
10/17/21, 7:01 PM ProjectsFIT

https://projects.fit.cvut.cz/theses/4029/assignment-print 1/1

Instructions

1) Familiarize yourself with the Java chart library JFreeChart.

2) Study what a Market Profile is, how to calculate it and plot it as a graph.

3) Find out if there are any libraries that can plot Market Profile charts and compare their properties.

4) Design and implement an extension to the JFreeChart library that allows the calculation and

rendering of Market Profile graphs.

5) Create a demo application that will illustrate the use of your extension and verify its functionality.

6) Compare the features of your solution with existing libraries/frameworks.

Electronically approved by Ing. Michal Valenta, Ph.D. on 12 October 2021 in Prague.

Assignment of bachelor’s thesis

Title: Extension of the JFreeChart library with Market Profile charts

Student: Beksultan Baatyrbekov

Supervisor: Ing. Jan Trdlička, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Extension of the JFreeChart library with
Market Profile charts

Beksultan Baatyrbekov

Department of Software Engineering
Supervisor: Ing. Jan Trdlička, Ph.D.

March 21, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Jan Trdlička, Ph.D., for his support
and guidance during this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on March 21, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Beksultan Baatyrbekov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Baatyrbekov, Beksultan. Extension of the JFreeChart library with Market
Profile charts. Bachelor’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2022.

Abstrakt

Tato práce se zaměřuje na analýzu knihovny JFreeChart Java Chart a konkrétńıho
typu finančńıch graf̊u – Market Profile Charts a ćılem této práce je rozš́ı̌rit kni-
hovnu JFreeChart o možnost vykreslováńı Market Profile Charts. Vytvořené
řešeńı umožňuje vykreslovat grafy tržńıho profilu s objemovými profily.

Kĺıčová slova JFreeChart Library, Market Profile Schéma, Java, OHLC
Dataset

Abstract

This thesis focuses on analyzing JFreeChart Java Chart library and specific
type of financial charts–Market Profile Charts and the goal of this thesis is to
extend JFreeChart library to enable rendering Market Profile Charts. Created
solution allows to render Market Profile Charts with Volume Profiles.

Keywords JFreeChart Library, Market Profile Chart, Java, OHLC Dataset

vii

Contents

Introduction 1
Goal of the thesis . 1
. 2

1 Analysis 3
1.1 Market Profile . 3

1.1.1 Introduction to Market Profile 3
1.1.2 What are Market Profile Charts? 4
1.1.3 Key Terminology In Market Profile 4

1.1.3.1 Value Area . 4
1.1.3.2 Point of Control (POC) 4
1.1.3.3 Time Price Opportunity (TPO) 4
1.1.3.4 Initial Balance 5

1.1.4 Market Profile vs Volume Profile 7
1.2 JFreeChart . 8

1.2.1 Overview . 8
1.2.2 Creating chart with JFreeChart 9
1.2.3 Data . 9

1.2.3.1 OHLCDataset Interface 9
1.2.4 JFreeChart class . 10
1.2.5 Plot . 11
1.2.6 XYPlot . 11

1.2.6.1 Layout . 11
1.2.6.2 Datasets and Renderers 11

1.2.7 Financial Charts . 12
1.3 Requirements . 15

1.3.1 Market Profile renderer 15
1.3.2 Demo application . 15

ix

2 Design 17
2.1 Technologies . 17

2.1.1 Java . 17
2.1.2 JDK . 17
2.1.3 JFreeChart . 18
2.1.4 OpenCSV . 18
2.1.5 Comma-separated values (CSV) 18
2.1.6 JUnit . 18
2.1.7 PowerMockito . 19

2.2 Dataset class for MarketProfile Renderer 19
2.3 MarketProfileRenderer class model 20

3 Implementation 23
3.1 MarketProfileRendnerer Implementation 23

3.1.1 Structure . 23
3.1.2 Initialization . 23
3.1.3 Drawing . 25

3.2 Demo Application . 27
3.2.1 How to create a MarketProfile chart with JFreeChart in

three steps: . 27
3.2.2 Dataset for Market Profile Chart 27
3.2.3 JFreeChart object for MarketProfile Chart 27
3.2.4 Drawing the chart on a panel on the screen 27

4 Testing 29
4.1 Unit tests . 29
4.2 User testing . 29
4.3 Comparing MarketProfileRenderer with existing libraries/frame-

works . 31
4.3.1 MetaStock . 31
4.3.2 Overcharts . 31
4.3.3 MarketProfileRenderer with JFreeChart 31

5 Conclusion 33
5.1 Future Work . 33

Bibliography 35

A Acronyms 37

B Contents of enclosed CD 39

x

List of Figures

1.1 Example of Market Profile Chart wrt Terminology [3] 6
1.2 The plot layout . 12
1.3 Candlestick Chart Demo with JFreeChart library 13
1.4 OHLC Chart with JFreeChart library 14

2.1 OHLCDtaset and XYDataset diagram 19
2.2 Market Profile Renderer Diagram 20
2.3 MarketProfileRenderer Class Diagram 21

