
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 13, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Structured printing framework

 Student: Nilay Baranwal

 Supervisor: Ing. Konrad Siek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2021/22

Instructions

Monitoring long-running processes takes the form of logs. However, the interface for printing is very
rudimentary: printing a string. Sensible alternatives like graphs, diagrams, or tables require much
extracurricular work.

The goal of this thesis is to create a framework to visualize data from running applications.

The framework will have 2 language-specific libraries that provide an API accepting data to display. API calls
pass the data to a language-agnostic service that formats and displays it in a browser. The output format
will be configurable and extendable. The display will show updates over time and accept data from multiple
sources. Language-specific elements will be easily portable.

Milestones:
- gather functional and non-functional requirements
- review the space of existing solutions (logging utilities, LaaS)
- select technologies and design an architecture
- incrementally implement a prototype
- provide tests and documentation
- discuss the benefits of the solution

References

Will be provided by the supervisor.

Bachelor’s thesis

Down-Spiral: Structural Logging and
Visualization

Nilay Baranwal

Department of Software Engineering
Supervisor: Ing. Konrad Siek, Ph.D.

February 14, 2021

Acknowledgements

I would like to thank and acknowledge my supervisor Mr. Konrad for all his
support, guidance and valuable feedback throughout my thesis process and
topic selection. This would not have been possible without him.
I would also like to thank my parents and sister for providing me with the
constant support and the will power to continue. I would like to thank all
friends and everyone present in my life for teaching me everything in and about
life. I would also like to thank my roommate for listening to my countless
proofreads, and pretending to be interested.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on February 14, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Nilay Baranwal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Baranwal, Nilay. Down-Spiral: Structural Logging and Visualization. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021. Also available from: 〈https://github.com/alphasr/down-
spiral〉.

https://github.com/alphasr/down-spiral
https://github.com/alphasr/down-spiral

Abstrakt

Logy v run-timu sleduj́ı využit́ı systému, analýzu aplikaćı a pomáhaj́ı debago-
vat problémy. Většina logu se ukládá jako soubory nebo ekvivalentńı databáze.
Dı́ky tomu je logováńı složité pro konkrétńı př́ıpady, kdy se jedná o definované
uživatelem datové typy nebo grafický výstup. Tato práce navrhuje řešeńı to-
hoto omezeńı logováńım př́ımo v prohĺıžeči, které umožňuje vizualizovat logy
jako tabulky, grafy, diagramy a vlastńı HTML. To také přináš́ı daľśı výhody
umožňuj́ıćı logováńı pomoci v́ıce proces̊u / v́ıce výstup̊u. Bakalářská práce
analyzuje požadavky a poskytuje návrh takového systému, stejně jako d̊ukaz
implementace konceptu pomoćı TypeScriptu, Node.js a ReactJS. Ukazujeme,
že systém zlepšuje uživatelskou zkušenost, zat́ımco latence systému z̊ustává
pro typické aplikace minimálńı.

Kĺıčová slova Logováńı, Webové aplikace, Webové služby

vii

Abstract

Run-time logs keep track of system usage, application analysis, and help
debug problems. Most logs are saves as files or equivalent databases. This
makes logging complex for specific cases where user-defined data-types and
graphical output are involved. This thesis proposes a solution to this limi-
tation by enabling logging directly into the browser, which allows visualizing
logs as tables, graphs, diagrams, and custom HTML. This also carries addi-
tional advantages of allowing multi-process/multi-output logging. The thesis
analyzes the requirements and provides a design for such a system, as well as
a proof of concept implementation using TypeScript, Node.js, and ReactJS.
We demonstrate that the system improves user experience while the latency
of the system remains minimal for typical applications.

Keywords Logging, Web applications, Web services

viii

Contents

Introduction 1

1 Related Work 5
1.1 Logging . 5
1.2 Logging in Web Services . 6
1.3 Log V-management Systems . 7
1.4 Log Analysis . 10

1.4.1 Machine Learning . 10
1.4.2 Facility Space Exploration 11
1.4.3 Cyber Security . 11

1.5 Conclusion . 11

2 Requirement analysis 13
2.1 Use case analysis . 13
2.2 Non-Functional requirements analysis 43

3 Design and implementation 45
3.1 Design . 45
3.2 Implementation . 47

3.2.1 Technology Selection . 47
3.2.2 Implementation details 50

3.2.2.1 Thin client . 50
3.2.2.2 React app . 52

3.3 Lessons learned . 55

4 Evaluation 57
4.1 Correctness . 57
4.2 Tests . 57

4.2.1 Results . 58
4.2.2 Discussion . 59

ix

5 Conclusion 63
5.1 Impact . 64
5.2 Future work . 64

Bibliography 65

A Acronyms 69

B Contents of enclosed CD 71

C Installation and user guide 73
C.1 Installation Guide . 73

x

List of Figures

1.1 Example of NEL handling connectivity loss [1]. 7

3.1 Architecture of down-spiral . 46
3.2 Class Diagram of the Thin Client. 51
3.3 UML Sequence Diagram: sending data to the server. 53
3.4 Component Diagram of the react-app. 54
3.5 UML Sequence Diagram of updating data in the database and the

application . 56

4.1 Simple Printer short messages latency 59
4.2 Simple Printer long messages latency 60
4.3 Table Printer short messages latency 60
4.4 Table Printer long messages latency 61
4.5 HTML Printer short messages latency 61
4.6 HTML Printer long messages latency 62
4.7 Graph Printer short messages latency 62

xi

List of Tables

3.1 Component message format. 55

4.1 Non-functional requirements . 57
4.2 Use cases . 58
4.3 Latency evaluation results. 59

xiii

Introduction

A well designed logging system is sine qua non for all programmers. Keeping
logs can save a lot of time and effort. It is also an important and invaluable
utility for many specific applications as well as the developer.

Log data is mainly used by developers to discover and analyze functional
problems in their applications both during application development and during
the maintenance phase. Filtering data logs and managing collection logs is of
high significance [2].

Apart from the working programmer, logging is also a mainstay of major
fields of research in computer science, including data logging are cyber security
[3], machine learning [4], and facility space exploration [5] to name just a
few. These fields use logs to collect historical information to discover rules of
behavior within complex systems. While logging is omnipresent and useful,
there are aspects of it that warrant consideration for improvement and up-
gradation to the latest technologies.

One significant limitation of data loggers is that the output format is very
rudimentary: a string. While there may be attached metadata (eg. times-
tamps, host name), most loggers ultimately expect each logged event to be
a line of text [6, 7, 8]. This gives logs generality, but makes certain types of
information (eg. timing, graph traversal) difficult to follow at-a-glance, es-
pecially in real time. This is additionally compounded by the sheer number
of logging events that often bombard the output. While infrastructure can
be set up to visualize these types of logs, this requires a solution that parses
the log and generates graphics. This solution can be either hand crafted (eg.
an R or Python script) or a visualizer can be added to the stack [9, 10] [11].
In either case the programmer must set up additional software, often write
non-reusable purpose-built scripts, and format the log output to match the
input expected by the visualizer.

We suggest that integrating richer output and visualization directly into
the logging process would be friendlier to the user, since the user could then
view diagrams, graphs, and tables, etc. as output of the logger and view them

1

Introduction

in real time. Web technologies have impacted the IT field in a positive way
and has made it easier for developers to concentrate on UI/UX design. Web
technologies can help with the visualization of collected or real-time data,
which removes all the extra work and enables the user to monitor details and
changes easily [10]. We see how the world is adapting more than ever to the
web. This makes transition of display from the console or file to the modern
web browser, that supports better documentation viewing experience in the
form of an HTML document. Benefits also include interaction at run-time,
when viewing the document, without the need to regenerate it for real time
usage.

Another problem loggers face is the difficulty with which outputs from
different processes are combined. While it is possible to combine outputs of
logs from one host or operating system, either by appending to the same log
file, or combining multiple log files on the basis of timestamps, this is more
complex in case of

A more sophisticated client-server infrastructure would lend itself to com-
bining inputs from multiple sources regardless of origin. This sort of infras-
tructure can be found in logging as web services (WS) [12] [13], where clients
send requests to the logging server with logger information using a network
protocol. However, while these work in WS environments, they do not easily
extend to general use cases, since they native bindings in native languages,
instead relying on the universality of network communication.

We suggest that a similar client-server architecture can be introduced to
general purpose loggers by providing bindings. The architecture will allow
composing multiple sources as well as logging to multiple outputs within a sin-
gle process and centrally caching logs. Native bindings serving as user-facing
facades will obscure the underlying network protocol from the programmer.
This layer can also then provide transparent serialization of language-idiomatic
objects into a format that is understandable to the logger. Since it is impossi-
ble to provide bindings in every single language, new bindings should be easy
to write to allow quick introduction of the logging framework into new lan-
guages. Porting a thin client in the client-server logger is easier than porting
an entire local logger, since the client is a a much smaller, much more flexible,
and much less sophisticated code base [14].

Any suggestion towards improvement should not detract from existing
capabilities that loggers posses. A logging system should be highly reliable,
should scale in terms of inputs and multiple simultaneous inputs, and must
maintain high availability. The logging system should also be completely
decoupled from the parent system to ensure no blocking operations occur.

Given the discussion above we stipulate the following.

Thesis. It is possible to propose an integrated structured logger and visualizer
for native languages that displays events in the browser in real time. Such a
browser should be user friendly to its target user base—programmers. I.e.,

2

a. extendable—the user can extend the capabilities of the logger by easily plug-
ging in custom visualization modules,

b. flexible input format—users log data without worrying about underlying
data format as the API takes care of the serialization,

c. updated in real time—the visualization is continuously updated as new
events are being logged,

d. usable anywhere in the program—the user can send an event to a log any-
where in the code regardless of context (especially, does not depend on pass-
ing around a logger object),

e. portable—the logger provides native language bindings which are easily
portable to other languages and the documentation contains a guide to port-
ing bindings,

f. configurable—the user can be configure the logger system with custom views
and parameters as per user preference,

g. multiple simultaneous inputs—the user can specify different instances of a
logger to receive events from a single process,

h. multiple simultaneous outputs—the logger can receive events from multiple
processes, possible on remote machines,

i. batteries included—the logger provides reasonable basic defaults for visual-
izing tables, graphs, and custom HTML. Provides out-of-box visualization
support.

