
Instructions

Study the area of network monitoring based on deep packet inspection and (extended) IP Flows. Study

the TLS protocol with focus on TLS fingerprinting techniques. Implement a plugin for the ipfixprobe

flow exporter [1] to enrich IP flow data with information about application process identification

(using, e.g., osquery [2]). By using the implemented plugin, create a TLS fingerprinting database.

Develop a NEMEA [3] module capable of TLS fingerprinting of real TLS traffic using a created database.

Evaluate the throughput of the implemented ipfixprobe plugin and the performance of the NEMEA

module.

 
[1] https://github.com/CESNET/ipfixprobe

[2] https://osquery.io

[3] https://nemea.liberouter.org

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 3 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Automated Creation of TLS Fingerprinting Database

Student: Anton Aheyeu

Supervisor: Ing. Karel Hynek

Study program: Informatics

Branch / specialization: Computer Security and Information technology

Department: Department of Computer Systems

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Automated Creation of TLS Fingerprinting
Database

Anton Aheyeu

Department of Information Security
Supervisor: Karel Hynek

February 8, 2022

Acknowledgements

I would like to thank my supervisor Ing. Karel Hynek for valuable advice,
patient guidance and willingness to help during my work on the thesis. I
would also like to thank my family and friends for their love and support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on February 8, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Anton Aheyeu. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Aheyeu, Anton. Automated Creation of TLS Fingerprinting Database. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Tato práce se zabývá návrhem a implementaćı modulu pytrap pro systém
NEMEA, který umožňuje identifikovat komunikuj́ıćı procesy pomoćı databáze
otisk̊u TLS. Pro automatické vytvářeńı databáze TLS otisk̊u byl vyvinut
zásuvný modul pro exportér śıt’ových tok̊u ipfixprobe, který využ́ıvá framework
osquery. V teoretické části uvád́ıme základńı pojmy a principy monitorováńı
śıtě a protokolu TLS, popisujeme, jak zásuvný modul źıskává informace o
identifikaci proces̊u, a proces vytvářeńı databáze otisk̊u TLS. Na základě teo-
retické části jsme implementovali modul pytrap, zásuvný modul pro exportér
tok̊u a doplňkový program pro vytvářeńı databáze otisk̊u TLS, popsaný v
praktické části práce. Výsledky test̊u potvrdily funkčnost a ukázaly úspěšnost
vytvořených modul̊u.

Kĺıčová slova Monitorováńı śıtě, TLS otisk, osquery, NEMEA, JA3.

vii

Abstract

This thesis is about the design and implementation of the pytrap module for
the NEMEA system which enables the acquisition of information about ap-
plication process identification using the TLS fingerprinting database. The
plugin for the ipfixprobe network flow exporter has been developed to auto-
matically create a TLS fingerprint database, which uses the osquery frame-
work. In the theoretical part, we introduce the basic terms and principles of
network monitoring and the TLS protocol, describe how the plugin obtains
information about process identification and the process of creating a TLS
fingerprinting database. Based on the theoretical part, we have implemented
the pytrap module, the plugin for the flow exporter and an additional program
for creating a TLS fingerprinting database described in the practical part of
the thesis. The test results confirm the functionality and show the success
rate of the created module and plugin.

Keywords Network monitoring, TLS fingerprint, osquery, NEMEA, JA3.

viii

Contents

Introduction 1
Goals . 1
Structure of the Thesis . 2

1 Background 3
1.1 Network monitoring . 3

1.1.1 Deep packet inspection 3
1.1.2 Flow-based monitoring 4

1.1.2.1 Traffic flow . 4
1.1.2.2 Flow enrichment 5
1.1.2.3 Flow export formats 5
1.1.2.4 Flow monitoring infrastructure 6

1.2 Transport Layer Security . 8
1.2.1 TLS history and versions 9
1.2.2 TLS handshake . 10
1.2.3 ClientHello message . 11
1.2.4 TLS fingerprinting . 12

1.2.4.1 JA3 fingerprint 13
1.3 Osquery framework . 13

1.3.1 Osquery features . 14
1.3.1.1 Osqueryd . 14
1.3.1.2 Osqueryi . 14
1.3.1.3 SDK osquery 14

2 Analysis and Design 17
2.1 Overall architecture . 17
2.2 Selection of TLS fingerpint algorithm 18
2.3 Osquery extension . 18

2.3.1 Osquery extension architecture 18

ix

2.3.2 Tables in osquery and their portability 19
2.3.3 Selection of relevant information for flow extension by

osquery framework . 19
2.3.3.1 Constant parameters 19
2.3.3.2 Flow-dependent parameters 20
2.3.3.3 Summary . 20

2.3.4 Osquery limitations . 21
2.3.5 Osquery integration . 21
2.3.6 Implementation of extension into ipfixprobe 22

2.3.6.1 Class FlowCachePlugin 22
2.3.6.2 Structure RecordExt 23

2.4 Database creator . 23
2.4.1 Database creator architecture 23
2.4.2 Database creator design 24

2.5 TLS fingerprinting module . 25
2.5.1 TLS fingerprinting module architecture 25
2.5.2 Design of TLS fingerprinting module 25

3 Realisation 27
3.1 Implementation into ipfixprobe 27

3.1.1 Plugin design . 27
3.1.2 Integration of osquery into the plugin 28

3.1.2.1 Running osquery 28
3.1.2.2 Reading from osquery 30
3.1.2.3 Writing to osquery 31
3.1.2.4 Error handling 31

3.2 Database creation . 31
3.3 Implementation of pytrap module 32

3.3.1 TLS fingerprinting module 33

4 Testing 35
4.1 Testing the osquery plugin . 35
4.2 Database creation . 36
4.3 Testing the TLS fingerprinting module 36

Conclusion 39
Future work . 40

Bibliography 41

A Acronyms 47

B Contents of enclosed DVD 49

C Installation manual 51

x

C.1 Dependencies . 51
C.2 Installation . 52
C.3 Usages . 53

D Osquery tables 55

E Listings 59

xi

List of Figures

1.1 Traffic flow visualization . 5
1.2 An example of an extended flow fields 6
1.3 Architecture of a typical flow monitoring system 8
1.4 SSL/TLS protocol releases . 9
1.5 TLS handshake . 10
1.6 JA3 fingerprint creation process . 13

2.1 Overall architecture . 17
2.2 Osquery plugin . 19
2.3 Database creator . 24
2.4 TLS fingerprinting module . 25

xiii

List of Tables

2.1 List of parameters exported by the osquery plugin 21

4.1 Osquery plugin test results without active network use 36
4.2 Osquery plugin test results with active network use 36
4.3 TLS fingerprinting module test results for one device 37
4.4 TLS fingerprinting module test results for the six devices 38

D.1 Table kernel info . 55
D.2 Table system info . 56
D.3 Table os version . 56
D.4 Selection of relevant columns from a process open sockets table . . 57
D.5 Selection of relevant columns from a processes table 57
D.6 Selection of relevant columns from a users table 57

xv

Introduction

Network traffic monitoring is an essential prerequisite for proper computer
network management. Captured traffic needs to be processed and analyzed for
a variety of reasons. Such reasons can be, for example, providing basic network
functionality or detecting potential security problems. Detecting malicious
network traffic is equally important. Network monitoring is a prerequisite for
maintaining network security and minimizing the overall security risks and
threats.

TLS fingerprinting is a method that uses the metadata sent during a TLS
negotiation to determine the communicating application. TLS fingerprint
database is needed for the correct functioning of this method, where metadata
are assigned to a specific application. A high-quality database contributes to
more successful application identification and has great business potential.

In this thesis, we aim to develop tools that can create and fill such a fin-
gerprint database. Moreover a module that can recognize not only the com-
municating application but also the system parameters of the device by TLS
fingerprint using this database. This module will be implemented for an open-
source monitoring system NEMEA and subsequently tested on a functional
network.

Goals

In this work, we are implementing a software tool that allows users to get
the system information of devices in computer networks knowing the TLS
fingerprint. The tool will be used as a module in NEMEA, the system for
network traffic analysis. This module will enrich the network traffic generated
by observed devices using a database that we have purposely created.

Each row in the database contains a fingerprint and a list of system param-
eters. To obtain a fingerprint, we will use the existing TLS plugin provided by
the ipfixprobe flow exporter. In order to get system parameters, it is necessary

1

Introduction

to develop a new plugin, which will use the osquery framework to find system
parameters belonging to a specific flow.

In addition, to combine the results into a common database, we need to
create a program that can compare and merge the results of the existing plugin
and with the one we created.

Structure of the Thesis

This thesis is divided into four chapters. Chapter 1 provides a theoretical
background on the following topics: an overview of network traffic analysis,
TLS protocol focusing on TLS fingerprinting techniques, and an introduction
to osquery framework. The main part of our work is described in Chapters
2 and 3. Module integration methods and the process of selecting system
parameters obtained using the osquery framework are described in Chapter
2. The details of implementation steps can be found in Chapter 3. Finally,
Chapter 4 concludes the results of the work and evaluates the performance of
the module.

2

Chapter 1
Background

This chapter provides an introduction to network traffic analysis, specifically
network monitoring methods, and then illustrates how the TLS protocol works
in detail and describes the basic concepts of the osquery framework.

1.1 Network monitoring

Network monitoring is essential for maintaining the security of the infrastruc-
ture. It usually consists of the use of monitoring systems (network probe),
which is directly connected to the monitored infrastructure and analyzes its
traffic. This allows to detect sources of attacks and protect network weak-
nesses, control whether users only use authorized services and do not exceed
data limits.

Network monitoring can be divided into two categories depending on the
approach to traffic analysis. The first type is deep packet inspection (DPI),
which processes each packet separately [1]. This approach is described in
the 1.1.1 section below. The main principle of the DPI analysis is that un-
wanted behaviour is mainly based on the content of the communication. There
is another type of analysis, that examines data at a higher level of abstraction,
called flow-based monitoring [2], which will be discussed in detail in the 1.1.2
section. This method analyzes the flow, which is a sequence of packets be-
longing to the communication and looks at it as a separate unit. In a network
flow analysis, anomaly detection is performed using more general communica-
tion information, such as communication time duration and number of packets
transmitted.

1.1.1 Deep packet inspection

The usual approach to monitoring network traffic of the DPI method is to
record current traffic and then analyze individual packets and their con-
tents [3]. Because deep packet inspection can inspect the contents of packets,

3

1. Background

it can figure out where it came from, for example, the service or application
that sent it. The detection algorithm looks for suspicious behavior or specific
communication patterns and reports detected anomalies, attacks and other
adverse events.

One of the main advantages of this method is evaluating the content of
packets and creating rules according to which DPI handles these or those
packets. In other words, the system can sort and filter packets. Intuitively,
we notice the disadvantage of this method, which lies in the fact that careful
processing of packages can slow down a network.

