
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of bachelor’s thesis

Application for finding travel companions
Mykhailo Liutov
Ing. Ondřej Guth, Ph.D.
Informatics
Web and Software Engineering
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

Create a software finder of people to organise a trip. Analyse the requirements, design
and implement the application as a prototype. Its features should be original. Design the
software in client–server architecture, where the client should be a mobile application.
The features of the application should include:
- User profiles and authentication
- Ability to find and create trips with special requirements
- Ability to create and browse posts made by users

Electronically approved by Ing. Michal Valenta, Ph.D. on 28 September 2021 in Prague.

Bachelor’s thesis

Application for finding travel companions

Mykhailo Liutov

Department of Software Engineering
Supervisor: Ing. Ondřej Guth, Ph.D.

May 9, 2022

Acknowledgements

I want to thank my supervisor Ing. Ondřej Guth, Ph.D. for the guidance and
my family for the support they gave me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 9, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Mykhailo Liutov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Liutov, Mykhailo. Application for finding travel companions. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstrakt

Tato práce popisuje proces analýzy, návrhu, implementace a testováńı systému
pro vyhledáváńı spolucestuj́ıćıch. Tento systém se skládá z aplikace pro An-
droid a serveru. Celý systém je vyv́ıjen pomoćı moderńıch technologíı. Server
je nasazen do cloudového prostřed́ı a využ́ıvá r̊uzné služby nab́ızené poskyto-
vatelem cloudu.

Výsledkem této práce je kompletńı systém, který je připraven k distri-
buci široké veřejnosti. Na základě provedeného uživatelského testováńı je zde
prostor pro budoućı vylepšeńı a rozš́ı̌reńı systému o nové funkce.

Kĺıčová slova Cestováńı, klient-server, Android, Kotlin, Amazon Web Ser-
vices

Abstract

This thesis describes the process of analysis, design, implementation, and
testing of a system for finding travel companions. This system consists of
an Android application and a server. The whole system is developed using
modern technologies. The server is deployed into a cloud environment and
uses various services offered by a cloud provider.

vii

As the result of this thesis, a complete system that is ready to be dis-
tributed to a wide public was created. Based on the conducted user testing,
there is space for future improvements and expansion of the system with new
features.

Keywords Traveling, client-server, Android, Kotlin, Amazon Web Services

viii

Contents

Introduction 1

1 Analysis 3
1.1 Requirements . 3

1.1.1 Functional requirements 3
1.1.2 Non-functional requirements 4

1.2 Existing solutions . 4
1.2.1 JoinMyTrip . 4
1.2.2 BeATravelBuddy . 5
1.2.3 Meetup . 5

1.3 Use cases . 6
1.3.1 General use cases . 6
1.3.2 Trip use cases . 6
1.3.3 Summary . 9

1.4 Domain model . 9

2 Design 11
2.1 Wireframes . 11
2.2 API design . 11
2.3 System architecture . 14

2.3.1 Account management 14
2.3.2 Cloud providers . 15
2.3.3 Final architecture . 17

2.4 Android design . 17
2.4.1 Android minimum version 18
2.4.2 Application architecture 18
2.4.3 Android components . 20
2.4.4 UI layer . 21

2.5 Server design . 21

ix

2.5.1 Architecture . 21

3 Implementation 23
3.1 Android implementation . 23

3.1.1 Programming language 23
3.1.2 Kotlin DSL . 24
3.1.3 Modularization . 25
3.1.4 Coroutines . 26
3.1.5 Image storage . 27
3.1.6 Libraries . 27

3.1.6.1 Navigation . 27
3.1.6.2 Hilt . 27
3.1.6.3 Retrofit . 28
3.1.6.4 Firebase . 28

3.1.7 Layers . 28
3.2 Server implementation . 28

3.2.1 Server framework . 28
3.2.2 Spring . 29
3.2.3 Ktor . 29
3.2.4 Final decision . 30
3.2.5 Libraries . 30

3.2.5.1 Spring Boot 30
3.2.5.2 Auth0 . 30
3.2.5.3 MockK . 31

3.2.6 Project structure . 31
3.3 Deployment . 31

3.3.1 Cloud infrastructure . 31
3.3.2 AWS Cognito . 31
3.3.3 AWS RDS . 32
3.3.4 Secure communication 33
3.3.5 Android deployment . 33

4 Testing 35
4.1 Unit tests . 35
4.2 User tests . 35
4.3 Future improvements . 37

Conclusion 39

Bibliography 41

A Acronyms 43

B Contents of enclosed CD 45

x

List of Figures

1.1 General use cases . 7
1.2 Trip use cases . 8
1.3 Domain model . 10

2.1 Authentication wireframes . 12
2.2 Posts wireframes . 13
2.3 Profile wireframes . 14
2.4 Join requests wireframes . 15
2.5 Trip details wireframes . 16
2.6 Create trip wireframes . 17
2.7 System architecture . 18
2.8 Android versions distribution . 19
2.9 Recommended architecture by Google 20

3.1 Cloud infrastructure . 32

xi

List of Tables

1.1 Competition and requirements . 9

xiii

Introduction

A lot of people today enjoy traveling, however, they can often face the problem
of finding someone to join them on their trip. In addition to this, they may
not have all the equipment they need for their journey. This is the problem
that the system created in this thesis is going to solve.

Currently, there exist some solutions for looking for travel companions,
however, they do not cover the mentioned equipment requirements. By offer-
ing support for them, the developed system not only will allow users to go on
trips where they could not have gone before but also to connect with others
and possibly share their hobbies.

The goal is to develop a complete solution to the problem of finding co-
travelers in an original way. It should support user accounts and trips with
equipment requirements. Additionally, it should allow users to create and see
posts, to give people inspiration for future journeys. The resulting system
should consist of a server and an Android client and should be tested and
ready to be used by real users.

The thesis is split into 4 chapters, each one corresponding to a stage in a
software development process. The analysis chapter describes the process of
formulating detailed requirements and use cases. The design chapter defines
the architecture of the system, while the implementation chapter tells about all
the details and important decisions that were made during the development.
Finally, the testing chapter describes how the system was tested.

