd,og — FC1 = Vixad — ReLU — dropout — FCy — vixgq

model model

Original Transformers included layer normalizations [4] just after the output
of self-attention and just after the output of fully connected layers is added
to skip connections (post-LN transformer). However, placing layer normaliza-
tions just before self-attention and just before fully-connected layers instead
(pre-LN Transformer), which leaves one path for gradient backpropagation
free, tends to increase stability of training and reduce the need for warm-up
training steps (see [47]).

B 3.2.3 Single-Head Attention Layer

The key principle of self-attention is described in section above. Trainable
matrices Wq, Wk and Wy produce from each input vector its query, key

29 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

and value vectors. The query for that input vector is then used to ”look
at“ keys for this and every other input vector. The higher the dot product
between the query of the looking vector and the key of the looked-at vector,
the higher is the value of the looked-at vector added to the looking vector.
This everyone-looks-at-everyone architecture is, unsurprisingly, implemented
using matrix operations. These operations are shown in figure 2.4 below, a
detailed look inside the red-salmon box self-attention layer from figure 2.3

above:
KT
softmax Q A\
. Vi
Trainable
matrices
Wa
—> © d . —_ ° —>
model
dq-=dk ¢ oo 14 ¢
=0k l 1/1/d
Input Transpose \/_k
Wk
-l
dmodel
£ dq =dk 4 £
dmodel dq = dk 7 1soﬂmax
W, row-wise Output
4—2 =1—
° > g
— dmodel. : o —
dv 4—2 =1—>
12 £ —Y=1—> p M

dv \L/ dv dy

Figure 3.4: Self-Attention Layer

Division by the \/d; = \/d, term is used to balance the effect that dot
products of larger vectors (whose elements still have a similar distribution)
tend to get larger, thus “pushing the softmax function into regions where it
has extremely small gradients® [42].

B 3.2.4 Multi-Head Attention Layer

While we have addressed a single-head attention layer in figure 2.4. above,
multi-head attention layers are mostly used instead (e.g., BERTpasr has
12 attention heads). Each head of the multi-head layer (and its trainable
parameters) can specialize in different kinds of relationships. In text models,
some heads usually attend to most adjacent tokens, some heads to tokens
in particular syntactic relations (such as objects or adverbial modifiers) and
some heads to least frequent words in the sequence [44].

ctuthesis t1606152353 30

3.2. Transformer Encoders and Self-Attention

Technically, multi-head attention layer with h heads (h > 1) includes not
a single triplet Wq, Wik, Wy of trainable matrices, but i of them. Each of
these h triplets is, as shown in figure 2.5 below, separately applied to the
input, producing h separate triplets Q, K and V. Every such Q, K, V triplet
is separately run through the softmax(Q—\/Zi:)V computation, producing h
outputs.

KT
softmax (?/7) V, applied in each depth layer separately
3

Trainable
matrices
Q1.:.Q4
Waj1..Wajs

> . ‘_> . I —
1/4/4,
Input Transpose + \/—k L
Wii1..Wkja KizKs
.

dmodel

¢

* softm_ax
Wyj1..Wyja ViV row-wise 01..04

4—2 =1—>

<—Z=1—>

\4;

Figure 3.5: Multi-head Self-Attention: example with 4 heads.

Usually, dj, = d4 and d, dimension are smaller for multi-head attention.
In both [13] and [42], di, = dy = dv = dpmoder/h- E.g., for BERTgAsE,
dmoder = 768, h = 12 and d, = d; = d, = 64. Thus, multi-head attention
requires similar computational resources as a single-headed layer with dj =
dq = dy = dodel-

The multi-head attention layer needs to output, just like a single-head
attention layer, a single matrix with dimensions £ X d,,q¢;- Yet as seen
above, multi-head computation results in h output matrices Oq,--- , Oy, each
with dimensions ¢ x d,. Therefore, these h matrices O, -, Oy are then
concatenated into a single matrix C with dimensions ¢ x hd,. Moreover,
a multi-head layer includes, unlike a single-head layer, an additional Wg
trainable matrix with dimensions hd, X dp04e (there is exactly one Wg
matrix per multi-head layer, irrespective of h,h > 1). The product C Wq
(calculated even in cases when hd, = dp04e;) then gives the final output with
dimensions £ X dodel-

31 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

B 3.2.5 Encoding Positions

In recurrent networks (section 3.1)), already the computation process generates
sufficient information concerning mutual positions of items within the input
sequence. For instance, calculation on the first input i; encodes the state
01 = s9 used for calculation in the second RNN cell.

To the contrary, computation in Transformers, due to its parallel and
permutation-equivariant nature, has no means to encode mutual distance.
If no input vector n;,i € 1,...,¢, (i.e., no line of the N matrix) contains a
positional information, nor does a triplet q;, k;, v; (trainable matrices Wgq,
Wxk, Wy multiply each of input vectors separately). Nor can positional
information emerge from a singular calculation with q, k and v vectors (if
none of them includes any) or from summing 3> ¢ ... 3(qi - kz) vy over the
whole length of the input sequence (permutation invariance of sum).

Nevertheless, considering mutual (relative) positions of input elements
can considerably increase accuracy. Especially for language models, such as
BERT, positional information makes the difference between having to see the
whole input as a single bag of words and between the ability to understand it
as a sequence. Positional encodings enable to consider, e.g., that within the
sentence ”A kid started to play a game with another kid.“, the first word ("a*)
is, also because of its close position, more related (and needs to attend more)
to the 2°d word (7kid“) then to the 7" (“game) or to the last word ("kid“).

As positional information cannot be generated by the Transformer (BERT)
computation, it needs to be already included in input vectors. Two methods
are used:

1. Positional embeddings, as in the BERT family of models [I3]. These
positional embeddings are trained together with other parameters of
the model. The disadvantage is that availability of positional infor-
mation depends on length of training sequences and is limited to the
pre-determined size of the trainable matrix with positional embeddings.

2. Wave addition, as in the Attention is all you need paper [42]. To every
even element 2i of every input vector is, depending on its p (position
within the input sequence), added the value sin(mooo;m) and to its

every odd element 2i + 1 is added the value cos(m).

ctuthesis t1606152353 32

3.3. Set Transformer. Generalized Attention.

. 3.3 Set Transformer. Generalized Attention.

Authors of [23] have developed Set Transformers to process set-structured
data using the Transformer architecture (see section 3.2/ above). As a set is
defined solely by its elements without any ordering, the calculation needs to
be permutation invariant: it needs to yield the same result irrespective of
ordering (numbering) of input elements. The set approach is highly relevant
to clustering, as cluster is a subset of the whole dataset.

The architecture achieves permutation invariance in the following steps:

1. Input vectors are encoded first using the Transformer encoder without any
positional information (see section |3.2.5/ above). For such Transformer it
holds that permuting its inputs permutes correspondingly its outputs,
but does not otherwise change them (permutation equivariance).

2. Outputs of step 1 are pooled together using a permutation invariant
operation. The result of the operation is thus the same irrespective of
permuting outputs from step 1, or permuting inputs to the model.

3. Set Transformers finally "decode* the pooling result in a desired output
according to the nature of the task. (This decoding is of a different kind
than the decoding addressed in the encoder-decoder part of the Attention
is all you need paper, see [42] and subsection 3.2.2 above.)

Authors use the abbreviation:

® SAB (Set Attention Block) to denote a plain multi-head attention layer
with a single input matrix (see subsection |3.2.4 above);

® PMA (Pooling by Multihead Attention Layer) to denote a particular
permutation invariant operation that pools together inputs to the PMA
layer (more on this below);

® rFF to denote fully connected layer(s) that accepts a matrix as its input
and processes each of its rows independently and identically [23]. Fully
connected layers from section |3.2.2| satisfy this property.

The architecture transforms the input N into the output O according to
the following scheme:

N€><d — SAB ixd — SAB ixd — PMA kxd — SAB kxd — FFr kxd = O kexd

where lower indices indicate dimension of the matrix at the output of each
block (¢ denotes the number of input vectors, d their dimension and k the

33 ctuthesis t1606152353

3. Sequential Data. RNNs. Transformers. Set Transformers.

fixed hyperparameter of the PMA layer). Naturally, SAB operations, both to
the left and to the right of PMA can be each repeated nj and ng times (here:
ny = 2, ng = 1).

