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Abstrakt

Ciel’om tejto bakalárskej práce je preskúmat’ efektivitu a následky riešenia
systémov lineárnych rovńıc s nepresnou pravou stranou. Tá je reprezentovaná
náhodnými veličinami a výsledky sú porovnávané s použit́ım intervalovej arit-
metiky. Riešiče implementujeme použit́ım Gaussovej eliminačnej metódy a
tiež Gauss-Seidelovej iteračnej metódy. Ciel’ je porovnat’ výkon týchto metód
a skúmat’ ich použitel’nost’ s týmito reprezentáciami. Napriek tomu, že pres-
nost’ informácie o skutočnej hodnote sa zvyšuje pomocou oboch metód pri
použit́ı náhodnej premennej, taktiež sa zvyšuje náročnost’ a čas výpočtov.
Najlepšie výsledky v rámci rýchlosti a presnosti vykazuje použitie Gaussovej
eliminačnej metódy s pivotáciou. Gauss-Seidelova metóda generuje podobne
presné intervaly za niekol’konásobný čas.

Kĺıčová slova sústava lineárnych rovńıc, náhodná veličina, intervalová arit-
metika, Gaussova eliminačná metóda, Gauss-Seidelova metóda
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Abstract

The goal of this thesis is to explore efficiency and consequences of solving the
systems of linear equations with imprecise right hand side. These are repre-
sented by random variables and the results are compared to usage of interval
arithmetic. We implement the solvers using Gaussian elimination method and
also Gauss-Seidel iteration method. The aim is to compare the performance
of these methods and to explore their viability in these representations. While
information about real value is increased in the end by both approaches us-
ing random variables, the time and difficulty of computation is also increased.
The best results within computing speed and precision are reported by Gassian
elimination method with pivoting. Gauss-Seidel method generates similarly
accurate results, but it is generally slower.

Keywords system of linear equations, random variable, interval arithmetic,
Gaussian elimination method, Gauss-Seidel method
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Introduction

Experimentation often comes with inaccuracies of measured values and there-
fore can create even more uncertainty when performing numerous calculations
over them. Interval is a mean to represent said numbers, but when calculat-
ing, we need to take in consideration the correctness of arithmetic operations
and the width of the interval, which means its informative value. Solving
systems of linear equations is a task used in a wide variety of science fields
and applications where inaccuracy is created and therefore we will be repre-
senting the right hand side of systems by intervals. We will be comparing two
representations of the intervals:

• as an interval with given bounds, where the real value resides

• as a random variable, with the given distribution

The goal of this thesis is going to be the comparison of these two repre-
sentations of the right hand side of system of linear equations. We will test
whether we can use the random variable as a suitable replacement of tradi-
tional intervals considering the accuracy of results and the performance of the
solvers.

For this purpose we will use two solving methods for linear equation sys-
tems, namely the Gaussian elimination method and also the Gauss-Seidel
method. We will compare these methods, consider their limitations and also
their individual advantages and disadvantages when using random variable
and the effect of pivoting. This work will expand on the theses and themes
explored in [1] and also [2].

This thesis is divided into five main chapters. The first is an introduction
into basic terms of linear algebra and interval arithmetic. For out purposes,
the interval arithmetic serves mainly as a baseline comparison due to its ex-
ploration in [1].
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Introduction

The next three chapters are dealing with core concepts of this thesis,
namely the random variables and the solving methods. These chapters are
divided into following sections:

Theory Here we introduce mathematical theory for the chapter

Design This section describes design decisions for the given program aspect

Implementation In the last section we show some implementation details

The last chapter interprets the results of our testing and discusses differ-
ences in performance. We also comment on some new observations.
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Chapter 1
Mathematical Basics

This chapter introduces mathematical terms and principles needed for the
implementation of solvers of systems of linear equations and we will need to
introduce terms from linear algebra, that will help us create compact mathe-
matical notations. The chapter than explores and explains two solving meth-
ods for these systems. Since we will be representing the right side of equations
as random variable distributions, it also introduces necessary definitions from
interval arithmetic and random variables.

1.1 Linear Algebra

Linear algebra gives us means of creating systems of linear equations that are
easy to read and understand. Matrices and other useful definitions will be
introduced in this section to create simple notations for our linear equation
systems. Using linear algebra, we will also explain two solving methods for
the systems, namely the Gaussian elimination method and the Gauss-Seidel
method [3] [4] [5].

Definition 1.1.1 (Matrix) Let m, n ∈ N and aij ∈ F for all i ∈ {1,...,m}
and all j ∈ {1,...,n}. The rectangle-shaped array

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn


of m rows and n columns is called a matrix of the type m × n with entries
from the field F.

3



1. Mathematical Basics

Definition 1.1.2 (Matrix multiplication) Let m, n, p ∈ N,A ∈ Rm,n ma-
trix with elements Aij and B ∈ Rn,p matrix with elements bij. Multiplication
of matrices A and B is matrix D ∈ Rm,p with elements dij

dij =
n∑

k=1
AikBkj

Denoted D = AB

Definition 1.1.3 (Identity matrix) We call matrix A ∈ Rn,n the identity
matrix, if

i ̸= j → ai,j = 0
i = j → ai,j = 1

We represent this matrix by I

Definition 1.1.4 (Regular matrix) Let A ∈ Rn,n. If there is matrix B ∈
Rn,n, that

AB = BA = I

we can call A regular. If matrix is not regular, then we call it singular.

