
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

ETCS - Dynamic speed monitoring module for EVC

Alina Krasnenkova

Ing. Jan Matoušek

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

ETCS (European Train Control System) is a train protection system and is the signaling and

control component of the European Rail Traffic Management System (ERTMS). EVC

(European Vital Computer) is the part of the ETCS. The main goal of this project is to make

a dynamic speed monitoring module for EVC.

Instructions:

1. Analyze existing ETCS documentation (ERTMS/ETCS System Requirements

Specification subsets 026, issue: 3.6.0).

2. Specify functional and non-functional requirements for dynamic speed monitoring

module.

3. Design and implement MA (Movement Authority) module prototype for receiving

necessary MA messages and packets.

4. Design and implement algorithm to calculate MRSP (most restrictive speed profile)

based on received MA messages and packets and known railway restrictions.

5. Design and implement a module prototype for dynamic speed monitoring based on

MRSP.

6. Test all of the implemented modules.

7. Collect experience and propose future development of the project.

Electronically approved by Ing. Michal Valenta, Ph.D. on 24 January 2022 in Prague.

Bachelor’s thesis

ETCS - Dynamic speed monitoring module
for EVC

Alina Krasnenkova

Department of Software Engineering
Supervisor: Ing. Jan Matoušek

May 10, 2022

Acknowledgements

I would like to thank my supervisor Ing. Jan Matoušek for his advice and
guidance throughout writing of this thesis. He was always ready to help. I
would also like to thank Ing. Jǐŕı Chludil and doc. Ing. Martin Leso, Ph.D.
for their readiness to share professional knowledge.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Alina Krasnenkova. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Krasnenkova, Alina. ETCS - Dynamic speed monitoring module for EVC.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2022.

Abstrakt

Prvńı část této práce udává přehled o ETCS, popisuje EVC a jeho hlavńı
funkce potřebné pro ř́ızeńı rychlosti a vzdálenosti vlaku. Druhá část popi-
suje návrh a implementaci modulu vytvořeného pro tuto bakalářskou práci.
Tento modul je rozdělen do tř́ı submodul̊u: přij́ımač zpráv a paket̊u, kalkulačka
nejpř́ısněǰśıho rychlostńıho profilu a dynamické monitorováńı rychlosti.

Kĺıčová slova ERTMS, ETCS, EVC, Vlakový zabezpečovaćı systém, Dy-
namické monitorováńı rychlosti

Abstract

The first part of this thesis gives an overview of the ETCS, gives the descrip-
tion of the EVC and its main functionalities, that are necessary for the speed
and distance monitoring of the train. The second part describes the design
and implementation of the module, that is created for this thesis. This mod-
ule is parted into three submodules: messages and packets receiver, MRSP
calculator and dynamic speed monitoring.

Keywords ERTMS, ETCS, EVC, Train control system, Dynamic speed
monitoring

vii

Contents

Introduction 1

1 Analysis 3
1.1 European Train Control System 3
1.2 EVC and speed profiles . 7

1.2.1 Static speed profile . 8
1.2.2 Axle load speed profile 8
1.2.3 Temporary speed restrictions 9
1.2.4 Signalling related speed restrictions 9
1.2.5 Mode related speed restrictions 9
1.2.6 Train related speed restriction 9
1.2.7 LX speed restriction . 9
1.2.8 Override function related speed restriction 9
1.2.9 Determination of Most Restrictive Speed Profile 10

1.3 Messages and packets . 10
1.4 Speed and distance monitoring 15

2 Requirements 19
2.1 Functional requirements . 19
2.2 Non-Functional requirements 20

3 Design 21
3.1 Messages and packets receiver module 22
3.2 MRSP calculator module . 24

3.2.1 Algorithm for MRSP calculation 25
3.3 Dynamic speed monitoring module 27
3.4 JSON . 27

4 Implementation 29
4.1 Main Module . 29

ix

4.2 Messages and packets receiver 30
4.3 MRSP calculator . 31
4.4 DSM . 33

5 Testing 35
5.1 Messages and Packets Receiver testing 35
5.2 MRSP calculator testing . 37
5.3 DSM testing . 39
5.4 Main Module testing . 39

Conclusion 43
Future Development . 43

Bibliography 45

A Acronyms 47

B Contents of enclosed CD 51

x

List of Figures

1.1 ERTMS/ETCS Level 1 [16] . 4
1.2 ERTMS/ETCS Level 2 [16] . 5
1.3 ERTMS/ETCS Level 3 [16] . 5
1.4 Most Restrictive Speed Profile [8] 10
1.5 Packet Number 27 . 12
1.6 Packet Number 51 . 13
1.7 Packet Number 65 . 14
1.8 Packet Number 66 . 14
1.9 Message Number 3 and 37 . 15
1.10 Ceiling Supervision Limits [8] . 16
1.11 Types of Speed Monitoring [8] . 17

3.1 Modules . 21
3.2 Receiving of Train Data . 22
3.3 Receiving MA messages . 23
3.4 TSR Revocation . 24
3.5 Calculation of MRSP . 25
3.6 Speed Profiles . 26
3.7 MRSP algorithm . 27
3.8 MRSP calculated . 27
3.9 Dynamic Speed Monitoring . 28

xi

List of Listings

4.1 Data to send to EVC . 30
4.2 Method Receive TSR . 31
4.3 Saving speed profiles to the Speed Profiles container 32
4.4 Implementation of the ToSpeedProfiles method 32
4.5 Structure MRSP . 33
4.6 MRSP calculation . 34
5.1 JSON Train Data . 36
5.2 JSON TSR . 36
5.3 JSON MA . 37
5.4 Receive SSP test . 38
5.5 Receive ASP test . 39
5.6 MRSP Calculator test . 40
5.7 Main Module test . 41
5.8 Main Module test 2 . 42

xiii

Introduction

Railway transportation is one of the main kinds of transportation in almost
every country. Train transport is very commonly used, inexpensive and can
be used for both short and long distances. As it is convenient, it should also
be safe to travel on, so a lot of different safety measures are used to minimize
the risk of accidents. One of this measures is to present an international
automatic train control system, which will ensure safe movements of trains
and compatibility throughout different countries. The European Train Control
System (ETCS) gives the specific technical information necessary for that.

ETCS system defines two subsystems, the on-board and the trackside. The
ETCS on-board equipment is a computer-based system, that supervises the
train movement. The heart of this equipment is the European Vital Com-
puter (EVC). Dynamic speed monitoring is one of the main functions of EVC,
because it controls the speed and the distance of the train and triggers train
brakes whenever the situation calls for it. It helps to avoid dangerous situa-
tions and ensure safe movement of the train.

There is no such system in Czech Republic yet, so presenting modules
for the ETCS can improve transport system inside the country in the future.
That were the main reasons why I chose to proceed with this topic. I wanted
to attract attention to the safety transport issues, which are not addressed
yet.

This thesis is more or less a continuation of the implementation I have
done during the software project course. The main focus of this thesis lays on
designing and creating a dynamic speed monitoring module for the on-board
system, so that the safe train movement can be possible for trains inside ETCS.

Theoretical part of this work describes the actual ETCS system and it’s
components, the ETCS simulator, that was developed at FIT CTU and FTS
CTU during software project course, and main EVC functions, that are used
for the dynamic speed monitoring.

Practical part consists of designing and implementing the whole dynamic
speed monitoring module for EVC and essential submodules, that will help

1

Introduction

that happen. The first part will describe different submodules and their func-
tionality. Then the implementation details will be listed.

The main goal of this thesis is to create a functional dynamic speed mon-
itoring module for EVC.

Goals for the theoretical part of this work are to analyze the existing
ETCS documentation, that is described in ERTMS/ETCS System Require-
ments Specification subsets 026, issue: 3.6.0. The next goal is to describe
ETCS, it’s components, especially EVC, because the main work will be done
for that exact component. Previously done work will be analyzed and de-
scribed. As the communication between ETCS components is done by send-
ing messages and packets to each other, they must be described and analyzed.
The next main feature of this work is to take look at speed profiles, that are
used for calculating most restrictive speed profile, that is later used for dy-
namic speed monitoring. At last, the dynamic speed monitoring function will
be analyzed.

