
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of bachelor’s thesis

Hard Mathematical Problems in Cryptography
Marek Holík
Mgr. Martin Jureček, Ph.D.
Informatics
Computer Security and Information technology
Department of Computer Systems
until the end of summer semester 2022/2023

Instructions

The security of ciphers and cryptographic protocols is based on hard mathematical
problems for which algorithms that solve these problems with sufficiently low
computational complexities are not known. Examples of such problems are factoring
large integers, discrete logarithm problem, solving system of polynomial equations over
a finite field, and others. Solving such problems implies breaking the security of the
corresponding ciphers or protocols. The aim of this bachelor’s thesis is to describe at
least three such mathematical problems used in cryptography. For each problem, the
student will:
- describe the problem in detail,
- provide a list of ciphers and protocols briefly described, the security of which is based
on the problem,
- install available programs that solve the problem, and compare them (e.g., scalability,
speed) with the tools implemented in Magma.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 10 December 2021 in Prague.

Bachelor’s thesis

Hard Mathematical Problems in
Cryptography

Marek Hoĺık

Department of Information Security
Supervisor: Mgr. Martin Jureček, Ph.D.

May 11, 2022

Acknowledgements

I would like to thank Mgr. Martin Jureček, Ph.D. for his both friendly and
professional attitude and I am grateful for all his remarks and recommenda-
tions for this thesis. I also thank my family for supporting me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Marek Hoĺık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hoĺık, Marek. Hard Mathematical Problems in Cryptography. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstract

This thesis describes protocols and ciphers which base their security on integer
factorization problem, quadratic residuosity problem and discrete logarithm
problem. Random instances of mathematical problems are generated based
on the described protocols and ciphers for comparison of Magma, SageMath
and MATLAB implementations. Efficiency is evaluated in terms of average
time needed and success rate for solving instances of a fixed length. The time
for solving one instance is limited to one hour.

Keywords integer factorization problem, quadratic residuosity problem, dis-
crete logarithm problem, Magma, SageMath, MATLAB

vii

Abstrakt

Práce představuje šifry a protokoly založené na problému faktorizace č́ısel,
problému kvadratických residúı a problému disktrétńıho logarithmu. Náhodné
instance matematických problémů jsou generovány na základě popsaných pro-
tokol̊u a šifer pro porovnáńı Magma, SageMath a MATLAB implementaćı.
Efektivita je vyhodnocena základě pr̊uměrného času potřebného k vyřešeńı a
úspěšnost algoritmu vydat správný výsledek pro instance dané délky. Čas na
vyřešeńı jedné instance je omezen na jednu hodinu.

Kĺıčová slova problém faktorizace č́ısel, problém kvadratických residúı,
problém diskrétńıho logaritmu, Magma, SageMath, MATLAB

viii

Contents

Introduction 1

Notation 3
Mathematical notation . 3

Carmichael’s function λ . 3
Euler totient function ϕ . 3
Jacobi symbol . 3
Legendre symbol . 3
Operation ⊕ . 3

Digital signature schemes . 4
Appendix scheme . 4
Message recovery scheme . 4

1 Integer factorization 5
1.1 Description . 5
1.2 Ciphers and protocols . 5

1.2.1 RSA encryption scheme 5
1.2.2 RSA signature scheme 6
1.2.3 RSA pseudorandom bit generator 7
1.2.4 Dependent-RSA encryption scheme 7
1.2.5 DRSA-1 encryption scheme 8
1.2.6 DRSA-2 encryption scheme 9
1.2.7 Chaum blind signature scheme 10
1.2.8 Rabin encryption scheme 10
1.2.9 Rabin signature scheme 11
1.2.10 Modified Rabin signature scheme 12
1.2.11 Rabin oblivious transfer scheme 14
1.2.12 Williams encryption scheme 14
1.2.13 ESIGN . 15

ix

1.2.14 Schmidt-Samoa encryption scheme 16
1.2.15 Schmidt-Samoa signature scheme 17
1.2.16 Benaloh encryption scheme 17
1.2.17 Djebaili-Melkemi encryption scheme 18
1.2.18 Djebali-Melkemi signature scheme 19
1.2.19 Ariffin-Asbullah-Abu-Mahad encryption scheme 20
1.2.20 Kurosawa-Itoh-Takeuchi encryption scheme 21
1.2.21 Kurosawa-Itoh-Takeuchi signature scheme 23
1.2.22 Galindo encryption scheme 24
1.2.23 Okamoto–Uchiyama encryption scheme 25
1.2.24 LUC . 26