3.1 initialise() method . 24
3.2 drawItem() method . 25
3.3 drawChartItem() method . 25
3.4 drawRectangle() method . 26
3.5 creating JFreeChart instance . 27
3.6 Overview of the demo source code 28

4.1 Unit-test of the rounding method 29
4.2 Unit-test of the symbol method . 30
4.3 Example of Market Profile Chart with MarketProfileRenderer JFreeChart 30

xi

List of Tables

1.1 Examlpe of Time Blocks . 5

xiii

Introduction

It is all about having the correct tools when it comes to investing. If an indi-
vidual does not have the right resources, one will not be able to make informed
trading decisions, whether one is trying to monitor volatility measurements
or interpret price action. The market profile chart is one such resource. The
market profile organizes diverse trading data so that traders and investors may
make informed trading decisions, particularly it may offer a unique prospec-
tive on buying and selling opportunities.
However, learning how to utilize them takes time and effort, and small number
of stock chart services provide charting of market profile. Significant draw-
back when it comes to use existing charting tools for plotting market profile
is huge cost to obtain software license or subscription.
To provide more variety among software that allows to plot market profile,
this thesis introduces an extension to free charting library ”JFreeChart” with
rendering market profile charts. Extended JFreeChart library with Market
Profile allows developers to add functionality of charting Market Profile in
software applications or create standalone software with Java.

Goal of the thesis

The goal of the thesis is to extend JFreeChart Charting library with market
profile charts.

• Analyse JFreeChart library

• Analyse market profile charts

• Design an implement solution that allows plotting market profile charts
with JFreeChart

• Create a demo application that will illustrate extended library with mar-
ket profile charts

1

Introduction

• Compare the features of provided solution with existing libraries/frame-
works

2

Chapter 1
Analysis

In this chapter, the analysis of market profile charts and JFreeChart library
will be performed. The chapter will hellp to understand market profile charts
and what JFreeChart offers and what JFreeChart does not offer.

1.1 Market Profile

“A Market Profile is an intra-day charting technique (price vertical, time/ac-
tivity horizontal) devised by J. Peter Steidlmayer, a trader at the Chicago
Board of Trade (CBOT), ca 1959-1985. Steidlmayer was seeking a way to
determine and to evaluate market value as it developed in the day time frame.
The concept was to display price on a vertical axis against time on the hori-
zontal, and the ensuing graphic generally is a bell shape–fatter at the middle
prices, with activity trailing off and volume diminished at the extreme higher
and lower prices.” [1]

1.1.1 Introduction to Market Profile

Market Profile was introduced in 1980s by the Chicago Board Of Trade (CBOT)
director, Peter Steidlmayer. Peter’s vision about the concept of Market Profile
was to provide more transparency for off-floor trader, which would bring in
new traders into trading. Furthermore, opening markets to a larger audience
would help the financial markets flourish and generate more money and pros-
perity. On the contrary many on-floor traders worried about their livelihood
were resistant to this idea, believing that market data and floor information
should be a privilege to individuals who traded on the floor. Peter Steidl-
mayer developed a system that displays trading data from the market and
depicts activity occurring during the trading session using the statistical bell
curve and published CBOT Market Profile Guide “A Six-Part Study Guide
To Market Profile” in 1985. The Market Profile has evolved since then, but
the fundamental ideas have remained the same. [2]

3

1. Analysis

1.1.2 What are Market Profile Charts?

Market Profile charts combine price and time to create a unique method to
visualize market behaviour and the day’s most crucial prices. A different
letter assigned to each defined time period of every trading session. Because
the Market profile captures both price and time, it allows us to see how the
market has changed over time. One of the biggest benefits of a market profile
is that it can be utilized in any market you want, including Forex, Futures,
Cryptocurrencies, and Stocks. To display the data, the market profile uses
TPO Charts.

1.1.3 Key Terminology In Market Profile

1.1.3.1 Value Area

The value area in the Market profile comprises 70% of the data within one
standard deviation of the mean. To put it another way, it’s the area that
contains 70% of all trades made in a single session. We may infer that buyers
and sellers agreed on prices in this area because here is where the majority of
the activity occurred during the session.

• Value Area High (VAH) – The upper level of value area.

• Value Area Low (VAL) – The lower level of value area.

In the center of the Value Area, we can find the Point of Control (POC).

1.1.3.2 Point of Control (POC)

The point of control is a specific price where the most volume has been exe-
cuted at the price that is closest to the center of the value area. The point
of control acts as a key pricing magnet. The greater the number of the Time
Price Opportunities (TPOs) that make up the Point Of Control (POC), the
more significant it becomes.

1.1.3.3 Time Price Opportunity (TPO)

This is the most fundamental component of a market profile chart. Each time
the asset traded at a specific price during the trading day, this is referred to as
a time-price opportunity. TPO is usually represented by letters on a market
profile chart, and intervals may be 1-minute, 5-minute, 30-minute etc. For
example, the letter ”A” may stand for the first minute of trading, the letter
”B” for the next minute, and so on. Lower case lettered time blocks represent
out-of-market hours trading. It’s worth mentioning that some charts utilize
colors rather than letters to indicate time increments. See example of a table
with time blocks (Fig. 1.1).

