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Abstract

Lua is an easy to embed language which can be used to extend an application
with a scripting environment. This thesis focuses on isolation of Lua scripts
from sensitive parts of the application.

Sandboxing is commonly used for isolation of components in an applica-
tion. This work covers some theory behind sandboxes and discusses how to
properly implement a sandbox in Lua. A sandbox based on isolation of Lua
functions and a sandbox based on isolation of the entire Lua interpreter are
proposed as possible implementations.

An analysis of the Lua language, including the standard library, is per-
formed, focusing on isolation and potential for escaping a sandbox. A simple
tool for crawling and dumping the environment of a Lua function is created.
The dumped values can be later analysed in an interactive environment. This
allows for a comprehensive examination of values accessible from a sandbox.

Some freely available Lua sandbox implementations are analysed to show
how the theory described here is used in practice. The theory is further
demonstrated on a flaw found in the Lua sandbox of the OpenMW game
engine.

Keywords Lua programming language, sandboxing, language-based secu-
rity, language-based sandbox
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Abstract

Lua je programovací jazyk, který lze použít pro rozšíření jiné aplikace o skrip-
tovací prostředí. Tato práce se zabývá izolací Lua scriptů od citlivých částí
aplikace.

Sandboxing se používá pro izolaci dílčích částí aplikace. Tato práce rozebírá
teorii sandboxingu a diskutuje o tom, jak správně implementovat sandbox v
programovacím jazyce Lua. Jako možná implementace je navržen sandbox
založený na izolaci individuálních funkcí a sandbox založený na izolaci celého
interpreteru.

Byla provedena analýza programovacího jazyka Lua a jeho standardních
knihoven zaměřená na izolaci a potenciál na únik ze sandboxu. Následně
byl vytvořen jednoduchý nástroj pro vypsání hodnot dostupných v prostředí
funkce a jejich následnou analýzu v interaktivním prostředí. Toto umožňuje
komplexní průzkum hodnot dostupných ze sandboxu.

Také byly provedeny analýzy několika volně dostupných implementací
sandboxů pro ukázku, jak se navržené teoretické konstrukty v praxi použí-
vají. Nakonec je ukázána chyba v implementaci sandboxu v rámci herního
enginu OpenMW.

Klíčová slova programovací jazyk Lua, sandboxing, language-based secu-
rity, language-based sandbox
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Introduction

‘We use the term sandboxing to describe the concept of confining a helper
application to a restricted environment, within which it has free reign.’ [1]

Or as [2] define a sandbox, ‘An encapsulation mechanism that is used to
impose a security policy on software components.’

Sandboxes are a common part of all computer systems where not all parts
can be trusted. Whether they be virtual machines, an operating system or a
web browser, all the mentioned tools use sandboxing in one way or another.
[2]

Sandboxing enforces that all applications and users can do only what they
are allowed to, restricting access to other applications and resources. In the
context of an operating system that can mean, e.g., that a process is only
allowed to open files which the user has rights for.

Sandboxing allows us much more freedom without the worry about safety
we would have otherwise. Programs that use sandboxing allow for installing
any plugins and modifications without worrying that they might be malicious,
as the sandbox should prevent them from affecting and accessing anything
important. But since we give up our security precautions in favour of using
the sandbox it is vital for it to be correctly implemented.

This thesis will summarize some commonly used sandboxing techniques
and describe how sandboxes are constructed in Lua and other programming
languages.

Using this knowledge, different ways of constructing a simple sandbox
using Lua will be described. The standard libraries provided by the language
will be analysed for harmful functions and recommendations for restraining
these functions will be given. Any other known vulnerabilities will also be
mentioned.

Later, multiple sandbox implementations will be shown to serve for com-
parison with the implementation and restrictions proposed in this thesis. Ide-
ally, an attack on one of the sandboxes will be shown to demonstrate mistakes
to be wary of.
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Chapter 1
Sandboxes and Sandboxing

Techniques

Sandboxes are based on the concept of protection domains.
A protection domain is a collection of access rights to objects. An access

right is the ability to perform a specific operation, e.g., reading a file. Objects
are specific software (such as files or processes) and hardware (such as CPU
instructions, drives and printers) resources. Code running within a protection
domain may only operate on objects using the access rights of the domain. [3,
p. 627–628]

Communication and switching between domains is restricted to ensure that
the restrictions cannot be bypassed. What concept the domain encapsulates is
not always the same. Users, individual processes, or even individual functions
may be regarded as a domain depending on the system. [3, p. 628–629]

Each domain can be thought of as an individual sandbox. To ensure it
works well, two problems must be handled — isolation and policy enforcement.

Isolation is necessary to ensure that all interactions the sandbox makes pass
through a given interface which can then be subject to policy enforcement.

Policy enforcement is used to filter requests coming through the interface
deciding what to do based on the policies enforced upon the domain. For
example, a request to open a file is always done the same way but the access
may be granted or denied.

Sandboxes employ a variety of techniques to enforce the isolation. These
techniques vary based on what is being sandboxed and which hardware re-
sources the sandbox has access to. Some languages may provide features that
allow for employing different isolation or policy enforcement mechanisms.

Isolation between subjects within a single domain is not strictly necessary,
as everything affected could be equally affected by all parties, while isolation
between different domains is needed.

Having programs in separate domains with restricted rights means that a
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1. Sandboxes and Sandboxing Techniques

bug in one of them does not necessarily compromise the rest of the system and
all data in it. Separating programs like this reduces the impact any individual
vulnerability has.

1.1 Sandboxing in Operating Systems
Modern operating systems (OS) are typically split into the privileged kernel
space and the unprivileged, sandboxed user space. Kernel is the core of the
OS responsible for, among other things, sandboxing running user programs.

Hardware-based mechanisms are used to ensure isolation. Paging is used to
map virtual memory and thus restrict access to physical memory. [4, 5] Hard-
ware ring levels forbid unsafe instructions from being executed. That makes
using virtual memory mapping as a security measure possible as otherwise a
program could rewrite its page table. [6]

1.1.1 Processes
Operating systems employ processes as their memory/privilege isolation prim-
itive. Each process has its own virtual memory which is by default not shared
with other processes. A lower-level execution primitive are threads. But while
threads can be used for further parallelization of workload, they do not belong
to a different protection domain — individual threads of a single process have
no isolation between them. [4, 5]

When processes want to do more than just play around in their own address
space, they must get access to resources from other processes or the kernel.
But communication with other processes is done via mechanisms provided by
the kernel. To summarize, all such access has to be done through the kernel.
[7, 8]

1.1.2 Policy Enforcement
Even though each process is a protection domain by itself, it is by default not
particularly restricted as it can affect the system as much as the user running
it could.

All communication is restricted to the system call interface — requests
that the kernel does something that a process cannot do by itself.

Just limiting what system calls are made using ptrace or a kernel space
module and filtering their arguments is sufficient for creating a sandbox with
fine-grained policy enforcement, though as Garfinkel [9] shows it comes with
its share of difficulties.

There are other more sophisticated mechanisms in place allowing processes
to opt-in to different limits on access to resources. These may include limiting
process running time, restricting access to certain system calls altogether, and
more. [10, 11, 12]
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1.2. Virtualization-based Isolation

Restricting this communication and filtering what should and should not
be allowed is what lets us create a process-based sandbox, such as the one
Chromium uses. [13]

1.2 Virtualization-based Isolation
Virtualization means creating virtual versions of physical resources and thus
hiding the physical versions behind a controlled layer. A similar term is emu-
lation which is used when there is no physical version of the virtual resource
and its functionality is simulated using software. [3, p. 40-41]

This allows for providing different instances of virtual resources to different
components thus isolating them. An example would be the aforementioned
virtual memory that processes are given access to instead of accessing physical
memory directly.

1.2.1 Virtual Machines
As virtual machines are virtualized computers, they should be perfectly iso-
lated as they cannot just access the computer that is running them. Such
machines don’t have to be running an operating system — virtualizing the
processor, memory, and potentially other peripheries is what allows the isola-
tion to work. [14]

It is to be noted that the sandboxed component still has to be granted
an interface with which it can communicate with the outside world. If the
interface is not sufficiently restricted, the component can do as much harm as
any other process.

Sandboxing based on running a component in a minimalistic virtualized
environment has been demonstrated. [15, 14, 16]

Some programming languages are designed to be compiled for a specific
virtual machine such as the Java Virtual Machine. Such machines do not
require a real-world equivalent and may be fully emulated. [3, p. 40-41]

1.3 Interpreters
An interpreter is a program that executes the code it is given without first
transforming it into another language as a compiler would.

By definition, interpreters do not provide any security guarantees other
than the ones the interpreted language gives.

1.4 User Space Sandboxing Mechanisms
If the OS does not provide sufficiently fine-grained control over permissions or
the inter-process communication overheads are considered too large [17] other
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1. Sandboxes and Sandboxing Techniques

isolation or policy enforcement mechanisms may be used. Ultimately, creating
a sandbox running inside a process is necessary — escaping the sandbox would
be equal to taking control of the process and still having to deal with the
restrictions imposed upon it by the operating system.