This work examines the thesis statement and supports it by providing a de-
sign and a proof-of-concept implementation of a logger system satisfying the
proposition. We do this as follows. First, in Chapter 1 we show that data
loggers either have no visualization or if in-house this feature the solution usu-
ally requires enterprise grade tools, which are not user-friendly and require
substantial amount of resources and configuration. We also go through the
important applications of data logging in different fields. Next, in Chapter 2
we examine the requirements both functional and non-functional, to solve the
problems. We describe the design of the solution in Chapter 3 and give an
overview of the architecture of the data logging system. This chapter also
contains details and justification behind the use of specific technology to solve
the problem. We also provide the description of the implementation details
of the thin-client architecture, and the data logging system. Then, in Chap-
ter 4 we evaluate our implementation using the technologies we selected to
satisfy the functional and non-functional. Finally, we discuss our conclusions
in Chapter 5.

3

Introduction

In addition, we also provide the following appendices that supplement this
work. Appendix A lists and explains acronyms used in this text. Appendix B
lists the contents of the accompanying CD. Appendix C provides an installa-
tion guide and usage manual for the software developed through this work.

4

Chapter 1
Related Work

Data logging is still the most appropriate way to record data for analysis
and further pattern matching structures, which makes it so prominent in all
fields involving IT. There is research in aspects of data logging and how it can
impact other fields. We review latest and best practices related to logging in
different fields with various applications.

1.1 Logging

Logging refers to systems that provide infrastructure to other systems to allow
them to easily, concisely and effectively write debug information to a consistent
sink. This sink is usually an append-only file on the local file system to which
each new logging event is written as a new line in a semi-structured format
(timestamps, process names, and log levels are usually attached to the payload
automatically). Data Loggers have different features and some are dedicated
to a specific language too. A data logger usually saves the data logs to a file
or a database, these are common practices followed by default for most of
them. There are many frameworks that provide such a mechanism. Among
them Log4j,1 Log4net,2 Tinylog,3 SLF4J,4 Syslog,5 LOGBack,6 are a few data
logging frameworks.

Log4j is an open source logging framework built in Java that can output
logs to the console or database or a log file. Additionally it has different lev-
els of logging and allows logging on a class-by-class basis. The Log4j 2 API
provides the interface that applications should code to and provides adapter
components required for implementers to create a custom logger implemen-

1https://logging.apache.org/log4j/2.x/
2https://logging.apache.org/log4net/
3https://tinylog.org/v2/
4http://www.slf4j.org/
5https://en.wikipedia.org/wiki/Syslog
6http://logback.qos.ch/

5

1. Related Work

tation. Log4net is an open source framework for .NET runtime logging. It
needs to be configured separately and logs are saved to a text file. Logback is
an intended successor to Log4j. LogBack is an open framework built in Java
similar to Log4j. LogBack has a native SLF4J API that allows it to switch
back and forth between logback and other logging frameworks. TinyLog is a
framework that can output logs to consoles or SQL database using JBDC or to
a file, format and stream can be specified. TinyLog also has the capability of
writing multiple instances of the application to the same file. SysLog(System
Logging Protocol), is used to send system log or events to a specific server.
It is used to collect data from multiple devices logs from different machines
in a central location for monitoring and reviewing. Unix follows SysLog for
internal log management.

Since the logger frameworks output to files or databases, they do not satisfy
the problem set out by the thesis statement in thesis item i.

1.2 Logging in Web Services

Logging data is also a mainstay in context of web services, where the log is
created on a file system that is local to the logger process, but remote to the
processes that use the logger through a network API. It is an extension of the
logger paradigm to distributed systems. Web services often require the logging
and analysis of large amounts of data relating both to the service endpoints, as
well as the health and status of the web services’ network itself. In addition to
this, for analysis and report messages associated with web service are logged
entirely. In [12], the authors propose such a system that can log each activity
of the web service instead of just logging headers and just the response. There
are control points for web services that can be configured to flag messages,
and this determines the logging instance that will used. Interesting finds
in the paper include monitoring of network devices through logging, data
logging node supporting a plurality of network devices and data logging service
type, and a control point monitoring system to enable logging. This message
logging system can be incorporated into a variety of network architectures, as
it generates a SOAP fault for eventual receipt by the requester. The messages
are classified into inbound and outbound, and logging policies are applied to
filter out the messages.

NEL (Network Error Logging) is a planet-scale, client-side, network relia-
bility measurement system [13]. NEL is implemented in Chrome and a W3C
standard.7 The reports generated are similar to web server logs, but include
information about failed requests that never reached the serving infrastruc-
ture. This takes care of service inaccessibility, which could be due to DNS
failure, DNS hijack, Service faulty/down to name a few. Specifically, NEL ex-
pands on the current approach of leveraging user reports, for failed requests to

7https://www.w3.org/standards/

6

1.3. Log V-management Systems

the service. An example of this is given in Fig. 1.1. When a client successfully
connects to the service, NEL is activated. If there is a failed request to the
service, NEL report is sent to the NEL controller on the service side. NEL
alone was not enough to diagnose this issue because it gave no information
about the location of the problem other than the set of users affected. Other
tools, like trace-route, are used to identify which network links were impacted
and that most, if not all, of the Internet traffic in that country transits through
one ISP.

Figure 1.1: Example of NEL handling connectivity loss [1].

We reviewed web service loggers, and they behave in the similar way as
local loggers which includes data logs as files or a database where the event
payload is a key-value, and the value is a string, each of payloads ultimate
lead to the same structure of a rudimentary string.

1.3 Log V-management Systems

Once a log is created, finding data in it can be difficult as there are often
thousands of lines of text to comb through. There are some solutions that
use the knowledge of either the logging format to color each line of the log or
tools will provide visualization for log volume for administrators to be able to
see what is going on in the system at a glance. Examples of visualization data
loggers include GrayLog,8 Nagios,9 LOGalyze,10 Elastic Stack,11 Fluentd.12

GrayLog is developed in Java and supports specific configuration that en-
ables the server-client communication. GrayLog is a whole log analysis suite
that helps find trends, statistical deviations, and specific scenarios within a

8https://www.graylog.org/
9https://www.nagios.org/

10http://www.logalyze.com/
11https://www.elastic.co/elastic-stack
12https://www.fluentd.org/

7

1. Related Work

system log. Clients push the log data to the server and it analyzes and stores
log events in database. It also houses a log management dashboard and a
web UI. Very basic GUI does not support advanced graphing functionality
and user needs to use Grafana and/or Kibana to achieve this. Plugins and
extensions are difficult to install. The main problem that GrayLog has, is it’s
an enterprise grade solution that doesn’t seem to be made for individual pro-
grammers. It also a memory hog and needs at-least 2GB of RAM. GrayLog
does not provide good enough visualization without significant configuration
effort (required by thesis item i in the thesis statement). It also does not
provide native bindings (required by thesis item e). Therefore, GrayLog does
not satisfy our requirements. GrayLog stores all data logs in ElasticSearch,
which gives it massive flexibility over a third-party search tool. This gives the
user the power to create custom search queries. It has both options available
for users i.e. open-source for individuals and enterprise for organization or
individuals.

Nagios is an open source host/service/network monitoring system written
in C, with an intuitive and simple-to-use interface. Configuring Nagios is
difficult and can only be done using command-line. There are many features
and modules to configure and select to tailor it to user’s need, which makes it
so complex to use. It is also prone to redundancy and has no out-of-the-box
support for graphs and trends. Therefore, it does not satisfy the requirements
in the thesis (thesis item i, thesis item a). Users are readily writing plugins
for data loggers, for new languages. 13 They also wrote different plugins for
graphs and trends. It is easy to write plugins and already available just a
few lines long which makes it for casual programmers too. It’s an enterprise
grade tool so the configuration is complex, and it’s difficult to construct a
data logger tailored to the user’s needs. This would require configuration
of out many many small packages. Nagios is used by managers and system
administrators including capacity planning, proactive alerting, service-level
agreements, etc.

LOGalyze is an open source log analyzer and network monitor. It supports
devices, windows hosts, and Linux/Unix servers with real-time event detec-
tion. From within the LOGalyze web interface, you can run dynamic reports
and export them into Excel files, PDF, or other formats. In contrast it takes
almost an hour to configure. Therefore, it does not satisfy the requirements
in the thesis (thesis item e, thesis item g). Since LoGalyze, is a light-weight
tool for data logging in a local setup it is very popular among users. It is an
elegant alternative solution to enterprise grade data loggers. It also supports
cross OS support.

Elastic Stack comprises of three projects which are Elasticsearch, Logstash,
and Kibana. Elasticsearch is a distributed search engine with highly refined
analytic capabilities, Logstash is a data-processing pipeline that collects data

13https://github.com/mpounsett/nagiosplugin/tree/master/nagiosplugin

8

1.3. Log V-management Systems

and delivers it to Elasticsearch, and finally Kibana is a visualization platform
built expressly for Elasticsearch. It is an enterprise grade solution needs tech-
nical expertise to be configured in the existing system as it has a steep learning
curve. Kibana has no default logging dashboard. Also requires extensive man-
agement and maintenance. Therefore, it does not satisfy the requirements in
the thesis (thesis item e). The ELK stack is an enterprise grade technology
stack that is either used in some combination or using some modules for a
specified purpose. ELK is extensive has three different main components and
then multiple sub-component for each. The search client available in elastic
in Python14 and Rust.15 It usually requires a team to set it up and maintain
the whole ELK stack.

Fluentd is a cross platform open-source data collection software project
originally developed at Treasure Data. All plugins decentralized and made
in Ruby, which makes it easier to add custom plugins. It has built in parser
for XML, JSON, CSV, and regular expressions. Fluentd has a simple design
and is robust. Cons include a lack of support for multi-threading and it is
very challenging to configure, and requires a lot of work and some expertise.
Therefore, it does not satisfy the requirements in the thesis (thesis item e).
Fluentd provides visualization using either Prometheus or Elasticsearch. Since
elastic stack has built-in Kibana that can be used by Fluentd. The modules
for visualization are easy to write and brief. The visualization supports graphs
and trends with Kibana and Prometheus has built in 8 metric lists on which
the user can filter and display data. All the metric lists are described in detail
here 16 .