The task of this thesis implies the use of the NEMEA system [4], which
uses flow monitoring and therefore this approach will be discussed in the next
section.

1.1.2 Flow-based monitoring

Monitoring large networks using packet analysis is often impossible due to
high demands on computing power. For this reason, the principle of network
flow analysis, called traffic flow or just flow, is commonly used in such big
networks.

Systems based on the principle of network flows analysis do not have de-
tailed information about ongoing communication, as individual packet analysis
can have, but they can detect other types of events due to their operation at
a higher level of abstraction.

1.1.2.1 Traffic flow

In order to delve into the analysis of network traffic in the context of flow-
based monitoring method, we must first define the basic terms. Traffic flow is
defined by Aitken et al. [5] as “a set of packets or frames passing an observation
point in the network during a certain time interval. All packets belonging to
a particular flow have a set of common properties”.

Each flow has its own properties, and in order to understand if a given
packet belongs to the selected flow, it is needed to check whether the packet
satisfies the flow’s properties. Such properties can be, for example, the desti-
nation IP address or some characteristics of the packet. Flow keys are those
properties by which packets will be related to a particular flow. For example,
the traditional “5-tuple” flow key consists of source and destination IP ad-
dress, source and destination transport port, and transport protocol as shown
in the figure 1.1.

Also, in addition to flow keys, other flow parameters can be: the number
of packets, the time of acceptance of the first and last packets, and so on.

Note that a flow can consist of several packets or be empty, because there
may be no packets satisfying the properties of that flow.

4

1.1. Network monitoring

Figure 1.1: Traffic flow visualization

In addition to the usual unidirectional flow, there is also the bidirectional
flow, called a biflow, which is packets flowing in both directions between two
endpoints in the network [6]. This is the case because most of the application
layer network protocols, such as POP3 or WebSocket, are inherently bidirec-
tional. The bidirectional flow-based data model gives a better understanding
of what’s going on in the network and therefore provides opportunities for
more effective security.

1.1.2.2 Flow enrichment

Flow enrichment is a process of adding or otherwise enhancing collected data
with relevant context obtained from additional sources. For example, domains
in DNS requests, HTTP headers, TLS extension values, the name of the pro-
cess handling the connection or the host system parameters. An example of
the extended flow fields are shown in figure 1.2. However, these information
fields are not always formally defined.

1.1.2.3 Flow export formats

To ensure compatibility between different systems, there are several standard-
ized protocols for sending network traffic records. Each protocol defines the
format of the flow record and how data is exchanged between exporter and
collector.

NetFlow v5 is a flow record format created by Cisco to capture network
flows using Cisco routers and switches. It only supports a fixed set of
exported fields in outgoing messages. As a result, extended network
flows cannot be exported in this format. This is the most used version
of NetFlow [7].

5

1. Background

Figure 1.2: An example of an extended flow fields

NetFlow v7 is an enhancement to NetFlow v5 format that is not compatible
with Cisco routers and only supports NetFlow with Cisco Catalyst 5000
series switches [8].

NetFlow v9 is an improved version of the NetFlow format that eliminates
the disadvantages of previous versions by introducing templates. Due to
the templates, the export is not limited by a fixed number of information
fields in the message [9].

IPFIX is a standardized protocol for exporting network flows. It is also some-
times referred to as NetFlow v10. It brings the possibility of creating
templates for flexible definition of fields for export. This protocol sup-
ports the export of extended network flows along with information from
application layers. Moreover, it is possible to export multiple templates
in one message [5].

UniRec is a format for efficient data transfer from the NEMEA system. Users
can define any number of custom fields using a template. Only one
template within one connection is allowed [4].

1.1.2.4 Flow monitoring infrastructure

A typical flow monitoring process consists of the following components:

Flow exporter — checks every packet of traffic passing through it, creates
flow records by combining packet information and exports records to one
or more collectors. Some of the existing flow exporters are:

Flowmon Probe is a powerful network exporter, developed by Flow-
mon Networks, that supports exporting information from the appli-
cation layer in high-speed computer networks. It is a paid commer-

6

1.1. Network monitoring

cial solution that can be delivered both as specialized stand-alone
hardware and in the form of a virtualized tool [10].

ipfixprobe is an exporter written in the C++ programming language
from the open-source project NEMEA, the extension of which is
the subject of this work. It can be used to read packets stored in
a pcap file, and also to obtain traffic from the network interface.
Additionally, ipfixprobe has already a TLS plugin, with which it is
possible to get a JA3 fingerprint [11].

yaf (Yet Another Flowmeter) is designed as a bidirectional network flow
meter and used to capture flow information on a network. It pro-
cesses packet data from packet captures (pcap) and exports ob-
tained information in IPFIX format [12].

Cisco joy is software used for obtaining information about events that
occur within a network flow, extracting data from packet capture
for the protection of the networks being monitored with it. More-
over the obtained data is represented in JSON format since this
format is supported and used by data analysis tools [13].

Flow Collector — is engaged in the collection, storage and primary process-
ing of information received from a flow exporter. Below are examples of
some flow collectors:

IPFIXcol2 is a flow data collector that supports such flow record for-
mats as NetFlow v5, NetFlow v9 and IPFIX. The advantages of
this collector include its open-source availability, an emphasis on
parallel performance and no less important extensibility using plu-
gins [14].

Flowmon Collector is an appliance (virtual and hardware) for collec-
tion, long-term storage and analysis of flow data. It can process
data in NetFlow v5, NetFlow v9 and IPFIX formats too. One of
the features is detection and diagnostics of operational and config-
uration issues [15].

Flow Analysis — identifies machines and devices that negatively affect net-
work throughput, finds vulnerabilities in the system, and ultimately
improves the overall efficiency of the network. Some of the existing
solutions are:

NEMEA is an open-source modular system for flow detection and
analysis of network traffic. The whole system consists of individual
independent components, modules that can be interconnected via
a communication interface. Each module has its specific task, for
example: data acquisition and manipulation, detection of network

7

1. Background

threats and malicious traffic, reporting incidents to system admin-
istrators. This solution allows scalability and very easy addition of
new functionality through the modules to the system [4].

Flowmon ADS is a security solution that makes it possible to identify
threats and infiltrate the network through various channels. It uses
a large number of artificial intelligence algorithms such as dynamic
standard behavior baseline, deviations, dynamic decision trees, ma-
chine learning and many others, to analyze multiple dimensions of
network traffic flow [16].

Figure 1.3: Architecture of a typical flow monitoring system [17]

1.2 Transport Layer Security

This section will describe the Transport Layer Security (TLS) protocol, the
history of its development, as well as the basic concepts necessary to under-
stand what TLS fingerprinting is.

TLS is a cryptographic protocol that is the successor to Secure Sockets
Layer (SSL). TLS provides secure communication over a computer network
using symmetric cryptography to encrypt the transmitted data. Keys are
uniquely generated for each connection and are based on a shared secret ne-
gotiated at the start of a session, also known as a TLS handshake.
The protocol works at three levels of protection:

• Confidentiality using symmetric algorithms, TLS encrypts the data
that is transmitted. If the data is intercepted, it will be impossible to
read it;

• Authentication a guarantee that the exchange of data goes between
those nodes for which the communication channel was originally created;

• Integrity control one-way hashing checks incoming information, ex-
cluding the possibility of substitution or distortion.

8

1.2. Transport Layer Security

1.2.1 TLS history and versions

In the mid-90s, the Netscape Company released a protocol that improved the
security of electronic payments. The protocol was named SSL and was the
predecessor of the TLS protocol. Version 1.0 never went into production,
being discarded during the testing phase. Version 2.0 [18] was released, but it
had security holes. SSL 2.0 was deprecated in 2011.

In 1996, the shortcomings of version 2.0 were eliminated, and the world saw
a completely working version — SSL 3.0 [19]. The protocol was implemented
at the application level, over TCP. This allowed high-level protocols like HTTP
to function correctly. SSL 3.0 was deprecated in 2015.

Figure 1.4: SSL/TLS protocol releases

In 1999, the next version was released, which is standardized by the Inter-
net Engineering Task Force (IETF). The protocol is renamed TLS 1.0 [20].

7 years later, in the spring of 2006, the next version of the protocol was
released — TLS 1.1 [21]. It has significantly expanded functions and elimi-
nated current vulnerabilities. TLS 1.0 and TLS 1.1 have been deprecated in
2020 [22].

In 2008, TLS 1.2 [23] came out which changed the encryption methods.
New block cipher modes have been introduced, and legacy cryptographic hash-
ing methods have been prohibited.

The most recent version of the protocol to date is TLS 1.3 [24], released
in 2018. It removed obsolete hashes, ciphers without authentication and open
methods for obtaining keys to sessions. Deprecated options like helper mes-
sages and data compression have also been removed. A mandatory digital
signature mode has been introduced, the approval and authentication pro-
cesses have been separated. To improve the security of TLS, version 1.3 is not
backward compatible with RC4 or SSL.

The main differences between versions 1.1 and 1.2 of TLS are security
and performance improvements. To this end, in TLS 1.3, the key generation
algorithm has been redesigned and known vulnerabilities have been fixed.
The TLS 1.3 handshake also improves the message authentication and digital
signature processes. Finally, in addition to phasing out old key generation or
key exchange algorithms, TLS 1.3 removes old symmetric ciphers. TLS 1.3
has completely removed block ciphers.

9

1. Background

1.2.2 TLS handshake

At the handshake stage, the connection parameters (protocol version, encryp-
tion method and others) are negotiated between the client and the server. The
TLS 1.2 handshake process is shown in the figure 1.5.

Figure 1.5: TLS handshake — the TLS handshake contains multiple mes-
sages sent in plain text, including ClientHello

According to the Husák et al. [25] and documentation [23] the handshake
works in the following steps:

1. The client sends a ClientHello message indicating the latest version of
the supported TLS protocol, a random number, and a list of supported
cipher suites suitable for working with TLS;

2. The server replies with a ServerHello message containing: the protocol
version selected by the server, a random number generated by the server,
a selected cipher suite from the list provided by the client. If the client
and server do not share cipher suites, then the connection fails;

3. The server sends a Certificate message that contains the server’s digital
certificate (depending on the encryption algorithm, this step can be
skipped);

4. The ServerHelloDone message notifies the client that the server has
finished transferring data;

10

1.2. Transport Layer Security

5. The client then participates in generating the session key. The specifics
of this step depend on the key exchange method that was selected in the
original ClientHello message. The client sends a ClientKeyExchange
message, which may contain a PreMasterSecret, a public key, or noth-
ing (depends from the selected cipher). The client and server, using the
PreMasterSecret key and randomly generated numbers, calculate the
shared secret. All other information about the session key will be ob-
tained from the shared secret;

6. The client sends a ChangeCipherSpec message, which indicates that
all subsequent information will be encrypted with the algorithm estab-
lished during the handshake using the shared secret;

7. The client sends the message Finished, which means that the handshake
is complete on the client side. From this moment on, the connection is
protected with a session key. The message contains data (MAC) that
can be used to verify that the handshake has not been tampered with;

8. The server sends a ChangeCipherSpec message to notify that it is
switching to an encrypted connection;

9. The server also sends a Finished message using the newly generated
symmetric session key and checks the checksum to verify the integrity
of the handshake.

