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Abstrakt

Automatizované porozumeéni sémantice kédu je klicové pro vyvojare pri
psani spolehlivého a optimalizovaného kédu. V poslednich letech roste za-
jem o aplikaci strojového uceni ve zdrojovém koédu s cilem automaticky
odhalovat chyby, komentovat kod nebo jej pochopit a vylepsit.

Tato prace uvadi techniky hlubokého uceni aplikované na rtzné drovné
abstrakce zdrojového kodu. Experimentujeme se souborem dat, ktery se
sklada ze zdrojového kédu jazyka R. Jazyk R ma velkou komunitu pre-
vazneé statistik. Knihovny jazyka R vSak maji tendenci obsahovat neopti-
malni kéd. Hlavnim prinosem této prace je model natrénovany na velkém
souboru dat R, ktery je prvnim krokem k automatizovanému nastroji pro
psani lepsiho kédu R. Zamérujeme se predevsim na abstraktni syntaktické
stromy (Abstract Syntax Trees, AST), ale uvazujeme i o jinych forméch
reprezentace. Rizné abstrakce pridavaji vstupnim datim strukturu, a po-
mahaji tak lépe zobecnovat soubory dat.

Trénujeme a vyhodnocujeme nékolik modelti zalozenych na riiznych re-
prezentacich kédu. Jako hlavni model pro tuto tlohu byla vybrana archi-
tektura zalozena na transformerech, protoze v této oblasti dosahuje lepsich
vysledkl nez jiné modely. Trénovani modelu na velkém souboru dat R je
prvnim krokem k automatizovanému nastroji pro psani lepsiho kédu R.

Vysledkem je RASTaBERTu, ktery je podle nés, nejmodernéjsim mo-
delem zaloZzenym na transforméatorech pro jazyk R a mtze byt pouzit k
dalsimu trénovani pro specifické tlohy, jako je klasifikace, detekce chyb a
anomalii, oprava chyb atd.

Klicova slova Zdrojovy Kod, Strojové Uceni, Transformery, Grafy, Em-
bedding, Podobnost
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Abstract

The automated understanding of code semantics is crucial for helping de-
velopers write reliable and optimized code. In recent years, there has been
a growing interest in applying machine learning to source code, with the
aim of automatically discovering bugs, commenting or understanding and
improving the code.

This work reports deep learning techniques applied to various levels of
abstraction of the source code. We experiment with a dataset consisting
of R language source code. R language has a large community of mostly
statisticians. However, R libraries are prone to have suboptimal code. The
main contribution of this work is a model trained on a large R dataset,
which is the first step toward an automated tool to write a better R code.
We primarily focus on Abstract Syntax Trees (AST), considering other
representations forms just as well. Different abstractions add a structure to
the input and therefore help to better generalize across the dataset.

We train and evaluate several models based on various code representa-
tions. The transformer-based architecture was chosen as a backbone model
for the current task, as it outperforms its counterparts in this domain.
Training a model on a large R dataset is the first step toward automatized
tool to write a better R code.

As a result of RASTaBERTa, which is, to the best of our knowledge,
the state-of-the-art transformer-based model for the R language and can be
used for further training for specific tasks such as classification, bugs, and
anomalies detection, bug-fix, etc.

Keywords Source Code, Machine Learning, Transformers, Graphs, Em-
bedding, Similarity
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CHAPTER

Introduction

Nowadays, we can hardly find a technology field that does not use a soft-
ware. At the same time, the performance of the software directly depends
on the quality of the related source code. Therefore the quality of a source
code is of utmost importance as it can dramatically affect the whole do-
main's reliability and performance. One of the crucial aspects of helping
developers write better code is an automated understanding of code seman-
tics.

Semantic code understanding can be used for more efficient code com-
pletion, bug fixing, and detecting potential suboptimal patterns. Such sub-
optimal patterns can result in a slow program running and several types of
eITors.

Even though, early application of machine learning on source code,
evolved from so-called "Naturalness Hypothesis' [1] that "Software is a form
of human communication; software corpora have similar statistical proper-
ties to natural language corpora; and these properties can be exploited to
build better software engineering tools." Source code is much more struc-
tured than natural language.

While natural language emerges bottom-up, programming language (PL)
is developed top-down and, in fact, is a formal language. Thus source code
can be represented in many forms, such as sequence-based surface text rep-
resentation (raw code), abstract syntax trees (AST), or any intermediate
representations such as dependency-flow graphs, handcrafted syntactic fea-
tures, or semantic analysis features.

Therefore, in the present work, we explore the possibilities of applying
machine learning techniques to source code representations. As described
above, the source code has several possible representations; thus, we explore
how various models perform on various representations.



1. INTRODUCTION

As a practical example, we explore the R-language dataset. R is a
language developed by statisticians for statisticians, and despite a large
number of users, it often contains suboptimal patterns as described above.
The dataset and the model based on CodeBERT and fine-tuned on R, as
well as the proposed model trained on R AST data, are open-sourced. Both
models can be used as a foundation for a number of different tasks such as
bug searching, clone detection, etc.



CHAPTER 2

Theory

2.1 Graphs 101

Definition 1. Graph is a pair (V, E), where V is a finite set of vertices
and E a finite set of edges (paired vertices). Loop in a graph is an edge
that joins a vertex to itself. Graph is called directed, when it has oriented
edges, undirected otherwise. In this case we must redefine E as a set of
ordered pairs of vertices as follows:

EC{(z,y)|(z,y) €V and z#y}.

2.1.1 Adjacency Matrix

Definition 2. Graph Adjacency Matriz is square n X n matriz A, that
represents connections between the nodes in a finite graph. A;; is equal to
one when there is an edge between i-th and j-th nodes, zero - otherwise. In
case of undirected graph the Adjacency Matriz is symmetric.

I
@‘@

Figure 2.1: Graph and It's Adjacency Matrix A.

0101
1 010
1000
0100



2. THEORY

In the case of large graphs, such an Adjacency Matrix may be vast and
sparse. Therefore models are more challenging to learn.

2.1.2 Adjacency List

Definition 3. Adjacency List is a collection of unordered lists, which
represents a finite graph. FEach unordered list within an Adjacency List
contains a set of neighbors of particular node.

@ @ node | neighbors
v a1 T2, Ty

T2 T1,T3
Omm® el

Figure 2.2: Graph and It's Adjacency List.

The main advantage of this representation is its small size, and therefore
there is no need for a large amount of memory. Also, this version is more
understandable and more transparent than the matrix. The only disadvan-
tage of this option is the slow search for edges between the nodes, in fact,
O(]V']), while the Adjacency Matrix has a constant time.

2.1.3 Incidence Matrix

Definition 4. Incidence Matrix is n X m matrixz I, where n and m are
the numbers of nodes and edges respectively.

For undirected graph I,; = 1 if the node x; and edge e; are incident,
otherwise - 0. The sum for each column is 2.

For directed graph I;; = 1 if the edge e; enters vertex x;, I;; = —1 if it
leaves vertex x;, otherwise - 0. The sum of any column and row is 0.