4

1.1. Market Profile

Market Profile Time Block Start Time End Time
A — Market Open 08:00:00 08:01
B 08:01 08:02
C 08:02 08:03
D 08:03 08:04
E 08:04 08:05
F 08:05 08:06
G 08:06 08:07
H 08:07 08:08
I 08:08 08:09
J 08:09 08:10
K 08:10 08:11
L 08:11 08:12
M 08:12 08:13
N 08:13 08:14
O 08:14 08:15

Table 1.1: Examlpe of Time Blocks

1.1.3.4 Initial Balance

• Range – The range of a day’s price action from high to low.

• Range Extension – An extension of price beyond the initial balance.

The Initial Balance (IB) is the price range in which the market spent its first
two TPO sessions after opening. To put it another way, the initial balance
is the range of the market’s first hour after it opens. Outside of the initial
balance, we can observe range extensions to get a perspective of who is in
control.

5

1. Analysis

Figure 1.1: Example of Market Profile Chart wrt Terminology [3]

6

1.1. Market Profile

1.1.4 Market Profile vs Volume Profile

Although many places and people would use the terms interchangeably, Mar-
ket profile and Volume profile are two different things. Volume profiles show
how much volume was done at prices, while Market Profile or TPO (time-
price-opportunity) profiles show how much time was spent at prices. The
majority of profile traders utilize both in combination, although they favor
one over the other.

7

1. Analysis

1.2 JFreeChart

1.2.1 Overview

JFreeChart is a free Java class library that allows programmers generate a
wide range of graphs and charts for us both in client and server side applica-
tions.

The JFreeChart project was started in February 2000 and continues to be
managed by David Gilbert with contributions from a diverse community of
developers. “Today, JFreeChart is the most widely used chart library for Java
(see a list of some of the products and projects that use JFreeChart)” [4].
The library is distributed with a complete source code subject to the terms of
GNU Lesser General Public License, which permits JFreeChart to be used in
proprietary or free software applications.

“JFreeChart is used to generate widely used chart types, including pie charts,
bar charts (regular and stacked, with an optional 3D-effect), histograms, time
series charts (including moving averages, high-low-open-close charts and can-
dlestick plots), Gantt charts meter charts (dial, compass and thermometer),
symbol charts and other types of charts.” [5]

JFreeChart can be used on the client-side of applications as well as server on
the server-side of applications. For Java Swing-based applications, JFreeChart
is a great solution. The Data set object, which stores the data to be displayed
in the charts, is the library’s basic data structure. Many distinct Data set ob-
jects are available in JFreeChart, all of which implement the Data set interface
and may be used to construct various sorts of charts, such as XYBarDataset
(Bar plot) and DefaultPieDataset (Pie chart). Zooming, labels, colors, and
tool tips can all be customized on the chart. JFreeChart’s key advantages are
its excellent documentation, example code, minimal dependencies, and flexi-
ble customizability.

It can also export to a variety of popular formats, including JPEG, PNG,
and PDF, and it may be used in JSP1/servlet2-based applications to dynami-
cally stream charts to web pages. Orson Charts, a Java 3D chart library that
can generate a wide variety of 3D charts in client-side (Java FX and Java
Swing) and server-side applications, was recently released by the JFreeChart
development team.

1Java Server Pages (JSP) – a server-side programming technology that enables the cre-
ation of dynamic, platform-independent method for building Web-based applications.

2Servlet – a small Java program that runs within a Web server. Servlets receive and re-
spond to requests from Web clients, usually across HTTP, the HyperText Transfer Protocol.

8

https://www.jfree.org/jfreechart/users.html
http://www.object-refinery.com/orsoncharts/

1.2. JFreeChart

Latest version of JFreeChart at the moment of writing this thesis, 1.5.3 (see
at jfreechart github page), was released in February 2021. 1.5.3 version of
JFreeChart requires JDK 8 or later. If JavaFX support is required, there is
also need to include the JFreeChart-FX extensions (see at jfreechart javafx
extension github page).
JFreeChart has two versions of documentation:

• a free version, the “JFreeChart Installation Guide”, is available from the
JFreeChart home page, and contains chapters up to and including the
instructions for installing JFreeChart and running the demo;

• a premium version, the “JFreeChart Developer Guide”, is available only
to those that have paid for it, and includes additional tutorial chapters
and reference documentation for the JFreeChart classes

1.2.2 Creating chart with JFreeChart

Creating charts with JFreechart is a three step process. The following steps
are needed to follow to create charts:

1. create a dataset containing the data to be displayed in the chart;

2. create a JFreeChart object that will be responsible for drawing the chart;

3. draw the chart to some output target (often, but not always, a panel on
the screen);

1.2.3 Data

A design principle in JFreeChart is that there should be a clear separation
between the data and it’s presentation. To create Market Profile Chart we
need a dataset that supplies data in the form of open-high-low-close items.
Which relates to trading data (prices or rates) in financial markets: the open
and close values represent the prices at the opening and closing of the trading
period, while the high and low values represent the highest and lowest price
during the trading period. Another useful field needed is volume, which rep-
resents the volume of trading. The data described above can be represented
by OHLCDataset Interface in JFreeChart.