1

Chapter 1
Analysis

This chapter formulates functional, non-functional requirements and use cases
and describes the research of the existing solutions to the problem of finding
co-travelers and the analysis of their strengths and weaknesses. In addition
to this, it highlights the ways in which TravelMates, which is the name of the
developed application, has innovative and useful functionality.

1.1 Requirements

This section describes the functional and non-functional requirements. They
were formulated based on the goals of this thesis and modern standards of
software development.

1.1.1 Functional requirements

F1: User profile The system should allow any user to register with email
and password and store their profile.

F2: Trips The system should allow the creation of trips for any registered
user. Also, it should be possible to browse, search and join trips. When
creating or joining a trip, the user has to provide their contact. The
purpose of this is to allow communication between users since the appli-
cation does not provide it1. It should be possible to provide a different
one for each trip, to allow users to select the most suitable contact for
every situation, for example, it could be an invitation link to a dedicated
group chat for a specific trip.

F3: Equipment requirements It should be possible to add equipment re-
quirements to a trip.

1The developed application is a prototype, and such feature would take a lot of time to
implement.

3

1. Analysis

F4: Posts The system should allow any registered user to create a post.
Users should be able to browse a list of all users’ posts.

1.1.2 Non-functional requirements

N1: Client Android application.

N2: Server Server should be running in a cloud environment with available
scalability.

N3: Version Android application should support the majority of current
Android devices.

N4: Localization Application should be in English, although it should be
developed in a way to make it easy to add more languages in the future.

N5: Data security User passwords should be stored in a secure way.

1.2 Existing solutions

There already exist some products that offer a solution to the problem of
finding travel companions. By using Google search and informational websites,
I have selected products relevant to the stated problem, which means they offer
some way to find other people in the context of traveling and fulfill some of
the stated requirements.

1.2.1 JoinMyTrip

JoinMyTrip is a website, which offers the possibility to create and search
for trips all over the world. Each trip includes a detailed plan for each day
and has a price, which has to be paid to the service. This typically includes
accommodation, transport, and other services. Compared to the goals of the
thesis, this service lacks the ability to add trip requirements and posts and
also enforces its payment system.

Advantages:

• Big platform with a lot of users and possible trips

• Built-in payment system, which allows people to know how much pre-
cisely the trip will cost

4

1.2. Existing solutions

Disadvantages / Missing features:

• The payment system makes it more business-oriented for those who offer
trips, instead of people just wanting to share their hobbies or to meet
new travelers

• It is not possible to add equipment requirements for the trips

1.2.2 BeATravelBuddy

This service is simpler than the previous one mentioned. What is similar to
the goals of this thesis is a list of user-created posts and user profiles. However,
this service lacks the ability to create trips.

Advantages:

• Provides a way to discover other travelers nearby

• Allows to post user stories and browse them

Disadvantages / Missing features:

• No way to create trips and look for them

1.2.3 Meetup

Another service that is worth mentioning is called Meetup. It allows people
to create local events, which other people can join. Theoretically, it can be
used to organize trips as well, but it is aimed at events nearby. As a result, it
differs from the goals of the thesis in the ability to add trip requirements and
posts.

Advantages:

• Big community

• Simplicity of usage

Disadvantages / Missing features:

• Not oriented towards traveling

• No built-in support for trips requirements

• No user posts

5

1. Analysis

1.3 Use cases

This section describes the use cases of the application. The use cases are split
into 2 categories, general and trip-related.

1.3.1 General use cases

General use cases cover everything that is related to any registered or anony-
mous user. They are described in Figure 1.1

UC1: Log in Anonymous user should be able to log into the application
using their email and password. Only those users which have verified
their ownership of the email should be able to log in. This is done
to ensure that the emails are authentic and allows to reach out to the
registered users via email in the future.

UC2: Register Anonymous user should be able to register in the applica-
tion.

UC3: Recover password Anonymous user should be able to recover their
password. To do that, they will verify themselves as an owner of the
email and set a new password.

UC4: Create post Registered user should be able to create a post with a
picture.2 It should be possible to pick a location, which is shown in the
post, on a map.

UC5: Browse posts Registered user should be able to see posts created by
other users.

UC6: Edit profile Registered user should be able to edit their profile. It
should be possible to edit the picture and the name.

UC7: Send join request Registered user should be able to send a join re-
quest to any trip which is gathering people.

UC8: Create trip Registered user should be able to create a trip. It should
be possible to pick the location of the trip on a map.

1.3.2 Trip use cases

Trip use cases describe everything related to trip owners and members, they
are depicted in Figure 1.2

2Ability to edit or delete a post is intentionally not required, as the created application
is a prototype, and those features are not essential for a functioning product.

6

1.3. Use cases

Figure 1.1: General use cases

7

1. Analysis

Figure 1.2: Trip use cases

UC9: See join requests Trip owner should be able to see join requests,
which users sent to their trip.

UC10: Accept join request Trip owner should be able to accept any join
request that a user sent to their trip. Doing so will make the sender a
trip member.

UC11: Reject join request Trip owner should be able to reject a join re-
quest. When doing so, they should provide a reason for rejecting in
a form of a text message. They can also choose whether to allow the
sender to send a new join request for this trip.

UC12: See contact of trip members Trip member should be able to see
the contact of other trip members.

8

1.4. Domain model

Requirement JoinMyTrip BeATravelBuddy Meetup
F1 User profile ✓ ✓ ✓
F2 Trips ✓ X ✓
F3 Equipment requirements X X X
F4 Posts X ✓ X

Table 1.1: Competition and requirements

1.3.3 Summary

Looking at the competition research, requirements, and use case analysis
above, we can see similar services that help people find travel companions
already exist. However, none of them fulfill all the requirements, which were
specified based on the goals of this thesis. Each competitor and the require-
ments they fulfill are shown in Table 1.1. As demonstrated, none of the
existing services have implemented the feature to set equipment requirements
and use them as search filters. To conclude, there is still space in this market
for creating a new solution, which will combine the best of the existing fea-
tures, and add new ones, with built-in support for equipment requirements, a
community-oriented approach, and user posts.

1.4 Domain model

Analysis of the requirements and use cases, which were described before, has
led to the creation of the domain model, shown in the Figure 1.3.

