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Abstract

This thesis presents a secure Over-the-Air update model designed for IoT devi-
ces. This model is created based on a research of existing FOTA architectures
and a built threat model concerning the OTA update process. The model
is adaptable for various IoT platforms and thus it serves as a framework for
a platform-specific OTA update design creation. It is followed by a practical
utilization of the model consisting of an OTA update architecture designed
for ESP32 devices. The architecture is implemented considering the existing
ESP-IDF framework OTA solution providing a secure OTA update solution for
an environment with ESP32 devices. The implementation is tested on ESP32
DevKitC revision 1 device.

Keywords Internet of Things (IoT), IoT security, OTA update, firmware
over-the-air (FOTA), secure OTA update, ESP32
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Abstrakt

Tato práce představuje bezpečný model pro Over-the-Air aktualizace IoT za-
řízení. Tento model je vytvořen na základě rešerše existujících FOTA ar-
chitektur a vytvořeného modelu hrozeb pro proces OTA aktualizace. Model
je adaptovatelný na různé IoT platformy, a tedy slouží jako framework pro
tvorbu designu OTA aktualizace pro specifickou platformu. Následuje prak-
tické využití modelu sestávajícím z architektury OTA aktualizace navržené
pro zařízení ESP32. Architektura je implementována s ohledem na existu-
jící řešení OTA aktualizace ve frameworku ESP-IDF a poskytuje bezpečné
řešení OTA aktualizací pro prostředí se zařízeními ESP32. Implementace je
otestována na zařízení ESP32 DevKitC revize 1.

Klíčová slova internet věcí (IoT), bezpečnost IoT, OTA aktualizace, firmware
over-the-air (FOTA), bezpečná OTA aktualizace, ESP32
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Introduction

Internet of Things (IoT) devices are nowadays very widely used in many
branches of industry as an essential part of modern product functionalities.

According to a study from the George Mason University [1, p. 1-2], it is es-
timated that the total global impact of IoT technologies could generate from
$2.7 trillion to $14.4 trillion in value by 2025, causing major cost savings and
productivity gains.

These devices are commonly accessible over the Internet, have limited com-
putational power, hence limited security and cryptographic resources. This
provides a large attack surface with many threats and potential vulnerabilities,
rising concerns about the security of IoT devices, given the circumstances that
IoT devices provide such important functionalities. In terms of these facts,
many papers have recently focused on security testing and exploitation of
vulnerabilities found in IoT devices. For instance, in [2, p. 143], a threat of
unprofessionally implemented IoT home projects based on ESP32 microcon-
trollers, that resulted in a vulnerable network environment was brought to
light and laboratory exploited poor implementation of data transfer between
ESP32 client and server application.

One of the potential threats is running an outdated or spoofed firmware image
that contains known vulnerabilities and bugs that could be furtherly exploited
without any significant effort. Thus, keeping IoT device firmware up to date
is an essential process to limit the possible attack surface. Generally, firmware
updates are required to provide new system functionalities, bug fixes and to de-
liver security patches for discovered vulnerabilities. Not performing firmware
updates would provide a weak spot in the network environment.

Internet of Things devices can usually be updated on-site by physically up-
loading the firmware image into the device using its available interface such
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Introduction

as RS232. However, physical updates are remarkably expensive because of
the need for physical interaction with the device which increases the costs of
transportation, technical worker’s engagement and customer time. This ap-
plies especially in the automotive industry. In [3, p. 1], Ghosal et. al. pointed
out a recent example of a vehicle recall, described by Barrett et. al., where
Volkswagen company was forced to recall 11 million vehicles it had sold for
the last 8 years due to the bug in the emissions control software.

The solution for the described issue is a remote firmware update – FOTA
(Firmware Over the Air), which eliminates the need for the physical presence
of a real person to assist with the update performance and other user restric-
tions associated with the update process. Although FOTA updates provide
significant cost reduction, its realization turns out to be a quite complicated
task as a vast number of Internet of Things developers produce such hetero-
geneous devices. [4, p. 1]. This thesis focuses on security issues related to the
FOTA update process.

In the first section, theoretical research of existing Over-the-Air update solu-
tions will be performed. Related technologies and update architectures will
be analyzed and searched for weak spots. As aforesaid, the IoT device world
is remarkably heterogeneous and thus IoT devices differentiation will be stud-
ied considering their computational power.

Secondly, the gathered knowledge from the previous section will be utilized to
identify possible threats and attack surface of the update process. A compre-
hensive threat model will be built, and possible attacks will be described.

Based on the theoretical research and the built threat model, a general
Over-the-Air update model for IoT devices will be proposed. This model
will cover the attack surface identified in the threat model, thus providing
a secure and adaptable framework for OTA update implementation for vari-
ous IoT platforms.

In the following section will be performed a theoretical analysis of the ESP-
IDF Over-the-Air update solution for the ESP32 device family. Furthermore,
the previously proposed general OTA update model will be used as a frame-
work to adapt for usage with the ESP32 device family and a specialized OTA
update model will be created for this family. Followingly, both the ESP-IDF
and specialized OTA update solutions will be subjected to comparison and
major differences will be listed.

Lastly, the secure OTA update will be implemented on the ESP32 platform
based on the adapted update model, considering the ESP-IDF solution. The
resulting OTA solution will be tested in a real network environment.
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Goals

The main goal of this thesis is to create a secure firmware Over-the-Air update
framework for IoT devices.

Firstly, a theoretical research of existing Over-the-air update solutions de-
signed for IoT devices is to be performed and then practically utilized to
build a threat model that aggregates the possible security vulnerabilities of
the update process.

Secondly, based on the research and the built threat model, a general secure
Over-the-air update model, which covers the whole attack surface of OTA up-
dates will be proposed.

Thirdly will be performed a theoretical analysis of the ESP-IDF OTA solution
for the ESP32 device family and a specialized OTA model for this platform
will be created based on the proposed general model. Differences between the
ESP-IDF and the specialized solutions will be listed.

Lastly, the secure OTA update will be implemented on the ESP32 platform
using the proposed ESP32 model and the existing ESP-IDF solution. Imple-
mentation will be tested in a real network environment.

The benefit of this thesis will be a secure and adaptable OTA update model,
that can be utilized as a framework for implementing OTA updates on various
IoT platforms, and implementation of secure OTA updates available for widely
used ESP32 devices.
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Chapter 1
State-of-the-art

In this section, related work that focuses on secure OTA updates for IoT
devices is analyzed. Existing update architectures and known issues concern-
ing FOTA are researched and briefly reviewed.

1.1 Related work
In [5], the author has analyzed the state of the ESP32 MCU security, which
is one of the most commonly used IoT platforms today. The OTA update
mechanism is briefly described and security requirements regarding the mech-
anism are listed. This thesis extends the Over-the-Air update section of this
work and provides a more thorough research of this topic.

In [3, p. 1-6], the authors defined the reasons for the need for OTA updates
with a focus on the automotive industry. They also identified the attack
surface and created their update model for autonomous vehicles. The main
addressed issues in this work are:

• In the automotive industry, performing a physical upgrade is extremely
expensive while truly necessary if FOTA is not implemented. Researchers
were able to hack and remotely stop Jeep Cherokee on a highway, which
triggered a recall of 1.4 million vehicles by the Chrysler automobile com-
pany. [6]

• Many existing update architectures are not designed securely and pri-
marily neglect data confidentiality. For example, when an external cloud
is being used as an update distribution server and the firmware im-
age is not distributed pre-encrypted, then the cloud operator is able
to access the data and determine which automobiles in the system run
which firmware version, causing information disclosure.

5



1. State-of-the-art

The output of this work is a secure OTA update model for autonomous ve-
hicles (STRIDE) with provided functionality and performance testing. To
review, this mode utilizes CP-ABE (Ciphertext-Policy Attribute-Based En-
cryption) technology, which combines encryption and covert access to data,
which allows the update provider to use the external cloud for distribution
safely. However, the STRIDE model is closely focused on the automotive in-
dustry, and scalability to other branches of industry has not been tested.

Another OTA update model is designed in [7], where authors used blockchain
technology for firmware integrity verification. As a part of performance im-
provement, the authors considered the possibility of delta update, where only
altered parts of firmware are transferred to the updated device. The pro-
posed architecture uses a blockchain server in combination with the “firmware
manager” device, which in cooperation oversees the firmware integrity in all
managed IoT devices.

To assess, the authors presented an interesting blockchain use case in the
OTA update process and high-performance focused OTA model implementing
delta updates. Nonetheless, this model focuses strictly on integrity verification
and ensures neither any data confidentiality nor authenticity, even though it
is presented as a complete update model. This confirms the concerns stated
in [3, p. 1], where OTA models that neglect data confidentiality were men-
tioned. Moreover, in the implementation of this solution, is used the md5
hash function, which is no longer considered secure [8] and any mitigation for
physical attacks is not provided.