Definition 1.1.5 (Matrix forms) The square matrix A ∈ Rn,n is called

upper triangular if all the entries below the main diagonal are equal to zero:

(∀i, j ∈ {1, . . . , n})(i > j ⇒ Ai,j = 0)

lower triangular if all the entries above the main diagonal are equal to zero:

(∀i, j ∈ {1, . . . , n})(i < j ⇒ Ai,j = 0)

diagonal if it is both upper and lower triangular:

(∀i, j ∈ {1, . . . , n})(i ̸= j ⇒ Ai,j = 0)

Definition 1.1.6 (Diagonally dominant matrix) The matrix A is diago-
nally dominant if

|aii| ≤
∑
j ̸=i

|aij |

for all i, where aij denotes the entry in row i and column j.

Definition 1.1.7 (Symmetric matrix) The matrix A is symmetric if A =
AT .

A is symmetric⇐⇒ A = AT

4



1.2. Interval Arithmetic

Definition 1.1.8 (Positive-definite matrix) Let A ∈ Rn,n be symmetric.
A is said to be positive-definite if

xTAx > 0;∀x ∈ Rn \ {0}

Definition 1.1.9 (System of linear equations) By the system of linear
equations is meant

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
a3,1x1 + a3,2x2 + · · ·+ a3,nxn = b3

...
am,1x1 + am,2x2 + · · ·+ am,nxn = bm

where ai,j are coefficients of the system, xj are unknowns and bi are called
constants. System of linear equations can have zero, one or multiple solutions.
We can rewrite these systems using matrix notation 1.1.1 to the matrix form
as matrix A and vectors x and b:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 x =


x1
x2
...

xn

 b =


b1
b2
...

bm


To represent this system we can use short notation

Ax = b

We will explain solving methods for these systems in their own chapters.
By solving systems of linear equations, we are looking for the respective vector
x that complies notation Ax = b. From now on in this thesis, we will only
consider square regular matrices, because they only have one solution, which
is enough to illustrate general principles and goals stated in the beginning.

1.2 Interval Arithmetic

Interval arithmetic is a mean to compute with intervals. These are defined
as bounds on a real axis, which means that we use the lower bound and
the upper bound. The real value of a number is somewhere in between these
bounds with no information where exactly. Arithmetic operations on intervals
are well defined and expect this uncertainty. Computing with intervals usually
means increasing this uncertainty by widening the intervals [6] [7].

Definition 1.2.1 (Interval) Closed interval I, with lower bound a ∈ R and
upper bound b ∈ R, is a set

I = {x ∈ R|a ≤ x ≤ b}

5



1. Mathematical Basics

Definition 1.2.2 (Binary operations) Let I1, I2 be intervals and ◦ is bi-
nary operator. Then

I1 ◦ I2 = {x1 ◦ x2|x1 ∈ R, x2 ∈ R}

In general, the result of operation does not have to be interval. But oper-
ations +,-,·,/ (except division by 0) always result in another interval. We can
also define precise formulation for these relations.

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]
[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

Because we will be solving systems of linear equations with the left hand
side consisting of real numbers, we will also define binary operations on inter-
vals with intervals of wid(I)=0. These intervals can be treated as constants,
which does not interfere with the regular binary operation definition 1.2.2.

Definition 1.2.3 Let I1 = [a, b], I2 = [c, c] be intervals. We can treat I2 as
a constant and express operations +,-,· by relations:

[a, b] + c = [a + c, b + c]
[a, b]− c = [a− c, b− c]
[a, b] · c = [min(ac, bc), max(ac, bc)]

We will be using the interval arithmetic as a baseline performance indicator
for our implementation of systems of linear equations solvers. Because it is
well defined and explored, it is well suited to serve as our test sample.

6



Chapter 2
Analysis of Random Variable

The random variables and operations over them are the base of this thesis.
This interpretation of the intervals provides means of giving values certain
probability inside them. Using only general representation of intervals, we
can only assume that the real value we look for is within given bounds. Nev-
ertheless, this is usually not enough in science experiments, where observations
for example, have far more probability to be closer to the real value, than to be
far from it. Therefore when we represent this interval as the random variable,
we may get much better idea of the real form of the interval and its correct
distribution.

2.1 Theory

Here we will explore basic definitions needed to understand what the random
variable is, how to represent it and how to compute with it. We will also
introduce some special cases of random variable distributions [8] [9] [10] [11].

Definition 2.1.1 (Random variable) Random variable X on a probability
space (Ω,F ,P) is a function X : Ω → R, assigning a number X(ω) to each
outcome ω ∈ Ω with the property that:

{X ≤ x} ∈ F ,∀x ∈ R

Such function is said to be F-measurable.

Definition 2.1.2 (Discrete random variable) X is called discrete random
variable, if it takes only values from some countable set {x1, x2, . . . }. Proba-
bilities of the values of a discrete random variable X are given by

P (X = xk), k = 1, 2, . . .

7



2. Analysis of Random Variable

When assigning probabilities to the values xk, the normalization condition
must hold: ∑

allxk

P (X = xk) = 1

Definition 2.1.3 (Continuous random variable) Random variable X is
called continuous, if there exists a non-negative function fX : R → [0, +∞)
such that for all x ∈ R the distribution function FX can be expressed as

FX(x) =
∫ x

−∞
fX(t)dt

Function fX is called the probability density of the random variable X.

