
Instructions

Goal of the thesis is to analyse video records from crossing-pedestrian-flows experiments conducted

at FNSPE in 2014. The focus is on extraction of pedestrian trajectories and participants identification

(each participant was equipped by contrast hat with unique binary code).

1. Perform research of appropriate tools for trajectory extraction (multiple object tracking, binary

codes detection).

2. Explore the applicability of found tools for analysis of provided video records, using appropriate

tools extract trajectories and participants' IDs.

3. Suggest and implement algorithm for detection and completion of incomplete trajectories.

4. Compare obtained data with results from Bamberger et al. (2015) using appropriate pedestrian flow

characteristics.

J. Bamberger et al. (2015) Crowd Research at School: Crossing Flows. Traffic and Granular Flow '13.

Springer, Cham.

Electronically approved by Ing. Karel Klouda, Ph.D. on 14 December 2021 in Prague.

Assignment of bachelor’s thesis

Title: Crossing pedestrian flows – analysis of video records from experiments

Student: Anna Sajdoková

Supervisor: Ing. Pavel Hrabák, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

CROSSING PEDESTRIAN
FLOWS – ANALYSIS OF
VIDEO RECORDS FROM
EXPERIMENTS

Anna Sajdoková

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Pavel Hrabák, Ph.D.
May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Anna Sajdoková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Sajdoková Anna. Crossing Pedestrian Flows – Analysis of Video Records from Ex-
periments. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

Abbreviations list x

Introduction 1

1 Pedestrian Dynamics 3
1.1 Observables . 3
1.2 Fundamental Diagram . 5
1.3 Self-organization Phenomena . 6

2 Multiple Object Tracking 7
2.1 Task Description . 7
2.2 Principle . 7
2.3 Centroid Tracking . 8

3 Image processing 11
3.1 Image Processing Methods . 11

3.1.1 Camera Calibration . 11
3.1.2 Filters . 12
3.1.3 Morphological Operations . 12
3.1.4 Background Subtraction . 12
3.1.5 Segmentation . 13

3.2 Neural Networks . 15
3.2.1 Brief Introduction . 15
3.2.2 Training . 16
3.2.3 Convolutional Neural Networks . 16

4 Analysis 19
4.1 CTU FNSPE Experiment Setup . 19
4.2 Pedestrian Tracking in context of

Pedestrian Dynamics . 20
4.2.1 PeTrack . 20
4.2.2 Bamberger et al. Experiment . 21
4.2.3 Hatless Pedestrian MOT . 22

5 Model Design 23
5.1 Model Overview . 23
5.2 Preprocessing . 24

5.2.1 Area of Interest . 24

iii

iv Contents

5.2.2 Undistort Image . 24
5.2.3 Background Subtraction . 24

5.3 Object Detection . 25
5.4 Multiple Object Tracking . 27
5.5 Binary Codes Classification . 27

5.5.1 Naive approach - Estimation by Location 27
5.5.2 Improved Approach - Estimation with Contours of Binary Code 27
5.5.3 CNN Approach . 28
5.5.4 Binary Codes Classification Methods Results 30
5.5.5 Dead-ends . 31

5.6 Completion of Incomplete Trajectories . 31

6 Results 33
6.1 Data Analysis . 33
6.2 Comparison with State of the Art . 35
6.3 Improvements . 37

7 Disscusion 39
7.1 Recommendations for Future Experiments . 40

Conclusion 41

Content of Attached Medium 47

List of Figures

1.1 Example of trajectories . 5
1.2 SFPE curve . 6
1.3 Line formation . 6

2.1 MOT Principle . 7
2.2 Diagram centroid tracking update function . 9

3.1 Distorsion types . 11
3.2 Background substraction principle. 13
3.3 HSV color picker . 13
3.4 Watershed segmentation process . 14
3.5 Network layers . 15
3.6 Convolution . 17

4.1 Experiment setup . 19
4.2 Hat used in experiment . 20
4.3 BaSiGo D fundamental diagram . 21
4.4 Bamberger et al. fundamental diagram . 22

5.1 Model pipeline . 23
5.2 Area of interest . 24
5.3 Distortion on the dataset . 25
5.4 Background subtraction . 25
5.5 Example of segmented hats . 26
5.6 Division of the hats by watershed segmentation. 26
5.7 Estimation of centers . 27
5.8 Hats vs artificial augmented hats . 30
5.9 Tracks visualisation with detected hat binary codes 31
5.10 Track completion visualisation . 31
5.11 Example of completed trajectories . 32

6.1 Tracks visualisation . 33
6.2 Histogram for velocity . 34
6.3 Histogram for average track speed . 35
6.4 Histogram for density . 35
6.5 Fundamental diagram . 36
6.6 Standard fundamental diagram . 36
6.7 Petrack result on the crossing flows footage . 37

v

vi List of Tables

List of Tables

4.1 PeTrack experiments . 21

5.1 Undistorsion coefficients . 25
5.2 CNN model summary . 29
5.3 Model evaluation . 30

6.1 Observables overview . 33

I would like to thank my supervisor Ing. Pavel Hrabák Ph.D. for
his time, patience, and invaluable advice in the field of pedestrian
dynamics. I also express my appreciation to Ing. Jakub Novák for
his valuable remarks. Finally, I wish to thank my family and friends
for all their support. I would like to name David Horský and Lukáš
Rynt.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46 (6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and all
corresponding documentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit
purposes only, in any way that does not detract from its value. This authorization is not limited
in terms of time, location and quantity.

In Prague on May 12, 2022 .

viii

Abstract

The thesis focuses on processing and analysis of a video record from crossing pedestrian flows
experiment conducted at CTU FNSPE in 2014. The result is an algorithm for automatic extrac-
tion of trajectories from this video. Pedestrians in the video had special hats for recognition.
The tracking of people is based on hats detection from video frames. Track identity association
is done using the shortest distance. When tracking, it can happen that part of the trajectory is
missing. The missing parts are approximated by a line segment. Next aim is to recognize binary
code from hats. With usage of a convolutional neural network 45% accuracy was achieved on
20 randomly picked hat samples. The outcome of the thesis is a dataset of trajectories and its
analysis using pedestrian flow characteristics (average speed, velocity, density, and fundamental
diagram).

Keywords pedestrian dynamics, crowd dynamics, pedestrian crossing flows, pedestrian flow,
fundamental diagram, multiple object tracking, image processing

Abstrakt

Práce se soustřed́ı na analýzu a zpracováńı videozáznamu experimentu kř́ıžeńı chodc̊u poř́ızeného
na ČVUT FJFI v roce 2014. Výsledkem je algoritmus na automatickou extrakci trajektoríı
chodc̊u z tohoto videa. Chodci na sobě měli speciálńı čepičky pro rozpoznáńı. Sledováńı osob je
založeno na detekci čepiček z jednotlivých sńımk̊u videa. Asociace detekćı identitám je provedena
pomoćı nejmenš́ıch vzdálenost́ı. U sledovaćıch algoritmů se může stát, že se trajektorie ztrat́ı.
Tyto lokace jsou aproximovány úsečkou. Daľśı část́ı je rozpoznáńı kódu z čepiček. Konvolučńı
neuronová śıt’ detekovala správně 45% čepiček na náhodném vzorku 20 čepiček. Výstupem práce
je dataset trajektoríı a analýza pohybu chodc̊u (pr̊uměrná rychlost, rychlost a fundamentálńı
diagram).

Kĺıčová slova pohyb chodc̊u, dynamika davu, kř́ıžeńı chodc̊u, proud chodc̊u, fundamentálńı
diagram, sledováńı v́ıce objekt̊u, zpracováńı obrazu

ix

Abbreviations list

BFS Breadth-first search
BI-VZD Data mining course at CTU FIT
CNN Convolutional neural network
CTU Czech Technical University in Prague
DNN Deep neural network
FIT Czech Technical University in Prague, Faculty of Information Technology
FNSPE Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering
MOT Multiple object tracking
NN Neural network

x

Introduction

The thesis presents a computer vision model for extracting pedestrian trajectories from the
crossing pedestrian flow experiment that was carried out in CTU FNSPE in 2014. The aim is to
automatically obtain the pedestrian trajectories from this experiment. The aim is not to build
robust software that would handle all experiments of this type.

The crossing flows experiment is inspired by Bamberger et al. [1]. They organized an exper-
iment in a German school. In their work, they analyze the crossing area with pedestrian flow
characteristics and attempt to investigate whether the phenomenon of self-organization (e.g. line
formation) appears. Future experiments could further support or diminish the ideas. Neverthe-
less, the aim of the thesis is not to perform a thorough analysis.

Motivation
It is important to research pedestrian traffic. The knowledge obtained can be used e.g. in
pedestrian traffic simulators. Precise traffic simulation is crucial to make evacuations safer and
faster. Today, traffic modeling tools are widely adopted in the building design process [2], where
performance-based design is applied.

The video from pedestrian crossing flows experiment (described in Section 4.1) was not pro-
cessed by anyone yet. Extensive analysis of the dataset can increase the knowledge of pedestrian
crossing flows.