In [9], Hittu Garg and Mayank Dave analyzed the security threats of commu-
nication with IoT devices using cloud services and designed a communication
model implementing REST API and Middleware. It was found that the use
of PKI and firewall is not suitable for the IoT environment due to the high
heterogeneity of computing capabilities of IoT devices (in particular, not all
IoT devices are able to use IP protocol).

For this reason, the authors have introduced the following communication
schema:

1. IoT devices are locally connected to the network (not necessarily using
the IP protocol).

2. IoT devices are isolated from the outside world and communicate with
the Internet using the “IoT Gateway” that is computationally sufficient
to communicate over IP protocol and ensure security with PKI.

3. The IoT gateway authenticates to Middleware on the Internet and com-
municates with it using the REST API

6



1.2. More related work

4. Secure communication between IoT Gateway and Middleware is guar-
anteed by usage of PKI and thus are the IoT computational limitations
shielded.

Computational limitations are one of the issues connected to secure OTA
update implementation in IoT and this paper provides a satisfying solution to
secure communication between the device and the Internet respectively the up-
date distribution server using the IoT Gateway as a proxy device that is com-
putationally sufficient to secure the communication using the standard PKI
algorithms. Another solution to this problem would be the usage of lightweight
algorithms that ensure secure communication as proposed in [10].

An onboarding and software update architecture for IoT devices with a pri-
mary focus on low-level constrained processors with smaller registers and
caches is proposed in [4]. The inability to carry out public-key cryptography
operations during the update process for authentication, key establishment,
etc. is resolved by using elliptic curve cryptography and key-locking mech-
anism which allows constrained devices to verify authenticity and integrity
in combination with computationally sufficient Gateway Device. Key-locking
is a mechanism, where each software image includes a next-update verification
key for verifying the integrity and authenticity of the next software image. [4,
p. 6] This mechanism also mitigates the threat of an invalid firmware update
image distributed by a former valid update server that has gone rogue, which
has been identified in [4]’s threat model.

The onboarding process is also a substantial part of the IoT device set-up
process whilst being separated from the update process. It ensures the ini-
tial device configuration such as loading information about the device model
number, manufacturer, and firmware version in the device. This affects the
decision making in the future firmware update process.

To review, this paper provides a solution for firmware integrity and authentic-
ity verification in constrained devices. On the other hand, it focuses strictly
on constrained devices and does not provide a general OTA update model
suitable for all IoT devices. Also, it does not ensure data confidentiality and
does not forbid the existence of multiple firmware update providers at the
same time.

1.2 More related work
In [11], the authors have identified the reasons for the need for OTA updates
(primarily for automobiles), defined parameters that the OTA update model
should meet, and listed requirements for the updated devices.
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1. State-of-the-art

“The problem arises at the moment when we have to download the whole pro-
gram as a file of the final device, and there in principle from the point of
view of memory optimization almost 80% of the memory is used by the main
program together with Flash Boot Loader.” [11, p. 1]

This identifies the issue of balancing the availability and cost ratio. For in-
stance, in this case, the OTA update will require much more memory in order
to perform without any significant service disruption. Hence, a comparison of
the cost savings that would the remote update deliver to the additional costs,
is a decisive factor in the matter of whether to implement it or not.

Research and implementation of an Over-the-Air update of a 32-bit micro-
controller using the GSM network for update distribution are presented in
[12]. The proposed solution demonstrates one of the methods of enabling
long-distance updating for IoT devices.

Security of ESP32 Internet of Things devices has been tested in [2], where com-
munication between the server and the ESP32 device via the UDP protocol
was intercepted and spoofed by exploiting the poor implementation of the net-
work environment and communication protocol. A Wi-Fi network password
has been cracked and used to gain access to the network, where a fake client
has been created and utilized to spoof data that were sent from the ESP32
device to the data collecting server. The authors have pointed out threats
related to the use of unprofessional implementation of the IoT firmware to
which ESP32 devices are vulnerable while being widely used in homemade
IoT projects.

1.3 Related standards
During the ongoing work on this thesis, several important FOTA-related stan-
dards were released. Even though RFC documents are not precisely consid-
ered standards, recommendations stated in them are extensively followed by
the Internet community. Therefore, it is recommended to adopt the below-
mentioned documents in production environment implementations.

1.3.1 RFC9019 – A Firmware Update Architecture for the
Internet of Things

This document proposes a general update architecture primarily for con-
strained devices, precisely Class 1 devices according to [13]. Security is pro-
vided by end-to-end algorithms that prevent installing spoofed firmware im-
ages by verifying authenticity and integrity protection using mainly asymmet-
ric cryptography. Data confidentiality protection is optional in RFC9019.
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1.3. Related standards

RFC9019 [14] mainly emphasizes the following demands in the update process:

• Manifest security – Update metadata contained in the manifest file
is essential for the decision-making process and thus must be the mani-
fest file authenticated and integrity protected.

• Decision-making process – Data available on the device and manifest
provided data are used in the decision-making process. This process
is a substantial part of device update as during this process is decided
whether to install the retrieved firmware image or not.

• Recovery strategy – In case of a negative result of the decision-making
process, there must be a reliable recovery strategy to avoid bricking
the device. “There are only two approaches for recovering from invalid
firmware: either the bootloader must be able to select different, valid
firmware or it must be able to obtain new, valid firmware.” [14, p. 12] This
implies that decision making is done by bootloader, though it is possible
to be done by previous firmware image if the device supports secure boot
technology.

• Bootloader security – Many constrained IoT devices do not use position-
independent code. Thus, the bootloader needs to copy the newly down-
loaded firmware image in the same location In the memory as was the
previous firmware located and vice versa, or multiple versions of the
firmware need to be prepared for different memory locations. It is as-
sumed that part of the bootloader will not be updated since a failed
bootloader update poses an availability risk. Due to the fact that this
part of the bootloader cannot be changed, it is recommended to use
post-quantum algorithms in it in order to mitigate the future threat of
quantum-accelerated key extraction.[14, p. 17]

• Lightweight protocol availability – As constrained IoT devices are
not able to use the Internet protocol stack for firmware downloads, rec-
ognizing update servers or status tracker servers, it is needed to sup-
port lightweight protocols that would serve instead of it. In [14], the
Lightweight Machine-to-Machine (LwM2M) protocol was given as an
example of an IoT device management protocol.

In addition, RFC9019 [14] points out several out-of-scope areas that need to
be considered by firmware authors like ensuring an energy-efficient design of
a battery-powered IoT device, creating incentives for device operators to use
firmware update mechanism or installing firmware updates in a robust fashion
with proper testing and recovery strategies.

Although RFC9019 [14] provides a viable solution for IoT updating, issues
concerning physical attacks on device memory are not addressed.

9



1. State-of-the-art

1.3.2 RFC9124 – A Manifest Information Model for
Firmware Updates in the Internet of Things (IoT)
Devices

As aforesaid, the manifest file contents are used in the decision-making process
of the firmware update procedure. The manifest file contains concise machine-
processable metadata that describes firmware images and offers appropriate
protection. This document describes the information that must be present in
the manifest. [15, p. 13] Manifest information elements are listed and provided
with the level of mandatoriness. These levels are optional, recommended, and
required. Further, the set of security requirements and related threats is pro-
vided with the list of required information elements.

Although, RFC9124 [15] is categorized as an informational document and
thus is not obligatory to follow by IoT solution manufacturers, it is highly
recommended to implement the provided security requirements and required
manifest information elements in a production environment in order to build
a proper decision-making process, respectively a secure firmware update im-
plementation.

1.3.3 RFC7228 – Terminology for Constrained-Node
Networks

“The Internet Protocol Suite is increasingly used on small devices with severe
constraints on power, memory, and processing resources, creating constrained
node networks. This document provides a number of basic terms that have
been useful in the standardization work for constrained node networks.” [13,
p. 1]

Many aforementioned papers emphasize extreme heterogeneity in the IoT
world. This implies that IoT devices will differentiate in the capability of
performing various cryptographic operations remarkably. Thus, it is useful to
propose a categorization standard for constrained devices environment in or-
der to simplify the process of selecting the most suitable algorithmic solution
for each device.

In RFC7228, constrained devices are categorized into three classes considering
the data size and the code size as shown on Figure 1.1.

According to [13, p. 1], the ability of the device to communicate on the Internet
in accordance with its class is the following:

• Class 0 devices most likely do not possess the resources required to
communicate directly with the Internet in a secure manner.

10



1.4. Research conclusion

Figure 1.1: Classes of Constrained Devices (KiB = 1024 bytes) [13, p. 8]

• Class 1 devices cannot easily communicate with other nodes on the
Internet employing a full Internet protocol stack such as HTTP and
TLS. However, they are capable enough to use a constrained Internet
protocol stack on their own such as CoAP (Constrained Application
Protocol) on their own.

• Class 2 devices are fundamentally capable of most of the Internet proto-
col stack that is used commonly on mobile or desktop devices and servers.
However, these devices can still benefit from using the lightweight proto-
col stack through better energy efficiency and consuming less bandwidth.
ESP32 microcontroller is a typical example of a Class 2 device.