Goals for the practical part are to design submodule for receiving messages
and packets, and implement it. Then process received speed profiles inside
those packets. After that, to design an algorithm for calculating the most
restrictive speed profile from the previously received speed profiles. The last
goal is to design and implement the dynamic speed monitoring module, using
the calculated most restrictive speed profile.

To sum it all, the created module must receive and process messages and
packets from EVC. It should calculate MRSP from the data gained from those
messages and packets. And it should monitor speed and distance of the train
and trigger and release brakes commands, when necessary.

2

Chapter 1
Analysis

1.1 European Train Control System

Train control plays a very important role in a railway operations system. Dif-
ferent numbers of Automatic Train Control systems were created throughout
the years in different countries. The main problem of these systems is in-
compatibility with each other. Introducing an international standardisation
of Automatic Train Control system will not only solve this problem, but will
also ensure the safety of the international traffic.[6]

European Rail Traffic Management System/European Train Control Sys-
tem (ERTMS/ETCS) gives the specific technical information necessary for the
unambiguous understanding of the operating rules.

ETCS system defines two subsystems, the on-board and the trackside. The
trackside consists of balise, lineside electronic unit, the radio communication
network, the Radio Block Centre (RBC), Euroloop, Radio infill unit, Key
Management Centre and Public Key Infrastructure. For its part, the on-
board consists of the ERTMS/ETCS on-board equipment and the on-board
part of the GSM-R radio system.[6]

The ETCS on-board equipment is a computer-based system, that super-
vises the train movement.

ETCS operates on different levels. These levels are used to determine the
communication between trackside and on-board units and the functions to be
used on these levels.

Levels 1 to 3 provide a continuous speed supervision system, which also
protects against overrun of the authority.[16]

Level 0
This level is used when the track does not have operating train control

system. Or the use of this system currently not possible.
Therefore different signalling are used to give movement authorities to the

driver.
The following functions are present:

3

1. Analysis

1. Supervision of maximum train speed.

2. Supervision of maximum speed permitted in an unfitted area.

3. Reading of Eurobalises to detect level transitions and certain special
commands. All other messages are rejected.

4. No cab signalling. [7]

Level 1
This level is used when the track is equipped with Eurobalises and option-

ally Euroloop or Radio Infill.
[7]In this level movement authorities generates trackside and transmit

them to the train using Eurobalises.

Figure 1.1: ERTMS/ETCS Level 1 [16]

Level 2
This level is used when the track line is controlled by RBC and equipped

with Eurobalises and Euroradio. In this level train position and train integrity
proving is performed by the trackside.

In this level movement authorities are generated by the trackside, that
transmits them to the train using Euroradio.

This level is based on Euroradio communication between track and train.
And uses Eurobalises for location references.[7]

Level 3
Is the same as level 2 with the exception of train position and integrity

being supervised based on information received from the train.

4

1.1. European Train Control System

Figure 1.2: ERTMS/ETCS Level 2 [16]

This level is based on Euroradio communication between track and train.
And uses Eurobalises for location references.[7]

Figure 1.3: ERTMS/ETCS Level 3 [16]

Level NTC
Describes a line equipped with national system.

5

1. Analysis

[9]ETCS system runs not only on levels, but uses different modes for dif-
ferent purposes as well. It is used to assign some functions to a particular
mode. The following modes are present in the ETCS system:

Full Supervision (FS) is when the train runs with the full supervision of
ETCS.

Limited Supervision (LS) is when the train runs with the ETCS supervi-
sion, but it is limited. This mode cannot be chosen by the driver, so it
switches to this mode, when the train enters selected piece of track.

On Sight (OS) is when the train enters the piece of track, which is occupied
by something else, e.g. another train.

Staff Responsible (SR) is when the driver takes full supervision of the
train on a ETCS equipped piece of track.

Shunting (SH) is used for shunting movements.

Unfitted (UN) is used when the train enters the track, where there is no
ETCS system, or it is not available for using.

Passive Shunting (PS) is for managing the ETCS on-board equipment of
a slave engine, being part of a shunting consist.

Sleeping (SL) is the same as PS but with remote controlled slave engine.

Stand By (SB) is the basic mode when EVC first powers on.

Trip (TR) is when the emergency brakes are triggered.

Post Trip (PT) is when the mode leaves the trip mode.

System Failure (SF) is when some error occurs, affecting safety. The emer-
gency brakes in this case are used.

Isolation (IS) is when the ETCS on-board equipment is not connected to
other devices.

No Power (NP) is when EVC is not powered.

Non Leading (NL) is the same as PS but with a slave engine that is not
electrically coupled with the leading engine, but has its own driver.

National System (SN) is when the National system through STM interface
can access the resources using the on-board equipment.

Reversing (RV) is when the train can run in the opposite direction.

6

1.2. EVC and speed profiles

1.2 EVC and speed profiles

Existing ETCS Simulator:
ETCS SIMULATOR
The ETCS simulator, that is developed at FIT CTU and FTS CTU aims to

simulate ETCS system. The simulator is based on the specifications which are
shown in subsets version 2.3.0. The simulator currently implements functions,
operating on levels 2 and 3 for the modes Full Supervision, Stand By and No
Power. For the simulator, the following modules are implemented:

DMI module helps the driver to communicate with the whole ETCS system.
It receives the data, neccesary for displaying various data on the screen
for the driver to process. Meanwhile, it sends the data back to other
modules, to ensure that the driver’s inputs are heard.[1]

RBC module acts as a guidance system for the train. It calculates the rout
and sends data to EVC module with movement permission. It ensures
the safety of the route.[3]

JRU module is responsible for containment and preservation of the data in
communication between EVC and other modules.[5]

Braking Curve module calculates the braking curve necessary for the safe
movement of the train.[4]

EVC module acts like a communication module between every other module
in ETCS system.[2]

For EVC the functions are the following: communication between other
modules and EVC using messages and packets, determining the most restric-
tive speed profile based on the SSP, supervision of the train speed based on
MRSP, MA.

The goals of this work are to implement determination of the MRSP based
on SSP, ASP, TSR, Signalling related speed restriction, mode related speed re-
striction, train related speed restriction, STM max speed, STM system speed,
LX speed, speed restriction to ensure a given permitted braking distance,
override related speed restriction.

Previous implementation of EVC gives the speed monitoring based on
MRSP. But MRSP in this context consists only of the static speed profile.
SSP is the basic speed profile, which is given by the trackside to EVC via
messages and packets. Usage of the one SSP alone does not fully represent the
whole restrictions in the real world and ETCS. EVC was based on the subsets
version 2.3.0, and this work will be based on the version 3.6.0. While there is
no difference in some other things, even the basic SSP in this newer version
is quite different. In version 3.6.0 there is a more complex view of the speed
profiles. SSP has not got only basic speed restrictions, but also restrictions,

7

1. Analysis

which are connected to the train categories. There are few arguments, which
are passed through the packets, which help to determine the right speed limit,
whereas in the previous version the train category is nowhere to be seen.

There are few things that must be taken into account when calculating
MRSP, and one of them is a train length. Some of the speed restrictions ask
for the whole train to pass the distance of the limit, before speed increase is
taken place, while other speed restrictions do not.

MRSP will be calculated, depending on those speed profiles:

1.2.1 Static speed profile

SSP is a description of the fixed speed restrictions of a given piece of track.
These restrictions are based on both train and track dependent factors, and
are usually related to bridges, curves, tunnels and other track related things.

In subsets version 3.6.0 SSP provide two categories : Basic and specific.
The basic one is to be used on every train, while the specific one specify the
train category, on which the limit must be applied.[8]

There are two types of the specific categories:

1. Cant deficiency.

2. Other specific.

Trackside shall always send the basic SSP for the track route, while the
specific SSPs are optional.

EVC shall select the SSP best suiting its Cant deficiency train category
according to the following order:

1. Cant deficiency SSP matching its cant deficiency train category.

2. Cant deficiency SSP with the highest cant deficiency value below the
value of its cant deficiency train category.

3. Basic SSP.

The corresponding train category must be send as a part of the train
data.[8]

1.2.2 Axle load speed profile

Speed restriction due to axle load is given to different sections. For each of
them are given speed values and for which minimum axle load category this
speed value applies.