There are 2 additional entities in the model which were not described
before:

Trip state The system should keep track of each trip’s state. A trip that is
in the “Gathering” state can be seen by all users, and those users can
send their join requests to such a trip. A “Gathered” state represents
a trip that is not looking for more members but has not happened yet.
Finally, the “Finished” state describes a trip that has already happened.

Request state When a join request is sent, it gets the “Pending” state.
When the owner wants to reject a join request, they may decide to
allow or block the user from sending more requests for the trip. This
is represented using the “Rejected without resend” and “Rejected with
resend” states.

9

1. Analysis

Figure 1.3: Domain model

10

Chapter 2
Design

2.1 Wireframes

In order to have an understanding of what the screens of the application will
look like and help design the requests that the server will have to support,
I have prepared wireframes. They are based on the use cases, which were
formulated during the analysis.

Figure 2.1 demonstrates the screens related to authentication of a user,
and covers use cases UC1, UC2, UC3. This process is described in more detail
in subsection 3.3.2.

Figure 2.2 demonstrates the screens which allow users to see and create
posts and covers use cases UC4, UC5.

Figure 2.3 shows the user profile screen, which also supports editing, and
covers the use case UC6.

In Figure 2.4 screens related to join requests are shown. They cover the
use cases UC7, UC10, UC11.

Figure 2.5 depicts screens that show details of a trip and cover the use
cases UC9, UC12.

Lastly, Figure 2.6 shows the process of creating a trip, which covers the
last remaining UC8.

This way, the implementation of the application based on the created
wireframes will cover all needed use cases.

2.2 API design

Before starting the implementation, an application programming interface
(API) definition needs to be created. In order to make future development
easier, this definition should be hosted on a remote server to allow easy ac-
cess for any future developers. For this reason, I have decided to use a service
called Stoplight. It provides a user-friendly interface for creating the API doc-
umentation, and then hosts it on its own servers, making it publicly available.

11

2. Design

Figure 2.1: Authentication wireframes

12

2.2. API design

Figure 2.2: Posts wireframes

The design of the endpoints themselves follows the best practices of Repre-
sentational state transfer (REST) API design from [1]. Based on the Domain
model and mentioned practices, I have identified 4 resources and created the
endpoints based on them:

Trips Those endpoints start with “/trips” and cover operations that are re-
lated to trips and their state.

Posts They start with “/posts” and allow to create and get a list of posts.

Join request Endpoints start with “/requests” and handle rejecting and ac-
cepting join requests.

User Endpoints from this group start with “/users” and expose the function-
ality of getting the user’s profile and updating it.

To give an example of a design of a specific endpoint, we can take a look
at the endpoint which allows changing the user’s name and picture. As stated
above, it belongs to the group related to users and operates directly on this
resource, therefore it is suitable to use the path “/users” for it. The request
itself is meant to update an existing entity, so the most suitable Hypertext

13

2. Design

Figure 2.3: Profile wireframes

Transfer Protocol (HTTP) method, in this case, is PUT. The body of the
request should include the fields that are being updated, meaning the name
and the picture. An identification (ID) of the sender is included in the header
of each request. If the operation succeeds, the server should return code 200
and the updated user profile, which the application will be able to present to
the user.

2.3 System architecture

2.3.1 Account management

Requirement F1 states that the system should store user profiles and allow
them to register. Since users tend to forget their passwords, it should be possi-
ble to recover a password. Also, requirement N5 says that the password should
be stored in a secure way to avoid data leaks. Of course, this can be imple-
mented using the conventional programming tools and a database, however,
such custom implementation is prone to having security vulnerabilities. For
this reason, I have decided to research and choose an existing solution for user
identity management. Such solutions are closely related to cloud providers
and therefore are described in the next subsection.

14

2.3. System architecture

Figure 2.4: Join requests wireframes

2.3.2 Cloud providers

According to the requirements, which were created during analysis, and based
on requirement N2, which states that the server should be running in a cloud,
I have formulated the following criteria for choosing a cloud provider:

1. It should support user account management, which includes the ability
to register, login, and recover the password in a secure way.

2. It should be possible to host a server, which will be running around-the-
clock to allow users to use the system at any time.

3. It should allow to host a database server, which would be accessible
from the back end. A need for such a database is clear from functional
requirements F2 and F4, which infer that data should be persisted and
shared among different users.

Because the implementation of the needed features may differ based on
the vendor, it is not possible to create a system architecture before choosing
the cloud provider first. Therefore, it is necessary to find a service that will
fulfill the stated criteria in the best way.

15

2. Design

Figure 2.5: Trip details wireframes

Based on [2], there are 3 biggest cloud providers, Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP). All of them
satisfy the requirements, however, there is a difference in ease of usage and
documentation when it comes to user account management.

AWS They provide a software development kit (SDK) called Amplify, which
implements all needed logic in a form of Kotlin functions. The docu-
mentation is well written and clear.

Azure An SDK called Microsoft Authentication Library is also provided,
however, the interfaces they provide are outdated by modern Android
development standards, and documentation is often unclear.

GCP Firebase, a platform developed by Google, provides a modern and well-
documented SDK to access their identity management system.

As we can see, all providers offer some kind of SDK that simplifies the
development. However, AWS and GCP provide better interfaces and docu-
mentation, which are also important. To summarize, both options are equally
good, so I have made my decision based on a fact that I already had previous
experience with AWS and knew how to work with their products.

16

2.4. Android design

Figure 2.6: Create trip wireframes

2.3.3 Final architecture

Since the decision about how user management is going to work has been made,
it is now possible to design the full system architecture. As depicted in Figure
2.7 and in accordance with the system requirements, the architecture consists
of an Android application client, a server, and cloud services. AWS Amplify
SDK is used in the client to authorize the user with the account management
service, Cognito, which is described in more detail in subsection 3.3.2. After
this is done, the HTTP client in the application gets an authorization token
from the SDK and uses it to authorize requests to the server. The server uses
Cognito to validate that token is valid and grants the user access to requested
resources. All this communication is handled via HTTP. Communication with
the database, which is also running in the cloud, is done using Java Database
Connectivity (JDBC).

2.4 Android design

This section describes all important decisions in the design of the Android
application.