We have dealt with attention layers accepting a single input matrix so
far (the matrix was then multiplied by one or more triplets of trainable
matrices Wq, Wk, Wy to produce one or more triplets of Q, K, V). The Set
Transformer paper employs a more general architecture with two separate
inputs: a query input Nq and key/value input Nx = Ny. Both inputs can
differ both in sequence length and in vector dimension:

Waj1..Waja

-
Lyx (6=t

ll/\/ik

—
[)
¢
a dyoXdg=q) £, (d,

d, = qk)
'NQ
Transpose

WK|1 Wkia '
dNKx(d =q) (G=2,)X{dg=qy)
=2, WV|1 Wvia 4

dNK xd,
&= KVN/

Figure 3.6: Generalized Multi-Head Attention with Two Inputs.

softmax
row-wise

Z,xd

Whereas every input vector ”looks at“ every input vector in the original
architecture (as addressed in subsections and above), we can have
now query—input vectors that look at key/value-input vectors (but not vice
versa and not at themselves). One can even consider an architecture with
three distinct inputs (query—input, key—input and value-input), provided that
key—input and value—input have the same sequence length, but we can see no
use for it with regard to this thesis.

This two-inputs architecture enables to define the PMA operation. Let us
denote by:

= MAB(X,Y) the generalized two-inputs attention module (it holds that
SAB(X) = MAB(X,X)); and

B 7 € R4 the input to PMA, which results from the previous SAB
layer(s).

The task of PMA is to pool ¢ input vectors from R? (lines of Z) into k vectors
from R?, where k < ¢ (k, the fixed hyperparameter of PMA, is much smaller

ctuthesis t1606152353 34

3.3. Set Transformer. Generalized Attention.

than £, in some cases just 1). To this aim, PMA includes k trainable inducing
vectors from R? (forming a trainable matrix S € R¥*?), and each of them
"looks at* every input vector (row of Z). Accordingly, PMA(Z) = MAB(S, Z).

Moreover, the two-inputs architecture enables to define ISAB. It overcomes
the disadvantage that although the SAB can, in theory, accept any input
of length ¢, its everyone-looks-at-everyone architecture has O(¢?) time and
memory complexity. Accordingly, SAB calculation for large inputs (e.g., large
sets of vectors to be clustered) can get intractable.

Let us denote the two-input generalized attention module as MAB(X,Y),
again, and consider that ISAB includes (unlike SAB) m trainable inducing
vectors from RY, forming a trainable matrix T € R™*? where m < ¢. Then,
given its input N € R*? ISAB is defined as:

ISAB(N) = MAB(N, MAB(T,N))

The inner MAB does the computation of complexity O(m/f) (each of m
lines of matrix T "looks at“ every of ¢ lines of matrix N) and outputs the
matrix H € R™*?¢, The outer MAB does the computation of complexity
O(¢m) (each of ¢ lines of matrix N ”"looks at“ every of m lines of matrix
H) and outputs the result € R*¢, Accordingly, ISAB computation, going
through the m bottleneck (where m is a fixed hyper-parameter), has O(¢)
time and memory complexity. When ISABs replace SABs, the neural network
can otherwise remain the same:

N€><d — ISAB Ixd — ISAB ixd — PMA kxd — ISAB kxd — FFr kxd = O kxd

35 ctuthesis t1606152353

ctuthesis t1606152353

36

Chapter 4

Clustering: Classical and Neural Network
Approaches

Clustering is a standard non-supervised machine learning method used to
partition input datapoints, each from € R", into subsets (clusters, groups)
where each subset includes mutually similar items (datapoints that are in
some metrics sufficiently close to each other). Such datapoints can be, for
instance, vectors that represent sentences, as described in chapter 1 (then,
finding clusters of similar vectors results in finding similar sentences within
the dataset).

We can distinguish:

® Classical clustering methods, which make no use of neural networks
(see, e.g., |scikit-learn.org/stable/modules/clustering.html| for
overview of various classical methods). Out of them, we choose K-Means
and DBSCAN, both standard algorithms for topic detection (see [19]).
K-Means is the prototypical and simplest clustering algorithm, a baseline
serving as a good illustration of clustering in general. DBSCAN is a
newer classical algorithm published in 1996 (see [15]) that has some
favorable properties and has been given the test of time award by ACM
in 2014 (see also [39]).

® Clustering methods using neural networks (also called deep clus-
tering). Literally dozens of papers have been published in the last ten
years that propose various variants of neural network clustering. A good
overview is available at/github.com/zhoushengisnoob/DeepClustering.
We focus in this thesis on deep amortized clustering, as published in [24],
which applies the Set Transformer architecture (see section above).

37 ctuthesis t1606152353

scikit-learn.org/stable/modules/clustering.html
github.com/zhoushengisnoob/DeepClustering

4. Clustering: Classical and Neural Network Approaches

. 4.1 K-Means

The K-Means algorithm receives as its input (a) p datapoints (each € R™)
and (b) the specific number k£ € N of clusters to be found. Thereupon, the
algorithm randomly initializes k centroids, each € R"™, and repeats the 2
following steps:

1. assign each datapoint to that centroid which is closest to it (usually
according to Euclidian distance, but other metrics can be used, or even
a kernel trick can be used and the distance of two points measured as if
they were remapped into a higher-dimensional space)

2. recalulate the centroid position so that it lies in the center of datapoints
assigned to it (see step 1); that is, the centroid moves to the position in
R™ that is the average of R™ values of assigned datapoints

until the assignment of datapoints remains stable (that is, until the assignment
of any datapoint to its closest centroid does not change in step 1) or until a
pre-determined number of iterations is reached.

When the algorithm terminates, we get k clusters (each cluster comprising
of datapoints that are closest to a particular centroid), as is illustrated in the
following figure (where datapoints are from R? and k has been set to 3):

Hl given datapoints

found centroids (k=3)

assignment of
W e a datapoint to
. the closest
centroid

Figure 4.1: K-Means Clustering

Finding exact positions of centroids that minimize the sum over all data-
points of the datapoint distance to its closest centroid is an NP-hard problem.
The basic K-Means algorithm, proceeding greedily as described above, can
end up in a local minimum that can be, in theory, arbitrarily far from the
global minimum. However, the variant based on specific initialization of
centroids, named K-Means++, gives a certain guarantee and renders better
applied results [2].

ctuthesis t1606152353 38

4.2. DBSCAN

While the aim of this introduction is not to delve into details of the
algorithm, we need to mention here its two major disadvantages (inherent
both to K-Means and K-Means++) that can considerably deteriorate the
quality of returned clusters, a contrast to algorithms specified later in this
thesis:

1. The number k of clusters to be found is a hyperparameter, an input to
the algorithm. The algorithm is unable to make an inference based on
mutual positions of datapoints in the R™ space, but is forced to find &
clusters irrespective of their true number.

2. The algorithm assumes clusters whose shape approximately resembles a
circle (ball, hyper-ball); this results form the rule that each datapoint is
assigned to the closest centroid (see step 1 above). In many real-world
applications, however, the clusters or their parts may be oval or bent
(e.g. "banana-shaped®).

Figure 4.2: Clusters Unsuitable for K-Means

B 22 DBSCAN

The DBSCAN algorithm (where DBSCAN stands for density-based spatial
clustering of applications with noise) approaches clustering diferently. It
discovers the number of clusters from data and can find clusters of irregular
shapes. It is based on the insight that a cluster is a denser cloud of points
separated from other clouds by less dense areas. Accordingly, hyperparameters
are:

1. ¢ — a maximum distance (e.g. Euclidian or cosine) between two dat-
apoints that makes them directly connected within the same cluster;
and

39 ctuthesis t1606152353

4. Clustering: Classical and Neural Network Approaches

2. p — the minimum number of datapoints that need to be within the same
e-ball in order to represent core points of the same cluster.

Every input datapoint is assigned into exactly one of the three following
categories:

1. core point — is a point that has in its e-neighborhood at least p — 1 other
points (or, in other words, is one of at least p points within some e-ball)

2. fringe point — is a point that has in its e-neighborhood less than p — 1
other points but has there at least one core point

3. noise point — is a point that is neither a core point, nor a fringe point.

