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Abstrakt

Oblast online her je předmětem značného zájmu a množstv́ı dat neustále
roste. Tyto informace můžeme využ́ıt k lepš́ımu modelováńı výkonu hráč̊u
a pochopeńı jejich herńıch styl̊u a dovednost́ı. Tato práce analyzuje herńı
data z League of Legends, jedné z nejpopulárněǰśıch kompetitivńıch online
her typu MOBA. Experimenty jsme prováděli na ručně shromážděné sadě
dat, která obsahuje informace o 141 300 zápasech s 202 př́ıznaky pro 1413
unikátńıch hráč̊u (100 posledńıch zápas̊u pro každého hráče). Ćılem této
práce bylo představit př́ıstup pro generováńı reprezentativńıch hráčských
embedding̊u. Za t́ımto účelem jsme natrénovali dva modely neuronových
śıt́ı, Multilayer Autoencoder a Stacked LSTM Autoencoder. Porovnali jsme
embeddingy založené na r̊uzných technikách předzpracováńı dat a shluko-
vali jsme embeddingy pomoćı algoritmu K-means. Úspěšně se nám podařilo
rozdělit hráče do odlǐsných shluk̊u. K analýze vytvořených shluk̊u jsme
použili metody významnosti př́ıznak̊u. Kromě toho jsme použili Unsuper-
vised Anomaly Detection model k předpovědi následuj́ıćıch statistik zápas̊u.
Př́ınosy této práce maj́ı potenciál být využity ve službách analýzy online
her k vytvářeńı otisk̊u hráč̊u, předpov́ıdáńı výsledk̊u her a odhalováńı po-
dezřelého chováńı.

Kĺıčová slova Strojové učeńı, Modelováńı hráč̊u, League of Legends,
LSTM Autoencoder, Embeddingy, Detekce odlehlých hodnot
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Abstract

The online games area is attracting considerable interest, and the quantity
of data is constantly growing. We can utilize this information to better
model players’ performance and understand their playing styles and skills.
This work analyzes game data from League of Legends, one of the most pop-
ular competitive MOBA online games. We performed our experiments on
the hand-collected dataset that contains information about 141 300 matches
with 202 features for 1413 unique players (100 most recent matches for every
player). The goal of this work was to present an approach for generating
representative player embeddings. For this purpose, we trained two neural
network models, Multilayer Autoencoder and Stacked LSTM Autoencoder.
We compared the embeddings based on different data preprocessing tech-
niques and clusterized the embeddings using the K-means algorithm. We
successfully managed to split players into distinct clusters. We employed
feature importance methods to analyze produced clusters. Moreover, we
used the Unsupervised Anomaly Detection model to predict the following
match statistics. The contributions of this work have the potential to be
used in online game analysis services to create player fingerprints, predict
game outcomes, and detect suspicious behavior.

Keywords Machine learning, Player modeling, League of Legends, LSTM
Autoencoder, Embeddings, Outlier detection
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Chapter 1
Introduction

Understanding unique playstyles through data is an important area of re-
search in machine learning. The increasing popularity of online games and
the vast amount of data that are now available have led to the possibility
of using such data to model players’ performance. Most of the research
in this area uses supervised methods to predict game outcomes based on
player experience (Do et al., 2021) and collected in-game statistics (S.-K.
Lee et al., 2020). It is also worth noting that, in many games, players start
making choices before the match begins. (Costa et al., 2021) analyze a
pick/ban phase features for victory prediction. (H. Lee et al., 2022) were
able to provide personalized recommendations when choosing a hero in a
multiplayer online battle arena (MOBA) game.

While there are a lot of computer games that we could choose to ana-
lyze, League of Legends (LoL), the MOBA game, seems to be one of the
most popular with a convenient official API (Riot Games, 2022). At the
start of each match, competitors are separated into two teams facing each
other, and each player selects a champion they will play for. The game’s
objective is to destroy the enemy base, known as the nexus. The system
constantly aggregates in-game statistics about each player’s performance
during a match, including damage dealt to different targets (e.g., champi-
ons, buildings), damage taken, experience collected, gold spent, and others.
Individual players differ in their skill level, adaptivity to different situations,
decision-making, and communication skills. It is fair to say that their per-
formance is influenced by hardware and internet connection, so even a tiny
lag during the most critical moment can dramatically change the match
outcome.