Definition 2.1.4 (Uniform distribution) Let [a,b] be a real interval. Ran-
dom variable X has a uniform distribution, if its density function is:

fX(x) =
{ 1

b−a x ∈ [a, b]
0 elsewhere

Definition 2.1.5 (Normal distribution) Random variable X has the nor-
mal (Gaussian) distribution with parameters µ and σ2 > 0, if the density has
the form:

fX(x) = 1√
2πσ2

e− (x−µ)2

2σ2

These distributions will serve as our RHS representations and we will ob-
serve their effects on the results.

Definition 2.1.6 (Operations over random variables) Let X,Y be ran-
dom variables with known distribution and f be defined on Cartesian product
of X and Y values. Then Z=f(X,Y) is random variable and its distribution
function is:

FZ(x) = P (Z < x) = P (f(X, Y ) < x)

Definition 2.1.7 (Linear transformations) Let X be a random variable
taking values from an interval I ∈ R and that X has a continuous distribution
on I with probability density function f . Let Y = a + bX, where a ∈ R and
b ∈ R \ 0. The Y than takes values:

T = {y = a + bx; x ∈ I}

8



2.2. Design

2.2 Design

The design of random variable in the program is based on an approximation
of the continuous random variable by the discrete version. In case we have
discrete values 2.1.6, we can say P (Z = x) = P (f(X, Y ) = x), which also
allows us to make our random variables in a certain precision.

Say we have a continuous random variable X defined on the interval I,
e.g. P (X ∈ I) = 1. We can then cut this interval into smaller intervals
and represent those by their discrete values.2.2 Therefore we do not need to
represent the probabilities as P (X ∈ [xi, xi + 1]), but instead we use simpler
notation P (X = xi), creating a discrete random variable. These can have only
countably many possible values and the more we have, the closer we converge
to the original continuous random variable.

5 10 150.00

0.10

0.20

0.30

0.40

x

f
(x

)

Normal Distribution

In our solution, we decided to treat the separation of intervals into smaller
pieces by defining a unit and a number of steps. The unit being an interval
I = [a, b]; a, b ∈ Z and wid(I) = 1. Steps is a number of parts that the unit is
supposed to be separated into, so the bigger the number, the smaller the inter-
vals it creates and therefore our approximation is more precise. This system
allows us to create arbitrary options for precision, but for testing purposes,
we defined six step numbers:

(1) → wid(Ii) = wid(I) = 1; i = 1

(2) → wid(Ii) = 0.5;∀i ∈ {1, 2}

(4) → wid(Ii) = 0.25;∀i ∈ {1, 2, 3, 4}

(5) → wid(Ii) = 0.2;∀i ∈ {1, 2, 3, 4, 5}

9



2. Analysis of Random Variable

(10) → wid(Ii) = 0.1;∀i ∈ {1, . . . , 10}

(100) → wid(Ii) = 0.01; ∀i ∈ {1, . . . , 100}

We always have these lower intervals set on the same values between inte-
gers.

This approach also creates an issue of imprecise lower and upper bounds
of the interval. For example, if we had an interval of I = [1.5, 2] and steps
number of 1, the resulting representation would be Ii = [1, 2] and no matter
what distribution, in our representation, it would create only one probability
P (Xi = 1) = 1, which does not hold any informative value. This issue is only
solvable by increasing the steps value and we will look at this more closely in
the last chapter.

The real problem with usage of random variables as representations of
intervals comes with their arithmetic operations [8]. Let us have random vari-
ables X, being represented by n values, and Y , being represented by m values.
Because we cannot assume any dependencies between these variables, adding
or multiplying them together has complexity of O(nm). If represented by the
very high step number, this might take a lot of space and performance. Con-
sidering we want to represent RHS of the SLE by these, which means many
operations of addition over them, it is not ideal due to limitations in perfor-
mance. This issue might be improvable by parallelization of these operations,
however we will not examine this approach in this thesis.

2.3 Implementation

We implement our approximation of random variable in C++ and its Standard
Template Library to represent it as a std::map<double,double> structure.
The key being the representation of the given subinterval and the value of it,
its probability. The biggest obstacle of this implementation was the correct
placement of key resulting from multiplication of two random variables. The
basic algorithm behind addition can be seen in pseudocode 2.1.

Given that addition or multiplication of keys does not result into predefined
step definitions we wanted to create, but actually falls into those intervals
(xkey ◦ ykey) ∈ Ii, we had to create a way to align these keys, to correct place
and value so that f(xkey◦ykey) is equal to lower bound of Ii. In theory, it might
work in this state, but the problem could be extreme spacial requirements.
We also need to take in consideration our representation of the key. Because
we represent it by double, it would almost never create the same two keys
and therefore every new multiplication only creates more elements.

For this purpose we take the original result of operation and make ad-
ditional rounding based on the step size we predefined. Let us say we have
predefined step value s = 0.25 and we get a result of key multiplication of
zi = 6.5132. We can take the value after the floating point from zi and divide

10



2.3. Implementation

it by s. We multiply the result integer again by s and add it to the original
integer from zi, which creates our aligned key value of 6.5. This algorithm can
be seen in pseudocode 2.2.

It is worth noting, that for representation of SLE we do not actually need
to implement random variable multiplication, because as described in next
two chapters, elements of RHS are not multiplied among each other.

Algorithm 2.1 Random variable addition
1: for xkey, xvalue in X do
2: for ykey, yvalue in Y do
3: NewKey ← xkey + ykey

4: zNewKey ← xval ∗ yval

5: end for
6: end for

Algorithm 2.2 Steps align
1: zfloat ← floatremainder(zi)
2: zint ← integer(zi)
3: Result← zint + integer(zfloat/s) ∗ s

11





Chapter 3
Analysis of Gaussian Elimination

Method

The first solving algorithm to be used in this thesis is the Gaussian elimination
method. It consists of series of elementary row operations used on the matrix
to find the general solution of the matrix. On the assumption that numerical
operations defined on the representation of the left hand side of the equations
are also defined on the representation of the right hand side, we are able to
apply this solving method.