EVC must take the value which is the lowest due to axle load category,
which is lower than or equal to that of the train.[8]

8

1.2. EVC and speed profiles

1.2.3 Temporary speed restrictions

Those types of restrictions are usually used for some working areas. It is
convenient to use this type of restriction, to avoid temporary changes of the
SSP.

Temporary Speed restrictions are independent of each other and can easily
overlap. In those cases the minimum value of the overlapping restrictions is
used.

Each TSR has its own identity. It is used for the purpose of revocation.
Trackside can decide to revoke some TSR, so it sends a revocation message
with the identity of the TSR to be revoked. When EVC receives this message,
the restriction is revoked immediately.

It shall be noted, that TSR can be replaced by another value, if the new
TSR for the existing identity is received.[8]

1.2.4 Signalling related speed restrictions

This type of restriction is used only in Level 1. When the value is received,
it is applied immediately, for the exception of the restriction received from
infill device. This restriction is valid until a new one is received. In case of the
changing levels from 1 to 2 or 3, the restriction is valid until MA is received.[8]

1.2.5 Mode related speed restrictions

The values for this particular restriction are defined by default or national
value. [8]There are some exceptions for the rule:

1. For some of the modes the restriction can be given from the trackside.
For the On-sight, Limited Supervision and Shunting modes.

2. For the Reversing mode the value is always send by the trackside.

3. The driver can enter the speed for the Reversing mode.

1.2.6 Train related speed restriction

It represents the actual possible maximum train speed. It is send via message
as part of the train data.

1.2.7 LX speed restriction

Speed restriction for when the train has to pass a non protected Level Crossing.

1.2.8 Override function related speed restriction

This restriction is used only if the override function is active.

9

1. Analysis

1.2.9 Determination of Most Restrictive Speed Profile

MRSP is a description of the most restrictive speed restrictions the train shall
obey on a given piece of track.

The MRSP must be computed from all the different speed restrictions
given by the track. If on the same section of the track different restrictions
are overlapping, then on that section the lowest value must be applied.

When the new restrictions are given to the EVC or the previous ones
are deleted/changed, then MRSP must be immediately recalculated and ap-
plied.[8]

Some restrictions as axle load speed profile, international static speed pro-
file and temporary speed restrictions are given to EVC by RBC via Euroradio.
RBC sends message with movement authority and optional packets inside. In
those packets there are descriptions of those speed profiles. Based on those
profiles the MRSP is calculated.[10]

Figure 1.4: Most Restrictive Speed Profile [8]

1.3 Messages and packets

For communication between different modules in ETCS messages and pack-
ets are used. Messages and packets consist of different variables, values of
which have to be assigned. Some of these variables must be unique, which is
important for proper communication and unambiguous understanding of the
received information. Therefore, those messages and packets must be handled
due to common rules, given in the subsets 7 and 8.

Each variable has its own given size and listed values, so the handling of
them is easier and well defined. Some of the variables have special values,

10

1.3. Messages and packets

which are internationally used. Some of them have spare values, which can be
used in later development. Names of variables are unique and the description
is provided.[10]

Packets consist of number of variables with a defined internal structure.
Packets are formed that way, as to create a complete group of variables to
define some unit, e.g. Axle load speed profile.

Each packet always has packet identifier which is unique for each packet,
and packet length, which represents number of bits in the packet.

For this work the main packets are:

Packet number 27: International Static Speed Profile represents the
static speed profile to be processed by the EVC. This packet comes from
RBC. Values D STATIC represent incrementing distance to the next
change of static speed profile, and V STATIC represents the according
speed, that the train shall not overcome. Q DIFF shows if the train shall
follow the Cant Deficiency train category speed limit, and whether or not
the other specific category can override the Cant Deficiency speed limit
value. NC CDDIFF represents the Cant Deficiency category, NC DIFF -
other specific category. And V DIFF represents the according speed.[10]

Packet number 15: Level 2/3 Movement Authority represents the move-
ment authority on levels 2 and 3.

Packet number 12: Level 1 Movement Authority represents the move-
ment authority on level 1.

Packet number 51: Axle load Speed Profile represents the axle load
speed profile which is given to EVC by RBC. The value Q TRACKINIT
shows whether or not the initial states should be resumed or the speed
profile follows and shall be applied. If the value of this variable equals to
1, then the variable D TRACKINIT follows. It shows, that the empty
speed profile will start at that distance. If this variable equals to 0,
then the other variables follow. D AXLELAD represents the distance to
the axle load speed profile. L AXLELOAD is the length of the accord-
ing speed profile. Q FRONT shows whether or not the length of the
train shall be taken into consideration when the speed profile applies.
M AXLELOADCAT is the axle load category itself, and V AXLELOAD
is the speed corresponding to the according axle load speed profile.[10]

Packet number 65: Temporary Speed Restriction represents the tem-
porary speed restrictions send to EVC by RBC. The variable NID TSR
is the id of the one temporary speed restriction. It is needed to possibly
revoke this restriction by sendind packet number 66 to EVC. D TSR rep-
resents the distance to the according temporary speed profile. L TSR
is the length of the temporary speed profile. Q FRONT shows if the

11

1. Analysis

Figure 1.5: Packet Number 27

train length must be taken into account when applying temporary speed
restriction. V TSR is the speed for the temporary speed restriction.
NID TSR, when equals to 255, shows that this temporary speed restric-
tion is not revocable.[10]

Packet number 66: Temporary Speed Restriction Revocation is the
packet send by RBC to EVC. It is used to revoke temporary speed re-
striction which was previously applied. This packet has variable NID TSR
with the identity of the temporary speed profile to be revoked.[10]

12

1.3. Messages and packets

Figure 1.6: Packet Number 51

Messages are the main use of communication between modules in ETCS.
They consists of different variables and optional packets inside. So communi-
cation goes on via messages, and packets are the part of them.

[11]There are three different types of messages used in ETCS communica-
tion:

Eurobalise message is the telegram which is transmitted by balises.

Euroradio message is the message which is transmitted from RBC to EVC
or vise versa.

Euroloop message is the message which is transmitted by the loop.

A message consists of:

13

1. Analysis

Figure 1.7: Packet Number 65

Figure 1.8: Packet Number 66

1. One header.

2. Predefined set of variables (only for Radio).

3. Predefined set of packets (only for Radio).

4. Optional packets.

Message 3: Movement Authority is send by RBC to EVC. It represents
the Movement Authority and has additional packets to it with different
speed profiles to be processed by EVC.

Message 37: Infill MA is sent to EVC and represents the Movement Au-
thority but only in Level 1.

14

1.4. Speed and distance monitoring

Figure 1.9: Message Number 3 and 37

1.4 Speed and distance monitoring

Speed and distance monitoring is one of the main features of EVC for assuring
safety. It helps to monitor speed of the train and its position, so that the train
remains within the given by the trackside limits. As when the movement
authority is given to EVC by RBC, the rules and limits must be followed.
Those speed and distance limits are send via Euroradio messages as discussed
earlier.

In order to fulfill those rules, the brakes of the train must be functioning
and the whole train related data must be entered to the system correctly.

The on-board system may trigger brakes when necessary, e.g. when train
exceeds speed limit on the piece of track or when it exceeds the end of move-
ment authority, or revoke brakes, when the speed of the train goes under the
speed limit.[8]

Many different things are taken into account when speed and distance
monitoring. For example, train length, maximum train speed and nominal
rotating mass. As for the trackside, gradients, track related speed restrictions
and track condition.

To make it easier to follow the movement of the train and to monitor its
position, the distance is measured from the last balise group the train passed.
It gives the best point from which all the coming speed profiles, gradients and
movement authorities are count. So EVC must follow the balise groups and
make calculations based on that.