1

2 Introduction

Chapter 1

Pedestrian Dynamics

Modeling traffic is a broad area of research. Biologists model the movement of cells. Physicists
look at particles. In recent years, research on self-driving cars, such as modeling vehicular traffic
and tracking vehicles, has gained a lot of attention. The movement of pedestrians is also a kind
of transport in complex system.

The chapter introduces concepts in pedestrian dynamics with focus on explaining observables
in pedestrian traffic, such as density, velocity, and flow. More detailed information on pedestrian
dynamics can be found in a book called Stochastic Transport in Complex Systems [3]. Further
reading about methods for measuring pedestrian observables can be found in an article by Steffen
et al. [4]. Both sources are the foundation for the following information.

Traffic models differ greatly depending on the objects modeled. There are rules that the model
must follow. They are strongly connected to the nature of the tracked object. For example, in
vehicular traffic, vehicle movement is restricted by road, speed limits, light signs, and traffic
rules. Interactions with the closest cars are the most important. The vehicular traffic is modeled
in one-dimensional or quasi-one-dimensional space.

Pedestrian traffic is specific by its complexity [3]. The speed of walking differs depending on
motivation (rushing to work versus shopping for groceries). It is not clear which interactions are
the most important. Cars only travel on roads; pedestrians are much less space constrained and
their movement needs to be modeled in two dimensions.

1.1 Observables

Observables in pedestrian dynamics are divided into microscopic and macroscopic. Microscopic
variables describe an individual pedestrian (e.g. pedestrian position, individual velocity, and
acceleration). Macroscopic variables describe the movement of groups of pedestrians. The most
used are velocity, density, and flow.

Flow
Flow is a physical quantity. In general, it measures how many units of mass flow through the
investigated area per unit of time.

Flow J , in the context of pedestrian dynamics, is the number of pedestrians N crossing
a specified location per time interval T . That is expressed in the following equation:

J = N

T
(1.1)

3

4 Pedestrian Dynamics

How to calculate the flow? Let us record all the times a pedestrian crosses the location. The
flow can then be calculated from the time gaps △ti = ti+1 − ti of two consecutive pedestrians i
and i + 1:

J = 1
⟨△ti⟩

, ⟨△ti⟩ = 1
N

N∑
i=1

(ti+1 − ti) (1.2)

where ⟨△ti⟩ is understood as mean value of time gaps between pedestrians.

Density
Density ρ is estimated by the number of pedestrians N per some specified area A:

ρ = N

A
(1.3)

The uncertainty is in determining the area A. There are two approaches for measuring the
observable [4]:

On fixed location during a given period of time ⟨τn, τn+1⟩, then average values over the period
of time. Repeat for ⟨τn+1, τn+2⟩. . . .

In fixed time τt on a given section ⟨xA, xB⟩, then average values in this section. Repeat for
τt+1

Although the two options appear similar, the number of pedestrians included in an area may
differ.

Velocity
Individual velocity v⃗i(t) of a pedestrian i at a time t is the time derivative of their position.

v⃗i(t) = d

dt
x⃗(t) (1.4)

It can be estimated as the rate of change in position on a small interval △t around t.

v⃗△t,i(t) = x⃗(t +△t/2)− x⃗(t−△t/2)
△t

(1.5)

Other possible calculation of individual velocity:

v⃗△t,i(t) = x⃗(t)− x⃗(t−△t/2)
△t/2 (1.6)

Note that velocity is a vector and speed s is the norm of velocity ||v⃗|| = s.
When dealing with a group of pedestrians, individual velocity is averaged either over time or

space. The space mean velocity is defined as it is further used.
Space mean velocity vA of pedestrians at a fixed time t in a specified area A is the

aritmethic mean of the individual velocities v⃗1, v⃗2, . . . , v⃗n at t:

vA = 1
N

N∑
i=1

vi(t) (1.7)

Fundamental Diagram 5

Trajectory
As obtaining trajectories is the main focus of this thesis, what trajectories are is also explained.
Intuitively, the trajectory is the path that an object follows through space as a function of time.

Trajectory xα(t) of a pedestrian α are all locations of the pedestrian during a given period
of time.

xα(t) = [x(1)
α , x(2)

α](t) (1.8)

Time is understood to be discrete t ∈ {t0 + n△t}. In this thesis △t = 5/47 s as the frame
rate of the video is 47 frames per second and every fifth frame is processed.

Figure 1.1 Exemplary trajectories observed in the PeTrack experiments in Jülich [5]. Further infor-
mation about PeTrack can be found in Section 4.2.1

1.2 Fundamental Diagram
Fundamental diagram connects density, velocity, and flow. It is clear that these variables are
connected. For example, people on a crowded street move much slower than those on empty
streets because the movement is slowed down by the crowd. There are multiple equivalent forms
of the fundamental diagram [6]:

velocity-density v(ρ)

flow-density J(ρ)

flow-velocity v(J)

These variables are connencted via fundamental relation of pedestrian flow [7]:

J = ρv (1.9)

This relation allows to choose any representation mentioned. The fundamental diagram quantifies
the capacity of pedestrian facilities and thus can be used e.g. for the rating of escape routes.

In this thesis, a fundamental diagram will be modeled by the relation velocity as a func-
tion of density. As it is relatively easy to construct from camera recordings.

6 Pedestrian Dynamics

Figure 1.2 The relation of velocity and density is sometimes standardized in programs modeling
pedestrian traffic. This standardization is called SFPE curve. The figure shows such standardization
in Pathfinder [8], an agent-based pedestrian flow simulation software. Pathfinder has two modes [9] –
Steering and SFPE. In the SFPE mode Pathfinder looks at the SFPE curve and based on the density
finds appropriate velocity. It moves pedestrian with this velocity and resolves collision later.

1.3 Self-organization Phenomena
Self-organization, also called spontaneous order, is a process where some form of order emerges
after interactions between the examined objects in a initially disordered system. An example
of self-organization phenomena that might emerge in the pedestrian crossing experiment is for-
mation of lines. Another might be the observation of diades (a pair of persons walking in close
distance) and triades (three persons walking near each other).

Figure 1.3 Line formation as shown in an article by Bamberger et al. [1].

Chapter 2

Multiple Object Tracking

Multiple object tracking (MOT) is an essential building block of a wide range of applications. It
is used in fields such as human tracking [10, 11, 12], autonomous driving [13, 14], and biology
(tracking ants [15], cells [16, 17], or fish [18]).

The chapter provides an introduction to MOT. The main resource is a summary article called
Multiple object tracking: A literature review [19]. Pedestrian trajectories are obtained with MOT
algorithm called centroid tracking in Subsection 5.4. The centroid tracking algorithm is located
in this chapter in Subsection 2.3.

2.1 Task Description
MOT is a task in which the objective is to estimate the positions of multiple variables. Typically,
it is an estimation of trajectories for objects of interest in video sequences.

There is a MOT challenge website1 [20]. It concentrates benchmark datasets in one place.
Ground truth bounding boxes are not rotated in these datasets and this thesis task differs a lot,
due to the usage of hats. Therefore, the models trained on these datasets cannot be compared
with the model in this thesis.

2.2 Principle

Detection-based tracking is today a preferred paradigm for solving the MOT task [21].

Figure 2.1 Tracking by detection for a frame at time t. A detector detects objects from the frame.
Further such objects will be denoted as detections. Positions of before detected objects (from now on
just objects) is estimated. Objects and detections are associated, so the algorithm knows which detection
is part of which track. If the detection does not associate with any object a unique ID is created for it
(new track is created). Similarly if an object is not associated with any detection, the track is destructed.
Same principle can be applied to time t + 1.

1https://motchallenge.net/

7

8 Multiple Object Tracking

Detection
The performance of the MOT algorithm is highly dependent on a reliable and efficient object
detection. In most state of the art for pedestrian tracking the detection part is done by a neural
network [21]. Nevertheless, any traditional methods, such as finding contours by segmentation
or Hough’s transformation, can be used, too.

What detection algorithm to use depends on the amount of data, conditions in the tracked
area and the nature of the tracked object (shape, color, etc.). In places like laboratories, ware-
houses, or conveyor belts, the conditions (lighting, area of interest, weather, etc.) should be
constant. In this thesis, it can be chosen whether to use classical methods, neural networks, or
both. Under unstable conditions, neural networks have outperformed classical methods [22].

The output of detection part are the object bounding boxes in the current frame.

Estimation
The estimation of the object in the current frame is calculated from the previous locations of
the object. The simplest estimation is to keep the object in its place. Nevertheless, it is also
possible to look at past several frames and estimate some position using some more sophisticated
methods e.g. Kalman filters, central differences.

Association
Association step needs a metric to be able to associate objects with detections. There is a simple
metric, like the Euclidean distance, which assigns a minimal value to the pair of detection and
object that appears closest on the video. Nowadays, deep association metrics such as detection
feature are used. The final metric is often a combination of space and deep feature metrics.