In the following figure, each of core points B, I, N or O has at least 3
neighbors in its e-neighborhood (as p is set to 4 here, any 4 points within the
same e-ball are core points). On the other hand, each of fringe points A, J,
H or L has less points in its e-neighborhood, but still at least one core point.
The noise point Q has another point in its e-neighborhood, but only a fringe
point L.

B noise points

Il core points (cluster 1)

fringe points (cluster 1)

Il core points (cluster 2)

- fringe points (cluster 2)

> &-neighborhoods of
/' certain points

Figure 4.3: DBSCAN Clustering: ¢ indicated in the figure, p = 4

Whereas K-Means is forced to assign every point to one of clusters, DB-
SCAN assumes that some points (i.e., noise points) are not a good fit in any
cluster. If, however, it was required to assign every point, noise points could
be assigned in the second pass (e.g., according to closest core or fringe point).

ctuthesis t1606152353 40

4.3. Deep Amortized Clustering

B a3 Deep Amortized Clustering

Deep Amortized Clustering, as a neural network method, needs to be trained
to provide desirable clusters. Neural methods are not based on a fixed
clustering strategy, but attempt at learning the clustering algorithm or, at
least, the distance metrics most appropriate for points in the dataset. The
Deep Amortized Clustering approach [24] extends Set Transformers [23],
explained in detail in section |3.3 above. Whereas the clustering mechanism
proposed in the Set Transformer paper [23] required a given (fixed) number of
clusters, deep amortized clustering does not depend on such hyperparameter,
inferring one cluster after another while there remain unclustered datapoints.
There are 2 x 2 basic sub-variants of deep amortized clustering:

8 Anchored filtering or minimum loss filtering. The anchored
filtering algorithm is given an anchor, a yet unclustered datapoint, to find
the cluster that includes that anchor. On the other hand, the minimum
loss filtering approach does not receive such anchor, but decides in each
iteration by itself what cluster to return.

Parametric distribution assumed or not assumed. The loss func-
tion for deep amortized clustering can, but does not need to, incorporate
the assumption that all clusters have been generated by the same para-
metric family of distributions (such as N with g and X different from
cluster to cluster).

In this thesis, we focus on anchored filtering without assuming a parametric
distribution. The reason is that anchored filtering ”is beneficial for harder
datasets“ ([24], section 3.1), and it allows to choose a particular datapoint
(e.g., representing a particular tweet) and request the model to find similar
ones (those that constitute the same cluster). Whereas assuming a family
of parametric distributions can increase accuracy for certain toy datasets
generated by the family [24], it is questionable that clusters in real-world
datasets (such as collected tweets) conform to a particular shape.

The anchored filtering algorithm gets ¢ yet-unclustered datapoints from
R? forming the matrix X € R*?¢. Moreover, the algorithm gets the index
number a € {1, ..., £}, either sampled at random or chosen manually, of the
input vector (which is the a-th row of X) that will serve as the anchor in this
iteration. Given these inputs, the algorithm finds the cluster as follows:

1. First, the X matrix is encoded by ISAB (defined in section |3.3| above), or
more such stacked blocks, into Hx = ISAB(X) € R, The a-th row of
Hx is denoted as h, € R%. Tt equals the anchor vector (the a-th row of
X) after its was transformed, as a part of X, by the ISAB operation(s).

41 ctuthesis t1606152353

4. Clustering: Classical and Neural Network Approaches

2. Hyx|, = MAB(Hx, h,) € R*4 is then computed. This MAB operation
(defined in section 3.3| above) enables each encoded vector from step
1 (each row of the Hx matrix) to interact with the anchor vector, as
encoded, and incorporate information regarding mutual relation.

3. Hx|, is then compressed into a single row vector He € R4 by being
fed into the PMA pooling operation (defined in section 3.3 above); this
PMA has one inducing vector only (k = 1), but experimenting with a
higher k is possible:

H, = PMA(Hy,) € R"¢

4. Every vector from Hx|, (step 2) then "looks at* the compressed informa-
tion in H. (step 3) in another MAB operation:

Hy = MAB(Hyj,, He) € R

5. This Hy is then run through: ISAB, or more such stacked blocks; rFF
layer (a fully connected layer d x 1 that operates on each row separately,
see section 3.3 above); and sigmoid function o. The computation results
in m, a vector with a mask value for every of ¢ input datapoints:

Ht pxcg — ISAB yxq — 1FF 1 — 01 = m € (0,1)°

The i-th element of vector m, a value between 0 and 1, is a prediction from
the model whether the datapoint ¢ (i-th row of X) should be included in the
cluster together with the anchor a. A common threshold is to classify the
datapoint 7 as a member of the cluster iff m; > 0.5.

Upon finding the new cluster, rows representing the now-clustered data-
points can be taken out of X, producing the new matrix Xo € R*¢ where 5
is smaller than ¢ by the number of now-clustered datapoints. The algorithm
can thereafter successively process Xg, X3, - - - matrices, with ever smaller first
dimension, until all datapoints are clustered.

During training, the model gets a training batch with ¢ datapoints and
a randomly sampled anchor index a € {1,...,¢}, and it calculates the mask
vector m € (0,1)¢. To compute the loss, vector m is compared, according
to the binary cross-entropy criterion, against the “true mask® vector t € R¢
such that Vi € {1,...,¢} t; = 1 if the datapoint 7 truly is in the same cluster
as the anchor, otherwise t; = 0:

L=— (ti logm; + (1 — ti) log (1 — mz))

L
=1

|

)

ctuthesis t1606152353 42

43

ctuthesis t1606152353

4. Clustering: Classical and Neural Network Approaches

Part ||

Application to Twitter Data

ctuthesis t1606152353 44

Chapter 5

Introduction. Representing Tweets by
Vectors

Methods addressed in this part II of this thesis are applied to the dataset of
203k tweetsf. The task is to convert the tweets to high-quality sentence vector
representations, create an annotation tool providing various semantic search
capabilities, use the tool to annotate several dozens of clusters of topic-related
tweets, and train a model on these annotations that would be able to find
meaningful clusters by itself.

The access to the computational infrastructure of the OP VVV funded
project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”
is gratefully acknowledged. The access involved multiple CPU cores for
experiments with classical clustering methods and high-end GPUs, NVIDIA
A100 and V100, for fast computing vector representations and training
multiple variants of Deep Amortized Clustering models.

The annotation tool, too, benefits from an access tof the GPU, which
usually reduces the time needed to respond to the semantic query from 7
seconds to less than a second, provided that vectors representing the dataset
can safely fit into the GPU memory. As the current representation needs 415
MB memory only (203k tweets, 512 dimensions each, 4 bytes per dimension),
the annotation tool is available to run fast even on low-end GPUs.

. 5.1 Twitter Dataset

The dataset of 203,057 documents was provided by Jan Drchal, who scraped
tweets published by selected Czech users and reactions to those tweets. The
source is one pandas pickle file, with tweet texts and various related metadata.

45 ctuthesis t1606152353

5. Introduction. Representing Tweets by Vectors

The key metainformation is the twitter ID, a uint64 value that uniquely
identifies each tweet ever published. The twitter ID can be used as a key
when joining data stored in multiple tables regarding the same tweet.

More than 96% of tweets in the dataset were published after the beginning
of 2015; the oldest tweet is from 12 Feb 2009, the newest tweet from 7 March
2022. Almost all tweets are in Czech, with rare exceptions of tweets in English.
The advantage of tweet-length documents is they mostly fit in the limit of
512 tokens set by most BERT models (see section [2.5). Out of 203,057 tweets
in the dataset, only 548 exceed the limit.