For the handling of the speed and distance monitoring, some supervision
limits are used. Those limits are helpful for the driver to maintain the speed
of the train within the appropriate limits, so that the emergency brakes will
not be triggered.[8]

Ceiling supervision limits are derived from the MRSP elements. Based on

15

1. Analysis

it the permitted speed, warning, service brake intervention and emer-
gency brake intervention are calculated.[8]

Figure 1.10: Ceiling Supervision Limits [8]

[8]The following speed supervision limits exist:

1. Emergency Brake Intervention (EBI)

2. Service Brake Intervention (SBI)

3. Warning (W)

4. Permitted speed (P)

5. Indication (I)

6. Release speed monitoring start location

[8]There are few different speed and distance monitoring types:

Ceiling speed monitoring (CSM) is used throughout the area where train
runs without the need to bake to a target.

Target speed monitoring (TSM) is the type of supervision in the area,
where train brakes to the target, and related information is displayed to
the driver.

Release speed monitoring (RSM) is used in the area close to the end of
authority. There the train can run within the release speed.

16

1.4. Speed and distance monitoring

Figure 1.11: Types of Speed Monitoring [8]

17

Chapter 2
Requirements

2.1 Functional requirements

FE1 - Handle received MA Movement Authority shall be handled accord-
ing to the subsets version 3.6.0.

FE2 - Check correctness of messages All received messages shall be
checked based on the SUBSET-036-8. If the message is not correct,
the message shall be omitted.

FE3 - Check correctness of packets All received packets shall be checked
based on the SUBSET-036-7. If the packet is not correct, the packet shall
be omitted.

FE4 - Calculate MRSP based on SSP The Most Restrictive Speed Pro-
file shall be calculated based on static speed profile. Speed of the train
is limited by SSP, which is based on the combination of the exact train
and given piece of track.

FE5 - Calculate MRSP based on ASP Axle Load speed restrictions are
based on the axle load train category and the state of the track.

FE6 - Calculate MRSP based on TSR Temporary peed restrictions are
based on the condition of the track ahead of the train.

FE7 - Calculate MRSP based on Signalling related speed restriction
when evaluated as a speed limit The track is able to send some speed
limits to the train, based on the signaling.

FE8 - Calculate MRSP based on Mode related speed restriction
Each ETCS mode has its own speed limit for the train to follow.

FE9 - Calculate MRSP based on Train related speed restriction It
is possible to define maximum train speed based on the configuration
and state of the train.

19

2. Requirements

FE10 - Calculate MRSP based on STM max speed When ETCS op-
erates through STM mudule, it can be possible to calculate MRSP based
on STM max speed.

FE11 - Calculate MRSP based on STM system speed When ETCS
operates through STM mudule, it can be possible to calculate MRSP
based on STM system speed.

FE12 - Calculate MRSP based on LX speed When the train passes a
non protected Level Crossing, it can be possible to use LX speed restric-
tion to calculate MRSP.

FE13 - Calculate MRSP based on Override related speed restric-
tion The override speed restriction is taken into account, when the
override function is active.

FE14 - Delete Revoked TSR It shall be possible to delete previously re-
ceived TSR using the id in the TSR Revocation packet.

FE15 - Dynamic Speed Monitoring based on MRSP, MA, release
speed, gradient, mode profile It is possible to monitor speed by
comparing the train speed and position, using various supervision limits.
In that case, the speed monitoring is based on the defined features. The
according information is shown to the driver, when the speed monitoring
is active.

FE16 - Dynamic Speed Monitoring based on MRSP This speed mon-
itoring is the same as the previous one, only it is based only on MRSP.

FE17 - Dynamic Speed Monitoring based on MRSP, allowed dis-
tance to run in Staff Responsible mode This speed monitoring is
the same as the previous one, only it is based only on MRSP and the
distance allowed in a specific mode Staff Responsible.

FE18 - Dynamic Speed Monitoring based on Ceiling Speed Mon-
itoring only (no braking curve) based on MRSP In that case
the dynamic speed monitoring is based only on MRSP, but the braking
curve is not calculated, and the supervision status is only CSM.

2.2 Non-Functional requirements

N1 - C++ language - modules shall be implemented in C++ programming
language, because all of the existing ETCS simulator modules are im-
plemented in C++ language.

N2 - Subset Version - modules shall correspond to the Subsets version
3.6.0.

20

Chapter 3
Design

One module is created for this work. This module contains three other sub-
modules inside. The whole module communicates with the existing EVC
module via MQTT broker. Messages are sent using JSON structures. These
structures will be represented further in this work.

Figure 3.1: Modules

The main module first receives train data and EVC data. Train data
consists of essential information about the train. Then train data is saved
to the internal structure, which represents train category, train deficiency
category, length of the train, train maximum speed, loading gauge, axle load
category and axle load number. EVC data consists of the current level and
mode, in which EVC operates right now. This data also is saved to the internal
structure. After that the MA can be received and dynamic speed monitoring

21

3. Design

enables.
When the new MA is received, previously received data from the MA is

deleted. This feature corresponds to one of the EVC functions.

Figure 3.2: Receiving of Train Data

3.1 Messages and packets receiver module

This module receives messages and packets described earlier in this work.
Then processes the information and evaluates it. If the evaluation fails, then
the error will be thrown and the process will be stopped. If the evaluation
succeeds, then the information inside packets and messages will be saved to
the internal structures, corresponding to the profiles inside.

The evaluation of the messages follows the diagram Receiving MA mes-
sages, which describes possibilities. But, before message Movement Authority
will be received, Train Data and data from the EVC must be received, be-
cause it has essential information for MA evaluation. EVC must send current
level and mode. When receiving MA message, the current mode and level
will be checked and MA message will be processed accordingly. If Infill MA is
received, then EVC must be running in the Level 1, so it can be processed by
the module, and only in modes FS and LS. If the modes does not correspond
to that, then Infill MA is rejected. MA messages are parted to messages for
Level 1, 2 and 3, so current level of EVC must correspond to that. If all the

22

3.1. Messages and packets receiver module

conditions are met, then messages and packets inside are processed and the
data is saved to the internal structures.

Axle load profile can represent empty profile and in that case it will be
saved to the structure as an empty profile and the distance to the beginning
of the empty profile. If the profile is not empty, then the structure will consist
of the distance to the change of the speed, the according speed and the length
of the profile.

Static speed profile is saved as a structure of speed, distance and the
identifier, which says if the front end of the train is going to be considered
when evaluating MRSP.

Temporary speed restriction is saved as a structure of id of the TSR,
distance to the change of the speed, the according speed and the length of the
profile. The id is further used to identify the TSR to be deleted in certain
situations.

Figure 3.3: Receiving MA messages

23

3. Design

Temporary speed restriction revocation allows to delete previously received
TSR, using it’s identity. If one of the previous TSR is deleted, then new MRSP
will be calculated, so it can be updated due to the new rules.

Figure 3.4: TSR Revocation

3.2 MRSP calculator module

To calculate MRSP, Train data and data from EVC must be received before-
hand, because it is used in calculations inside the MRSP calculator submodule.
Different speed limits are used for the calculations, which is shown on the di-
agram ”Calculation of MRSP”. Due to current modes and levels, different
limits are used. For example, when the Level is 2 and mode is FS, ASP,
SSP and TSR speed limits and train speed restrictions are used. To calculate
MRSP, ASP, SSP and TSR limits are saved to the first container in ascending
order due to the distance from LRBG, while all other restrictions are saved
to the second container. Then calculation will take place, using both those
containers.

24

3.2. MRSP calculator module

Figure 3.5: Calculation of MRSP

3.2.1 Algorithm for MRSP calculation

As was already discussed earlier in this chapter, MRSP is calculated after
receiving and saving data to the internal structures. After doing that, speed
profiles are just kept with their own kinds of profiles. It can be perfectly
seen on the diagram ”Speed Profiles”, where same kinds of speed limits are
coloured with the same color. For example, static speed restrictions, which are
coloured red, are kept in one container within MRSP calculator class. Before
evaluating MRSP, all of those speed profiles are saved to the same container,
which is represented on the diagram ”MRSP algorithm”. There can be seen
all of the previous speed profiles, but combined to the one line. This line
represents distance of speed limits from the LRBG. As can be seen, speed
limits are saved in ascending order, where each dot represents either start of
the speed limit, end of the speed limit or both start and end of speed limit.