Track identity creation and destruction
MOT is trying to be robust to oclusions. Because of that in some algorithms the object track
still exists even when no detection is associated with it in current frame. How long should be
the track remembered is stored in a variable DISSAPEARED MAX. When detection is not assigned
to track for DISSAPEARED MAX frames the track is destructed. For object that did not associate
with any track a track is created. Sometimes there is a trial period for track, where the track is
only counted in when the number of object in the track exceed certain limit. Trial period is not
used in this thesis as there is high reliability for detections of hats.

2.3 Centroid Tracking
A centroid tracking is a fundamental algorithm in MOT. The main idea is that it uses the
Euclidean distance between the centroids of existing objects and the centroids of objects currently
detected to associate between frames.

The algorithm relies on object detection in every frame. The tracker remembers object it saw,
where it was and how long ago. When the object disappears for more than MAX DISSAPEARED
tracks, it is deleted.

Diagram 2.2 shows the update function that is called for every frame. In each call, if the
detector did not detect any objects, just increase the disappeared counter for all objects and
return. If there are no objects remembered from the past frames, the algorithm needs to register
detections as new objects and return. If none of the above is true, then the distance matrix D is
computed between the detections and the objects. Then association is just picking up the minimal
values as shown in Algorithm 1. If the objects and detections do not have the same length, there
will be some leftovers. If those are detections, register them. If not (that means there are objects
that were not associated) increase disappeared counter for the objects unused in association step.

Centroid Tracking 9

Figure 2.2 Diagram of update function in centroid tracking algorithm. The function takes as input
detections made by a detector and objects. It updates the set of objects to correspond to the state on the
frame.

Algorithm 1 Centroid tracking association
1: procedure associate
2: D ← compute centroid distances(objects, detections)
3: rows← D.min(axis = 1).argsort() ▷ sort indexes based on smallest value in row
4: cols← D.argmin(axis = 1)[rows] ▷ find index of the smallest element in each col, sort

using rows index list
5: for row,col in rows,cols do
6: if row in used rows or col in used cols then
7: continue
8: end if
9: ID ← IDS[row]

10: object[ID]← detections[col]
11: used rows append row
12: used cols append col
13: end for
14: end procedure

10 Multiple Object Tracking

Chapter 3

Image processing

Computer vision is used for hats detection and the extraction of binary codes. First part of this
chapter introduces concepts used for traditional image processing. The main resource for this
chapter are The Scientist and Engineer’s Guide to Digital Signal Processing [23]. The second
part is about processing images by neural networks.

3.1 Image Processing Methods
Since the quality of information that comes out cannot be better than the quality of information
that comes in, image processing is vital. Images contain noise and unwanted distortions. This can
be suppressed by the right processing techniques. Image processing also helps enhance desired
features and suppress unwanted ones. The information below is used for preprocessing (Section
5.2), detection in centroid tracking (Section 5.3), and classification of the binary code on image
(Section 5.5).

3.1.1 Camera Calibration
Camera calibration is a technique for determining camera parameters. It is used to eliminate
image defects caused by the combination of camera and lens [24]. Camera calibration is most
frequently used to remove distortions. Distorsions are briefly introduced as they are evident in
the video footage and camera calibration coefficients were not preserved.

Distorsion

Figure 3.1 Radial distortions on a chessboard [25].

There are two types of distorsions [25]:

11

12 Image processing

radial: It causes straight lines to appear curved. The two types Barrel and Picushion are shown
in the Figure 3.1.

tangencial: It occurs due to imperfectly aligned lenses and imaging plane (they should be
parallel). So, some areas in the image may look nearer than expected.

3.1.2 Filters
A filter is a set of local transformations. It aims to suppress low or high frequencies in an
image. There are two types of filtration: in space and in frequency domain. This thesis uses only
filtration in space domain.

Median Filter
Median filter is a non-linear filtration in space, that replaces the value of given pixel with the
median of the neighbor pixels. The disadvantage of this filter is that it is time consuming because
it needs to sort the values to obtain the median. Advantages are that it is robust to outlier values
and it preserves edges.

3.1.3 Morphological Operations
Morphological operations are a way of obtaining knowledge from an image with usage of a struc-
tural element. The input is a binary or grayscale image and a structural element. During the
transformation the structural kernel is applied on every pixel.

There are four main morphological operations:

Dilation (⊕) assigns 1 to the pixel in the binary image, if at least one pixel marked with
structural element is equal to 1. In grayscale images, the pixel is assigned the maximal value
from the pixels value covered with structural element. In practice, that means it adds pixels
to object boundaries. Dilatation makes objects bigger.

Erosion (⊖) assigns 1 to the pixel in the binary image if all values of the pixels marked with the
structural element are equal to 1. In grayscale images, the pixel is assigned the minimal value
from the pixels values covered with structural element. In practice, it removes pixels from
the boundaries. After erosion objects are a bit thinner and smaller. It can help to remove
small lines and noise.

Opening (◦) first erodes the picture, then dilates. It helps to eliminate noise and still keep the
same size for the objects.

Closing (•) first dilates the picture, then erodes. This morphological operation helps, for in-
stance, to close gaps in objects. The holes are eliminated by dilation, erosion reconstructs
the objects to be the same shape and size.

3.1.4 Background Subtraction
When using a static camera to make a video stream, a foreground (moving objects) and back-
ground (static scene) can be determined. The approach is to see the difference between current
frame and a reference background frame, often called background model. This technique de-
tects any movement, so for instance weather conditions like rain can easily influence the output.
Example for an image and its background model is shown in Figure 3.2.

Image Processing Methods 13

Figure 3.2 Background substraction principle.

3.1.5 Segmentation
Segmentation divides the image into segments with the same properties. Usage would be e.g. to
split desired objects and background. The most used segmentation in this thesis is segmentation
with two tresholds.

Segmentation with Two Tresholds
This segmentation creates a binary mask. It takes an image and two tresholds as input. If the
pixel of input image lies in between of these given thresholds, then the pixel in mask is assigned
1 else 0.

HSV Segmentation
HSV segmentation is used to obtain areas of the image that have similar color.

HSV is a color model. To provide some examples of color models:

RGB: Stands for red, green, blue. It is the most used and well known.

HSV: Stands for hue, saturation and value (brightness). Most common current application is in
color selection tools like this color picker on image 3.3. It is also used for color segmentation,
as it is easier to write the thresholds than it would be for example in RGB.

Lab: Stands for lightness, a* is the red-green axis, b* is the blue-yellow axis. It covers the entire
range of human color perception.

CMYK: Stands for cyan, magenta, yellow, and key (black). It is used in color printing.

Figure 3.3 HSV color picker CTU blue is picked.

14 Image processing

Wathershed Segmentation
The idea behind the algorithm is that for images high intensity pixels can be viewed as peaks,
low intensity pixels as valleys. Start filling each valley with different colored water. When water
with different color meets a barrier is created between them. The water level rises until it floods
the entire area. Each water body is then a segment. The barriers determine the segmentation
result. Implementation of this algorithm and some more information can be found for instance
in Python image processing library called OpenCV [26].

Figure 3.4 Watershed segmentation process [27].

Neural Networks 15

3.2 Neural Networks

The section introduces neural networks. In this thesis, convolutional neural networks are used for
binary codes classification (Section 5.5) that were on the pedestrian hats. Main resource for this
section is a Deep learning book [28] from Ian Goodfellow et al. This thesis presumes knowledge
in range of CTU FIT subject called Data mining (BI-VZD) [29]. Nevertheless the main concepts
are briefly introduced. Then training and convolutional neural networks are described in more
detail.

3.2.1 Brief Introduction

Neuron

The basic unit in neural network (NN) is called a neuron. A neuron has n inputs edges with
weights w1, . . . , wn, a bias w0 and an activation function f . The neuron gets an input x1, . . . , xn.
The output y is calculated as the activation function applied to the weighted sum of inputs plus
bias:

y = f(
n∑

i=1
wixi + w0) (3.1)

A single neuron as a network (usually called perceptron) can represent only linear functions.
It cannot learn to predict a simple function like xor(x1, x2). So, to predict more complex data,
neurons are usually grouped into layers.

Feed Forward Network

A feed forward network has neurons organized into layers. It consist of an input layer, some
number of hidden layers and an output layer. A network with one hidden layer can approximate
any continuous function for inputs within a specific range (that is called an universal aproximation
theorem).

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.5 Image [30] of neural network with an input layer consisting of 3 neurons, a single hidden
layer with 3 neurons and an output layer which has one neuron.

To continue, multi-layer feed forward networks are universal approximators. However, finding
such parameters is rather difficult. NN used in practice have dozens of layers and millions of
parameters. It is a matter of days or months to train them.

A network with large number of hidden layers is called a deep neural network. They have
the ability to learn and model even some complex non-linear relationships.

16 Image processing

3.2.2 Training
NN have the ability to learn. It means somehow adjusting the trainable parameters (w – weights
and bias) so the network output Ŷ is close to the desired output Y . How do the neural networks
do that?