4



2.2. Source Code Representation

€1 | €2 | €3 | €4 | €5 | €
rpy |11 |-110(-1]0
zo -1 0|1 |1 ]0]-1
z3| 0100 [-1[1]0
x4 | 0]-1] 01001

Figure 2.3: Graph and It's Incidence Matrix I.

2.1.4 Complexity Comparison

Each of the described graph representations has its trade-offs, so the choice
depends on the concrete situation.

Operation Adjacency Matrix | Adjacency List | Incidence Matrix | Incidence List
Add node o(|V]?*) O(1) o(V|-|E|) 0(1)
Remove node O(|V]?) O(|V|+ |E|) O(|V]-|E|) O(|E])
Add edge O(1) O(1) O(|V]-|E|) O(1)
Remove edge o(1) O(|E)) O(|V]-|E|) O(|E])
Query edge o(1) o(V]) O(|E]) O(|E])

Table 2.1: Graph Operation Time Complexity.

As a rule, matrix representations take up much more memory but have
an advantage in speed of operations, the lists vice versa.

Adjacency Matrix

Adjacency List

Incidence Matrix

Incidence List

O(V]")

o(Vv]+E])

o(vi-I£])

o(Vvi+|E]

Table 2.2: Space Complexity (Average Case).

2.2 Source Code Representation

2.2.1 Tokens

During the lexical analysis, the lexer converts a sequence of characters into
a sequence of tokens. Token, or in terms of PL, also called lexeme (often
comparable to words in natural language), usually consists of its type or
name and value. Common token types are:




2. THEORY

Identifier Usually the name of variable/function/class

Keyword Programming Language reserved word (e.g. for, function,
while)

Literal Numeric, logical, string, other literals (e.g. TRUE, "Hello, World!'",
1234.5)

Operator Operation Symbol (e.g. +, -)
Separator Punctuation Character (e.g. ;, :, (, {)

Comment Lines ignored by the compiler usually starting with symbols
//, # or multi-line comments /** */

2.2.2 Abstract Syntax Tree

Abstract syntax tree (AST) is a data structure representing the syntactic
structure and the source code in terms of its formal grammar. The compiler
usually represents the code as ASTs at a particular stage of its syntax
analysis (the step after lexical analysis), so this type of representation is
essential.

Conversion of source code into AST is a reversible operation, so the
order of expressions and operand positions must be explicit. Each node in
the tree has its identifier, type, and value.

Figure 2.4: Abstract Syntax Tree Example [2].



2.2. Source Code Representation

2.2.3 Dependency Graph

A Dependency Graph is a directed graph that represents dependencies be-
tween objects. It has a widely used representation form in computer science.
In programming languages, simple examples are data dependencies and con-
trol dependencies graphs. They can be used in compiler optimizations to
find and eliminate the dead code (code that can not be executed and unused
variables).

2.2.4 Program Dependence Graph

Program Dependence Graph (PDG, Figure 2.5) is an intermediate program
representation that makes data and controls dependencies explicit [3]. Tt is
used by most compilers in order to make transformations during optimiza-
tion steps.

Figure 2.5: Program Dependence Graph Example [2].

2.2.5 Control Flow Graph

Control Flow Graph (CFG, Figure 2.6) represents the order of code exe-
cution and conditions for each node (single instruction) [4]. This type of
graph is essential to many compiler optimizations and static analysis tools.

7
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void Search(int arr(], int key,
int *found, int *index)
{
int 1 = 0;
int b;

*found = 0;

while (i < N)
{
if (b = isabsequal(arr([i], key))
{
*found = b;
*index = 1i;
return;

}

i++;
}
}

Figure 2.6: Control Flow Graph Example [5].

2.2.6 Code Property Graph

Code Property Graph (CPG, Figure 2.7) is a combination of AST, CFG, and
DPG. Such intermediate representation is independent of the programming
language. This robust and comprehensive data structure is widely used in
source code analysis, searching for bugs and vulnerabilities.

. .
C Ce : (Lot J-e—( exir )
true y

—> AST edge

—» CFG edge
= PG edse

Figure 2.7: Code Property Graph Example.

2.3 Natural Language Processing

2.3.1 Word Embeddings

Definition 5. Word embedding e € V' is a learned distributed vector repre-
sentation of a given word w, that maps it into Vector Space V.

8



2.3. Natural Language Processing

Embedding usually has a few hundred dimensions, unlike sparse meth-
ods, which have several dimensions proportional to the number of words in
a corpus.

The Distributional Hypothesis proposed in paper Distributional
Structure by Zellig S. Harris [6] says "Words that occur in the same con-
texts tend to have similar meanings', so such words would have similar
embeddings.

Methods, such as word2vec [7], Autoencoders, and embedding layers in
Dense Neural Networks are typically used to learn real-valued embeddings
for a predefined and fixed-sized vocabulary from a text corpus. However,
there are also other approaches, which will be discussed later.

2.3.2 N-gram

Definition 6. N-gram is a contiguous sequence of n tokens (words) from a
given string.

For example, unigram is just one word, bigram - two, and so on. N--
gram models [8] use Markov model [9] as an approximation: we make an
assumption, that each word depends only on the last n - 1 words.

2.3.3 Bag-of-Words

The first reference to this term in the NLP context was found in the already
mentioned work of Zellig Harris [6]. BoW model is a bag (or multiset) rep-
resentation of words that represents the word frequency within a document.
Word order information is not used, making this method very simple, unlike
pre-processing the data before using this method.

The algorithm looks as follows:

1. Create a vocabulary with unique words from all the documents. Each

word will be associated with a specific position in future vectors.

2. The next step is to score each document, and there are several ways
to do this.

a) The first is to determine whether a word from vocabulary is in
the document or not.

b) Another way of doing this is to count the occurrences of each
word.

¢) Calculate the word's frequency of occurrence in the document
relative to all other words in the same document.
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The most interesting part is pre-processing. Some words occur very
frequently and do not affect semantics, so it is necessary to get rid of them.
These words are called stop words (e.g. "a", "the", "an", "of"). The
lists of stop words for all major languages are freely available. Also, the
same word can be used in different forms (e.g., words like "drinking" and
"drink"), so you need to reduce them to their stem.

Pre-processing pipeline might look as follows:

Convert all words to the same case.
Remove punctuation.

Remove stop words.

Apply stemming algorithm.

Apply lemmatisation algorithm.

O

2.4 Graph Neural Networks

Graph Neural Network is designed to operate on graph data, preserving
graph symmetries.

Graph level and node level embeddings are more complex than word
embeddings due to structural information. The goal of a graph-level task
is to predict the property of an entire graph. The node-level tasks focus on
predicting the identity or role of each node in the graph.

When it comes to a graph, the graph's topology, the neighborhood of
each node, node connections, and node features play a major role.

There are spatial algorithms that use all the information, including in-
ternal information from the nodes (e.g., embedding for a token that the
node represents, or code token in our case), for example, Graph2Vec [10].

The other type is spectral, and it uses only general information about the
graph and its structure (e.g., node degrees, clustering coefficient, adjacency
matrix, etc.), for example, FeatherGraph [11].