After these steps, the TLS handshake is complete. Both parties now have
a session key and can communicate over an encrypted and authenticated con-
nection.

1.2.3 ClientHello message

The first message in the TLS handshake is the ClientHello message. This
message is sent unencrypted and allows the client to specify a list of parameters
and features that it supports [26]. This includes, the versions of TLS that the
client supports, a list of supported compression methods and cipher suites
that the client is willing to use, a random number used to protect against
replay attacks, and a list of extensions.

Extensions allow the client and server to negotiate additional features and
parameters. Although there are more than 20 extensions listed in different
versions of TLS, we will focus on some of them that can be used for creating
TLS fingerprint.

Server Name Indication (SNI) allows the client to specify the requested
domain in the ClientHello message, allowing the server to send the ap-
propriate certificate if the server supports multiple hosts. Since this is
sent before the TLS handshake, SNIs will be sent unencrypted.

11

1. Background

Application Layer Protocol Negotiation (ALPN) enables clients to ne-
gotiate the application protocols they support over TLS. For example,
a web browser can specify HTTP/1.1 and HTTP/2.

Elliptic Curve Point Format defines the encoding formats supported by
the client for sending or receiving elliptic curve points.

Supported Groups this extension defines a list of supported math groups
that a client can use for authentication and key exchange.

Signature Algorithms clients can choose the combinations of hashing and
signature algorithms they can support to authenticate other partici-
pants. They are usually in the form of a pair of signature and hashing
algorithms, such as rsa sha256 or ecdsa sha512 [24].

Capturing ClientHello packets is a good way of TLS fingerprinting for many
reasons:

• Since ClientHello is the first packet in a TLS connection, by ana-
lyzing it, we can make a security decision before starting the data
exchange process;

• ClientHello packets are rare, so all ClientHello packets on the net-
work can be captured for analysis using a relatively small storage
size as opposed to capturing all packets [27].

1.2.4 TLS fingerprinting

The TLS fingerprint was developed to increase the visibility of encrypted TLS
traffic by being able to identify the process that communicates using a given
TLS connection. Based on the fact that ClientHello messages remain static
from session to session for each client, capturing packets containing ClientHello
makes it possible to create a fingerprint to recognize a specific client in further
sessions.
There are two main approaches to creating a TLS fingerprint:

• Cisco Mercury fingerprint — captured fields are used to create the
fingerprint: TLS version, TLS record version, cipher suites, compression
options and a list of extensions [28];

• JA3 fingerprint — uses a similar approach as Cisco Mercury, but
additionally collects data from three specific extensions: signature algo-
rithms, elliptic curves and elliptic curve format [29]. This approach will
be described in more detail below.

12

1.3. Osquery framework

1.2.4.1 JA3 fingerprint

JA3 fingerprints [30] is a hash (SSL/TLS client application fingerprint). This
approach makes it easy and efficient to classify client applications.

To initiate a session, the client sends a ClientHello packet [29]. If the
server accepts connection, it will respond with a ServerHello packet, thereby
continuing the encryption negotiation. Because TLS negotiations are sent
unencrypted, client applications can be traced and identified using data from
the ClientHello packet.

SSL Version
Cipher

SSL Extension
Eliptic Curve

Eliptic Curve Format

SSL Version Cipher
SSL Extension Eliptic Curve

Eliptic Curve Format
MD5 Hash

Original TLS Client Hello Packet

Fingerprint string

769 47-53-5-10-49161-49162-49171-49172-50-56-19-4
0-10-11

0
23-24-25

ada70206e40642a3e4461f35503241d5

JA3 Fingerptint

Figure 1.6: JA3 fingerprint creation process [31]

JA3 collects decimal byte values for the following fields: TLS version,
accepted ciphers, extension list, elliptic curves and elliptic curve formats. The
use of this combined data is not only reliable in terms of being static for
a particular client, but also provides a greater granularity than evaluating
cipher suites alone, which has significantly more fingerprint conflicts. It then
concatenates these values to one string in the following order: SSLVersion,
Ciphers, Extensions, EllipticCurves, EllipticCurvePointFormats as it is shown
on the figure 1.6. If there are no TLS extensions in the ClientHello message,
the corresponding field is left blank.

This string is MD5 hashed then to create a 32-character fingerprint that
can be easily consumed and shared.

1.3 Osquery framework

Osquery is an open-source security tool that looks at the operating system as
a single database with tables that can be queried using SQL statements [32].
Using these SQL queries, user can check the integrity of files, check the status
and configuration of the firewall, perform a security check on the target server,
and much more. It also provides an opportunity to obtain information about
running processes, loaded kernel modules and opened network connections.

Osquery is cross-platform, and since osquery has the edge on low-level
operating systems and includes many SQL tables for them, users can install
and use it on Ubuntu, CentOS, MacOS and also on Windows systems [33].

13

1. Background

1.3.1 Osquery features

One of the features of the osquery framework is osqueryd [34], which is a
daemon for scheduling queries and recording the changes in the state of OS.
This daemon accumulates and logs query data that can be viewed as a snap-
shot of the system configuration and status. This data can be further used
for security analysis and for the system health check.

Another feature of the framework is osqueryi [35], which is the osquery
interactive query console for working with SQL queries. This is a good tool
for system diagnostics as it provides many tables that can be accessed using
SQL syntax, which is intuitive to use.

Another equally important feature is the provision of public API, called
the SDK osquery [36]. This is a set includes only the bulk of the source code
called the core.

1.3.1.1 Osqueryd

The main task of the osqueryd daemon is to execute scheduled requests.
Scheduled query is a list of SQL queries and their intervals (the approximate
frequency of query execution, given in seconds).

The principal feature of the osqueryd is to treat the request as parameters
of the operating system at a certain period of time. This means that the
response to the first query, while the database has not been initialized, will
contain every row from the resulting table. After a certain interval, a query
will be executed again and log the monitored events that caused the changes.
But if an event occurs and ends faster than the scheduled interval, the event
will not be logged when the query is executed. In other words, the daemon is
not designed for queries that track frequently occurring events.

1.3.1.2 Osqueryi

Interactive query console osqueryi works in completely standalone mode.
Since osqueryi is an interface for working with SQL queries, it makes it easy
to get system information in real time. These queries can be executed without
administrator privileges, however, some tables may return fewer results.

The console is stateless and is not connected to the osqueryd daemon.
Therefore, to systematically execute queries and record changes in the state
of the operating system, it is advisable to consider creating a query schedule
using osqueryd.

1.3.1.3 SDK osquery

This functionality is designed to create osquery extensions. To register tables,
the extension must provide to the osquery core information about the structure
of the new table and how to obtain the data. The whole communication works

14

1.3. Osquery framework

in a way that there is an osquery core and extensions communicated with it
within different processes. Extensions can be written in any language that
support Thrift, such as C++, Python or Go.

15

Chapter 2
Analysis and Design

This chapter contains all the possible design decisions that needed to be made
during the creation of this bachelor thesis.

2.1 Overall architecture

Figure 2.1 provides an abstract overview of the workflow of modules we need
to implement. The blocks we need to create will be grayed out in the figure
for better visibility.

Figure 2.1: Overall architecture

To create a TLS fingerprint database, we need to implement a database cre-
ator. Such a database creator will take enriched flows that ipfixprobe will

17

2. Analysis and Design

provide us with. Ipfixprobe will enrich the flows using the already existing
TLS plugin and the osquery plugin we created. The TLS fingerprinting mod-
ule will use the TLS database we created to determine information about
application process identification based on the fingerprint provided by the
TLS plugin built into ipfixprobe.

By end point, we mean the device on which ipfixprobe with the osquery
plugin is installed. The database collected at the end point makes it possible
to annotate other devices on the network. Databases can be generated at
different end points and subsequently merged into one. In turn, the measuring
point is a device with a TLS fingerprinting module installed, for example a
router, capable of recognizing information about applications using a database
collected at end points.

2.2 Selection of TLS fingerpint algorithm

Since there are several approaches to creating a TLS fingerprint, in this thesis
we need to choose one of them. In the Background chapter, we described
two main approaches: Cisco Mercury and JA3 fingerprinting. Our choice
fell on JA3 fingerprint, which is more prevalent and appeared earlier than
Cisco Mercury. Also its code is publicly available and supported by Flowmon
exporter, ipfixprobe or Suricata [37]. Another advantage is the existence of
software solutions using JA3 fingerprints, for example, a service that provides
JA3 fingerprint blacklist [38], which is often updated and can be used to
identify already known malware.

2.3 Osquery extension

This section analyzes the creation of an extension for ipfixprobe and the inte-
gration of the osquery framework.

2.3.1 Osquery extension architecture

According to the assignment of this bachelor’s thesis we needed to implement
the osquery plugin for ipfixprobe. This plugin will enrich the flow with system
data using osquery framework.

Ipfixprobe is a flow exporter whose task is to create flows from network
packets. The osquery plugin will be built inside ipfixprobe and will process
the already created flows. To enrich the flow, the plugin will use the osquery
framework to get system information. Figure 2.2 schematically shows a high-
level view of the plugin design.

18

2.3. Osquery extension

Figure 2.2: Osquery plugin

2.3.2 Tables in osquery and their portability

Osquery currently has 277 tables [39] for various operating systems, most of
them are available for macOS and Linux, but there are also tables available
for Windows. Since this work is being developed on Linux, we select six tables
that are available for the mentioned operating system. They are: os version,
system info, kernel info, users, processes and process open sockets. A detailed
description of the tables is written in appendix D.

2.3.3 Selection of relevant information for flow extension by
osquery framework

In this work, we use the flow exporter ipfixprobe, which can create network
flows. Moreover, it can enrich the flow by adding JA3 fingerprint information
with the already existing TLS plugin.

We also use osquery framework to enrich the flow with information about
application process identification. The goal is to select rarely changed system
parameters to reduce the chance of collision. First of all, we decided to make
a list of constant parameters for an individual device regardless of the flow
parameters. The next step is to define parameters that depend on the flow
information, for example, source and destination ports. And finally, we collect
constant and flow-dependent parameters in one table, which will be added to
the standard flow information with the new osquery plugin.

2.3.3.1 Constant parameters

To select these parameters, we have chosen osquery tables, which contain
information about the system and do not require administrator privileges.

19

2. Analysis and Design

The kernel info table D.1 provides basic information about the active
kernel. We will take only the kernel version parameter, since the rest of the
parameters may change depending on the system settings.