3.1 Theory

This section will introduce definitions needed for the algorithm and the algo-
rithm itself [3].

Definition 3.1.1 (Row echelon form) Let A ∈ Fm,n and θ ∈ F1,n be a
zero vector. The matrix A is called to be in row echelon form, if it satisfies
the following conditions:

1. There exists row index k ∈ 0, 1, . . . , m such that

(∀i ≤ k)(Ai: ̸= θ) ∧ (∀i > k)(Ai: = θ)

i.e., all non-zero rows are above any zero rows.

2. For indexes

ji := min{l ∈ {1, . . . , n}|Ail ̸= 0}, i ∈ {1, . . . , k}

it holds that j1 < j2 < · · · < jk, i.e., the first non-zero entry from the
left (called pivot) of a non-zero row is always strictly to the right from
the pivot of the row above.
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3. Analysis of Gaussian Elimination Method

This definition is broadly specified for every matrix, but considering only
square regular matrices in this thesis, we only need its second part. First part
of the GEM algorithm is to get the LHS of system to the row echelon form,
using elementary operations (G1)–(G3). These operations can be described
as:

(G1) Swap positions of two rows

(G2) Multiply i-th row by a non-zero scalar α ∈ F , i.e., replace the row(
ai1 ai2 . . . ain bi

)
with the row (

αai1 αai2 . . . αain αbi

)
(G3) Add the scalar multiple of j-th row to i-th row, i.e., replace the row(

ai1 ai2 . . . ain bi

)
with the row(

ai1 + αaj1 ai2 + αaj2 . . . ain + αajn bi + αbj

)
Definition 3.1.2 (Gaussian elimination method) Let A ∈ Rn,n be regu-
lar matrix with vector b as its RHS. Then by using operations (G1)–(G3) do
these steps:

1. Add to all rows p ∈ {i + 1, . . . , n}, where i denotes first row, including
RHS, row i multiplied by number ((−Ap,i)/Ai,i)

2. Repeat part (1) for each consecutive row

This algorithm creates the row echelon form of the matrix A, assuming that
we do not create zero on the diagonal, otherwise division operations would not
be defined. This effect should be repressed by use of pivotation.

Definition 3.1.3 (Reverse GEM) Let regular matrix A ∈ Rn,n be in REF,
with vector b as its RHS. Then by using operations (G1)–(G3) do these steps:

1. Add to all rows p ∈ {1, . . . , i−1}, where i denotes the last row, including
RHS, row i multiplied by number ((−Ap,i)/Ai,i)

2. Divide the row i by Ai,i

3. Repeat part [1] and [2] for each consecutive row from last to first
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3.2. Design

Combination of these two algorithms creates the solution of the SLE. In
case of regular square matrices, it finds the only solution the given SLE has.
We will be applying Reverse GEM only on the RHS as seen in pseudocode
3.2. Using this approach we can get better performance.

Definition 3.1.4 (Row pivoting) Let A ∈ Rn,n be square matrix. Let p be
column index of the matrix element, such as

|Ai,p| = max(|Ai,1|, |Ai,2|, . . . , |Ai,n|)

The matrix element Ai,p is called pivot of row i. We say that matrix B is
created by pivoting row i, if we exchange said columns.

Definition 3.1.5 (Column pivoting) Let A ∈ Rn,n be square matrix. Let
p be the row index of the matrix element, such as

|Ap,j | = max(|A1,j |, |A2,j |, . . . , |An,j |)

The matrix element Ap,j is called the pivot of column j. We say that matrix
B is created by pivoting column j, if we exchange said rows.

By combining row and column pivoting we create completely pivoted ma-
trix. Important part of applying column pivoting on the matrix in SLE is
that we also need to switch elements in the RHS vector on their respective
positions.

3.2 Design

The design of our SLE solver with GEM is a direct consequence of the defini-
tions in previous section. It is designed in four different parts:

1. GEM

2. Reverse GEM

3. Column pivoting

4. Row pivoting

This way we can create every combination of pivoting with ease and decide
which one to use, based on arguments. There is no need for runtime condition
decisions, which in theory improves performance of individual solvers.

There are also other possibilities of improving the performance of the
solver. For example, GEM is also a great candidate for parallelization of
the main algorithm. We will not be implementing this technique in this the-
sis, but it is important to mention and take this in consideration when we rate
its performance.
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3. Analysis of Gaussian Elimination Method

3.3 Implementation

Implementation of these parts can be seen in pseudocode 3.1 3.2 3.3 3.4. As
in entire project, we use C++ and its Standard Template Library to represent
these structures. We implement the RHS of SLE as a vector. In this vector
are stored either our own representations of random variables or intervals
implemented by PROFIL/BIAS library [12].