10



CHAPTER 3

Related Work

The topic of applying machine learning techniques to source code has been
developing very rapidly lately. Referring to Papers With Code® artificial
intelligence in the field of computer code is used in 39 tasks, such as code
generation, documentation generation, program repair, source code sum-
marization, etc.

In the previous year, a model with the production name Github Copilot
(which is actually a Codex [12]) became very popular. It's a GPT model
fine-tuned on the source code from GitHub with 12B parameters. It can
generate code based on a human description of the task in the form of a
docstring and vice versa. The model weights and dataset are not publicly
available.

This year, the first open-source model comparable in size to the GPT-3
was presented by EleutherAlI [13]. GPT-NeoX is an autoregressive language
model, which has 20B parameters. It has been trained on different types of
data, including source code. The application of meta-learning techniques
has recently become more popular. With using methods such as Few-Shot
Learning, we can effectively use this and other models for source code tasks.

The team from Carnegie Mellon University has released open-source
2.7B model called PolyCoder [14], which was trained on data for 12 Pro-
gramming Languages. PolyCoder outperforms GPT-3 in C' Lang.

The authors of the previous two papers believe that open access to the
data and source code of their projects is vital for developing this domain.
Unfortunately, the field of machine learning is very costly because of the
expensive hardware needed to train the models. Teams with access to such
resources tend to achieve state-of-the-art, and this trend is rising.

'https://paperswithcode.com

11
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3. RELATED WORK

Another transformer model called AlphaCode [15] raised the interest in
solving the problem of competitive programming. The largest of the models
presented by DeepMind has 41.1B parameters.

3.1 Source Code vs. Nature Language

Programming source code is basically a sequence of instructions or sequence
of tokens, which is very similar to human language but uses certain rules
and patterns which the compiler or interpreter will understand. Therefore,
Nature Language Processing (NLP) tasks are comparable to the source
code processing tasks (Table 3.1). In both domains, the same thing can be
expressed in different ways.

character character
token/lexeme word
statement sentence
code block paragraph
source code file | document
corpus/repository corpus

Table 3.1: Source Code vs. Nature Language Hierarchy.

3.2 The Naturalness Hypothesis

The Naturalness Hypothesis. Software is a form of human communica-
tion; software corpora have similar statistical properties to natural language
corpora; and these properties can be exploited to build better software engi-
neering tools.

This hypothesis was introduced in the article "A survey of machine learn-
ing for big code and naturalness" [1].

Code is considered good if it optimally performs its task and is written
in a clear and transparent way. Usually, this style is very similar to the way
a person would try to explain something, but only using a specific syntax.

The meaning of program semantics and human semantics are different,
so we need to make a clear distinction between them.

The variables and function names have no effect on the program perfor-
mance and functionality, but they affect the readability of the code. The
same thing can be elegantly written but work slowly, or incomprehensibly

12



3.3. Code Abstractions Diversity

and terribly written but work much faster. There are still problems that re-
quire expert knowledge, and no model can handle this and find the optimal
solution for such a task.

3.3 Code Abstractions Diversity

There are several model types of models that work at different abstraction
levels:

Token Working with token sequences (n-gram, Recurrent Neural Networks,
Transformers).

Structural/Syntactic The input data are ASTs (e.g. code2vec [16]).

Semantic Generalization of two previous levels. This model type working
with graph data (Graph Neural Networks).

Different models that work at these levels will be discussed in the fol-
lowing section. Then in Section 4.9, there will be proposed a model that
works with AST at the token level. It combines two levels - Structural and
Token levels.

3.4 Code Generating Models

3.4.1 N-gram model

N-gram[8] is a simple probabilistic language model predicting the next token
by giving a sequence of (n — 1) tokens.
P(z; | Ti—(n—1)s -+ - s Ti1)-

Before training, it is recommended to use an appropriate preprocessing
pipeline. The next step is to count how many times each n-gram occurs. In
the case of the bi-gram model (1-word context) and having these frequen-
cies, it is easy to calculate which word occurs more often after our target
word. For (n > 2)-grams the probability chain rule is used.

N-gram language model is very context-sensitive and is highly depen-
dent on n parameter. The greater the value of n, the better the model,
but it significantly increases the memory load. Also, code can be very
comprehensive and detailed, so context gets lost very quickly.

Since all unique tokens cannot have connections to all others in a vocab-
ulary, n-grams are sparse. This leads to the following problem the probabil-
ity of a word that is not in the corpus is 0. The solution to this problem is a

13



3. RELATED WORK

technique called smoothing. The Laplacian Smoothing is a simple approach
in which the 1 is added to every zero frequency.

In the code domain, such a model may produce syntactically incorrect
results, which also depend on preprocessing step [1].

This model and its variations are widely used by source-code editors
and plugins because it is a simple and lightweight model, but still, it is not
effective as it only pays attention to the previous code tokens.

3.4.2 RNN

Recurrent Neural Networks [17] are networks with loops that are well suited
for processing sequences (Figure 3.1).

ot re 8
[—>_Aj= * A

/S Sl Gl S

Figure 3.1: RNN Block.

RNN training is similar to training an ordinary neural network, but with
a slight modification to the error backpropagation algorithm [18]. Since the
same parameters are used at all temporal steps in the network, the gradient
at each output depends not only on the computation of the current step
but also on the previous temporal steps. Therefore, we need to keep track
of the gradients not only at the current step but also at all previous steps.
This algorithm is called Backpropagation Through Time or BPTT [19].

The Long Term Memory Network (LSTM) [20] is the most popular RNN
architecture at the moment and is capable of learning long-term dependen-
cies.

The state of an LSTM cell is similar to the hidden state of an RNN cell,
but it is a much higher-dimensional vector. Each cell also has three gates:
an input gate, a forget gate and an output gate. These gates control the
flow of information into and out of the cell state, and they allow LSTM
cells to effectively learn long-term dependencies.

RNNs are used when processing data that requires a consistent under-
standing, such as natural language. In the case of the code, things are more
complicated because the interconnected tokens can be located at a large

v

v
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distance. A single token can affect the change of the entire code block, its
operability, and its semantics. This mechanism is flawed due to the Van-
ishing Gradient Problem [21], which leaves the model's state at the end of
a long sentence without precise, extractable information about preceding
tokens.

LSTM blocks are designed to improve information transfer from previous
iterations of an RNN. However, the main problem with LSTM blocks is that
the effect of previous states on the current state decreases exponentially
with the distance between the words. The Attention Mechanism improves
this factor to linear.

It is difficult to train RNNs efficiently because the dependency of token
computations on results of previous token computations makes it hard to
parallelize computation on modern deep learning hardware [22].

For these two reasons described above, RNNs are not the best option
when working with code.

3.4.3 Transformer

The RNN's successor and outperforming replacement became an architec-
ture called Transformer [22]. Transformers are designed to handle sequen-
tial input data (they do not use recurrent blocks and use the Attention
Mechanism), but they don't necessarily process it in order as RNNs do.
Therefore, it can more easily parallelize the training process than RNNs
because it doesn't have to process the data in sequential order.