A major obstacle in this path is the OS taking a process as a single pro-
tection domain even though internally different libraries and plugins, which
should not have equal rights, are used.

That means user space sandboxing must be implemented without using the
hardware mechanisms that the OS uses and all the restrictions a process can
opt-in to will apply to the entire process. The OS-based restrictions should
not be overlooked. If the sandbox were somehow bypassed, those would still
be effective in restricting what damage can be done.

All the isolation mechanisms attempt to isolate parts of a program from
each other — essentially creating individual protection domains. Though if
provided an insecure interface, they may still escape the sandbox and be used
for malicious purposes.

1.4.1 Software Fault Isolation

As Gang [18] very well summarizes:
Software Fault Isolation is a technique based on running modified code.

Either by dynamically rewriting the binary code which is being executed or by
statically in-lining checks into the entire program, an input program is taken
and transformed into a safer variant. [18]

This technique can be used to enforce both control flow and data flow
integrity. For example, making sure only code inside the sandbox can be
executed and only memory it owns can be read and written. [18]

It may be implemented as a compiler that adds the necessary checks into
the resulting code. This method requires access to the source code. [18]

If compiled code is to be run directly, some form of a verifier is needed
to ensure all checks have been inserted correctly. Assuming the compiler is
correctly implemented the issue can be sidestepped by only allowing running
code which was compiled by the compiler beforehand. [18]

Such guarantees come with some runtime speed overhead and with upkeep
overhead as the compiler/rewriter/verifier need to be kept up to date. [18]

One prominent example of this approach is Native Client [19] which had
been a part of the Chrome browser until 2019 when it got deprecated in favour
of WebAssembly [20].

1.4.2 Language-based Sandboxing

Language-based sandboxing is based on some features or properties of a lan-
guage. Much like how sandboxes restrict what resources can be accessed,
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1.4. User Space Sandboxing Mechanisms

languages may restrict by simply not having expressions to describe certain
unsafe operations.

It may also allow adding policies to using internal functions such as the
ones from a language’s standard library rather than only the system calls.
For example, in Java the Security Manager [21] (which is now deprecated)
could be used to check which exact function calls lead to this restricted call
and decide if all of the callers had sufficient rights. Lua allows for wrapping
of functions and restricting which parameters are OK and which are not or
outright replacing the original functionality.

Two features that must be implemented correctly are type safety and mem-
ory safety. Otherwise, all restrictions a language imposes could be worked
around.

1.4.2.1 Memory Safety

Memory safety is a difficult term to define — commonly defined using the
errors it prevents rather than the properties a memory-safe language should
have. [22]

The paper [23] and article [22] attempt to formalise this, but listing the
errors it prevents gives us a more intuitive understanding of what it means.

To give a simplified explanation, it should not be possible to access unde-
fined memory. Some common violations of this rule are use after free, illegal
free, using uninitialized memory, buffer overflow, null pointer dereference. [22]

1.4.2.2 Type Safety

Type safety ensures that a programmer can trust that variable of a type always
contains a valid value for that type.

Moreover, type safety ensures an operation with invalid types — such as
calling a function with incorrect parameters — simply cannot be executed.
These guarantees may be enforced both statically at compile time and dy-
namically at run time.[24]

A weak type system may be used to subvert memory safety as casting
an integer to a pointer would allow for arbitrary memory access. Without
memory safety a type system cannot be fully trusted as the underlying value
of a type could be easily overwritten to be invalid.

Type confusion is a bug where a program expects a value of a different
type than it receives and continues operating on it with the assumption that
it is correctly typed.

1.4.2.3 Achieving Isolation

When memory safety and type safety get combined, a program cannot retrieve
data from arbitrary memory locations. And if that is the case, all values and
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1. Sandboxes and Sandboxing Techniques

functions a program interacts with must come from some sort of interface
described by the language.

This guarantee is sufficient for achieving isolation from the rest of the
system, but the interface may introduce bugs that break the isolation as the
functions which are being interfaced may be written in an unsafe language
and contain bugs or be inherently unsafe due to their functionality.

A component, in this case, may be an entire program that is compiled
directly into machine code (one such case is described in section 1.5.1). In the
case of a language running in an interpreter or a virtual machine, the entire
interpreter may act as a component with restrictions imposed upon it rather
than the language. This is further discussed in section 2.2.1.

While memory and type safety are still required, some languages may of-
fer sandboxing or isolation as an integral part of the language. When only
using memory and type safety, the entire runtime has to be constrained. The
languages allow for segregating protection domains based on lower-level prim-
itives.

Java, for example, uses individual classes or more specifically protection
domains as their primitive. Their protection domains are sets of classes with
the same privileges. [25, p. 2]

In Lua, each function is ultimately a protection domain. This will be
discussed later in section 2.1.1.1.

Some languages may make isolation particularly hard by leaking poten-
tially sensitive data from unexpected sources. A good example is Javascript
in web browsers where — unless strict mode is enabled — the window object
is leaked through many different calls. [26]

1.4.2.4 Policy Enforcement

Policy enforcement in language-based sandboxes differs from process-based
sandboxes in a couple of ways. While the concepts are the same, details may
differ.

First and foremost, the controlled interface is often different. Languages
ship with their standard library which may be widely different from the system
call interface. As such, the restrictions must be tailored to this interface rather
than the resources or system calls.

Each value or function accessible with the language can be considered from
a privilege standpoint — deciding whether each domain should be able to use
those resources. The restrictions can of course be more fine-grained inside the
functions should they be accessible at all.

Some languages may allow for hiding or replacing functions, effectively
removing them from the interface entirely.

Policy enforcement may be a part of the language or its standard library.
One such example is shown in section 1.5.2.
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1.5. Sandboxing in Specific Languages

Other mitigations come from language features themselves. For example,
Lua strings are immutable. Once a string value is retrieved it cannot be
changed, only manipulated to create a new string. When checking the contents
of a string in C, its value may be changed from another thread after it has
been validated — a Time-of-check Time-of-use (TOCTOU) Race Condition
[27].

1.5 Sandboxing in Specific Languages

This section covers some programming languages and sandboxing mechanics
used in them. Many other languages also allow for sandboxing in some way.

Javascript is an example of a language where sandboxing is very useful for
advertisements and other arbitrary third-party code. The language is however
not designed to make sandboxing easy. It can be encapsulated in an iframe
— thus sidestepping the need for a language-based sandbox — though that
restricts it to a specific section of the page which may not always be wanted.
Otherwise sandboxing javascript is very complex as there are many subtle
ways in which bypassing a sandbox may be possible. [28, 26]

1.5.1 WebAssembly

An interesting example of isolation implementation is WebAssembly (Wasm).
It is a ‘binary instruction format for a stack-based virtual machine’ [29], mean-
ing it is something akin to the machine instructions a processor uses.

Wasm can be used as a compile target — multiple languages can be com-
piled into Wasm. [30].

Wasm isolation is based on the concept of ‘Linear memory’. All memory
accesses are bound to a restricted region indexed by a 32-bit integer. As has
been shown, a bug can result in the region’s data being corrupted making it
untrustworthy — but only that region. Barring a bug in the virtual machine or
the provided API, no resources outside its own memory space can be affected.
A bug can result in malicious data being sent via the API as internally the
memory safety is not guaranteed at all. [31]

Wasm does not provide any instructions for modifying the executable code.
That means all functions have to be provided from outside of the sandbox.

An example of how Wasm can be used for sandboxing is the Firefox browser
which uses it via the RLBox library to sandbox some helper libraries. It
compiles to Wasm and then to machine code while retaining the security
guarantees Wasm provides. [32]
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1. Sandboxes and Sandboxing Techniques

1.5.2 Java and C#
While both Java and C# provide type safety [24], sandboxing of partially
trusted code has been discontinued [33, 21] as it is very hard to get right. [25,
34]

Both languages employed a rather complicated security policy manager
based on checking the stack for which classes have been used in the calling
chain and determining if all of the classes have sufficient rights for the privi-
leged operation. [25, 33]

Instead, using the system-provided access control and isolation mechanics
is now being recommended. [33]

Java provides a module mechanism through which some sort of sandboxing
may be possible [35], but this method is not straightforward nor simple.
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Chapter 2
Lua

This chapter covers basic information about the language, its features, and
concepts useful for creating a sandbox. Lua versions 5.1–5.4 have been checked
and relevant differences between the versions will be mentioned.

Lua is designed to be an embedded language, meaning it is to be used to
extend an application rather than to be used to make a program using only
it. The language is heavily reliant on the API provided by the application, as
even the standard library functions must be explicitly loaded by it. [36]

The program in which Lua is embedded is referred to as the host program.
There are two main APIs. The language API, which is provided to the

program running in Lua, and the C API, which is used to interact with the
interpreter from the host program.

The language can be embedded via either static linking or linking against
a shared library. Both options provide the same functionality.