Algorithm 3.1 GEM
1: for i = 0 to n do
2: for j = i + 1 to n− 1 do
3: Ratio ← Ai,j/Ai,i

4: for k = i to n do
5: Ak,j ← Ak,j− Ratio ∗Ai,i

6: end for
7: bj ← bj − ratio ∗ bi

8: end for
9: end for

Algorithm 3.2 Reverse GEM
1: for i = n− 1 to 0 do
2: for j = n− 1 to i + 1 do
3: bi ← bi − Aj,i ∗ bj

4: end for
5: bi ← bi ∗ (1/Ai,i)
6: end for

If we want to find the column/row pivot of the matrix during computa-
tion, we can insert respective code 3.4 3.3 between lines 1 and 2 in the GEM
algorithm 3.1. This operation can improve the precision of the result and con-
sequentially the performance of our solver. Because higher precision means
narrower intervals, we will need less operations to use by our representation
of random variable. This effect will be explored more in the last chapter.
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3.3. Implementation

Algorithm 3.3 Row pivoting
1: Max ←|Ai,i|
2: index ← i
3: for j = i to n do
4: if |Aj,i| > Max then
5: Max← Aj,i

6: index← j
7: end if
8: end for
9: SwitchMatrixColumns(i, index)

Algorithm 3.4 Column pivoting
1: Max ←|Ai,i|
2: index ← i
3: for j = i to n do
4: if |Ai,j | > Max then
5: Max← Ai,j

6: index← j
7: end if
8: end for
9: SwitchMatrixRows(i, index)

10: SwitchElements(bi, bindex)
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Chapter 4
Analysis of Gauss-Seidel

Method

The other algorithm used to solve systems of linear equations in this thesis
is the Gauss-Seidel method. It is an iteration method, which means that we
use a sequence of vectors, that converge to solution by applying numerical
operations on them. We also need to make sure, that numerical operations
used are defined on the representations of the RHS. This method also requires
some matrix attributes and we will explore this in next the section.

4.1 Theory

This section introduces the iteration principle of solving the SLE and two
methods. The Jacobi method and also the Gauss-Seidel method which derives
from it and is the main method observed by this chapter. These are described
in [13] [14] [1].

4.1.1 Iteration Methods

The iteration methods use the consecutive vectors of partial solutions to con-
verge to the solution of SLE. The result of these operations is therefore not
the exact solution, but mere approximation of it. However, we can assume the
maximum error of the resulting vector. For the SLE denoted Ax = b, using
iteration method we can find vectors x1, . . . , x∞ as for this sequence of vectors
applies:

x = lim
k→∞

xk

and the x is the correct solution for SLE. While the infinite sequence of vectors
cannot be realistically found, we usually settle for the result that assures
maximal error ϵ. We would stop the calculation whenever ∥xk+1 − xk∥ < ϵ,
where the ∥.∥ is the vector norm.
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4. Analysis of Gauss-Seidel Method

4.1.2 Jacobi Method

This method is the base iteration method used to solve SLE. These transform
the system

Ax = b

to the
xk+1 = Bxk + c

where x0 ∈ IRn. From this we get infinite sequence {xk}∞k=0, that in special
cases converges to

x = lim
k→∞

xk

For this method, the sequence converges, if A is diagonally dominant1.1.6.
We also need to convert the matrix A into B and find vector c. This method
transforms the matrix A:

A = D− L−U

where D is diagonal matrix, L is lower triangular and U is upper triangular
matrix 1.1.5. The SLE Ax = b can be then denoted as:

(D− L−U)x = b

we can then gradually adjust this to:

Dx = (L + U) + b→ x = D−1(L + U)x + D−1b

When we then denote B = D−1(L + U) and c = D−1b, we then get the
correct equation introduced in the beginning:

x = Bx + c

This equation can be also formulated for the i-th element of k-th step:

xk
i = 1

ai,i

bi −
n∑

j=1,j ̸=i

ai,jxk−1
j


This form can be further rewritten as subtraction of two sums, which gives

us final form for the equation.

xk
i = 1

ai,i

bi −
i−1∑
j=1

ai,jxk−1
j −

n∑
j=i+1

ai,jxk−1
j


The vector x0 can be chosen arbitrarily. We usually choose zeroed vector

as a starting point, however we also can use our own estimate, which could
result into faster converging to the result.
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4.2. Design

4.1.3 Gauss-Seidel Method

This method is based on the previous Jacobi method. To compute the xk+1
i is

used vector xk in combination with the already computed elements from vector
xk+1. This means that to compute element xk+1

i , we use the values xk+1
1,...,i−1

and xk
i+1,...,n. The following equation is the mathematical formulation of this

element:

xk
i = 1

ai,i

bi −
i−1∑
j=1

ai,jxk
j −

n∑
j=i+1

ai,jxk−1
j


The main assumption for this method to converge to the result is that

matrix B is either diagonally dominant 1.1.6 or symmetric 1.1.7 and positive
definite 1.1.8. The main advantage over Jacobi method is that we can store
values of xk+1 and xk only in single temporary vector. The disadvantage is
that we need to compute these values sequentially, therefore we cannot use
parallelization.

4.2 Design

The design of the solver is quite simple in comparison with the Gaussian
elimination method. To stop the run of the algorithm, we do not use vector
norm, but we have set number of cycles to calculate. The reason is that we
will compare how close the result gets to the answer using given cycles count
in comparison with the GEM. This gives us better benchmark performance to
compare and more flexibility during the testing.

The algorithm itself follows the definition of equation in previous section
4.1.3. We have three nested cycles. The main uses defined number of Gauss-
Seidel runs. The second runs through the width of the matrix and computes
the value of xi. The last is decomposed into two sub-cycles, which means we
do not need to have the condition to check whether j = k. We can see this
algorithm as the pseudocode 4.1.

4.3 Implementation

The implementation of this solver can be again seen in pseudocode 4.1. We
use C++ language and the Standard Template Library to represent all major
objects, namely RHS. That is again represented as a vector of elements, in
our case mainly the random variables.