The original Transformer proposed in work "Attention Is All You Need'
works on the encoder-decoder basis. Each encoder and decoder have self-
-attention. In addition, the decoder has another attention mechanism over
the encoder layers. It also uses a multi-head attention mechanism to allow
the model to focus on different parts of the input simultaneously. This
is a generalization of the self-attention mechanism, where multiple atten-
tion heads are used. Each attention head calculates attention in a different
space, and the results are concatenated and projected back to the original
space [22].

The words of natural language in the sentence are connected to each
other and can be represented as a fully connected graph, so the Trans-
former in this particular case can be called a Graph Neural Network with
an attention mechanism [23]. Since the source code has the same properties
and each token code has some relation and a context impact, this allows
this to be applied to the code domain as well.
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3.4.3.1 Bidirectional Encoder Representations from
Transformer (BERT)

As the name implies, it is a model based on Transformer architecture that
has been designed to pre-train the language representations in order to
apply them further to various NLP tasks. It can be used for various natural
language processing tasks such as text classification, question answering,
and text generation.

Unlike other language models, BERT [24] trains context-dependent rep-
resentations. For example, word2vec [7] always generates the same embed-
ding for a word, even if the word is polysemous and its meaning depends
on the context. BERT takes into account the context of a sentence and
the meaning of the word in it, so the embedding may vary from sentence
to sentence.

BERT is an autoencoder [25] trained simultaneously on two tasks: Next
Sentence Prediction and Masked Language Modeling.

The backbone of BERT is the encoder stack. The encoder layers in
this model use two-way attention, which allows them to take into account
the context on both sides of the token being considered and, thus, more
accurately determine the value of that token. By inputting tokenized pairs
of sentences with some tokens hidden, BERT is able to learn a deep bi-di-
rectional representation of the language that allows it to better understand
the context of a sentence.

The task of predicting the next sentence is a binary classification task.
The network is trained to distinguish whether there is a connection between
sentences in the text.

An example of a model working with code data based on the RoBERTa
architecture (the successor of BERT) is CodeBERT . It has been trained on
unimodal and bimodal data and achieves state-of-the-art results on down-
stream tasks, such as code search and documentation generation [26]. It
will be mentioned in the perspective of fine-tuning in the Section 4.6.

3.5 Code Representation Models

3.5.1 Word2vec

One of the first successful and very important approaches is a group of
algorithms called word2vec [7], that are used to produce distributed word
embeddings.

Continuous Bag-of-Words and continuous Skip-gram architec-
tures were introduced in "Efficient Estimation of Word Representations in
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Vector Space" [7] by Tomas Mikolov (Figure 3.2). CBOW learns faster than
Skip-gram and better represents more frequent words. At the same time
Skip-gram have better embeddings for less frequent words and works good
with small datasets [7]. CBOW approach is trying to predict the word by
a given context words (in original paper the size of the context window for
Skip-gram is 10 and 5 for CBOW), so the input vector consists of one-hot
encodings of a context words, while Skip-gram predicts the context words
by a given word.

To train such a model, we need to create a vocabulary of all unique words
in our documents and then create pairs of all words in the context window
for all the pre-processed documents. Taking the first sentence in this chapter
as an example and given window size as 3, it might look like (one, of),
(one, the), (one, first), (of, one), (of, the), (of, first), and so
on. When training, the one-hot encoding of the first word in pair is input
and the encoding of the second one is ground truth. This training step is
made for every pair of words.

INPUT  PROJECTION  OUTPUT INPUT  PROJECTION  OUTPUT
w(t-2) w(t-2)
N A
AN /
wit) \\ / PG
S\ SuM /

3 //

> W wty >
P/ \\
e ///4 \ N
wir)| [ / o )
/ \\
/ \
//
w(t+2) [ w(t+2)
cBOW Skip-gram

Figure 3.2: CBOW and Skip-gramArchitectures [7].

The activation function is only used in the last layer. It's typically a
softmaz or another probability objective (loss) function, which returns the
probability that the word will be in a selected context window. This task
is called fake because the neural network will not be fully utilized with her
outputs. The resulting embeddings we are interested in are contained in
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the single hidden layer. The number of neurons in this layer determines the
embedding length. The bigger it is, the more information it can contain,
but it becomes more difficult to train such a model.

Also, the weights matrix grows linearly with increasing word count in
the vocabulary. For example, in the case when embedding length equals
300 and vocabulary size is 50000, the matrix shape will be (300 x 50000).
If the dataset is large, it becomes almost impossible to train such a model.

The first improving step is to delete all the frequent words like the
because it does not affect paired word semantics and can be associated
with almost any word.

The next possible upgrade is to use a Sub-sampling. At the step of
vocabulary creation, the word will get there with a sample probability:

T(;U) + 1) . r(‘i}),

where w is a word, r(w) is a frequency of w among all the documents in
proportion to the number of all words, and s is a sub-sample parameter
(default value is 0.001).

Sub-sample parameter affects the sub-sampling occurrence. The smaller
the value of this parameter, the less chance that the word will get into the
vocabulary.

Another important tweak is a Negative Sampling [7]. The point is to
update only the weights for a specific number of randomly selected samples
from some distribution (originally Unigram) [8], instead of all the words.
A negative word in this context means a word for which the label is 0. It
follows that rather than updating 15M weights, only z * (k + 1) weights
will be updated, where z is the embedding length and £ is the number of
negative samples. In addition, the weights for the input vector in the hidden
layer are also updated, so k is incremented.

After this model appeared, it was used everywhere with any tokens, but
there was no success with the code because of the reasons stated in Section
3.1. But such models, for example, help to represent information stored
in AST nodes, and then it is possible to work with a more understandable
structure and apply Graph models. This model provided the impetus and
inspiration for the emergence of models such as doc2vec (a generalization of
word2vec, which uses Distributed Bag of Words instead of CBOW and Dis-
tributed Memory [27]) and graph2vec [10] (which is very similar to doc2vec,
but instead of sampling context words it samples subgraphs and uses We-
isfeiler-Lehman kernel), with each subsequent model being the next level of
abstraction and based on the previous ones.

Pw) = (
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3.5.2 Code2vec

Code2vec is a path-based attention model for learning distributed embed-
dings for code snippets. The model takes a code snippet and a correspond-
ing label, caption, or name as input. A fully connected layer takes the em-
beddings of each path-context and combines them. The attention weights
are learned using the combined context vectors and used to compute a code
vector. After that code vector is used to predict the label (Figure 3.3) [16].
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Figure 3.3: code2vec Architecture.

The main idea is that the distribution of labels can be inferred from
syntactic paths. At the time of publication of this article, the model showed
better results than previous works - 2x better than LSTM and CNN with
Attention.

The model has proven to be good at predicting the name of methods.
And due to the attention mechanism, it is possible to understand which
paths affected the prediction more.

Furthermore, I believe that the idea of applying syntactic paths can be
developed further and can find its application with transformer models.

The model proposed in this paper also works with AST (Section 4.9),
but in our case, the path is not extracted from the AST, which would
probably simplify the transformer task but would change the preprocessing
and learning algorithm.
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CHAPTER 4

Current Approach

4.1 Setup

At the beginning of the work, the author used Google Colab Pro? (NVIDIA
Tesla P100 16GB) and Apple M1 CPU. The Programming Research Lab?
then provided the cluster (Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz,
64 cores, 126GB RAM, NVIDIA A100 40GB) for further experiments.