Despite the possibility of using machine learning, current services that
process game statistics and report players’ performance use purely statisti-
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1. Introduction

cal methods. This applies both to the in-game mechanisms shown in Figure
1.1 and to third-party services such as Mobalytics1 shown in Figure 1.2.

Figure 1.1: In-game stats page.

Figure 1.2: Mobalytics player’s page.

1https://app.mobalytics.gg/lol
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Although these services provide helpful information for players, machine
learning approaches could quickly improve their reports’ quality by iden-
tifying competitors’ hidden strengths, weaknesses, and playstyles. Such a
toolkit can be used for game outcome prediction, suspicious behavior detec-
tion, tracking playstyle changes, player clustering, and finding similar (in
terms of playstyle) players.

We set the following goals for this thesis:

• Describe the problem of players modeling, clustering, and detecting
outliers in online games.

• Create a dataset by pulling data using the Riot Games API.

• Develop a preprocessing pipeline for pulled data.

• Choose appropriate state-of-the-art embedding methods for multidi-
mensional sequences with different approaches.

• Evaluate selected methods and discuss the results concerning different
playing styles.

In the following sections, we introduce the area of multidimensional
sequence modeling and encoding, analyze previous work and propose our
approach to solve the matter. Finally, we show and discuss achieved results.
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Chapter 2
Theoretical background

This chapter briefly describes used neural network architectures, clustering,
and feature importance algorithms.

2.1 Recurrent neural networks
A recurrent neural network (RNN) (David E. Rumelhart et al., 1987) is a
type of artificial neural network that can model temporal dynamic behavior
by creating a directed or undirected graph of connections between nodes
over a sequence. This internal state, or memory, allows the network to
process a variable-length sequence of inputs. So RNNs have loops since the
output of the next step depends on the previous output. Unrolling process
of such a network is shown in Figure 2.1.

Figure 2.1: Unrolled RNN (Olah, 2015).

Where xt is the input tensor, ht is the output tensor (aka hidden state)
and A represents the network as a function.
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2. Theoretical background

One of the representatives of this class of neural networks, long short-
term memory (LSTM) (Hochreiter et al., 1997), is used in this thesis. LSTM
is designed to overcome the vanishing and exploding gradient problems that
are common in conventional RNNs (Greff et al., 2017). LSTM scheme is
shown in Figure 2.2.

Figure 2.2: LSTM (Olah, 2015).

Where σ and tanh are activation functions. All weights are shared
between steps.

2.2 Embeddings

2.2.1 Autoencoder
An autoencoder (D. E. Rumelhart et al., 1986) is an artificial neural network
used to encode input data into a lower dimension representation efficiently.
It consists of two separate networks, an encoder, and a decoder. The en-
coder produces a latent representation (aka embedding, context, or code)
of the input, whereas the decoder reconstructs input from the embedding.
Because Autoencoder does not need labels, it is a member of the unsuper-
vised machine learning models’ family. The scheme of an autoencoder is
shown in Figure 2.3

Figure 2.3: Autoencoder (Weng, 2018).

Where x is the input, x′ is the reconstructed input, gϕ is the encoder
function, fθ is the decoder function, z is the embedding.
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2.3. Clustering

2.2.2 LSTM Autoencoder
An LSTM Autoencoder is a specific version of an autoencoder where an
encoder and a decoder are LSTM networks. The output from the encoder’s
last step is used to embed the whole sequence of inputs. The decoder
tries to replicate inputs given the embedding. The scheme of an LSTM
Autoencoder is shown in Figure 2.4

Figure 2.4: LSTM Autoencoder.

2.3 Clustering
K-means (MacQueen et al., 1967) is a vector quantization method that seeks
to split n observations into k clusters, with each observation belonging to
the cluster with the closest mean, which serves as the cluster’s prototype.
The method alternates between two steps, starting with an initial set of k
means (clusters):

• Assign each observation to the cluster with the closest mean.

• Recalculate the means (centroids) for each cluster’s observations.

7



2. Theoretical background

When the assignments no longer change, the algorithm converges. There
are multiple possible strategies for initializing means. In this thesis, we
consider kmeans++ (Arthur et al., 2007) as an initialization method. The
example of clustered two-dimensional points is illustrated in Figure 2.5.