When computing, we first declare vector x0 with zeroed equivalent of ele-
ments inside RHS of the SLE. Then we iterate through the algorithm as many
times as specified during the testing.

Here we can see the inherent problem of this method, resulting into slower
performance. The main issue being constant addition of RHS values for whole
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4. Analysis of Gauss-Seidel Method

row. So by having the matrix A ∈ Rn,n with n elements in each row, we need
to do n−1 multiplications of the vector x element followed by n−1 additions
of these elements. After that we subtract the sum for every row from the
element of RHS and again multiply this by constant. This gets us to many
operations on our implementation of random variable and can be potential
performance issue. We will discuss this in the next chapter.

Algorithm 4.1 GS Method
1: for j = 0 to n− 1 do
2: Sum← 0
3: for k = 0 to j − 1 do
4: Sum← Sum + aj,k ∗ xk

5: end for
6: for k = j + 1 to n− 1 do
7: Sum← Sum + aj,k ∗ xk

8: end for
9: xj ← (bj − Sum) ∗ 1/aj,j

10: end for
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Chapter 5
Analysis of Results

This chapter will analyze results that our implementations of the Gaussian
elimination method, the Gauss-Seidel method and the random variable cre-
ated. At first, we will introduce our sample matrices and also the intervals
used. We will briefly comment on the benchmark results of the interval arith-
metic, that will serve as a baseline and we will consider these as correct. Then
we will comment on the different settings for the random variables and how
it affects the solvers.

5.1 Test Data

We generated test data using Python script, creating random matrices, but
with some rules to comply computability by our methods. We especially had
to generate matrices that are calculable by the Gauss-Seidel method, so we
made diagonally dominant1.1.6 matrices, or more precisely matrices that can
be adjusted to this form by some simple valid matrix manipulation. This
way we can also test the effect of pivoting the matrix when using Gaussian
elimination method.

Using this script, we created thirty 4x4 matrices, twenty 5x5 matrices and
also four 10x10 matrices. We also tried to implement and test 20x20 matrices,
but we were unable to calculate these SLE due to performance limitations.

For the RHS of our systems of linear equations we also generated random
intervals using Python script. For this purpose, we created various formats
of their representations. First being regular intervals with upper and lower
bound. These serve as our baseline to work with and are used by regular
interval arithmetic to compute our benchmark results.

We then used these intervals and generated for them two types of random
variables following normal 2.1.5 and uniform 2.1.4 distribution. For each of
them were generated discrete distributions according to our steps 2.2 defini-
tion. We created these test distributions for steps:
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5. Analysis of Results

• step = 1

• step = 2

• step = 4

• step = 10

To represent the general principles of our discoveries we chose these three
matrices, but for the trends derived and described in this thesis, we generalized
findings from all of the results:

A =


36 12 20 108
20 80 12 36
432 80 32 160
25 10 100 10

 B =


176 704 198 154
800 125 75 175
18 4 10 54
196 168 896 196



C =


42 126 840 210 168
180 72 180 720 180
4 36 8 5 5

780 104 156 52 130
36 72 54 54 324


And these are their associated RHS vectors which contain the intervals.

We will consider their representations and distributions in other sections:

RHS(A) =


[51, 62]
[9, 17]

[99, 108]
[42, 51]

 RHS(B) =


[95, 105]
[18, 26]
[33, 41]
[85, 96]

 RHS(C) =


[86, 97]
[31, 43]
[7, 19]
[69, 77]
[93, 103]


5.2 Interval Arithmetic

Considering this topic to be thoroughly researched in previous thesis [1], we
will not be analyzing the interval arithmetic implementations to the details.
We use this as a baseline results to compare with our own representation of
intervals, therefore we consider these as correct. For our implementation we
used the PROFIL/BIAS [12] library and its class INTERVAL. We decided for
this library for its performance in comparison with different libraries [15] and
relatively simple use in linux environment.

Here we will demonstrate the results from every type of our computations.
Considering we have four matrices with various number of rows and also six
different types of computation, we will only show the vector element x1 of
each solution or some different element of interest. We will also display its
computing time. The types of the computations we will compare:
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5.2. Interval Arithmetic

GEM GEM without pivoting

GEMrow GEM with row pivoting

GEMcol GEM with column pivoting

GEMcom GEM with complete pivoting

GSM5 GSM with five cycles

GSM10 GSM with ten cycles

The values for the GSM method cycles were chosen to test how much
the interval width and performance depend on them. We chose these values,
because of random variable performance requirements. Therefore we used
same values also with the interval arithmetic implementation, to compare
their effect on both.

Table 5.1: Element x1 results for matrix A
Method Value Width Computing time (ms)
GEM [-0.950,0.679] 1.629 0.0109
GEMrow [0.380,0.557] 0.177 0.0104
GEMcol [0.396,0.541] 0.145 0.0127
GEMcom [-0.194,-0.077] 0.117 0.012
GSM5 [0.358,0.579] 0.221 0.0125
GSM10 [0.357,0.580] 0.223 0.0167

Table 5.2: Element x1 results for matrix B
Method Value Width Computing time (ms)
GEM [-3.251,2.983] 6.234 0.0107
GEMrow [-0.013,0.063] 0.076 0.0147
GEMcol [-0.004,0.054] 0.058 0.0133
GEMcom [-0.045,0.094] 0.139 0.0114
GSM5 [-0.026,0.075] 0.101 0.0124
GSM10 [-0.026,0.076] 0.103 0.0177
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5. Analysis of Results

Table 5.3: Element x1 results for matrix C
Method Value Width Computing time (ms)
GEM [-4.280,4.299] 8.580 0.0754
GEMrow [-0.033,0.082] 0.115 0.0435
GEMcol [-0.296,0.954] 1.250 0.0636
GEMcom [-0.118,0.167] 0.285 0.0580
GSM5 [-0.060,0.110] 0.170 0.0510
GSM10 [-0.064,0.114] 0.178 0.0997

5.3 Random Variables

In the following subsection will be compared different step sizes 2.2 of random
variables with interval arithmetic and between each other. We will begin with
the biggest step size, that being one, and further continue to the smaller steps.