B 5.2 Creating Vector Representations

The tweets were converted to vectors according to results according to the
methodology published in the FacTeR-Check paper [27]. Its authors take 4
multilingual Sentence Transformer models (see section 2.6)) freely available at
www . sbert .net/| (paraphrase-xlm-r-multilingual-v1, stsb-xlm-r-multilingual,
paraphrase-multilingual-MiniLM-L12-v2 and paraphrase-multilingual-mpnet-
base-v2) and finetune them further using the multilingual STS dataset. The
STS dataset consists of 5749 train, 1500 dev and 1379 test pairs of sentences,
labeled from 0 to 5 according to the similarity of sentences in the pair.
Authors created the multilingual STS dataset by automatically translating
STS, mostly with Google Translate, in 14 other languages, including Czech.
The 4 resulting models are available at huggingface.co/AIDA-UPM,

Following the methodology proposed in [27], we have converted every of
203,057 tweets into 4 different vectors using each of the 4 models, with
appropriate tokenizers. Every model returns a vector with 768 dimensions
per input, only paraphrase-multilingual-MiniLM-L12-v2 outputs have 384
dimensions; thus, the 4 representations of the same tweet have 2688 =
3 X 768 + 384 dimensions in total. For each tweet, its four representations were
concatenated together, producing a matrix M € R203057x2688 = Thereafter,
dimensionality was reduced from 2688 to 512 using the principal component
analysis (PCA), and all vectors were normalized (so that cosine similarity

of these vectors equals their dot product: cossim(vi,vy) = | vily

. Vil Tvalla —
-z = v1'va), producing the final matrix F € R203057x512,

This pre-computed F € R?03957%512 "yepresenting the whole dataset, is then
loaded by the subsequent tasks: the annotation tool and clustering scripts.
We observed, without quantifying the effect, that the annotation tool started
to respond more accurately to semantic search queries after we put in use
vectors computed by ensembling described above.

ctuthesis t1606152353 46

www.sbert.net
https://huggingface.co/AIDA-UPM

Chapter 0

Semantic Search and Annotations

. 6.1 Semantic Search and Annotation Tool

We have created an annotation tool that loads, when started, the twitter
dataset and vector representations R (see chapter and provides the syntactic
and various semantic search features. The primary use case is definition of
a cluster of tweets concerning the same topic (e.g. all tweets related to
vaccination). The search can be done incrementally (the user can add further
tweets to the cluster by running further syntactic and semantic searches),
and the tool enables manual labeling, too (the user can exclude the found
tweet from the cluster she is defining).

1. The frontend part is an asynchronous single-page web applicaton (SPA)
that communicates with the backend via fetch. It is written in a
clean and modularized TypeScript code; we have largely refactored the
first version of the application that was in pure JavaScript. Although
graphical elements (e.g. buttons and tooltips) resemble the Bootstrap
style, no external .css library is used (whereas the first version of the
application depended on Bootstrap).

The frontend part is the main driver of the user experience, gathering
inputs from the user, requesting computations from the backend and
displaying results in a user-friendly manner. We describe user interface
and functionality in section [6.2] below.

2. The backend part is an API that is driven by requests from the frontend.
To illustrate, when the frontend reqests a search for tweets similar to
the given ones (whose twitter IDs are transferred in the request), the

47 ctuthesis t1606152353

6. Semantic Search and Annotations

backend runs requested NLP computations (usually on the GPU) and
responds to the frontend with results (here: IDs and texts of similar
tweets). The backend is coded in Python and depends on Flask library for
server functionality, PyTorch library for NLP computations, and Plotly
library for visualisation of scatterplot and timeline (these two kinds of

visualisations are the only ones where user experience is generated by
the backend).

. 6.2 Workflow and User Interface

The user begins the session by entering one or more syntactic searches; after
each search (whether syntactic, COS, LDA, NN1 or NN2), the user can
exclude any found tweet as irrelevant to the topic; non-excluded tweets from
multiple searches add together. After the user has found some non-excluded
tweets, she can apply the COS semantic query: the tool returns 10 tweets
with smallest mean cosine distance to tweets included so far. If the user has
both included some and excluded other tweets, she can apply further semantic
search methods, LDA, NN1 and NN2, which make use of the contrast between
included and excluded tweets (explained below). At the end of the session,
the user has, and can save to the server, the group of included tweets and
labeled excluded tweets.

one or more queries

one or more queries

Syntactic
Search
one or more queries

Cosine

Syntactic

Similarity
Search
/ Search \
Syntactic X N LDA —So—>
—>0 o)

Search @ f P % search
\ Cosine / both
tweets S NN1

defined Soarc and Neural
LDA
tweets
defined NN2
Neural
Classif.

Figure 6.1: Annotation Tool Workflow

We address below key elements of user interface and workflow and then
describe the provided semantic search options.

ctuthesis t1606152353 48

6.2. Workflow and User Interface

Syntactic search and its results. After the user has entered a syntactic search,
tweets conforming to the pattern are listed, all having green background at
first, i.e., being included by default in the group.

Syntactic } Load ‘

[1] Displaying 85 / 85 found tweets. Syntactic search for: ivermekt

[11 Méam skvélou zpravu. Do @FNUSA dorazilo 10 tisic baleni Iéku Ivermektin pro 20 tisic pacientt. Diky za
spolupréci Fediteli Vlastimilu Vajdakovi a primaFi Michalu Rezkovi, ktery ho pacientdm podava od lofiského
listopadu. Doufam, Ze Iék ted’ pomUGze i dal$im. https://t.co/SDniUM3rUv

[2] Dneska rano jsem byl v Thomayerové nemocnici. Jsem rad, Ze Bamlanivimab tam uz maji uskladnény a
prvni dodévka byla aplikovana. Pevné vétim, Ze to bude nemocnym pomahat. Objednali jsme i Regeneron a
fesime i dalsi 1éky jako tfeba Ivermektin. https://t.co/IPE6ZIXKiX

tweets 3-84 not displayed

[85] @PatrikTokos B&Zné zvyseni rizika jako u kazdé jiné nemoci v priib&hu t&hotenstvi. Souéasti studie neni
prevence podavanim vysokych davek vitaminu C, Isoprinosinu a Ivermektinu. Neporovnatelné s rizikem
netestované genové substance. Vy troli anonyme.

COS LDA NN1 NN2 SC TL SV‘ n

Figure 6.2: Search Results

Additional search and excluding tweets. The user has decided to use the
COS query now. The query displays 10 tweets most semantically similar
to those included so far (green tweets). The number 10 is chosen to allow
the user to label all tweets at once without feeling discomfort; if the user is
willing to see more than 10 COS-similar tweets, he or she can repeat the COS
search. Furthermore, the user has decided, after seeing the results of the COS
query, to exclude some tweets as irrelevant to the group (she is interested in
tweets related to ivermectin and isoprinosin, medicines believed by some to
be effective against Covid, but not in vaccination in general).

[2] Displaying 10 semantically most adjacent tweets. Using the COS method.

[1] @LudvikDeu @DanielsuJacky @DeeKayP1 Vam jej indikovala vliada? Chtél jsem vidét Vas chorobopis a
zdGvodnéni indikace Isoprinosinu. Je to stejné jako s Iverktiminem? Pacientlim se piSe svrab aby jej mohli
dostat. Co napsali Vam jako diivod k Isoprinosinu? Infekci hornich cest dychacich? A mohl bych to vidét?
D&kuji.

[2] Pro vS§echny, ktefi tady Sifi hoaxy a fejky o tom, Ze Covid experimentalni genetické koktejly maji za sebou
béZny schvalovaci proces vakcin a vSechna bézna povoleni. Nemaji a vy jste bud'to informacni analfabeti (Cti
hlupéci) a nebo védomé |Zete (Cti vrazi). https://t.co/dAX4EHfWNT

[3] @davidpiprof @Bazilis Ktery isp&sny imunolog - vakcinolog nedélal prednasky pro Pfitzer? Rikam mafie a

myslim mafie, normalnf by bylo dat tomu Iéku v krizové situaci $anci. Vzpominate na EXPERIMENTALNI
Remdesivir? Tam to $lo? A Vakcina jejiz klinické testy budou ukonéeny v roce 2023? Tam to taky jde

49 ctuthesis t1606152353

6. Semantic Search and Annotations

tweets 4-9 not displayed

[10] @Ascate2 @kmichaal1l @D26011980 @AndrejBabis @ZdravkoOnline @jhamacek On to je svaty gral, ten

gralu"? Kritizujete i propagatory vakcinace neovérenou vakcinou, stejné jako mne, za medializaci Iéku, za ktery
byla udélena Nobelova cena?

COS LDA NN1 NN2 sC TL SV‘ n

Figure 6.3: Annotation App: Manual (Re)labeling

Additional search(es). After defining enough positive (green) and negative
(red) labels, it may be a good time to try NN1 or NN2 methods. Whereas
COS aims only at similarity to green tweets, LDA, NN1 and NN2 consider
also user’s negative choice, both similarity to green tweets and dissimilarity
to the red ones.