17

2. Design

Figure 2.7: System architecture

2.4.1 Android minimum version

As stated in requirement N3, a decision that has to be made is to select a
minimum version of the Android operating system (OS) that the application
will support. The benefits of setting a lower requirement for the version are
clear – it will allow more users to download and use the product. However,
this may create a lot of problems during the development due to the need to
use only backward-compatible components and the lack of modern features on
older devices. As a result, a compromise between the covered percentage of
the market and available components and features has to be made. According
to the latest information provided by Google, which is depicted in Figure 2.8
[3], 98% of devices are running at least Android 5.0 Lollipop, which fulfills
the given requirement of supporting the majority of devices. Also, it needs to
be mentioned that those who are using devices with Android versions lower
than 5.0 are most likely older people, who are not in the target audience of
the application described in this thesis. Therefore, Android 5.0 was chosen as
a minimum supported version.

2.4.2 Application architecture

Choosing a good architecture is a crucial decision that has to be made before
development begins. I have decided to follow the architecture recommended by
Google [4], which is shown in Figure 2.9. The biggest advantage of following
the suggested approach is the separation of concerns, which is achieved by

18

2.4. Android design

Figure 2.8: Android versions distribution

19

2. Design

Figure 2.9: Recommended architecture by Google

splitting the user interface (UI), domain, and data layers. Due to the nature
of the developed product, there is not much business logic in the client, since
all such logic should be handled by the server, so the optional domain layer
should only be present in case it is needed.

2.4.3 Android components

When designing the architecture, especially the UI layer which heavily relies
on the Android framework, it is extremely important to take into account the
way its components work.

One of the main components of the Android framework is called Activity
[4]. An activity is a single thing that a user can do and usually represents a
full-screen window. There exist multiple states and callbacks related to those
states, which are typically referred to as lifecycle. It is important to note one
mechanism of the lifecycle. When the application goes into the background,
the system can kill the activity in order to free memory, and recreate it when a
user comes back. The same thing happens when the user rotates their phone.
When this happens, the state of the Activity is lost, therefore it is necessary
to save the state elsewhere.

Another fundamental component is called Fragment [4]. It is a reusable
part of the UI which has its own lifecycle, somewhat similar to the lifecycle
of the activity. Fragments are also destroyed and recreated during the life of
the application and do not preserve their state automatically.

20

2.5. Server design

2.4.4 UI layer

This paragraph is based on [4]
The recommended approach to creating a UI layer is MVVM, which stands

for Model, View, ViewModel, and solves the issues with saving the state of
Activities and Fragments. The state is represented using the models and is
stored inside the ViewModels, while the view is kept in sync with the state of
the ViewModels using the Observer pattern, creating a loose coupling between
them. The implementation of the ViewModel class is provided by the Android
framework and is able to survive configuration changes (rotation of the screen)
and does not get destroyed as quickly as the UI components.

The implementation of the Observer pattern, which is used for the syn-
chronization of the UI and the ViewModels, is also possible with the use of
Android classes. LiveData [4] is an observable entity, which is also lifecycle-
aware, meaning it respects the lifecycle of other components such as Activity
and Fragment and triggers the observers only when they are in the active
state. Without this feature, a situation where the UI is already destroyed,
but the observer would try to update it would be possible, leading to crashes.

2.5 Server design

This section describes the design of the server part.

2.5.1 Architecture

The architecture of the server is very similar to the client’s one. It is split into
3 layers:

Presentation layer This layer exposes the functionality of the server via
REST API and consists of rest controllers, which handle communication
over HTTP protocol.

Domain layer This layer contains the business logic of the server.

Data layer This layer is responsible for persisting the data. For the devel-
oped server, it is connected to an SQL database.

To keep the architecture clean, the presentation layer only communicates
with and depends on the domain, and the domain depends and communicates
with the data layer, there is no inverse dependency. This ensures that those
layers are loosely coupled, and therefore are easy to change in the future.

21

Chapter 3
Implementation

3.1 Android implementation

This section describes all the important steps and decisions which were made
during the implementation of the Android application.

3.1.1 Programming language

There are 2 main programming languages that can be used for Android devel-
opment, Java and Kotlin. However, since 2019, Kotlin has become the main
language for Android. Kotlin offers a lot of benefits when compared to Java,
which are described below and are based on [4] and [5]

Kotlin advantages:

• Compatible. Kotlin is fully compatible with Java, which even allows
mixing Kotlin and Java classes in one project if needed.

• Concise. Kotlin allows using less code to solve problems.

• Safe. Kotlin’s type system is null-safe.

• Coroutines. Kotlin provides out-of-the-box support for coroutines, ben-
efits of which are described in more detail in subsection 3.1.4.

Listing 3.1 demonstrates Kotlin’s null-safe type system in comparison with
Java. From it, it is visible that the same logic can be written with less code
and in a more readable way in Kotlin, using the safe call “.?” operator. In
addition to this, the listing shows one more feature of Kotlin that Java does
not support called extension function [5], in this case “orEmpty()”, which
returns an empty list if the given list is null. Such extensions help to add
functionality to existing classes while keeping the code easy to read.

To summarize, Kotlin is less verbose, requires less boilerplate code, is safer,
and therefore is a clear choice for modern Android development.

23

3. Implementation

Listing 3.1: Kotlin vs Java null safety

// Kot l in
fun s e a r c h L i s t (

l i s t : L i s t <Str ing >?,
term : St r ing

) : L i s t <Str ing > {
re turn l i s t ? . f i l t e r { i t . c onta in s (term) }

. orEmpty ()
}

//Java
pub l i c L i s t <Str ing > s e a r c h L i s t (

L i s t <Str ing > l i s t ,
S t r ing term

) {
re turn l i s t == n u l l ? C o l l e c t i o n s . emptyList ()

: l i s t . stream ()
. f i l t e r (item −> item . conta in s (term))
. t o L i s t () ;

}

3.1.2 Kotlin DSL

Since building an Android project requires multiple steps such as lint analysis,
annotation processing, compilation, packaging, and many others, it is neces-
sary to use some build automation tools. For creating Android applications,
Gradle is typically used. Based on [6], using Gradle brings a lot of benefits
such as:

• Fast builds due to usage of build cache and other optimizations

• Ease of usage with support for custom tasks

• Great integration with IDE-s, such as Android Studio – the main tool
for Android development

This paragraph is based on [7]
For writing Gradle scripts and configuration, a language called Groovy

was typically used. The biggest problem with this language is that it is not
widely used, and therefore most programmers do not know its syntax well. To
solve this issue, support for writing scripts in Kotlin was added. The biggest
benefit of choosing Kotlin domain-specific language (DSL) instead of Groovy
is that Android developers already know it and are able to write the scripts

24

3.1. Android implementation

and configuration for Gradle more easily, using the familiar syntax, and with
auto-completion available in the Android Studio.