1.4 Research conclusion
In conclusion, many papers have recently focused on secure updates in the
Internet of Things. Several update architectures have been proposed, how-
ever, most of them failed to ensure confidentiality, authenticity, and integrity
during the whole process or have not provided sufficient generality and com-
plexity to be used universally in a secure manner. In accordance with the
discovered findings and the nature of IoT devices, a need for a general OTA
update model for the Internet of Things has been identified.

The proposed update architecture should fulfill the following demands:

1. Security — The update should be maximally secure. All the features
of the CIA triad must be ensured throughout the whole process and all
the threats must be identified and mitigated.

2. Cost — Over-the-Air update should be significantly less expensive than
a physical on-site update considering all related costs.

3. Availability — The update should be performed causing the lowest and
shortest possible outage or limitation of device functionality.

11



1. State-of-the-art

4. Generality — The update architecture should be designed adequately
general in order to provide adaptability to heterogeneous IoT devices.

Besides, during the ongoing work on this thesis, several RFC documents that
support the IoT update architecture standardization were released by the
IEFT organization. Although the documents are released only as informa-
tional sources, it is highly recommended to follow the provided guidance in
the production environment.
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Chapter 2
Threat model

In this section, threat modeling of the Over-the-Air update is performed.
Threat modeling is an important part of building a secure mechanism of any
kind. Threats of the update process are analyzed and utilized to identify
vulnerabilities and model possible attacks. Those vulnerabilities are then pro-
vided with mitigations that are taken into account when building the update
model.

In this thesis, a STRIDE model created by Microsoft is used as a framework for
threat modeling. The STRIDE model provides a categorization for different
types of threats and simplifies the overall security conversations. [16] The
categorization is displayed on Figure 2.1.

Figure 2.1: Microsoft STRIDE chart [17]
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2. Threat model

2.1 Entity, process and trust boundary
identification

Firstly, entities and privilege boundaries are identified.

Entity, in this threat model, represents an actor that interacts with or pro-
duces the data in the update process.

Process is any kind of operation performed during the update process between
the acting entities.

The trust boundary (or privilege boundary) is used to represent the change
in trust levels as data flows through the process. Boundaries separate any
location where the level of trust changes. [18]

2.1.1 Entites
Several acting entities take place in the general update process:

1. FW Image Author – Entity that is responsible for the firmware de-
velopment.

2. Update Server – Update Server entity is responsible for the firmware
update distribution and maintenance, it should possess minimal infor-
mation about distributed data and update consumers. Update Server
can be a third-party service (e.g. external cloud service). This entity
employs its data storage – Server Storage – that can be also provided
by a third party.

3. Gateway Device – Gateway device is an optional entity that provides
a communication bridge between the Update Server and the IoT Device
in case of communication incapability of the IoT Device.

4. IoT Device – Entity that communicates with the Update Server, con-
sumes and stores the firmware update image. IoT Device entity em-
ploys its data storage – Non Volatile Memory (typically flash memory
or EEPROM).

2.1.2 Trust boundaries
Process data flows within the three trust boundaries:

1. Author – The firmware image is created in this trust boundary and thus
is not confidential within it. The FW Image Author entity operates in
this trust boundary.

14
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2. Update Server – The Update Server trust boundary is considered
untrusted as the operating entity (Update Server) can be any third-
party service. The transferred data is confidential in this trust boundary.
Only necessary information concerning the distributed data should be
available in this trust boundary.

3. IoT Device – Gateway Device and IoT Device entities operate here.
Data is processed within this trust boundary and thus are not confiden-
tial.

2.1.3 Processes
During the OTA update process are performed the following potentially vul-
nerable processes:

1. FW Image Upload is a process of uploading the developed firmware
image file and its metadata to the Update Server by FW Image Author.

2. FW Image Store is a process of storing the received firmware image
file in the Server Storage.

3. FW Image Load is a process of loading the firmware image file from
the Server Storage by the Update Server.

4. FW Update Request / FW Offer Response are processes both
initiated by the Gateway Device (resp. IoT Device) entity. They consist
of sending a request for a new update and a response to the offered
request to the Update Server.

5. FW Image Offer / FW Image Transfer are processes both initiated
by the Update Server Entity. FW Image Offer process is started in
reaction to previous FW Update Request and if formed of sending a new
available firmware update for the requesting device. FW Image Transfer
is an act of sending the proposed firmware update image from the Update
Server to the IoT Device.

6. Communication Bridge is used whenever Gateway Device is used.
It provides a communication channel between the Gateway Device and
the IoT Device. This channel is used completely off the Internet on an
internal LAN.

7. Data Write is a process of writing data by the IoT Device to the Non
Volatile Memory.

8. Data Load is a process of loading data from Non Volatile Memory to
the IoT Device.
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The defined entities, trust boundaries and processes are displayed on
Figure 2.2.

Figure 2.2: OTA update process threat model
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2.2 Threat identification and categorization
The proposed threat model forms an attack surface with several threats that
can later transform into vulnerabilities exploitable by attackers. Each seg-
ment of the threat model data flow diagram is analyzed using the STRIDE
modeling method in order to identify the threats of the OTA update process.
The relevant threats are then taken into consideration in the creative process
of the general OTA update model in the following sections. Mitigation for
those threats is proposed in the general OTA update model along with de-
rived security requirements. The identified threats with descriptions are listed
below.

2.2.1 Threats associated with the FW Image Upload process
a) Unauthorized Firmware Upload – An attacker is able to upload a spoofed

firmware update image to the Update Server. This requires the attacker
to spoof its identity and act as the FW Image Author entity. (S)

b) Man in the Middle – An attacker is able to spoof the identity of the
Update Server and intercept the communication between the FW Image
Author and the Update Server. Either the attacker can eavesdrop and
obtain the firmware image that is being uploaded or can tamper with the
image causing further distribution of malicious firmware to consumer IoT
Device. (T, I)

c) Update Server Overload – An attacker can upload a significant amount
of firmware images or other data and thus overload the Update Server and
prevent FW Image Author from uploading a valid firmware image causing
a Denial of Service type of attack. (D)

2.2.2 Threats associated with the Update Server
a) Data Leakage – Firmware update image, its metadata or confidential

information about devices in managed environment (see Section 3.4.3.1)
gets leaked from the Update Server or its data storage causing information
disclosure. (I)

b) Unauthorized Firmware Distribution – The stored valid firmware up-
date image is tampered with or a completely new spoofed image or an out-
dated valid is stored to the Update Server inside its trust boundary. This
firmware image is then considered valid by the Update Server and then
offered and distributed to the consumer IoT Device. (S, T)

c) Update Server Overload – Too many requests sent to the update server
could cause an outage or a poor implementation of onboarding the de-
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vices to the managed network in the managed environment could damage
availability. (D)

2.2.3 Threats associated with the communication between
Update Server and Gateway Device (resp. IoT Device)

a) Man in the Middle – An attacker can intercept the communication
between the Update Server and the Gateway Device and eavesdrop or
tamper with the transferred data. (S, I, T)

b) Fake Client – A fake client can send a firmware request to the Update
Server e.g. via replay attack and gain information about firmware images
maintained by it. This is considered a threat, especially in managed devices
environment. (S, I)

2.2.4 Threats associated with the IoT Device trust boundary
a) Managed Device Exploitation – A managed device, which partially

acts as a server and thus forms an attack entry point, is somehow exploited.
For example, via code injection attack. (T, R, I, D. E)

b) NVM Memory Attack – Contents of non-volatile memory such as flash
memory or EEPROM can be revealed or tampered with causing a spoofed
firmware image boot. (T, I)

c) Volatile Memory or Processor Attack – Contents of volatile memory
or a processor register set can be revealed or tampered with for example
via JTAG debugging tools. (T, I)

d) Bridge Communication Exploitation – An attacker is able to ex-
ploit the communication between the Gateway Device and the IoT Device
via eavesdropping or data tampering. A spoofed firmware image can be
inserted. (S, T, I).

Relevant threats have been identified in the OTA update process of IoT de-
vices. Those threats are taken into consideration and provided with mitigation
in the following general Over-the-Air update model. The primary goals that
an attacker wants to achieve in the OTA update scenario are the following:

• Installing a spoofed firmware image on the IoT device (and thus taking
control over the device),

• Disclosing the contents of firmware image files.
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Chapter 3
General OTA update model

In this section, the secure general OTA update model designed for IoT devices
is proposed. It provides a complete Over-the-Air firmware update architec-
ture along with security recommendations that mitigate the process-related
threats. This architecture is adaptable to any IoT device with specific com-
putational capabilities as it offers solutions to achieve the provided security
recommendations regarding the resources of the device. In addition, other
update-related issues such as firmware versioning, firmware image format or
IoT device classification are discussed and provided with recommendations.

3.1 Firmware Update Image format
Firstly, the format of a firmware image is discussed as the IoT device needs
to decode and install the image efficiently.