25

3. Design

Start and end of speed limit can be placed on the same distance, because one
speed limit can start at distance 300, while the other speed limit can end at
the same distance.

The whole algorithm of the calculation of MRSP works like that:

1. Takes a look at the first dot.

2. Saves all ”starting” at that dot speeds to the separate container.

3. Deletes all ”ending” speeds from the container.

4. Takes look at the next dot.

5. Takes the distance between the first and next dot and minimum speed
between them. And saves that to the output container.

6. Next dot becomes first dot.

7. Repeat, until all of the dots are processed.

The output container is the result of the algorithm. And this output
container consists of the distance to the change of the speed and according
speed. As a result, MRSP is calculated and is shown on the diagram ”MRSP
calculated”. MRSP is next used in dynamic speed monitoring.

Figure 3.6: Speed Profiles

26

3.3. Dynamic speed monitoring module

Figure 3.7: MRSP algorithm

Figure 3.8: MRSP calculated

3.3 Dynamic speed monitoring module

Dynamic speed monitoring module operates on the received data like Train
data, EVC data and MA. If this data is not received yet, then the error is
thrown. Dynamic speed monitoring operates on modes SH, SV, RV, UN, SR,
FS, LS and OS. Different kinds of speed monitoring applies to different modes.
The main goal of this module is to monitor speed, using distance of the train,
to ensure safe movement. It means, that this module will check the train speed
and, if necessary, will send service or emergency brake command to EVC. Or,
contrary, will release those brake commands, if the train speed comes below
the required speed limit.

3.4 JSON

Format JSON was chosen for transferring data, because it is easy to use and
read. Second, most programming languages can easily work with JSON, so
generating and parsing data will not be a problem.

27

3. Design

Figure 3.9: Dynamic Speed Monitoring

28

Chapter 4
Implementation

All modules for this work were implemented in C++ language. The whole
implementation corresponds to the subsets version 3.6.0.

4.1 Main Module

For this thesis one main module and three submodules were implemented.
The main module operates on other submodules. It has instances of the three
submodules and receives necessary data, that is redirected to the necessary
submodule.

Method receiveTrainData gets JSON object, which has all necessary
details about the train, that then will be taken into account, when processing
movement authorities and speed monitoring. So this data must be received
first along with data from EVC. This JSON object is then passed to the
message and packets receiver module, which processes all information and
saves necessary data into internal structures.

When the movement authority is received, the main module redirects
JSON object to the messages and packets receiver, that then processes the
data. It saves necessary data and, as an output, has processed speed pro-
files inside, that then will be used for MRSP calculations. Inside method
receiveMA, after movement authority is processed, the main module gives
necessary information, as speed profiles and train data, to the MRSP cal-
culator module, that calculates the data. The output of the calculations is
the most restrictive speed profile, that then is passed to the dynamic speed
monitoring module.

Method receiveODO gets the data from the odometer of the train and
passes the data to the dynamic speed monitoring module, which processes
necessary data. As for the output, it has all the necessary information, that
then will be send to EVC. This information can be seen on the listing ”Data
to send to EVC”.

29

4. Implementation

struct StructureToSendEVC {
std::uint8_t supervision_section;
std::uint8_t supervision_status;
std::uint16_t pre_indication_location;
std::uint16_t indication_location;
bool service_brake = false;
bool emergency_brake = false;

};

Listing 4.1: Data to send to EVC

The main module is more or less acts like a router, that receives and
redirects information between different submodules and sends the output in-
formation to EVC.

4.2 Messages and packets receiver

Messages and packets receiver receives message Movement Authority and
passes packets as arguments to according methods, like receiveTSR, that
can be seen on the listing ”Method Receive TSR”. As an output of this mod-
ule, it saves all speed profiles to according containers, that later will be used
for calculating the most restrictive speed profile. Mainly, this modules takes
packets, searches for speed and distance inside those packets, and saves these
data to the containers.

Message Movement Authority can be received as a JSON object. It has
one of the packets with movement authority inside and additional packets with
speed profiles inside them. receiveSSP method, for example, checks the cat-
egory of the train and the given categories inside the packet, compares them,
and then saves the according speed and distance to the internal container
std::vector<SSP>. For all of the speed profiles, the following procedure is
taken place. So that all of the received speed profiles are processed and are
ready to be used later, when calculating the most restrictive speed profile of
them all.

On the listing ”Method Receive TSR” can be seen the processing of the
packet and saving necessary information about speed and distance to the
according structure. Temporary speed restrictions are given for the all train
types and categories, so the process is simple enough, but when the axle load
speed profiles or static speed profiles are given, it is important to compare
categories and their speed limits, to choose the right speed restriction for the
given piece of track. All of the resolutions and formulas for that are given by
the subsets and were described in earlier chapters. As for the formulas, that
are necessary for calculating the length of the speed restrictions, as well, as
their speed at that areas.

30

4.3. MRSP calculator

void MessagesAndPacketsReceiver::ReceiveTSR(TemporarySR * tem){
//Gets the distance to the TSR with according scale measures.
double x = Scale(tem->getQScale(), tem->getDTsr());
//Gets the length of the TSR with according scale measures.
double y = Scale(tem->getQScale(), tem->getLTsr());
//Checks if the train length must be taken into account when
// calculating the length of the restriction.
if(tem->getQFront() == 0)

y += trainData.length;
//Formula for receiving speed: received_speed * 5.
// According to subset-7.
std::uint16_t speed = tem->getVTsr() * 5;
TSR tmp{tem->getNidTsr(), x, y, speed};
tsr.emplace(tem->getNidTsr(), tmp);
}

Listing 4.2: Method Receive TSR

4.3 MRSP calculator

MRSP calculator module calculates the most restrictive speed profile. The
method MRSPCalculator takes as an arguments the axle load speed profile,
all temporary speed restrictions, the static speed profile and train data.

This algorithm was described earlier in the chapter ”Design”. Basically,
it saves all of the speed profiles to the same std::map, which represents the
line of the distance from LRBG and has different speeds on it. It also has the
information inside, if the speed profile starts or ends at that exact distance.
This container is called speed_profiles, so the saving process can be seen
on the listings ”Saving speed profiles to the Speed Profiles container” and
”Implementation of the ToSpeedProfiles method”. It represents the distance
line and dots on it, that tell the speed of profiles and whether or not it starts
there or ends. This was shown earlier in the ”Design” chapter.

Method ToSpeedProfiles takes distance of the speed profile, it’s speed
and tag, that represents if the profile starts here or ends. Values: true - it
starts here, false - it ends here. For the speed profiles, there is always defined
the starting and ending points, unless it is the last value of the static speed
profile, because it can have only starting point and be valid up to the end of
the movement authority or beyond.

After all speed profiles are processed, then it goes to the calculating of
the most restrictive speed profile based on that container and other train
data. It was also shown at the ”Design” chapter earlier. This can be seen
at the picture ”MRSP calculation”. It iterates through the line of distances,
which is represented by the container speed_profiles. It looks at each dis-
tance from the beginning, then saves all of the ”starting point” speeds to the

31

4. Implementation

double dist = 0;
std::uint16_t speed = 0;
//Saves speed profiles, their starting and ending distance,
// and their speed to the common container.
for(auto &i: ssp){

dist += i.distance;
ToSpeedProfiles(dist, i.speed, true);
ToSpeedProfiles(dist, speed, false);
speed = i.speed;

}

for(auto &i: tsr){
ToSpeedProfiles(i.second.distance, i.second.speed, true);
ToSpeedProfiles(i.second.distance + i.second.length,

i.second.speed, false);
}

for(auto &i: asp){
ToSpeedProfiles(i.distance, i.speed, true);
ToSpeedProfiles(i.distance + i.length, i.speed, false);

}

Listing 4.3: Saving speed profiles to the Speed Profiles container

void MRSPCalculator::ToSpeedProfiles(double distance,
std::uint16_t speed, bool tag)

{
auto it = speed_profiles.find(distance);
if(it != speed_profiles.end()){

it->second.emplace(speed, tag);
} else {

std::multimap<uint16_t, bool> tmp;
tmp.emplace(speed, tag);
speed_profiles.emplace(distance, tmp);

}
}

Listing 4.4: Implementation of the ToSpeedProfiles method

std::multiset speeds. Then it looks to the next distance and searches for
the ”ending point” speeds. Then, for the section between these two distances,
the minimum speed is taken as a MRSP value, so it is saved to the output
container calculated_mrsp. To avoid speed repetition, before saving data
to the output container, it looks at the previous value and compares speed

32

4.4. DSM

values. So if they are the same, then the restriction just prolongs to that
distance.