A loss function measures how much the predicted label is wrong. The NN learns by trying
to minimize the prediction error measured on the average value of the loss function L on the
training set. Common loss function also used in this thesis is called Mean Squared Error (MSE).
It is defined as:

L(θ) = 1
N
||Y − Ŷ || (3.2)

where θ are the learned parameters (θ = w), N is the number of input vectors, Ŷ are the
predictions of NN and Y are the target labels.

A stochastic gradient descent (SGD) algorithm is used for the iterative updates of the train-
able parameters. There are extensions like minibatch SGD, Adam, SGD with momentum and
others.

What is the error for each trainable parameter in current step of the SGD can be found by
backpropagation. The only conditions are that we need a differentiable loss function and all
activation functions need to be differentiable too. Then the NN error in w can be calculated
with backpropagation.

The backpropagation is an algorithm that computes the gradient of the loss function with
respect to w. The gradients are needed for the update of the trainable parameters. The negative
value of gradients tell us the direction where to move in order to minimize the loss function.
Gradients are computed iterating backwards from the last layer using the chain rule. More
information can be found in the Deep learning book [28].

3.2.3 Convolutional Neural Networks
Convolutional neural network (CNN) is a type of neural network that use a mathematical oper-
ation called convolution in place of general matrix multiplication in at least one of their layers.
CNNs process inputs with a grid-like structure. They have proven to be particularly useful in
image and video recognition.

There are three main types of layers to build CNN: convolutional layer, pooling layer, and
fully connected layer. Sometimes there is also a batch normalization layer. A brief explanation
of these layers is given below.

Convolutional Layer
Convolution is a mathematical operation. The first argument x is called the input, and the
second argument w is called the kernel. Convolution operation on function x with kernel w is
defined as:

(w ∗ x)(t) =
∫ ∞

−∞
x(t− a)w(a)da (3.3)

For vectors (discrete case):
(w ∗ x)(t) =

∑
i

xt−iwi (3.4)

Convolution can be generalized to multiple dimensions.
For two dimensions were I is the input matrix and K is the kernel of shape m, n:

(K ∗ I)i,j =
∑
m,n

Ii−m,j−nKm,n (3.5)

Neural Networks 17

Figure 3.6 Convolution [31].

Usually in image processing, there is a whole vector of values for a single pixel, the so
called channels. Lets have c channels. The channel values for single pixel do not have any
spatial structure. So every channel needs its own set of weights for every input dimension. Also
specifying the number of output channels o for every pixel is convenient.

When processing images, we need to specify:

the width W and height H of the kernel

number of input channels F

the stride S denotes that the output pixel is computed for every S-th input pixel

The convolution operation that is computed in the neuron of a convolutional layer then looks
like this:

(K ∗ I)i,j,o =
∑

m,n,c

Ii·S+m,j·S+n,cKm,n,c,o (3.6)

Because of shared weights architecture of the convolution kernels CNNs are shift invariant
(CNN outputs equal response for same structure in different location).

Pooling Layer
A pooling layer applies some summary statistics on outputs of the previous layers. For instance,
max pooling operation reports only the maximum output within a rectangular neighborhood.
Other types are average pooling and min pooling. The pooling layer reduces the number of
parameters, that decreases the computation time and helps to control overfitting.

Batch Normalization Layer
Normalization is a technique to standardize data (rescales data to have a mean of zero and
a standard deviation of one). Batch normalization layer recenters and rescales layer inputs. The
batch normalization layer is useful, as it usually reduces the computation time. The authors of
ResNet one of the well known CNN architectures wrote: ”By only using Batch Normalization
[. . .], we match the accuracy of Inception in less than half the number of training steps.” [32]
Inception is another type of CNN. Both state of the art at their times.

18 Image processing

Chapter 4

Analysis

The chapter presents the crossing flows experiment conducted at CTU FNSPE. Results of other
known crossing flows experiments are introduced.

4.1 CTU FNSPE Experiment Setup

Around 80 volunteers (second year students of CTU FNSPE) participated in this experiment.
It was conducted by Bukáček, Hrabák et al. on the same day as the bottleneck experiment [33]
in 2014. The setup is shown in the Figure 4.1. At the beginning of the experiment, students
were divided into two groups. Each group started at the narrow entrance (approximately 80 cm
wide). Students were instructed to walk in the direction of the arrows. The idea was to observe
the two streams of pedestrians that cross in the crossing area.

Figure 4.1 Experiment setup. It shows the approximate distance of the entrance point and the cross
area. Camera was placed in the center of the room.

19

20 Analysis

Camera Setup
In the experiment setup, the camera is overhead in the middle of the room to know the detailed
position of every person at any time also in crowded scenes. This knowledge could not be obtained
from the side view as the pedestrians would be sometimes ocluding each other. The camera was
most probably Prestigio Roadrunner 700x, however it remains uncertain. The estimated room
height is 2 meters. The video frame rate was 47 frames per second. The focal lenght is not
available.

Hats
In application dealing with the safety of people, reliable empirical data are needed [34]. Therefore,
the experiment used hats as markers. The marker has a red dot in the center. Together with a
green dot, the dots can be used to see the rotation angle of the person. The hat is also equipped
with a 2x4 binary code that holds an identification of the person. The down left corner of the
binary code is a white control bit.

Figure 4.2 Hat used in experiment. The radius of the green dot is 3.75 cm. The radius of red dot is
2.5 cm. The square size is 3.5 cm.

4.2 Pedestrian Tracking in context of
Pedestrian Dynamics

In Bamberger et al. [1] the experiment was evaluated manually. That means locating each person
throughout the video and denoting their positions. Computer vision for evaluation of crossing
flow experiment was used in article [5]. They used software, called PeTrack, that was developed
by them.

4.2.1 PeTrack
PeTrack (Pedestrian Tracking) [35] is a software for automatic obtaining of trajectories. The
source code is available here1. It uses Lucas–Kanade method, differential method for optical
flow estimation, to obtain the trajectories. More detailed explanation of Lucas-Kanade method
is well described here [36]. PeTrack software could not be used for processing this experiment
due to different nature of hats (shown in Section 6.2).

In article [5] outcomes of experiments with multiple crossing flows and unidirectional flow are
described. This set of experiments (called BaSiGo experiments) researched crossing pedestrian

1https://jugit.fz-juelich.de/ped-dyn-emp/petrack/-/wikis/home

Pedestrian Tracking in context of
Pedestrian Dynamics 21

Table 4.1 PeTrack experiments with crossing flows [5].

Run Name bin(m) bcor(m) N
01 CROSS 90 D 1 0.6 4 603
02 CROSS 90 D 2 0.9 4 604
03 CROSS 90 D 3 1.2 4 606
05 CROSS 90 D 5 1.8 4 600
06 CROSS 90 D 6 2.4 4 597
07 CROSS 90 D 7 3.0 4 604
08 CROSS 90 D 8 4.0 4 592

flows in a similar setup like in this experiment. The mean age of the participants was 25 years
and they were mostly university students.

In total they did 8 runs of the crossing flow experiment (in paper called BaSiGo Cross D).
What happened in experiment number 04 is not written in the paper. The width of entrance
bin varied for each run. The exit size stayed the same bcor. The number of pedestrians N that
participated also varied as describe in Table 4.1

Figure 4.3 Fundamental diagrams for crossing pedestrian flows experiment BaSiGo D [5].

4.2.2 Bamberger et al. Experiment
The experiment [1] was conducted in a German school with students in age of 16 or 17. The
entrance and exits were 3 meters wide for the first run. Then they added barriers. For the second
run it was 2, for third 1.5 m and the last run the width was 1 m.

They also found out that the minimal speed of person was 0.72 m/s and maximal speed was
1.61 m/s.

22 Analysis

Figure 4.4 Bamberger et al. fundamental diagram [1]. in each run (R1 - R4) the results were manualy
measured for two persons (in picture red diamond and green square). The blue circles mark the average
of both counts. It is remarkable how stable the bias is between the two persons results.

4.2.3 Hatless Pedestrian MOT
Experiments without hats would facilitate easier realisation of moderated experiments in real
environments, which would increase the amount of trajectory data.

In [34] they use stereo cameras to get the location of the pedestrian. However, it showed up
that there needs to be lots of stereo cameras on a small place and these cameras are expensive. So
the experiments continue to use some kind of marker to better obtain the pedestrians locations.
To my knowledge, there was no pedestrian crossing flows experiment without hats.

22 Analysis

Chapter 5

Model Design

The model is implemented in Python using the OpenCV1 image processing library and a package
called Improutils2 [37] produced by ImproLab CTU FIT group. Tensorflow3 [38] is used for the
implementation of CNN that classifies binary codes. The chapter explains the model design.

5.1 Model Overview

The overview of model is presented in Figure 5.1. The model consists of 4 parts. It takes a video
on input, outputs a dataset of trajectories.

Figure 5.1 The figure shows model overview. The centroid tracking was programmed without using
any MOT library. The CNN was trained from scrach.