Apache Chainsaw can read any regular text log file, including those created
by SLF4J and logback17. Chainsaw’s initial configuration dialog makes it easy
to help the user to process log file - they can can specify the log file you want to
process, and then the format of the file, and Chainsaw will start tailing the file.
Remote events are can be received using Log4j [6]. Chainsaw has a responsive
GUI, and determine the frequency of updates which is an interesting feature
as it can deal with real-time data. Color coding is also a feature, to classify
logs depending on the the type of log event and it also has contains HTML
based documentation. Therefore, it does not satisfy the requirements in the
thesis (thesis item e, thesis item c, thesis item b). There is no utility to plot
graphs and if the frequency of updates is high, it will difficult for the users
to interpret the data. This creates a problem with real-time high frequency
flow of data. Since it is free very casual programmers can also use it, and it
provides the option of color coding the data to organize and filter it.

In [10], the authors propose the use of visualization for security experts to
visually explore numerous types of log files through relevant representations

14https://github.com/elastic/elasticsearch-py
15https://github.com/elastic/elasticsearch-rs
16https://docs.fluentd.org/v/0.12/articles/monitoring-prometheus
17http://logback.qos.ch/

9

1. Related Work

using ELVIS (Extensible Log VISualization). ELVIS is a security-oriented
log visualization tool. It is implemented using standard web technologies:
HTML5, JavaScript, CSS, SVG and the D3.chart18 library for reusable and
extensible charts. ELVIS is useful to visually explore security log files, allowing
the user to quickly notice relevant facts. It has limitations which include
that is not real-time and is used for viewing existing logs. Multiple sinks
cannot be used for data logging. Therefore it does not satisfy the requirements
extendable (thesis item a), multiple output sinks (thesis item h), and real-time
visualization (thesis item c).

There are many data log analysis frameworks that are technically capable
of solving the problem described in the introduction, these are very large
frameworks with multiple modules and big resource requirements. These are
usually not free to use since they are enterprise grade. They are aimed for
big businesses, server clusters and large distributed environments with many
simultaneously many running processes. The amount of configuration and
expertise required to use them is preventative for most casual developers who
want to examine medium or smaller systems and can be used by a very small
segment. Therefore, even though these systems have many capabilities that
satisfy the thesis statement, they fail to provide a good user experience for
the intended use.

1.4 Log Analysis

A related field is analysis of existing logs to discover and analyze the properties
of the log or the system. Two prominent fields that involve log analysis are:
Machine Learning and Cyber Security. Although this work is not directly
related to the problems described in the introduction we include it out of
interest in applications of logging.

1.4.1 Machine Learning

Utilizing existing data logs in machine learning is very useful for improve upon
key factors and make making few errors. Log analysis can help the developers
understand the system better and can also observe behavioral changes in user.
In [15] the authors discuss the effects of machine learning done on data logs.
To main goal is to analyze listening data logged in speech processors. This
data is used to predict early auditory and linguistic skills in toddlers 19 . One
year cumulative listening time to speech in silence and in noise was analyzed.
To conclude the author mentions that the listening environment can is huge
influence on toddlers while growing up. A data logging system plays a crucial
role role in predict outcomes related to the case.

18https://d3js.org/
190-2 years

10

1.5. Conclusion

1.4.2 Facility Space Exploration

Intelligent building facility space programs are influencing and modifying ev-
eryone’s life with or without us knowing it. Data logs are especially useful in
this case. Logged data can be used to create virtual environment or simula-
tions, which can help us to analyze and modify current technologies [5] and set
great safety standards so there is minimum damage. The author proposes the
invention of a device that has built-in portable logger for room identification
and dimensions in a facility. This paper provides us with an interesting view
of how important a portable logger is in real world application.

1.4.3 Cyber Security

Paper [3] presents us with the case of cyber security and how data logs can be
utilized, to detect intrusion. This paper documents two approaches to data
sharing for the industrial control system IDS research community. First one,
is network traffic data logs captured from a gas pipeline is presented. The gas
pipeline data log was captured in a laboratory and includes artifacts of nor-
mal operation and cyber attacks. Second, an expandable virtual gas pipeline
is presented which includes a human machine interface, programmable logic
controller, Modbus/TCP communication, and a Simulink based gas pipeline
model. The virtual gas pipeline provides the ability to model cyber-attacks
and normal behavior. Thirty-five labelled data logs that recorded under cyber
attacks for detection.

1.5 Conclusion

After an overview of the various fields and applications of loggers, we find
that none of them completely satisfy the problem set out in the thesis state-
ment. Of all the loggers we examined in Sec. 1.1 we found that none support
visualization as they all output logs in text form or write to a database. In
addition, most loggers are not interactive, in that their output is difficult or
impossible to follow in real time.

While visualization can be added onto one of the existing loggers, our
examination of Sec. 1.3 points to that either it is not sufficient on its own
or requires extensive work to configure it. The examples reviewed bring to
light the fact that data loggers that support visualization as an out-of-the-box
feature are almost rare, not portable, and requires expertise.

11

Chapter 2
Requirement analysis

We have analyzed and reviewed existing frameworks and software, but none of
them solve our problem. In preparation of solving this problem using current
web technologies we analyze the requirements for a framework that tries to
solve this problem and draw up a list of use cases and a list of non-functional
requirements for our intended solution.

To paraphrase, the goal of this work is to to create a rich, capable, easy-to-
use logger for use by programmers. Doing so translates to the following specific
requirements. We will specify our requirements in detail in the form of use
cases for functional requirements and in the form of a list of non-functional
requirements.

2.1 Use case analysis

Use cases are described as a list of steps undertaken by system actors. The
system has the following actors in all use cases: the user who is the user
that uses the logger in their code, the server representing the remote part
of the logging system, and the browser. The use cases provide examples of
source code and results which are meant to be only illustrative rather than
comprehensive specifications.

We sort our list of functional requirements into categories based on com-
mon functionality: logging events, logging types, custom modules, and more.
The first group of requirements we present describes the behavior of the sys-
tem in response to events being logged during a process’s run-time. This
universally includes initial setup of a connection the system, as well as send-
ing events to the logger, which are then visualized in specific, various formats.
This group includes UC 1, UC 1b, UC 1c, UC 5, and UC 6.

The second group discusses logging to different output formats such as
tables, HTML, graphs and many more. This universally includes initial setup
of a connection the system, as well as sending events to the logger, which are

13

2. Requirement analysis

then visualized in specific, various formats. The group includes UC 2, UC 2b,
UC 3, UC 4, UC 7, and UC 7b.

The third group discusses extensibility and user created plugin support for
data logging and setup of the view in the browser. This universally includes
initial setup of a connection the system, as well as sending events to the logger,
which are then visualized in specific, various formats. This group includes UC
8 and UC 8b .

14

2.1. Use case analysis

Use Case 1: Simple logging

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

result := run long running task
}

3. User configures loggers

import logging library
configure_logger("localhost", 3000, "results", SIMPLE_PRINTER)
for i in 0.. {

result := run long running task
}

4. User logs data from running program

import logging library
configure_logger("localhost", 3000, "results", SIMPLE_PRINTER)
for i in 0.. {

result := run long running task
result_label := concat("result ", i)
result_line = concat(result_label, ": ", result)
log("results", result_line)

}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/simple-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

7. Program runs and sends configuration for ”results” in the form of a
JSON object to server at localhost:3000.

8. Server receives configuration information, performs configuration.

15

2. Requirement analysis

9. Program continues running and sends data to "results" as JSON.

10. Server receives data, performs visualization.

11. Browser appends a line of text showing "result n: ..." where "..."
indicates the result of the long running task and "n" is the number 0
for the first line, and 1, 2, 3, ... for successive lines. Example after
4 iterations:

result 0: asia
result 1: basia
result 2: casia
result 3: dasia

12. Proceed to 10.

16

2.1. Use case analysis

Use Case 1 Extensions:

Use Case 1b: Turning it on later

1. User writes a long running program, mocked up by this pseudo-code

for i in 0..3 {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library

for i in 0..3 {
result := run long running task

}

3. User configures loggers

import logging library
configure_logger("localhost", 3000, "results", SIMPLE_PRINTER)
for i in 0..3 {

result := run long running task
}

4. User logs data from running program

import logging library
configure_logger("localhost", 3000, "results", SIMPLE_PRINTER)
for i in 0..3 {

result := run long running task
result_label := concat("result ", i)
result_line = concat(result_label, ": ", result)
log("results", result_line)

}

5. User starts the program.

6. Program runs and sends configuration for results to server at
"localhost:3000/simple-Printer" as JSON.

7. Server receives configuration information, performs configuration.

8. Program continues running and sends data to "results" as JSON.

17

2. Requirement analysis

9. Server receives data, performs visualization.

10. Proceed to 6 until program performs all its iterations

10.a User allows program to finish execution completely

11. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/simple-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

12. The Browser displays the data logged until that point.

result 0: asia
result 1: basia
result 2: casia
result 3: dasia

13 . Proceed to 9.

Use Case 1c: Log level

1. User writes a long running program, mocked up by this pseudo-
code:
for i in 0..3 {

result := run long running task
}

2. User imports package or library in language appropriate manner
import logging library

for i in 0..3 {
result := run long running task

}

3. User configures loggers with a higher minimum log level (this works
for any logger). Available log levels from lowest to highest: DEBUG,
LOG (default), WARN, CRITICAL

import logging library
configure_logger("localhost", 3000, "results",

SIMPLE_PRINTER, LogLevel.WARN)
for i in 0..3 {

result := run long running task
}

18

2.1. Use case analysis

4. User logs data from running program with different log levels: warn
for even i’s and log for odd i’s:
import logging library
configure_logger("localhost", 3000, "results",

SIMPLE_PRINTER, LogLevel.WARN)
for i in 0..3 {

result := run long running task
result_label := concat("result ", i)
result_line = concat(result_label, ": ", result)
if i is odd {

log("results", result_line)
} else {

warn("results", result_line)
}

}

5. User turns on browser pointed at the logging server at address
indicating a concrete logger "localhost:3000/simple-printer"
and GUI has ID ”results” on a scroll-able place with select and
delete button.

6. User starts program.
7. Program runs and sends configuration for "results" to server at

localhost:3000 as JSON.
8. Server receives configuration information, performs configuration.
9. Program continues running and sends data to "results" as JSON.