The PUC-Rio1 implementation of Lua will be referred to as the official
implementation. Other interpreters generally attempt to be compatible with
PUC-Rio’s C API and Lua libraries, not only the language syntax and seman-
tics, while often providing their extensions.

All the interpreters mentioned in this work are composed of a language
compiler and a virtual machine. Lua code is compiled into bytecode which is
later executed by the virtual machine. The interpreters allow for loading of
pre-compiled bytecode but provide no guarantees when executing intentionally
maliciously crafted bytecode. [37, 38]

It has been shown that executing malicious bytecode is a serious security
vulnerability that may lead to arbitrary code execution as mentioned in section
3.3. It is either assumed or outright claimed [37] that the bytecode created
by the provided compiler will always be safe.

This is an application of the principles of Software Fault Isolation. The
assumption here is that the compiler will inject appropriate restrictions into

1https://www.lua.org/
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2. Lua

the bytecode upon compilation. It also implies that arbitrary changes to the
values the virtual machine operates with during the execution could lead to
further exploits, if the checks are not set up to handle this.

The Lua manual does not explicitly warn about the dangers of untrusted
bytecode: the 5.1 manual [39] does not mention it at all, 5.2 [40] mentions
that all verification of it has been removed and is insecure, and both the 5.3
[41] and the 5.4 [38] manuals merely claim it may crash the interpreter.

2.1 Language features
Lua is a dynamically typed language with no compile-time type checking.
Each function has to check the validity of its arguments manually. Even the
argument count is not checked.

After embedding into a program, the language runs in an environment
called a State. This is an object representing the interpreter in which the
code is then loaded and executed. Many APIs are provided, allowing for
nigh-arbitrary access to all data and internal values of the interpreter.

A State is designed to only work with a single thread at a time. If multi-
threading is desired, such programs have to be split into multiple States akin
to creating additional processes on an OS. The problem is, transferring values
between States is not trivial. To put it simply, values cannot be passed into
the new environment by reference and instead must be copied with all the
limitations and benefits it brings.

Not all language features are covered in this section, merely a subset of
them considered relevant to this work. For example, Lua 5.4 introduces con-
stant local variables which are not considered relevant for sandboxing as they
are only local.

2.1.1 Values and their types
‘All values in Lua are first class values. This means that all values can be
stored in variables, passed as arguments to other functions, and returned as
results.’ [39, ch. 2.2]

Some values are very simple. The default value of all variables is nil.
This is usually considered an absence of a value. As far as trivial data types
are concerned, there is also number, string, and boolean. Lua strings are
immutable and are not terminated by zero — they can contain any values.
They are closer to constant byte arrays than to strings in this manner. [39,
ch. 2.2]

Other values have more complex semantics.
Lua does not have C-like arrays, tables are used instead. Tables are asso-

ciative arrays in which keys and values can be of any type except nil. [39, ch.
2.2]
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2.1. Language features

2.1.1.1 Functions

Functions, whether provided by the host program or Lua are treated the
same way in the language. The C API considers them to be distinct types.
All functions can take an arbitrary number of arguments and may return as
many values as they wish. [39, ch. 2.5.8]

All Lua functions may have local variables bound to the current scope and
upvalues which are references to variables in the enclosing lexical scope. Vari-
ables not bound to any local or upvalue are stored in the function environment,
which may be shared between functions. [39, ch. 2.6]

All executable code is loaded as a function. When loading a file, it is
compiled as a vararg function which may then be invoked. In the manual,
this executable block of code is called a ‘chunk’.

A function’s environment is a table that can be manipulated in the same
way any other table can. The exact implementation changed between Lua
versions 5.1 and 5.2. It used to be a magical value associated with all func-
tions. In version 5.2 the concept got simplified. Instead, the environment of a
function is always bound as its first upvalue under the name _ENV. [39, ch.
2.3][40, ch. 2.2]

The global environment is a table which the State keeps a track of and
many functions by default operate on it. Alternatively, in version 5.1, this was
a table which was bound to the current thread rather than being universally
global. Unless explicitly changed, the global environment is still stored in the
_G variable and may be equal to the _ENV value. [39, ch. 2.3][40, ch. 2.2]

It is assumed that both local variables and upvalues in a function cannot
be retrieved or affected by outside sources.

2.1.1.2 Threads

Another value type is coroutines referred to as threads. These may wrap a
Lua function [40, ch. 6.2] or (since version 5.3 [41, ch. 6.2]) any function.

As has been mentioned before, this does not allow for executing code in a
single State from multiple system threads at once.

2.1.1.3 Userdata

Finally, Lua has userdata values. These represent custom values, and their
functionality depends purely on what the host program defines them as. There
are two subtypes, light userdata and full userdata. Assumptions are made that
userdata values cannot be created or modified directly in Lua, to ensure the
integrity of data in the host. [40, ch. 2.1]

Light userdata is just a pointer with no additional associated values. Full
userdata is a block of memory allocated by Lua which will be garbage collected
by it eventually. Lua provides no way to modify or create these values — this
can only be done by the C API. Full userdata may also have Lua values
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associated with them. These had been called environment in Lua version 5.1
but will be referred to as user values as has been the case since. [40, ch. 2.1]

When referring to userdata in this thesis, full userdata are meant as these
values carry very important properties, unlike light userdata.

2.1.1.4 Value References

‘Tables, functions, threads, and (full) userdata values are objects: variables
do not actually contain these values, only references to them. Assignment,
parameter passing, and function returns always manipulate references to such
values; these operations do not imply any kind of copy.’ [38, ch. 2.1]

If any of the above-mentioned objects get passed into two separate sand-
boxes, the objects may be used for communication between them. This may
be both desirable and undesirable as will be later discussed. The exact extent
to which values may be modified and to what effect is covered in section 2.3.

2.1.2 Errors

Lua allows for throwing of errors. These errors work similarly to exceptions
in other programming languages. In Lua, no dedicated object that must be
thrown exists — any value may be thrown. The official interpreter and all its
libraries only ever throw strings, but this is only by convention. [40, ch. 2.3]

Instead of a try-catch block, Lua utilises special calls in protected mode.
These are interacted with as regular Lua function calls. They return a boolean,
indicating whether an error occurred, and either the error value or all other
function return values. From Lua, protected calls are made using pcall. [40,
ch. 2.3]

Explicit throwing is done using the error function. [40, ch. 2.3]
Errors may be used for enforcing that a Lua function is forcibly terminated

while leaving the interpreter in a consistent state. They may be also be used
maliciously to subvert control flow at key moments or to attack error handlers.
When implementing a handler, it is important not to assume the error will
always be a string.

2.1.3 Metatables

All values in Lua can have an associated metatable but only tables and full
userdata have individual metatables. All other values share a metatable with
all other values of the same type. [38, ch. 2.4]

Values in the metatable are referred to as metavalues or metamethods if
they are functions. A metatable is an ordinary table that is queried during
some specific operations, most commonly if the operations were not defined
on the value it is associated with, but exceptions exist.
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Each operation is associated with a unique string key, for which the metat-
able will be queried using raw access — access which ignores metatables as-
sociated with the metatable. The standard keys are always preceded by two
underscores. [38, ch. 2.4]

The use of metatables is not restricted to the core interpreter. Some
functions may optionally respect custom metavalues. This can be done freely
and carries no inherent impact unless a collision in the keys occurs.

One such case is the getmetatable method which becomes restricted if the
__metatable metavalue is defined for the object operated upon. [39, 38]

2.1.4 Notable Metavalues
In the context of sandboxing, most of the outlined metavalues are not particu-
larly interesting. They allow for leaking very little data. The __add operator
is only invoked if the + operator would otherwise fail, as either of the argu-
ments is not a number [38, ch. 2.4]. This is meaningless if argument checking
is done based on types.

Potentially, a function which does not check the types of its arguments
and instead use errors to ensure correct execution may be affected.

Most other metavalues work the same way.

2.1.4.1 Garbage Collection

If a userdata or table object is assigned a metatable with the __gc metavalue
set, the object is marked for finalization. Just before the object is garbage-
collected, the metatable of the object is queried for this metavalue. If this
metavalue is a function, it is called with the to-be-collected object as the only
argument. [41, ch. 2.5.1]

In version 5.1 this operation is only supported for userdata and the metat-
able does not have to contain the metavalue when being set, it may be defined
later. [39, ch. 2.10.1][40, ch. 8.3]

As this metamethod operates with to-be-deleted objects, it is assumed to
be able to deallocate objects or otherwise affect references. Care needs to be
taken that this method never leaks to any sandbox or is resilient to being called
with arbitrary values and the values are then kept in a safe state. Otherwise,
errors such as use after free, double free, or more could arise.

Similar to this are to-be-closed local variables defined in Lua 5.4 with the
__close metamethod. [38, ch. 3.3.8]

2.1.4.2 Hiding Real Values

The __newindex is used whenever key-value pair assignment is attempted to
a non-existent key of a table or assignment to a non-table value. The __index
is used whenever key indexing is attempted on a table with the key not present
or on any non-table value. [38, ch. 2.4]
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These two metamethods allow for restricting all writes and reads to a table.
They can be bypassed by using raw access, however. They see large usage in
the implantation of read-only objects.