1.2.3.1 OHLCDataset Interface

As previously stated, a dataset that supplies data in the form of open-high-
low-close items and volume. This interface is an extension of the XYDataset
interface. Interface Methods:

• public double getHighValue(int series, int item) – Returns the high value
for an item in a series.

9

https://github.com/jfree/jfreechart/
https://github.com/jfree/jfreechart/
https://github.com/jfree/jfreechart-fx
https://github.com/jfree/jfreechart-fx

1. Analysis

• public double getLowValue(int series, int item) – Returns the low value
for an item in a series.

• public double getOpenValue(int series, int item) – Returns the open
value for an item in a series.

• public double getCloseValue(int series, int item) – Returns the close
value for an item in a series.

• public double getVolumeValue(int series, int item) – Returns the trading
volume for an item in a series, or Double.NaN if no trading volume
isrecorded.

This interface is implemented by several classes:

• DefaultHighLowDataset

• DefaultOHLCDataset

• OHLCSeriesCollection

OHLCDataset is used to plot charts by the CandlestickRenderer and High-
LowRenderer, provided by JFreeChart and is used by MarketProfileRenderer
in my implementation.

1.2.4 JFreeChart class

The JFreeChart class coordinates the entire process of drawing charts. One
method:

• public void draw(Graphics2D g2, Rectangle2D area) – instructs the
JFreeChart object to draw a chart onto a specific area on some graphics
device.

Java supports several graphics devices—including the screen, the printer, and
buffered images—via different implementations of the abstract class java.awt.Graphics2D.
Thanks to this abstraction, JFreeChart can generate charts on any of these
target devices, as well as others implemented by third parties (for example,
the SVG Generator implemented by the Batik Project).
In broad terms, the JFreeChart class sets up a context for drawing a Plot. The
plot obtains data from a Dataset, and may delegate the drawing of individual
data items to a CategoryItemRenderer or an XYItemRenderer, depending on
the plot type (not all plot types use renderers).
The most important method for a chart is the draw() method:

• public void draw(Graphics2D g2, Rectangle2D area) – Draws the chart
on the Graphics2D device, within the specified area.

10

1.2. JFreeChart

The chart does not retain any information about the location or dimensions
of the items it draws. Callers that require such information should use the
alternative method:

• public void draw(Graphics2D g2, Rectangle2D area) – Draws the chart
on the Graphics2D device, within the specified area. If info is not null,
it will be populated with information about the items drawn within the
chart (to be returned to the caller).

1.2.5 Plot

An abstract base class that controls the visual representation of data in a
chart. The JFreeChart class maintains a reference to a Plot, and will provide
it with an area in which to draw itself (after allocating space for the chart
titles and legend).
When a chart is drawn, the JFreeChart class first draws the title (or titles) and
legend. Next, the plot is given an area (the plot area) into which it must draw
a representation of its dataset. This function is implemented in the draw()
method, each subclass of Plot takes a slightly different approach.

1.2.6 XYPlot

Draws a visual representation of data from an XYDataset, where the domain
axis measures the x-values and the range axis measures the y-values.
The type of plot is typically displayed using a vertical orientation, but it is
possible to change to a horizontal orientation which can be useful for certain
applications.

1.2.6.1 Layout

Axes are laid out at the left and bottom of the drawing area. The space
allocated for the axes is determined automatically. The following diagram
(fig 1.2) shows how this area is divided: Determining the dimensions of these
regions is an awkward problem. The plot area can be resized arbitrarily, but
the vertical axis and horizontal axis sizes are more difficult. Note that the
height of the vertical axis is related to the height of the horizontal axis, and,
likewise, the width of the vertical axis is related to the width of the horizontal
axis. This results in a “chicken and egg” problem, because changing the width
of an axis can affect its height (especially if the tick units change with the
resize) and changing its height can affect the width (for the same reason).

1.2.6.2 Datasets and Renderers

An XYPlot can have zero, one or many datasets and each dataset is usually
associated with a renderer (the object that is responsible for drawing the visual

11

1. Analysis

Figure 1.2: The plot layout

representation of each item in a dataset). A dataset is an instance of any class
that implements the XYDataset interface and a renderer is an instance of any
class that implements the XYItemRenderer interface.

1.2.7 Financial Charts

JFreeChart library at the moment has a functionality of rendering popular
financial charts: (1) Candlestick Charts and (2) High Low Charts.

12

1.2. JFreeChart

Figure 1.3: Candlestick Chart Demo with JFreeChart library

13

1. Analysis

“A candlestick chart (also called Japanese candlestick chart) is a style of
financial chart used to describe price movements of a security, derivative, or
currency.” [6] Candlestick charts visualize specific number of candles across
time and prices, where each candle represent four dimensions of price in a
trading period3 and these four dimensions are the open, the high, the low and
the close.