MRSP is represented as two different ways for the convenience. They both
are represented as std::vector<MRSP>, where MRSP structure has speed
and distance inside. The first container has all distances as a distance from
LRBG to the change of speed, while the second container has each distance
as an incremental distance from the previous one, so that only the first value
represents the distance from LRBG. It is implemented like that, so it can
be used later for different purposes. The second one is represented the same
way as an international static speed profile, which was received earlier as a
packet, that is why it was decided to make two different MRSP containers. It
is possible just to convert MRSP incremental container to differential one and
vise verse. So two methods MRSPToIncremental and MRSPToDifferential
were implemented inside this module for that reason, so that MRSP can be
easily converted to whichever type is needed.

struct MRSP{
double distance;
std::uint16_t speed;

};

Listing 4.5: Structure MRSP

4.4 DSM

Dynamic speed monitoring module operates on the calculated previously MRSP,
which is set by the Main Module, EVC data and other necessary Train Data.
After receiving new movement authority, data is updated and new braking
curve is calculated. Module for the calculation of braking curves was taken
from previous EVC implementation.[4] After braking curve is calculated, the
module can operate and receive data from the odometer of the train. This
module was more or less implemented during the course BI-SP2. It then was
changed to better suite the purpose of this bachelor’s thesis, so that it can
function according to the given task.

The main functions start, when the module starts to receive odometer data.
This module controls the speed and the distance of the train. It takes the speed
of the train, calculates travelled distance and, based on that, it supervises
speed and location of the train. It looks at the speed and distance limits and,
if train exceeds those limits, it triggers train brakes. This information is also
helps to change supervision sections and statuses, so that is also sent to EVC
later. Those supervision parameters are important for the correct work of the
EVC, so that it can show them to the driver and trigger necessary functions,
so that the train can move according to them.

33

4. Implementation

void MRSPCalculator::CalculateMRSP(const std::vector<SSP>& ssp,
const std::map<std::uint8_t, TSR>& tsr, const std::vector<ASP>& asp,
TrainSR trainSr, std::uint16_t signallingSr) {

//...The code is reduced for the better view purposes.
// The reduced part was shown earlier on the listing:
// "Saving speed profiles to the Speed Profiles container"
std::multiset<std::uint16_t> speeds;
for(auto itr = speed_profiles.begin(); itr != speed_profiles.end();)
{

MRSP mrsp;
auto itr_first = itr;
for(auto &i: itr->second) {

if(i.second)
speeds.emplace(i.first);

}
itr++;
if(itr == speed_profiles.end()) {

if(!speeds.empty()) {
itr--;
mrsp.distance = itr->first;
mrsp.speed = *speeds.begin();
auto m = calculated_mrsp_differential.end() - 1;
if(m->speed != mrsp.speed)

calculated_mrsp_differential.emplace_back(mrsp);
}
break;

}
mrsp.speed = *speeds.begin();
for(auto &i: itr->second){

if(!i.second)
speeds.erase(speeds.find(i.first));

}
mrsp.distance = itr_first->first;
if(mrsp.speed > signallingSr && signallingSr != 0)

mrsp.speed = signallingSr;
if(mrsp.speed > trainSr.speed)

mrsp.speed = trainSr.speed;
auto m = calculated_mrsp_differential.end() - 1;
if(calculated_mrsp_differential.empty() || m->speed != mrsp.speed)

calculated_mrsp_differential.emplace_back(mrsp);
}
calculated_mrsp_incremental =

MRSPToIncremental(calculated_mrsp_differential);
}

Listing 4.6: MRSP calculation34

Chapter 5
Testing

Testing is one of the most important parts of the implementation. It helps
to ensure correct work of the program and prevent any unwanted behaviour.
Undetected earlier on errors can have fatal influence further on. The best
practice is to test code during the implementation, because it will help to find
and fix errors sooner.

Automated testing helps to reduce time by providing tests, that can be
applied multiple times. Therefore, when new functionalities are added, those
automated tests can be run, to ensure, that those new functionalities did not
break the older ones. This kind of testing is usually good for small, easy
tests like unit tests, because writing automated tests for a big, complicated
application can be very time consuming and costly.

Unit tests are used for testing some small pieces of the code. Those pieces
can be isolated from the whole system and tested separately from the other
parts of the code. It is useful for checking the correctness of functions inside
an application. Sometimes some small tests can be written beforehand, so
that the end result can be understood better.

During this work, unit tests were written. Those tests are fully automated
and isolate different modules, so it can be possible to test them separately.

5.1 Messages and Packets Receiver testing

Unit tests for messages and packets receiver module were created. Those tests
create an instance of the receiver class and, using JSON structures, sends
them to receiver. Receiver gets this JSON object and processes data inside,
then saving necessary data to internal structures. The picture ”JSON Train
Data” shows relevant train data, that can be received by the messages and
packets receiver. ”JSON TSR” shows the example of the speed profile, there
temporary speed profile, that is received and processed. ”JSON MA” shows
the example of the movement authority with one temporary speed restriction
and one temporary speed restriction revocation. Similar JSON objects were

35

5. Testing

created for testing messages and packets receiver, along with the incorrect
data to test the work of the receiver.

{
"NC_CDTRAIN" : 7,
"NC_TRAIN" : 15,
"L_TRAIN" : 200,
"V_MAXTRAIN" : 25,
"M_LOADINGGAUGE" : 16,
"M_AXLELOADCAT" : 3,
"N_AXLE" : 20

}

Listing 5.1: JSON Train Data

{
"NID_PACKET": 65,
"Q_DIR": 1,
"L_PACKET": 71,
"Q_SCALE": 1,
"NID_TSR": 0,
"D_TSR": 100,
"L_TSR": 150,
"Q_FRONT": 1,
"V_TSR": 4

}

Listing 5.2: JSON TSR

To check the correctness of the saved data, different tests were imple-
mented. For example, for each individual speed profile receiver, tests were
created during the implementation, without using the JSON objects. The
example of the test can be seen on the listing ”Receive SSP test”. Then tests,
that use JSON objects, were implemented to check the correctness of the
parsing. Some of the results of the tests with the same values were compared
with each other for that purpose. One using the JSON receiver, and other
using ordinary constructor. The test example with JSON object can be seen
on the listing ”Receive ASP test”. These tests check the correctness for the
requirements FE1 - FE3 and FE14.

It is understandable, that when testing new implemented code, the errors
are almost always found. During the testing of this modules, there were few
details, that needed to be changed. Those errors were primary connected with
the processing international static speed profiles and axle load speed profiles.
It was because the receivers were saving data to internal structures, but were

36

5.2. MRSP calculator testing

{
"NID_MESSAGE": 3,
"L_MESSAGE": 123,
"T_TRAIN": 0,
"M_ACK": 0,
"NID_LRBG": 0,
"PACKETS": [

{
"NID_PACKET": 65,
"Q_DIR": 1,
"L_PACKET": 71,
"Q_SCALE": 1,
"NID_TSR": 3,
"D_TSR": 1300,
"L_TSR": 500,
"Q_FRONT": 0,
"V_TSR": 6

},
{

"NID_PACKET": 66,
"Q_DIR": 1,
"L_PACKET": 31,
"NID_TSR": 0

}
]

}

Listing 5.3: JSON MA

using wrong train categories for evaluating speed restrictions. So, that was
fixed, and then tests were run again, and new tests for that were created. As
for now, those tests run correctly, and speed restrictions due to specific speed
category are saved.