Lua also allows for setting these metavalues to tables instead of functions.
In that case, rather than calling a method, the corresponding operation is
done on the stored table.

2.1.5 Dangers of Shared Metatables
If write access to a metatable is acquired, all metavalues may be changed.
This in turn indirectly affects all values which have this metatable set. If
an operator were to be replaced, the results may be spoofed, and the other
argument retrieved and used arbitrarily.

Changing the __gc value will lead to all the objects being eventually
leaked upon garbage collection.

Even only being able to read a metatable directly carries security implica-
tions as the metamethods may otherwise carry some assumptions about the
objects they are called with.

2.2 Sandboxing Mechanisms in Lua
The Lua sandbox can be interpreted as the State which contains and executes
all code in which Lua is contained. An alternative approach can be taken
using purely language features. The former will be referred to as a state-
based sandbox and the latter as a function-based sandbox.

Both approaches are not mutually exclusive and have their benefits and
downsides. Neither is trivial to implement and keep isolated if a person does
not know what they are doing and wishes to expose complex APIs to the
sandbox.

A trivial sandbox with no provided APIs can be constructed very eas-
ily. Interacting with such a sandbox would be tedious and even basic, safe
functionality of Lua would be restricted.

2.2.1 State-based Sandbox
The state-based approach isolates all individual components into separate
States. This approach makes interaction between components more difficult,
as Lua has no mechanisms for sharing data between States. All values which
are to be shared have to either be copied or some other complex mechanism
has to be made up. This approach allows for optimizations based on multi-
threading.

The isolation is only dependent on the language not being able to access
values not provided to the State. As such, the entire Lua State is treated
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Figure 2.1: A diagram showing the architecture of a program using a state-
based sandbox. Each State has its own dedicated API. All communication is
done through the API.

as an unsafe protection domain, which should have no unrestricted privileged
functions accessible.

Policy control with this sandbox is done exclusively in the host application,
potentially replacing some of the standard library functions or removing them
outright.

2.2.2 Function-based Sandbox

The function-based approach treats individual functions as protection do-
mains.

A function cannot affect anything outside of its environment, upvalues,
arguments provided to it and values returned from other functions. Functions
created in this environment cannot access anything more than these values.
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Figure 2.2: A diagram showing the architecture of a program using a function-
based sandbox. A single State contains both trusted and untrusted code. The
untrusted, restricted code cannot access unsafe functions directly. Restrictions
may be implemented both in the host and in Lua.

This restriction means the functions returned or otherwise created from a
domain are also automatically confined to the same domain.

This has large implications on how much harm functions injected into
other protection domains can realistically do, as the function only grants the
protection domain access to parameters passed into it. The replaced function
may also return arbitrary values, but the damage which can be done is severely
limited.

Policy enforcement has to be done by the functions provided to the in-
dividual protection domains. It can be done in Lua using techniques from
section 3.2 or in the host program.

This means that a single State may contain privileged protection domains
with access to dangerous APIs alongside untrusted user code. If incorrectly
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isolated, the dangerous functions may be leaked or called with incorrect argu-
ments.

Sharing values is very simple with this sandbox, as values can be passed
as a function argument or saved in a shared table. This, however, allows for
accidental sharing of values. Since shared objects can be modified, this may
result in unwanted communication or even attacks between domains.

This entire sandbox trivially breaks down by making the ‘debug’ library
accessible. The library contains functions that allow for accessing and chang-
ing all values accessible in a given Lua State.

2.3 Referencing Variables and Values
This section talks about how values may be shared between different functions
and in turn sandboxes. It forms a basis of what needs to be isolated and what
may be shared with what restrictions. It may also shine some light on issues
with copying values between sandboxes.

2.3.1 Variables
A variable refers to an identifier under which a value is stored. The language
does not provide a way to create arbitrary references to variables.

Local variables may be passed by reference only as upvalues which need
to be bound on function creation. Upvalue variables a function contains may
be referenced in the same manner.

In version 5.1 no built-in method for changing what variable upvalues are
bound to exists. From version 5.2 functions for binding together multiple
upvalues exist in the form of the upvaluejoin API. No API exists for creating
a new upvalue from a local variable in a thread.

In all versions, the debug library and the C API allow for accessing and
changing the values of upvalues and locals.

If these API are not readily accessible, some security guarantees can be
inferred. Because the code of a function cannot be changed after creation, all
local variables and upvalues can be assumed to be isolated from any outside
tampering.

Global variables cannot be passed by reference individually. The environ-
ment of a function has to be shared. This works as if sharing just another
table.

2.3.2 Values
Values other than objects are not considered at all in this section, since they
do not get passed as reference and are implicitly copied.

Sharing tables implies all keys and values inside it can be retrieved and
changed. Techniques restricting reads and writes to a table exist. Extra care
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has to be taken when either the keys or values are objects as changing them
changes the state of the table, even though it is not directly modified.

Dangers of functions passed as a reference depend on the restrictions placed
upon a sandbox. The bytecode may not be changed at all, though it may
be retrieved. The environment and upvalues may be retrieved and changed
depending on provided functions.

Threads, coroutines, including the current running thread, represent the
entire running stack. It is possible to retrieve and manipulate all functions
on its stack. In this context, the function locals may also be retrieved and
modified.

Full userdata have no inherent properties. Their use is defined by their
metatable or specific program-defined functions which take userdata. The user
values bound to these objects have to be shared explicitly via the C API. The
values which are actually stored in the memory block may only be changed
by the C API.

The individual metatables of tables and userdata also get shared by the
virtue of the objects being shared.

2.4 Read only values

This section is only relevant for a function-based sandbox, as a state-based
sandbox has no need for additional restrictions on shared values — all shared
values are copied.

In the context of a function-based sandbox sharing values also has to
be done. Sharing an object, which is passed by reference, without it being
changed maliciously is important. One option is to copy over all values. This
operation is expensive and not trivial. This leaves the option of somehow
ensuring that these shared values are immutable.

This is very straightforward in the case of threads, functions and userdata.
Functions that may manipulate these objects need to be restricted or removed
outright.

Tables are a more complicated example. Steps have to be taken to ensure
the metatable of a table does not get changed. Then the __newindex is
defined to ensure no new key/value pairs can be assigned. This will not stop
already existing keys from getting assigned a new value. Proxy objects are
used for this.

By creating an empty table, all assignments are routed to the __newindex
metavalue. To ensure values can still be retrieved, the original table is set as
the __index metavalue. The danger of this approach comes in the form of
raw access. Raw access methods can and will change the values of the proxy
table. If these methods are accessible, a proxy table has to be created for each
sandbox individually.
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Alternatively, a method can be created in the host program which will
provide a proxy userdata object. This object is guaranteed not to be mutable
and may be shared freely. It is vital that the function creating the userdata
cannot be used to change the metatables or other properties of unrelated user-
data. Otherwise it could be used to break the assumption about mutability
of userdata from Lua.

Userdata objects are by definition immutable. Their metatables may still
be retrieved and potentially changed. This has to be restricted. Proxy tables
will not work in this case as metavalues are queried for using raw access. So,
for sensitive metatables the access has to be restricted outright.

2.5 Applying Resource Limits
For many applications, restricting how long a particular program may run
is a valuable option. This prevents needless wasting of system resources for
malfunctioning or actively malicious components.

2.5.1 Restricting operation time
A naive implementation might think this can be trivially done by setting a
hook. Lua allows for setting a hook that will fire an event on some actions such
as calling a function or after a set number of lines. While this can effectively
prevent the code from running for too long it has its flaws. If a C function
which takes a very long time is found, the time per line count will be much
larger.

Even if that were solved, the issue of how to recover from the error comes.
If the sandbox has access to pcall a single error will not be sufficient in re-
turning to normal context as the error will simply be caught by the sandbox.
Repeated throwing of errors or restricting of protected mode calls is required.

Restricting protected calls may be hard, as unrelated functions inside the
sandbox may internally use protected calls.

2.5.2 Restricting memory allocations
Memory allocation restrictions can only be done per State in Lua. This is done
using a custom allocator which counts the total memory used and refuses to
allocate above the limit.

Lua simplifies the counting by using a realloc-like API that additionally
passes the original block size as an argument.

2.6 C interface
The C API communicates with Lua using a virtual stack. When a function
is invoked from Lua, it has a virtual stack assigned which is used for passing
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variables to Lua. When a new State is created, values are added to it using
the stack. The programmer has to take care that the virtual stack does not
overflow by expanding its capacity as appropriate.

When checking if a function’s Lua stack overflows, the stack space internal
Lua functions use does not need to be considered. Lua ensures the stack
may grow an extra EXTRA_STACK spaces for internal use. The extra space
ensures that, unless a programmer has made a mistake beforehand, the virtual
machine will always have enough space on the stack for internal calls, such as
calling metamethods.