Figure 1.4: OHLC Chart with JFreeChart library

“Open-high-low-close Charts (or OHLC Charts) are used as a trading tool
to visualise and analyse the price changes over time for securities, currencies,
stocks, bonds, commodities, etc.”[7] The y-axis on an OHLC Chart is used for
the price scale, while the x-axis is the timescale. On each single time period,
an OHLC Charts plots a symbol that represents two ranges: the highest and
lowest prices traded, and also the opening and closing price on that single
time period (for example in a day). On the range symbol, the high and low
price ranges are represented by the length of the main vertical line. The open
and close prices are represented by the vertical positioning of tick-marks that
appear on the left (representing the open price) and on right (representing the
close price) sides of the high-low vertical line.

3A trading period – a time period from one second upwards.

14

1.3. Requirements

1.3 Requirements

1.3.1 Market Profile renderer

Following requirements need to be met to achieve the goal of rendering market
profile charts with JFreeChart library:

• Plot a data item for a provided dataset, where each data item contains:
date and time, open price, high price, low price, close price and option-
ally, volume amount.

• Calculate the domain-axis (x-axis) and the range-axis (y-axis) values for
each data point in the dataset to draw it on a chart.

1.3.2 Demo application

Following requirements need to be met to achieve the goal of demonstration
of drawing market profile charts with JFreeChart library:

• Read date, time and open-high-low-close data from a csv file.

• Plot candlestick chart from provided dataset.

• Plot market profile chart from provided dataset.

• Plot combined charts with candlestick and market profile charts.

15

Chapter 2
Design

2.1 Technologies

This section contains the technologies used during the development process
and why exactly these technologies are chosen.
During the development, I used IntelliJ IDEA – an integrated development
environment (IDE) written in Java for developing computer software. The
IDE provides certain features like code completion by analyzing the context,
code navigation which allows jumping to a class or declaration in the code
directly, code refactoring, code debugging, linting and options to fix inconsis-
tencies via suggestions.
As for the developement of extension of JFreeChart Java library, I chose lat-
est JFreeChart library released–version 1.5.3 at the moment of writing this
thesis work. The JFreeChart 1.5.3 version requires JDK(The Java Develop-
ment Kit) 8 or later to support existing features of the library. To develop a
solution for the assignment I have chosen Java 8, because this version of java
is widely used among professional and non-professional developers. Unit-tests
were performed with junit and powermockito libraries.

2.1.1 Java

“Java is a high-level, class-based, object-oriented programming language that
is designed to have as few implementation dependencies as possible. It is
a general-purpose programming language intended to let programmers write
once, run anywhere, meaning that compiled Java code can run on all platforms
that support Java without the need to recompile.” [8]

2.1.2 JDK

“The Java Development Kit (JDK) is a distribution of Java Technology by
Oracle Corporation. It implements the Java Language Specification (JLS)

17

2. Design

and the Java Virtual Machine Specification (JVMS) and provides the Stan-
dard Edition (SE) of the Java Application Programming Interface (API). It
is derivative of the community driven OpenJDK which Oracle steward.” [9]

2.1.3 JFreeChart

The previous generation of versions of JFreeChart library is 1.0.x generation
of version. It required JDK 1.6.0 or higher versions. The JFreeChart ver-
sion 1.5.3 was released on February 21, 2021. It requires JDK 8 or higher.
JFreeChart provides wide variety of demo applications with latest released
version of the library. The version 1.5.3 was chosen, because it supports JDK
8 and it is the latest released version at the moment of writing this thesis.

2.1.4 OpenCSV

To read OHLC(open-high-low-close) data from csv file, opencsv Java library
was used in the demo application. Opencsv is an easy-to-use CSV (comma-
separated values) parser library for Java. [10] It was developed because all the
CSV parsers at the time didn’t have commercial-friendly licenses. Java 8 is
currently the minimum supported version. Opencsv supports all the funda-
mental CSV-type functionalities, like reading arbitrary numbers of values per
line, ignoring commas in quoted elemments, configurable separator and quote
characters.

2.1.5 Comma-separated values (CSV)

A comma-separated values (CSV) file is a delimited text file that uses a comma
to separate values. Each line of the file is a data record. Each record consists
of one or more fields, separated by commas. The use of the comma as a field
separator is the source of the name for this file format. A CSV file typically
stores tabular data (numbers and text) in plain text, in which case each line
will have the same number of fields. [11] The csv file format for dataset was
used, because many resources provide OHLC data in csv format and most
importantly it is easy to read file format for datasets.