−2 −1 0 1 2 3 4

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 2.5: K-means clustering example.

2.4 Feature importance
Feature importance refers to methods for calculating a score for each of a
model’s input features; the scores describe the ”importance” of each feature.
A higher score indicates a more significant impact on the model used to
predict a particular variable. Models and algorithms used for computing
feature importance scores are described in Section 4.3.3.
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Chapter 3
Related work

Various approaches have been used to analyze players’ performance. Neural
networks (Do et al., 2021) were able to predict the game outcome with 75.1%
accuracy by aggregating random players’ statistics across recent ranked
matches. Their dataset includes champion mastery points, player-champion
win rate, the total number of games played on the champion, and the
number of recent games played on the champion. Even though they showed
promising results, their methods do not consider the games’ order. (Do
et al., 2021) use information about all competitors. At the same time,
we propose filtering out the features of all other participants except the
analyzed one.

A noticeably different approach has been used by ”considering the char-
acteristics of gameplay over time” (S.-K. Lee et al., 2020). Their model
tries to predict the game outcome based on changes over time and dynamic
features. As expected, the longer the match, the more accurately the model
can predict the outcome, with more than 96% accuracy and precision for
30+ minutes long matches (approximate duration of a match in LoL is 26-30
minutes2).

The drafting consists of picking and banning phases, essential parts of
a match. Game balance and design are always imperfect, and the match
might be won before it even starts by exploiting the game’s current state.
(Costa et al., 2021) clearly shows that picked champions concerning play-
ers’ statistics have a massive impact on the game outcome. In contrast,
information about picked and banned champions alone is not enough for
reasoning. It is fair to say that their dataset includes games of professional
players only, so it is inappropriate to discuss such results for regular players.

2https://www.leagueofgraphs.com/rankings/game-durations
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3. Related work

(Jiang et al., 2021) developed a method to create different types of
embeddings for predicting players’ performance and game outcomes. How-
ever, Riot Games API (Riot Games, 2022) has evolved since then, and
much new information can be obtained now using the most recent version
of the API. Thus, our models are trained on data obtained from the most
recent matches. Also, (Jiang et al., 2021) takes into account different game
versions and champion types. In contrast, our approach does not use this
information since we attempt to cluster players based on their statistics
across different patch versions, champions, and roles.
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Chapter 4
Methodology

This chapter describes how the dataset is created, what data is analyzed,
and what models and algorithms are used.

4.1 Dataset creation
LoL uses the Elo rating system, which divides the player base into nine
different tiers plus an unranked one. This thesis analyzes only the highest
ones because they have a more consistent playstyle, deep understanding of
game mechanics, and solid skills. Riot Games provides a public API (Riot
Games, 2022) that we used to query random players from the three highest
tiers on the EUW server. Then we pulled their recent ranked matches,
where the JSON dictionary represents each match. Because of an evolution
of the API, not all matches had the data we needed, and therefore they have
been filtered out. In addition, one of our models cannot handle variable
sequence length. Hence the number of matches per player is limited to 100.
A total of 141 300 matches’ data (1413 players) were collected for the period
between 2022-02-02 and 2022-04-14.

As a consequence of how API data is updated internally, pulled data
contains duplicates that were removed. Many insignificant match data were
filtered out, such as strings (map id, queue id, names of players), runes and
summoner spells (modifications that the player selects at the start), items,
a champion, and a role. As we stated previously, our solution focuses only
on one player and their history, and it does not involve other participants’
data. The total number of remaining features is 202. The dataset overview
is shown in Table 4.1

11



4. Methodology

Type Size
Raw data Json dictionary 1,413 players (141,300 matches)
Dataset CSV 1,396 players (139,600 matches)

Table 4.1: The dataset overview.

We split the dataset into training and test sets with the most common
ratio of 80:20. After that, 20% of the training set is separated into the
validation set. These sets are used in a usual way:

• The training set is used to fit a model.

• Metrics calculated on the validation set provide an unbiased model
evaluation. The validation set is used for hyperparameters tuning and
over-fitting detection.

• The test set finally provides an unbiased evaluation of the tuned
model.

Missing values are filled using three techniques: zero imputation, mean
imputation, and median imputation. Lastly, all features were scaled using
z-score normalization.