All the experiments in this work were conducted by using the languages
R and Python.

To work with graphs and their processing were used libraries pydot?,
networkx [28], karateclub [29];

numpy [30], pandas [31], matplotlib [32], scikit-learn [33], wandb
[34] were used to process the data and visualization;

PyTorch [35], huggingface [36], gensim [37], umap [38] were used for
model training and clustering.

4.2 Data

4.2.1 R Code Dataset

The R programming language has been chosen for the experiments, as this
work was created with the support of The Programming Research Lab, which
is engaged in the development of the R.

’https://colab.research.google.com
3https://prl-prg.github.io
4Interface for Graphviz (https://www.graphviz.org)
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4. CURRENT APPROACH

R is an interpreted, dynamically typed language that is most often used
for data analysis and modelling. The author created a dataset based on all
the CRAN packages®. After downloading and parsing them, we received
281.3K Source Code files we can work with. Some of them may be writ-
ten by inexperienced programmers since this language is mainly used by
statisticians [39]. Since we cannot choose only well-written code from this
or rewrite it because it must be done manually, this may affect the quality
of further research and results.

It is assumed that all code is correct and can be run.

As an alternative source for our dataset, the author took 1000 of the
most starred and open-source repositories from GitHub®. More than 50%
of the files in these repositories are R source code. We recursively went
through them and filtered the necessary data. As a result, we got 61.5
thousand R files. Some of these repositories are already from the CRAN,
and after deleting duplicated data, 304.1K unique files turned out.

As a dataset for evaluation will be used, open data from the Kaggle”.
This is meant R code and code from cells of Rmd/irnb notebooks. The size
of this dataset is 10K files.

R is not as popular as other programming languages. Therefore there is
significantly less open-source code. The comparison (Table 4.1) shows that
this dataset is small compared to the other research datasets.

®Comprehensive R Archive Network (CRAN) is a repository of libraries and docu-
mentation for the R

Shttps://github.com

"https://www.kaggle.com
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4.2. Data

Dataset # Files Size
CRAN + GitHub | 304.1K

R Dataset Kaggle 10K | 1.93GB

Smallest (Scala) | 245.1K 1.8GB

PolyCoder : : :

Largest (Java) | 5.1KK 41GB

Total | 24.1KK | 253.6GB

CodeBERT Smallest (Ruby)' 164K -
(Unimodal) : :

Largest (JavaScript) | 1.8KK -

Total | 6.4KK -

Smallest (Rust) 320K 2.8GB

AlphaCode 5 : 5

Largest (C++) | 21.5KK | 290GB

Total | 86.3KK 715GB

Codex Python - 159GB

Table 4.1: Dataset Size Comparison.

The dataset will be placed in the public domain so that anyone can use
it for their own purposes.

4.2.2 Preprocessing

This thesis does not address the NL-PL® problem, so the code is cleared of
all the comments with human text and unused parts.

Since every sign and every word is important, we won't use NLP pre-
processing steps such as removing stop words, removing punctuation, stem-
ming, etc.

4.2.3 R ASTs Preprocessing

The following example demonstrates the output AST for the Min-Max Nor-
malization function written in R (Listing 4.1 and Figure 4.1).

8NL stands for Natural Language, PL for Programming Language respectivly
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W N

MinMaxNorm <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))

}

Listing 4.1: Min-Max Normalization Function.

@ [statement 0; callJ( {}

\
fargument 0; call](){}
l \
ent 0; call](){} argument 1; callJ0 {}
“m ent 0; call](){} ‘ [argument 0; ¢ ll]n
“ fargument 1; call] ‘ argument 0 an]o (argument 1; calj 0

Figure 4.1: AST for Min-Max Normalization.

After extraction the ASTs with the help of asttoolsr [40] from all the
source code it ended up with 15.43GB of Graphviz graphs. Every graph
node has a semantic information (may be empty), value and value
type (in case if the node value is a literal, otherwise empty) properties. It's
necessary to vectorize it in order to pass those embeddings further.

Semantic information and value type can only have a predetermined and
small number of values, which is known in advance:

- call name - iteration variable - integer

- body - range - pairlist

- false branch - logical - control flow
- true branch - symbol - str
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- real - argument - assign

- block - complex - NULL

- variable - call - parameters
- statement - condition - litteral

Encoding them using the MultiLabelBinarizer [33] allows getting one-hot
encoding of the same length for inputs with a different number of the pre-
defined features. The result is two embeddings of length 24.

Next, pre-trained docZvec (Section 4.10.1) model is used to get the
300-dimensions embedding for the last value feature.

The last step is to concatenate them into one feature vector with a fixed
length of 348. It is important to note that these embeddings are not node
embeddings because they do not contain information about the topology of
the graph and neighbor nodes. These steps are repeated for all nodes in all
graphs.

Multiprocessing is used to speed up the process by using 16 CPU work-
ers. To process so many graphs, it was necessary to split the original ASTs
into 40 chunks (our setup had 128 gigabytes of RAM). This processing took
24 hours and 50 minutes.

The total size of the processed graphs (pickled with LZMA compression,
so the speed of backloading into memory will be slower) together with the
embeddings is 216GB. Such a large size is a strong obstacle to learning the
model and requires a large amount of RAM.

For the convenience of working with graphs, I will use the NetworkX [28]
library and store graphs in this format. Other libraries, such as StellarGraph
[41] have utilities for converting it to internal formats. Each graph is a code
snippet. The code data in these graph nodes will be stored in the form of
embeddings.

Also, it is necessary to create a disjoint union of AST graphs into one
graph to work with (it is needed for Graph Models working in the Trans-
ductive model). By definition of disjoint union, the resulting graph is nec-
essarily disconnected. By giving one node from this large graph, we can
simply find the whole component it belongs to, so we can return to the
source code snippet form. This operation is very time expensive, in fact it's
O(a(n)), where the a(n) is inverse Ackermann function. To simplify this
and use the usual graph union, each node must have a unique id.
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Putting it all together, it turns out the following pipeline:

Source Code Files — ASTs.
Parse nodes information.
Nodes labeling (Unique ids).
Get feature embeddings.
Save it as networkx graphs.
Get graphs union.

o Ot W=

4.3 Subword Tokenizers

Before training the Transformer model, it is necessary to prepare and train
a tokenizer. Subwords help to counteract the tokenization of words that
are not in the vocabulary. It can also be useful when dealing with tokens in
which an error has occurred. Transformers also operate with special tokens.
Their format may be different for each model.

Subword tokenization is very useful not only for NL, but also for PL,
because function, variables and property names are agglutinative and as
a rule, they are composed of multiple words (in case of code - lexemes,
e.g. var itemCollection, function arraySort(), function getNameById()
). This way, it increases the number of words recognized by the tokenizer
and solves the problem of the appearance of new words that are not in the
vocabulary. Tokenizers' vocabulary cannot be very large. Otherwise, the
embedding matrix would be very large.

The tokenization process consists of several stages:

Pre-tokenizing The goal of this step is to split the input sequence into
words (or tokens in people's understanding) via certain rules.