A large set of information about device identification and hardware spec-
ifications are contained in the system info table D.2. We decided not to use
hardware parameters, because these parameters are easily changeable (e.g.
updating a driver) and, in practice, they are often optional. From this table
we will take the hostname parameter.

The rest of the parameters will be taken from the os version table D.3.
This table contains a single row with operating system parameters. We have
selected only those parameters that do not depend on the settings of a specific
device, except the build-specific parameter, which can be set by the user. As a
result, the following parameters will be obtained from the os version table:
distribution or product name, major release version, minor release version,
optional build-specific, OS platform, closely related platforms, OS architecture.

2.3.3.2 Flow-dependent parameters

To obtain information about the identification of the process that handles the
connection, we will use the data carried by the flow, such as the source and
destination IP addresses and ports.

The process open sockets table D.4 contains a list of all processes with
open network sockets. One entry from this table contains: network and trans-
port protocol versions, socket file descriptor and inode numbers, pid (process
id), the source and destination IP addresses and ports. We are only interested
in one parameter — pid, which will be used to obtain further information.

The list of all processes currently running on the system is contained in
the processes table D.5. Since we know the process id, we can get the the
program name that is serving the connection. We will also take uid (user id)
from this table for further user identification.

The users table D.6 contains all the local user accounts on the system.
Using the previously obtained uid, we can get various information about the
user such as username, home directory, group id and others. To enrich the
flow, we will take the username parameter from this table.

2.3.3.3 Summary

At this step, the system parameters have already been selected. For clarity,
the following table 2.1 illustrates the list of parameters, which were chosen for
the flow enrichment.

20

2.3. Osquery extension

Table 2.1: List of parameters exported by the osquery plugin

Column Type Description
PROGRAM NAME string Program name
USERNAME string The user name who starts the process
OS NAME string Distribution or product name
OS MAJOR integer Major release version
OS MINOR integer Minor release version
OS BUILD string Optional build-specific
OS PLATFORM string OS Platform or ID
OS PLATFORM LIKE string Closely related platforms
OS ARCH string OS Architecture
KERNEL VERSION string Kernel version
SYSTEM HOSTNAME string Network hostname including domain

2.3.4 Osquery limitations

There are several limitations with flow recognition using the osquery frame-
work. The first one is the inability to recognize short flows because they live
less than the average framework request polling interval so the framework does
not have time to recognize them.

The next limitation is the inability to obtain information about application
process identification if the program does not open a network socket directly.
For example, if the program needs to request a DNS server, it will initiate
communication with the system resolver via localhost, so such flows cannot
be recognized correctly. It is possible to implement a tool to solve this problem,
but in agreement with the supervisor of this work, it was decided to leave this
problem, since communication with the localhost still does not use the TLS
protocol.

2.3.5 Osquery integration

Osquery provides several ways to get information about the operating system.
The first is an interactive console, where the result of running an SQL query
is displayed in different formats, for example, JSON or CSV. The second is to
schedule queries with a specific interval using the osquery daemon. And the
third is the osquery SDK, which allows users to create an extension — a table
with additional specific information.

Using the osquery SDK seems like a convenient solution, because it is
possible to use the full capabilities of osquery directly from the extension and
create custom tables. There is a fairly detailed instruction for developing
extensions. But there are also disadvantages: a complicated configuration
process, the need to download the all source codes of the osquery core and
compile them, which makes it impossible to use it as a dynamically linked

21

2. Analysis and Design

library. Because of the desire to create a lightweight plugin, we abandoned this
solution. Also as discussed earlier in section 1.3.1.1, osqueryd was designed to
run queries at a given interval, log the results and is not suitable for frequently
executing queries with variable values.

The decision was made to use osqueryi. The interactive console is executed
in the terminal and accepts an SQL request on standard input, and sends a
response to standard output. The idea is to run osqueryi as a child process
and be able to use the file descriptors, that osqueryi understands as standard
input and output. The big advantage of osqueryi is that user just needs to
start it once and all subsequent communication will be performed within one
session without the need to restart the application to process each request.

2.3.6 Implementation of extension into ipfixprobe

The flow exporter ipfixprobe implies the ability to enrich the flow with addi-
tional parameters, for example, the TLS plugin adds JA3 fingerprint informa-
tion to the flow.

For the convenience of creating plugins, the ipfixprobe developers have
automated this process by creating an interactive script create plugin.sh,
that performs the routine work to simplify the creation of new plugins. This
script will generate template source and header files, and show a quick guide
on how to create a new plugin.

The header file declares a new class inherited from the FlowCachePlugin
class, witch is responsible for packet processing and flow creation; and a struc-
ture inherited from the RecordExt, witch handles data buffering. These class
and structure will be described in the following subsection.

2.3.6.1 Class FlowCachePlugin

This is the base class for all extensions that provides a list of standard methods
for working with the flow. The following are the main ones:

init initializes data processing.

pre create provides the ability to analyze the first packet in network com-
munication. This method is called before creating a new flow record.

post create provides information about communication in both directions
using the created flow.

pre export is called before exporting the flow record from the cache. Can
be used for final processing or statistics collection.

finish used by the final data processing before the end of the job.

22

2.4. Database creator

We have divided the data obtained by osquery plugin into two categories:
constant and flow-dependent parameters.

We will use the init method to read the constant parameters from osquery.
Since these parameters remain constant regardless of the flow data, it is suf-
ficient to obtain it once before starting processing.

The osquery plugin uses communication information such as source and
destination IP addresses and ports to obtain flow-dependent parameters. This
information is available both from the flow and from the first packet in com-
munication. We will not use the pre create method, as we need to add data
to a flow that has not yet been created. Instead, we will use the post create
method, because the flow already exists and we can immediately add the data
obtained from the osqeury. This will reduce the work.

At the end of the plugin’s work, we want to show the user the number of
successful requests, that is, the number of flow records for which additional
information has been obtained using the plugin. We can use the pre export
method, which makes it possible to analyze the flow before exporting it, but
it is much easier to increment the number of successful requests directly in the
post create method. We will use the finish method to display this number
to the user.

2.3.6.2 Structure RecordExt

Structure RecordExt is a base structure of one extension record which is a
linked list. It contains information about the type of extension and a pointer
to the next extension. This structure has a addExtension method, that adds
a extension to the end of the list, the virtual methods fillUnirec, which
fills the unirec record with the stored extension data, and fillIPFIX, which
is responsible for the correct writing of the extension data to the ipfixprobe
buffer.

2.4 Database creator

This section analyzes the method of creating the database of TLS fingerprints
and the automated tool for its creation.

2.4.1 Database creator architecture

In this subsection, we provide an overview of the database creator architec-
ture. The database creator takes enriched flows from the ipfixprobe, using
the already existing TLS plugin and our previously created osquery plugin. A
simplified schematic of the database creator workflow is shown in figure 2.3.

23

2. Analysis and Design

Figure 2.3: Database creator

2.4.2 Database creator design

One of the goals of this work is to create the TLS fingerprint database. We
need to decide which programming language will be used for development, in
what format the database will be created and define its structure.

To develop the program, we can use any programming language, for ex-
ample C++, which is also used to develop the ipfixprobe extension. Since the
input files, that are used to create the database, are in CSV format, the final
solution is to use Python, which can handle CSV files in a more easy way.

The database can be created using an existing SQL database engines such
as SQLite [40] or MySQL [41]. We can also use file formats such as JSON,
CSV or XML. The simplest solution would be to use the same format as the
input files have, but we will use the JSON format since this format is often
supported and used by data analysis tools. In addition, the Python language
has functionality for working with the JSON.

One record in the database will have a JA3 fingerprint obtained from the
TLS plugin as a string and all data received by the osquery plugin, these data
is corresponding to table 2.1. Also, to find more relevant records with the
same JA3 fingerprint, an additional parameter has been added that counts
and holds the number of identical records in the database. The structure of a
record of the database is shown in the listing 2.1.

{
" FINGERPRINT ":" JA3_fingerprint ",
" PROGRAM_NAME ":" program_name ",
" USERNAME ":" username ",
" OS_NAME ":" os_name ",
" OS_MAJOR ": os_major ,
" OS_MINOR ": os_minor ,
" OS_BUILD ":" os_build ",
" OS_PLATFORM ":" os_platform ",
" OS_PLATFORM_LIKE ":" os_platform_like ",
" OS_ARCH ":" os_arch ",
" KERNEL_VERSION ":" kernel_version ",
" SYSTEM_HOSTNAME ":" system_hostname "
"COUNT ": number_of_identical_records

}

Listing 2.1: Structure of a database record

24

2.5. TLS fingerprinting module

2.5 TLS fingerprinting module

This section analyzes the creation of a NEMEA module capable of recognizing
information about application process identification using a created database
of TLS fingerprints.

2.5.1 TLS fingerprinting module architecture

According to the assignment of this bachelor’s thesis we need to create an
fingerprinting module capable of enriching the flow with system parameters.

The TLS fingerprinting module will use flows enriched with the TLS plu-
gin for the ipfixprobe flow exporter. Such flows will already carry TLS fin-
gerprints and based on which the module will obtain system data from a
previously created database. The workflow of the fingerprinting module is
shown schematically in figure 2.4.

Figure 2.4: TLS fingerprinting module

2.5.2 Design of TLS fingerprinting module

The main purpose of the new module for the NEMEA system is to enrich
the flow with system information obtained from the previously created TLS
fingerprint database. The module will succeed if the flow has fingerprint in-
formation, otherwise, the module should return a format error.

For each flow, the module must find the relevant record based on the JA3
fingerprint and add system information to the flow. If the record does not
exist, empty text will be added to the flow to match the output format.

The osquery plugin obtains system parameters, that can be found in the
table 2.1. We can add all the parameters to the flow, but for further analysis
it is advisable to exclude those that are too detailed. For example, username
can be easily changed and be irrelevant for a given flow. It seems that this
parameter does not carry important information, but it is necessary at the
stage of creating or updating the database in order to respond in time to
changes in the system parameters of devices.

25

2. Analysis and Design

Finally, it was decided to add the following parameters to the flow: OS
architecture and platform, build-specific parameters and the program name
that handles the connection.

26

Chapter 3
Realisation

This chapter describes in detail the technologies used to develop the ipfixprobe
flow exporter plugin, the method of creating the TLS fingerprint database and
the process of implementing a new module for the NEMEA system.

3.1 Implementation into ipfixprobe

The process of creating a plugin for the flow exporter can be roughly divided
into two stages. The first is creating a new plugin and integrating it correctly.
The second is the integration of osquery into a previously created plugin.