The firmware update image should consist of at least two objects:

1. FW binary file

2. Manifest file

The FW binary file includes the firmware code itself. As firmware can be
created in various programming languages (e.g. C, Rust, Python) or written
directly in assembly code and compiled for usage on various architectures [4,
p. 2], the firmware binary format is not discussed in this thesis, although it
is a mandatory part of update data. In case of delta updates (see Section
3.4.1), the FW binary file contains only differences against the currently run-
ning firmware on the consumer IoT device.

The manifest file contains the necessary metadata of the given firmware up-
date. This metadata is hereafter used during the update when the decision
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about update acceptance or refusal is made. Thus it is essential to provide
the manifest file with all the information needed for the decision making. Re-
quirements and terminology concerning firmware manifest files are described
in RFC9124 [15]. In the production environment, it is suggested to follow the
requirements provided by this document to build a secure update implemen-
tation.

A list of suggested manifest information elements based on [15] is provided
below:

• Firmware Version is a fundamental information manifest element.
The firmware version format is discussed in the following sections of this
thesis.

• Release Time Stamp element contains a date and time of firmware
image release.

• Firmware Image Description contains data about the given firmware
image such as size, formatting specifics or firmware image name.

• Supported Devices is a list of devices that are compatible with the
given firmware image. This can be potentially replaced by other descrip-
tive structures.

• Other Information Elements that are specific to the concrete IoT
environment.

• Manifest Signature must be included as the contents of a manifest
file are essential for update process security. The manifest signature
protects those contents against tampering and thus the consumer device
can verify the manifest file integrity.

3.2 Firmware version format
This framework does not provide any specific firmware versioning recommen-
dation, the version formatting convention is free to select by the firmware
developer. However, there is a requirement concerning firmware versioning
that needs to be adopted to secure the update process and a few general rec-
ommendations that help to achieve clarity in firmware version management
are listed below.

Although the firmware version format is mostly unconstrained, every version
that provides an important security patch or any other critical component
update must be marked. This can be done by including a security version in-
formation element in the firmware version. This security version element must
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be increased every time a new critical update is released. Firmware image with
security version lower than firmware image which is currently running on the
updated device must not be installed and in the best case not even offered for
installation by the Update Server.

In general, it is recommended to maintain simplicity, predictability and con-
sistency when choosing a versioning policy. It is essential for the firmware
update image to be recognized as important to install even for human users.
One of the possible ways for firmware versioning is semantic versioning de-
scribed in [19].

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible
manner, and

3. PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions
to the MAJOR.MINOR.PATCH format. [19]

Correspondingly to the proposed semantic versioning convention, here are
some suggestions for the implementation of the security version element:

• Separate version number – Add a separate number in the version
structure that represents the security version. The resulting version
format could look like this:
MAJOR.MINOR.PATCH.SECURITY_VERSION

• Existing version number – Include security version in the existing
version number.

• Separate information element in Manifest – Add a separate in-
formation element in the firmware manifest that represents the security
version.

3.3 Update schema overview
In this section, a broad update process overview is introduced along with
entity and process identification. The proposed OTA update schema consists
of four main phases, further referred to as processes, that are performed by
three entities. For the definition of entity and process, see the Section 2.1
A brief description of the acting entities and processes that correspond with
the previously created threat model is provided below. The OTA update
overview is displayed on Figure 3.1.

21



3. General OTA update model

3.3.1 Entity identification
Three entities act in the OTA update process: FW Author, Update Server
and the IoT Device.

• FW Author entity is responsible for the firmware development and
testing. Thus, the FW Author possesses the plain text firmware code and
versioning information. Security versions and other firmware metadata.
FW author is also aware of the capabilities of the firmware consumer
devices and carries assets that are necessary to ensure update security
(e.g. cryptographic keys).

• Update Server entity is responsible strictly for the firmware update
image collection, distribution and maintenance. In this schema, the
Update Server is separated from the FW Author, as it can be represented
by any third-party service, however, these two entities can be realized
as one while fulfilling all the demanded security measures. The update
server is considered to be an untrusted entity and thus it cannot possess
any information about the contents of data that are maintained by it.

• IoT Device entity represents the consumer device of the firmware up-
dates. The update images are retrieved from the Update Server. IoT
Device is able to read and process the data produced by the FW Author
entity. In the constrained environment (see Section 3.4.1) IoT Device
can be represented by a Gateway Device and the IoT device itself.

3.3.2 Process identification
Four main processes have to be performed within the described entities to
perform a successful OTA update.

1. FW Update Release is a process of the firmware development, testing,
and building the image and ended by upload to the Update Server. This
process is handled by the FW Author entity in cooperation with the
Update Server.

2. Update Initialization is a process when communication between IoT
Device and Update Server is started, a potential firmware update is of-
fered and first decision-making about the update acceptance is per-
formed. This process is handled by the Update Server and the IoT
Device.

3. Data Exchange process is conditional to the successful completion of
the Update Initialization process with a positive response. A complete
firmware update image data is transferred from the Update Server to
the IoT Device.
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4. Update Execution is a process where firmware image data is read,
decision-making is performed, and firmware is installed or recovered to
the previous image after rejection.

Figure 3.1: Update schema overview

3.4 Secure OTA model
A detailed secure OTA model designed for IoT devices is presented in this sec-
tion. Previously identified processes are described comprehensively together
with the security recommendations based on the threat model. Consumer de-
vice classification is proposed based on various computational capabilities and
alternative solutions for more constrained devices are presented to achieve the
recommended security measures.

3.4.1 Device Classification
As mentioned in Section 1.1, the world of IoT devices is remarkably heteroge-
neous and thus it is crucial to choose a proper set of cryptographic resources to
ensure security in correspondence to the computational power of the specific
platform. In this thesis, the following device classification is proposed:

1. Standalone devices are capable of using a modern and secure Internet
protocol stack (TLS) or its equivalents such as mbedtls [20].

2. Constrained devices are incapable of using such protocols and have
to ensure security alternatively.

This classification complies with the classification provided in RFC7228 [13]
where the Standalone devices correspond to the Class 2 devices and the Con-
strained devices correspond to Class 0 and Class 1 devices. For more infor-
mation, refer to Section 1.3.3.

If the IoT Device is classified as Constrained, it is required to use an alternative
solution to achieve the same security capabilities as the Standalone device.
The proposed alternatives are the following:
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• Gateway Device – The IoT Device is represented by the Gateway De-
vice and the IoT device itself. The Gateway Device is a Standalone
device that mediates all the communication with the outside world and
the security mechanisms for the IoT device. The IoT device itself must
not be able to communicate with the Internet by itself, all of the com-
munication must be performed over the Gateway Device. The commu-
nication between the IoT device and the Gateway Device must maintain
confidentiality, integrity and authenticity, which could be problematic
to achieve. Implementation of this Communication Bridge is specific to
the given environment and proper risk evaluation must be performed for
each design.

• Lightweight protocols – The security measurements are achieved by
using lightweight cryptographic protocols such as ACE [10], CoAP [21],
mbedtls [20], etc. The benefit of the usage of lightweight protocols over
the Gateway Device is the absence of potentially insecure communication
between the IoT device and the Gateway Device.

• Delta updates – During the delta update, only the difference between
the currently stored firmware and the new firmware image is transferred.
Devices with constrained memory resources will mainly benefit from
implementing delta updates as proved in [7].

3.4.2 Update release
Update release is the first phase of the OTA update process, is performed by
the FW Author entity and requires the availability of the Update Server.

Firstly, the firmware image is developed, properly tested and built considering
the computational capabilities of the consumer device. In the case of delta
updating, the FW author should be aware of previous firmware versions and
offer delta images for them.

After the new firmware is built, the manifest file is created. The manifest
contains all the metadata necessary for the decision-making performed by the
IoT Device. The contents of the manifest file are discussed in Section 3.1. If
any security patch is present in the firmware update, the security version dis-
cussed in Section 3.2 must be increased. Other features and security patches
should be projected in the firmware version information element in accordance
with the chosen versioning convention.

As aforementioned, the update server is considered to be an untrusted en-
tity and thus it cannot possess any information about the contents of data
that are maintained by it. To ensure data confidentiality, the firmware binary
and manifest file must be encrypted before uploading to the Update Server.
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Figure 3.2: Update release process diagram

In the fashion of the Security in Depth principle, it is desired for the FW
Author to be the only entity capable of encrypting the data for the consumer
devices. This precludes the use of pure symmetric cryptography because of
the threat of key extraction from the IoT Device. It is recommended to use
asymmetric cryptography in combination with a block cipher according to the
current secure cipher suites.