2.1.6 JUnit

JUnit is a unit testing framework for the Java programming language. JUnit
has been important in the development of test-driven development, and is one
of a family of unit testing frameworks which is collectively known as xUnit
that originated with SUnit. [12]

18

2.2. Dataset class for MarketProfile Renderer

2.1.7 PowerMockito

PowerMock is a framework that extends other mock libraries such as Easy-
Mock with more powerful capabilities. PowerMock uses a custom classloader
and bytecode manipulation to enable mocking of static methods, constructors,
final classes and methods, private methods, removal of static initializers and
more. By using a custom classloader no changes need to be done to the IDE or
continuous integration servers which simplifies adoption. Developers familiar
with the supported mock frameworks will find PowerMock easy to use, since
the entire expectation API is the same, both for static methods and construc-
tors. PowerMock aims to extend the existing API’s with a small number of
methods and annotations to enable the extra features. [13]

2.2 Dataset class for MarketProfile Renderer

MarketProfileRenderer requires a dataset that contains high, low prices and
volume of the trading period. OHLCDataset Interface a dataset that supplies
data in the form of open-high-low-close items and volume. The dataset is
an extension of XYDataset interface, which is a given argument in the main
methods initialise and drawItem inherited from XYItemRenderer.

Figure 2.1: OHLCDtaset and XYDataset diagram

19

2. Design

2.3 MarketProfileRenderer class model

As previously mentioned, the JFreeChart class coordinates the entire process
of drawing charts and sets up a context for drawing a Plot. For XY Plots the
XYPlot obtains data from a XYDataset and delegates the drawing of individ-
ual data items to XYItemRenderer.
MarketProfileRenderer extends AbstractXYItemRenderer and implements XYItem-
Renderer interface to draw a visual representation of data from an XYDataset
onto plot area.
The class calculates domain-axis (x-axis) values from date and time values
and range-axis (y-axis) values from high and low values of the dataset.
The class saves calculated state of the data in ChartItem objects and the data
is used to draw items on a chart.

Figure 2.2: Market Profile Renderer Diagram

20

2.3. MarketProfileRenderer class model

Figure 2.3: MarketProfileRenderer Class Diagram

21

Chapter 3
Implementation

In this chapter, implementation details of the solution are discussed.

3.1 MarketProfileRendnerer Implementation

This section goes into detail regarding the implementation of MarketProfil-
eRenderer.

3.1.1 Structure

The code structure of the MarketProfileRenderer is implemented in a single
class to follow existing structure of JFreeChart library renderers. All imple-
mentations of XYItemRenderer interface is implemented in a single class to
be used by XYPlot class later to draw corresponding data items on a chart.
The most important methods of the class are:

• initialise() – method is called once at the beginning of the chart drawing
process and pre-calculates values for domain-axis and range-axis.

• drawItem() – method is responsible for drawing each data item on the
chart and uses pre-calculated values for domain-axis and range-axis.

3.1.2 Initialization

The initialise() method is called once at the beginning of the chart drawing
process. The method gets the price tick size 4 from the plot object provided in
the arguments of the method. The method calculates difference between high
and low prices of a data item and calculates their respective values on domain
axis(x-axis). Each data item’s price represent its plot value on range axis (y-
axis). A map with key as a price and value as a x-value used to temporarily

4A tick is a measure of the minimum upward or downward movement in the price of a
security

23

3. Implementation

store each data item to calculate the next data item. Current data item’s
x-value is previous data item’s x-value added with time step if their prices
match. In case the price do not match with none of the previous data item’s
price, then it’s x-value is set to lowerbound x-value. Their respective letter
is calculated with their actual time value, where each data item’s time is
increased linearly, their respective letter is increased. If the method runs out
of letters from upper case symbols to lower case symbols, then the letter-
system is reset. After data each data item is split into smaller subset of items
with tick size and the method calculates their respective x-values and assigns
corresponding letters, a list of ChartItems created. The list of ChartItems
represent one data item from the dataset, however it is split into smaller items
with tick size, and therefore it is stored as list of ChartItems. Each data item
is iterated with their series id and item id given by dataset. The method saves
the list of ChartItems in ChartItemsCollection, where ChartItemsCollection
represent one data item from the dataset. ChartItemsCollection then saved
in the ChartItemsSeriesCollection, which represents one series from dataset.
ChartItemsSeriesCollection is stored in the list chartItemsSeriesCollections as
a field of the MarkteProfileRenderer, where it’s index in the list is the series
id.

Figure 3.1: initialise() method

24

3.1. MarketProfileRendnerer Implementation

3.1.3 Drawing

Method drawItem is called for each data item to draw item onto plot. The
method looks for the list chart items that represent one data item and dele-
gates actual drawing to drawChartItem and drawRectangle methods. In the
drawChartItem and drawRectangle methods, x and y values of the chart item
are translated into Java 2D values with rangeAxis and domainAxis objects.
DrawRectangle draws one rectangle in the chart, which represents a time-
price opportunity and drawChartItem method draws one letter inside of the
corresponding rectangle. Then finally Graphics2D draws items onto plot.

Figure 3.2: drawItem() method

Figure 3.3: drawChartItem() method

25

3. Implementation

Figure 3.4: drawRectangle() method

26

3.2. Demo Application

3.2 Demo Application

This section goes into detail regarding the implementation of demo application
which MarketProfileRenderer.