® LDA variant is based on the linear discriminant analysis. It computes a
single vector v from the R%2 space so that vectors for included tweets
(green tweets) and vectors for excluded tweets (red tweets) are best
separable (most distinct) after being projected on v. More specifically,

(ng—pr)?

crg-l-ff%)
denote the average and variance of green projections and red projections.

(A vector from R5'2 is, by its projection on v € R!2, reduced to a single

number from R.)

LDA finds the vector v maximizing the criterion where p and o2

Scikit Learn is used for the task. Accordingly, the computation is
made on the CPU, uses eigenvectors and takes more than 6 seconds on
the given dataset (the NN1 method, addressed below, provides similar
results, but much faster). The frontend then presents to the user 10
tweets classified as the most green-like by the lda.fit method (its operation
is described in the following paragraph).

® NN1 variant is based on the linear discriminant analysis again. This time,
however, the searched vector v coincides with parameters of a neural
network that is iteratively trained (in less than a second) to maximize
the criterion % After the vector v is found (as an approximation,
but much faster), vectors that represent all unclassified tweets (yellow
tweets) are projected on v, and thus reduced to certain points on the
R axis. Yellow tweets reduced to the 10 leftmost (if pug < pr) or the 10

rightmost (if g > 1) points are presented to user.

® NN2 This variant uses a neural network that is trained (in less than a
second) to classify all labeled tweets to match given labels. Thereafter,
the network is used to classify all tweets unlabeled yet (that is, yellow

ctuthesis t1606152353 50

6.2. Workflow and User Interface

tweets). The user is presented 10 tweets with the highest softmax value
for the green class.

History and save. If the user is not satisfied with the last search(es) she
can backtrack (possibly more times) by pressing the red-cross button. If the
user is satisfied with the cluster defined so far (usually after trying semantic
searches by NN1 and NN2 methods that do not display additional tweets
belonging to the cluster) she can save them (SV button): the cluster name
entered by the user in a modal window, twitter IDs of positive (green) tweets
and twitter IDs of negative (red) tweets are sent to the backend and stored
at the server.

Timeline. The user can display a timeline (as an interactive Plotly graph with
zooming and panning features) regarding included (green) tweets by clicking
on the TL button (the code from Jan Drchal is used for this visualisation).
The x-axis corresponds to dates the tweets were published, and the y-axis
show number of tweets at particular dates. Colors distinguish tweet authors,
and upon hovering over a colored box, full details concerning the tweet pop
up, including its text.

Marian Jurecka (2021-04-02)

Premiér bohuzel naprosto v jednanich selhal. Mohl
zajistit pro nase ob¢any vice vakcin, neudélal to
ani véera, ani na podzim, kdyz neobjednal pro CR
1 |maximalni mozny pocet vakcin! Tato jeho Spatna
20 H 11 Krozhodnuti bohuZel mohou za tisice zbyteéné

i zmarenych Zivotu!

count

'
10 name_with_counts=Marian Jurecka (54)

date=Apr 2, 2021
count=1
Pan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021 Jan 2022

date

M Lubomir Volny - VOLNY blok (530) M Andrej Babi$ (182) Jiri Dolejs (136)
M Jifi Ovcéacek (102) Miroslav Kalousek (74) Markéta Pekarova Adamova (69)
M Petr Fiala (62) Marian Jurecka (54) Alena Schillerova (50)

Figure 6.4: Timeline Output

Scatterplot. The user can display a scatterplot (as an interactive Plotly
graph) regarding all tweets 203,057 tweets from the dataset. All the tweets
(their vector representations) are projected on a 2D plane, two vectors resulting
from the 3-class linear discriminant analysis. The figure corresponds to this
plane (and its x and y axes to the two vectors found by LDA). Every green,
red and yellow dot represents an included, excluded or unlabeled tweet, as
projected. Again, the user can hover over any dot and see the full tweet text.
This enables to easily see changing semantic nature of unlabeled tweets: they
get similar to included tweets as hover over dots closer to the green clump,
similar to excluded tweets as we move towards the red clump and unrelated
as we move towards the center of the yellow clump.

51 ctuthesis t1606152353

6. Semantic Search and Annotations

M dohledem Iékaf, jako kdysi sportovci NDR, ale v
-2 [l ramci Rusofobie se budou za chvili trestat i
S il vitaminy? PFeététe si seznam “nemocnych”
superhvézd, je opravdu zajimavy. @ZdenekVoda
@parlamentky_cz @CT24zive
https:/it.colZZyNUD8boV

-4 -2 0 2 4 6 8 10

Figure 6.5: Scatterplot Output

B 63 Annotating Groups of Tweets

Using the annotation tool, we defined 65 groups, mostly regarding topics
that have raised wider public interest. See Appendix B. for more information
regarding the 65 groups. In our experience, it was rather easy to come with
interesting topics at the beginning, but as the number of annotated clusters
increased, thinking about another topic got more difficult. Accordingly, we
got inspired by key lemmas of K-Means clusters (see section 7.2 below) when
defining last 20 groups (46-65).

Although 65 clusters may not seem as much, the result required our review
of 18,371 tweets in total. We labeled 14,068 times a tweet as included in one
of 65 groups (average group size 216); if, however, we exclude the 3 largest
groups (refugees, migrants: 2712, vaccination: 1682, respirators: 1004), the
average drops to 139. We labeled 4,303 tweets as excluded (not relevant for
the topic defined).

We preferred reasonably broad topics, also because the advantage of the
semantic over syntactic approach may be rather small as regards exceedingly
narrow topics (those with just a few tweets). Nevertheless, we could not
objectively decide, e.g., whether to define a wider cluster regarding vaccination
in general (more than 1000 tweets) or, as in section 6.2 above, a narrower
cluster concerning ivermectin and isoprinosin only (which already has more
than 100 tweets).

Clearly, defining a topic (as a superset or subset) is somewhat arbitrary,

ctuthesis t1606152353 52

6.3. Annotating Groups of Tweets

and often it comes as no surprise that a particular tweet (e.g. Employees
at Skoda have received a bonus.) may be annotated in one group (all tweets
concerning Skoda), but clustered into another (with other tweets concerning
bonuses). This ambiguity results in lower scores achieved by automatic
clustering methods (if evaluated on real-world data) even if they manage to
find reasonable clusters.

53 ctuthesis t1606152353

ctuthesis t1606152353

o4

Chapter 7

Tweet Clustering

B 7.1 K-Means: Quantitative Analysis

We clustered 203,057 tweets in the dataset with the K-Means algorithm
(subsection [4.1)), trying different cluster numbers (1,000, 2,000, ..., 20,000).
The computation was made feasible by K-Means with minibatches [37]. Even
then, clustering of 203,057 tweets into 12,000 clusters required 28.75 minutes
on 8 cores of the Intel Xeon 6146 CPU. K-Means algorithm managed to find
well-varied clusters of reasonable sizes.

number of tweets in clusters (left) and number of clusters (right) in given size intervals
(mean of 3 clustering experiments, min-max depicted by error bars)

1000
BN data clustered in 5000 clusters
60000 s 10000
. 15000 , 800
£ 50000 4
o} el
[n
Z 40000 5 600
s
° G
é 30000 3 400
€
2 20000 2
200
R | ‘ . 1
0 0 -
1 2- 20- 100- 200- 300- 500- 20- 100- 200- 300- 500-
19 99 199 299 499 999 99 199 299 499 999
cluster size (in number of tweets) cluster size

Figure 7.1: Distribution of Tweets and Clusters according to Size Interval

This result is largely superior to the DBSCAN algorithm (see subsection
4.2), which clustered most tweets in either one lump cluster (of more than

55 ctuthesis t1606152353

7. Tweet Clustering

100,000 items) or one of many tiny clusters (of a single-digit size), in spite of
grid search for suitable parameters.