IoT Device must be able to verify firmware integrity and authenticity. The
best way to enable this is a digital signature. Always follow the current safe
cryptographic standards and guidelines provided by a recognized organization.
For example, the National Institute of Standards and Technology (NIST) pro-
vides recommended cryptographic standards and guidelines [22]. Also, remem-
ber to consider the capabilities of the consumer device. It is not recommended
to use HMAC for the stated purpose, as it relies on symmetric cryptography
and thus it could make the firmware data repudiable. [23]
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After choosing and preparing the cryptographic resources, the firmware bi-
nary and manifest files are digitally signed and followingly encrypted. The
sign-then-encrypt schema is used to prevent entities other than consumer IoT
Devices from verifying the firmware integrity and authenticity in the fashion
of the Security in Depth principle.

Subsequently, the firmware data is ready to be uploaded to the Update Server.
Several threats are associated with the upload process (see Section 2.2.1). Up-
load must be done over a secure connection (TLS) according to the current
standards. Neither the FW Author nor Update Server operate in a constrained
environment and thus using TLS resp. HTTPS is desirable.

After the secure connection is established, the FW Author must authenticate
itself to the Update Server in order to mitigate the Unauthorized Firmware
Upload threat. The authentication can be ensured in multiple ways (digital
certificates, username and password + MFA, etc.).

When the FW Author is authorized, the new firmware image is uploaded for
distribution. Note that the Update Server is not aware of any firmware ver-
sioning information. As the Update Server has to be able to recognize the
newest update for the given device model, the additional information about
the update version and device model compatibility must be provided by the
FW Author.

To summarize the update release process, the FW Author must own crypto-
graphic keys and resources for firmware signature, firmware encryption and
authentication to the Update Server. The secrets must be stored securely
and must be accessible only by authorized entities. Firmware images must be
uploaded over a secure connection and only after authentication and autho-
rization of the FW Author. The Update Release process schema is displayed
on Figure 3.2.

3.4.3 Update initialization
During the update initialization, the communication between the IoT Device
and the Update Server is started. Which entity starts the communication
is determined by the type of the update initialization. Two initialization types
are further discussed below: active and passive.

3.4.3.1 Passive initialization

Passive initialization is a scenario in which the IoT Device starts the communi-
cation and requests the update from the Update Server. Update Server waits
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for the requests and responds to them, it does not start any communication by
itself. The IoT Device must act strictly as a client device and Update Server
as a server device. IoT Device must not have any open ports and should not al-
low any entity to start communication with it (in the context of OTA update)
as any server-like behavior extends the attack surface. This scenario typically
applies to most IoT implementations, where the products are not managed
by any centralized authority e.g. smart home products. Those devices will be
further referred to as unmanaged devices. Keeping the unmanaged devices up
to date usually requires a periodic requesting the update server. This could
become an issue in the terms of energetic demands which should be taken into
account, especially in the implementation for battery-powered devices.

3.4.3.2 Active initialization

Active initialization is a scenario, where the Update Server starts the commu-
nication and offers the firmware updates to the IoT Devices that are managed
by it. These devices will be further referred to as managed devices. The
ability of the IoT Device to accept communication started by other entities
respectively the ability to accept any input, in general, extends the attack sur-
face and thus the active initialization should be implemented only in closed
network environments (the managed devices should not be accessible from
the Internet). This scenario applies to environments with an extensive infras-
tructure, where it is desirable to strictly control the IoT devices in use (for
example when the control is required by an inner security policy).

In both scenarios, the Update Server must authenticate itself to the IoT De-
vice to ensure data authenticity.

After the communication is initiated according to one of the described sce-
narios, the firmware update request message is sent followed by the firmware
update offer message from the Update Server (in the case of passive initial-
ization) or the firmware update offer message is sent directly (in the case of
active initialization).

The firmware update request format is specific to the given platform. It can
request the newest firmware available or just a specific firmware version. Note
that the Update Server may not be aware of the firmware versioning or the
model of the requesting device in favor of achieving maximum confidentiality.
In such case, the substitute firmware update identification provided by the
FW Author has to be used in the communication.

The firmware update offer response should contain the provided manifest file.
Its contents are decrypted by the IoT Device and the digital signature is ver-
ified. Security recommendations concerning the decryption and verification
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process are discussed further in Section 3.4.5. Once the data authenticity and
integrity are verified, the information elements in the manifest file are utilized
to perform a decision-making process of firmware acceptance. This process
is mostly platform-specific, however, the security version should be compared
to the currently running firmware security version by all means. Firmware
with the lower security version should be always rejected.

Subsequently, if the outcome of the decision-making process was positive, the
firmware offer response is sent to the Update Server, requesting a full firmware
image. Otherwise, the negative firmware offer response is sent optionally and
the OTA update process ends.

3.4.4 Data exchange

In the data exchange process, the IoT Device is already aware of the fact
that the firmware update is going to be performed. It is also aware of the
firmware version and other metadata due to the previous update initialization
and decision-making. The data exchange between the update server and the
IoT Device must maintain the CIA triad requirements.

To ensure confidentiality, the communication must be encrypted. In the fash-
ion of the Security in Depth principle, the fact that only already encrypted
data are transferred is not sufficient. The firmware image will be typically
transferred over the Internet and thus the use of TLS is ideal. If another
solution is used, note that it is recommended to ensure key ephemerality to
prevent replay attacks.

Note that the only integrity of data communicated between the IoT Device
and the Update Server is verified in this process. The integrity of the plain
firmware binary is verified in the following process.

The Update Server has already authenticated itself in the update initialization
process, however, if a new connection has been established in the meantime,
the Update Server must re-authenticate.

After the firmware image is transferred to the IoT Device, the connection
is stopped, and the rest of the update process is done offline on the consumer
device.

3.4.5 Update execution

The encrypted firmware image has been received from the Update Server and
is ready to be processed. The update execution is performed on the IoT De-
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vice and consists of multiple mandatory steps that are displayed on Figure 3.3.

Figure 3.3: Update execution process diagram

Firstly, the security configuration of the IoT Device must be checked. In this
thesis, a securely configured device is defined as a device that runs only verified
firmware and is protected against manipulation with its memory or registers.
If the device is not securely configured, the stored cryptographic keys, trusted
certificates, currently running firmware, etc. can be compromised or manipu-
lated making the further update process untrustworthy.

To achieve a securely configured IoT Device, the firmware integrity check must
be implemented and enabled. This requirement is usually fulfilled by using
a secure boot mechanism. At the same time, a device’s memory must be pro-
tected against read-out and its integrity must be checked. This requirement
is can be fulfilled by encrypting the contents of the memory, the integrity
check is performed by the secure boot mechanism. Any interfaces that allow
direct communication with the chip such as JTAG must be disabled. The
integrity and memory protection must be used concurrently, otherwise, the
IoT Device could be vulnerable to time-of-check to time-of-use type of attack,
as stated in [24].

If the security check has passed successfully, the further performed operations
can be trusted. Next, the firmware image is decrypted, and its integrity is ver-
ified.

In case of successful decryption and signature verification, the identical decision-
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making process as in the update initialization process is performed. This step
is mandatory to prevent the scenario of previously sent manifest and firmware
image mismatch that could lead to installing a wrong firmware image.

After the successful decision-making with a positive outcome, the firmware
image is installed. Installation of the firmware image is typically a process of
storing the firmware binary to a bootable memory partition. However, this
process is platform-specific and can be more complex.

Finally, the IoT Device is rebooted, and new firmware is booted. After the
boot, a firmware self-test is performed to ensure that the installed firmware im-
age is functional. The form of the self-test is platform-specific. If the firmware
self-test passed, the firmware OTA update process is finished successfully. In
the case of the managed devices environment, it may be desirable to inform
the supervisor Update Server about the update result. The information can
be sent to the Update Server by the IoT Device itself or the Update Server
can request the information for example after a specific timeout passed after
the data exchange process is done.

The update execution can fail to security configuration check failure, un-
successful decryption or integrity verification, the negative outcome of the
decision-making process, or a firmware self-test failure. In such case, the orig-
inal firmware may not be in a bootable state due to the constrained memory
resources and thus the failure could cause bricking of the IoT Device. Hence,
it is important to implement a firmware recovery strategy that will rollback
to the original firmware image in case of update execution failure.

For Standalone devices, it is possible to create multiple bootable partitions
and store the new firmware on the other partition. The recovery strategy
would be to switch to the previous boot partition.

For Constrained devices, a recovery strategy can be implemented with the use
of Gateway Device, which would provide the additional temporary storage to
store the original firmware image and recover the device in case of failure.
Delta updating could be also beneficial as it significantly reduces the memory
requirements.

3.5 Environment with a dynamic set of FW
authors

In this section, an OTA update solution for an environment with a dynamic
set of FW authors is discussed. In this environment, multiple FW authors
can develop and distribute the firmware images. Those FW authors are part
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of a set of certified firmware authors managed by the product Manufacturer,
which is a new acting entity in the OTA update process specific for this en-
vironment. The Manufacturer can certify new FW Authors and revoke the
certifications of the previously certified FW Authors.

The firmware validity is evaluated by the IoT Device mainly with the use of
asymmetric cryptography when it relies on the fact that only the FW Author
owns the corresponding cryptographic keys. The issue that arises with the
dynamic set of FW Authors is that the IoT Device must somehow check if the
certification of the given FW Author is not revoked.