Normalizing This step can be described as a conversion to a certain for-
mat. For example, lowercasing, getting rid of diacritics, Unicode nor-
malization, etc.

Post-processing During this stage the special tokens (e.g. [CLS], [SEP],
[UNK] ) are placed in the right places. This can be marking the begin-
ning and the end of a sequence, punctuation marks, masks, replacing
unknown tokens, and so forth.

Despite the fact that this work will mainly use the BPFE tokenizer, it is
worth noting the other algorithms for comparison.
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4.3.1 Byte-Pair Encoding

After the pre-tokenization step BPE [42] creates a base vocabulary of all
unique characters from all the words that appeared after the previous stage.
Then, BPE applies merges frequently occurred tokens in order to concate-
nate them into a new one. This process continues until the value of the
dictionary size parameter is reached. This tokenization algorithm is used
by GPT-2, RoBERTu, etc.

The Byte-Level BPE tokenizer will split a string of text into tokens based
on the number of bytes in the string. This can be useful for languages that
use a lot of non-ASCII characters, such as Chinese or Japanese.

The GPT-2 paper [43] discusses how to deal with the fact that the base
vocabulary needs to include all base characters, which can be quite large if
one allows for all Unicode characters. The paper introduces a clever trick
of using bytes as the base vocabulary, which gives a size of 256. With
some additional rules to deal with punctuation, this manages to be able to
tokenize every text without needing an unknown token. For instance, the
GPT-2 model has a vocabulary size of 50257, which corresponds to the 256
bytes base tokens, a special end-of-text token, and the symbols learned
with 50000 merges.

4.3.2 Wordpiece

WordPiece [44] is a subword tokenization algorithm that is used for BERT,
DistilBERT and others. It is based on the same principles as BPE. The
difference is that WordPiece does not choose the pair that is the most
frequent but the one that will maximize the likelihood of the corpus once
merged.

The algorithm uses the famous ## prefix to identify tokens that are part
of a word (i.e., not starting a word).

4.3.3 Unigram

Unigram [45] algorithm starts with a large vocabulary and gradually elimi-
nates less common words and phrases. It is not used directly for any of the
pre-trained models in the library but is usually used in combination with
the SentencePiece [42] algorithm.

Unlike BPE, Unigram is not deterministic based on a set of rules applied
sequentially. Instead, Unigram computes multiple ways of tokenizing and
chooses the most probable one.
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4.3.4 Training

We chose Whitespace pre-tokenizer for the simple separation of tokens by
their boundaries.

A list of all special characters is as follows [UNK], [CLS], [SEP], [PAD],
[MASK].

Mask token is especially important for us because we will be training
Masked Language Models.

The normalizer uses NFD unicode normalization, StripAccents to re-
move all accent symbols, and Lowercase normalization for conversion to
lowercase.

As we prepare for BERT model training, the post-processor, in this case,
adds special tokens [CLS] and [SEP].

A large vocabulary size will result in a large embedding matrix, which
can lead to memory issues. Most transformers models have a vocabulary
size of 50000 or less, especially if they are trained in a single language.

For our task, the vocabulary size of 30000 was chosen, but to compare
the speed of learning, the size of 50000 is also considered.

Table 4.2: Rough Benchmarks on Intel(R) Xeon(R) Gold 6254 CPU @

Tokenizer Wall Time | CPU Total Time | Vocab Size
Byte-Level BPE 8min 35s 3h 58min 5s 30K
Byte-Level BPE 10min 17s 5h 20min 56s 50K

BPE 6min 48s 2h 31s 30K
BPE 9min 11s 2h 54min 22s 50K

WordPiece 6min 50s 2h 20min 18s 30K

WordPiece 9min 2h 59min 55s 50K

Unigram 1h 31min 29s 2h 40min 16s 30K

Unigram 1h 15min 52s 2h 33min 27s 0K

3.10GHz.
012 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19
BPE Pre-tokenization do . dne <-  function ( X ., label | ndim = 2 numk = max ceiling  (
Tokenization do . d ne <- function ( X, label | ndim = 2 num  k = max
WordPiece Pre-tokenization do . dne <-  function ( X , label | ndim = 2 numk = max ceiling  (
Tokenization do . dn  ##e <- function ( X, label | ndim = 2 num ##k = max
Unigram  Pre-tokenization do . dne <-  function ( X ., label | ndim = 2 numk = max ( ceiling  (
Tokenization do . d n e <- function ( x , label n dim = 2 num  k =
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4.4. Masked Language Modeling

4.4 Masked Language Modeling

Masked Language Modeling is the task where the model must predict the
token to be instead of the mask token based on the context. Input data
can contain several masks. It's also a self-supervised approach, so it does
not require any label processing. During training, tokens are replaced with
special mask tokens with a certain probability, and the model task is to
predict them.

After training, we will not only get a useful model that can be applied
to code auto-completion or other tasks, but we can also collect embeddings
from the final hidden layer and use them for clustering or other similarity
tasks.
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4.5 BERT

The choice of this model was motivated by the presence of context-depen-
dent embeddings. As with natural language, context is very important.
The context in which the function is executed greatly affects its output.

All the following models that we will be testing are improvements of
this architecture.

4.5.1 Training

A standard model architecture (12 hidden layers and 12 attention heads)
without any tweaks was chosen. It was found that even training a small
model (compared to the rest) from scratch is almost impossible.

As BERT is one of the most simple models that show good results in
NLP tasks, we further consider BERT trained on code as a baseline model.

More information and used parameters about this and other models can
be found in the Table 4.12.

train/loss eval/loss

(a) Train Loss (b) Validation Loss

Figure 4.2: BERT Training.

4.6 CodeBERT

This model was pre-trained on the MLM task using the NL-PL dataset of six
programming languages (Python, Java, JavaScript, PHP, Ruby, Go) [26].
These languages, especially Python and Go, are visually similar in their
syntax and are often used in the same fields as R. A person who already
knows several programming languages will not have difficulty learning a
new one that is similar in syntax and application. Because of this analogy,
this model is a useful starting point for the train it further on the R dataset.
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4.6.1 Fine-tuning

In the first attempts to fine-tune, the loss had a very large variation, even
larger than in the case of the BERT. To solve this problem, it was decided
to increase the probability of dropout, add a small warmup for the learning
rate and add weight decay.

This is the best result achieved on the raw code sequence dataset.

As will be seen further in Section 4.9.5, the result of all the models, in-
cluding this one, could have been better if the sliding window split technique
had been applied.

(a) Train Loss (b) Validation Loss

Figure 4.3: CodeBERT Fine-tuning.
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4.7 ConvBERT

The authors of ConvBERT propose a new span-based dynamic convolu-
tion to replace self-attention heads in order to more efficiently local model
dependencies. Convolution heads, together with the remaining self-atten-
tion heads, form a new mixed attention block that is more efficient at both
global and local context learning. The paper demonstrates that the Con-
vBERT model outperforms BERT and its variants in various downstream
tasks, with lower training cost and fewer model parameters [46].