We further compared K-Means clusters against first 45 manually annotated
groups (see section 6.3). Usual methods such as NMI or Rand index are not
applicable to comparison between clustering of the full dataset (resulting
from K-Means) and its small subset (covered by manual annotations); these
methods measure correspondence of two complete clusterings of the same set.
We measured the Jaccard index, also known as intersection over union (IOU
in short). When we denote the particular annotated group as set A and the

particular K-Means cluster as set C, then IOU(A4, C') = Iﬁgg}

For each annotated group A from all annotated groups A, we chose such K-
Means cluster C from all clusters C that maximizes I(A, C) and then calculated
the average a over all annotated groups: a = i > acamaxcee IOU(A, C),
repeating the experiment 3 times. While we generally normalize vectors
resulting from Sentence Transformers (see section 5.2/ above) before using
them further, experiments were run also on pre-normalization embeddings,
without a notable difference.

average best IOU (mean and min-max band of 3 clustering experiments)

normalized vectors unnormalized vectors
- gverage |IOU over 45 annotated groups
0.14 0.14
0.12 0.12
0.10 0.10
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
1000 5000 10000 15000 20000 1000 5000 10000 15000 20000
cluster size cluster size

Figure 7.2: Overlap Between Annotated Groups and K-Means Clusters

Apparently, K-Means does not generate clusters resembling human-annotated
groups (see also discussion in subsection 6.3)). Nevertheless, the resulting
clusters are mostly coherent (related to the same topic) and useful.

B 7.2 K-Means: List of Topics

Although the K-Means algorithm cannot be reasonably employed to find
(almost) all tweets related to particular topics, it can still support the topic

ctuthesis t1606152353 56

7.2. K-Means: List of Topics

discovery task. To find topics common to tweets within the same K-Means
cluster, we lemmatized each of 203,057 tweets, i.e., converted each word in
each tweet in its basic form; whereas a word may take just a few forms in
English (e.g., house and houses or write, writes, wrote and written), the
number of forms can easily exceed 10 in Czech, given its varied system
of morphology. We used the MorphoDiTa (see [41]), in particular its API
made publicly available by Institute of Formal and Applied Linguistics at
lindat.mff.cuni.cz/services/morphodital

We partitioned the dataset by K-Means in 15,000 clusters; then we selected
all clusters (there were 251) with 30 to 100 tweets provided that their average
length exceeded 140 characters (longer tweets usually have higher quality
while exceedingly short tweets tend to be mere shouts). For each group, we
found key lemmas, i.e., lemmas used at least 10 times within the group that are
not one of 300 most frequent Czech words, see the Czech frequency dictionary
at wiki.korpus.cz/doku.php/seznamy:srovnavaci_seznamy)). We did not
experiment with criteria weighting number of uses by general rareness of the
lemma in the corpus.

The following table includes example of our results, based on syntactic
similarity over semantically defined clusters. The table shows key lemmas
translated in English for 8 randomly chosen groups. A larger table, concerning
100 randomly chosen groups not translated in English, is included in Appendix
C. In our opinion, the table provides a reasonable overview of topics in the
dataset, also because each cluster is characterized by multiple words. In fact,
we used the table to find new topics to annotate 20 clusters in addition to 45
we annotated originally.

group id size key lemmas

72 60 bus driver union transport bus strike county
74 48 Easter feast Easter wishing
78 87 SPD CSSD (political parties) reject government
81 56 Britain Brexit Boris Johnson Great British mine
138 68 concert beneficial evening friend good
170 79 food my state agriculture quality
233 47 influence formation temperature anthropogenic
245 96 my can negotiations must

Table 7.1: Key Lemmas for Randomly Chosen Groups (translated)

57 ctuthesis t1606152353

http://lindat.mff.cuni.cz/services/morphodita/
https://wiki.korpus.cz/doku.php/seznamy:srovnavaci_seznamy

7. Tweet Clustering

B 73 Deep Amortized Clustering

We further applied the Deep Amortized Clustering method (section 4.3)
specified in the assignment. Given our large and noisy dataset, we devised
the following binary classification training approach (altering the training
procedure specified in the [24] regarding the Omniglot dataset): the network
needs to classify which points in the training bag are in the same cluster as
the anchor point. Since we confirmed early that training on 65 annotated
groups, with 40 groups in the training partition, results in serious overfitting,
we proceeded in multiple steps:

1. Pre-training. We sampled 3 random center points (out of 203,057
in the dataset), finding for each center point 100 points closest to it
(including itself). We defined the first group of 100 points as positive; the
other 100 4+ 100 were negative, together with 400 noise points sampled
at random from the whole dataset, completing the bag size of 800; the
anchor point was sampled at random from positive points.

Alternatively, we sampled a random center point and found k& = 3600
nearest points; we defined the 300 points at the very center as positive
and 500 hundred points at the fringe as negative (varying the k parameter
can change the general distance of the fringe).

2. Further Training. We used clusters found by K-Means. We selected a
random point from the whole dataset and 800 nearest point. The selected
point and other points in the same K-Means cluster were positive, the
other negative. The anchor point was sampled at random from all
positive points.

3. Fine-tuning. We repeated the approach in step 2 to fine-tune the
model on the annotated training group (with the only difference that
the selection of the initial random point was limited to those included in
any of annotated training groups).

In spite of dozens of variants, Deep Amortized Clustering results remained
considerably below the K-Means baseline and the best average IOU (see section
7.1) below 8 %. In particular, fine-tuning on 40 annotated training clusters
resulted in no significant improvement on annotated validation clusters. The
following observations may be of interest:

® The model predicted annotated cluster membership with 69% accuracy:
if given a certain central point belonging to yet-unseen annotated group
and 800 closest points, the model predicted regarding each point whether
it is in the same cluster as the central point with the 69% accuracy.

ctuthesis t1606152353 58

7.4. Conclusion

® The model predicted K-Means cluster membership with 76% accuracy.
We did not partition K-Means clusters in training and validation subsets
(as making predictions regarding K-Means cluster was not the final
goal). Nevertheless, we used a small model (with reduction to 64 or
128 dimensions, 4 ISAB layers in total, each with 4 inducing points,
amounting to 3.4MB of parameters) that could not memorize the dataset.
This 76% accuracy transferred to the NMI (see [43]) 43.3 % (average
of 10 experiments, standard deviation 1.9%), comparing the clustering
produced by the model and by K-Means.

® The results indicate that the clustering task is more difficult than the
classification. As regards Deep Amortized Clustering, a grave mispre-
diction at one step can wrongly drag in many non-belonging datapoints,
making them irrelevant (unreachable as anchor points) in any further step
(clustering decision). Accordingly we consider a potential for augmenting
the clustering procedure in section |7.5| below.

B 7.4 Conclusion

Having extensively researched semantic (vector) representation of text data
and relevant neural network architectures, we experimented with multiple
Sentence Transformers models and converted the provided dataset into vectors.
The quality of these vectors proved during clustering and while working with
the semantic search and annotation tool. We developed the tool and used
it to create the training and validation dataset of 65 clusters by manually
annotating 18k tweets.

The tool allowed us to demonstrate that low tens of datapoints (gathered
at first by syntactic search methods) sufficently define the semantic core and
allow to find semantically related tweets. For finer semantic control, negative
samples can be used. In our opinion, the tool is an example of a pleasant
and effective interaction with Al technology that does not automatize human
work but augments it.

We demonstrate that reaching agreement between automatic clustering and
manual annotations is rather demanding; one tweet usually relates to more
topics and there are more reasonable annotations of the same dataset. Accord-
ingly, the intersection-over-union metrics between our manual annotations
and automatically found clusters was low in spite of high topical coherence of
automatically generated clusters, apparent both visually and from the list of
key lemmas we created automatically to discover further topics.

The K-Means algorithm proved to be an efficient clustering tool for the
given task (if sufficiently high number of clusters was set). Other classical

59 ctuthesis t1606152353

7. Tweet Clustering

clustering methods and the neural Deep Amortized Clustering method were
less useful. Accordingly, we propose several potentially promising goals for
future work and research.

. 7.5 Future Research Goals

® Working on a smaller dataset, presumably with 10k — 20k tweets, is
likely to advance faster. Creating such smaller dataset by sampling
its tweets at random from the full dataset would likely result in too
many topics scattered over too many small groups. However, as the
K-Means algorithm already partitioned the full dataset (203,057 items) in
thousands of reasonable clusters, we can select at random these clusters
and append them to the smaller dataset being built until its requested
size is reached.