This issue can be solved by using different cryptographic keys for each firmware
image. However, it is required to validate the keys before accepting the
firmware update. Two ways of key validation are proposed in this thesis:

a) PKI — The Manufacturer establishes its certification authority and certi-
fies the FW Authors with issued certificates. The root certificate must be
pre-installed in the IoT Device. After the IoT Device retrieves the firmware
image from the Update Server, the FW Author is contacted and authen-
ticated using the certificate. After the authentication, the cryptographic
keys are downloaded from the FW Author securely and the update process
can continue. However, this solution requires the involvement of both the
FW Author which has to distribute the keys, and the Manufacturer which
has to create and maintain the PKI environment with distribution of the
CRL (Certificate Revocation List).

b) Key-locking – If the IoT Device is isolated from all communication apart
from the Update Server (for example in the Active updating environment),
the key-locking mechanism, presented in [4] can be utilized. The Man-
ufacturer issues the cryptographic keys for decryption and verification of
the following firmware image that are attached to the currently distributed
firmware image by the FW Author. If the FW Author instance is to be
revoked, the Manufacturer will stop issuing the keys for it. In this case,
it is needed to enforce the device update as the revoked FW Author al-
ways possesses the keys for the next update image. Moreover, the IoT
Device must validate that the keys are issued by the Manufacturer entity
without contacting it (the FW Author can spoof the fake keys to the dis-
tributed image). This can be accomplished by deriving the keys using the
pseudo-random sequence with a secret seed that only the IoT Device and
the Manufacturer are aware of. The distribution of the seed is part of
onboarding the device to the environment problem. This solution is more
feasible in the Active updating environment due to the demand for the
update enforcement.
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Chapter 4
ESP-IDF OTA implementation

analysis

In this section, the ESP32 platform and the ESP-IDF framework are briefly
introduced and the related OTA update solution is analyzed considering the
proposed solution.

4.1 ESP32 and ESP-IDF
ESP32 is a feature-rich MCU (microcontroller unit) with integrated Wi-Fi
and Bluetooth connectivity for a wide range of applications that implements
the SoC (System on Chip) technology developed by the Espressif Systems
company. [25] It utilizes freeRTOS to handle multitasking. Many peripher-
als, wireless connectivity, and multiple development frameworks are available
and thus the ESP32 platform is widely used not only in-home project IoT
implementations.[26] Moreover, Espressif Systems offer multiple ESP32 mod-
ifications with various specification in order to provide a suitable module for
each use case (ESP32-C, ESP32-S, etc.). [25]

“ESP-IDF is Espressif’s official IoT Development Framework for the ESP32,
ESP32-S and ESP32-C series of SoCs. It provides a self-sufficient SDK for
any generic application development on these platforms, using programming
languages such as C and C++. ESP-IDF currently powers millions of devices
in the field, and enables building a variety of network-connected products, rang-
ing from simple light bulbs and toys to big appliances and industrial devices.”
[27]

The ESP-IDF provides the OTA update solution for ESP32 devices which
is going to be analyzed in the following sections. In this thesis, the solution in
ESP-IDF version 4.4.1 is analyzed. At the time of the analysis performance
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(December 2021), version 4.4.1 is the latest stable release version of ESP-IDF
and thus it can be used for production. [28]

4.2 ESP-IDF OTA for ESP32 analysis
In this section, the Over The Air Updates solution of ESP-IDF v4.4.1 is an-
alyzed and reviewed according to its documentation [29], the example appli-
cation source code [30] and the implementation source code [31]. ESP-IDF
OTA update process will be referred to as update process in this section.

The update process can be divided into four phases: update release, transfer
to device, validation and Launch + App Rollback Process.

4.2.1 Update release
Firstly, the update release phase is reviewed. After the new firmware version
is developed, the image is optionally digitally signed. The ECDSA deter-
ministic algorithm with the NIST256p elliptic curve and the SHA256 hash
function is used. This signature complies with the RFC6979 [32] informa-
tional document. If this version is a significant security patch, the value of
the security version is increased. The security version value is an attribute
of the esp_app_desc_t structure [33] which represents the firmware manifest
data. This structure is prepended to the firmware binary and the firmware
update image is published.

The authenticity and integrity of the firmware are ensured by a digital sig-
nature that should be used whenever this solution is implemented. How-
ever, data confidentiality can be compromised if any external service is used
as a distribution server as the firmware image is not distributed in an en-
crypted state. Note, that during the ongoing work on this thesis, a pre-
release version of ESP-IDF v5.0 [34] has been released. This version contains
the OTA Upgrades with Pre-Encrypted Firmware feature [35] which resolves
the confidentiality compromise problem. The security version values meet the
firmware image format requirements of the proposed OTA solution in Section
3.2.

4.2.2 Update image transfer
Once the firmware image is published, it is transferred to the consumer device
in the following steps.

The device establishes a connection with the distribution server via the HTTPS
(or HTTP) protocol and queries for available updates. Then the device pre-
pares an empty partition to store a new firmware image by resetting the rel-
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evant memory spaces to 0xFF values. Afterward, the firmware update image
is downloaded and stored in the prepared partition. Then the security ver-
sion of the downloaded firmware image and the original firmware image are
compared. If the security version of the downloaded image is lower than the
security version of the original image, the update is rejected.

Confidentiality, integrity and authenticity are ensured by using the HTTPS
protocol which is configured correctly in the source code. However, the in-
correct configuration of the HTTPS connection could make the connection
vulnerable. The esp-tls [36] wrapper of mbed-tls [20] library which used in the
analyzed implementation does not check the certificate validity, as pointed
out in [5, p. 62-63].

4.2.3 Update validation

After the new firmware image is stored on the prepared partition, verification
of integrity and authenticity is performed by verifying the digital signature in
the manner of the RFC6979 [32] document. In case of verification failure, the
stored firmware image is deleted from the partition and the device is restarted.
In case of verification success, the partition with the new firmware is set as the
boot partition and the update process continues.

4.2.4 Launch and App Rollback Process

If the firmware is validated, the device is rebooted and boots from the selected
partition. The App Rollback Process is used to test the new firmware function-
ality and prevents bricking the device by returning to the original firmware.
It is an implementation of the recovery strategy proposed in Section 3.4.5.
The detailed App Rollback Process and changes of firmware image state are
displayed in Figure 4.1.

Firstly, the bootloader verifies the state of the image in the boot partition, ad-
justs the state of the image (see Figure 4.1) and continues to boot or ends the
boot sequence. In the case of a new firmware image (ESP_OTA_IMG_NEW
state), it adjusts the status and continues to boot. The selected image is booted,
and a firmware self-test is performed. The state of the image is updated ac-
cording to the result (see Figure 4.1) and the boot process is completed re-
spectively, the boot sequence is terminated.

The authenticity and integrity may be compromised if not verified before
the boot. Confidentiality may be compromised if memory contents are not
encrypted. ESP-IDF offers both the secure boot and flash encryption features.
The time-of-check-to-time-of-use (memory manipulation after its verification)
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type of attack is possible if the secure boot and flash encryption are not used
concurrently. [24]

Figure 4.1: App Rollback Process in ESP-IDF OTA update

4.3 Analysis summary
The analysis of OTA implementation for ESP32 in ESP-IDF is summarized
in this section.

ESP32 devices have enough memory, computational power and cryptographic
means to use a standard Internet protocol stack and are able to perform a se-
cure OTA update without the use of any additional devices. Hence ESP32
is classified as a Standalone device according to Section 3.4.1.

The ESP-IDF implementation of the OTA updating does not ensure data
confidentiality throughout the whole update process. However, in the newest
pre-released version of ESP-IDF, this issue is resolved (since February 2022)
by implementing the OTA Upgrades with the Pre-Encrypted Firmware fea-
ture.

Otherwise, the ESP-IDF provides a sufficient set of resources to implement
a secure OTA update if configured correctly. The esp-tls library which me-
diates the functionality of HTTPS protocol must be configured to verify dig-
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ital certificates and the use of HTTP protocol must be forbidden, the pre-
encrypted firmware image feature must be utilized to ensure data confiden-
tiality and a secure boot must be used with the flash encryption concurrently.
For further information about secure configuration of ESP32, see Section 5.1.1.
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ESP32

A complete solution for secure OTA updating on ESP32 devices is intro-
duced in this section. Firstly, the general OTA update model proposed
in Section 3 is adapted for the usage with ESP32 devices. The proposed de-
sign is then subjected to comparison with the ESP-IDF OTA solution analyzed
in Section 4. Based on the comparison, an implementation design that pro-
vides a complete solution for secure OTA updating is created, implemented
and tested. Note that an update with passive initialization is implemented.

5.1 General OTA model adaptation
The ESP32 MCU is classified as a Standalone device (see Section 3.4.1) as as-
certained in Section 4. Thus, it is able to utilize a standard Internet protocol
stack, for example the mbedtls [20] library for communication over TLS con-
nection. Secure boot and flash encryption features are also available in the
ESP-IDF.