4.2 Feature understanding
Our dataset consists of 202 features. This section provides a short descrip-
tion for the vast majority of them to understand better the data we are
working with. Features are grouped and explained in the following list:

• Different types of kills, including those under the enemy turret, con-
secutive ones (killing sprees, multi-kills), kills with the help from the
epic monster, kills in the jungle, kills after flashing, multi-kills using
just one spell, kills after being camouflaged, the first kill in the game.

• Different types of assists, including knocking an enemy into a player’s
team, assist streaks, and the first blood assist.

• Experience and gold earned during a match, number of items (includ-
ing wards) purchased, and gold spent. Champion’s level and the level
advantage over the opponents. A killed number of minions and jungle
monsters.

12



4.3. Modeling

• Different types of damage (physical, magic, true, critical) dealt to
enemies, neutral minions, epic monsters, and structures. Different
types of damage taken from all sources. Damage mitigated using
shields and unique passives.

• Healing and shielding teammates, saving them from death.

• Vision score, different wards (stealth, control, detector, sight) pur-
chased and placed. Wards’ area and time coverage. Enemy wards
killed and deactivated.

• Number of times each ability and spell was used.

• Number of epic monsters (dragons, heralds, barons) kills, takedowns
and steals. Structures (turrets, inhibitors, nexus) kills and takedowns.
Structures killed by enemies.

Features not listed above are too tied to this game and require a deep
knowledge of game mechanics. Moreover, some of them are not documented
in the API. It is worth noting that features are not independent, and some
of them are combinations of the other ones.

4.3 Modeling
This section briefly describes used models for creating embeddings, cluster-
ing, and anomaly (outlier) detection. We also provide information about
their architectures, optimizers, and used loss functions.

4.3.1 Embeddings
Two different deep learning models have been tried to encode players’ match
histories into embeddings: Multilayer Autoencoder and Stacked LSTM Au-
toencoder. The Multilayer Autoencoder is used as a baseline model because
of its simplicity and ability to encode any input data.

4.3.1.1 Multilayer Autoencoder

A Multilayer Autoencoder is a deeper version of a Vanilla Autoencoder.
The encoder and the decoder consist of fully-connected layers with activa-
tion functions. Because this type of network does not directly work with
sequences, we flattened them before feeding. The input is represented as
a flattened sequence of matches’ features; 202 features and 100 matches

13



4. Methodology

= 20200 is the size of the input layer. Using fully-connected layers only,
this model has many parameters and is expensive to train compared to
other used models. Backpropagation with an Adam optimizer (Kingma et
al., 2014) and an MSE loss function is the used training algorithm. The
architecture is illustrated in Figure 4.1

Figure 4.1: Multilayer Autoencoder.

4.3.1.2 Stacked LSTM Autoencoder

A Stacked LSTM Autoencoder is an LSTM autoencoder with multiple
LSTM layers in the encoder and the decoder. All layers in the encoder
and the decoder can have different output dimensions but the last ones. A
stacked LSTM can handle longer sequences than a Vanilla LSTM network.
We used an Adam optimizer and an MSE loss to train this model. The
architecture is shown in Figure 4.2

14



4.3. Modeling

Figure 4.2: Stacked LSTM Autoencoder.

4.3.2 Unsupervised Anomaly Detection model
This model is proposed by (Souček, 2020) and was used for log anomaly
detection. Although the model is called Unsupervised Anomaly Detection,
the basic idea is to predict the following game statistics given previous ones.
This model also utilizes LSTM layers but takes the output from all steps and
passes it to linear layers with activation functions. Suppose such a model
can predict the following game statistics with high accuracy. In that case,
it can be used for outlier detection or, in other words, for finding suspicious
matches in a player’s history. The threshold is used to determine if the
subsequent match statistics are different enough to conclude that there is
an anomaly. The architecture of the model is visualized in Figure 4.3.
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4. Methodology

Figure 4.3: Unsupervised Anomaly Detection model.

4.3.3 Clustering and feature importance
Clustering was done on the generated embeddings from the previous step
using the K-means algorithm. In order to determine the optimal number of
clusters, we used the elbow method (Marutho et al., 2018). We also used
Principal component analysis (PCA) (Pearson, 1901) for dimensionality
reduction, where each embedding is projected onto the first two components,
such that we can provide visualization of resulting clusters.