5.2 MRSP calculator testing

Unit tests for MRSP calculator module were also created. Those tests created
an instance of the class calculator, then were given different speed profiles for
processing, and then the results of the calculations were compared to the esti-
mated results. The estimated results were the same as the calculated results.
Example of the created tests are shown on the picture ”MRSP Calculator
test”. These tests check the correctness for the requirements FE4 - FE13.

Tests for this module helped to detect some errors during the implementa-

37

5. Testing

void testReceiveSSP(){
MessagesAndPacketsReceiver odo;
std::vector<std::uint8_t> tmp1{0, 1};
std::vector<std::uint8_t> tmp2{0};
std::vector<std::uint8_t> tmp3{1};
std::vector<std::uint8_t> tmp4{5, 6};
std::vector<std::uint16_t> tmp5{100, 200};
std::vector<std::uint8_t> tmp6{7, 8};
std::vector<std::uint8_t> tmp7{1, 1};
std::vector<std::uint8_t> tmp8{1, 1};
std::vector<std::vector<std::uint8_t>> tmpt1{{0}, {1}};
std::vector<std::vector<std::uint8_t>> tmpt2{{0}};
std::vector<std::vector<std::uint8_t>> tmpt3{{1}};
std::vector<std::vector<std::uint8_t>> tmpt4{{5}, {6}};
InternationalSSP ssp(27, 1, 177, 1, 100, 7, 1, 2, tmp1,

tmp2, tmp3, tmp4, 2, tmp5, tmp6, tmp7, tmp8, tmpt1,
tmpt2, tmpt3, tmpt4);

ifstream ifs("../Tests/TrainData1.json");
nlohmann::json j = nlohmann::json::parse(ifs);
odo.ReceiveTrainData(j);
odo.ReceiveSSP(&ssp);
assert(odo.ssp.size() == 3);
// First speed restriction
assert(odo.ssp[0].distance == 100);
assert(odo.ssp[0].front_end == false);
assert(odo.ssp[0].speed == 25);
// Second speed restriction
assert(odo.ssp[1].distance == 100);
assert(odo.ssp[1].front_end == false);
assert(odo.ssp[1].speed == 25);
// Third speed restriction
assert(odo.ssp[2].distance == 200);
assert(odo.ssp[2].front_end == false);
assert(odo.ssp[2].speed == 40);

}

Listing 5.4: Receive SSP test

tion. At first, the calculation of the MRSP was created in different way, so the
tests were created to help to see, if the module works as it supposed to. Then
the implementation of the module changed and those tests were run to check
the new implementation. It was almost right, but one error was detected, that

38

5.3. DSM testing

void testReceiveASP3(){
MessagesAndPacketsReceiver odo;
ifstream ifs("../Tests/ASP2.json");
nlohmann::json j = nlohmann::json::parse(ifs);
AxleLoadSP as(j);
odo.trainData.axle_category = 4;
odo.trainData.length = 100;
odo.ReceiveASP(&as);
assert(odo.asp.size() == 3);
// First speed restriction
assert(odo.asp[0].distance == 700);
assert(odo.asp[0].length == 200);
assert(odo.asp[0].speed == 20);
// Second speed restriction
assert(odo.asp[1].distance == 1000);
assert(odo.asp[1].length == 150);
assert(odo.asp[1].speed == 25);
// Third speed restriction
assert(odo.asp[2].distance == 1500);
assert(odo.asp[2].length == 350);
assert(odo.asp[2].speed == 15);

}

Listing 5.5: Receive ASP test

was about the last value of the most restrictive speed profile. At first, that
last value was not saved to the calculated MRSP container, but it was fixed
later on.

5.3 DSM testing

Dynamic speed monitoring module was tested, using different types of MRSP
and MA. The results of the tests were the same as the estimated results. This
means, that the brakes commands where triggered at the right time, when the
current speed of the train was above the permitted one. These tests check the
correctness for the requirements FE15 - FE18.

5.4 Main Module testing

The main module was tested, using data from the previous tests, so that can
be seen, if the Main Module correctly receives and redirects information. Later
on, big tests were added to check the correctness of all modules, because it

39

5. Testing

void testMRSP(){
MRSPCalculator odo;
SSP ssp{0, 50, false};
SSP ssp1{200, 200, false};
SSP ssp2{250, 100, false};
SSP ssp3{150, 120, false};
odo.ssp.emplace_back(ssp);
odo.ssp.emplace_back(ssp1);
odo.ssp.emplace_back(ssp2);
odo.ssp.emplace_back(ssp3);
ASP asp{false, 0, 550, 100, 140};
odo.asp.emplace_back(asp);
TSR tsr{1, 300, 200, 40};
odo.tsr.emplace(1, tsr);
odo.trainSr.speed = 130;
odo.CalculateMRSP();
vector<MRSP> tmp {{0, 50}, {200, 130},

{300, 40}, {500, 100}, {600, 120}};
assert(tmp.size() == odo.mrsp.size());
for(size_t i = 0; i < tmp.size(); i++){

assert(tmp[i].speed == odo.mrsp[i].speed);
assert(tmp[i].distance == odo.mrsp[i].distance);

}
};

Listing 5.6: MRSP Calculator test

was easier to take information as JSON objects and redirects that information
to different modules. So the main tests for the MRSPCalculator module and
DSM module were created inside the main module tests. It was convenient
to do so, when the previous small tests were shown to be correct. The short
examples of the tests are shown on the listings ”Main Module test 1” and
”Main Module test 2”. These tests check the correctness for the presented
earlier requirements.

40

5.4. Main Module testing

void testReceiveMA(){
MainModule odo;
ifstream ifs11("../Tests/TrainData1.json");
nlohmann::json j1 = nlohmann::json::parse(ifs11);
odo.receiveTrainData(j1);

ifstream ifs("../Tests/EVCData.json");
nlohmann::json j = nlohmann::json::parse(ifs);
odo.receiveEVCData(j);

ifstream ifs2("../Tests/MA1.json");
nlohmann::json j2 = nlohmann::json::parse(ifs2);
odo.receiveMA(j2);
//MRSP tests
assert(odo.mrsp_calc.getMRSP().size() == 10);
assert(odo.mrsp_calc.getMRSP()[0].distance == 100

&& odo.mrsp_calc.getMRSP()[0].speed == 25);
assert(odo.mrsp_calc.getMRSP()[1].distance == 500

&& odo.mrsp_calc.getMRSP()[1].speed == 40);
assert(odo.mrsp_calc.getMRSP()[2].distance == 700

&& odo.mrsp_calc.getMRSP()[2].speed == 20);
assert(odo.mrsp_calc.getMRSP()[3].distance == 900

&& odo.mrsp_calc.getMRSP()[3].speed == 40);
assert(odo.mrsp_calc.getMRSP()[4].distance == 1000

&& odo.mrsp_calc.getMRSP()[4].speed == 15);
assert(odo.mrsp_calc.getMRSP()[5].distance == 1200

&& odo.mrsp_calc.getMRSP()[5].speed == 40);
assert(odo.mrsp_calc.getMRSP()[6].distance == 1300

&& odo.mrsp_calc.getMRSP()[6].speed == 30);
assert(odo.mrsp_calc.getMRSP()[7].distance == 1500

&& odo.mrsp_calc.getMRSP()[7].speed == 15);
assert(odo.mrsp_calc.getMRSP()[8].distance == 1950

&& odo.mrsp_calc.getMRSP()[8].speed == 30);
assert(odo.mrsp_calc.getMRSP()[9].distance == 2000

&& odo.mrsp_calc.getMRSP()[9].speed == 40);
}

Listing 5.7: Main Module test

41

5. Testing

void testReceiveODO1(){
MainModule odo;
ifstream ifs11("../Tests/TrainData1.json");
nlohmann::json j1 = nlohmann::json::parse(ifs11);
odo.receiveTrainData(j1);

ifstream ifs("../Tests/EVCData.json");
nlohmann::json j = nlohmann::json::parse(ifs);
odo.receiveEVCData(j);

ifstream ifs2("../Tests/MAL22.json");
nlohmann::json j2 = nlohmann::json::parse(ifs2);
odo.receiveMA(j2);

ifstream ifs3("../Tests/ODO1.json");
nlohmann::json j3 = nlohmann::json::parse(ifs3);
odo.receiveODO(j3);

ifstream ifs4("../Tests/ODO2.json");
nlohmann::json j4 = nlohmann::json::parse(ifs4);
odo.receiveODO(j4);

ifstream ifs5("../Tests/ODO3.json");
nlohmann::json j5 = nlohmann::json::parse(ifs5);
odo.receiveODO(j5);

//...
//There are tests for the correctness of the speed profiles
// and MRSP but are not shown, because they are too long.