3.1.1 Plugin design

To create the plugin, we used an interactive script that will require user to en-
ter the name and developer information. We named the plugin osquery. After
the script finishes, template files osqueryplugin.h and osqueryplugin.cpp,
and a short guide are generated. Let’s take a closer look at all the points that
are indicated in the guide and also explain them:

1. Add plugin header and source files to Makefile. The new plugin can work
only if the osquery framework is installed on the device. The Makefile
has been improved to include a new argument WITH OSQUERY. Thus,
when using this argument, a check will be made to see if the osquery
framework is installed, otherwise the installation process will be aborted;

2. Add an osquery entry to the list of available extension types. This step
is required to inform ipfixprobe about creating a new extension;

3. Include osqueryplugin.h in main.cpp. Also add osquery to the list
of supported plugins for -p parameter and add plugin support to the
function responsible for parsing parameters;

27

3. Realisation

4. Add unirec fields to the UR FIELDS macro in osqueryplugin.cpp to
define the data type for each field. This is necessary for the correct
calculation of the expected amount of data;

5. Define the new IPFIX fields. After this step, for each parameter obtained
using osquery, a field will be created with a unique id, a specific length
and, optionally, a pointer to copy the data;

6. Implement the fillIPFIX function in osqueryplugin.h to fill fields to
IPFIX message. This function strictly defines the way how each field
should be written to the buffer;

7. Implement the necessary methods provides by FlowCachePlugin class.
Based on the analysis from the previous chapter 2.3.6.1, we used the
following methods: init, post create and finish, unused ones can be
removed.

After completing these steps, we can assume that the plugin works cor-
rectly. But it still does not know how to get information about the operating
system.

3.1.2 Integration of osquery into the plugin

An additional structure OsqueryRequestManager has been developed to inter-
act with osquery framework. This structure is responsible for running osquery,
reading and writing data to it, handling errors, and creating a record (the
structure inherited from RecordExt and responsible for storing and recording
data) for this plugin.

The OsqueryRequestManager has a private pointer to a record that will
be added to the flow. This solution makes it possible to read constant pa-
rameters from osquery and immediately write them to this record without
the need to create additional variables. Further flow-dependent parameters
will be added to record. Additionally, there are three public methods in
this structure: readInfoAboutOS gets constant information using osquery;
readInfoAboutProgram gets flow-dependent parameters; getRecord returns
the record that will be added to the flow.

3.1.2.1 Running osquery

As decided earlier in section 2.3.5, we will be using the interactive console
mode — osqueryi, to get system information.

We will run osquery as a child process and replace standard input and
output with our file descriptors for future reference. We also want to com-
municate with osquery in JSON format without seeing errors, so we redirect
standard error to null device. The final command to run osquery is as follows:
osqueryi --json 2>/dev/null.

28

3.1. Implementation into ipfixprobe

We wrote an popen2 function to run osqueryi and to create duplicate file
descriptors. After starting this function, an attempt will be made to create
unidirectional data channels for inter-process communication using the pipe
function [42]. After successfully creating data channels, a new child process
will be created using the fork function [43]. The child process will close
unused file descriptors and create copies of the remaining one. These copies
will be returned for future use. Listing 3.1 shows the startup process in detail.

#define READ FD 0
#define WRITE FD 1

p i d t popen2 (const char ∗command , int ∗inFD , int ∗outFD)
{

int p s td in [2] , p s tdout [2] ;
p i d t pid ;

i f (p ipe (p s td in) != 0 | | pipe (p stdout) != 0)
return −1;

pid = fo rk () ;

i f (pid < 0) return pid ;

i f (pid == 0) {
c l o s e (p s td in [WRITE FD]) ;
dup2 (p s td in [READ FD] , READ FD) ;
c l o s e (p stdout [READ FD]) ;
dup2 (p stdout [WRITE FD] , WRITE FD) ;
e x e c l (”/ bin / sh ” , ” sh ” , ”−c ” , command , NULL) ;
pe r ro r (” e x e c l ”) ;
e x i t (1) ;

}

inFD == NULL ? c l o s e (p s td in [WRITE FD]) :
∗inFD = p s td in [WRITE FD] ;

outFD == NULL ? c l o s e (p stdout [READ FD]) :
∗outFD = p stdout [READ FD] ;

return pid ;
}

Listing 3.1: Running osquery as a child process and creating duplicates of file
descriptors

29

3. Realisation

3.1.2.2 Reading from osquery

To get data from osquery, we created the readFromOsquery function that uses
the output file descriptor copied by popen2 function. A simplified version of
the code for this function can be found in listing 3.2.

To detect events occurring on a specific file descriptor, we use the poll
function [44]. Before using this function, we need to initialize the pollfd
structure that means setting the file descriptor and tracked events. Before
each use, we will reset the list of events that have happened.

We can now call the poll function to detect events. The function will
return a value used as a flag for errors, such as a timeout or poll error. If
there were no errors and the POLLIN event occurred (there is data to read), we
will try to read data from the file descriptor using the read function [45]. The
function will return the number of bytes of information read. Since osqueryi is
running in json mode, we will always get a response, at least an empty JSON
string. Therefore, we will check if the length of the read string is more than
four bytes (the size of the minimum osqueryi response in json mode), then we
will write it to the buffer, otherwise we will set the read error flag and clear
the buffer.

After successfully reading the data, additional functions that can parse
information from the buffer will set the corresponding values received from
osquery.

#define READ SIZE 1024
#define POLL TIMEOUT 200

p o l l f d ∗ pfd = new p o l l f d ;
pfd−>fd = outFD ;
pfd−>events = POLLIN;

s i z e t readFromOsquery ()
{

s s i z e t bytesRead = 0 ;
pfd−>r event s = 0 ;

int r e t = p o l l (pfd , 1 , POLL TIMEOUT) ;
i f (r e t == −1 | | r e t == 0) return 0 ;

i f (pfd−>r event s & POLLIN)
bytesRead = read (outFD , bu f f e r , READ SIZE) ;

return bytesRead < 5 ? 0 : bytesRead ;
}

Listing 3.2: Reading from osquery

30

3.2. Database creation

3.1.2.3 Writing to osquery

Writing to osquery is much easier than reading from it. We use the write
function [46] to write data to the file descriptor copied by the popen2 function.
Listing 3.3 shows an example of the code for the function responsible for
writing.

The function first of all determines the length of data to send and sends
them using the write function. It checks the number of sent bytes and, based
on this value, decide whether the data has been sent successfully.

bool writeToOsquery (const char ∗ query)
{

s s i z e t l ength = s t r l e n (query) ;
s s i z e t n = wr i t e (inFD , query , l ength) ;

return (n != −1 && n == length) ;
}

Listing 3.3: Writing to osquery

3.1.2.4 Error handling

Errors may occur while the plugin is running, for example osquery has stopped
responding or cannot be started (because it is already running).

Errors must be monitored and handled correctly. For these purposes, an
additional structure OsqueryStateHandler has been implemented, which is
responsible for storing information about existing errors.

3.2 Database creation

To create the database, a program called TLSDatabaseCreator has been de-
veloped. The main functionality of this program is to merge two CSV files
into one file in JSON format.

The program expects two files in CSV format at the input, which are
the results of the TLS and osquery plugins for the ipfixprobe flow exporter.
The format of the input files will be checked, and if any of these files does
not match the format, the program will be interrupted. Format checking
is necessary to ensure that the input data has not been corrupted and has
common parameters for comparison with each other.

For correct JA3 fingerprint and system information association, the pro-
gram will generate a list of common parameters. This list will be used to
compare records from the both input files. If two lists of parameters are
equal, then the pair of JA3 fingerprint and system information from these
records will be written to the database. The fingerprint will be taken from
the results of the TLS plugin, and the system data, in turn, obtained using the

31

3. Realisation

osquery plugin, will be taken from the second file. The program also counts
how many times the same data has occurred and writes the number to the
corresponding record in the database. The structure of its one record is shown
in the listing 2.1

The program can work in several modes, in addition to merging two files,
the program can also merge two databases or merge files and a database at
the same time. The help page on how to use this program can be found in
appendix E.1. The choice of the program operation mode is determined by
the control parameters. The following is a detailed description of them:

--merge FILE Specifies the path to the database file that will be used for
merging with CSV files. If no output file is specified, FILE will be used.

--output OUTPUT Specifies the path to the output file, the file will be
overwritten. If the output file does not exist, a new file will be created.

--csv FILE1 FILE2 CSV file merge mode. The files should be the output of
the osquery and TLS plugins. At least one option --merge or --output
must be defined.

--database FILE1 FILE2 Database file merge mode. The files must be
valid JSON database files. If no output file is specified, FILE1 will be
used.

--help Show help page.

3.3 Implementation of pytrap module

The TRAP extension [47] for python3, called pytrap, can be used to implement
a new NEMEA module. This module consists of two main classes: TrapCtx
and UnirecTemplate [48]. TrapCtx provides an interface for communication,
UnirecTemplate can be used to access and manipulate data. An example of
using pytrap module is shown in the listing 3.4.

The first step of implementation is to initialize TrapCtx class. We use
init method to define the input and output interfaces [49] and the amount of
them. Next, we define a list of parameters that record must contain, otherwise
an exception will be thrown. After initializing all the necessary parameters,
it is possible to read from the input interface, process and send data to the
output interface.

32

3.3. Implementation of pytrap module

import pytrap

c = pytrap . TrapCtx ()
c . i n i t ([”− i ” , ”u : socket1 , u : socket2 ”] , 1 , 1)

c . setRequiredFmt (0 , pytrap .FMT UNIREC, ” ipaddr SRC IP”)

rec = pytrap . UnirecTemplate (” ipaddr SRC IP”)

try :
data = c . recv ()

i f len (data) <= 1 :
pass

else :
r e c . setData (data)

c . send (data)
c . f i n a l i z e ()

Listing 3.4: A simple example of using the pytrap module

3.3.1 TLS fingerprinting module

One of the main goals of this work is to create a new pytrap module that will
use the previously created database. The database contains a JA3 fingerprint,
system information obtained from osquery and a frequency of occurrence of
this pair.

The new module will be getting the network flow enriched with JA3 fin-
gerprint on the input interface. A flow will be sent to the output interface
extended with system parameters from osquery.

Since the new module needs to know the JA3 fingerprint to work correctly,
we must add the bytes TLS JA3 parameter to the list of required ones. Thus,
an exception will be thrown when trying to process data that does not contain
a fingerprint.

As mentioned earlier in section 2.5, the fingerprinting module will only take
some of the data that the osquery plugin is capable of providing. We enrich
the flow with four new parameters: OS architecture, build-specific parameters,
OS platform and program name.

One of the ways to generate incoming data for the new module can be the
use of the TLS plugin for ipfixprobe. The results of the TLS plugin will be
stored into a pcap file, which will be processed by the module and enriched
with system data.

33

3. Realisation

To use the module, it is necessary to specify the format of the input and
output interfaces (if no output interface is specified, a blackhole interface will
be used) and the path to the file with the database. The help page on how to
use TLS fingerprinting module can be found in appendix E.2.