5.1.1 Device configuration
Beforehand, the ESP32 must be configured to use the secure boot feature and
the flash encryption feature to fulfill the demands of the general OTA update
model. The JTAG debugging interface is disabled by default if the secure
boot is enabled. [24]

The secure boot must be configured according to [24]. In production, always
use the One-time Flash secure boot option. The reflashable bootloader is ap-
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propriate only for testing.

The flash encryption must be configured according to [37]. Note that in pro-
duction, the Release mode of flash encryption must be used. Also, be aware
of the fact that flash encryption can be disabled and enabled only a limited
number of times.

For the detailed instructions for device security configuration and crypto-
graphic resources preparations, see Section 5.3.1.

5.1.2 Update release
The firmware binary and manifest are created. After that, the firmware mani-
fest will be signed with the RSA signature algorithm with the private key size
of 3072 bits and SHA256 hash. The key size complies with the pre-encrypted
image structure used in ESP-IDF. The firmware binary will be signed with
the deterministic ECDSA algorithm with the usage of the NIST256p elliptic
curve and the SHA256 hash function, which is required by the provided secure
boot feature. After the data is signed, the firmware image and the manifest
file will be encrypted using the RSA asymmetric encryption. The manifest file
with the appended signature can be encrypted using pure RSA with a 4096-
bit public key as the size of the data is smaller than 4096 bits. Alternatively,
the manifest file and the signature can be encrypted separately and merged
into a single file subsequently. The firmware binary along with the attached
manifest file must be encrypted using RSA encryption in combination with
a block cipher (AES-256) as the data is larger than 4096 bits.

Next, the TLS connection with the Update Server is established, the FW Au-
thor is authenticated, and the new firmware image data is uploaded securely.

5.1.3 Update initialization and data exchange
As the passive initialization update is being designed, the consumer ESP32 de-
vice starts the communication with periodic querying of the available update.
The connection with the Update Server is established over TLS and a digital
certificate issued by a trusted CA is verified by the ESP32. The firmware
update manifest file is queried providing the Update Server with device type
information. After the manifest file is transferred securely to the ESP32, it
is decrypted, and the signature is verified using the RSA algorithm with keys
corresponding to keys used by the FW Author.

After successful signature verification, the decision-making process that con-
sists of the new firmware security version and current firmware security version
comparison is performed. Additionally, a firmware version is compared to pre-
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vent installing the identical firmware image.

If the decision-making process had a positive outcome, the Update Server
is queried for the corresponding firmware binary which is subsequently down-
loaded over a TLS connection performing the data exchange process.

5.1.4 Update execution
The obtained firmware binary data is decrypted with the corresponding pri-
vate RSA key and the digital signature is verified using the secure boot public
key. Note that both the firmware binary and the firmware manifest file were
transferred together on the device. The manifest file data is loaded, and the
decision-making process described in the previous section is performed again
to prevent a faulty firmware image installation.

Followingly, the validated firmware binary is stored on another available mem-
ory partition, and the ESP32 is rebooted. After the successful secure boot,
the firmware performs a self-test. If the self-test fails, the original memory
partition is set as a boot partition and ESP32 is rebooted again. Otherwise,
firmware continues to run, and the update process is completed successfully.
This fulfills the requirement for the recovery strategy implementation.

The overall process of successful secure OTA update is displayed on Figure
5.1. If the procedure fails at any point of the update, the faulty data must
be erased from the ESP32 device and the recovery process must take care of
reverting to the original firmware image.

5.2 ESP-IDF and proposed design comparison
The main differences between the proposed and the ESP-IDF OTA solutions
are the following:

a) In the ESP-IDF solution, the manifest data structure is prepended to the
firmware binary file in the build process. During the OTA update process,
the entire firmware image is downloaded into the device and the manifest
data extraction and decision-making process is done subsequently. On the
other hand, in the proposed solution, the manifest data file is distributed
both independently and with the firmware binary providing a significant
optimization as the image decryption process may be relatively exhausting
considering the computational power of the given IoT device.

b) The analyzed version of the ESP-IDF does not ensure data confidential-
ity, as the firmware image is transferred unencrypted, whilst the proposed
solution does not allow any information disclosure.
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While a) describes only a difference in the FOTA process efficiency, in b) the
ESP-IDF solution does not meet the security requirements of the proposed
framework and thus cannot be utilized as a secure solution for OTA updating.
However, the difference b) is veiled in ESP-IDF v5.0 pre-release in the pre-
encrypted firmware image feature. This feature complies with the proposed
framework and can be used to ensure secure OTA updating if configured
correctly.

Figure 5.1: Successful OTA update on ESP32
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5.3 ESP32 secure OTA environment
implementation

In this section, a complete solution for secure OTA updating integration to
the environment with ESP32 devices is presented. The solution consists of
two applications implementing the FW Author and the Update Server and
a secure OTA update solution for ESP32 devices which utilizes the existing
OTA Upgrades with Pre-Encrypted Firmware solution pre-released in ESP-
IDF v5.0. In the following sections, the implementation details are described,
and an instruction guide for a secure FOTA setup is supplied.

5.3.1 Cryptographic resources establishment and device
configuration

Before the secure OTA update is implemented, cryptographic keys should be
generated and an ESP32 device should be configured to fulfill the security
requirements of the provided solution. Cryptographic keys should be gener-
ated strictly on devices with proper entropy sources using secure libraries such
as OpenSSL.1

1. Generate an elliptic-curve key pair for secure boot using a NIST256p
(also known as prime256v1) curve. Note that this key pair should be
used only along with ESP32 revision 1 devices. For other ESP32 revi-
sions, refer to related documentation of the secure boot implementation.

2. Generate an AES-256 key for flash encryption.

3. Generate a 3072-bit RSA key pair for manifest digital signature.

4. Generate a 4096-bit RSA key pair for manifest encryption.

5. Generate a 3072-bit key for firmware pre-encryption.

6. Configure the bootloader to use secure boot and flash encryption features
with the generated keys concurrently according to the used ESP-IDF
version documentation. Use release modes of the features in a produc-
tion environment. It is recommended to configure both features before
reflashing the bootloader. If the bootloader is reflashed in release secure
boot mode, the subsequent reflashing for flash encryption establishment
might not be possible.

7. Generate a cryptographic key pair for secure communication with the
Update Server and obtain a trusted certificate for the Update Server.

1 Note that the provided key lengths are not arbitrary, although they can be subject of
change in the future. The cryptographic key lengths are discussed in Section 5.1.2
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5.3.2 FW Author application
The FW Author application is a utility that allows the firmware author to
upload the built firmware binary into distribution (Update Server) securely.
The application utilizes the generated cryptography resources to transform
the plain binary file into secured files that can be distributed to consumer
devices.

5.3.2.1 Application setup

Firstly, the FW Author application must be configured using the generated
cryptographic keys, upload to the Update Server and perform securely. The
application requires Java 8 installed.

1. Create a Java KeyStore (e.g. in PKCS #12 format) and import the
private manifest digital signature key and the private secure boot signing
key.

2. Secure the KeyStore with a password as well as the imported keys.

3. Locate the resources folder and insert the public key for firmware pre-
encryption, the public key for manifest encryption and the created Key-
Store file.

4. In the resources folder, locate the application.properties file and config-
ure the KeyStore parameters, public keys for encryption and the Update
Server URL. The provided URL will be used to upload the firmware im-
age data.

5. Run the application on a local network. Note that the application ex-
poses a RESTful API that is used to perform operations. The applica-
tion uses secret cryptographic resources and automatically uploads the
provided data for distribution. Thus, it should never be accessible from
the Internet or an untrusted network.

5.3.2.2 Application usage

After the successful setup, the application can be used to secure and upload to
distribution any plain firmware binary file built in the ESP-IDF framework.
Note that the Update Server application must be configured and available to
upload the image successfully.

Usage of the FW Author application:

1. Include the public manifest digital signature key, private manifest en-
cryption key and private firmware pre-encryption key in the firmware
binary.
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2. Build a firmware binary file with ESP-IDF.

3. Send a POST request to the application /upload endpoint. The request
must contain the following mandatory parameters:

a) id (integer) – id that will be used by the Update Server to identify the
age of the firmware image (image with the highest id is considered
as the newest image)

b) deviceType (String) – a device type that is compatible with the
firmware image

c) fwName (String) – the name of the firmware, will be used by the
Update Server to identify the firmware image

d) firmwarePath (String) – path to the location of the built firmware
binary, authenticate the request in accordance with the implemented
authentication method

4. Collect the HTTP response. The following response codes are to be
expected:

a) 200 (OK) – The firmware image file has been uploaded successfully.
b) 404 (NOT FOUND) – The firmware binary file is not in the specified

location.
c) 422 (UNPROCESSABLE ENTITY) – Files configured in the appli-

cation.properties file cannot be loaded.
d) Server error response codes will be returned in case of any other error.