The API is partially error-prone as the stack prevents the C type-based
static analysis from preventing mistakes. All standard Lua values are provided
with type-checking retrieval functions, meaning they cannot be confused for
data of another type. This does not apply to userdata. Lua only has one
userdata type while the host program may use userdata for storing multiple
different types of objects.

The C API also exposes a Registry, which is a special table associated
with a Lua State that may contain confidential values. This table can be
potentially passed into Lua as it is just a table.

Lua allows for some type-safety with userdata, if some guidelines are fol-
lowed. The function luaL_newmetatable cretes a named metatable. The name
and this metatable are stored in the Registry. When creating a userdata ob-
ject it is assigned this metatable to make it associated with this type. Later
luaL_checkudata can be used to check whether the metatable associated with
a given userdata object is the same as is expected.

If the Registry is made accessible to Lua code, or it becomes possible to
set a metatable to a userdata object, this type-checking will no longer work.

Neither the lifetime nor the location of Lua objects between calls is guar-
anteed. If an object needs to be persistent, it must be stored in Lua. The
Registry is also used for this purpose. If this convention is not adhered to,
this can lead to use-after-free bugs.

While high-level frameworks for Lua exist for creating bindings conve-
niently, it does not mean that these are safer. As is shown in section 5.3, it
can be quite the opposite.

2.7 Standard library safety

This section covers all of the standard library functions and ways in which they
may be abused in the context of both of the mentioned sandboxing approaches.

The functions are grouped by the library which includes them, rather than
the name of the table they are located in, as some of the functions are placed
in the global environment under no other table. Deprecated functions are not
included. Only the latest releases of official Lua versions have been checked.
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Lua implements all of these functions in C so they could be abused if
incorrectly implemented as they are guaranteed to run in an unrestricted
context. No major mistakes in the function implementation were found, so this
section will mostly refer to the intended function semantic being dangerous.
Coercing C functions to run for a very long time is relevant as mechanisms
for restricting script runtime are restricted to Lua code itself.

The functions very commonly handle having more arguments than needed
by simply ignoring the excess arguments.

2.7.1 Base
Allowing the collectgarbage function in and of itself does not sound like a big
deal, but it greatly increases the attack surface on the garbage collection.
Numerous bugs concerning garbage collection have been reported in the past
[42] with one allowing for escaping the Lua State in version 5.4 [43]. Unless
a good reason for keeping this function in the sandbox exists, removing it is
recommended. Alternatively, restricting it to only accept the ‘count’ argument
is safe.

Functions dofile, loadfile allow for loading of arbitrary files. These files
may also be interpreted as Lua code and Lua bytecode. Even if the functions
were restricted to only load uncompiled code, unrestricted filesystem access
is still an issue. The load and loadstring functions allow for loading functions
from strings. The strings may also be interpreted as bytecode, which needs
to be restricted. All of these functions also, by default, load the function into
the global environment. That needs to be prevented to retain the expectation
that all functions created in a protection domain remain in the domain.

The pair of get/setmetatable functions allow for accessing metatables un-
less __metatable is defined. This may have severe security implications for
userdata objects and proxy objects.

The print function allows for arbitrary writes to stdout. This may be
unwanted since it can facilitate communication with other programs.

All raw access methods raw* will have implications for shared tables.
The next method is used to iterate a table using raw access in all versions.

If trying to restrict the function, the first return value of the pairs function
also has to be restricted as it is this function.

Functions ipairs, pairs allow for iterating over a table using raw access in
version 5.1. In version 5.2 they still use raw access but may be overridden by
the metamethods __ipairs and __pairs. Since version 5.3 the ipairs function
respects metatables when querying and its metamethod is deprecated.

The function tostring takes a single argument and converts it to a string.
For many types, it returns a value in the form ‘type: address’. The exact
object of which an address is collected varies but if given a good function,
getting a pointer to where C functions are allocated in memory is nigh guar-
anteed. This pretty much breaks or at least reduces the security guarantees
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which come from using Address space layout randomization. If the __tostring
metamethod is defined for the argument, it is called instead.

The _G variable is potentially unsafe if not set to the same value as the
function environment. It may also cause issues if the environment is otherwise
not directly accessible — this could lead to the metatable of the environment
table getting leaked.

The get/setfenv functions allow for retrieving and resetting the environ-
ments of functions. They are only present in version 5.1 but have severe
implications if not restricted at all. They can provide access to the global
environment and more.

The function unpack is using raw access but is only present in version 5.1.
It was moved to the table library later.

The function newproxy is undocumented, only present in version 5.1, and
breaks the assumption that userdata objects cannot be created from Lua. It
does not, however, have other security implications.

2.7.2 Coroutine

No dangerous functions have been found in this library. Until version 5.4,
when both C and Lua functions may be turned into coroutines, it can be used
for detecting the type of a function.

2.7.3 Debug

As the manual clearly states, this library is not meant to be used in usual Lua
code and is meant for debugging only.

If a pure state-based sandbox is used, it may be possible to include this li-
brary as well. Almost all functions in this library break some basic assumption
about Lua code. Do not include this library in a function-based sandbox.

In a state-based sandbox, allowing access to this library may not lead to
an immediate escape from the sandbox, but extra care has to be taken when
interacting with Lua. Specifically, the Registry, which should be a safe place
to store values, will be compromised. This has other implications, since the
Registry also stores a copy of all loaded libraries, meaning that some forms of
deletion will still result in data getting leaked. Moreover, no metatable will
be secure.

If the debug library is allowed in full, especially when concerning manipu-
lation of local values and upvalues, further research needs to be done to ensure
this cannot be used to attack the virtual machine as will be hinted at in section
3.3.

The function debug.traceback may be safe if string-based knowledge of the
call stack is not considered essential.
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2.7.4 Package
This package is unsafe in its entirety. It allows for loading of both Lua files
and native compiled libraries.

2.7.5 IO
This library is not to be included in any sandbox. It allows for accessing
the filesystem and even launching other programs. Even leaking opened file
userdata objects is unsafe as they contain callable functions for reading and
writing to the opened file in the metatable.

2.7.6 OS
The os library is also unsafe except for a few functions. I will not be listing
why each function is supposed to be restricted, as it is self-evident. I do not
believe it is possible to reasonably restrict these functions aside from removing
them from the environment outright.

Only the functions os.clock, os.time, os.difftime should be allowed.
Special care has to be taken with the function os.date. The standard

library uses the C functions gmtime and localtime which may not be thread-
safe.

2.7.7 Bit32
This library is endemic to the 5.2 version. It was later superseded by native
binary operators. It contains no unsafe functions.

2.7.8 Utf8
Nothing of note was found in this library.

2.7.9 Table
The tables library is mostly safe. Up until version 5.3 it ignored metamethods
of its arguments, meaning that all operations were done using raw access and
it could only operate on tables. It only ever operates on numeric keys, but
it could be an issue for a function-based sandbox that depends on rawset
and rawget not being accessible for numeric keys. Rawset can be emulated
with repeated calls to table.insert and rawget with calls to table.remove. The
deprecated foreach functions also allow for looping over keys using raw access.

The 5.1 version of table.insert does not check if pos has a non-negative
value. So the call ‘table.insert(, -2147483647, ”err”)’ will result in a long
freeze of the application. Of the other mentioned interpreters, LuaJit suffers
from the same issue even though the call finishes in a reasonable time.
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2.7.10 Math
Not much is to be said about the math library. It is a straightforward wrapper
for the C math library. Of note are the random and randomseed methods
which could very well affect other sandboxes or the program itself. As such,
they are potentially unsafe for use in both types of sandboxes. Though it is to
be noted that the C random functions are not meant to be used for security
purposes in any case.

2.7.11 String
Including this library automatically sets the metatable of all strings to one
which has the strings library as the __index metamethod. This is significant
for security purposes, as this creates another way in which the strings library
may be referenced. Alternativelly the fields of the metatable could be modified
leading to further issues.

Of interest is the string.dump function which dumps the bytecode of a
Lua function. This bytecode can be analysed externally to understand the
internals of a sandbox. Some information is also retrieved if an error occurs
while dumping. In all versions, an error while dumping cannot happen unless
the function is a C function, thus betraying that this is an interesting function
to try to exploit.

2.8 Summary
Functions that invalidate basic assumptions about the code need to be care-
fully restricted. These basic assumptions are: the Registry is not accessible
from Lua, metatables of userdata cannot be set from Lua and are made inac-
cessible if they contain unsafe values, user values associated with userdata are
not accessible from Lua, and finally local values, upvalues and environments
of functions cannot be changed and retrieved by other functions.

In a true state-based sandbox the assumption about functions is not strictly
necessary as far as the language is concerned. The virtual machine may also
require that some of these guarantees are not broken. If alternative approaches
are taken to verify the integrity of userdata, restrictions on the Registry and
userdata may also be lifted. Though care needs to be taken so not only the
global environment but also the Registry does not contain any exploitable
values.

A sandbox may add additional restrictions, especially for raw access meth-
ods, if they would violate the integrity of shared data.