2 Quadratic residuosity problem 27
2.1 Description . 27
2.2 Ciphers and protocols . 27

2.2.1 Blum-Blum-Shub pseudorandom bit generator 27
2.2.2 Goldwasser-Micali encryption scheme 28
2.2.3 Blum-Goldwasser probabilistic encryption scheme 29
2.2.4 Feige-Fiat-Shamir identification scheme 30
2.2.5 Fiat-Shamir signature scheme 31

3 Discrete logarithm problem 33
3.1 Description . 33
3.2 Ciphers and protocols . 33

3.2.1 Pohlig-Hellman encryption scheme 33
3.2.2 Diffie-Hellman key agreement 34
3.2.3 ElGamal encryption scheme 35
3.2.4 ElGamal signature scheme 35
3.2.5 Guillou-Quisquater identification scheme 36
3.2.6 Guillou-Quisquater signature scheme 37
3.2.7 Schnorr authentication protocol 37
3.2.8 Schnorr signature protocol 38
3.2.9 Chaum undeniable signature scheme 39
3.2.10 Cramer-Shoup encryption scheme 40

4 Implementations setup 41
4.1 Tools . 41

4.1.1 Magma . 41
4.1.2 SageMath . 41
4.1.3 MATLAB . 41

4.2 Integer factorization problem 41
4.2.1 Magma . 42

4.2.1.1 TrialDivision 42
4.2.1.2 Cunningham 42

x

4.2.1.3 PollardRho . 42
4.2.1.4 pMinus1 . 42
4.2.1.5 pPlus1 . 42
4.2.1.6 ECM . 43
4.2.1.7 MPQS . 43
4.2.1.8 Factorization 43

4.2.2 SageMath . 43
4.2.3 MATLAB . 43

4.3 Quadratic residuosity problem 43
4.3.1 Magma . 43
4.3.2 SageMath . 44

4.3.2.1 quadratic residues 44
4.4 Discrete logarithm problem . 44

4.4.1 Magma . 44
4.4.1.1 Log . 44

4.4.2 SageMath . 44
4.4.2.1 bsgs . 44
4.4.2.2 discrete log . 45

5 Implementations comparison 47
5.1 Integer factorization problem 47

5.1.1 Form pq . 47
5.1.1.1 Trial division 47
5.1.1.2 Cunningham 47
5.1.1.3 Pollard’s p− 1 48
5.1.1.4 Pollard’s Rho 48
5.1.1.5 Williams’s p+ 1 48
5.1.1.6 Elliptic curve method 48
5.1.1.7 Quadratic sieve 48
5.1.1.8 Generic factor implementation 49

5.1.2 Form p2q . 49
5.1.2.1 Trial division 49
5.1.2.2 Cunningham 49
5.1.2.3 Pollard’s p− 1 49
5.1.2.4 Pollard’s rho 49
5.1.2.5 William’s p+ 1 49
5.1.2.6 Elliptic curve method 50
5.1.2.7 Quadratic sieve 50
5.1.2.8 Generic factor implementation 50

5.2 Quadratic residuosity problem 50
5.2.1 Type Zn . 50

5.2.1.1 Exhaustive search implementation 50
5.3 Discrete logarithm problem . 51

5.3.1 Type Z∗
p . 51

xi

5.3.1.1 Generic discrete logarithm implementation . . 51

Conclusion 53

Measurements 55
Integer factorization problem . 55

Form pq . 55
Trial division . 55
Pollard’s p− 1 . 56
Pollard’s Rho . 57
Williams’s p+ 1 . 57
Elliptic curve method 58
Quadratic sieve . 59
Generic factorization . 60

Form p2q . 61
Trial division . 62
Pollard’s p− 1 . 62
Pollard’s Rho . 63
William’s p+ 1 . 64
Elliptic curve method 65
Quadratic sieve . 66
Generic factorization . 67

Quadratic residuosity problem . 68
Type Zn . 68

Discrete logarithm problem . 69
Type Z∗

p . 69
Generic discrete logarithm 70

Bibliography 73

A Acronyms 77

B Contents of enclosed CD 79

xii

List of Algorithms

1.1 RSA key generation . 5
1.2 RSA encryption . 6
1.3 RSA decryption . 6
1.4 RSA signature . 6
1.5 RSA verification . 7
1.6 RSA pseudorandom bit generation 7
1.7 Dependent-RSA encryption . 8
1.8 Dependent-RSA decryption . 8
1.9 DRSA-1 encryption . 8
1.10 DRSA-1 decryption . 9
1.11 DRSA-2 encryption . 9
1.12 DRSA-2 decryption . 9
1.13 Chaum signature . 10
1.14 Chaum verification . 10
1.15 Rabin key generation . 11
1.16 Rabin encryption . 11
1.17 Rabin decryption . 11
1.18 Rabin key generation . 12
1.19 Rabin signature . 12
1.20 Rabin verification . 12
1.21 Modified Rabin key generation 13
1.22 Modified Rabin signature . 13
1.23 Modified Rabin verification . 13
1.24 Rabin oblivious transfer . 14
1.25 Williams key generation . 14
1.26 Williams encryption . 15
1.27 Williams decryption . 15
1.28 ESIGN key generation . 15
1.29 ESIGN signature . 16
1.30 ESIGN verification . 16