3.1.3 Modularization

This subsection is based on [8]
Although is it possible to write the whole project in one module, it is not

a good approach since it does not scale well, and the build time significantly
increases with the growth of the codebase. For this reason, I have decided to
use multiple modules to develop the application.

The most widely spread way to modularize an application is using the
so-called feature modules. When using this way, each module contains all the
code related to a specific feature. I have split the client into the following
modules:

app This is the main module of the application, the purpose of which is to
connect all the feature modules.

auth This module contains all the screens related to the process of authenti-
cation, such as registration, login, and password recovery.

authapi Since the authentication logic is used by multiple other modules, I
have decided to put it into a separate module. The authentication is
done using the Amplify SDK, so this is mostly a wrapper around the
SDK, which provides an extra level of abstraction and loose coupling.

core This is a special module, which is not related to a specific feature but
instead contains helper functions, extensions, and other auxiliary code
which is used by multiple feature modules.

images The logic of uploading an image to the remote storage is used in
multiple places, therefore I have extracted it into this module.

location This module provides the functionality related to locations, more
specifically models, utility functions, and a screen where a user is able
to pick a location.

mainapi This module handles all the communication with the back end.

posts Everything related to the posts is located in this module.

trips All features connected to trips are implemented in this module.

25

3. Implementation

3.1.4 Coroutines

This subsection is based on [5]
Naturally, when developing an Android application, blocking the main

thread to load data, thus freezing the user interface, is an extremely bad user
experience and is not acceptable. Therefore, some approach to handle asyn-
chronous programming has to be selected. Since it is an old and widespread
issue, there are many existing techniques to solve it.

Threads:

• Multiple threads are used to avoid blocking the application

• Synchronizing the threads and avoiding race conditions can be tricky

Callbacks:

• A special callback function is called when a long-running method finishes

• Nested callbacks are hard to read, and error handling becomes compli-
cated

Reactive streams:

• All data is represented using observable streams which react to changes
in the upstream data sources

• It is a completely different approach from traditional ones and requires
a big change in thinking

All of the listed solutions are usable, however, Kotlin introduces a dif-
ferent method to write asynchronous code called coroutines. At the center
of this approach is an idea of a suspendable computation, in other words, a
function that is able to suspend its execution and resume at a later point.
This is done by marking a function with keyword suspend. This allows to
write asynchronous code in a synchronous way, meaning the resulting code
is easy to read and understand, and developers do not need to change their
programming style unlike with reactive streams.

Each coroutine has its context, including a dispatcher, which helps decide
on which thread a coroutine should be executed. There exist special dispatch-
ers optimized for Input/output (IO) or computationally intensive tasks.

26

3.1. Android implementation

3.1.5 Image storage

Following the analysis, it is necessary for the application to store images in a
cloud. There are multiple options of how to do that. One of the options is
Firebase Cloudstore [9], a service provided by Google, which offers cloud file
storage with an SDK that is easy to use. Firebase SDK has to be integrated
into the application regardless of this decision because its other services such
as Crashlytics3 are used in the application.

Another product that could be used is AWS S3 [10], which is integrated
into Amplify SDK, already used within the project.

Looking at the options, we can see that they are completely equivalent in
both features and usage. However, having previous experience with Firebase
Cloudstore, I have decided to choose it.

3.1.6 Libraries

A number of libraries were used to simplify the development. The most notable
of them are described below.

3.1.6.1 Navigation

As described in subsection 2.4.3, the main UI components on Android are
Activity and Fragment. Currently, the recommended approach to creating an
application by Google is to use a single Activity and represent different screens
using Fragments. This is supported by the Navigation component [4] library,
which handles complex navigation, arguments, and deep links. Each screen
is called a destination, and possible navigation directions and arguments are
described using navigation graphs.

3.1.6.2 Hilt

In modern application development, it is crucial to use dependency injection
(DI), preferably an automatic one, using a library. One of the existing DI
libraries for Android is called Hilt [4], and it is recommended by Google. Hilt
was built over an older library, Dagger, with the goal of simplifying the Dagger
infrastructure, improving readability, and offering better integration with the
Android framework.

The key component of Hilt is a module. A module is a collection of bind-
ings, each one of them defines how to create a dependency of a certain type.
Those definitions are later used by Hilt for automatic injection. Each mod-
ule has to be installed in a certain component, which defines which Android
components it will be used in. A binding can have a scope, which determines
when a certain dependency is created and destroyed, and how many instances

3A service for tracking application’s crashes in production.

27

3. Implementation

of it can exist. A notable scope is Singleton, which allows only 1 instance of
a given dependency.

3.1.6.3 Retrofit

Retrofit [11] is a type-safe HTTP client, which supports all HTTP methods
and handles such things as parsing of requests and responses into data objects
(using a JSON parser called Moshi). All requests are defined as methods of
an interface, the implementation of which is generated by Retrofit and can
be called like usual Kotlin functions. In addition to this, it natively supports
suspending functions, which makes making network calls very easy.

3.1.6.4 Firebase

As already mentioned in subsection 3.1.5, Firebase needs to be integrated into
the project for multiple purposes.

One of the purposes is to upload and retrieve users’ images. The SDK
of Firebase makes the process very easy by providing Kotlin functions and
support for coroutines.

The second goal of this library is to enable Crashlytics [12], a service that
helps track crashes in production. A crash report, which is generated and
sent to Firebase’s servers, includes helpful information such as the Android
OS version, device name, and a stack trace, which helps identify the cause of
the issue and later fix it.

3.1.7 Layers

The application follows the architecture which was introduced during the de-
sign and is split into layers accordingly.

The UI layer uses the MVVM architecture. The View-Models depend on
domain and data layer only, those dependencies are injected using Hilt.

The Domain layer consists of classes that represent specific use cases, and
are only used where more complex business logic is present. To give an exam-
ple, the class “SearchTripsUseCase” has a single public method that provides
the logic of filtering a list of trips based on a search query.