Loading of bytecode needs to be forbidden unless the source is guaranteed
to be safe. Functions with access to the filesystem and ones which allow for
executing files should also be avoided unless properly restricted.
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Chapter 3
Attacking Lua

In the previous section, the guarantees expected from Lua were mentioned,
both for the expected integrity of values when interacting with Lua from C
and for the assumptions that need to be fulfilled for securely restricting values
using Lua.

This chapter covers some Lua sandboxes and methods which may be used
to attack Lua or these sandboxes.

3.1 Attack Surface
When a sandbox of either type is constructed, all the functions Lua may access
are the attack surface. As Lua provides no inherent type-checking, no attack
vector can be trivially dismissed.

Since the interpreters are composed of many parts, the code in a sandbox
will always have the option of trying to attack the implementation of the
interpreter, rather than contending with the language-based sandbox.

The loading of malicious bytecode is one example of such an attack, it
attacks the implementation of the virtual machine. In a much similar manner,
the compiler and garbage collector could be attacked. No currently known,
unfixed vulnerabilities of this type exist.

The bug reports of the interpreter of choice must be regularly checked.
Save for checking the implementation of the interpreter, this is the only way
attacks on the implementation can be secured against.

3.2 Sandboxing Methods
Whatever method is chosen for sandboxing, it is important to sandbox func-
tions using a whitelist rather than a blacklist. By using a blacklist, some
unsafe functions may inadvertently get included after an architectural change
or an update.
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One exploit of this type is quite recent. Due to a difference in a package
on Debian, the unsafe Lua library package was loaded and not hidden. [44]

It is vital that all libraries and functions included after the fact are also
secured since they may pose the same security vulnerabilities as the standard
library may.

When a function-based sandbox is created, many dangerous functions can
be wrapped by using the following pattern.

local _unsafeFunction = unsafeFunct ion ;
function unsafeFunct ion ( . . . )

−− do argument s a n i t i s a t i o n
return _unsafeFunction ( . . . )

end

This replaces the unsafeFunction in the current environment. The original
unsafe function is stored only as an upvalue of this function and cannot be
retrieved.

Simply erasing unsafe functions is also possible:

for key , va lue in pairs ( os ) do
i f ( key ~= ' time ' ) then

os [ key ] = ni l ;
end

end

This irreversibly removes all values but the one associated with key ‘time’
from the table os from the current environment.

It is to be noted that if the original functions were ever stored anywhere
else, these protections may be bypassed by retrieving them from there.

Both of these methods may be utilized in a state-based sandbox if the
relevant assumptions are not violated.

3.3 Bytecode Attack
Bytecode being insecure has been mentioned multiple times in this thesis.
Exploiting of Lua bytecode has been shown possible for PUC-Rio Lua 5.1 [45,
46], Lua 5.2 [47] and LuaJIT [48].

Attacks on the official interpreter use multiple assumptions in the virtual
machine. In both attacks the bytecode instructions concerning for loops make
assumptions about the types of values when inside a for loop. The types are
only checked when entering the loop. Bypassing the check or overwriting them
inside the loop leads to addresses of Lua values leaking, which will be needed
later. The attack on version 5.1 breaks an assumption in the bytecode for
creation of functions, eventually rewriting a function pointer with a crafted
string. The version 5.2 attack instead exploits the assignment operator, over-
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writing the function that is supposed to be called when returning from a call,
with a specially crafted string. [45, 47]

This shows a way in which the debug library may be used to attack an
implementation. If the execution were paused at a precise point in a for
loop, a value of a local value changed, and then execution were resumed, the
equivalent of the first part of the attack would be reached. This could be done
by using the hooks briefly mentioned in the section about limiting process
time, as these get called just before an instruction gets executed.

No publicly available verifier of bytecode exists for any interpreter of any
version at the time of writing this thesis.

3.4 Other Known Bugs
This section only contains known bugs for the PUC-Rio interpreter. It shows
why using an outdated version of an interpreter can be extremely dangerous.

For this reason, using outdated versions of the PUC-Rio interpreter, and
especially the 5.1 version, is not recommended. Outdated major versions are
explicitly not updated even for security concerns. And updating the latest
version is just as important as new exploits commonly appear. An example
of this is an attack on the garbage collector in Lua 5.4.0-5.4.3 [43]. The latest
bugs do not necessarily get a minor version increase when they are fixed —
they just get fixed and listed in the bugs section [42].

Numerous bugs such as crashing [42, #5.2.0-5 , #5.3.4-2 , #5.3.4-3], mem-
ory hoarding [42, #5.2.0-1] and stack overflow [42, #5.2.2-1] exist for the latest
Lua 5.1.

Lua 5.2 does not fare much better, returning incorrect values in some
cases [42, #5.3.0-3], crashes [42, #5.3.0-3 , #5.3.3-1] and even has incorrect
bytecode generation [42, #5.3.4-1].

Lua 5.3 is still not perfect with crashes [42, #5.4.0-9 , #5.4.0-11] being
possible.

Note that the mentioned bugs are not an exhaustive list and contain only
the most important issues. Most of these do not require any dangerous func-
tions and are never going to be fixed in the corresponding versions by the
authors.

3.5 Notable Lua Interpreters
Multiple different Lua interpreters exist aside from the official implementa-
tion. When deciding to implement a sandbox in Lua, the usage of a different
interpreter may make it easier. Note that this list is far from exhaustive —
the chosen interpreters were either commonly mentioned when doing research
for this thesis or have interesting extensions.

29



3. Attacking Lua

The official implementation does not hinder sandboxing in any way, but it
is not made a priority, as can be seen by the number of dangerous functions in
the standard library. It is, however, maintained and has a long history behind
it.

LuaJIT2 is an interpreter of Lua which in addition to compilation into
bytecode then does just-in-time compilation into machine code. It is not
designed for sandboxing. The interpreter is compatible with Lua version 5.1
with some extensions from later versions included.

The Luau interpreter3 is used in the game Roblox where Lua is extensively
used as a scripting language. It is an interpreter of Lua written in C++ which
retains complete backward compatibility with Lua version 5.1. [49]

It ships with a sandboxed environment out of the box. None of the libraries
considered dangerous for a state-based sandbox are included in the interpreter.
They may be included by a host program, but an implementer has to explicitly
create and register them. For its interactive interpreter, it ships a restricted
implementation of require which only loads Lua files.

A much more interesting are some of the non-standard shipped sandboxing
features. It replaces the unsafe garbage collection metamethods stored in the
metatable of an object by using its own mechanic which is constrained to the
C API [37]. It also makes read-only tables an integral part of the virtual
machine, thus avoiding proxy objects.

It also modifies the language to optionally support type-checking at com-
pile time.

The Luau interpreter itself is sufficiently constrained to be considered se-
cure after including its standard libraries, unlike the official Lua interpreter.

3.6 Sandbox Implementations
Many different Lua sandbox implementations may be encountered based on
the use case and strategy used. Some which were found interesting are listed
here.

3.6.1 Kikito Lua-Sandbox
A sandbox by Kikito 4. It explicitly warns that for Lua version 5.1, disabling
bytecode is not possible. This is not completely true. It cannot be done
portably, but if we were to restrict ourselves to the PUC-Rio 5.1 implemen-
tation, it is possible to restrict this behaviour.

Citing the Lua Bugs page ‘To avoid running precompiled code from un-
trusted sources, raise an error if the first byte in the stream is the escape
character (decimal 27).’ [42]

2https://luajit.org/
3https://luau-lang.org/
4https://github.com/kikito/lua-sandbox
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Other interpreters running this version of Lua have generally extended the
language to allow for restricting the loading of bytecode.

Code in this sandbox is correctly run in a restricted environment that
contains no unsafe functions as outlined previously. By default, the code is
loaded from a string, though the exact same principle can be applied when
running code from a file.

This sandbox allows for restricting the runtime of a function using the
quota mechanism. It only attempts to throw one error so it can be bypassed.
A possible solution to this is outlined in a pull request5 I have made for the
repository. The attempted solution is based on repeated throwing of errors
until the sandbox is returned from.

While it does state why some functions were restricted, it fails to warn that
if getmetatable were to be passed into the sandbox, all other sandboxes could
be affected as the library tables are shared via proxy tables. It only mentions
it could affect global objects. This would not affect the global versions of the
libraries.

3.6.2 RyanSquared Lua-Sandbox
This sandbox6 ignores all Lua guarantees and instead proceeds to enforce
limits using the operating system.

No research has been done into how resilient this sandbox is, as it is out
of the scope of this thesis. It serves as a reminder that using the operating
system for sandboxing may be just as or even more effective than using Lua.

3.6.3 Factorio
The game Factorio7 utilizes Lua not only for mods but also for internal im-
plementations.

It uses a very unrestrictive state-based sandbox. It loads different Lua files
with different accessible values in different stages of the game initialisation [50].
But many of the potentially unsafe libraries, including the debug package, are
included [51]. As I have previously mentioned, in a state-based sandbox this
is not a critical mistake, but the implementation has to work around this.