xiii

1.31 Schmidt-Samoa key generation 16
1.32 Schmidt-Samoa encryption . 16
1.33 Schmidt-Samoa decryption . 17
1.34 Schmidt-Samoa signature . 17
1.35 Schmidt-Samoa verification . 17
1.36 Benaloh key generation . 18
1.37 Benaloh encryption . 18
1.38 Benaloh decryption . 18
1.39 Djebaili-Melkemi key generation 19
1.40 Djebaili-Melkemi encryption . 19
1.41 Djebaili-Melkemi decryption . 19
1.42 Djebaili-Melkemi signature . 20
1.43 Djebaili-Melkemi verification 20
1.44 Ariffin-Asbullah-Abu-Mahad key generation 20
1.45 Ariffin-Asbullah-Abu-Mahad encryption 21
1.46 Ariffin-Asbullah-Abu-Mahad decryption 21
1.47 Kurosawa-Itoh-Takeuchi key generation 22
1.48 Kurosawa-Itoh-Takeuchi encryption 22
1.49 Kurosawa-Itoh-Takeuchi decryption 23
1.50 Kurosawa-Itoh-Takeuchi signature 23
1.51 Kurosawa-Itoh-Takeuchi verification 24
1.52 Galindo key generation . 24
1.53 Galindo encryption . 24
1.54 Galindo decryption . 25
1.55 Okamoto–Uchiyama key generation 25
1.56 Okamoto–Uchiyama encryption 25
1.57 Okamoto–Uchiyama decryption 25
1.58 LUC key generation . 26
1.59 LUC encryption . 26
1.60 LUC decryption . 26
2.1 Blum-Blum-Shub pseudorandom bit generator 28
2.2 Goldwasser-Micali key generation 28
2.3 Goldwasser-Micali encryption 29
2.4 Goldwasser-Micali decryption 29
2.5 Blum-Goldwasser key generation 29
2.6 Blum-Goldwasser encryption 30
2.7 Blum-Goldwasser decryption 30
2.8 Fiat-Feige-Shamir key generation 31
2.9 Feige-Fiat-Shamir identification 31
2.10 Fiat-Shamir signature . 32
2.11 Fiat-Shamir verification . 32
3.1 Pohlig-Hellman key generation 33
3.2 Pohlig-Hellman encryption . 34
3.3 Pohlig-Hellman decryption . 34

xiv

3.4 Diffie-Hellman precomputations 34
3.5 Diffie-Hellman key exchange . 34
3.6 ElGamal key generation . 35
3.7 ElGamal encryption . 35
3.8 ElGamal decryption . 35
3.9 ElGamal signature . 36
3.10 ElGamal signature verification 36
3.11 Guillou-Quisquater key generation 36
3.12 Guillou-Quisquater identification 37
3.13 Guillou-Quisquater signature 37
3.14 Guillou-Quisquater verification 37
3.15 Schnorr key generation . 38
3.16 Schnorr authentication . 38
3.17 Schnorr signature . 38
3.18 Schnorr verification . 39
3.19 Chaum key generation . 39
3.20 Chaum signature . 39
3.21 Chaum verificaton . 39
3.22 Cramer-Shoup key generation 40
3.23 Cramer-Shoup encryption . 40
3.24 Cramer-Shoup decryption . 40

xv

List of Tables

5.1 Magma TrialDivision . 55
5.2 SageMath factor trial division . 56
5.3 Magma pMinus1 . 56
5.4 SageMath pollard pm1 . 56
5.5 Magma PollardRho . 57
5.6 SageMath pollardrho brent . 57
5.7 Magma pPlus1 . 57
5.8 SageMath williams pp1 . 58
5.9 Magma ECM . 58
5.10 SageMath ecm.factor . 59
5.11 Magma MPQS . 59
5.12 SageMath qsieve . 60
5.13 Magma Factorization . 60
5.14 SageMath factor . 61
5.15 MATLAB factor . 61
5.16 Magma TrialDivision . 62
5.17 SageMath factor trial division . 62
5.18 Magma pMinus1 . 62
5.19 SageMath pollard pm1 . 63
5.20 Magma PollardRho . 63
5.21 SageMath pollardrho brent . 63
5.22 Magma pPlus1 . 64
5.23 SageMath williams pp1 . 64
5.24 Magma ECM . 65
5.25 SageMath ecm.factor . 65
5.26 Magma MPQS . 66
5.27 SageMath qsieve . 66
5.28 Magma Factorization . 67
5.29 SageMath factor . 67
5.30 MATLAB factor . 68