3.2.1 How to create a MarketProfile chart with JFreeChart
in three steps:

• create a dataset containing the data to be displayed in the chart;

• create a JFreeChart object that will be responsible for drawing the chart;

• draw the chart to some output target (a panel on the screen);

3.2.2 Dataset for Market Profile Chart

Utility class DataGenerator reads data from csv file and parses each row into
a data object that contains date and time, open, high, low, close, volume
values. Afterwards, all of the parsed data is added to be stored in some object
of implementation of OHLCDataset interface.

3.2.3 JFreeChart object for MarketProfile Chart

A subclass of the abstract class Plot is the dependency to create an instance
of JFreeChart class. For market profile charts, XYPlot is used. Dataset and
renderer is injected into XYPlot.

Figure 3.5: creating JFreeChart instance

3.2.4 Drawing the chart on a panel on the screen

The final step is to display the chart somewhere. JFreeChart is very flexible
about where it draws charts, thanks to its use of the Graphics2D class. A
subclass of org.jfree.ui.ApplicationFrame class can be used as a panel, because
ApplicationFrame extends JFrame from jswing library and used primarily to
draw a chart panel.

27

3. Implementation

Figure 3.6: Overview of the demo source code

28

Chapter 4
Testing

In this section, the unit testing and manual user testing of the MarketProfil-
eRenderer are discussed.

4.1 Unit tests

Unit-testing is integral part in developing a software solution that helps to dis-
cover misbehaviour of a software solution. However, MarketProfileRenderer is
partially unit-tested where it was seen trivially. Since the main functionality
of MarketProfileRenderer is to draw items on a chart with the help of Graph-
ics2G, it was rather unclear how to test many parts of the implementation
with unit-tests, therefore only limited number of methods were tested with
unit-tests.

Figure 4.1: Unit-test of the rounding method

4.2 User testing

Since the unit-testing of the main functionality was not achieved, the signif-
icant part of testing was focused on user manual testing. For the purpose of
convenience both in utilizing the software solution and testing it, label gen-
erator provided by JFreeChart was added to the renderer. Label generator
allows to display actual values of a data item to be displayed when hovering

29

4. Testing

Figure 4.2: Unit-test of the symbol method

over the chart item. The contents of label are date and time, open, high, low,
close and volume values of the data item.
For the simplicity of manual testing, small feeds of data were given to the
renderer to display on the chart, which were also manually calculated and
compared to values on the chart.

Figure 4.3: Example of Market Profile Chart with MarketProfileRenderer
JFreeChart

30

4.3. Comparing MarketProfileRenderer with existing libraries/frameworks

4.3 Comparing MarketProfileRenderer with
existing libraries/frameworks

People who use market profile charts become evangelists to the cause. They
believe it offers unique insights into buy and sell opportunities. It can be a
good option if you are a quick-fire day trader. On the downside, it can require
serious effort to learn how to use them, and very few stock chart services offer
this type of charting. Metastock, Optuma, ProRealTime, Overcharts and
small number of other software applications provide functionality of drawing
market profile charts.

4.3.1 MetaStock

MetaStock is used for charting and technical analysis of stock (and other
asset) prices. It has both real-time and end-of-day versions. It allows setting
TPO(time price opportunity) Color Mode, choosing start period, setting price
interval, number of profiles to be drawn, shows label over TPO, which shows
details on the item.

4.3.2 Overcharts

Overcharts is my favourite application that allows rendering market profile
charts. It provides options to build chart on session(Trading Hours) defined
in the reference chart or indicator settings and build ”The Long-Term TPO
Profile” represented by TPO Profiles built on the last x sessions, days, weeks,
months or years. Additionally, it calculates and displays value area and point
of control per profile.

4.3.3 MarketProfileRenderer with JFreeChart

The solution described in this thesis work is centered on the rendering market
profiles with JFreeChart library. Another focus was to follow the structure
of JFreeChart library and provide a renderer in a similar scope to other im-
plementations of XYItemRenderer, like CandlestickRenderer. MarketProfil-
eRenderer draws only one profile per dataset. To draw multiple profiles on the
same chart separate datasets need to be provided and create a new instance
of MarketProfileRenderer per dataset.
Another feature that MarketProfileRenderer lacks comparing to well-established
software solutions similar to Overcharts that allow drawing market profile
charts, is calculation and display of both value area and point of control.

31

Chapter 5
Conclusion

In this thesis, I analysed market profile charts and JFreeChart library. The
analysis of how to read market profile charts and what features JFreeChart
library already offers and how it renders charts allowed me to make a list of
requirements that had to be implemented to accomplish the goals assigned to
the extension of the JFreeChart with market profile. Moreover, implementa-
tions of XYItemRenderer interface allowed me to get a detailed understanding
how JFreeChart renders items on an xy chart and provided me initial steps
on designing and implementing MarketProfileRenderer.
I discussed how the data will be calculated to transform it from date and time
to x value on domain axis and prices to y values on range axis and implemented
the solution to MarketProfileRenderer. By creating a demo application, I have
verified functionalities MarketProfileRenderer provides. Finally, I have com-
pared my solution with existing solutions to discover difference of features
provided. The final version of the market profile renderer and demo applica-
tion provided by this work satisfy goals of the thesis on a high-level, although
there are functionalities can be added as previously discussed.