To analyze and investigate the clusters, we averaged the match statistics
of the players and then fitted a logistic regression (Cox, 1958) with the
clusters as the labels. We used logistic regression weights as the feature
importance scores.

16



Chapter 5
Experiments

In this chapter, we consider our experiments’ setup and the results of dif-
ferent stages of our pipeline.

5.1 Setup
The programming language was Python 3.9 (Van Rossum et al., 2009),
frameworks for preparing dataset were pandas3, numpy4 and scikit-learn5.
Clustering algorithms are provided by scikit-learn library. We selected
pytorch (Paszke et al., 2019) and its wrapper pytorch lightning6 as the
machine learning libraries. We tracked the experiments using Weights &
Biases7 cloud service. We also used Jupyter Lab8 as an interactive python
environment and matplotlib9 as a visualization tool.

We ran our experiments on the RCI computing cluster10. The hardware
used for training models had the following specifications: Intel Xeon Scal-
able Gold 6150, 32GB RAM, Tesla V100 32GB with NVLink. The seed for
random number generation is set to 42 for all of our experiments.

3https://pandas.pydata.org/
4https://numpy.org/
5https://scikit-learn.org/
6https://pytorchlightning.ai/
7https://wandb.ai/
8https://jupyter.org/
9https://matplotlib.org/

10http://rci.cvut.cz/
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5. Experiments

5.2 Results

5.2.1 Embeddings
In order to cluster and extract feature importance information, we first
need to create embeddings for each player. So we started our experiments by
training different types of Autoencoders and selecting the best architectures
and parameters for them. The standard parameters for all models are
embedding size and imputation method. The primary metric for the models
was MSE loss on the validation split.

The first model we have tried was Multilayer Autoencoder. We decided
to use three architectures that vary in depth and size of the final model.
The total number of configurations is 36. The complete list of results is
shown in Table 5.1. As the imputation method might significantly impact
the model’s performance, the best model using zero imputation achieved a
validation loss of 1.108. In contrast, the best model across all imputation
methods has reached a validation loss of 0.861. It is also worth noting that
the best model is the widest one as it has only one linear layer with a size
of 5000 in the encoder and the decoder. However, the embedding size is 50,
which is not the largest. With certain confidence, we can claim that this
embedding size is enough to encode players’ last 100 matches in the case of
Multilayer Autoencoder. The is almost no difference between the median
and mean imputation; both provide the same results with a slight mean
method advantage.

The second model used for creating embeddings was Stacked LSTM
Autoencoder. Our Stacked LSTM Autoencoder had 2 LSTM layers in the
encoder and the decoder with varying hidden sizes. The total number of
configurations is 48. The complete list of results is shown in Table 5.2.
The best model (mean imputation, embedding size = 25, hidden size =
500) is comparable with the best Multilayer Autoencoder, with a validation
loss of 0.85. Nevertheless, the difference in the number of parameters is
huge, three million in Stacked LSTM Autoencoder against 202 million in
Multilayer Autoencoder. A recurrent LSTM network with fewer parameters
can capture important game statistics and reproduce them from the hidden
state on the same level as a Multilayer Autoencoder.
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Imputation method Embedding size Hidden layers’ sizes Train loss Validation loss

zero

25
[1000,1000,500] 0.661 1.153
[2500,500] 0.047 1.287
[5000] 0.077 1.337

50
[1000,1000,500] 0.638 1.172
[2500,500] 0.053 1.265
[5000] 0.062 1.236

100
[1000,1000,500] 0.670 1.150
[2500,500] 0.054 1.254
[5000] 0.056 1.203

200
[1000,1000,500] 0.660 1.162
[2500,500] 0.059 1.265
[5000] 0.081 1.108

median

25
[1000,1000,500] 0.485 0.931
[2500,500] 0.220 0.927
[5000] 0.117 0.894

50
[1000,1000,500] 0.491 0.924
[2500,500] 0.078 0.924
[5000] 0.318 0.871

100
[1000,1000,500] 0.548 0.916
[2500,500] 0.075 0.933
[5000] 0.135 1.337

200
[1000,1000,500] 0.576 0.905
[2500,500] 0.047 0.934
[5000] 0.760 0.886

mean

25
[1000,1000,500] 0.503 0.917
[2500,500] 0.218 0.925
[5000] 0.184 0.870

50
[1000,1000,500] 0.535 0.920
[2500,500] 0.107 0.932
[5000] 0.095 0.861

100
[1000,1000,500] 0.569 0.904
[2500,500] 0.087 0.934
[5000] 0.222 0.877

200
[1000,1000,500] 0.544 0.908
[2500,500] 0.121 0.939
[5000] 0.894 0.971

Table 5.1: Multilayer Autoencoder’s performance.
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5. Experiments