34

Chapter 4
Testing

This chapter describes the results of testing the osquery plugin and module for
the NEMEA system. The program has also been tested to create a database
of TLS fingerprints. All tests in this chapter were performed on a Linux Mint
distribution using a computer with a 2.2GHz Intel Core i7-8750H processor
and 16GB of RAM.

4.1 Testing the osquery plugin

The main purpose of the osquery plugin is to enrich the flow with system data.
A flow is considered successfully processed if flow-dependent parameters were
found for it using osquery.

Determining the performance of a plugin is not a trivial task. Since the
plugin works on the fly, namely, it checks the list of open network sockets at
a specific time, it is impossible to create a test file, because it may contain
outdated communication information that is no longer available for retrieval.

We ran a series of tests, for each of which we considered: the number of
processed packets, flows accepted for processing, the number of successfully
enriched flows and elapsed time since the beginning of the test in minutes. A
standard set of user programs that use the network, such as Chrome, Spotify,
or Slack, was executed on the testing virtual machine. The first test works
independently and without user interaction with the running programs, the
second on the contrary tests the work of the plugin when actively using the
same programs. By active use we mean, for example, sending messages in
messengers, surfing the Internet and so on.

The first test showed an average value of successfully enriched flows of
52.1 %, the test results are shown in table 4.1. The results of the second test
were better, the average success rate of flow enrichment is about 75.4 %, the
test results are shown in table 4.2. Although the results are not perfectly ac-
curate, we consider them satisfactory. The explanation for this is the osquery
limitations described in 2.3.4 section.

35

4. Testing

Table 4.1: Osquery plugin test results without active network use

Test № Packets Flows Enriched Time Success rate
1 10 749 2467 1381 60 56.0 %
2 13 795 2650 1401 60 52.9 %
3 19 684 3434 1714 120 49.9 %
4 21 842 3156 1569 120 49.7 %
5 27 561 4207 2180 180 51.8 %

Table 4.2: Osquery plugin test results with active network use

Test № Packets Flows Enriched Time Success rate
1 24 185 373 292 5 78.3 %
2 54 128 962 644 10 66.9 %
3 56 968 1087 734 10 67.5 %
4 430 956 2834 2495 20 88.0 %
5 480 004 1217 926 20 76.1 %

4.2 Database creation

To create a database, we use the results of osquery and TLS plugins work
previously converted to CSV format. The database creation program merges
input files into a common database, in addition the program can merge several
databases into one. The format of a single record in the database can be seen
in listing 2.1. The created database can be found on the attached DVD, file
path data/dataset.json.

Data for further creation of the database was obtained from the six devices.
Based on the test results in the previous section, it can be seen that the osquery
plugin produces a fairly large amount of enriched flows to create an informative
database. But in practice it turned out that most of them have the same pair
of JA3 fingerprint and system data, therefore they are not duplicated in the
database. During testing, it was possible to obtain about 30 unique records
in the database from one device, the number of records is directly related to
the number of running programs using the network.

This database creation program has been fully tested with all of its sup-
ported options. See appendix E.1 for a list of options.

4.3 Testing the TLS fingerprinting module

The main purpose of the fingerprinting module is to enrich the flow with
system information based on the JA3 fingerprint using a previously created
database. To obtain test data, we used the TLS plugin for the ipfixprobe flow
exporter.

36

4.3. Testing the TLS fingerprinting module

We performed a series of tests to check the efficiency of the new module.
During testing, we paid attention to certain parameters: the number of flows
enriched with JA3 fingerprint, the number of unprocessed flows, the number
of successfully processed flows and elapsed time since the beginning of the
test in minutes. By unprocessed flows, we mean those flows for which no
corresponding record was found in the database. In turn, by the concept of
successfully processed flow, we mean a flow for which there is a record in the
database and the set of all parameters exported by the fingerprinting module
(OS architecture and platform, build-specific parameters and program name)
are true for this device. The tests were run on the same device that was
previously analyzed using the ipfixprobe flow exporter.

The first tests were run using a database containing records only for the
mentioned device. The average module success rate is 99.6 %. The test results
are shown in table 4.3.

The next set of tests was run using the database containing records for the
six devices. The average success rate of recognized fingerprints is about 87 %,
the test results are shown in table 4.4. We consider these results to be quite
high but remember that the tests were performed in an ideal environment and
when tested in real networks the results could potentially be lower.

During testing, we found that the parameters exported by the fingerprint-
ing module have been recognized with different accuracy. For example, pro-
gram name was recognized for all flows except the unprocessed ones, the final
accuracy is 99.5 %. There is also a problem of correct identification of the OS
platform for the same program running on different operating platforms. For
example, in our experiments, the Yandex browser was launched on the Linux
Mint and Ubuntu. For each platform, the JA3 fingerprint was the same,
but the OS platform parameter was different, so there are two records in the
database. Ultimately, the module will select the record that was most often
encountered when filling the database. In other words, if the flow related to
the Yandex browser has been processed more times on Ubuntu than on Linux
Mint, the module will consider the record from the database with the Ubuntu
operating platform parameter to be correct.

The module has been checked for compliance with the declared capabil-
ities, which can be viewed in appendix E.2 or in the README.md file in the
src/TLSFingerprintingModule directory on the attached DVD.

Table 4.3: TLS fingerprinting module test results for one device

Test № JA3 flows Unprocessed Succeed Time Accuracy
1 76 0 76 5 100 %
2 96 0 96 5 100 %
3 127 1 126 5 99.2 %
4 161 0 161 10 100 %
5 387 5 382 20 98.7 %

37

4. Testing

Table 4.4: TLS fingerprinting module test results for the six devices

Test № JA3 flows Unprocessed Succeed Time Accuracy
1 49 0 44 5 89.8 %
2 62 0 57 5 91.9 %
3 87 0 73 5 83.9 %
4 101 0 93 5 92.1 %
5 229 0 192 10 83.7 %
6 240 1 225 10 93.6 %
7 243 0 190 10 78.2 %
8 344 1 301 20 87.5 %
9 423 8 339 20 80.1 %
10 716 17 641 30 89.5 %

38

Conclusion

One of the techniques that can increase visibility into encrypted traffic is
TLS fingerprinting. To identify applications, TLS fingerprinting tools use
a database, where TLS metadata is assigned to a specific application. The
motivation for our work is the lack of high-quality fingerprint databases, the
use of which does not enable the identification of the application with sufficient
accuracy.

To solve this problem, we have developed a tool for enriching flows with
information about application process identification. The enriched flow is then
used to fill our fingerprint database. In fact, this work can be divided into
three stages: data obtaining, data collection and flow enrichment with that
data in real time.

At the first stage, a new plugin for the flow exporter ipfixprobe was de-
signed and implemented. This plugin is used to enrich the flow with system
data obtained using the osquery framework.

As a part of the second stage, we have implemented a program for cre-
ating a TLS fingerprint database. This database contains system data and
TLS fingerprints associated with them. We get system data using our previ-
ously created osquery plugin and fingerprints using the existing TLS plugin
for ipfixprobe.

Finally, we created a module that takes a TLS fingerprint enriched flow
and extends it with system data. This module uses a ready-to-use fingerprint
database and enriches the flow in real time.

It was verified that the module can correctly enrich the flow with the full
set of system parameters we have chosen with an average success rate of 87 %.
If we take into account the correctness of enrichment only by the application
name parameter, the accuracy is 99.5 %. These results are favourable and
prove that the module works as expected, but on real, larger networks this
accuracy will decrease.

This bachelor thesis presents a functional module, which is going to be
a valuable part of the NEMEA framework ecosystem, and also a tool for

39

Conclusion

creating a TLS fingerprint database, which can be used as a reference solution
for future research.

Future work

As part of future work, the module could be tested on larger and more con-
gested networks, which would contribute to obtaining more accurate results
of success. To improve the work of the plugin, there is also a space for in-
vestigation of the problem of communication between applications and sys-
tem resolvers on localhost, since osquery framework cannot determine which
program opened a network socket to communicate. It is also possible to ex-
periment with the structure of the database to find relevant records more
efficiently.

40

Bibliography

[1] Geere, D. How deep packet inspection works. Accessed: 2021-11-18,
[online]. Available from: https://www.wired.co.uk/article/how-deep-
packet-inspection-works

[2] Umer, M.; Ramzan, M. S.; et al. Flow-based intrusion detection: Tech-
niques and challenges. Computers & Security, volume 70, 06 2017, doi:
10.1016/j.cose.2017.05.009.

[3] Alexander, L. Deep Packet Inspection: is this the Future of Analy-
sers? 2021, accessed: 2021-11-18, [online]. Available from: https:
//pandorafms.com/blog/deep-packet-inspection/

[4] Cejka, T.; Bartos, V.; et al. NEMEA: A framework for network
traffic analysis. In 2016 12th International Conference on Network
and Service Management (CNSM), 2016, pp. 195–201, doi:10.1109/
CNSM.2016.7818417.

[5] Aitken, P.; Claise, B.; et al. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC
7011, Sept. 2013, doi:10.17487/RFC7011. Available from: https://rfc-
editor.org/rfc/rfc7011.txt

[6] Trammell, B.; Boschi, E. Bidirectional Flow Export Using IP Flow Infor-
mation Export (IPFIX). RFC 5103, Jan. 2008, doi:10.17487/RFC5103.
Available from: https://rfc-editor.org/rfc/rfc5103.txt

[7] Cisco Systems, Inc. NetFlow v5. Accessed: 2021-11-18, [online]. Available
from: https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_
collection_engine/3-6/user/guide/format.html

[8] Caligare s.r.o. Netflow — Version 7. 2006, accessed: 2021-11-18, [online].
Available from: https://netflow.caligare.com/netflow_v7.htm

41

https://www.wired.co.uk/article/how-deep-packet-inspection-works
https://www.wired.co.uk/article/how-deep-packet-inspection-works
https://pandorafms.com/blog/deep-packet-inspection/
https://pandorafms.com/blog/deep-packet-inspection/
https://rfc-editor.org/rfc/rfc7011.txt
https://rfc-editor.org/rfc/rfc7011.txt
https://rfc-editor.org/rfc/rfc5103.txt
https://www.cisco.com/c/en/us/td/ docs/net_mgmt/netflow_collection_engine/3-6/user/guide/ format.html
https://www.cisco.com/c/en/us/td/ docs/net_mgmt/netflow_collection_engine/3-6/user/guide/ format.html
https://netflow.caligare.com/netflow_v7.htm

Bibliography

[9] Claise, B. Cisco Systems NetFlow Services Export Version 9. RFC
3954, Oct. 2004, doi:10.17487/RFC3954. Available from: https://rfc-
editor.org/rfc/rfc3954.txt

[10] Progress Software Corporation. Kemp Flowmon Probe. Accessed:
2021-11-18, [online]. Available from: https://www.flowmon.com/en/
products/appliances/probe

[11] CESNET, a.l.e. ipfixprobe - IPFIX flow exporter. Accessed: 2021-11-18,
[online]. Available from: https://github.com/CESNET/ipfixprobe

[12] Computer emergency response team. YAF Documentation. Accessed:
2021-11-18, [online]. Available from: https://tools.netsa.cert.org/
yaf/docs.html

[13] Cisco Systems, Inc. Cisco joy. Accessed: 2021-11-18, [online]. Available
from: https://github.com/cisco/joy

[14] CESNET, a.l.e. IPFIXcol2: High-performance NetFlow v5/v9 and IP-
FIX collector. Accessed: 2021-11-18, [online]. Available from: https:
//github.com/CESNET/ipfixcol2

[15] Progress Software Corporation. Kemp Flowmon Netflow Collector. Ac-
cessed: 2021-11-18, [online]. Available from: https://www.flowmon.com/
en/products/appliances/netflow-collector

[16] Progress Software Corporation. Kemp Flowmon ADS. Accessed: 2021-11-
18, [online]. Available from: https://www.flowmon.com/en/products/
software-modules/anomaly-detection-system

[17] Hofstede, R.; Čeleda, P.; et al. Flow Monitoring Explained: From Packet
Capture to Data Analysis 7 With NetFlow and IPFIX. IEEE Commu-
nications Surveys Tutorials, volume 16, no. 4, 2014: pp. 2037–2064, doi:
10.1109/COMST.2014.2321898.