The interpretation of these results will be shown by methods similar to
the interval arithmetic, but we will also show histograms representing some
results in their true form.

5.3.1 Testing of Numerical Operations

Using the random variables x = [4, 6] and y = [3, 5] with uniform distribution,
we will demonstrate addition over random variables and multiplication by
constant.

Addition combines all elements of the random variables, to the resulting
random variable. Adding great number of random variables generally results
into shape resembling normal distribution.

Figure 5.1: Addition of x and y
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Figure 5.2: Ten additions of the x
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Multiplying the random variable results into widening or narrowing the
interval. The distribution preserves the shape as close as allowed by the step
size.

Figure 5.3: Multiplying x by four
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5. Analysis of Results

5.3.2 Step Size One

The results for this setting appeared to have the least informative value about
the resulting intervals. Due to the nature of our matrices, that being ability
to easily transform them to the diagonally dominant form, which is important
for GSM, they appear to usually narrow our resulting intervals. That in most
cases leads to the width of these intervals to be less than 1, where we loose
all information about random variable. This effect can be seen table 5.4 with
results for matrix B with uniform distribution configuration.

Table 5.4: Element x1 results for matrix B (Random variable, step one)

Method Value Width Computing time (ms)
GEM [-12,12] 24 14 405
GEMrow [-1,1] 2 262
GEMcol [-1,1] 2 247
GEMcom [-1,1] 2 240
GSM5 [-1,1] 2 6521
GSM10 [-1,1] 2 14 277

The only viable results in this section were usually landed by the regular
GEM method, due to no transformation of the matrices and therefore return-
ing wider intervals than the other methods. However, we can see how was the
resulting random variable distributed 5.4.

This histogram shows us, that even if this method returned wider inter-
vals than interval arithmetic, the distribution of the random variable may
be great indicator for the position of the real value. Due to operations over
random variable, the resulting distribution is beginning to resemble normal
distribution.

We also need to mention that with increasing number of operations with
these random variables, there can also accumulate rounding error. This could
potentially produce results too far from their expected real values. As seen in
comparison of 5.4 and 5.2, this method produces several times grater intervals
than regular interval arithmetic.
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Figure 5.4: Probability function of x1 in B (GEM)
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5.3.3 Step Size Two

The results for the steps of size two, meaning that the width of sub-intervals
was 0.5, were similar to the previous ones. In general, these random variables
performed into better, more precise results, but this precision was still far
from enough to provide relevant solutions of SLE in comparison with interval
arithmetic.

Table 5.5: Element x1 results for matrix B (Random variable, step two)

Method Value Width Computing time (ms)
GEM [-7.5,7.0] 14.5 20 676
GEMrow [-0.5,0.5] 1 167
GEMcol [-0.5,0.5] 1 248
GEMcom [-0.5,0.5] 1 254
GSM5 [-0.5,0.5] 0.5 8013
GSM10 [-0.5,0.5] 0.5 18 446

The results for this section are in general very similar to the findings from
previous section. The precision of these solutions is still not enough, with
exception of regular GEM. We can compare results to the previous step size.
These show improvement of the interval width, which seems to be a trend with
increasing step size and therefore accuracy. The distribution of the random
variable is again similar to the normal distribution 5.5.
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Figure 5.5: Probability function of x1 in B (GEM)
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5.3.4 Step Size Four

We also applied the step size of four to the random variables. Again, this was
not enough to provide very relevant information 5.6, with the exception of
regular GEM. However, even if the results were proved to be too small, the
computation time of these SLE was in general again more than doubled with
every method. We will not analyze this step any further, due to the same
general results as previous section.

Table 5.6: Element x1 results for matrix B (Random variable, step four)

Method Value Width Computing time (ms)
GEM [-6,6] 12.0 68 549
GEMrow [-0.25,0.25] 0.5 300
GEMcol [-0.25,0.25] 0.5 480
GEMcom [-0.25,0.25] 0.5 501
GSM5 [-0.25,0.25] 0.5 7367
GSM10 [-0.25,0.25] 0.5 14 676

5.3.5 Step Size Ten

The results of this configuration made great improvement in information pro-
vided and can be considered usable for further exploration. We will use the
matrix A and its element x1 of RHS as an example, and compare it to the
baseline solution 5.1. As in all previous sections we will use random variables
with uniform distribution on the RHS.
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Table 5.7: Element x1 results for matrix A (Random variable, step ten)

Method Value Width Computing time (ms)
GEM [-1.6,0.6] 2.2 5874
GEMrow [0.3,0.7] 0.4 115
GEMcol [0.3,0.6] 0.3 464
GEMcom [0.3,0.6] 0.3 487
GSM5 [0.2,0.7] 0.5 5772
GSM10 [0.2,0.7] 0.5 12 502

These values are comparable to the results of the interval arithmetic and
we assume that it is the consequence of higher precision of computing. The
rounding error of this precision allows for more reliable solutions for the linear
equation systems than previous versions.