Imputation method Embedding size Hidden size Train loss Validation loss

zero

25

100 1.461 1.536
500 1.479 1.551
1000 1.583 1.670
2000 1.583 1.659

50

100 1.484 1.554
500 1.458 1.537
1000 1.462 1.540
2000 1.552 1.622

100

100 1.467 1.543
500 1.454 1.535
1000 1.453 1.539
2000 1.517 1.587

200

100 1.473 1.546
500 1.449 1.535
1000 1.441 1.536
2000 1.476 1.550

median

25

100 0.762 0.860
500 0.749 0.856
1000 0.771 0.854
2000 0.827 0.902

50

100 0.760 0.854
500 0.744 0.856
1000 0.732 0.863
2000 0.777 0.862

100

100 0.762 0.853
500 0.749 0.855
1000 0.738 0.858
2000 0.717 0.869

200

100 0.758 0.853
500 0.745 0.856
1000 0.747 0.855
2000 0.743 0.865

mean

25

100 0.760 0.855
500 0.764 0.850
1000 0.768 0.852
2000 0.798 0.871

50

100 0.759 0.855
500 0.749 0.854
1000 0.748 0.853
2000 0.772 0.855

100

100 0.757 0.852
500 0.742 0.853
1000 0.748 0.857
2000 0.760 0.854

200

100 0.758 0.852
500 0.748 0.853
1000 0.737 0.859
2000 0.784 0.858

Table 5.2: Stacked LSTM Autoencoder’s performance.
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5.2. Results

5.2.2 Unsupervised Anomaly Detection model
Because zero imputation showed poor results, we have decided to exclude
it from unsupervised anomaly detection experiments. As shown in Table
5.3, the model is not capable of predicting the next match statistics. The
results were expected because there is much randomness in matchmaking
algorithms and other players’ behavior. This architecture can probably be
used for predicting a subset of match statistics. However, this is beyond
the scope of this thesis.

Imputation method LSTM layers Linear layers Linear size Train loss Validation loss

median

4

4
100 0.592 0.993
300 0.556 0.998
500 0.564 1.015

8
100 0.614 0.993
300 0.623 0.996
500 0.628 1.004

8

4
100 0.710 0.927
300 0.732 0.900
500 0.647 0.998

8
100 0.847 0.923
300 0.895 0.973
500 0.895 0.973

32

4
100 0.894 0.972
300 0.894 0.972
500 0.894 0.972

8
100 0.895 0.973
300 0.895 0.973
500 0.895 0.973

mean

4

4
100 0.580 0.998
300 0.554 1.004
500 0.574 1.001

8
100 0.629 0.997
300 0.632 0.998
500 0.638 0.976

8

4
100 0.696 0.939
300 0.657 0.985
500 0.657 0.984

8
100 0.781 0.863
300 0.893 0.970
500 0.893 0.970

32

4
100 0.892 0.970
300 0.892 0.970
500 0.893 0.970

8
100 0.893 0.970
300 0.893 0.970
500 0.893 0.970

Table 5.3: Unsupervised Anomaly Detection model performance.
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5. Experiments

5.2.3 Clustering and feature importance
5.2.3.1 Multilayer Autoencoder

The optimal number of clusters according to the elbow method is five.
The visualization of the first two PCA components is shown in Figure 5.1.
The green cluster may represent outliers since it spreads over a large area,
whereas the remaining clusters overlap. We picked twenty feature impor-
tance scores for each cluster, ten with the maximum positive values and ten
with the maximum negative values. Feature importance scores for three
clusters are presented in Figure 5.2. The remaining scores are in Figure A.1
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Figure 5.1: Multilayer Autoencoder clusters.
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Figure 5.2: Multilayer Autoencoder feature importance scores (1-3).
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5.2.3.2 Stacked LSTM Autoencoder

According to the elbow approach, the optimal number of clusters is three.
Figure 5.3 illustrates the first two PCA components of the produced embed-
dings. Stacked LSTM Autoencoder shows better performance than Multi-
layer Autoencoder as clusters are more separated and do not overlap. The
feature importance scores are visualized in Figure 5.4.
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Figure 5.3: Stacked LSTM Autoencoder clusters.
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Figure 5.4: Stacked LSTM Autoencoder feature importance scores.
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5. Experiments

5.3 Discussion
Even though autoencoders’ performance can be evaluated by validation
loss, the quality of the formed clusters cannot be automatically determined.
Therefore we analyzed them manually.