4.7.1 Training

The above-described features of this architecture allowed us to increase the
batch size and the embedding length to 1024, so due to the presence of
convolution and a smaller number of network parameters, the model learns
much faster.

train/loss eval/loss

(a) Train Loss (b) Validation Loss

Figure 4.4: ConvBERT Training (Kernel Size = 7, Batch Size = 32, Gra-
dient Accumulation = 8).

This architecture is not performing at its best because most of the infor-
mation in the dataset is not being used, and there are only a small number of
training iterations. However, it has great potential to handle large datasets.

In further research, it would be interesting to compare it also with
Roberta, which we use to work with AST in Section 4.9.3.
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4.8 Longformer

Longformeris a transformer model with an attention mechanism that scales
linearly with sequence length, making it easy to process documents of thou-
sands of tokens or longer [47]. It employs a hybrid of local (sliding window)
and global attention mechanisms, with the global attention layer being
user-configurable according to the desired task in order to enable the model
to learn task-specific representations.

The same dataset as before will be used, tokenized with a maximum
length of 1024, so global attention is not used. As will be discussed further
in Section 4.9.5, such a restriction can become problematic. But retraining
the tokenizer and the tokenization of the whole dataset in our case is a task
for which there are insufficient resources, which was the critical factor.

4.8.1 Training

Training such a model from scratch did not give super stunning results, and
after comparing its results with other models, it was decided not to train
this model to the end. The main assumption is that if we use the maximum
possible length of the inputs, it will help to increase the context in both
directions and improve the model's quality.

train/loss eval/loss

(a) Train Loss (b) Validation Loss

Figure 4.5: Longformer Training.

4.8.2 Fine-tuning

The model chosen for the finetuning was the one that was pre-trained by
the original article's creators.
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train/loss eval/loss

10k 5k 20k 30k 5k 10k 5k 20k 25k

(a) Train Loss (b) Validation Loss

Figure 4.6: Longformer Fine-tuning.

A very interesting observation (Figure 4.5b, 4.6b) is that a model pre--
trained on plain text performed better with code than a model that was
trained on code from scratch.

One hypothesis is that a dataset for natural language work is ideal with
respect to the very large amount of data and its variability. But not so ideal
for this problem because a further error on validation may not decrease
much, based on the comparison of loss on validation and the test.

4.9 R AST Transformer

The model was inspired by the n-gram model of Nguyen et al., which is
the n-gram model that was extended by annotating code tokens with parse
information that can be extracted from the sequence in order to increase
the available context information [48] and UniXcoder [49] - a Transformer
model that uses data from multiple sources (code comments and ASTS) to
improve the accuracy of code representations.

The idea is to represent the information from AST in token sequencing
format. This will allow the model to predict not only the next token but
also semantic information and type.

4.9.1 AST-Sequence Mapping

The mapping function F maps the AST to a token sequence in a pre-order

traversal way, adding a special token after the last leaf in each path.
F~1is areverse function that takes an AST token sequence as input and

outputs the corresponding code or semantic information. It's very helpful
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when reconstructing the AST with a newly predicted token (code token or
semantic information).

4.9.2 Tokenizer

For this task, it was necessary to train the Byte-Level BPE. The tokenizer
with a dictionary size of 50k was chosen, and the other parameters were
kept the same.

The significant point is that the newly-trained tokenizer has learned our
AST format. It is capable of identifying special tokens (<LEND>, <LSEP>
which are used to mark the last leaf in paths and divide the nodes in our
sequences) as one complete token. It is also able to detect brackets (and
all possible combinations of them when there is no information in a specific
position), which are used for a convenient format of parsing information
from AST, for example ){, 1(, 1O{, 1 O{Z}, etc. This saves space for other
more useful tokens in the model's input.

4.9.3 Training

We chose RoBERTa Architecture as the basis for our model based on the
experience of Code BERT.

Despite the fact that the dataset for validation is different from the
previously used because AST sequencing is used here, the result is quite
comparable, and it is much better compared to the fine-tuned CodeBERT
that had the best result until then.

train/loss eval/loss

20k 40k 60k 80k

(a) Train Loss (b) Validation Loss

Figure 4.7: RASTaBERTa Training.
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4.9.4 Crashtest

First, let's try to determine what the model is capable of and try it out
with a few examples.
The following code snippet was obtained from the validation dataset.

library (ggplot2)
library(readr)

(V]

4|system("1ls ../input")

6|data <- read.table(header=TRUE, text='
7| subject sex size

8 1 M 7
9 2 F NA
10 3 F 9
11 4 M 11
120 ")

14|write.csv(data, "output.csv", row.names=FALSE)

Listing 4.2: Validation Set Sample.

[J(symbol){library}
[1(symbol){ggplot2}

ikdument 1; litterall(str){output.csv}

[argument 0; litteral](logical) { TRUE } [calllO{}

[argument 2; litteral](logical) { FALSE}

[calllO{}

[I(symbol) {read.table}

[calllO{}

\

[assign]({<-}

[(symbol) {write.csv}

[10{expression}

[argument 1; litteral](str){
subject sex size
1.}

[J(symbol){data}

[call]O{}

[calllO{} [1(symbol){readr}

[}(symbol){library}

[}(symbol) {system}

| [argument 0; litteral](str){ls ./input} ‘

Figure 4.8: AST For R Code Sample.
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The AST for this snippet was extracted in the same way as in the Section
4.2.3

This graph has a node with the following information: [argument 2;
litteral] (logical) {FALSE}. The tokens we are interested in, are replaced
with <mask>: [<mask> <mask>; litteral] (<mask>){FALSEZ}.

Mask | Predicted Value | Probability
argument 0.9997
0 litteral 0.0001
false 0.0000
2 0.9790
1 3 0.0116
1 0.0043
logical 0.9939
2 str 0.0060
real 0.0001

Table 4.4: Prediction of semantic info and value type for boolean value.

With high accuracy, the model predicted the exact result of the semantic
information and the type of this argument, even though neighboring tokens
have also been masked.

The next example is a bit more complicated. Can the model understand
from context the type of file extension into which the information will be
written?

Raw input: [argument 1; litterall] (str){output.csv}.

Masked input: [argument 1; litteral] (str){output.<mask>}.

Mask | Predicted Value | Probability
csv 0.2166
0 table 0.1700
data 0.0632

Table 4.5: Prediction of filename extension - AST RoBERTa.

The predicted answer is correct, albeit with less confidence.

Now let's compare the result of the best pure source code model on the
same task (prediction of csv extension), fine-tuned CodeBERT in our case.
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Mask Predicted Value

Probability

“unknown symbol®
0 data

turn

0.2352
0.1073
0.0407

Table 4.6: Prediction of filename extension - Fine-tuned Code BERT.

The correct result is not even close in the model's field of view. Now
let's look at another more familiar example (Listing 4.3)

recur_factorial <- function(n) {
if (n <= 1) {
return (1)
} else {

return(n * recur_factorial(n - 1))

}

Listing 4.3: Factorial via Recursion Function.

Both models have difficulty determining the assignment sign, but the
AST model says with a full probability that the semantics of this token is

assigned.

Mask | Predicted Value

Probability

n
0 print
r

0.4051
0.0126
0.0114

Table 4.7: Prediction of function name.