1https://docs.opencv.org/4.5.5/
2https://gitlab.fit.cvut.cz/bi-svz/improutils package/tree/master
3https://www.tensorflow.org/

23

24 Model Design

5.2 Preprocessing
The video capture was loaded by the OpenCV VideoCapture object and the preprocessed frames
were saved. The preprocessing included cropping to area of interest, undistorting with transfor-
mation, median filtering, and background subtraction.

5.2.1 Area of Interest
Frames were cropped only to the area of interest, as shown in Figure 5.2.

Figure 5.2 A frame of the experiment footage. The observed area is marked with a red rectangle. In
this area, pedestrians are tracked. The location of the left corner is (625, 197) pixels and has a size of
(900, 800) pixels. The pedestrians are blurred to comply with GDPR.

5.2.2 Undistort Image
To calibrate it is necessary to take enough pictures of known pattern (e.g. chessboard) from
different angles. The camera matrix and the distortion coefficients can be computed from that.

Unfortunately, no calibration was done, so to remove distorsions some estimations described
below were conducted. Tangential distortion is not simply observable in this case, so only radial
distorsion is computed. Radial barrel distorsion can be comfortably seen by eye. This can be
suppressed by estimating the radial coefficient. It is important because we want the locations of
pedestrians to be as accurate as possible.

Distorsion coefficients are described in OpenCV [25]. The thesis works with k1 coefficient.
Since it is a positive radial distortion, the coefficients of undistortion must be negative. Found
coefficients are in the Table 5.1. An OpenCV function called undistort() when given distorsion
coefficient matrix (in this case only one coefficient was changed) performs the undistortion (in
this case this is just a simple sinus transformation).

5.2.3 Background Subtraction
KNN background subtraction algorithm implemented in OpenCV was used. As shown in Figure
5.4, it creates a grayscale image where the foreground is marked white, the shades gray, and the

Object Detection 25

Table 5.1 Best found coefficients that fix radial barrel distorsion. The results were determined by
looking at pictures by eye. Area of interest has a smaller coefficient (fixes larger distorsion). Since, the
model works only with area of interest, whole image is not shown.

area of interest image
found coefficients −2.5e−5 −4e−5

(a) The barrel distorted area of interest im-
age. The corners of the image seem much
further than they should.

(b) Undistorted area of interest. After apply-
ing undistorion with coefficient -4−5, barrel
distorsion is less visible.

Figure 5.3 Fixing distorsion in the area of interest. Comparison of distorted and fixed area of interest.

background black. Since the algorithm sometimes produced small holes in the foreground mask,
dilation with kernel (8,8) was used.

Figure 5.4 Background subtraction. On the left side, the original image. In the middle, a background
subtraction model is placed. On the right side, output image, that was produced by application of dilated
foreground mask. The foreground mask is obtained by only taking white pixels from the background
model.

5.3 Object Detection
HSV segmentation with two tresholds computes a mask for white color. Since hats are the only
objects of white color, this segmentation finds them. Then, convex contours are found.

Sometimes, it happens that the hats overlap. This is detected by finding more green points
in one segmented area or by exceeding the threshold for hat size. In that case, the watershed

26 Model Design

Figure 5.5 Example of segmented hats. There are two segmentations where the pedestrian is entering
the area of interest so the hat is not whole.

segmentation is used to approximately divide the hats (shown in Figure 5.6).

Figure 5.6 Division of the hats by watershed segmentation.

The green dots act as indicators of a segment for the watershed algorithm. Each pixel is
assigned to the segment of nearest green dot. As shown in Figure 5.6 it is just an approximation
of the hats; nevertheless, the bounding box will likely contain the binary code and red dot of the
hat (these being the only features we are interested in). A contour is found for each watershed
segment. Watershed algorithm in this case resembles Breadth-first search algorithm that would

Multiple Object Tracking 27

be run from each green dot. Breadth-first search algorithm was the first tried approach however
the implementation was tremendously slow.

Now, the algorithm has all the contours of hats. It finds the minimal enclosing rectangle for
each contour. With HSV segmentation detects green and red dots. Finds centers of dots and
store the information about rotation angle.

The resulting images of hats are shown in Figure 5.5.

5.4 Multiple Object Tracking
For the tracking of multiple objects, a centroid tracking algorithm is used. The algorithm is
described in Section 2.3. The model detects hats as described in Section 5.3. Euclidean distance
is used as a metric for association of tracks and detection. The MAX DISSAPEARED constant is set
to 1, because the detection of hats is quite accurate and there are no oclusions of the objects.

The output of this algorithm is a dataset of tracks. The location of green dot, red dot, frame
ID, and track ID is stored for each hat that was assigned to a track.

Centroid tracking is a simple algorithm, but it works well in this thesis. Kalman filter or
a deep association metric was not used. Mainly because it was not necessary. Today centroid
tracking is still used, e.g. in atmospheric research, when tracking thunderstorms [39]. It is very
useful for tracking objects that are mostly still as the Euclidean distance is small. Another usage
involves a video in a laboratory, where the environment is stable and the objects are not ocluded.
That is the case of the crossing flows experiment.

5.5 Binary Codes Classification
The section presents different approaches for binary codes classification.

5.5.1 Naive approach - Estimation by Location
The naive approach was to locate the middle of each square, look at surrounding pixels and the
majority color would determine the color of the square.

The color of the square was determined by looking at neighborhood of 4 pixels and taking
the majority color. However, this approach had very little accuracy.

5.5.2 Improved Approach - Estimation with Contours of
Binary Code

The improvement of the above approach was to make a mask and find all contours of black
squares (sometimes connected into other shapes such as rectangles). Some areas of the picture

Figure 5.7 Approximate location of centers. The line determined by red and green dot was used to
find perpendicular lines on which the centers of squares lie. With usage of the line segment between
green center and red center, the ratio for sizes was measured.

28 Model Design

were filtered out. Namely, everything before the ending of red dot contour was marked 0 in the
mask. The lower crop line was determined by the absence of contours of the black squares. The
number of squares q̂ was estimated knowing that one square has area of aproximately 40 pixels.
Then the q̂ estimated location nearest to contours of black pixels were marked as 1 rest as 0.

5.5.3 CNN Approach
Another approach was to let a neural network decide for us what the binary code is. The task
is determinig the color of 8 squares in a low quality picture. The neural network will have to
somehow learn the positions where to look for the squares. CNNs are networks that work well
when identifying objects on images and their locations.

The need of training data

Neural networks need enough training data. One possibility would be to annotate the dataset
of hats and train a network with it. Since, the task is to annotate a single video automatically,
anotating half of the video frames was not an obtion. Other option is to create an artifical
dataset for the network training.

Artificial hats for all possible IDs were created. Possible hat IDs are even numbers since
last bit of the code is a control zero (white) bit. Hats were created with OpenCV shapes. It is
necessary to maintain proportions of the shapes on hats.

Network architecture

The hidden blocks architecture was inspired by Alexnet [40]. The building block of Alexnet
consists of a convolutional layer, relu activation, and max pooling. This block is repeated several
times, then there are some dense layers. Alexnet is trained for image classification of complex
objects, like animals. It has 61M trainable parameters. The hats are way more simple. Therefore,
less layers and computation power is needed.

Some improvements were made to increase the accuracy of the neural network. Namely
a batch normalization layer was added after each convolution layer. The network also easily
overfitted and probably only looked at few pixels and ignored the rest. To enforce the network
to look at more pixels a dropout layer was added. Dropout layer trashes outputs of the previous
layer with defined probability. That forces the network to learn from many more pixels. When
adding the dropout layer, the needed epochs to train the networks doubled from 25 to 50.

A CNN with architecture shown below in Table 5.2 is used. The input is an image of
shape (95, 63, 3), which was estimated that almost all images of hats would fit in. The output
of the network were 8 neurons, each representing one digit in the binary code. The number of
hidden blocks and dense layers were experimented with, so it would minimize error on 20 images
(development data).

SGD optimizer performed better than Adam. MAE was used as a loss function. It looked at
each predicted number from binary code and performed a mean squared error. The values closer
together were not penalized that much as in mean absolute error. Those were the only losses
considered for this task.

Data augmentation

The network without augmenting the training data was almost immediately overfitted on the
train dataset. To prevent this behavior, artificial data are augmented for each epoch slightly
differently.