® A smaller dataset could be annotated (manually partitioned) in full,
potentially by multiple annotators, which would enable to measure
inter-annotator agreement. We hypothesize that, given multiple topics
available in each tweet (see section [6.3), the agreement will be rather
between annotators facing the similar set-up as clustering methods in this
thesis (no prior list of topics is given and full non-overlapping partitioning
is required).

B We appreciate that Amortized Clustering gives the flexibility of selecting
anchor points: seed points from which particular cluster are generated.
However, we believe that the current procedure (successive random sam-
pling of anchor points and filtering out predicted points from the dataset
until none is left) can be improved. If every datapoint in the dataset
is tried as an anchor point first, the predictions could potentially be
combined together into more accurate clustering, whether with exclusive
or overlapping clusters.

® Naturally, other clustering methods can prove more suitable for the given
task and the kind of dataset. We are currently considering methods for
overlapping clustering and graph neural networks.

ctuthesis t1606152353 60

61

ctuthesis t1606152353

7. Tweet Clustering

Appendices

ctuthesis t1606152353

62

Appendix A

Frequently Used Abbreviations

BERT Bidirectional Encoder Representations from Transformers (NLP model)
CNN Convolutional Neural Network(s)

NLP Natural Language Processing

NN Neural Network(s)

RNN Recurrent Neural Network(s)

63 ctuthesis t1606152353

ctuthesis t1606152353

64

Appendix B

Annotated Groups

We originally annotated groups 1-45. After reviewing topics generated by
K-Means and lemmatization (subsection Appendix C.), we annotated
groups 46—65. incl denotes number of tweets included in the group. excl
denotes tweets we reviewed and labeled as excluded.

incl excl topic
1 90 138 presidential abolition or amnesty
2 58 30 lung ventilators
3 85 36 discount from public transport fares
4 1004 53 respirators
5 1682 13 vaccination
6 261 71 teacher wages
7 19 97 tax breaks for movie producers
8 2712 22 refugees, migrants (but not asylum)
9 594 75 DBrexit
10 749 57 global climate and warming
11 111 44 the Novichok case
12 155 56 the Vrbétice case
13 150 61 subsidies for the Agrofert company
14 7 19 bark beetle
15 150 108 tornado at South Moravia
16 274 131 the Stork Nest case
17 83 57 the Becva poisoning case
18 100 91 reconstruction of D1 highway
19 124 43 isoprinosin a ivermectin
20 86 249 results at Olympic games
21 42 153 actual tennis resuls
22 42 153 human rights violations in China

65 ctuthesis t1606152353

B. Annotated Groups

23 138 0 inflation

24 492 26 budget deficit

25 103 58 the lithium case

26 69 62 [similar topic as 3]

27 750 65 declared state of emergency in Czechia

28 229 371 enlargement of nuclear energy production

29 89 0 solar energy ”barrons“ and "tunnelling

30 86 58 smart quarantine (COVID-related)

31 49 73 cryptocurrencies, Bitcoin

32 753 92 mandatory electronic record of sales

33 43 17 J. Nohavica (Czech musician)

34 60 90 the Danube-Odra-Labe river canal

35 56 33 5G networks

36 120 44 artificial intelligence

37 141 61 cyber-security and cyber-attacks

38 109 55 the new Building Act, amendment, changes

39 45 61 deferment of loan and mortgage payments

40 265 87 COVID compensation bonus for entrepreneurs

41 66 45 tougher criminal penalties for animal cruelty

42 23 25 the Charlie Hebdo case

43 362 25 bankruptcy of the OKD company

44 56 124 the criminal case of David Rath

45 140 81 coal mining and its reduction

46 138 42 M. Horékova (former Czechoslovak politician)

47 54 35 current financial rating of the Czech Republic

48 59 84 currency exchange-rate interventions

49 44 53 currency exchange offices

50 100 29 bio-fuels

51 74 70 appointment of professors and rectors

52 35 36 murder of J. Kuciak (Slovak journalist)

53 19 45 money laundering

54 36 49 industry 4.0

55 44 83 vocational training, dual education

56 38 67 inclusive schooling

57 39 53 mandatory high-school graduation in math

58 38 35 (electronic) highway vignettes

59 31 8 lower tax rate on draft beer

60 61 79 (dual) food quality

61 36 33 working conditions at Amazon

62 51 50 opening the embassy at Jerusalem

63 208 72 adopting Euro, joining the Eurozone

64 54 33 Senate (M. Vystréil) trip to Taiwan

65 17 37 purchase of U.S. military helicopters
14068 4303

ctuthesis t1606152353 66

Appendix C

Key Lemmas for 100 K-Means Clusters

The 100 clusters were sampled at random from the set found by K-Means
with all clusters with 30 to 100 tweets whose average length exceeds 140
character; 251 such clusters were found in the dataset. See section

cluster id size key lemmas

2 81 Brusel miij evropsky éesky chtit ala
republika prezident Zeman Milos$ hrad prazsky
5 82 . o
stfed hodina jmenovat
6 52 diichod mij plat mluvit vlada
9 70 SPD mij hnuti Matteo Salvini
10 37 digitalni danit firma platit feseni globalni zdanéni
14 83 volba volit jit moci muj kandidat
16 56 evropsky premiér cesky zajem aba Babis
17 7 miij Némecko némecky dékovat
20 57 doprava vSechen zeleznice délnice sprava silnice
ministerstvo
22 39 Madarsko mj
24 35 milj svoboda pripominat pamatka
27 35 Ukrajina Ukraine
31 51 vsechen milj dékovat zdravotni
32 66 Gesky Cesky stat
37 52 Francie Franc EmmanuelMacron
39 84 2021 miliarda rozpocet 2020 vlada statni
40 35 zemiit cest velky

43 30 Némecko Polsko Hitler

odbor mzda riast tripartita minimdalni news

4 36 JMalacov via
47 40 miij ala budoucnost zemé

67 ctuthesis t1606152353

C. Key Lemmas for 100 K-Means Clusters

o1
93

56

99
63
64

65
67
72

73
74

79

80
81
83
84

87
88
93
94
95

96
99

100
102
105

107
108
119
121

128

129
130
131

ctuthesis t1606152353

30
78

80

45
42
31

44
59
60

48
48

74

35
56
97
30

39
50
76
42
51

57
31

48
42
47

44
67
33
72

37

49
94
97

vrtulnik ndkup muj miliarda

svaty prazsky mse Duka svatd kardinal katedrala
Marie

dékovat miij slovensky vSechen Slovensko podéko-
vat

obrana HDP m1j vydaj NATO rozpocet

novela zdkon CNB trh banka navrh

SPD dékovat poméhat lid podpor podnét
mzda odbor minimalni zvysit koruna rust via
min

némecky Némecko cesky spoluprace miij SRN
autobus tidi¢ odbor doprava autobusovy stavka
kraj

odbor mzda rist procento pét via

Velikonoce vSechen svatek velikonoc¢ni prat nadat
odbor tripartita rust Creative mzda Kasparova-
Jan CSSD Hospodark

firma vlada testovani muset ala moci

Britanie brexit Boris Johnson Velka britsky miij
lékar Company 1ék

miliarda obec statni riust kraj

republika prezident Milo§ Zeman jmenovat skola
navrh profesor vysoka

mij buh ala modlit vSechen

Francie francouzsky isldm muslim muslimsky is-
lamsky ttok

uhli velky tézba zdroj

hod odbor tripartita socidlni zasedani
hospodarsky strakovek Rada dohoda 2016
rusky vldda muj Rusek diplomat cesky

volba Slovensko Slovak miij

republika prazsky prezident hrad Milos Zeman
prijmout zadost

Irak Isa

agentura Cesky ratingovy stabilni hodnoceni mij
republika

potravinovy banka potravina dik pomoc
vakcina evropsky davka dodavka stat

Aircraft Industrie odbor

odbor prav moci Company ala zaméstnanec
dtchodovy reforma dichod spravedlivy komise
systém

antivirus vir program odbor

technologie inova¢ni novy strategie Future
soud spravedlnost pravni premiér rozhodnuti