The Data layer consists of classes that provide data from various sources
such as SDK-s, API-s, and local storage.

3.2 Server implementation

3.2.1 Server framework

When choosing the framework for developing the back end side, I have formu-
lated the following criteria:

28

3.2. Server implementation

1. It has to support Kotlin as a development language in order to develop
the whole system, including server and client, using one language.

2. The framework has to have a rich selection of libraries, including de-
pendency injection and security, which will decrease the development
time.

After researching available options, I have selected 2 possible candidates:
a well-known framework called Spring, and a completely new product called
Ktor.

3.2.2 Spring

Spring Framework is very popular for developing Java applications. One of its
purposes is to simplify the development of servers. Being first released in 2004
[13], it offers a lot of pre-made solutions for most of the common problems
such as security, dependency injection, and testing. However, this can also be
a disadvantage, as the whole framework is extremely big and therefore is hard
to fully learn.

Advantages:

• Mature framework with ready solutions for most problems

• Kotlin support

• Big community

Disadvantages:

• Massive code base which is hard to learn

• Although Kotlin is supported, Spring is Java-first. As a result, it does
not utilize the advantages of Kotlin’s syntax and lacks support for fea-
tures such as coroutines

3.2.3 Ktor

Ktor is a new framework for creating servers that, at the time of writing, is in
active development. It was created as Kotlin first and utilizes all the modern
features of this language such as concise syntax and coroutines. On the other
hand, being completely new, the number of available plugins and libraries is
smaller, and some problems may not have a solution by the framework.

29

3. Implementation

Advantages:

• Young, Kotlin-first framework with modern design

• Lightweight, relatively easy to learn

Disadvantages:

• Framework’s active development may introduce a lot of breaking changes
in later versions

• Relatively small community

• Not all use cases may be supported

3.2.4 Final decision

As shown above, both frameworks have their advantages and disadvantages.
Spring offers the benefits of a very mature product, whereas Ktor is new and
modern. For the development of the application described in this thesis, I
have decided that possibility of implementing all the common use cases with
the usage of framework tools is more important, so I have chosen to work with
Spring.

3.2.5 Libraries

Similar to the client, some external libraries were used during the development,
they are described below.

3.2.5.1 Spring Boot

Spring Boot is the framework that was used to develop the server. It in-
cludes multiple modules, such as starter, which provides the core features
of Spring Boot, security, which handles authentication of users, and Jakarta
Persistence (JPA) module used to connect and work with databases. Another
notable module is called the actuator. It automatically creates utility end-
points, which can be used to get information about the state of the server.
One of the most important ones is the “health” endpoint, which does not re-
quire any authorization, and returns HTTP code 200 when the server is up.
This endpoint must be present in order for the cloud provider to know that
server is successfully running.

3.2.5.2 Auth0

The authorization is done using JSON Web Tokens (JWT), which are issued
by the account management service of AWS. The signature on the tokens is
validated by the server using the public keys. As a result, it was necessary to

30

3.3. Deployment

add libraries to work with those tokens. The first of these libraries is Auth0
Java-JWT, which allows to parse and validate the signature on the given
token. The second one is Auth0 JWKS-RSA, which simplifies the fetching of
public keys from Cognito, using which the signature is verified.

3.2.5.3 MockK

MockK is a mocking library used for writing unit tests. Typically, a different
and older library called Mockito is used, however, MockK was specifically
designed to work with Kotlin, and therefore features better syntax and easier
usage.

3.2.6 Project structure

The server was developed using the architecture specified during the design,
with the presentation, domain, and data layers.

The project is split into feature-packages, meaning each sub-package con-
tains code related to a specific feature. Those sub-packages are structured
with a separation-by-layers approach. This allows to find the necessary classes
quickly and keeps the structure clean.

3.3 Deployment

3.3.1 Cloud infrastructure

In order to deploy the server into the production environment, a cloud infras-
tructure needed to be configured. To visualize it, I have created a diagram
which is shown in Figure 3.1. It mostly follows the design architecture with a
couple of new services.

One of them is the load balancer, which acts as an intermediary between
a user and a server. Since the environment where the server is hosted can be
scaled by running multiple instances of the server, a load balancer is needed
to distribute the incoming requests between those instances.

The second new service is Route 53, which acts as a Domain Name System
(DNS) server. The reason why DNS is needed is described in the subsection
3.3.4.

3.3.2 AWS Cognito

This paragraph is based on [14]
Cognito is an identity management solution provided by AWS. It stores

user profiles in so-called “user pools” and provides all features that are neces-
sary for modern applications with user profiles such as registration with email
verification using a verification link, multi-factor authentication, and secure
password recovery.

31

3. Implementation

Figure 3.1: Cloud infrastructure

In order to work with Cognito, I have created and configured a user pool
according to the requirements and use cases. To fulfill the use case UC1,
which mentions that only verified users can log in, I have enabled verification
of users by verification link, which they receive in their email after registering.
In addition to this, to implement UC3, which requests the user to verify
themselves as the email owner, I have configured Cognito to send a security
code to the user’s email. The user then needs to enter it in the application in
order to set the new password.

3.3.3 AWS RDS

This paragraph is based on [15]
Next, a database of the project has to be set up. Fortunately, a service

called RDS (Relational Database Service) is available on AWS. It is a fully
managed cloud database that is extremely easy to set up, operate and scale. It
supports various database engines such as MySQL, Oracle, and PostgreSQL,
although only the MySQL engine is included in the free tier plan of AWS
usage, so that is the one I have chosen.

I have configured the database to automatically create snapshots of itself
every day, with those snapshots being stored for 10 days. This ensures the
safety of users’ data even in case of database corruption by allowing restoration
of the data from the snapshot.

32

3.3. Deployment

3.3.4 Secure communication

By this point, the communication between the server and the client was done
via the insecure HTTP protocol, which is suitable for development purposes
but has to be changed before deployment to avoid exposing user data in un-
encrypted format.

In order to make the communication secure, Hypertext Transfer Protocol
Secure (HTTPS) needs to be configured and used. To do that, it is necessary
to get a Secure Sockets Layer (SSL) certificate issued for the domain name
that is used by the server. Since it is not possible to issue such a certificate
for a domain provided by AWS, I had to purchase my own domain name.