Refer to the application log for further information.

5.3.2.3 Application function

After the POST request is sent, the following procedures are performed:

1. The firmware binary is loaded and the manifest data is extracted.

2. Manifest data is digitally signed and encrypted using the provided keys
from the KeyStore.

3. The firmware binary is signed with the secure boot signing key.

4. The firmware encrypted image is created in the format compatible with
the ESP-IDF OTA solution. [38]

5. Both files are uploaded securely to the Update Server over HTTPS with
a single authenticated POST request
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5.3.3 Update Server application
FW Update Server application is responsible for maintaining the uploaded
firmware images and providing them to consumer IoT devices. It is based on
the Spring Boot framework and utilizes a MySQL database for firmware im-
age management. The application provides an API for easy implementation
of other data sources (by default, the local filesystem storage implementation
is used). It also allows the developer to easily configure the request filtering
and authentication implementation using the Spring Boot security configura-
tion.

5.3.4 Application setup
1. Create a Java KeyStore (e.g. in PKCS #12 format) and import the

Update Server private key and the trusted certificate of the Update
Server.

2. Setup a MySQL database with the provided create script.

3. Secure the KeyStore with a password as well as the imported key.

4. Locate the resources folder and insert the created KeyStore.

5. In the resources folder, locate the application.properties file and con-
figure the KeyStore parameters, SSL parameters, database URL and
credentials and a path for filesystem data storage.

6. Configure the authentication mechanism and request filtering in the Se-
curityConfiguration file located in the configuration package if needed.
Note that by default the application uses an HTTP Basic Authentication
mechanism with an enforced SSL connection and in-memory user man-
ager. If a more robust communication scheme is implemented, a more
robust authentication protocol such as OAuth 2.0 must be used (by de-
fault, the upload process is done via a single HTTP request). Rebuild
the application if any changes are applied.

7. Run the application on an Internet-accessible server. Note that the
application can be run as a Linux service.

5.3.4.1 Application usage and function

After the successful application and database setup, it is ready to accept and
distribute firmware images.
Usage of the Update Server application:

• Accept the firmware image upload — Available on the /uploadFile
endpoint with a POST request. Usage of this endpoint requires authen-
tication and is automatically used by the FW Author application. The
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endpoint returns OK (String) if the upload was successful, else a server
error is returned. The mandatory request parameters are:

a) manifestFile (file) – File containing the signed and encrypted man-
ifest data.

b) firmwareFile (file) – File containing the signed and encrypted firmware
image data.

c) id (integer) – id that will be used by the Update Server to identify
the age of the firmware image (image with the highest id is consid-
ered as the newest image)

d) deviceType (String) – a device type that is compatible with the
firmware image

e) fwName (String) – the name of the firmware, will be used by the
Update Server to identify the firmware image

• Request the newest firmware update manifest file — Available
on the /update/newest/manifest endpoint with a GET request. The
application will find the newest firmware update for the given device
type and sends its manifest file to the response output stream. 200
(OK) response is returned if manifest supply is successful, else 404 (NOT
FOUND) is returned.

The mandatory request parameter is deviceType (String) containing the
type of the device to supply the update to.

• Request the newest firmware update image file — Available on
the /update/newest/binary endpoint with a GET request. The appli-
cation will find the newest firmware update for the given device type
and sends its image file to the response output stream. 200 (OK) re-
sponse is returned if image supply is successful, else 404 (NOT FOUND)
is returned.

The mandatory request parameter is deviceType (String) containing the
type of the device to supply the update to.

5.3.5 ESP32 secure OTA interface

The ESP32 secure interface provides two basic functionalities that can be eas-
ily extended for a more complex solution. It is possible to check if any new
update is available with the check_for_update function and perform the up-
date to the newest firmware available with the perform_update function. For
further information about the usage of the interface, refer to the documenta-
tion of the secure_ota_esp32.h header file.
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5.3.5.1 Interface usage and function

The following steps are to be performed in order to use the interface properly:

1. Include the secure_ota_esp32.h header file to the developed application
and the configuration elements from the Kconfig.projbuild file.

2. Configure the values of EXAMPLE_FIRMWARE_UPGRADE_URL
and the CONFIG_UPDATE_CHECK_URL to use the given Update
Server.

3. To check for an available update, create a freeRTOS task to perform the
check_for_update function. This function connects to the Update Server
over a TLS connection, retrieves the firmware manifest and performs
a decision-making process.

4. To perform an update to the newest available firmware, run the per-
form_update function. This function creates a freeRTOS subtask that
utilizes the ESP-IDF Pre-Encrypted OTA Update solution [35] to per-
form the update.

5.4 Testing
The proposed secure OTA solution is tested in this section in a real network
environment.

5.4.1 Practical demonstration
To demonstrate, the ESP32 is used to control a bulb over a relay switch mod-
ule. The whole use of the OTA update environment implementation is cap-
tured in a video, which can be found in the media attached to this thesis. The
process is completed within the following sequence:

1. Environment starts-up.

2. ESP32 connects to the network and runs the current firmware.

3. ESP32 requests the update with a negative response.

4. The new firmware update image is posted to the FW Author application.

5. FW Author processes the firmware image.

6. Firmware update data is uploaded to the Update Server.

7. ESP32 requests the update with a positive response.

8. ESP32 requests the firmware binary and performs the secure OTA up-
date.
A detailed process description is provided in the attached video.
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5.4.2 Performace testing
The update check process and the update performance process have been
tested 10 times each. The testing was performed using the ESP32 DevKitC
revision 1. The freeRTOS tasks of the standard firmware functionality and
the OTA update are created both with the highest priority. The time of each
process iteration has been measured with the following results:

1. The average update availability check took: 9.24 seconds.

2. The average firmware update performance took: 29.18 seconds.

3. Minor outages of the standard firmware functionality were recognized
when running the firmware tasks and the OTA task with the same pri-
ority.

All measurement data is provided in the media enclosed to this thesis.
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Conclusion

Firstly, a state-of-the-art of Over-the-air update solutions designed for IoT
devices is analyzed and a need for a complex secure OTA update framework
for IoT devices is identified.

The threat model of the OTA update process is built in order to create a secure
FOTA framework. A general secure FOTA framework is created, and all the
identified threats are mitigated. This framework can be utilized to implement
a secure OTA update for various IoT platforms.

Furthermore, the proposed general FOTA solution is adapted for usage on the
ESP32 device family platform considering the related ESP-IDF OTA solution.
A secure OTA update for the ESP32 platform is implemented including the
applications for the firmware author and the update server. This implemen-
tation results in a complex solution that can be used to establish a secure en-
vironment for OTA updating the ESP32 devices. The solution can be further
adapted to use various firmware storage solutions and provides an easy con-
figuration and setup process. The source code, built applications and a video
demonstration of the solution can be found in the media enclosed to this the-
sis. The contents of this thesis fully comply with its assignment.

During the progress of creating this thesis, several recommendations concern-
ing the secure FOTA topic have been published by the IEFT organization
underlining that the FOTA security issue identification is legitimate.

IoT device onboarding process is another issue closely connected to secure
OTA updating and this thesis does not comprise it. In future work, it would
be desirable to extend the proposed FOTA solution with a secure onboarding
process solution.
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Appendix A
Acronyms

IoT Internet of Things

OTA Over the Air

FOTA Firmware Over the Air

RFC Request for Comments

RS Recommended Standard

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

TLS Transport Layer Security

IDF IoT Development Framework

AES Advanced Encryption Standard

SHA Secure Hash Algorithms

ECDSA Elliptic Curve Digital Signature Algorithm

NIST National Institute of Standards and Technology

CA Certification Authority

PKCS Public Key Cryptography Standards

URL Uniform Resource Locator

REST Representational State Transfer

API Application Programming Interface
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A. Acronyms

FW Firmware

SSL Secure Socket Layer

IEFT Internet Engineering Task Force

MCU Microcontroller Unit

CP-ABE Ciphertext-Policy Attribute-Based Encryption

EEPROM Erasable Programmable Read-Only Memory

58



Appendix B
Contents of enclosed CD

README.txt.........................the file with CD contents description
secure_ota_environment..the directory with secure ota implementation

fw_author_application
fw_author_app................FW Author application source files
fw_author-1.0.1-RELEASE.jarFW Author application executable

update_server_application
fw_update_server_app.....Update Server application source files
create.sql.....................create script for MySQL database
fw_update_server_app-1.0.2-RELEASE.jar.......Update Server
application executable

secure_ota_interface_esp32
example_application....example implementation of the interface
secure_ota_esp32.h...............secure ota interface header file
secure_ota_esp32.c...............secure ota interface source file
Kconfig.projbuild......................project configuration file

thesis..........................................the thesis text directory
konicek_stepan_bachelors_thesis.pdf...the thesis in PDF format
source...........................the directory with thesis source files

secure_OTA_update_video_demonstration.mp4....video demonstration
performance_testing_data.xlxs...table with performance testing data
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