// Tests for the DSM module
// It is the data to be sent to EVC
// Service brake is triggered here, because the train speed
// now is above the permitted train speed.
assert(odo.getEvcSend().service_brake == true);
assert(odo.getEvcSend().emergency_brake == false);
assert(odo.getEvcSend().supervision_section == 0);
assert(odo.getEvcSend().supervision_status == 0);

}

Listing 5.8: Main Module test 2

42

Conclusion

The main goal of this thesis was to create a functional dynamic speed moni-
toring module for EVC. This goal was achieved. Three different submodules
were implemented. One submodule allows to receive messages and packets
from EVC, then processes the information and saves the necessary data. The
next submodule calculates MRSP, using the data, that was received previ-
ously. The last submodule is called Dynamic speed monitoring and it allows
to monitor speed and distance of the train, using previously calculated MRSP
and other necessary data, received from EVC. As a result, these module can
trigger emergency and service brakes, when necessary, and can release them,
so that the train can move safely on the selected route.

First, the analysis of the ETCS system was given, along with the analysis
of the existing ETCS simulator. Then were described essential parts of the
ETCS system, that later were used for the design and implementation, as it
specified the rules and characteristics of the system.

Second, the design part was created and described for this thesis. It showed
different modules and communication between them. It also showed the dia-
grams of each part of the modules and how they must work.

Third, the implementation details were described and shown in the Chap-
ter ”Implementation”. It describes each implemented module and shows a few
implemented parts of the code.

At last, testing details were described in the chapter ”Testing”. It shows
the examples of the tests, that were used during the implementation, as well,
as JSON structures, that were passed to the modules for the processing. The
results of the tests and errors, that were found during the implementation,
were also indicated inside said chapter.

Future Development

Although features described in section ”Requirements” were implemented,
some new features can be added in the future. For example, version com-

43

Conclusion

patibility can be added, so that the module will work with different other
modules, that are implemented with different subset versions. Current im-
plementation supports only subsets version 3.6.0. There can be added few
adjustments, so it will work with versions 2.4.0 and 3.4.0. Those adjustments
primary concerns Messages and Packets Receiver module, that later on can
detect the version of the EVC and, therefore, can redirect to differently im-
plemented speed profiles receivers. They can be implemented for different
versions inside the module.

44

Bibliography

[1] KADLČEK, David; STEJSKAL, Jan; JAHODA, Petr; UDAVICHENKA,
Yury; MACHÁČEK, Jǐŕı; VEJVODA, Štěpán. Analýza projektu DMI dis-
plej pro simulátor ETCS. 2021. Tech. rep. Faculty of Information Technol-
ogy, CTU in Prague. [cit. 2022-04-20].

[2] KRASNENKOVA, Alina; ROSHCHUPKINA, Daria. ETCS simulátor –
EVC, Dokumentace. 2021. Tech. rep. Faculty of Information Technology,
CTU in Prague. [cit. 2022-04-20].

[3] SKIPALA, Michal; BENK, Patrik; GORGOL, Matěj; KRASNENKOVA,
Alina; ROSHCHUPKINA, Daria; STERNWALD, Jǐŕı. ETCS simulátor –
RBC, Dokumentace. 2021. Tech. rep. Faculty of Information Technology,
CTU in Prague. [cit. 2022-04-20].

[4] GOLMGREN, Nikita; BÍLEK, Matouš; KRAVTSOV, Aleksei; LANCA,
Matěj; SLANINOVÁ, Dominika; UMPRECHT, Jan; WICHTERLE,
David. Výpočet brzdné křivky pro ETCS simulátor, Analytická dokumen-
tace. 2021. Tech. rep. Faculty of Information Technology, CTU in Prague.
[cit. 2022-04-20]

[5] GOLMGREN, Nikita; BÍLEK, Matouš; KRAVTSOV, Aleksei; LANCA,
Matěj; SLANINOVÁ, Dominika; UMPRECHT, Jan; WICHTERLE,
David. JRU a JRU DL Tool pro ETCS simulátor, Analytická dokumen-
tace. 2021. Tech. rep. Faculty of Information Technology, CTU in Prague.
[cit. 2022-04-20].

[6] System Requirements Specification, Chapter 1, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

45

Bibliography

[7] System Requirements Specification, Chapter 2, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[8] System Requirements Specification, Chapter 3, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[9] System Requirements Specification, Chapter 4, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[10] System Requirements Specification, Chapter 7, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[11] System Requirements Specification, Chapter 8, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[12] System Requirements Specification, Chapter 5, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications3-etcs-b3-r2-
gsm-r-b1 en. [cit. 2022-04-20].

[13] ERTMS in brief. [N.d.]. Available also from:
https://www.ertms.net/about-ertms/ertms-signaling-levels/. [cit. 2022-
04-20].

[14] European Rail Traffic Management System (ERTMS). [N.d.]. Available
also from: https://www.era.europa.eu/activities/european-rail-traffic-
management-system-ertms en. [cit. 2022-04-20].

[15] UIC ETCS Implementation Handbook. 2008.

[16] European Train Control System (ETCS). [N.d.]. Available also
from: https://www.thalesgroup.com/en/european-train-control-system-
etcs. [cit. 2022-04-20].

[17] The ERTMS/ETCS Signalling System. 2014. Available also from:
https://www.railwaysignalling.eu/ertmsetcs-manual-free-handbook-
download-free-pdf-format.

46

Appendix A
Acronyms

ASP Axle load speed profile

CSM Ceiling speed monitoring

DMI Driver machine interface

DSM Dynamic speed monitoring

EBI Emergency Brake Intervention

EOA End of authority

ERTMS European Rail Traffic Management System

ETCS European Train Control System

EVC European Vital Computer

FS Full Supervision

GSM-R Global System for Mobile Communication - Railway

I Indication

IndS Indication status

IntS Intervention status

IS Isolation

JRU Juridical Recording Unit

JSON JavaScript Object Notation

LRBG Last relevant balise group

LS Limited Supervision

47

A. Acronyms

LX Level crossing

MA Movement authority

MQTT Message queuing telemetry transport

MRSP Most restrictive speed profile

NL Non Leading

NoS Normal status

NP No Power

OS On Sight

OvS Over-speed status

P Permitted speed

PS Passive Shunting

PT Post Trip

RBC Radio Block Centre

RSM Release speed monitoring

RV Reversing

SB Stand By

SBI Service Brake Intervention

SF System Failure

SH Shunting

SL Sleeping

SN National System

SR Staff Responsible

SSP Static speed profile

STM Specific Transmission Module

TR Trip

TSM Target speed monitoring

TSR Temporary speed restriction

48

UN Unfitted

W Warning

WaS Warning status

49

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

impl..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

51

	Introduction
	Analysis
	European Train Control System
	EVC and speed profiles
	Static speed profile
	Axle load speed profile
	Temporary speed restrictions
	Signalling related speed restrictions
	Mode related speed restrictions
	Train related speed restriction
	LX speed restriction
	Override function related speed restriction
	Determination of Most Restrictive Speed Profile

	Messages and packets
	Speed and distance monitoring

	Requirements
	Functional requirements
	Non-Functional requirements

	Design
	Messages and packets receiver module
	MRSP calculator module
	Algorithm for MRSP calculation

	Dynamic speed monitoring module
	JSON

	Implementation
	Main Module
	Messages and packets receiver
	MRSP calculator
	DSM

	Testing
	Messages and Packets Receiver testing
	MRSP calculator testing
	DSM testing
	Main Module testing

	Conclusion
	Future Development

	Bibliography
	Acronyms
	Contents of enclosed CD