Binary Codes Classification 29

Layer (type) Output Shape Param #
input 1 (InputLayer) (None, 95, 63, 3) 0
conv2d (Conv2D) (None, 48, 32, 8) 224
batch normalization (None, 48, 32, 8) 32
re lu (ReLU) (None, 48, 32, 8) 0
dropout (Dropout) (None, 48, 32, 8) 0
max pooling2d (None, 24, 16, 8) 0
conv2d 1 (Conv2D) (None, 24, 16, 16) 1168
batch normalization 1 (None, 24, 16, 16) 64
re lu 1 (ReLU) (None, 24, 16, 16) 0
dropout 1 (Dropout) (None, 24, 16, 16) 0
max pooling2d 1 (None, 12, 8, 16) 0
conv2d 2 (Conv2D) (None, 12, 8, 32) 4640
batch normalization 2 (None, 12, 8, 32) 128
re lu 2 (ReLU) (None, 12, 8, 32) 0
dropout 2 (Dropout) (None, 12, 8, 32) 0
max pooling2d 2 (None, 6, 4, 32) 0
conv2d 3 (Conv2D) (None, 6, 4, 32) 9248
batch normalization 3 (None, 6, 4, 32) 128
re lu 3 (ReLU) (None, 6, 4, 32) 0
dropout 3 (Dropout) (None, 6, 4, 32) 0
max pooling2d 3 (None, 3, 2, 32) 0
flatten (Flatten) (None, 192) 0
dense (Dense) (None, 100) 19300
dense 1 (Dense) (None, 50) 5050
dense 2 (Dense) (None, 8) 408

Total params: 40,390
Trainable params: 40,214
Non-trainable params: 176

Table 5.2 Summary of the CNN model.

30 Model Design

Figure 5.8 The first row are the hats from video. The second row are artificial augmented hats. They
have different sizes, rotation, transformations and color alternations. The artificial hats are cropped and
padded to have the same size.

The used data augmentation includes rotation with random angle up to 0.15 radians, shifts
to left and right (maximum shift of 20 pixels), color changes (random hue and value), and adding
Gaussian noise. They were implemented with the image module4 in Tensorflow addons.

5.5.4 Binary Codes Classification Methods Results
As shown in Table 5.3 the results are not very satisfiyng. Both methods encountered problems
with the bits near edges of the paper.

Traditional methods could perform better. This was just a first prototype. If we had found
the centers of squares more precisely for connected squares and taken the center estimation shown
in Figure 5.7, the score could have been much higher.

The hat paper edge tends to fall down, and the transformations are resembling a half of
sinus vawe. When trying to add these transformations to the train dataset for CNN the network
generalized very poorly on the hats even after long training.

The architecture of CNN was developed with trying a lot of possible architectures, all with
AlexNet-like blocks. Most of the architectures overfitted quickly and did not generalize for hats
data. The picked network 5.2 achived 93% accuracy on the train data and 45% accuracy on test
data (20 randomly picked images).

Table 5.3 The models were evaluated on 20 randomly picked images, so the score is only partly
indicative. The score was measured as the ratio of exact matches and all evaluation data. There were
a lot of near mismatches (one bit was wrong) with both methods. Also this accuracy is later on increased
as for each track there are more hats and the majority binary code is assign as the track ID.

model type score
CNN 0.45
conventional methods 0.4

4https://www.tensorflow.org/addons/api docs/python/tfa/image

Completion of Incomplete Trajectories 31

0 200 400 600 800
x

0

100

200

300

400

500

600

700

800

y

Trajectories with their estimated IDS

label_ID
0
50
100
150
200
250

Figure 5.9 The estimated hat binary codes for trajectories in dataset. Majority hat identification
was taken as the hat ID for the track.

5.5.5 Dead-ends
This section groups some experiments that were done but appeared to be dead end.

There were aproximately 47 000 images of hats. The image quality enhancement with
OpenCV deep neural network (EDSR) for super-resolution would take approximately 16 days on
a CPU with the available resources.

The images are shaped so the edges remind convex and concave curves. So the idea was to
add some sinus transformed pictures to the dataset. The network that achived 0.45 on the hats
sample had even more errors when using this data.

5.6 Completion of Incomplete Trajectories
At this point, a dataset of trajectories with hat identifications is available. The trajectories start-
ing points, ending points, and the staring side were marked in the dataset. Also the trajectory
hat ID was determined by the majority binary code present in the trajectory.

Figure 5.10 Track completion visualisation. The track is marked with black color. The missing
segment completion is marked in red.

It can happen that the trajectory ends or starts before it reaches an edge of image. In that
case the trajecotry is completed with a line connecting the last known location and an image
edge. The direction is taken as a vector from last known two frames. An example of such
trajectories can be found in Figure 5.11.

32 Model Design

0 200 400 600 800
x (pixels)

0

100

200

300

400

500

600

700

800

y
(p

ix
el

s)

Figure 5.11 Example of completed trajectories. The red dots are the approximation for missing parts.
Green dots represent the location of pedestrians on this frame.

Chapter 6

Results

The section analyzes the dataset of obtained trajectories, compares the results with results of
other crossing flows experiments, and writes possible improvement instructions for the model.

0 200 400 600 800
x

0

100

200

300

400

500

600

700

800

y

Tracks

track_ID
250
252
253
255
256
258
259

Figure 6.1 Example of extracted trajectories. Axis x and y are in pixels.

6.1 Data Analysis
After finding trajectories several interesting variables from pedestrian dynamics were found and
observed.

Table 6.1 Overview of measured observables and their values for minimum, maximum, and mean.

observable min max mean
speed 0 m/s 23.84 m/s 1.41 m/s

track speed 0.65 m/s 3.03 m/s 1.41 m/s
space mean speed 0.92 m/s 2.6 m/s 1.41 m/s

density 0.11 pedestrian/m2 3.08 pedestrian/m2 2.17 pedestrian/m2

Velocity
Individual pedestrian velocity was measured by the relation specified in Equation 1.6. Since
during preprocessing every 5th frame was taken the velocities are well detectable and measurable.

33

34 Results

The basic review of velocity is provided with histogram in Figure 6.2.

0 1 2 3 4 5
velocity

0

2000

4000

6000

8000

10000

12000

14000

nu
m

be
r o

f o
bs

er
va

tio
ns

Histogram of velocity

Figure 6.2 Histogram for velocity. The highest speed measured was 23.28 m/s, but it is evident from
the histogram it was an outlier value. Most values were around 0 m/s to 4 m/s.

Track Speed

Track speed was measured as the mean value of all the track speeds. The average track speed
was 1.41 m / s. Which corresponds to the average walking speed of a human: 1.4 m/s. The
maximum track speed was 3.03 m/s, that is still less than the average speed for running being
around 5 m/s. Histogram of track speed is shown in Figure 6.3.

Compared to Bamberger et al. [1] (described in Subsection 4.2.2) pedestrians in this experi-
ment move much faster. In Bamberger et al. the minimal speed was 0.71 m/s and maximal speed
1.61 m/s. The average speed is also higher compared to BaSiGo Cross D experimet (described
in Subsection 4.2.1). There were around 600 people in those experiments and the area of interest
in the experiment was only a bit larger, so the lower speed is expected.

Macroscopic view

From the macroscopic view observables, space mean velocity and space mean density was calcu-
lated. Density properties are described by a histogram in Figure 6.4.

Fundamental diagram

The relation between velocity and density is shown in the fundamental diagram in Figure 6.5.
The velocity for this diagram is space mean velocity (averaged velocity for each frame). The
density is averaged density for each frame. The highest density observed was 3 pedestrians / m2.

Comparison with State of the Art 35

1.0 1.5 2.0 2.5 3.0
average track speed

0

2500

5000

7500

10000

12500

15000

17500

nu
m

be
r o

f o
bs

er
va

tio
ns

Histogram of average track speed

Figure 6.3 Histogram for average track speed.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
density

0

5000

10000

15000

20000

25000

nu
m

be
r o

f o
bs

er
va

tio
ns

Histogram of density

Figure 6.4 The Figure shows historgam for density.

6.2 Comparison with State of the Art
PeTrack was not able to detect pedestrians, due to different looking hats than what are used with
PeTrack software. The inability to recognize hats is shown in Figure 6.7. PeTrack also expects

36 Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
density

0.5

1.0

1.5

2.0

2.5

ve
lo

cit
y

Fudnamental diagram

Figure 6.5 This figure presents fundamental diagram. The space mean velocity in m/s is on y axis.
On the x axis is the density in pedestrian/m−2. It can be seen that with higher density, pedestrians
move with less speed. The red curve depicts the mean value of velocity for each unique density. This
curve can be compared with the standard SFPE curve that is shown in black.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
density

1.2

1.4

1.6

1.8

2.0

2.2

ve
lo

cit
y

Standard fundamental diagram

Figure 6.6 Standard fundamental diagram. The mean value of velocity was calculated for each
interval of density.

a dark monochrome stable environment so it can use differential methods based on optical flow
estimation. In this case the environment was a classroom with no such properties. That was
solvable by background substraction. The problem with different looking hats remained. To
process this experiment a custom model had to be made.

Improvements 37

Figure 6.7 Petrack software is unable to localize pedestrians due to different looking hats.

6.3 Improvements
Further improvements in MOT estimation step could be done. One of them is having a Kalman
filter predict where the object should be next frame. That also with a more sophisticated
association metric is done e.g. in a paper called DeepSORT [12].

There is a lot of room for improvement in the detection of binary codes. Some untried
preprocessing methods could probably improve the detection. Or a network for scanning QR
codes as a backbone for the model might achieve better performance.