10. Server receives data, performs visualization.
11. For even i’s the browser appends a line of text showing "result

n: ..." where "..." indicates the result of the long running task
and "n"is the number 0 for the first line, and 1, 2, 3, ... for
successive lines. For odd i’s the result is omitted, because its log
level is below warn. Example after 4 iterations:

result 1: basia
result 3: dasia

12. Proceed to 9

19

2. Requirement analysis

Use Case 2: Logging to table

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

result := run long running task
}

3. User configures loggers

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0.. {

result := run long running task
}

4. User logs data from running program, passes a dictionary-like structure
containing the number of the iteration for column ”i” and the value of
the result to column ”result”

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0.. {

result := run long running task
log("results", ["i": i, "result": result])

}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

7. Program runs and sends configuration for ”results” to server at localhost:3000
as JSON.

8. Server receives configuration information, performs configuration.

20

2.1. Use case analysis

9. Program continues running and sends data to "results" as JSON.

10. Server receives data, performs visualization.

11. If there was no data, the browser displays two column headers: "i" and
"result" (in that order). Then, the browser appends a row containing
a number:

n result
0 asia
1 basia
2 casia
3 dasia

12. Proceed to 10.

21

2. Requirement analysis

Use Case 2 Extensions:

Use Case 2b: Logging to table with heterogeneous columns

1. User writes a long running program, mocked up by this pseudo-code

for i in 0..3 {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0..3 {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

3. User configures loggers to display data as a table

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0..3 {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

4. User logs data from running program, passes a dictionary-like structure
containing the number of the iteration for column "i" and the value of
the result to column "result", if i is odd, in addition, the dictionary
contains a column "elapsed" containing the duration value

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")
if i is even {

log("results", ["i": i, "result": result, ""])
}
if i is odd {

22

2.1. Use case analysis

log("results", ["i": i, "elapsed": duration,
"result": result, ""])

}
}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

7. Program runs and sends configuration for results to server at
"localhost:3000/table-printer" as JSON.

8. Server receives configuration information, performs configuration.

9. Program continues running and sends data to data to "results" con-
taining two columns as JSON.

10. Server receives data, performs visualization.

11. If there was no data, the browser displays two column headers: "i" and
"result" (in that order). Then, the browser appends a row containing
a number and the result data in respective columns: "n" and "result".
Example for 1st iteration:

n result
0 asia

12 Program continues running and sends data to "results" containing
three columns.

13. Server receives data, performs visualization.

14. The Browser adds another column header: "elapsed" (mind order).
Then, the browser appends a row containing a number and the result
data in respective columns: "n", "elapsed" and "result". Example
after 4 iterations:

n elapsed result
0 asia
1 42s basia
2 casia
3 13s basia

15. Proceed to 9.

23

2. Requirement analysis

Use Case 3: Logging to graph

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

result := run long running task
}

3. User configures loggers, the user has different options for graph plotting.
BAR, SCATTER, RADAR, LINE, DOUGHNUT, POLAR AREA, BUBBLE are default
available options for graph types.

import logging library
configure_logger("localhost", 3000, "results", GRAPH,

SCATTERPLOT)
for i in 0.. {

result := run long running task
}

4. User logs data from running program, passes a dictionary-like structure
containing the number of the iteration for coordinates ”x” and ”y” and
the value of the result to as a ”label”

import logging library
configure_logger("localhost", 3000, "results", GRAPH,

SCATTERPLOT)
for i in 0.. {

result := run long running task
log("results", ["x": i, "y": i, "label": result])

}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/graph-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

24

2.1. Use case analysis

7. Program runs and sends configuration for ”results” to server at localhost:3000
as JSON.

8. Server receives configuration information, performs configuration.

9. Program continues running and sends data to "results" as JSON.

10. Server receives data, performs visualization.

11. Browser adds a point to the scatter-plot at coordinates (0,0), (1,1), ...
with the appropriate label. Example after 4 iterations:

12. Proceed to 10.

25

2. Requirement analysis

Use Case 4: Logging custom HTML

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

result := run long running task
}

3. User configures loggers

import logging library
configure_logger("localhost", 3000, "results", HTML)
for i in 0.. {

result := run long running task
}

4. User logs data from running program

import logging library
configure_logger("localhost", 3000, "results", HTML)
for i in 0.. {

result := run long running task
result_line = concat("<s>", result, "</s>")
log("results", result_line)

}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/html-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

7. Program runs and sends configuration for ”results” to server at localhost:3000
as JSON.

8. Server receives configuration information, performs configuration.

26

2.1. Use case analysis

9. Program continues running and sends data to "results" as JSON.

10. Server receives data, performs visualization.

11. Browser displays successive values of results, formatting them to be
striken out as per the s HTML tag. Example after 4 iterations:
asia
basia
casia
dasia

12. Proceed to 10.

27

2. Requirement analysis

Use Case 5: Logging multiple lines at once

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0..10 {
result := run long running task
start := current time

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

result := run long running task
start := current time

}

3. User configures loggers

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0.. {

result := run long running task
start := current time
duration := concat(current time - start, "s")

}

4. User writes code to collect results into a single data structure

import logging library
configure_logger("localhost", 3000, "results", TABLE)
results := List()
for i in 0.. {

result := run long running task
start := current time
duration := concat(current time - start, "s")
results.append(["i": i, "result": result,

"elapsed": duration])
}

5. User logs result collection all at once:

import logging library
configure_logger("localhost", 3000, "results", TABLE)

28

2.1. Use case analysis

results := List()
for i in 0.. {

result := run long running task
start := current time
duration := concat(current time - start, "s")
results.append(["i": i, "result": result,

"elapsed": duration])
}
log_all("results", results)

6. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

7. User starts program.

8. Program runs and sends configuration for ”results” to server at localhost:3000
as JSON.

9. Server receives configuration information, performs configuration.

10. Program continues running and sends data to ”results” containing three
columns and four rows.

11. Server receives data, performs visualization.

12. Browser prints the data all at once as the appropriate format :

n elapsed result
0 6s asia
1 42s basia
2 180s casia
3 13s dasia

13. Proceed to 11.

29

2. Requirement analysis

Use Case 6: Logging to multiple sinks

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
result := run long running task
start := current time
duration := concat(current time - start, "s")

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

3. User configures loggers to display data as a table and as a bar plot:

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

4. User logs data from running program to two loggers:

import logging library
configure_logger("localhost", 3000, "results", SIMPLE_PRINTER)
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")
log("results", ["i": i, "result": result])
log("elapsed_time", ["i": i, "elapsed_time": duration])

}

30

2.1. Use case analysis

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer" and
"localhost:3000/graph-printer", for table and graph respectively.
GUI has ID ”results” and ID ”elapsed time” on a scroll-able place
with select and delete button for simple printer and graph.

6. User starts program.

7. Program runs and sends configuration for "results" and "elapsed time"
to server at localhost:3000 as JSON.

8. Server receives configuration information, performs configuration.

9. Program running and sends data to "results" and "elapsed time" .

10. Server receives data, performs visualization.

11. Browser updates the table and the graph simultaneously.

n result
0 asia
1 basia
2 casia
3 dasia

12. Proceed to 10.

31

2. Requirement analysis

Use Case 7: Grid layout

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
start := current time
result := run long running task
duration := concat(current time - start, "s")

}

2. User imports package or library in language appropriate manner

import logging library

for i in 0.. {
start := current time
result := run long running task
duration := concat(current time - start, "s")

}

3. User configures loggers to display data as a table and as a bar plot:

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

4. User configures a combined view for multiple loggers, specifying which
loggers to include and the number of columns (2) in the grid:

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
configure_view("localhost", 3000, "results_and_elapsed_time",

GRID, 2, "results", "elapsed_time")
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

32

2.1. Use case analysis

log("results", ["i": i, "result": result])
log("elapsed_time", ["i": i, "elapsed_time": duration])

}

5. User turns on browser pointed at the logging server at address in-
dicating both a concrete logger "localhost:3000/log=results" and
"localhost:3000/log=elapsed time" are updated simultaneously.

6. User turns on another browser pointed at the logging server at ad-
dress indicating a view "localhost:3000/combined-printer". GUI
has ID ”results and elapsed time” on a scroll-able place with select
and delete button for simple printer and graph.

7. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer" and
"localhost:3000/graph-printer", for table and graph respectively.
GUI has ID ”results” and ID ”elapsed time” on a scroll-able place
with select and delete button for simple printer and graph.

8. User starts program.

9. Program runs and sends configuration for "results" and "elapsed time"
to server at localhost:3000 as JSON.

10. Server receives configuration information, performs configuration.

11. Program continues running and sends data to "results" as JSON.

12. Server receives data, performs visualization.

13. Browser pointed at ”results” updates it’s table.

n result
0 asia
1 basia
2 casia
3 dasia

14. Browser pointer at ”results and elapsed time” is updated simultane-
ously.

15. Browser pointed at ”results and elapsed time” updates it’s graph.

33

2. Requirement analysis

n result
0 asia
1 basia
2 casia
3 dasia

16. Proceed to 12.

34

2.1. Use case analysis

Use Case 7 Extensions:

Use Case 7b: Grid layout with more sinks than columns

1. User writes a long running program, mocked up by this pseudo-code

for i in 0.. {
start := current time
result := run long running task
duration := concat(current time - start, "s")

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

3. User configures loggers to display data as a table

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
for i in 0..3 {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

4. User configures a combined view for multiple loggers, specifying which
loggers to include and the number of columns (1) in the grid:

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
configure_view("localhost", 3000,

"results_and_elapsed_time", GRID, 1,
"elapsed_time", "results")

for i in 0.. {
start := current time

35

2. Requirement analysis

result := run long running task
duration := concat(current time - start, "s")

}

5. User logs data from running program to ”results” and ”elapsed time”

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
configure_view("localhost", 3000,
"results_and_elapsed_time", GRID, 2, "elapsed_time", "results")
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")
log("results", ["i": i, "result": result])
log("elapsed_time", ["i": i, "elapsed_time": duration])

}

6. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/table-printer"

and "localhost:3000/graph-printer", for table and graph respec-
tively. GUI has ID ”results” and ID ”elapsed time” on a scroll-able
place with select and delete button for simple printer and graph.

7. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/simple-printer". GUI has ID
”results” on a scroll-able place with select and delete button for simple
printer.

8. User turns on browser pointed at the logging server at address indicat-
ing a concrete logger "localhost:3000/graph-printer". GUI has ID
”elapsed time” on a scroll-able place with select and delete button for
simple printer.

9. User turns on another browser pointed at the logging server at ad-
dress indicating a view "localhost:3000/combined-printer". GUI
has ID "results and elapsed time" on a scroll-able place with select
and delete button for simple printer and graph.