Multilayer Autoencoder produced five clusters. The following is a list
of their respective interpretations:

• Solokillers and first blood lovers, whose teammates often abandon the
game, which might imply that they misbehave in the chat and force
other players to leave the game. They have an aggressive playstyle
with many fast consecutive kills and fights around objectives. Their
win rate is the lowest across all clusters; they frequently die and rarely
place wards.

• Turrets destroyers, who tend to have long games with a high amount
of placed and killed wards. They are weak in the early game, do not
like grouping with their team, and dodge many opponents’ skillshots.
They manage to mitigate much damage using shields and healing.

• Players with a high win rate and many kills, especially in the early
game. They always have a level advantage on their lane opponent,
longest killing sprees without dying, and they tend to kill many drag-
ons. They do not like playing supports and do not have fast consec-
utive kills.

• Epic monsters slayers, who save allies and provide crowd control for
their team. They prioritize efficient movement around the map. They
are bad at skill dodging, and they do not have a lead during the laning
phase.

• Farming junglers with the highest damage in their team. They suc-
cessfully attack laners, kill dragons, and manage to lead in experience
and gold. They do not tend to skirmish in the early game and have
insignificant damage to turrets.

Stacked LSTM Autoencoder produced three clusters. The following is
a list of their interpretations:

• Supports with a lot of placed wards and first spell casts. They tend to
assist with the first turret kill and often recall to the base. They are
the source of crowd control for their team. They do not farm minions
and jungle monsters.
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5.3. Discussion

• Turret killers with high damage to buildings. They rely on their third
spell, have the largest critical strikes, and love quick solo kills. They
also tend to move between lanes looking for enemy champions and
wards.

• High damage junglers with many jungle monsters stolen from oppo-
nents. They try to outfarm the enemy jungler, counter gank them,
and tank most of the damage.

The interpretations given above are meant for players with respected
game knowledge. They could potentially provide insights and improve play-
ers’ performance.
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Chapter 6
Conclusion

In this thesis, we introduced the problem of player modeling in computer
games. We chose to conduct experiments on the popular MOBA game -
League of Legends. The main concepts employed in our experiments are
described in Chapter 2. The dataset was created by pulling game matches
from Riot Games API, and collected data was preprocessed using several
techniques. We provided an overview of the most crucial features of the
dataset in Section 4.3.3. Two different models were employed to create
embeddings. Generated embeddings were used to cluster the individual
players, and we discussed assigned clusters with respect to the features’
importance scores and playing style in general.

6.1 Limitations
• Riot Games API has a rate limit, so the dataset is restricted in size.

• We used only 100 most recent ranked games for each player, while our
models can handle much longer sequences.

• Although we filtered out important features, such as runes, summoner
spells, champions, and roles, models do not thoroughly understand
these features, i.e., there are 159 champions in LoL with unique abil-
ities, attributes, and interactions.
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6. Conclusion

6.2 Future work
• Alternative models could be used to create embeddings, e.g., Trans-

formers, or Convolutional Autoencoders.

• The produced embeddings can be used to predict match outcomes,
track playstyle changes and detect suspicious behavior.

• It should be noted that the results of this thesis could potentially be
used to create an online service for players and esports coaches.
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A. Figures
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Figure A.1: Multilayer Autoencoder feature importance scores (4-5).
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Appendix B
Acronyms

MOBA Multiplayer online battle arena

LoL League of Legends

RNN Recurrent neural network

LSTM Long short-term memory

PCA Principal component analysis
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Appendix C
Source code structure

readme.md.......................the file with source code description
thesis.pdf........................... the thesis text in PDF format
thesis...............the directory of LATEX source codes of the thesis
implementation...........the directory with implementation sources
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