38 Results

Chapter 7

Disscusion

Frames from the video were obtained with OpenCV video capture object. A foreground mask was
found with a background subtractor. The foreground mask was stripped of holes with dilatation.
Then, it was used on the frame. The median filter was applied to reduce noise. The picture was
undistorted with sinus transformation. The parameter for undistorion was approximated. For
further experiments, it is recommended to calibrate the camera. Other approach for undistortion
could have been detecting the corners of floor tiles and applying transformation so the floor tiles
after transformation would be a square grid.

Second, the multiple object tracking was detection-based. Pedestrian hats were detected with
HSV segmentation. The contours were made convex with the convex hull algorithm. Another
approach could have been to detect the red dot that marked the center of mass. The approach
with detecting hat contour had the advantage of having entire hat stored and not just the location
of the center. The hats were rotated to become horizontal.

Multiple object tracking was performed using centroid tracking. It connects tracks in frames
t and t + 1 by looking at the nearest centers of the bounding boxes. Centroid tracking is
a simple algorithm. Several improvements can be made mainly during the association of tracks
and detections. One of them is to incorporate the hat ID into the association part of the
algorithm. Only Euclidean distance is used. Main drawback for centroid tracking compared to
other algorithms is that object detection step needs to be run on every frame of the input video.
If tracking were to be deployed somewhere, it would not be efficient, and there are much faster
algorithms such as DeepSORT [12]. The efficiency in this thesis case did not matter, since it was
for an evaluation of already taken video. The centroid tracking finishes in matter of minutes.

The naive approach for binary codes detection with traditonal methods looked at specific
positions and its surrounding, then the majority color of pixels decided what the binary code
is. The positions were estimated with usage of the red and green dot as described in Figure 5.7.
However, this approach for reading binary codes was very inaccurate due to the deformations
of the hats. This detection was improved by finding contours of black squares (each square
representing a digit in the binary code). The q estimated locations closest to the black pixels
were marked as 1 and the rest as 0. This algorithm achived 40% accuracy on a sample of 20 hats.
The problem was to find the center of each square when the hat had connected squares. That
can be further studied and when solved the accuracy will be much higher.

Other approach included using a CNN. The training dataset was made artificially with
OpenCV. Then a CNN was trained to identify the codes on the artificial dataset. The cru-
cial part was to do a lot of data augmentation for training examples (image rotation, shift left to
right, flip vertically, and color variations). Then the detection of binary codes had better results.
The CNN architecture was experimented with. The dropout layers were added and the number
of hidden Alexnet-like blocks was determined to minimilize the loss on validation data. Further

39

40 Disscusion

improvements include finetuning the CNN on a small sample of hats from the video. The hat ID
of the entire trajectory was determined by the majority of binary codes present in the trajectory.

The missing parts of trajectories were completed using a line connecting last known loca-
tions. One of the improvements could be to use the estimated hat IDs to connect disconnected
trajectories.

In the analysis, the velocity was counted as the difference between the previous and current
locations divided by the time as in Equation 1.6. Other approach could be to use central
differences like in Equation 1.5. The approaches are very similar, and it is a matter of choice.
From a macroscopic view, the density and space mean velocity was observed. The density was
taken as an average density for each frame. The fundamental diagram showed the relationship
between these observables.

The observed velocities were slightly higher than what Bamberger et al. [1] observed. The
SFPE curve also has lower values.

Future work can attempt to detect self-organization phenomenom such as line formation.

7.1 Recommendations for Future Experiments
The usage of dark clothes and hats were very useful for the automatic extraction as the rest
of background was filtered out by background subtraction. This setup can be kept for future
experiments with some small alternations.

To recommend, it is important to calibrate the camera. Otherwise the cofficients for undis-
torting need to be guessed. Noting the camera and lens can be useful.

The white control bit is not ideal as it is impossible to detect. Another color entirely would
be advised.

The binary codes would be easier detetectable if the papers were not falling down on edges.
So doing the hats from plastic or other solid material would be helpful.

If the papers contained a QR code like encoded number, the detection of such numbers would
be much easier. QR codes have three control bits at three corners. That ensures that the location
and angle of rotation is found. Also the center of the mass could be a special different colored
bit. By that the people would be very easy to detect by an altered QR code scanner and the
information about center of the mass would be there too.

Conclusion

The aim of this thesis was to obtain trajectories from the crossing pedestrian flow experiment.
The result of the thesis is an algorithm implemented in Python. The centroid tracking

algorithm was used to extract pedestrian trajectories. Both, traditional methods and CNN, were
experimented with to obtain hat IDS. The algorithm for hat ID extraction achieved 45% accuracy
on a random sample of 20 hats. The missing parts of the trajectories were approximated with
a line segment.

The thesis instructions were fulfilled. The resulting trajectories dataset can be further ana-
lyzed to gain more knowledge about pedestrian crossing flows. Compared to Bamberger et al. [1]
and the standard FSPE curve, the thesis results show higher velocities.

41

42 Conclusion

Bibliography

1. BAMBERGER, Johanna; GESSLER, Anna-Lena; HEITZELMANN, Peter; KORN, Sara;
KAHLMEYER, Rene; LU, Xue Hao; SANG, Qi Hao; WANG, Zhi Jie; YUAN, Guan Zong;
GAUSS, Michael, et al. Crowd research at school: crossing flows. In: Traffic and Granular
Flow’13. Springer, 2015, pp. 137–144.

2. KULIGOWSKI, Erica D. Computer evacuation models for buildings. In: SFPE handbook
of fire protection engineering. Springer, 2016, pp. 2152–2180.

3. SCHADSCHNEIDER, Andreas; CHOWDHURY, Debashish; NISHINARI, Katsuhiro. Stochas-
tic transport in complex systems: from molecules to vehicles. Elsevier, 2010.

4. STEFFEN, Bernhard; SEYFRIED, Armin. Methods for measuring pedestrian density, flow,
speed and direction with minimal scatter. Physica A: Statistical mechanics and its applica-
tions. 2010, vol. 389, no. 9, pp. 1902–1910.

5. CAO, Shuchao; SEYFRIED, Armin; ZHANG, Jun; HOLL, Stefan; SONG, Weiguo. Fun-
damental diagrams for multidirectional pedestrian flows. Journal of Statistical Mechanics:
Theory and Experiment. 2017, vol. 2017, no. 3, p. 033404.

6. SEYFRIED, Armin; STEFFEN, Bernhard; KLINGSCH, Wolfram; BOLTES, Maik. The
fundamental diagram of pedestrian movement revisited. Journal of Statistical Mechanics:
Theory and Experiment. 2005, vol. 2005, no. 10, P10002.

7. MAERIVOET, Sven; DE MOOR, Bart. Traffic flow theory. arXiv preprint physics/0507126.
2005.

8. THUNDERHEAD ENGINEERING CONSULTANTS. Pathfinder software [online]. 2019
[visited on 2022-02-20]. Available from: https://www.thunderheadeng.com/pathfinder/.

9. THUNDERHEAD ENGINEERING CONSULTANTS. Pathfinder Technical Reference Man-
ual [online]. 2021 [visited on 2022-04-08]. Available from: https://files.thunderheadeng.
com/support/documents/pathfinder- technical- reference- manual- 2020- 1.pdf#
page=84&zoom=100,96,133.

10. PELLEGRINI, Stefano; ESS, Andreas; SCHINDLER, Konrad; VAN GOOL, Luc. You’ll
never walk alone: Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th
international conference on computer vision. 2009, pp. 261–268.

11. LU, Wei-Lwun; TING, Jo-Anne; LITTLE, James J; MURPHY, Kevin P. Learning to track
and identify players from broadcast sports videos. IEEE transactions on pattern analysis
and machine intelligence. 2013, vol. 35, no. 7, pp. 1704–1716.

12. WOJKE, Nicolai; BEWLEY, Alex; PAULUS, Dietrich. Simple online and realtime tracking
with a deep association metric. In: 2017 IEEE international conference on image processing
(ICIP). 2017, pp. 3645–3649.

43

https://www.thunderheadeng.com/pathfinder/
https://files.thunderheadeng.com/support/documents/pathfinder-technical-reference-manual-2020-1.pdf#page=84&zoom=100,96,133
https://files.thunderheadeng.com/support/documents/pathfinder-technical-reference-manual-2020-1.pdf#page=84&zoom=100,96,133
https://files.thunderheadeng.com/support/documents/pathfinder-technical-reference-manual-2020-1.pdf#page=84&zoom=100,96,133

44 Bibliography

13. RAVINDRAN, Ratheesh; SANTORA, Michael J; JAMALI, Mohsin M. Multi-object de-
tection and tracking, based on DNN, for autonomous vehicles: A review. IEEE Sensors
Journal. 2020, vol. 21, no. 5, pp. 5668–5677.

14. KOLLER, Dieter; WEBER, Joseph; MALIK, Jitendra. Robust multiple car tracking with
occlusion reasoning. In: European conference on computer vision. 1994, pp. 189–196.