10. User starts program.

11. Program runs and sends configuration for ”results” and "elapsed time"
to server at localhost:3000 as JSON.

12. Server receives configuration information, performs configuration.

36

2.1. Use case analysis

13. Program continues running and sends data to data to "results" and
"elapsed time".

14. Server receives data, performs visualization.

15. The browser pointed at ”results” updates it’s table. Example after 4
iterations:

n result
0 asia
1 basia
2 casia
3 dasia

16. Program continues running and sends data to "elapsed time".

17. Server receives data, performs visualization.

18. Browser pointed at "elapsed time" updates it’s graph. Example after
4 iterations:

19. The browser pointed at ”results and elapsed time” updates it’s graph.
Example after 4 iterations (mind order):

n result
0 asia
1 basia
2 casia
3 dasia

15. Proceed to 13.

37

2. Requirement analysis

Use Case 8: Custom logger

1. User writes a long running program, mocked up by this pseudo-code:

for i in 0.. {
start := current time
result := run long running task

}

2. User imports package or library in language appropriate manner

import logging library
for i in 0.. {

start := current time
result := run long running task

}

3. User configures loggers to display data using a custom logger named
"my logger".

import logging library
configure_logger("localhost", 3000, "results",

CUSTOM, "my_logger")
for i in 0.. {

start := current time
result := run long running task

}

4. User writes a module in JS/TS implementing a specific API.

38

2.1. Use case analysis

import logging library
configure_logger("localhost", 3000, "results", TABLE)
for i in 0.. {

result := run long running task
log("results", ["i": i, "result": result])

}

5. User turns on browser pointed at the logging server at address indicating
a concrete logger "localhost:3000/custom-printer" and GUI has ID
”results” on a scroll-able place with select and delete button.

6. User starts program.

7. Program runs and sends configuration for "results" to server at localhost:3000
as JSON. At this point "my logger" is fully installed and operational.

8. Server receives configuration information, performs configuration. If
”my logger” cannot be used, the call to the server returns an exception
and halts the program.

9. Program continues running and sends data to "results".

10. Server receives data, performs visualization using function provided by
"my logger" module.

11. The browser pointed at ”results” updates it’s visualization. Example
after 4 iterations:

hello: ["n": 0, "result": "asia"]
hello: ["n": 1, "result": "basia"]
hello: ["n": 2, "result": "casia"]
hello: ["n": 3, "result": "dasia"]

12. Proceed to 10.

39

2. Requirement analysis

Use Case 8 Extensions:

Use Case 8b: Custom view composer

1. User writes a long running program, mocked up by this pseudo-code

for i in 0.. {
start := current time
result := run long running task
duration := concat(current time - start, "s")

}

2. User imports package or library in language appropriate manner

for i in 0.. {
start := current time
result := run long running task
duration := concat(current time - start, "s")

}

3. User configures loggers to to display data as a table and as a bar plot:

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
for i in 0.. {

start := current time
result := run long running task
duration := concat(current time - start, "s")

}

4. User configures a combined view for multiple loggers using a custom
view composer called "my view" :

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
configure_logger("localhost", 3000,

"results_and_elapsed_time",
CUSTOM, "results", "elapsed_time")

for i in 0..3 {
start := current time
result := run long running task

40

2.1. Use case analysis

duration := concat(current time - start, "s")
}

4a. Potentially the custom view composer can have configuration options:

configure_view("localhost", 3000, ...,
"results_and_elapsed_time", CUSTOM,
"my_view", "results", "elapsed_time")

5. User logs data from running program to both "results" and "elapsed time".

import logging library
configure_logger("localhost", 3000, "results", TABLE)
configure_logger("localhost", 3000, "elapsed_time",

GRAPH, BAR_PLOT, "n", "seconds")
configure_view("localhost", 3000, "results_and_elapsed_time",

CUSTOM, "my_view", "results", "elapsed_time")
for i in 0..3 {

start := current time
result := run long running task
duration := concat(current time - start, "s")
log("results", ["i": i, "result": result])
log("elapsed_time", ["i": i, "elapsed": duration])

}

6. User writes a module (eg. Node module, git repo) in JS/TS implement-
ing a specific API. The user can expand the data interface to suit the
custom data. The rest is already configured.

export interface ICustomPrinterPayload {
sessionId: string; //unique id for every session

data: any[]; // each object must have unique key id: string
}

7. User turns on browser pointed at the logging server at address indicat-
ing a concrete logger "localhost:3000/custom-printer" and GUI has
ID ”results and elapsed time” on a scroll-able place with select and
delete button.

8. User starts program.

9. Program runs and sends configuration for "results and elapsed time"
to server at "localhost:3000" as JSON. At this point "my view" is fully
installed and operational.

41

2. Requirement analysis

9a. If "my view" cannot be used, the call to the server returns an exception
and halts the program.

10. Server receives configuration information, performs configuration.

11. Program continues running and sends data to "results" and "elapsed time".

12. Server receives data, performs visualization using "results" and "elapsed time"
loggers and composes the results using the by "my view" module.

13. The browser pointed at "results and elapsed time" updates it’s vi-
sualization. Example after 4 iterations (mind order):

n result
0 asia
1 basia
2 casia
3 dasia

15. Proceed to 11.

42

2.2. Non-Functional requirements analysis

2.2 Non-Functional requirements analysis

This section describes the system’s operating capabilities and constraints.
Types of non-functional requirements are scalability capacity, availability, re-
liability, recover-ability, data integrity, etc. We consider all non-functional
requirements before we implement or design any software i.e. in the early
stages of the development process. We go through them in detail to help us
choose the best tech stack to reach the goals we set out in the thesis statement.

NFR1: Portability/Bindings Native bindings Logging is invoked by the
programmer in the native language. While language agnostic logging
is technically possible, invoking such loggers is expected to be cum-
bersome, require boilerplate code, and require third-party bindings. A
logging web service can get data from Restful API, but boilerplate code
would be needed to compose HTTP requests and, in most program-
ming languages, a third-party binding would have to send them to the
service. The thin-client should have minimum layering and should be
robust. While the scope of this work we will implement two language
specific bindings as a proof of concept and provide a tutorial for future
implementers.

NFR2: Quick binding development Logging is secondary to the business
logic of the programmer’s application. Thus, it should not get in the
way of the business logic and the code that implements it. Therefore,
using the logger should not require more than adding a single line to the
code, and should not require modifications to existing code, including
specifically passing around a state object to the sites where the logger
is called.

NFR3: UTF-8 support To support developers and users from all countries
around the world, and support multiple languages to give better context.
The logger should support UTF-8, it is a Unicode Standard and extends
US ASCII20.

NFR4: Callable anywhere Logging can be done anywhere in the code re-
gardless of context: the programmer can call a function that logs some-
thing anywhere in their code. Specifically, the programmer should not
have to pass additional logger objects to the sites where logging occurs.
Otherwise the programmer would be faced with the burden of modify-
ing the structure of their own code to make logging possible which runs
against the general requirements.

NFR5: Agile The logging system needs to be easy to install and configure.
The bindings should be native and the data logging system should pro-

20https://en.wikipedia.org/wiki/UTF-8

43

2. Requirement analysis

vide setup to run locally or remotely. If the logging system is not agile
it may only have appeal to a very small segment.

Existing methods of data logging are very limited in terms of what can be
expressed through it. We propose that modern loggers should use the browser
as output, which is both more powerful in what it can render, and less alien
than command-line to an unaccustomed user. We discuss the design further
in the next chapter 3.

44

Chapter 3
Design and implementation

In this chapter we describe a proof-of-concept system that serves as a solution
to the problem defined in the introduction. The chapter consists of two main
sections. In chapter 3 we set out a general overview and an architecture of the
system. In section 3.2 we provide concrete technical details of the server-side
and client-side components of the system.

3.1 Design

Since one of the base assumptions of this thesis is that a logger system can
leverage the browser to provide adequate data visualization facilities, our de-
sign is built around that assumption. In order to provide dynamic data to a
browser, the system must be equipped with the ability to serve web content.
Since the system is meant to provide native bindings to multiple languages, it
is best to provide a client-server architecture, where the server coordinates the
communication between the client process and the browser. Since the logger
is meant to provide easily written bindings for a growing number of languages,
it must ensure that the portion of its architecture written in native language is
small as well. Therefore we make the decision to concentrate the functionality
of the system in the server and make the client thin. The client-server-browser
three-component design brings about many other advantages as the server can
serve data to multiple browsers and receive logging information from multi-
ple clients at once. In addition one client can potentially communicate with
multiple loggers at once. We present the details of the architecture below in
Fig. 3.1 and describe each component in detail below.

Client Processes A client process is the program written and executed by
the user which contains calls to the thin client API. The API allows
configuration and sending data to be logged. Multiple client processes
can use the same sink or multiple sinks to send data to the server for
visualization via the thin client.

45

3. Design and implementation

Figure 3.1: Architecture of down-spiral

Thin Client with native binding The thin-client is responsible for accept-
ing raw data from the client processes, and serializing them to JSON,
and sending it to the server. The thin client has bindings in the native
language which makes it a hassle free experience integrating it in the
code unlike third-party libraries which require extra steps. The thin-
client receives configuration from client processes and then connect to
that socket. The thin-client then emits data to a specified event when
the client process sends data logs.

Server The server is responsible for accepting requests from the thin client,
decoding them, and orchestrating processing by referring to the logger.
It is also responsible for logging events in persistent storage. The commu-
nication with the server is real-time, event-based, and asynchronous (fire
and forget). The communication with the thin client is done through
Socket.IO, through an asynchronous event based network protocol.

The protocol has only one type of message. It always originates from
the client and is received by the server (semantically the server is listen-
only). The message announces a logging event to the server. The mes-
sage is a JSON structure which specifies the ID of the logger, the type
of the logger (eg. simple, table, graph), the payload of the event in the
appropriate format for its type.

Log Processor The log processor is responsible for accepting request from
the server and binding the data of type any to the specified logger type
function in the react-app. The communication between the log proces-
sor and the server is asynchronous and event based. The communication
with server is done via socket-io-client, protocol has logger type and pay-
load in JSON. Log processor catches the emitted event (via the server),
processes it accordingly.