Probability

Mask | Predicted Value
function
0 n
call

0.9999
0.0000
0.0000

Table 4.8: Prediction of function keyword.
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Mask | Predicted Value | Probability
n 0.3329
0 sum 0.1751
sqrt 0.0926

Table 4.9: Prediction of the recurrence call recur_factorial.

Mask | Predicted Value | Probability
n 0.8809
0 k 0.0141
r 0.0124

Table 4.10: Prediction of n in condition statement n <= 1.

Mask | Predicted Value | Probability
return 0.2207
0 stop 0.2120
n 0.1428
return 0.3483
1 n 0.2621
stopifnot 0.0574

Table 4.11: Prediction of both return.

After all the experiments, it turned out that this model predicts seman-
tic information (Section 4.2.3), types, and keywords reserved by R with
great accuracy. Problems mainly appear in cases of special characters,
functions, and variable declarations.

The author believes that such neural networks can help not only in the
area of smart type hinting and auto-completion but also in improving the
performance of compiler optimizers.

4.9.5 Split-Augmentation Dataset

All of our models are limited in the length of the model's input. Previously
we used vector lengths of 512 and 1024. 83.5% of all code files are longer
than 1024, so much of the information is just truncated and lost in the
tokenization phase. The idea of splitting sentences and using a sliding
window arose, so that context would not be completely lost.
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As a result of this simple augmented modification, the number of entries
in the training dataset increased from 367326 to 11867395. This is a big
increase of 32 times, which should improve the results of the model, but it
will also increase its learning time.

Tokenization of such a large amount of data has taken 8 hours.

4.9.6 Training on Augmented Dataset

Comparing the graphs of the two models, it is clear that the improved
model learns faster. It also has improved results in assignment character
detection and other cases. This model shows the best results in token mask
prediction compared to all tested transformer models.

train/loss eval/loss

(a) Train Loss (b) Validation Loss

Figure 4.9: RASTaBERTa Training On Augmented Data.

We introduced and named this model RASTaBERTa. For testing it,
the demo has been prepared, which will be attached to this paper. This
demo also includes code-to-ast transformation (our specific AST sequence
format).
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Model LR Scheduler #Parameters | Batch Size | Grad Accumulation | Max Size | Tokenizer Vocab Size | #iter | Train Loss | Val Loss
BERT Training Linear 109.5M 8 1 512 30k 238k | 0.79 1.71
CodeBERT Fine-tun- | Linear with Warmup | 124.6M 24 8 512 50k 22k 0.32 0.91
ing (Weight Decay

0.01 + Dropout 0.2)

CodeBERT Fine-tun- | Cosine with Warmup | 124.6M 24 8 512 50k 14.25k | 0.35 0.89
ing (Weight Decay

0.01 4+ Dropout 0.2)

CodeBERT Fine-tun- | Linear 82.2M 24 8 512 50k 29k 0.44 1.26
ing (#Hidden Layers

= @.v

Longformer Training | Linear 148.7M 24 8 4098 50k 12k 0.71 2.21
Longformer Fine-tun- | Linear 148.7M 24 8 4098 50k 33.5k | 0.36 1.1
ing

ConvBERT Training | Linear 106.6M 8 1 1024 30k 92k 1.04 2.06
(Conv Kernel Size =

7)

ConvBERT Training | Linear 106.6M 32 8 1024 30k 30k 0.71 1.61
(Conv Kernel Size =

7)

ConvBERT Training | Linear 65.3M 24 8 1024 30k 29k 0.85 1.78
(#Attention Heads =

8 , #Hidden Layers =

6 , Conv Kernel Size

= 8

R-AST-Roberta Linear with Warmup | 1256M 10 4 1024 50k 100k | 0.49 0.48
(Weight Decay 0.01)

R-AST-Roberta Linear with Warmup | 125M 10 4 1024 50k 150k 0.31 0.34

(Weight Decay 0.01)

Table 4.12: Transformer Experiments Parameters and Results.
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4.10 Embeddings

In these experiments, the K-Means [50] algorithm is used for clustering, and
the elbow method is used to find the optimal number of clusters.

For the visualization, it is necessary to reduce the number of dimen-
sions. For this purpose PCA [50] (Principal Component Analysis) and
UMAP [51] (Uniform Manifold Approximation and Projection for Dimen-
sion Reduction) will be used.

Several different techniques applicable to the task will be tested in the
following sections.

Embeddings (10 for each model) for the manual evaluation and review
were chosen randomly from the dataset.
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4.10.1 doc2vec Embeddings

This model was trained on R Dataset in order to vectorize the internal
graph information, such as value tokens. Also, we can compare the result
of doc2vec with the embeddings of other models.

The optimal number of epochs was chosen from an original paper sugges-
tion and equaled 20, other parameters such as embedding size and window
size are equal to 300 and 10, respectively.

The training of the model was performed on the Apple M1 CPU with
eight cores and lasted 10 hours.

doc2vec (3 clusters) - PCA

7.51
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2.51

004"
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—10.0

Figure 4.10: K-Means Clustering on doc2vec embeddings (PCA).

These embeddings and their similarity take almost no account of se-
mantics, and their similarity is mainly influenced only by the presence of a
strictly defined token order.
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4.10.2 Transformer Embeddings

The output of these models contains high-dimensional context embeddings
that take up a lot of space. In order to store all of the proposed embeddings,
terabytes of physical memory would be required. Clustering algorithms
struggle to handle embeddings that are very large. For example, fine-tuned
CodeBERT embedding has the shape [1, 512, 50265].

To reduce the dimensionality without losing all the information, the
Mean Pooling operation was applied. As a result, the dimensionality has
decreased to [1, 512].

There is also a problem with files longer than the tokenizer max size of
the input. In this case, it is possible to split the code into chunks of 1024
length and some stride (similarly to the case of an augmented dataset) and
then get one embedding, for example, by using mean pooling. This paper
does not address that due to the limitations of the hardware.

R-AST-RoBERTa (2 clusters) - PCA

60 §

40
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Figure 4.11: K-Means Clustering on RASTaBERTa embeddings (PCA).
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R-AST-RoBERTa Augmented (2 clusters) - PCA
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Figure 4.12: K-Means Clustering on RASTaBERTa embeddings (PCA).

The results of the two models trained on datasets with different types of
data do not differ very much. Embeddings were calculated for roughly 20%
of the training set. To speed up K-means in the case of a model trained on
an augmented dataset (Figure 4.12), PCA was also applied to reduce the
vector length to 512. Experiments with normalization and standardization
did not lead to improved results and great acceleration.

This type of embedding is comparably better than doc2vec, and it takes
into account the structure of the code and its semantics. Such embeddings
can be extremely useful in the search for plagiarism and clone detection.
Unfortunately, these embeddings can only be accurately assessed with either
manually labeled data or by hand.

The success of this model lies in the increased context provided by AST.
This can be compared to models trained in typed languages such as C and
Java, which usually have better benchmarks than interpreted languages.
Types and additional context simplify network learning.
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4.10.3 Graph Embeddings

Due to the limited RAM, the number of processed graphs was limited t