[18] Polk, T.; Turner, S. Prohibiting Secure Sockets Layer (SSL) Version 2.0.
RFC 6176, Mar. 2011, doi:10.17487/RFC6176. Available from: https:
//rfc-editor.org/rfc/rfc6176.txt

[19] Barnes, R.; Thomson, M.; et al. Deprecating Secure Sockets Layer Ver-
sion 3.0. RFC 7568, June 2015, doi:10.17487/RFC7568. Available from:
https://rfc-editor.org/rfc/rfc7568.txt

[20] Allen, C.; Dierks, T. The TLS Protocol Version 1.0. RFC 2246, Jan. 1999,
doi:10.17487/RFC2246. Available from: https://rfc-editor.org/rfc/
rfc2246.txt

42

https://rfc-editor.org/rfc/rfc3954.txt
https://rfc-editor.org/rfc/rfc3954.txt
https://www.flowmon.com/en/products/appliances/probe
https://www.flowmon.com/en/products/appliances/probe
https://github.com/CESNET/ipfixprobe
https://tools.netsa.cert.org/yaf/docs.html
https://tools.netsa.cert.org/yaf/docs.html
https://github.com/cisco/joy
https://github.com/CESNET/ipfixcol2
https://github.com/CESNET/ipfixcol2
https://www.flowmon.com/en/products/appliances/netflow-collector
https://www.flowmon.com/en/products/appliances/netflow-collector
https://www.flowmon.com/en/products/software-modules/anomaly-detection-system
https://www.flowmon.com/en/products/software-modules/anomaly-detection-system
https://rfc-editor.org/rfc/rfc6176.txt
https://rfc-editor.org/rfc/rfc6176.txt
https://rfc-editor.org/rfc/rfc7568.txt
https://rfc-editor.org/rfc/rfc2246.txt
https://rfc-editor.org/rfc/rfc2246.txt

Bibliography

[21] Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Proto-
col Version 1.1. RFC 4346, Apr. 2006, doi:10.17487/RFC4346. Available
from: https://rfc-editor.org/rfc/rfc4346.txt

[22] Moriarty, K.; Farrell, S. Deprecating TLS 1.0 and TLS 1.1. RFC
8996, Mar. 2021, doi:10.17487/RFC8996. Available from: https://rfc-
editor.org/rfc/rfc8996.txt

[23] Rescorla, E.; Dierks, T. The Transport Layer Security (TLS) Proto-
col Version 1.2. RFC 5246, Aug. 2008, doi:10.17487/RFC5246. Available
from: https://rfc-editor.org/rfc/rfc5246.txt

[24] Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, Aug. 2018, doi:10.17487/RFC8446. Available from: https:
//rfc-editor.org/rfc/rfc8446.txt

[25] Husák, M.; Cermák, M.; et al. Network-Based HTTPS Client Identifi-
cation Using SSL/TLS Fingerprinting. In 2015 10th International Con-
ference on Availability, Reliability and Security, 2015, pp. 389–396, doi:
10.1109/ARES.2015.35.

[26] T, M. Network Forensic Investigation of HTTPS Protocol. International
Journal of Engineering Research, 08 2013.

[27] Brotherston, L. TLS fingerprinting. 2015, accessed: 2021-11-18, [online].
Available from: https://blog.squarelemon.com/tls-fingerprinting/

[28] Cisco Systems, Inc. Mercury: network metadata capture and analysis. Ac-
cessed: 2021-11-18, [online]. Available from: https://githubplus.com/
cisco/mercury

[29] Althouse, J. Open Sourcing JA3 — SSL/TLS Client Fingerprinting
for Malware Detection. [online] https://engineering.salesforce.com/
open-sourcing-ja3-92c9e53c3c41, 2017.

[30] Althouse, J.; Atkinson, J.; et al. JA3 is a standard for creating SSL client
fingerprints in an easy to produce and shareable way. Accessed: 2021-11-
18, [online]. Available from: https://github.com/salesforce/ja3

[31] Hynek, K. IP Flow extension for increased visibility in encrypted network
traffic. 2021, Doctoral Study Report, Faculty of Information Technology,
Czech Technical University in Prague.

[32] Meta Platforms Inc. osquery — Easily ask questions about your Linux,
Windows, and macOS infrastructure. Accessed: 2021-11-18, [online].
Available from: https://osquery.io/

43

https://rfc-editor.org/rfc/rfc4346.txt
https://rfc-editor.org/rfc/rfc8996.txt
https://rfc-editor.org/rfc/rfc8996.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://blog.squarelemon.com/tls-fingerprinting/
https://githubplus.com/cisco/mercury
https://githubplus.com/cisco/mercury
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://github.com/salesforce/ja3
https://osquery.io/

Bibliography

[33] Meta Platforms Inc. Introducing osquery - Engineering at Meta.
2014, accessed: 2021-11-18, [online]. Available from: https://
engineering.fb.com/2014/10/29/security/introducing-osquery/

[34] Meta Platforms Inc. osqueryd (daemon) — osquery. Accessed: 2021-
11-18, [online]. Available from: https://osquery.readthedocs.io/en/
latest/introduction/using-osqueryd/

[35] Meta Platforms Inc. osqueryi (shell) — osquery. Accessed: 2021-11-18,
[online]. Available from: https://osquery.readthedocs.io/en/latest/
introduction/using-osqueryi/

[36] Meta Platforms Inc. SDK and Extensions — osquery. Accessed: 2021-
11-18, [online]. Available from: https://osquery.readthedocs.io/en/
latest/development/osquery-sdk/

[37] Open Information Security Foundation. Suricata Home Page. Accessed:
2021-11-18, [online]. Available from: https://suricata.io/

[38] Abuse project. SSLBL — Blacklist. Accessed: 2021-11-18, [online]. Avail-
able from: https://sslbl.abuse.ch/blacklist/#ja3-fingerprints-
csv

[39] Meta Platforms Inc. osquery — Schema. Accessed: 2021-11-18, [online].
Available from: https://osquery.io/schema/5.0.1/

[40] SQLite team. About SQLite. Accessed: 2021-11-18, [online]. Available
from: https://sqlite.org/about.html

[41] Oracle Corporation. About MySQL. Accessed: 2021-11-18, [online]. Avail-
able from: https://www.mysql.com/about/

[42] Linux commands. Pipe linux command man page. 2014, accessed: 2021-
11-18, [online]. Available from: https://www.commandlinux.com/man-
page/man7/pipe.7.html

[43] Linux commands. Fork linux command man page. 2014, accessed: 2021-
11-18, [online]. Available from: https://www.commandlinux.com/man-
page/man2/fork.2.html

[44] Linux commands. Poll linux command man page. 2014, accessed: 2021-
11-18, [online]. Available from: https://www.commandlinux.com/man-
page/man2/poll.2.html

[45] Linux commands. Read linux command man page. 2014, accessed: 2021-
11-18, [online]. Available from: https://www.commandlinux.com/man-
page/man2/read.2.html

44

https://engineering.fb.com/2014/10/29/security/introducing-osquery/
https://engineering.fb.com/2014/10/29/security/introducing-osquery/
https://osquery.readthedocs.io/en/latest/introduction/using-osqueryd/
https://osquery.readthedocs.io/en/latest/introduction/using-osqueryd/
https://osquery.readthedocs.io/en/latest/introduction/using-osqueryi/
https://osquery.readthedocs.io/en/latest/introduction/using-osqueryi/
https://osquery.readthedocs.io/en/latest/development/osquery-sdk/
https://osquery.readthedocs.io/en/latest/development/osquery-sdk/
https://suricata.io/
https://sslbl.abuse.ch/blacklist/#ja3-fingerprints-csv
https://sslbl.abuse.ch/blacklist/#ja3-fingerprints-csv
https://osquery.io/schema/5.0.1/
https://sqlite.org/about.html
https://www.mysql.com/about/
https://www.commandlinux.com/man-page/man7/pipe.7.html
https://www.commandlinux.com/man-page/man7/pipe.7.html
https://www.commandlinux.com/man-page/man2/fork.2.html
https://www.commandlinux.com/man-page/man2/fork.2.html
https://www.commandlinux.com/man-page/man2/poll.2.html
https://www.commandlinux.com/man-page/man2/poll.2.html
https://www.commandlinux.com/man-page/man2/read.2.html
https://www.commandlinux.com/man-page/man2/read.2.html

Bibliography

[46] Linux commands. Write linux command man page. 2014, accessed: 2021-
11-18, [online]. Available from: https://www.commandlinux.com/man-
page/man2/write.2.html

[47] Cejka, T.; CESNET, a.l.e. Welcome to pytrap’s documentation. Accessed:
2021-11-18, [online]. Available from: https://nemea.liberouter.org/
doc/pytrap/index.html

[48] CESNET, a.l.e. Nemea-Framework - pytrap. Accessed: 2021-11-18, [on-
line]. Available from: https://github.com/CESNET/Nemea-Framework/
tree/master/pytrap

[49] CESNET, a.l.e. TRAP Interface Specifier. Accessed: 2021-11-18, [online].
Available from: https://nemea.liberouter.org/trap-ifcspec/