The inclusion of bytecode loading is very surprising. Factorio either uses
an interpreter with a built-in bytecode verification or has made a verifier of
its own. A brief test of loading explicitly malicious bytecode was done using
functions from [52], as [47] is not applicable due to its usage of coroutines.
Malicious bytecode was prevented from loading, while known safe bytecode of
a dumped function was loaded without issue. The unsafe bytecode was also
tested in the PUC-Rio 5.2 interpreter and immediately resulted in a crash.

5https://github.com/kikito/lua-sandbox/pull/12
6https://github.com/RyanSquared/lua-sandbox
7https://factorio.com/
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This may also fix the potential attack mentioned in section 3.3 but has not
been tested.

Potential resource exhaustion exploits are not an issue in this game as it
has no competitive multiplayer and they cannot be used for any gains.

In my scan of the environment, I have found no garbage collection metameth-
ods and as a state-based sandbox is utilized, shared objects are a non-issue.

3.6.4 Libluabox
This sandbox8 is meant to be a stripped-down version of official Lua 5.1. Much
like the Luau interpreter, it does not contain unsafe functions. Unfortunately,
while it seems to be correctly removing unsafe libraries, it fails to consider the
bugs in the original interpreter. None of the bugs listed in [42] are fixed. It
should be avoided.

8https://gitlab.com/numzero/libluabox
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Chapter 4
Automatic Environment Crawler

A tool was created to analyse sandboxes made in Lua. It attempts to log every
value which can be found in a function’s environment. The logged values can
then be more effectively inspected.

This tool is split into two parts. An environment dumper and a dump
analyser. The rationale behind separating the two modules is that interaction
with the sandbox may be severely restricted. This way, only retrieving a string
in some way is necessary.

Examples of dumped environments can be found in the attached medium.
Environments dumped from Factorio and from OpenMW, which is mentioned
in the next chapter, are included.

4.1 Motivation

Analysing the environment of a function is something which will always be
done when analysing a Lua sandbox. All Lua code is loaded as a function,
after all.

No matter the type of sandbox used, the environment will contain any and
all values that may be interacted with.

By getting a full enumeration of all the accessible values in an environment,
we get a comprehensive list of all values exposed to the sandbox.

All of this could be done by hand by checking the source code of the
host program and seeing which values are provided. Dumping every value
programmatically instead can both speed up the research of a sandbox and
may also show otherwise overlooked values.
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4.2 Dumper
Using functions from the standard library, the tool attempts to crawl the
entire environment of a function.

Then these crawled values are serialised into a string, which is later trans-
ferred into the analyser.

4.2.1 Crawling
All values are recursively explored, starting from a value which is passed into
the dumper. This value is typically the environment of a function.

To ensure shared metatables are not missed, dummy instances of values of
all types that may be created from Lua are also analysed.

All values are queried for their metatables using the getmetatable function.
An attempt is made to get the environment and upvalues of functions.

The getfenv function and the debug library are used for this.
Getting all values accessible from tables and userdata is a difficult task.

A part of the values may be gleaned from the metatable. Many others have
to be explicitly queried for. Tables can be explicitly walked using raw access.
This is done using the next function and emulating a for loop. Raw access is
meaningless for userdata.

To make full use of the potentially overloaded pairs function, multiple
things have to be done. Firstly, it has a well-defined interface. This allows for
calling it and then checking if the return values leak anything new. Secondly,
it is used in a for loop to retrieve keys and values of tables and userdata.

Tables and userdata are further explicitly tested for common metatable
keys as metatables may easily contain sensitive functions.

4.2.2 Serialising
The only major difficulty with serialising is getting a unique identifier for all
values.

The tostring method can be used if it is not restricted and still leaks
pointers. Alternatively, a function which keeps track of all values may be
used. This function will create some identifier and consistently return it for
the same calling value.

4.3 Analyser
The analyser part of the tool is designed to run separate from the dumper. It
loads one or two strings created by the dumper.

The loaded environments can be then scanned for shared values and more.
A full enumeration of values of a given type can be listed. This can in used
to find any differences between the environments.
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The ways a value may be reached along with other information about how
it can be used later are accessible in the analyser. For example, all the paths
to the string __gc and all the values it points to in all tables may be listed.

4.4 Limitations and Further Improvements
As of now, this tool cannot effectively serve as the only point of analysis.
While it can reliably analyse most types, functions stop it far too easily.

Even though values that functions return can be considered to be a part
of the environment, there is no way to retrieve them automatically. This
means that functions can be very effectively used to employ security through
obscurity.

A prominent example of security through obscurity is proxy tables with
no overload for the pairs function. The hidden tables cannot be walked, but
if the key is known, a value is trivial to extract.

In Lua, not all cases of this are a bad security practice. If the required
keys are objects, they have to be explicitly passed from a protection domain
which contains them.

These function-based obfuscations could be worked around in a couple of
ways.

Getting a database of common table keys and explicitly querying for them
would cover a subset of possible values. Just the names used in the standard
library would help to an extent.

A couple of methods that allow for getting the exact type of function have
been mentioned. The dumper could be extended to make use of them. This
would differentiate which functions implementations can likely be found as
plain Lua code and which must be searched for in the host source code.

No fuzzing or any other testing is currently done for found functions. For
example, using known error messages, the expected parameters of these func-
tions could be retrieved.

Even though the scanning is not perfect, the tool was very useful in the
analysis done in the next chapter.
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Chapter 5
OpenMW

OpenMW9 is an open-source game engine that is designed to be compatible
with the engine of the game The Elder Scrolls III: Morrowind.

In the next version, a new Lua scripting interface will be added using
LuaJIT and the C++ Sol2 framework10.

An analysis was done to see if the standard library functions are restricted
properly as outlined in this thesis. This includes making unsafe functions
inaccessible and having proper isolation between sandboxes on the Lua side.
An extensive analysis of the provided C++ API was not done except for the
require function that was concluded to be safe.

5.1 OpenMW Lua Sandbox Design
OpenMW utilizes a function-based sandbox — all scripts are run in the same
Lua State. While most of the dangerous libraries mentioned in section 2.7 are
not present in the global environment, the few that are can create a lot of
issues.

I have incorrectly claimed in an issue11 made for one of the exploits that a
malicious global function would not be able to do harm. This is not true. The
debug library is included and functions for loading bytecode are not restricted.

Functions provided to the user sandboxes are a well-restricted subset of
the unsafe functions.

Compared to official Lua 5.1, the pairs and ipairs functions have been
replaced with alternatives implementations which may be overloaded by the
__pairs and __ipairs metamethods respectively.

Individual Lua scripts should be isolated from directly affecting one an-
other except for the explicit interface provided by the engine.

9https://openmw.org/en/
10https://github.com/ThePhD/sol2
11https://gitlab.com/OpenMW/openmw/-/issues/6694
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Standard libraries which are to be shared are loaded into the global en-
vironment and shared based using proxy userdata objects to ensure non-
mutability. The require function also returns shared tables protected in the
same manner. The function responsible for establishing this restriction is
called makeReadOnly.

5.2 Mistakes with makeReadOnly
The implementation of makeReadOnly was done incorrectly. The original table
was getting leaked in multiple ways. This resulted in the global environment
and environments of all other sandboxes getting compromised.

All foreign and internal OpenMW scripts loaded from the filesystem are
sandboxed. Only two types of functions run in the global environment. Func-
tions provided by the host program which contain no usage of these compro-
mised libraries. Functions defined in the global scope that also do not interact
with any of the compromised libraries. Moreover, these functions have most
of their dependencies stored as upvalues.

The section 2.2.2 briefly mentions how much an injected function can re-
alistically do. Since no function interacts with the compromised values, the
vulnerability resulted in no further exploits.

A mod that asserts whether these vulnerabilities are still present can be
found in the medium attached to this thesis.

5.2.1 Accessible Metatables
The first flaw of makeReadOnly were unprotected metatables. The getmetat-
able method was left unchanged, and no protection was offered in the form of
a defined __metatable value in the metatables. Since the original table was
stored as the __index field of the proxy userdata, accessing the original table
was a trivial operation.

o r i g i n a l T a b l e = getmetatable ( wrappingUserdata ) .__index

The metatable of string values was also accessible. It had not been pro-
tected at all.

Multiple solutions to this issue exist. The use of the __metatable field
could be enforced to ensure protection. This would result in more upkeep
down the line. As the program keeps sensitive functions in the metatables of
other userdata objects, a blanket approach was deemed more appropriate.

Getmetatable was restricted to only work for tables and no other value.

5.2.2 Incorrect pairs overload
Both the pairs and ipairs method were affected but the latter has the same
behaviour so only the former will be described.
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When implementing makeReadOnly, retaining a consistent API by making
pairs callable on the wrapping userdata is desirable. The sandbox did not take
into account that the standard library pairs function returns the original table.