After the domain was purchased, the DNS had to be configured to forward
users to the server’s location. For this purpose, Route 53 was used. First, I
have configured my domain to use the name servers of AWS, and after that,
I have set up Route 53 to route traffic to my server.

As the last step, an SSL certificate had to be issued. This is possible
to do directly through AWS, using a service Certificate Manager. Once the
certificate was issued, I assigned it to the load balancer. The communication
between the balancer and the server is then done via HTTP, which happens
inside the AWS infrastructure and thus is secure even without encryption.

3.3.5 Android deployment

Since the application is not publicly distributed yet, the deployment is done
by creating an installation package and distributing it manually. Through a
Gradle script, I have configured the build process of the installation package,
called Android Package (APK). I have set the “versionCode”, which is a num-
ber that represents the current version of the application, to use the size of the
git log (the total amount of commits), which ensures that the version automat-
ically increases with each new commit. The “versionName” parameter, which
is a human-readable name of the version, is set and updated manually when
preparing a new release. I have also set up the name of the produced pack-
age to include the name of the application, the version code, and the version
name, which allows testers to easily identify the version they are using.

The APK is assembled by running a Gradle task. There are 2 versions of
the application that could be built:

Debug Such a version is meant for development purposes. The resulting
application allows to use a debugger to debug itself, prints logs into the
console, skips optimization steps during the build, and is not signed.

Release This version is ready for release. It is optimized, its resources are
shrunk and code is obfuscated to prevent reverse-engineering. In addi-
tion to this, the resulting APK file is signed with a private key, which
prevents unauthorized updates of the application by unknown parties.

33

Chapter 4
Testing

This chapter describes the process of testing the implemented system.

4.1 Unit tests

To verify that the code works as expected on the lowest level, unit tests are
used. When writing such tests, a class is isolated, its dependencies are mocked,
and the behavior of each method is checked, including boundary cases. Such
an approach allows to ensure that components work correctly in isolation,
however, this does not verify the correctness of interaction between those
parts.

In the server, the unit tests cover the domain layer. The implementation of
the presentation and data layers heavily relies on the external libraries, which
are tested by their creators, and does not contain any business logic. They
were tested manually during the process of development.

In the client, the domain layer and all the ViewModels are covered by unit
tests, which verify all the business logic of the application. The proper work
of the UI and the data layer was tested manually.

4.2 User tests

Finally, to verify how real people would interact with the client and to find
possible problems and future improvements, I have conducted user tests. I
have selected users from people who, in my opinion, would be interested in
using the application. I also tried to choose testers with different backgrounds
and experiences in using Android devices to get feedback from various per-
spectives.

When performing a test, I gave a user a phone with the installed appli-
cation, account credentials, and a test scenario with actions that they had
to complete. The provided account was set up beforehand with testing data.

35

4. Testing

During the test I observed the user and did not interfere, to simulate a real
user experience. The scenario was designed to cover all the common use cases
and is shown below.

1. Open the application and log in using the provided credentials.

2. Try to update the picture of your profile and change your name.

3. Try to create a post.

4. Try to find a trip you could join, imagine you want to provide a boat.
Request to join this trip.

5. Open your trip where you are the owner. Review and reject the pending
join request, imagine you want to allow the person to send new requests.

6. Try to create a trip.

After the user was done with the scenario, I have asked these control
questions:

1. Was it easy to navigate through the application and find where to com-
plete the requested actions?

2. Did all UI elements behave as you would expect, was there anything
confusing?

3. What were the 2 things in your experience that you liked the most?

4. What were the 2 things in your experience that you did not like?

The purpose of the first two questions was to evaluate the implemented
design and find any possible flaws in it. The last two questions are product-
oriented and are designed to detect what users value the most in the created
product, and what they think is wrong with it.

The results of the testing were the following:

User 1

1. I was able to find all the requested actions, however, the structure of the
application is somewhat unclear. I would expect to be able to create a
trip from the “My trips” screen.

2. Yes, the behavior of the elements was predictable.

3. Clean design and good responsiveness.

4. Only the structure, which was unclear in some places.

36

4.3. Future improvements

User 2

1. Most of the actions were clear, however, I had trouble finding how to
create a post. Also, I was missing the ability to create trips from “My
trips”.

2. Yes, I did not see anything confusing.

3. The idea of the application, a big number of features.

4. The user experience (UX) could be improved. In some places, the design
could be better as well.

User 3

1. Mostly yes, but I think it could be improved.

2. Yes, the behavior is standard for Android.

3. Features of the application, design.

4. The lack of a way to communicate through the application. Also, there
is space for improvements in the UX.

As seen from the experience of these users, the UX of the application could
be improved by bringing a more clear structure, and it would be my highest
priority for future improvements. A good thing to note is that all of the
users were able to complete the requested actions, which means that even in
its current form the application is usable, and the detected problems can be
solved gradually, with more feedback coming from the users.

2 users mentioned that they lack the ability to create a trip from the “My
trips” screen, and 1 user complained that it was hard for them to create a
post. Based on this feedback, I have added the requested button to the “My
trips” screen and a button to create a post from the home screen.

4.3 Future improvements

Based on the testing, there is space for future improvements. They include:

UX As discovered during the testing, the structure of the application can be
unclear. Therefore, it could be improved by conducting more user tests
and discovering which UI and UX would meet users’ expectations and
needs best.

37

4. Testing

In-app communication For now, the suggested way for users to commu-
nicate is to use an external service such as social media or a chat. As
mentioned by a tester, it would be beneficial to instead have an in-app
way for users to communicate with each other as it would keep the user
from leaving the application, thus improving retention.

38

Conclusion

The goal of this thesis was to develop a system that would help people find
co-travelers with support for equipment requirements and posts. The accom-
plishment of this goal started by analyzing the existing solutions and formu-
lating detailed requirements and use cases.

After that, based on the analysis, the application was designed. That
included a specification of the architecture of the client, server, and system
as a whole. The architectures were created with best practices and modern
approaches in mind.

Following the design, the system was implemented with the use of suitable
libraries. All analyzed requirements and use cases, such as user authentication,
creating trips, and searching for trips based on requirements and posts, were
successfully implemented. An advanced setup on AWS was performed in order
to ensure that the server is scalable and to allow secure communication over
HTTPS.