5.1 Future Work

While provided solution renders market profile charts from open high low
close and volume datasets and follows the structure of the JFreeChart library,
there are functionalities could be added such as calculating and highlighting of
value area and point of control. Another feature that would improve Market-
ProfileRenderer is to allow to render multiple profiles per chart, rather than
initialising new instance for each profile.

33

Bibliography

1. Market profile. Wikimedia Foundation, 2020. Available also from: https:
//en.wikipedia.org/wiki/Market_profile.

2. Market profile trading: The Most Comprehensive Guide. 2021. Available
also from: https://www.tradingriot.com/market-profile/#Before_
we_begin.

3. TRADINGRIOT.COM. marketprofile. 2021. Available also from: https:
//tradingriot.com/wp-content/uploads/2020/09/mp1-e1603624598603.
jpg.

4. JFreeChart Home Page [online]. 2005-2021. Available also from: https:
//www.jfree.org/jfreechart/. [Cited 2021-11-21].

5. JFreeChart Downloads Page [online]. 2005-2021. Available also from:
https://www.jfree.org/jfreechart/download/. [See: jfreechart-
1.0.0-install.pdf, Cited 2021-11-21].

6. Candlestick Chart. Wikimedia Foundation, 2022. Available also from:
https://en.wikipedia.org/wiki/Candlestick_chart.

7. Open-High-Low-Close Chart (OHLC Chart) - Learn about here. [N.d.].
Available also from: https://datavizcatalogue.com/methods/OHLC_
chart.html.

8. Java (programming language). Wikimedia Foundation, [n.d.]. Available
also from: https://en.wikipedia.org/wiki/Java_(programming_
language).

9. Java development kit. Wikimedia Foundation, [n.d.]. Available also from:
https://en.wikipedia.org/wiki/Java_Development_Kit.

10. Opencsv users guide. [N.d.]. Available also from: http : / / opencsv .
sourceforge.net/.

11. Comma-separated values. Wikimedia Foundation, [n.d.]. Available also
from: https://en.wikipedia.org/wiki/Comma-separated_values.

35

https://en.wikipedia.org/wiki/Market_profile
https://en.wikipedia.org/wiki/Market_profile
https://www.tradingriot.com/market-profile/#Before_we_begin
https://www.tradingriot.com/market-profile/#Before_we_begin
https://tradingriot.com/wp-content/uploads/2020/09/mp1-e1603624598603.jpg
https://tradingriot.com/wp-content/uploads/2020/09/mp1-e1603624598603.jpg
https://tradingriot.com/wp-content/uploads/2020/09/mp1-e1603624598603.jpg
https://www.jfree.org/jfreechart/
https://www.jfree.org/jfreechart/
https://www.jfree.org/jfreechart/download/
https://en.wikipedia.org/wiki/Candlestick_chart
https://datavizcatalogue.com/methods/OHLC_chart.html
https://datavizcatalogue.com/methods/OHLC_chart.html
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_Development_Kit
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
https://en.wikipedia.org/wiki/Comma-separated_values

Bibliography

12. Junit. Wikimedia Foundation, [n.d.]. Available also from: https://en.
wikipedia.org/wiki/JUnit.

13. Powermockito. [N.d.]. Available also from: https://powermock.github.
io/.

36

https://en.wikipedia.org/wiki/JUnit
https://en.wikipedia.org/wiki/JUnit
https://powermock.github.io/
https://powermock.github.io/

Appendix A
Acronyms

GUI Graphical user interface

XML Extensible markup language

37

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

39

	Introduction
	Goal of the thesis
	

	Analysis
	Market Profile
	Introduction to Market Profile
	What are Market Profile Charts?
	Key Terminology In Market Profile
	Value Area
	Point of Control (POC)
	Time Price Opportunity (TPO)
	Initial Balance

	Market Profile vs Volume Profile

	JFreeChart
	Overview
	Creating chart with JFreeChart
	Data
	OHLCDataset Interface

	JFreeChart class
	Plot
	XYPlot
	Layout
	Datasets and Renderers

	Financial Charts

	Requirements
	Market Profile renderer
	Demo application

	Design
	Technologies
	Java
	JDK
	JFreeChart
	OpenCSV
	Comma-separated values (CSV)
	JUnit
	PowerMockito

	Dataset class for MarketProfile Renderer
	MarketProfileRenderer class model

	Implementation
	MarketProfileRendnerer Implementation
	Structure
	Initialization
	Drawing

	Demo Application
	How to create a MarketProfile chart with JFreeChart in three steps:
	Dataset for Market Profile Chart
	JFreeChart object for MarketProfile Chart
	Drawing the chart on a panel on the screen

	Testing
	Unit tests
	User testing
	Comparing MarketProfileRenderer with existing libraries/frameworks
	MetaStock
	Overcharts
	MarketProfileRenderer with JFreeChart

	Conclusion
	Future Work

	Bibliography
	Acronyms
	Contents of enclosed CD