By writing out all the calls happening behind the scenes, we get three
equal expressions.

pairs ( wrappingUserdata )
pairs ( getmetatable ( wrappingUserdata ) .__index )
pairs ( o r i g i n a l T a b l e )

In a for loop this looks safe as the second returned value is not accessible,
but it can be explicitly retrieved.

The solution that was agreed upon looks as follows:

function pairsForReadOnly ( v )
local next , t , key = pairs ( getmetatable ( v ) .__index )
return function (_, k ) return next ( t , k ) end , v , key

end

This retains the original properties of the pairs function while ensuring the
original table does not get leaked.

5.3 Accessible Insecure Garbage Collection
Metamethod

Since the raw access methods are accessible in the sandbox, any shared table
is mutable even if protected via a metatable.

After all of the previously mentioned issues had been solved, a basic scan
of the environment was done to see if this proves to be an issue. Using the
previously mentioned tool, four shared tables were found. Two of those tables
were metatables and two were tables contained in them. The cause was the
Sol framework.

The Sol framework does not take into account that making metatables
or even metamethods accessible to the code is dangerous. All Sol-mapped
userdata objects in the project contain this behaviour. Mapping is created via
the sol::new_usertype and sol::make_object functions. When these userdata
objects are explicitly queried for metatable keys, the associated metavalues
will be returned. The __index metavalue sometimes contains the metatable
itself, resulting in the observed behaviour. Even objects which do not leak
the entire metatable leak their metatable fields. Specific examples are given
in the issue12 description.

Among these fields is the __gc metamethod. The mapping of this method
consistently points to the C++ template function:

12https://gitlab.com/OpenMW/openmw/-/issues/6698
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template <typename T>
int user type_a l loc_dest ruct ( lua_State ∗ L) {

void∗ memory = lua_touserdata (L , 1 ) ;
memory = al ign_usertype_pointer (memory ) ;
T∗∗ pdata = sta t i c_cas t <T∗∗>(memory ) ;
T∗ data = ∗pdata ;
std : : a l l o c a t o r <T> a l l o c {} ;
std : : a l l o c a t o r _ t r a i t s <std : : a l l o c a t o r <T>>

: : des t roy ( a l l o c , data ) ;
return 0 ;

}
The first value from the Lua virtual stack is to be interpreted as a userdata
object. If it is not userdata, NULL is returned. That results in immediate
program termination due to a page fault after null pointer dereference.

In case it is a userdata object, Sol internally uses another layer of indi-
rection and gets the actual location of the object in memory. Then it calls
the destructor of the object in that memory location in a roundabout C++
way. Unlike how Lua does its mappings, there are no attempts to ensure the
userdata was of the correct type in the first place.

This results in type confusion bugs. Calling another object’s destructor
on an object is possible. Calling a destructor on an object repeatedly is also
possible. The function has no safeguards against this at all. While most
objects in the API contain trivial destructors, making this harmless, this is
not always the case.

Namely LuaUtil::LuaStorage::SectionMutableView that contains an inter-
esting value std::shared_ptr<Section> as its first member variable can be
used. Repeatedly invoking its destructor results in the Section object being
freed and destroyed while still being used by other parts of the program.

Some of the other structs can be used to create arbitrary in place of the
shared pointer. For example, the LuaUtil::Vec4 object allows for setting ar-
bitrary values to the 4 internal floats. In theory, an attacker could forge the
16 bytes in the vector in such a way that they contain meaningful values
(OpenMW makes no attempts to mitigate issues mentioned in 2.7.1) which
then get the Section destructor called upon them and the memory gets freed.

In practice, this is more difficult as the std::shared ptr contains another
layer of indirection and the destructor of Section is not trivial.

As of now, making the game crash at will using this method is possible.
Freeing data structures and then continuing using them, bringing about use-
after-free vulnerabilities, is also realistic. No method of exploiting this in a
meaningful way purely from Lua was found.

At the time of writing this thesis, the issue has not yet been resolved.
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Chapter 6
Suggested Improvements

Possible improvements of sandboxing in Lua can be generally split into two
types. One option is improvements done to the language itself on an inter-
preter level, the other is improvements made by sandbox implementers.

As of now, the language can be used for sandboxing, but the potential ways
a sandbox may be implemented are not documented. Pitfalls which have to
be avoided when designing a sandbox also are not listed anywhere and each
sandbox implementation has to pave its own way.

6.1 Sandboxes
Sandbox implementations tend to not give exact specifications of why and how
the sandbox works. When the user does not know why a restriction was placed
onto a function or why a function was removed, the same behaviour may be
brought back by another function. A sandbox which cannot be modified, while
useful for basic isolation, is not flexible enough for many purposes.

Mentioning that using a state-based sandbox is a possibility would also be
very useful. For example, the only semi-official page concerning sandboxes13

makes no not of such an approach.
The page gives some good recommendations for creating a function-based

sandbox but fails to show the dangers of functions reliably. For example, the
rawget function is marked unsafe while the function next is regarded as fine
even though it can be used to achieve the same functionality.

No such semi-official page exists for Lua versions later than 5.1.
The getmetatable function is also often regarded as universally unsafe,

while that is not necessarily true for a state-based sandbox. By allowing its
usage at least for tables, many commonly used features of the language become
possible to use.

13https://lua-users.org/wiki/SandBoxes
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A list of potentially unsafe functions on its own is meaningless without an
understanding of which guarantees the sandbox requires. Instead, such a list
has to be specified for each sandbox implementation.

A sandbox could also be described very precisely by an interpreter itself. If
sandboxign were a priority, the interpreter could keep a subset of the standard
library that is guaranteed not to directly interact with the OS and retains
guarantees which the virtual machine requires.

6.2 The Language
Modifying the language so sandboxing becomes a bigger priority is possible,
some parts of the design are inherently unsafe.

The most notable of these is the need for garbage collection metameth-
ods being accessible from Lua. As of now, the language provides no way to
guarantee that would ensure a value, which is loaded in a State, cannot be
reached from any code in the State. As a result, all metatables have to be
carefully secured to ensure no vulnerable methods get leaked. The garbage
collection methods are an especially bad case of this, as they may often leave
the destroyed objects in an unusable state.

By adding a way to keep these functions only for the C API, this issue
could be prevented entirely.

An issue for all function-based sandboxes are shared tables. Currently, all
sandboxes have to implement their own methods for making them read-only.
This can be an error-prone operation as the issues in OpenMW show. By
adding read-only as a part of the interpreter, much of this complexity could
be avoided.

Lua version 5.1 does not have any way in which functions can be safely
loaded from a string while being confined to the same function environment.
This has been resolved in later versions but remains an issue for interpreters
using this version.

6.3 Existing Solution
The Luau interpreter solves many of the mentioned issues.

The changes Luau did solve the most obvious issues a sandbox in the
official Lua interpreter has to contend with.

The option to make tables read-only not only by restricting each function
which may be using raw access and having to use proxy tables, but instead
being done on an interpreter level is extremely helpful. It takes all the com-
plexity of ensuring the metatable nor any properties of a table can be changed
and transparently locks the table down without having to resort to complex
interactions which may be broken by accidentally exposing a new API. This
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essentially takes essentially multiple different API and combines them to only
have to care for one function which may break everything.

Luau also removes the dangerous __gc metamethod from the API in all
forms. While it prevents the metamethod from being callable for tables, that
is not an issue for Luau, as the only version it is officially fully compatible
with is 5.1 [53].

The interpreter does not solve the issue in a more generic way. Other
metamethods may still be leaked into the sandbox.
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Chapter 7
Conclusion

This thesis explores common sandboxing techniques and how they may apply
to a sandbox in Lua. Based on this, different ways of constructing a sandbox
are described.

Lua lets us create a language-based sandbox using functions and overwrit-
ing of variables. It allows us fine-grained control of functions and resources
accessible to the user code, which is then run in isolation. That allows us
to control which variables are accessible to different functions. We can thus
segregate the untrusted user-provided code from our own trusted code while
controlling which functions and resources the user can access.

Alternatively, a Lua State-based sandbox may be implemented. This ap-
proach requires preventing dangerous functions from getting loaded into the
Lua State in the first place. The entire Lua State is assumed to contain
malicious code.

Lua does not, however, contain mechanisms for access control on a more
fine-grained level — such as which files should be accessible. That has to be
implemented on a separate layer by individual programs embedding it.

The Lua standard libraries were analysed for potentially dangerous func-
tions which may leak data or otherwise compromise a sandbox. Based on this
knowledge, a tool that automatically crawls all values a Lua function may
access was created. It was successfully used to show vulnerabilities in the
implementation of a Lua sandbox of the OpenMW game engine.
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Appendix A
Acronyms

API Application programming interface

OS Operating system
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Appendix B
Contents of enclosed CD

readme.md......................... the file with CD contents description
Implementation...... the directory with all practical parts of this thesis

OpenMWEscape the directory with a proof of concept mod for OpenMW
Analyser ........ the directory containing the Lua source code of the
environment analyser

Text ................... the thesis text and LATEX source codes directory
BP_Adamek_Petr_2022.pdf............ the thesis text in PDF format
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