45

https://www.commandlinux.com/man-page/man2/write.2.html
https://www.commandlinux.com/man-page/man2/write.2.html
https://nemea.liberouter.org/doc/pytrap/index.html
https://nemea.liberouter.org/doc/pytrap/index.html
https://github.com/CESNET/Nemea-Framework/tree/master/pytrap
https://github.com/CESNET/Nemea-Framework/tree/master/pytrap
https://nemea.liberouter.org/trap-ifcspec/

Appendix A
Acronyms

ALPN Application Layer Protocol Negotiation

API Application Programming Interface

CSV Comma-separated Values

DNS Domain Name System

DPI Deep Packet Inspection

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IPFIX Internet Protocol Flow Information Export

JSON JavaScript Object Notation

OS Operating System

POP Post Office Protocol

SDK Software Development Kit

SNI Server Name Indication

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

XML Extensible Markup Language

47

Appendix B
Contents of enclosed DVD

readme.txt......................the file with DVD contents description
src.......................................the directory of source codes

ipfixprobe................................. ipfixprobe source codes
nemea.................................NEMEA system source codes
TLSDatabaseCreator..................database creator source codes
TLSFingerprintingModule fingerprinting module source codes
thesis..............the directory of LATEX source codes of the thesis
osquery 5.0.1-1.linux amd64.deb......osquery framework installer

doc..................................the directory with documentation
ipfixprobe...............................ipfixprobe documentation
TLSDatabaseCreator database creator documentation
TLSFingerprintingModule.....fingerprinting module documentation

examples..........the directory with examples of input and output files
TLSDatabaseCreator database creator file examples
TLSFingerprintingModule.......fingerprinting module file examples

data..................................the directory with TLS database
dataset.json testing TLS database

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

49

Appendix C
Installation manual

The recommended system to install the ipfixprobe flow exporter and the
NEMEA system — Debian/Ubuntu.

C.1 Dependencies

The following libraries are required to install NEMEA system:

• autoconf

• automake

• gcc

• gcc-c++

• libtool

• libxml2-devel

• make

• pkg-config

• libpcap-dev

• libidn11-dev

• bison

• flex

This command can be used to install the required libraries:

51

C. Installation manual

sudo apt -get install -y gawk bc autoconf automake gcc \
g++ libtool libxml2 -dev make pkg - config libpcap -dev \
libidn11 -dev libssl -dev bison flex

Also, additional installation of python3, pip and pandas is required, for
the TLS fingerprint database creator to work correctly. This can be done with
the following command:
sudo apt -get install python3 python3 -pip
pip install pandas

C.2 Installation

All source codes can be found on the attached DVD. Before starting the
installation, copy the src/ directory from the DVD to your home directory.

1. Install the osquery framework
There are several ways to install the osquery framework. The easiest is to
visit the official website [32] and download the installer for your system.
Also for installation, you can use the installer located in the attached
DVD. Be careful, this installer is compatible with Debian x86 64, if
you are using another system, please download the appropriate installer
from the official website. To install, you can use the following command
(change the filename if you are using a different installer):
cd ∼/src/
sudo dpkg -i osquery_5 .0.1 -1. linux_amd64 .deb

2. Install the NEMEA system
Use the following instructions to install the NEMEA system:
cd ∼/src/nemea/
./ bootstrap .sh
./ configure --enable - repobuild --prefix =/ usr \
--bindir =/ usr/bin/nemea --sysconfdir =/ etc/nemea \
--libdir =/ usr/lib/x86_64 -linux -gnu
make
sudo make install

Please note that the --libdir parameter value may be different, replace
it with the appropriate library path for your system.

3. Install the ipfixprobe
After successfully installing the NEMEA system, install the ipfixprobe
flow exporter. At this step, it is very important to have the osquery
framework installed. Otherwise, it is not possible to install ipfixprobe
with osquery plugin support. Use the following instructions to install
the ipfixprobe:

52

C.3. Usages

cd ∼/src/ ipfixprobe /
autoreconf -i
./ configure --with -nemea --with - osquery \
--libdir =/ usr/lib/x86_64 -linux -gnu
make
sudo make install

Please note that the --libdir parameter value may be different, replace
it with the appropriate library path for your system.
After successful installation of ipfixprobe, the path to the executable
file is /src/ipfixprobe/ipfixprobe. For more convenient use, you
can create a link to the executable file, for example, with the following
command:
ln -s ∼/src/ ipfixprobe / ipfixprobe ∼/ ipfixprobe

4. Install the pytrap module
Since the module interacts with the NEMEA system, it must already be
installed on your device. You can install the pytrap module engine with
the following instructions:
cd ∼/src/nemea/nemea - framework / pytrap /
sudo python3 setup.py install

C.3 Usages

To obtain data for the database, we use the ipfixprobe flow exporter, namely
the existing TLS and the new osquery plugins. The following is an example
of getting data using ipfixprobe:

• The first step is to run ipfixprobe. There are different ways of configur-
ing, for example, the -p parameter allows you to select which plugin will
be used; the -i parameter defines the format of the input and output
interfaces [49]; the -I parameter says that the data for analysis will be
taken from the network interface. More information about the parame-
ters can be obtained using the ipfixprobe -h command. The following
is an example of using ipfixprobe:
sudo ∼/ ipfixprobe -p osquery ,tls \
-i f: osquery_out ,f: tls_out -I wlo1

• To export the processed data to CSV format, a logger is used, which
is part of the NEMEA system. The following is an example of its use:
/usr/bin/nemea/loger -t -i f: osquery_out > osquery .csv
/usr/bin/nemea/loger -t -i f: tls_out > tls.csv

53

C. Installation manual

For a detailed acquaintance with the capabilities of the pytrap module and
database creator read the README.md in the src/TLSFingerprintingModule
and src/TLSDatabaseCreator directories, respectively.

54

Appendix D
Osquery tables

Table D.1: Table kernel info

Column Type Description
version text Kernel version
arguments text Kernel arguments
path text Kernel path
device text Kernel device identifier

55

D. Osquery tables

Table D.2: Table system info

Column Type Description
hostname text Network hostname including domain
uuid text Unique ID provided by the system
cpu type text CPU type
cpu subtype text CPU subtype
cpu brand text CPU brand string
cpu physical cores integer Number of physical CPU cores
cpu logical cores integer Number of logical CPU cores
cpu microcode text Microcode version
physical memory bigint Total physical memory in bytes
hardware vendor text Hardware vendor
hardware model text Hardware model
hardware version text Hardware version
hardware serial text Device serial number
board vendor text Board vendor
board model text Board model
board version text Board version
board serial text Board serial number
computer name text Friendly computer name (optional)
local hostname text Local hostname (optional)

Table D.3: Table os version

Column Type Description
name text Distribution or product name
version text OS version
major integer Major release version
minor integer Minor release version
patch integer Optional patch release
build text Optional build-specific
platform text OS Platform or ID
platform like text Closely related platforms
codename text OS version codename
arch text OS Architecture
install date bigint The install date of the OS.
pid with namespace integer Pids that contain a namespace
mount namespace id text Mount namespace id

56

Table D.4: Selection of relevant columns from a process open sockets table

Column Type Description
pid integer Process (or thread) ID
fd bigint Socket file descriptor number
socket bigint Socket handle or inode number
family integer Network protocol (IPv4, IPv6)
protocol integer Transport protocol (TCP/UDP)
local address text Socket local address
remote address text Socket remote address
local port integer Socket local port
remote port integer Socket remote port

Table D.5: Selection of relevant columns from a processes table

Column Type Description
pid bigint Process (or thread) ID
name text The process path or shorthand argv[0]
path text Path to executed binary
cmdline text Complete argv
state text Process state
cwd text Process current working directory
root text Process virtual root directory
uid bigint Unsigned user ID
gid bigint Unsigned group ID

Table D.6: Selection of relevant columns from a users table

Column Type Description
uid bigint User ID
gid bigint Group ID (unsigned)
username text Username
description text Optional user description
directory text User’s home directory
shell text User’s configured default shell

57

Appendix E
Listings

Description :
Merge two CSV files , merge CSV files with an existing database
file , or merge two database files and save them in JSON format .

Usage : TLSDatabaseCreator .py -c FILE1 FILE2 [-m FILE] [-o OUTPUT]
or: TLSDatabaseCreator .py -d FILE1 FILE2 [-o OUTPUT]

Options :
-c --csv FILE1 FILE2 CSV file merge mode.

The files should be the output of the
osquery and TLS plugins . At least one
option (-m or -o) must be defined .

-d --database FILE1 FILE2 Database file merge mode.
The files must be valid JSON database
files . If no output file is specified ,
FILE1 will be used.

-m --merge FILE Specifies the path to the database file
that will be used for merging with CSV
files . If no output file is specified ,
FILE will be used.

-o --output OUTPUT Specifies the path to the output file ,
the file will be overwritten . If the
output file does not exist , a new file
will be created .

-h --help Show this help.

Listing E.1: TLSDatabaseCreator help page

59

E. Listings

Description :
Osquery pytrap module . Enriches the flow with information about
the system based on the JA3 fingerprint contained in this flow.

Usage : TLSFingerprintingModule .py -i IFC -o IFC -d FILE
or: TLSFingerprintingModule .py -i IFC -d FILE

Options :
-i --input IFC TRAP input interface format .

-o --output IFC TRAP output interface format .
If no output IFC is specified ,
blackhole interface ("b:")
will be used.

-d --database FILE Database file name.

-h --help Show this help.

Listing E.2: TLSFingerprintingModule help page

60

	Introduction
	Goals
	Structure of the Thesis

	Background
	Network monitoring
	Deep packet inspection
	Flow-based monitoring
	Traffic flow
	Flow enrichment
	Flow export formats
	Flow monitoring infrastructure

	Transport Layer Security
	TLS history and versions
	TLS handshake
	ClientHello message
	TLS fingerprinting
	JA3 fingerprint

	Osquery framework
	Osquery features
	Osqueryd
	Osqueryi
	SDK osquery

	Analysis and Design
	Overall architecture
	Selection of TLS fingerpint algorithm
	Osquery extension
	Osquery extension architecture
	Tables in osquery and their portability
	Selection of relevant information for flow extension by osquery framework
	Constant parameters
	Flow-dependent parameters
	Summary

	Osquery limitations
	Osquery integration
	Implementation of extension into ipfixprobe
	Class FlowCachePlugin
	Structure RecordExt

	Database creator
	Database creator architecture
	Database creator design

	TLS fingerprinting module
	TLS fingerprinting module architecture
	Design of TLS fingerprinting module

	Realisation
	Implementation into ipfixprobe
	Plugin design
	Integration of osquery into the plugin
	Running osquery
	Reading from osquery
	Writing to osquery
	Error handling

	Database creation
	Implementation of pytrap module
	TLS fingerprinting module

	Testing
	Testing the osquery plugin
	Database creation
	Testing the TLS fingerprinting module

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed DVD
	Installation manual
	Dependencies
	Installation
	Usages

	Osquery tables
	Listings