46

3.2. Implementation

React App The react-app is responsible for saving data to the database and
also rendering it in the browser. The component on which the function
has been called, dispatches a call to Redux-Saga. It simultaneously
updates the component state in the persistent database and the Redux
app sate. Redux updates the component, React uses the Virtual DOM
to render an HTML tree virtually first, and then, every time a state
changes and we get a new HTML tree that needs to be taken to the
browser’s DOM, instead of writing the whole new tree React will only
write the difference between the new tree and the previous tree.

Persistent Database The persistent database collects log events: it stores
messages between sessions and provides recall for application state. The
database reflects the state of the application and every time some changes
are made Redux-Saga fires a call and updates the database in parallel
with the application. The database is upgraded if needed via an up-
grade saga, database instances is closed, and instance is removed from
the store when the app requests for the database to close (typically when
the app itself is closed).

Browser The browser is used to access the react-app, and see visualizations of
different types of data logs. Web based GUI is used for easy navigation.
The changes in the browser are updated by the react-app using, a virtual
DOM system.

Custom Visualization Modules down-spiral supports custom view and
custom visualization user can set the variables in mentioned in the guide
and also also have custom HTML views. User needs to set structure of
the payload sent in the component in the react-app and it will either
display as key-value pair or any custom view if set by the user.

3.2 Implementation

We present Down-spiral, an complete implementation of our data logger sys-
tem. Down-spiral follows the design from the previous section and consists of
two parts: a client-side binding library and a remote part. Down-spiral also
communicates with a browser. We provide two native language thin clients:
one in Java and one in Python. We use a React App written in TypeScript
and running on a Node.js server to implement the remote components. We
describe the technology selection in more detail below.

3.2.1 Technology Selection

It is becoming ever more difficult to clarify the right technology alternatives
because the number of technologies is increasing and technologies are becom-
ing very complex. Technology selection describes the process of making a

47

3. Design and implementation

choice between a number of alternatives. If technology selection is done prop-
erly, the selected technologies should be able to move through the complete
development process and lead to solutions of identified problems.

Node.js21 Node.js is an open-source, cross-platform, back-end JavaScript
run-time environment that runs on the Chrome V8 engine and executes
JavaScript code outside a web browser. We use Node.js to implement
our server component. Nodejs has asynchronous processing which makes
it a good candidate for real-time data transfer as a back-end server and
also has native support for JSON. Asynchronous processing allows re-
quests to be processed without blocking (non-blocking I/O) the thread.
So after a request is processed, it can push out a callback and continue
serving requests. That helps Node.js make the most of single threading,
resulting in short response time and concurrent processing. Node.js, be-
ing an open-source project, encourages support and contribution aimed
at the improvement and adoption of the platform. Due to JavaScript
environment there is there is seamless JSON support. It also has great
repository of libraries within its package manager: NPM.22 The choice
has given a limitation that we cannot use web-sockets or other protocols
for transfer of data, a work around it is using a JavaScript library with
for event based communication, we use Socket.IO in our case. Although
we have this limitation we also have an advantage introduced, we can
use the React App to handle DOM manipulation and to communicate
with the browser. The server uses Node.js for listening to requests.

Socket.IO [16] is a framework for real-time event-based client-server com-
munication. We use it to implement the communication layer between
the local and remote components of the system and for internal com-
munication between the server and the log processor. We use Socket.IO
module for the thin-client, the server, and also the log processor to emit
payload for event based communication.
The server is listening and catches data from the thin client event, and
sends it to get processed to Log Processor API according to predefined
event outcome. The thin client is in the native language that serial-
izes data logs to JSON and then, sends the JSON to the server using
Socket.IO module, emits the data to an event. Socket.IO is used both in
the thin-client and the server. It supports implementation various lan-
guages like C++, Java, and Python, to name a few. The consequences
include support for thin-client available.

ReactJS23 is a highly used open-source JavaScript Library. It helps in cre-
ating impressive web apps that require minimal effort and coding. We

21https://nodejs.org/
22https://www.npmjs.com/
23https://reactjs.org/

48

3.2. Implementation

use ReactJs for front-end view rendered in the browser. We choose
React App to render data on the browser, which ReactJS does using
virtual DOM manipulation. DOM (document object model) is a logi-
cal structure of documents in HTML, XHTML, or XML formats. Web
browsers are using layout engines to transform or parse the representa-
tion HTML-syntax into a document object model, which we can see in
browsers. Uni-directional flow code in Reactjs ensures stable code. It
allows for direct work with components and uses downward data binding
to ensure that changes in child structures don’t affect their parents. Re-
actJS was the first open-source project by Facebook, which ensure that
it uses all advantages of free access – a lot of useful applications and ad-
ditional tools from off-company developers. We use TypeScript instead
of JavaScript while creating the react-app. TypeScript is a statically
typed super-set of JavaScript. React introduced hooks for component
state management which leads us to choose Redux which simplifies stor-
ing and managing component states in large applications with many
dynamic elements where it becomes increasingly difficult.

TypeScript24 extends JavaScript by adding types to the language. We use
TypeScript as an alternative to JavaScript for the react-app. Type-
Script is a programming language developed and maintained by Mi-
crosoft. TypeScript is designed for the development of large applications
and transpiles to JavaScript. TypeScript supports concepts from class-
based object-oriented programming like classes, interfaces, inheritance,
and more. Researchers found that TypeScript detects 15% of common
bugs at the compile stage [17] . Although it requires trans-piling into
JavaScript and cannot be directly run by the browser, it can be config-
ured easily using the configuration file. TypeScript is well documented
and popular among the users.

Redux25 is a library which provides a data store, and React-Redux provides
the glue between React and Redux. We used them to store and manage
the state of the react-app. It stores application state in a single object
and allows every component to access application state without dealing
with child components or using any callbacks. Redux also preserves
the functionality of uni-directional flow code similar to React. Redux
is extensible via middle-ware only has no out-of-the-box solution for
dealing with side-effects.

This leaves us with two popular middle-wares used with Redux, Redux-
Thunk and Redux-Saga. We choose Redux-Saga for our case.

24https://en.wikipedia.org/wiki/TypeScript
25https://redux.js.org/
26https://redux-saga.js.org/

49

3. Design and implementation

Redux-Saga26 is a middle-ware library used to allow a Redux store to inter-
act with resources outside of itself asynchronously. This includes making
HTTP requests to external services, accessing browser storage, and exe-
cuting I/O operations. These operations are also known as side effects.
Redux Saga helps to organize these side effects in a way that is easier
to manage [18]. The main benefit that Redux-Saga has in comparison
to Redux-Thunk is there no callback hell which means we can avoid
passing functions and calling them, additionally call and put methods
return JavaScript objects. This makes it also easier to test asynchronous
data flow [19]. Redux-Saga also is used to fetch current state from
database and also for updating the database with current state. Redux-
Saga is used as middle-ware to fire requests to the database and Redux
asynchronously.

SQLite27 is a simple databse management system which we use for persis-
tent data base—log events and changes in the react-app are saved and
updated into an SQLite database. SQLite is famous for its great feature
of zero-configuration, which means no complex setup or administration
is needed. SQLite has a file based system that makes it easily portable.
It is free and easy implementation. It requires no extra configuration
or space because it a server-less installation and also done in just a few
minutes. SQLite is fast and usually there are no problems with the speed
of data retrieval or data itself.

The selected technology allows us to achieve the goals set out in the thesis
statement.

3.2.2 Implementation details

We provide a complete overview of the implementation of the thin client and
remote system components of Down-spiral. We describe the structure of the
thin client as a class diagram and the remote server as a component diagram
and provide descriptions of the role of each component and class in brief in
the text. We also describe the interactions among various components of the
system with sequence diagrams.

3.2.2.1 Thin client

The thin client is responsible for providing native language bindings and seri-
alizing logged data into JSON using Socket.IO library. It also sends the JSON
payload to the server. The structure of the thin client is presented in the class
diagram in Fig. 3.2. It describes the Java implementation specifically. The
Python bindings are similar.

27https://www.sqlite.org/index.html

50

3.2. Implementation

Fi
gu

re
3.

2:
C

la
ss

D
ia

gr
am

of
th

e
T

hi
n

C
lie

nt
.

51

3. Design and implementation

The main class of the thin client is DownSpiral. It acts as a facade and
exposes functions for configuring loggers and logging. It is also responsible for
serialization to JSON. DownSpiral methods send the serialized JSON pay-
load to the server using functions from the Visualize class. Visualize uses
Socket.IO to create and close connections, and also to emit events.

The loggers can be configured in terms of the type of their output and
minimum logging levels. The thin client has different logger types (which
are represented by LOGGERTYPES) and log levels (represented by the interface
LOGLEVELS). Graph output is additionally configured by specifying the type
of graphs (represented by GRAPHTYPES). The specific logger is instantiated
as subclasses of the Base superclass. The Base class is used to store the
session ID and logger type and opens the connection using Visualize class.
Its subclasses define output-specific behaviors: the Logs class have different
filters to monitor different log levels and Graph class has functions to get the
x-axis and y-axis values and also a getter for a graph type.

The interaction between the Client Process, thin client, and the Server is
presented in Fig. 3.3.

3.2.2.2 React app

The react-app is responsible for setting the state of the application and ren-
dering it the browser. It also saves and updates the current state of the
application in the database. We present the broad structure and behavior of
the react app as a component diagram in Fig. 3.4. The main component of
the remote-system for browser and database interaction is the react-app (rep-
resented by React App in the figure). It renders the current state store in the
Redux store (represented by Redux Store) and also triggers crud functionality
in the database.

Redux is a state container for JavaScript apps. The React app calls a
function after receiving an event from a Socket.IO client (represented by
Socket.IO API). This action is caught in a Redux saga (represented by Redux
Saga), it fires two events: it updates the Redux state and the database (repre-
sented by DB) with the new changes. The redux components is responsible, for
setting the state of application in the react-app. The redux-saga, middle-ware
triggers events in database and the redux store state. The role of the database
is to manage and create data persistence. The react-app also updates it’s state
from the database.

The components responsible for parsing log messages are the set of printer
components: graph printer, custom printer, simple printer, HTML printer,
table printer, and combined printer. They all accept JSON messages through
Socket.IO and parse them into an appropriate representation, to which the
payload is then set. This then triggers changes in the view and the payload
gets rendered in the browser. We show the specific JSON formats for each of
these components in Tab. 3.1.

52

3.2. Implementation

Figure 3.3: UML Sequence Diagram: sending data to the server.