68

132

133
134
137
139
140
142
147
148
152
153
154

155

157
159

163

164

166
168
178
179
181
182

187

190
191

194

197
198
201

202
206
209

211
216
217
218

94

54
84
79
66
86
67
35
31
50
45
42

70

72
82

45

42

34
o7
60
37
93
42

56

72
50

36

100
36
48

46
31
30

79
80
49
76

C. Key Lemmas for 100 K-Means Clusters

svatek odbor obchod zaméstnanec chtit volno
Company

Olaf zprava hnizdo capi zvefejnit podvod

mzda minimalni odbor nizky via tripartita

milj pfipominat ala

evropsky Babis zajem stfet premiér komise
NATO muj ¢esky vyroéi Cesko

Mnichov bavorsky Bavorsko miij

mzda zaméstnanec

prezident republika Milos Zeman Tijen

milj zahrani¢ni politik rozhovor politika
svoboda demokracie hodnota muj muset
Némecko némecky muj

biopalivo miliarda zdanit usettit zdanéni podpor
miij

politik politicky odbor ala tripartita

romsky ROM Rom ala problém kultura
medidlni medidlné gramotnost gramotny zavorek
Company

odbor via Kovo AndrejBabis tripartita Soucek
Jaroslav mpo tweetovat

prezident Pan hrad prazsky hod

muj Irak

zadost program miliarda COVID mil

hasic¢ vSechen dik dékovat policista

korporatni korporace cenzura Company

banka Uvér moratorium splatka odklad firma
odbor tripartita technologie mpo tweetovat
JMalacov SvazPrumysl Hospodark

mij ala jit

JMalacov jhamacek AndrejBabis solidarita danit
SPD hnuti islamizace jediny mtj islamsky bojo-
vat

stavebni zakon fizeni navrh vlada ala
zameéstnanec odbor vldda nahrada

danit miliarda stat milién

mzda Slovensko odbor miniméalni riast KOZSlo-
vakRep slovensky

kniha

danit snizeni mzda navrh prijem sleva su-
perhruby

ala chtit evropsky reforma muset Evropa

vldda bezpecnost firma aba Dukovany zemé
Izrael mij prezident spoluprace

CSSD plat odbor mzda vSechen chtit

69 ctuthesis t1606152353

C. Key Lemmas for 100 K-Means Clusters

221

222
223
227
228
231
237
238
241

ctuthesis t1606152353

45

71
50
46
42
70
71
53
78

odbor tripartita hod strakovek SvazPrumysl 2019
via 2020

senat muj vybor usneseni aba

zemé vztah

Véanoce vsechen prat vanocni svatek rad

euro konvergence realny eurozona ala Euro odbor
senior ockovani vSechen muj dik

100 vyrodci prezident ¢esky mij republika
prezident summit zemé

dité rodina rodi¢ moci chtit

70

Appendix D

Bibliography

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Ris-
teski. A latent variable model approach to PMI-based word embeddings.
Transactions of the Association for Computational Linguistics, 4:385-399,
2016.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. Technical report, Stanford, 2006.

Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed
representation of biological sequences for deep proteomics and genomics.
PloS one, 10(11):e0141287, 2015.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer nor-
malization. arXiv preprint arXiv:1607.06450, 2016.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The
long-document transformer. arXiv preprint arXiv:2004.05150, 2020.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.
A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137-1155, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135-146, 2017.

Angana Borah, Manash Pratim Barman, and Amit Awekar. Are word
embedding methods stable and should we care about it? arXiv preprint
arXiw:2104.08433, 2021.

71 ctuthesis t1606152353

D. Bibliography

[9] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Céspedes, Steve
Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

[10] Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

[12] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaud-
hary, Guillaume Wenzek, Francisco Guzméan, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiw:2010.11929, 2020.

[15] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In kdd, volume 96, pages 226-231, 1996.

[16] Felix A Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with Istm. Neural computation, 12(10):2451—
2471, 2000.

[17] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jiirgen Schmidhuber,
et al. Gradient flow in recurrent nets: the difficulty of learning long-term
dependencies, 2001.

[18] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

[19] Rania Ibrahim, Ahmed Elbagoury, Mohamed S Kamel, and Fakhri
Karray. Tools and approaches for topic detection from twitter streams:
survey. Knowledge and Information Systems, 54(3):511-539, 2018.

[20] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

ctuthesis t1606152353 72

[21]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

D. Bibliography

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective
passage search via contextualized late interaction over bert. In Proceed-
ings of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval, pages 39-48, 2020.

Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for Istm
networks. arXiv preprint arXiv:1708.10722, 2017.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi,
and Yee Whye Teh. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Conference on
Machine Learning, pages 3744-3753. PMLR, 2019.

Juho Lee, Yoonho Lee, and Yee Whye Teh. Deep amortized clustering.
arXiv preprint arXiv:1909.13433, 2019.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional
similarity with lessons learned from word embeddings. Transactions of
the association for computational linguistics, 3:211-225, 2015.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Alejandro Martin, Javier Huertas-Tato, Alvaro Huertas-Garcia,
Guillermo Villar-Rodriguez, and David Camacho. Facter-check: Semi-
automated fact-checking through semantic similarity and natural lan-
guage inference. arXiv preprint arXiv:2110.14532, 2021.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1501.3781, 2013.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch,
and Armand Joulin. Advances in pre-training distributed word represen-
tations. arXiv preprint arXiv:1712.09405, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their compo-

sitionality. In Advances in neural information processing systems, pages
3111-3119, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 201/ con-
ference on empirical methods in natural language processing (EMNLP),
pages 1532-1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized
word representations, 2018.

73 ctuthesis t1606152353

D. Bibliography

[33]

[34]

[35]

[36]

37]

[38]

[41]

[42]

[44]

ME Peters, M Neumann, M Iyyer, M Gardner, C Clark, K Lee, and
L Zettlemoyer. Deep contextualized word representations. arxiv 2018.
arXiv preprint arXiv:1802.05365, 12, 1802.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

Erich Schubert, Jorg Sander, Martin Ester, Hans Peter Kriegel, and
Xiaowei Xu. Dbscan revisited, revisited: why and how you should
(still) use dbscan. ACM Transactions on Database Systems (TODS),
42(3):1-21, 2017.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search.
In 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149-5152. IEEE, 2012.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web, pages 1177-1178, 2010.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou.
Fast wordpiece tokenization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 2089-2103,
2021.

Milan Straka, Jakub Naplava, Jana Strakova, and David Samuel.
Robeczech: Czech roberta, a monolingual contextualized language rep-
resentation model. In International Conference on Text, Speech, and
Dialogue, pages 197-209. Springer, 2021.

Milan Straka and Jana Strakovi. Morphodita: Morphological dictionary
and tagger. 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. Advances in neural information processing systems, 30,
2017.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: Variants, properties, normalization
and correction for chance. The Journal of Machine Learning Research,
11:2837-2854, 2010.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan
Titov. Analyzing multi-head self-attention: Specialized heads do the
heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418,
2019.

ctuthesis t1606152353 74

[45]

[47]

D. Bibliography

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint arXiv:1804.07461,
2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint
arXiw:1609.08144, 2016.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen
Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On
layer normalization in the transformer architecture. In International
Conference on Machine Learning, pages 10524-10533. PMLR, 2020.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel,
and Cho-Jui Hsieh. Reducing bert pre-training time from 3 days to 76
minutes. arXiv preprint arXiv:1904.00962, 2019.

75 ctuthesis t1606152353

	Introduction
	Theoretical Background
	Representing Words and Other Language Units by Vectors
	One-Hot Encoding
	Neural Network Word Embeddings
	Word2Vec and FastText
	Subword Language Modelling. WordPieces.
	Contextual Vectors. BERT Family of Models.
	Sentence Vectors

	Sequential Data. RNNs. Transformers. Set Transformers.
	Recurrent Neural Networks
	Transformer Encoders and Self-Attention
	Set Transformer. Generalized Attention.

	Clustering: Classical and Neural Network Approaches
	K-Means
	DBSCAN
	Deep Amortized Clustering

	Application to Twitter Data
	Introduction. Representing Tweets by Vectors
	Twitter Dataset
	Creating Vector Representations

	Semantic Search and Annotations
	Semantic Search and Annotation Tool
	Workflow and User Interface
	Annotating Groups of Tweets

	Tweet Clustering
	K-Means: Quantitative Analysis
	K-Means: List of Topics
	Deep Amortized Clustering
	Conclusion
	Future Research Goals

	Appendices
	Frequently Used Abbreviations
	Annotated Groups
	Key Lemmas for 100 K-Means Clusters
	Bibliography