15. KHAN, Zia; BALCH, Tucker; DELLAERT, Frank. An MCMC-based particle filter for
tracking multiple interacting targets. In: European Conference on Computer Vision. 2004,
pp. 279–290.

16. LI, Kang; MILLER, Eric D; CHEN, Mei; KANADE, Takeo; WEISS, Lee E; CAMPBELL,
Phil G. Cell population tracking and lineage construction with spatiotemporal context.
Medical image analysis. 2008, vol. 12, no. 5, pp. 546–566.

17. SMAL, Ihor; DRAEGESTEIN, Katharina; GALJART, Niels; NIESSEN, Wiro; MEIJER-
ING, Erik. Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Mi-
croscopy Images: Application to Microtubule Growth Analysis. IEEE Transactions on Med-
ical Imaging. 2008, vol. 27, no. 6, pp. 789–804. Available from doi: 10.1109/TMI.2008.
916964.

18. SPAMPINATO, Concetto; PALAZZO, Simone; GIORDANO, Daniela; KAVASIDIS, Isaak;
LIN, Fang-Pang; LIN, Yun-Te. Covariance based Fish Tracking in Real-life Underwater
Environment. In: VISAPP (2). 2012, pp. 409–414.

19. LUO, Wenhan; XING, Junliang; MILAN, Anton; ZHANG, Xiaoqin; LIU, Wei; KIM, Tae-
Kyun. Multiple object tracking: A literature review. Artificial Intelligence. 2021, vol. 293,
p. 103448.

20. PATRICK DENDORFER Aljosa Osep, Laura Leal-Taixé. MOT challenge website [online]
[visited on 2022-02-20]. Available from: https://motchallenge.net/.

21. MILAN, Anton; LEAL-TAIXÉ, Laura; REID, Ian; ROTH, Stefan; SCHINDLER, Konrad.
MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831. 2016.

22. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information pro-
cessing systems. 2015, vol. 28.

23. SMITH, Steven W et al. The scientist and engineer’s guide to digital signal processing.
1997.

24. FIT CTU. SVZ camera calibration [online]. 2022 [visited on 2022-04-08]. Available from:
https://courses.fit.cvut.cz/BI-SVZ/tutorials/files/3/lens-defects.html.

25. DEVELOPER TEAM OPENCV. Camera Calibration OpenCV Documentation [online].
2019 [visited on 2022-04-08]. Available from: https://docs.opencv.org/2.4/modules/
calib3d/doc/camera_calibration_and_3d_reconstruction.html.

26. DEVELOPER TEAM OPENCV. Watershed segmentation OpenCV Documentation [on-
line]. 2019 [visited on 2022-04-08]. Available from: https://docs.opencv.org/4.x/d3/
d47/group__imgproc__segmentation.html#ga3267243e4d3f95165d55a618c65ac6e1.

27. ZHENG, Tao; DUAN, Zhizhao; WANG, Jun; LU, Guodong; LI, Shengjie; YU, Zhiyong. Re-
search on Distance Transform and Neural Network Lidar Information Sampling Classification-
Based Semantic Segmentation of 2D Indoor Room Maps. Sensors. 2021, vol. 21, p. 1365.
Available from doi: 10.3390/s21041365.

28. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

29. FIT CTU. Knowledge mining from data [online]. 2021 [visited on 2022-04-20]. Available
from: https://courses.fit.cvut.cz/BI-VZD/.

https://doi.org/10.1109/TMI.2008.916964
https://doi.org/10.1109/TMI.2008.916964
https://motchallenge.net/
https://courses.fit.cvut.cz/BI-SVZ/tutorials/files/3/lens-defects.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/4.x/d3/d47/group__imgproc__segmentation.html#ga3267243e4d3f95165d55a618c65ac6e1
https://docs.opencv.org/4.x/d3/d47/group__imgproc__segmentation.html#ga3267243e4d3f95165d55a618c65ac6e1
https://doi.org/10.3390/s21041365
http://www.deeplearningbook.org
https://courses.fit.cvut.cz/BI-VZD/

Bibliography 45

30. DARREN, Sam. Typesetting neural network diagrams with TeX [online]. 2019 [visited on
2022-04-08]. Available from: https : / / medium . com / momenton / typesetting - neural -
network-diagrams-with-tex-4920b6b9fc19.

31. FAVONI, Matteo. Equivariance and generalization in neural networks [online]. 2021 [visited
on 2022-03-20]. Available from: https://indico.uis.no/event/12/contributions/245/
attachments/175/271/Equivariance_and_generalization_in_neural_networks_
QCHS_2021.pdf.

32. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual Learning for
Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 770–778. Available from doi: 10.1109/CVPR.2016.90.

33. BUKÁČEK, Marek; HRABÁK, Pavel; KRBÁLEK, Milan. Experimental study of phase
transition in pedestrian flow. Transportation Research Procedia. 2014, vol. 2, pp. 105–113.

34. BOLTES, Maik; SEYFRIED, Armin. Collecting pedestrian trajectories. Neurocomputing.
2013, vol. 100, pp. 127–133.

35. BOLTES, Maik; BOOMERS, Ann Katrin; ADRIAN, Juliane; BRUALLA, Ricardo Martin;
GRAF, Arne; HÄGER, Paul; HILLEBRAND, Daniel; KILIC, Deniz; LIEBERENZ, Paul;
SALDEN, Daniel; SCHRÖDTER, Tobias. PeTrack. Zenodo, 2021. Version v0.9. Available
from doi: 10.5281/zenodo.5126562.

36. BOUGUET, Jean-Yves et al. Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm. Intel corporation. 2001, vol. 5, no. 1-10, p. 4.

37. IMPROLAB FIT. Improutils package [online]. 2021 [visited on 2022-03-20]. Available from:
https://gitlab.fit.cvut.cz/bi-svz/improutils_package/tree/master.

38. TENSORFLOW DEVELOPER TEAM. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. Available also from: https://www.tensorflow.org/. Soft-
ware available from tensorflow.org.

39. DEL MORAL, Anna; RIGO, Tomeu; LLASAT, Maria Carmen. A radar-based centroid
tracking algorithm for severe weather surveillance: identifying split/merge processes in con-
vective systems. Atmospheric Research. 2018, vol. 213, pp. 110–120. issn 0169-8095. Avail-
able from doi: https://doi.org/10.1016/j.atmosres.2018.05.030.

40. KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Imagenet classification
with deep convolutional neural networks. Advances in neural information processing sys-
tems. 2012, vol. 25.

https://medium.com/momenton/typesetting-neural-network-diagrams-with-tex-4920b6b9fc19
https://medium.com/momenton/typesetting-neural-network-diagrams-with-tex-4920b6b9fc19
https://indico.uis.no/event/12/contributions/245/attachments/175/271/Equivariance_and_generalization_in_neural_networks_QCHS_2021.pdf
https://indico.uis.no/event/12/contributions/245/attachments/175/271/Equivariance_and_generalization_in_neural_networks_QCHS_2021.pdf
https://indico.uis.no/event/12/contributions/245/attachments/175/271/Equivariance_and_generalization_in_neural_networks_QCHS_2021.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5281/zenodo.5126562
https://gitlab.fit.cvut.cz/bi-svz/improutils_package/tree/master
https://www.tensorflow.org/
https://doi.org/https://doi.org/10.1016/j.atmosres.2018.05.030

46 Bibliography

Content of Attached Medium

readme.txt .. brief description of medium content
src

mot ... implementation of centroid tracking
classification implementations for classification
data ... data obtained from centroid tracking
dataset ..dataset of trajectories
results.ipynb..............................notebook with visualisation of the results

latex...source codes of the thesis in LATEX
thesis.pdf...thesis text in PDF format

The medium does not include video footage from crossing pedestrian flows experiment con-
ducted at FNSPE in 2014 to comply with GDPR guidelines.

47

	Acknowledgments
	Declaration
	Abstract
	Abbreviations list
	Introduction
	Pedestrian Dynamics
	Observables
	Fundamental Diagram
	Self-organization Phenomena

	Multiple Object Tracking
	Task Description
	Principle
	Centroid Tracking

	Image processing
	Image Processing Methods
	Camera Calibration
	Filters
	Morphological Operations
	Background Subtraction
	Segmentation

	Neural Networks
	Brief Introduction
	Training
	Convolutional Neural Networks

	Analysis
	CTU FNSPE Experiment Setup
	Pedestrian Tracking in context of Pedestrian Dynamics
	PeTrack
	Bamberger et al. Experiment
	Hatless Pedestrian MOT

	Model Design
	Model Overview
	Preprocessing
	Area of Interest
	Undistort Image
	Background Subtraction

	Object Detection
	Multiple Object Tracking
	Binary Codes Classification
	Naive approach - Estimation by Location
	Improved Approach - Estimation with Contours of Binary Code
	CNN Approach
	Binary Codes Classification Methods Results
	Dead-ends

	Completion of Incomplete Trajectories

	Results
	Data Analysis
	Comparison with State of the Art
	Improvements

	Disscusion
	Recommendations for Future Experiments

	Conclusion
	Content of Attached Medium