The interaction between the Server, Log Processor, React, Redux-Saga
and the Database is presented in Fig. 3.5. Server sends the payload as JSON
to the Logger, it receives the payload and binds it with the React App. React
app triggers middle-ware Redux Saga. Middle-ware appends the payload sent
by the server in redux-store and Database. Redux store updates the react-app
then makes changes in the components according to the payload.

53

3. Design and implementation

Figure
3.4:

C
om

ponent
D

iagram
ofthe

react-app.

54

3.3. Lessons learned

Component Socket.IO Event JSON format
Table TABLE_PRINTER { sessionId: string,
Printer header: string[],

data: any[] }
HTML HTML_PRINTER { sessionId: string,
Printer header: string[],

data: any[] }
Graph GRAPH_PRINTER { sessionId: string,
Printer type: string,

labels: string[],
datasets: {

label:string,
data: any[] } }

Simple SIMPLE_PRINTER { sessionId: string,
Printer data: {

id: string,
resultLable:string
resultValue:string }[] }

Combined COMBINED_PRINTER { sessionId: string,
Printer grid: number,

combinedViewsPayload: {
type: string,
sessionId: string }[] }

Custom CUSTOM_PRINTER { sessionId: string,
Printer grid: number,

combinedViewsPayload: {
type: string,
sessionId: string }[] }

Table 3.1: Component message format.

3.3 Lessons learned

During the implementation of the thesis project the author had to navigate
around specific engineering problems. Initially, I selected Play framework
[20], for the remote system. As it is built on Akka [21], and is an open
source web-application framework. Since Play framework has cross-platform
and native in Scala and Java, it was ideal candidate but after implementing a
few use case scenarios, it became clear it had some problems and limitations
that wouldn’t meet the requirements. Problems encountered: plugins are not
stable, reloading library code doesn’t work, and application startup time grows
with application size. This lead us to choose ReactJS for the web-application
part. It has well maintained libraries because it is updated by Facebook, and

55

3. Design and implementation

Figure 3.5: UML Sequence Diagram of updating data in the database and
the application

has backward compatible which is another feature Play framework does not
support. ReactJs is cross platform and has JavaScript which makes it ideal
to deal with JSON. We justify our choice in section 3.2.1 .
Interesting bugs found and fixed One of the interesting bugs found was
when setting data in react-app in the Table component. Since most tables
use the procedure of setting the header before the table is formed, but we
wanted it to be done simultaneously which makes it dynamic and easy to map
new columns and data to it. When the mapping was done dynamically the
react-app was firing a warning in the console for white-spaces as column value.
Due to dynamic mapping, all empty element cells had a white space. This was
fixed using grids for dynamic mapping of Table that allows real-time mapping
and handles exceptions.

The bug was that the data wasn’t set in the redux-state for the react-
app. Since the logging data is passed to the browser via the state, it was
not possible to render the data in the browser. The Node.js server forwards
the request to react-app and then the react-app sets it but this could lead to
problems as the requests are asynchronous, so we used socket-io client to use
solve this problem. As socket-io-client is asynchronous and can catch events
from the server, and can also call the function in the react-app, which then
updates the view in the browser using the virtual DOM, and also saves the
data in the database.

56

Chapter 4
Evaluation

4.1 Correctness

We verify the correctness of the solution and look for all requirements we have
fulfilled both functional and non-functional, also list discrepancies if any. If
any case has not been covered or fulfilled we list out reasons and explain how
extension of work can be carried out.

We fulfill all the requirements but there is still a lot for improvement
in the solution. We can minimize the packaging size in react-app to make
the renders more smooth and seamless. The thin-client can also be made to
configure a batch of custom modules and with parallel implementation also in
the react-app. The section 5.2 expands on the scope of how to expand on it.

4.2 Tests

Latency is the time between a logger receives a message and the message is
rendered in the browser. latency is crucial for logging systems, both for those
that are suppose to run in real time, and loggers in general, as loggers are not
supposed to slow down the programs they are logging for. In this section we
characterize Down-spiral’s latency.

NFR Name State
NFR1 Portability/Bindings Fulfilled
NFR2 Quick binding development Fulfilled
NFR3 UTF-8 support Fulfilled
NFR4 Callable anywhere Fulfilled
NFR5 Agile Fulfilled

Table 4.1: Non-functional requirements

57

4. Evaluation

UC Name State
1 Simple logging Fulfilled
1b Turning it on later Fulfilled
1c Log level Fulfilled
2 Logging to table Fulfilled
2b Logging to table with heteROGENEOUS COLUMNS Fulfilled
3 Logging to graph Fulfilled
4 Logging to custom HTML Fulfilled
5 Logging multiple lines at ONCE Fulfilled
6 Logging multiple sinks Fulfilled
7 Grid layout Fulfilled
7b Grid layout with more sinks than columns Fulfilled
8 Custom logger Fulfilled
8b Custom view composer Fulfilled

Table 4.2: Use cases

The benchmarks were performed using the following testing environment:
Intel 6700HQ processor 2.60 GHz, 20 GB RAM DDR4 2133MHz, NVIDIA
965M, 128GB SSD M.2 EVO 960 SAMSUNG, 64-bit OS, and running on
windows 10 Professional. All components(thin client, server and react app)
were running in parallel on this system configuration. The client and server
were both running on a single machine and communicated via loop-back. Run-
ning the server locally allowed us to compare system time recorded on both
components.

We group the tests into two parts which are short messages (∼10 charac-
ters) and long messages (∼2000 characters) texts are generated automatically
and are random. We tests for simple printer, table printer, graph printer,
and HTML printer. We send 100 messages in sequence to each printer and
measure the latency separately for each message. We test the lag time be-
tween the transmission of each payload from the client process until the time
of rendering in the browser. We record the time in the client process when
the payload is sent to the thin client, and also when the react-app sets and
updates the component in the virtual DOM, i.e. render in the browser. Time
was logged using console.log in the react-app and System.out in Java.

4.2.1 Results

We collect the aggregated observations in Tab. 4.3 showing the minimum,
maximum and mean time in each benchmark group, as well as the standard
deviation within the group. All results are in milliseconds. We also plot the
distribution of the results for each group using violin graphs in Figures 4.1–4.7.

58

4.2. Tests

Benchmark Workload Latency [ms]
min max mean stddev

Simple printer short messages 1 155 5.3 35
Simple printer long messages 2 1155 118.75 115.09
Table printer short messages 4 259 6.67 25.50
Table printer long messages 3 1355 166.3 176.3
Graph printer short messages 3 250 6.57 24.60
HTML printer short messages 1 166 5 62.8
HTML printer long messages 2 1255 16.59 125.09

Table 4.3: Latency evaluation results.

Figure 4.1: Simple Printer short messages latency

4.2.2 Discussion

Overall, the results of the evaluation show that the logger has relatively low
latency, between 5 and 166ms on average, depending on workload and printer.
The results show that the maximum latency can exceed one second for long
messages in the case of the simple printer and the table printer. We addition-
ally see in figures 4.1–4.7 that these are outliers with respect to the general
population. The analysis of the results in detail shows that the outlier is al-
ways the first message sent, and the analysis of the system shows that this
delay stems from the setup that the logger undergoes when it receives its first
message.

59

4. Evaluation

Figure 4.2: Simple Printer long messages latency

Figure 4.3: Table Printer short messages latency

In general we see that loggers perform better, both in terms of absolute
values and in terms of latency distribution when the payload is small. If the
payload is 200× larger, mean latency increases between three- and thirty-fold.
We also see from the violin plots and the standard distribution, that larger

60

4.2. Tests

Figure 4.4: Table Printer long messages latency

Figure 4.5: HTML Printer short messages latency

messages scatter the distribution of the results. However, in absolute terms,
these differences are not larger and unnoticeable for a human operator.

The speed results demonstrate the logging lag is marginal in milliseconds

61

4. Evaluation

Figure 4.6: HTML Printer long messages latency

Figure 4.7: Graph Printer short messages latency

and doesn’t affect the rendering or the order of the payload and therefore the
Down-spiral is fit for purpose.

62

Chapter 5
Conclusion

As discussed in the introduction, a well designed logging system is a must have
for programmers. Use of logging makes the process efficient and ensure no
redundancy. Significant data loggers can output or store to a data persistence
option but the format is mostly rudimentary is just a string, although it
can metadata attached to it. Visualization is limited in data loggers, and
most of them either require extensive setup or further external support to
configured. Since, logging is secondary to the user is doing in the code it
makes visualization of logs a tedious task. Real-time logging makes it easy for
the user to track changes and all that we reviewed loggers lack this feature.
Custom configuration is difficult and almost impossible in major data loggers.

We set goals to make a portable logger that has out-of-box support for
visualization. The logger were also to support multiple input sources and
multiple output sinks, so the user can log different types of data in real-time
and from any process. Logging can be made more user friendly using web
technologies and rendering the output in the browser. Also, to provide the
user with customization options that require no intervention in the main source
code.

Down-spiral has out-of-box support for visualization, using a react-app
that communicates with a browser in real-time to monitor and update the state
of the application and its sub-components. Using Socket.IO we made the data
logging procedure asynchronous and real-time. We also used a database for
persistence of the application and reflecting its current state, which preserves
the functionality of loggers like Log4J and SLF4J. The code is open-source
and available publicly at GitHub with documentation such as installation
guide and manual, and also a thin-client binding guide. The users can either
use thin-client already available to them or create a new one. The data logs
can now easily be visualized using this data logger, which will make debug-
ging and tracking changes in real-time easy to track and record. No going
through boring command-line interface to find what you need, switch to the
web browser.

63

5. Conclusion

5.1 Impact

The introduction of Down-spiral gives the user the power of visualization of
data logs in the browser. This gives leeway for more exploration in the field
of data logging visualizers and data logging itself. It also reflects upon how
important data logging is to solve real world problems. The user now has
an option available with a portable logger, to visualize data. That needs
no configuration aside from importing the library in the language. Down-
spiral has built-in support for different types visualizations like tables, graphs,
custom HTML and more. Since, down-spiral is real-time it makes it easier to
track changes through logs and also to view multiple large data-sets.

5.2 Future work

Although Down-spiral fulfills all the non-functional requirements and Use-
Cases, there is some extension to the work that can be done.

Generate Bindings The features that were out of scope generating bindings
for thin-clients automatically for other languages. The bindings for thin-
clients has to be in native the language. It also requires a support library
available from libraries28 in Socket.IO otherwise a similar alternative.