Figure 5.6: Probability function of x1 in A (GEM)
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As seen in the plots 5.6 5.7 5.8, the table 5.7 and the most test data,
the regular GEM generates very wide intervals. This is strongly suppressed
by using the pivoting of the matrix when using GEM. During our testing we
also noticed some improvement of result precision when using complete piv-
oting but these observations were not seen in every case, therefore we cannot
generalize this claim. Also if we compare the GSM with pivoting GEM, they
generate very similar results, even with very small number of cycles. Generally
we do not see any substantial improvement in precision by further increasing
the cycles beyond five.

However, we need to acknowledge that our test data have been chosen with
condition to be transformable to the diagonally dominant 1.1.6 form. This
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5. Analysis of Results

Figure 5.7: Probability function of x1 in A (GEMcom)
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Figure 5.8: Probability function of x1 in A (GS5)
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allowed us to test these matrices against both methods, but could introduce
some bias due to the nature of pivoting.

We also need to notice that this precision might still not be enough for
the general use. We might be satisfied with the width of returned interval,
where it can be just tenth of a unit, but we will not get any benefit from using
the random variable. To highlight this effect, we can compare the results of
the matrix C of random variables 5.8 with interval arithmetic 5.3, where the
average width of result is around 0.1 and we can see a loss of accuracy.
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5.4. Performance

Table 5.8: Element x1 results for matrix C (Random variable, step ten)

Method Value Width Computing time (ms)
GEM [-7.2,6.8] 14.0 61 513
GEMrow [-0.2,0.1] 0.3 2295
GEMcol [-1.3,1.6] 2.9 6772
GEMcom [-0.1,0.2] 0.3 1724
GSM5 [-0.2,0.3] 0.5 41 006
GSM10 [-0.2,0.3] 0.5 104 897

5.4 Performance

The performance varies based on the representation of random variable, the
size of matrix and also the method used. The results were ambiguous, however
we are able to deduce some general trends. We will comment on each of these
aspects.

5.4.1 Methods

Using GEM, we can generally see major effect of any kind of pivoting applied
to the matrix. Even if pivoting increases the number of operations over SLE,
we can see improvement in speed by orders of magnitude. However the results
show, that complete pivoting does not have generally same further effect on
the speed of the computation, potentially even slowing it.

Comparing the solving methods between each other we can see that despite
Gauss-Seidel method being better than regular Gaussian elimination method
in computing time initially, the pivoting of matrices nullifies the advantage of
this method and GEM with use of pivoting generally outperforms it signifi-
cantly.

However, when comparing results of these methods, with the exception
of regular GEM, they generally land very similar intervals and distributions.
Therefore considering purely the numeric results, we can conclude that none
of these methods is superior in this regard. This effect can bee also seen in
5.8 5.7.

5.4.2 Representation

Using the matrix A as an example, comparing the interval arithmetic 5.1 even
with the random variable with step size of one 5.10, we can see great increase
of computing time. This effect is further augmented by the raising precision
of our random variable representation.

We can also note, that type of distribution, namely uniform and normal,
appears to have the effect on the resulting performance, such as using normal
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5. Analysis of Results

distribution as a default, we can see slight improvement of the computing
speed. This effect can be seen in matrix A5.9 5.10.

Table 5.9: Performance (ms) for normal distribution, matrix A

Step GEM GEMrow GEMcol GEMcom GSM5 GSM10
1 275 4 51 57 1246 2865
2 1079 7 110 107 1067 2419
4 2118 19 170 168 1514 3617
10 5033 98 388 381 4683 10 745

Table 5.10: Performance (ms) for uniform distribution, matrix A

Step GEM GEMrow GEMcol GEMcom GSM5 GSM10
1 319 6 69 81 1560 3280
2 1306 11 155 166 1228 2910
4 2542 30 211 198 1733 4198
10 5874 115 464 487 5772 12 502
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Conclusion

The goal of this thesis was the comparison of the two representations of inac-
curate numbers used as the right hand side in systems of linear equations. For
this purpose were used random variables that we compared with the interval
arithmetic. As testing solving methods were used the Gaussian elimination
method and the Gauss-Seidel iteration method.

We used several configurations for the random variables, ranging from the
least accurate with relatively good computing speed, still being orders of mag-
nitude higher than interval arithmetic, to the most accurate with gradually
worsening performance. The general upside of the random variable was the
improvement of the information about real position of value inside the inter-
val, however this came at the cost of speed and efficiency, which decreased
significantly with the increase in precision. In the end the downside of this
representation is that it was very inefficient in comparison with interval arith-
metic.

Both solving techniques were able to consistently solve the linear equa-
tions systems. The least accurate results were generated by the GEM with
no pivoting, which was generally the slowest. This was very effectively sup-
pressed by pivoting the rows and columns of the systems, often being orders
of magnitude faster than original GEM and also much more accurate. The
GSM method generated generally same results as the pivoting GEM, however
the computing time is usually much slower.
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Appendix A
Acronyms

GEM Gaussian elimination method

GSM Gauss-Seidel method

LHS Left hand side

REF Row echelon form

RHS Right hand side

SLE System of linear equations
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Appendix B
Contents of enclosed media

readme.txt.....................the file with media contents description
Makefile.......................................makefile of the project
src.................................the directory with the source codes
tests .......................... the directory containing all the testfiles

intervals......................the directory containing all intervals
matrices.......................the directory containing all matrices
outputs. ................... the directory containing all test outputs

thesis.pdf..............................the thesis text in PDF format
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