Lastly, the correctness and usability of the final product were tested by
automatic and user testing. The result showed that the application mostly
worked as expected, with the biggest concern being UX issues, which would
be the priority during future development. In addition to this, there are
possible technical improvements that were skipped during the development
due to lower priority, but could be done in the future:

Paging Currently, the data returned by the server is not paged. At this stage
of the project, it is not a big issue, however, it will become a problem
with a growing number of users. Specifically, a list of posts and trips
should use paging.

Error codes Since there are few cases where a logical error can be returned,
the implemented server does not have specific HTTP error codes defined
for the REST API and generic errors are used instead. Therefore, the
client is only able to display that a request failed, without giving a
specific reason. With the future growth of the system, more possible

39

Conclusion

errors will appear, and it will be necessary to handle them by returning
pre-defined error codes.

40

Bibliography

[1] Swagger. Best Practices in API Design. [cit. 2022-04-25]. Available
from: https://swagger.io/resources/articles/best-practices-
in-api-design/

[2] Wickramasinghe, S. AWS vs Azure vs GCP: Comparing The Big 3 Cloud
Platforms. Oct 2021. Available from: https://www.bmc.com/blogs/aws-
vs-azure-vs-google-cloud-platforms/

[3] Li, A. Android 11 on nearly a quarter of all devices, but it’s not the
most used version of Google’s OS. Nov 2021. Available from: https://
9to5google.com/2021/11/22/android-2021-distribution-numbers/

[4] Google. Android Developers. [cit. 2022-04-25]. Available from: https:
//developer.android.com/

[5] JetBrains. Kotlin Programming Language. [cit. 2022-04-25]. Available
from: https://kotlinlang.org/

[6] Gradle. What is Gradle? [cit. 2022-04-25]. Available from: https://
docs.gradle.org/current/userguide/what_is_gradle.html

[7] Beams, C. Kotlin Meets Gradle. May 2016. Available from: https://
blog.gradle.org/kotlin-meets-gradle

[8] Beryukhov, A. Modularization of Android Applications in 2021. Feb
2021. Available from: https://proandroiddev.com/modularization-
of-android-applications-in-2021-a79a590d5e5b

[9] Google. Cloud Firestore. [cit. 2022-04-25]. Available from: https://
firebase.google.com/docs/firestore

[10] AWS. Amazon S3. [cit. 2022-04-25]. Available from: https://
aws.amazon.com/s3/

41

https://swagger.io/resources/articles/best-practices-in-api-design/
https://swagger.io/resources/articles/best-practices-in-api-design/
https://www.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://www.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://9to5google.com/2021/11/22/android-2021-distribution-numbers/
https://9to5google.com/2021/11/22/android-2021-distribution-numbers/
https://developer.android.com/
https://developer.android.com/
https://kotlinlang.org/
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://blog.gradle.org/kotlin-meets-gradle
https://blog.gradle.org/kotlin-meets-gradle
https://proandroiddev.com/modularization-of-android-applications-in-2021-a79a590d5e5b
https://proandroiddev.com/modularization-of-android-applications-in-2021-a79a590d5e5b
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Bibliography

[11] Square. Retrofit Introduction. [cit. 2022-04-25]. Available from: https:
//square.github.io/retrofit/

[12] Google. Firebase Crashlytics. [cit. 2022-04-25]. Available from: https:
//firebase.google.com/docs/crashlytics

[13] Risberg, T. Spring Framework 1.0 Final Released. Mar 2004. Available
from: https://spring.io/blog/2004/03/24/spring-framework-1-0-
final-released

[14] AWS. Amazon Cognito. [cit. 2022-04-25]. Available from: https://
aws.amazon.com/cognito/

[15] AWS. Amazon RDS. [cit. 2022-04-25]. Available from: https://
aws.amazon.com/rds/

42

https://square.github.io/retrofit/
https://square.github.io/retrofit/
https://firebase.google.com/docs/crashlytics
https://firebase.google.com/docs/crashlytics
https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released
https://spring.io/blog/2004/03/24/spring-framework-1-0-final-released
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/

Appendix A
Acronyms

API Application Programming Interface

APK Android Package

AWS Amazon Web Services

DI Dependency Injection

DNS Domain Name System

DSL Domain-specific Language

GCP Google Cloud Platform

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identification

IDE Integrated Development Environment

JDBC Java Database Connectivity

JPA Jakarta Persistence

JSON JavaScript Object Notation

JWKS JSON Web Key Set

JWT JSON Web Token

MVVM Model–view–viewmodel

OS Operating System

RDS Relational Database Service

43

A. Acronyms

REST Representational State Transfer

RSA Rivest–Shamir–Adlema

SDK Software Development Kit

SQL Structured Query Language

SSL Secure Sockets Layer

UI User Interface

UX User Experience

44

Appendix B
Contents of enclosed CD

exe......................................the directory with executables
TravelMates-Server-v1.0.jar executable of the server
TravelMates-v1.0.apk........installation package of the application

implementation........................source codes of implementation
travelmates-client.............source code of Android application
travelmates-server.......................source code of the server

thesis..the thesis text directory
thesis-sources source code of the thesis
thesis.pdf...........................the thesis text in PDF format

45

	Introduction
	Analysis
	Requirements
	Functional requirements
	Non-functional requirements

	Existing solutions
	JoinMyTrip
	BeATravelBuddy
	Meetup

	Use cases
	General use cases
	Trip use cases
	Summary

	Domain model

	Design
	Wireframes
	API design
	System architecture
	Account management
	Cloud providers
	Final architecture

	Android design
	Android minimum version
	Application architecture
	Android components
	UI layer

	Server design
	Architecture

	Implementation
	Android implementation
	Programming language
	Kotlin DSL
	Modularization
	Coroutines
	Image storage
	Libraries
	Navigation
	Hilt
	Retrofit
	Firebase

	Layers

	Server implementation
	Server framework
	Spring
	Ktor
	Final decision
	Libraries
	Spring Boot
	Auth0
	MockK

	Project structure

	Deployment
	Cloud infrastructure
	AWS Cognito
	AWS RDS
	Secure communication
	Android deployment

	Testing
	Unit tests
	User tests
	Future improvements

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