Customization Module Extension The custom module feature available
on the remote-system, can be extended and made more dynamic. It
shouldn’t allow DangerouslySetInnerHTML practice, which is to manip-
ulate the DOM manually in a react-app. If the domain is manipulated
manually it bypasses the virtual DOM which makes ReactJS code stable.

28https://socket.io/docs/v3/index.html

64

Bibliography

[1] Cloudflare. Understanding network error logging. 2020, [On-
line; retrieved January 31, 2021]. Available from: https:
//support.cloudflare.com/hc/en-us/articles/360050691831-
Understanding-Network-Error-Logging

[2] Yang, L.; Phipps, D. Controlling collection of debugging data. July 7
2009, US Patent 7,559,055.

[3] Morris, T. H.; Thornton, Z.; et al. Industrial control system simula-
tion and data logging for intrusion detection system research. 7th annual
southeastern cyber security summit, 2015: pp. 3–4.

[4] Bosch, N.; Bosch, J. Software logs for machine learning in a DevOps
environment. In SEAA’20: the 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications, Aug 2020, pp. 29–33, doi:
10.1109/SEAA51224.2020.00016.

[5] Averbuch, A. J.; Brauer, R. L.; et al. Facility space data logging device.
Oct. 26 1993, US Patent 5,256,908.

[6] Apache Software Foundation. Elastic Stack for data logging and visu-
alization. 2001, [Online; retrieved January 31, 2021]. Available from:
https://logging.apache.org/log4j/2.x/

[7] Apache Software Foundation. What is Apache Log4net. [Online; retrieved
January 31, 2021]. Available from: https://logging.apache.org/
log4net/

[8] Allman, E. Syslog is a standard for sending and receiving notification mes-
sages–in a particular format–from various network devices. 2001, [Online;
retrieved January 31, 2021]. Available from: https://en.wikipedia.org/
wiki/Syslog

65

https://support.cloudflare.com/hc/en-us/articles/360050691831-Understanding-Network-Error-Logging
https://support.cloudflare.com/hc/en-us/articles/360050691831-Understanding-Network-Error-Logging
https://support.cloudflare.com/hc/en-us/articles/360050691831-Understanding-Network-Error-Logging
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4net/
https://logging.apache.org/log4net/
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog

Bibliography

[9] Gülcü, C. The simple logging facade for Java: SLF4J. 2021, [Online;
retrieved January 30, 2021]. Available from: http://www.slf4j.org/
index.html

[10] Humphries, C.; Prigent, N.; et al. Elvis: Extensible log visualization. In
Proceedings of the Tenth Workshop on Visualization for Cyber Security,
2013, pp. 9–16.

[11] B.V., E. Elastic Stack for data logging and visualization. 2012, [Online;
retrieved January 31, 2021]. Available from: https://www.elastic.co/

[12] Martinez, F.; Toth, P. K. Web-services-based data logging system in-
cluding multiple data logging service types. Sept. 25 2007, US Patent
7,275,104.

[13] Burnett, S.; Chen, L.; et al. Network Error Logging: Client-side measure-
ment of end-to-end web service reliability. In NSDI’20: the 17th USENIX
Symposium on Networked Systems Design and Implementation, 2020, pp.
985–998.

[14] Duane, N. Porting Log4J2 to .NET. Mail Archives for the Apache
Log4J User Group. [Online; retrieved February 13, 2021]. Available from:
https://tinyurl.com/y9hfbq5z

[15] Guerzoni, L.; Cuda, D. Speech processor data logging helps in pre-
dicting early linguistic outcomes in implanted children. International
Journal of Pediatric Otorhinolaryngology, volume 101, 2017: pp. 81
– 86, ISSN 0165-5876, doi:https://doi.org/10.1016/j.ijporl.2017.07.026.
Available from: http://www.sciencedirect.com/science/article/
pii/S0165587617303397

[16] Automatic Inc. Socket.IO. 2015, [Online; retrieved February 5, 2021].
Available from: https://socket.io/

[17] Alexsoft. The good and the bad of TypeScript. 2020, [Online; retrieved
February 5, 2021]. Available from: https://www.altexsoft.com/blog/
typescript-pros-and-cons/

[18] Chim, N. A high level introduction to Redux Saga. 2020, [On-
line; retrieved February 5, 2021]. Available from: https://
www.loginradius.com/blog/async/introduction-to-redux-saga/

[19] Rosenfield, S. Redux-Thunk vs. Redux-Saga. 2018, [Online; re-
trieved February 5, 2021]. Available from: https://medium.com/
@shoshanarosenfield/redux-thunk-vs-redux-saga-93fe82878b2d

66

http://www.slf4j.org/index.html
http://www.slf4j.org/index.html
https://www.elastic.co/
https://tinyurl.com/y9hfbq5z
http://www.sciencedirect.com/science/article/pii/S0165587617303397
http://www.sciencedirect.com/science/article/pii/S0165587617303397
https://socket.io/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://www.loginradius.com/blog/async/introduction-to-redux-saga/
https://www.loginradius.com/blog/async/introduction-to-redux-saga/
https://medium.com/@shoshanarosenfield/redux-thunk-vs-redux-saga-93fe82878b2d
https://medium.com/@shoshanarosenfield/redux-thunk-vs-redux-saga-93fe82878b2d

Bibliography

[20] Lightbend. Play: The high velocity web framework for Java and Scala.
2007, [Online; retrieved February 12, 2021]. Available from: https://
www.playframework.com/

[21] Lightbend. Akka. 2020, [Online; retrieved February 12, 2021]. Available
from: https://doc.akka.io/

67

https://www.playframework.com/
https://www.playframework.com/
https://doc.akka.io/

Appendix A
Acronyms

GUI Graphical user interface

XML Extensible markup language

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JDBC Java Database Connectivity

SQL Structured Query Language

I/O Input and Output

IE Internet Explorer

CSV Comma-Separated Values

XML Extensible Markup Language

69

Appendix B
Contents of enclosed CD

readme.md the file with CD contents description
src.......................................the directory of source codes

down-sprialimplementation sources
thin-clientsboth thin-client implementation sources

thin-client-javajava implementation
thin-client-pythonpython implementation

thesis-masterthe thesis text directory
thesis.pdfthe thesis text in PDF format
thesis.psthe thesis text in PS format
latex-source-codethe thesis latex source code

71

Appendix C
Installation and user guide

C.1 Installation Guide

Perquisites

• NPM package manager

• NPM package serve installed globally ‘npm install -g serve‘

Installation

• Clone the repo and change to the working directory.

cd */down-spiral/frontend

• Install all dependencies

npm install

• Start React App

npm serve-build

• Run the Node.js server

npm run server

73

C. Installation and user guide

Usage
Types of loggers

1. Table Printer Table printer is a logger that logs the data as HTML
Table.

• Accepts a json payload of type:

{SessionId: string, header: string[], data: any[]}

• Socket.io event for Table Printer:

TABLE_PRINTER

• Complete Usage

<code>.emit(’TABLE_PRINTER’, {
SessionId: string,
header: string[],
data: any[]‘
}

)</code>

2. HTML Printer HTML printer is a logger that logs the data as custom
HTML.
Usage

• Accepts a json payload of type:

{SessionId: string, htmlPayload: string}

• Socket.io event for HTML Printer:

HTML_PRINTER

• Complete Usage

.emit(’HTML_PRINTER’, {SessionId: string, htmlPayload: string})

3. Graph Printer GRAPH printer is a logger that logs the data as Graph.
Supported Graph formats

a) BAR

74

C.1. Installation Guide

b) SCATTER
c) RADAR
d) LINE
e) DOUGHNUT
f) POLAR-AREA
g) BUBBLE

Usage

• Accepts a json payload of type:

{
SessionId: string,
type:string,labels: string[],
datasets:{
label:string,
data: any[]
}

}

• Socket.io event for Table Printer:

GRAPH_PRINTER

• Complete Usage

.emit(’GRAPH_PRINTER’, {
SessionId: string,
type:string,
labels: string[],
datasets:{
label:string,
data: any[]
}

}
)

4. Simple Printer SIMPLE printer is a logger that logs the data as Key
value pairs.
Usage

• Accepts a json payload of type:

75

C. Installation and user guide

{
SessionId: string,
data: {id: string, resultLable:string, resultValue:string} []
}

• Socket.io event for HTML Printer:

SIMPLE_PRINTER

• Complete Usage

.emit(’SIMPLE_PRINTER’, {
SessionId: string,
data: {id: string, resultLable:string, resultValue:string} []
}

5. Combined Printer COMBINED printer is a logger that logs the data
from other chosen printers.

Usage

• Accepts a json payload of type:

{
sessionId: string;
grid: number;
combinedViewsPayload: { type: string; sessionId: string }[];
}
Here type can be any other logger type, passed with respective sessionId.

• Socket.io event for HTML Printer:

COMBINED_PRINTER

• Complete Usage

.emit(’COMBINED_PRINTER’,{
sessionId: string;
grid: number;
combinedViewsPayload: { type: string; sessionId: string }[];
}
)

76

C.1. Installation Guide

6. Custom Printer CUSTOM printer is a logger that’s defined by the user.In
CUSTOM PRINTER user defines the json object and it’s mapping with
JSX in the file CustomPrinter.JSX
Usage

• Define your custom json in the interface

ICustomPrinterPayload { sessionId: string, data: any[] }

expand data object to your need, must have a unique id.
• Map your objects to JSX Component

Note: Redux state mapping is already configured to the interface

• Socket.io event for HTML Printer:

CUSTOM_PRINTER

• Complete Usage
– Define your payload for the JSON object here
– This object will be the expected payload by reducer
– Unique sessionId is required for every new session
– expand data property of the interface to define your JSON

object
– example:- data: id: string; date: Date; name: string;[] above

example is defining data to be an array of id: string; date:
Date; name: string;

.emit(’CUSTOM_PRINTER’,{
sessionId: string;
data: any[];
}
)

77

	Introduction
	Related Work
	Logging
	Logging in Web Services
	Log V-management Systems
	Log Analysis
	Machine Learning
	Facility Space Exploration
	Cyber Security

	Conclusion

	Requirement analysis
	Use case analysis
	Non-Functional requirements analysis

	Design and implementation
	Design
	Implementation
	Technology Selection
	Implementation details
	Thin client
	React app

	Lessons learned

	Evaluation
	Correctness
	Tests
	Results
	Discussion

	Conclusion
	Impact
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD
	Installation and user guide
	 Installation Guide