xvii

LIST OF TABLES

5.31 Magma exhaustive search implementation 68
5.32 SageMath exhaustive search implementation 68
5.33 SageMath quadratic residues . 69
5.34 Magma Log . 70
5.35 SageMath discrete log . 71
5.36 SageMath bsgs . 71

xviii

Introduction

Most of us rely on the fact that our communication over the internet is secure
whenever we connect to a website, use social media applications, play games
online or use online bank services. Such features would not be available if
it were not for cryptographic protocols mainly encryption protocols ensuring
that only the sender and the intended receivers can read the transmitted
data and signature protocols enabling the intended receivers to verify that the
transmitted data had not been modified by a third party.

Encryption and signatures can be done with symmetric cryptography.
Symmetric cryptography uses the same key for operations such as encryp-
tion and decryption. The same key for such operations means it cannot be
transmitted over an unprotected network and it is not always the case that
the sender and the receiver can exchange the key in private. Such problems
can be solved by using asymmetric cryptography.

Asymmetric cryptography offers protocols enabling to transfer some “parts”
of the key over an unprotected network such as a key for encryption or verifi-
cation while other key “parts” are kept in private such as a key for decryption
or signature. In addition, asymmetric cryptography offers some new concepts
such as zero-knowledge proofs enabling a party to prove knowledge of some
information without disclosing the information and blind signatures enabling
a party to sign data without knowing the data.

Asymmetric cryptography protocols and ciphers are based on ”hard” math-
ematical problems enabling to make some of the information public, usually,
a public key, while keeping some other information private, usually a private
key. Although the public and private key pair is computed based on the same
information a third party not having this information is unable to derive the
private key from the public key in a feasible time.

The inability of such computations is uncertain as no efficient algorithms
exist however it has never been proven that such algorithms cannot exist.
Therefore it is of great interest to study algorithms solving these problems
as well as protocols and ciphers based on these problems to ensure that the

1

Introduction

protocols are still secure.
This thesis aims to define at least three mathematical problems and intro-

duce protocols and ciphers basing their security on the particular mathemati-
cal problem. Furthermore, Magma and other available software implementing
algorithms solving these problems are compared in terms of time efficiency
and success rate.

Integer factorization problem, quadratic residuosity problem and discrete
logarithm problem are chosen as hard mathematical problems. Each of the
first three chapters is dedicated to one of the chosen problems. Protocols and
ciphers are presented as pseudocodes and rarely additional requirements for a
protocol are specified.

The fourth chapter and the fifth chapter contain the practical part of
the thesis. Magma, SageMath and MATLAB implementations are tested on
randomly generated instances of the mathematical problems used in described
protocols. In the real world, the instances of the problems are chosen so that
they cannot be solved even with enormous time and computational power
resources. In this thesis both time and computational power resources are
limited and the instances are chosen such that solving a single instance does
not take more than one hour.

2

Notation

Mathematical notation

This section introduces the notation used in the thesis.

Carmichael’s function λ

Let λ(n) be the smallest integer such that kλ(n) ≡ 1 (mod n) for all k < n
and relatively prime to n [1].

Euler totient function ϕ

Let n = pα1
1 pα2

2 · · · p
αk
k then ϕ(n) = n

(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pk

)
where

p1, p2, . . . , pk are pairwise distinct primes and α1, α2, . . . , αk ∈ N [2].

Jacobi symbol

Let m be and odd integer and a any integer Jacobi symbol is defined by(
a
m

)
=

(
a
p1

)α1 (
a
p2

)α2 · · ·
(

a
pk

)αk where m = pα1
1 pα2

2 · · · p
αk
k [3].

Legendre symbol

Let q be an odd prime and a be any integer.
If q|a then

(
a
q

)
= 0.

If q ∤ a then
(

a
q

)
= 1 if there is N such that q|N2 − a

else
(

a
q

)
= −1 [2].

Operation ⊕

Symbol ⊕ is notation for bitwise xor.

3

Notation

Digital signature schemes

M is the set of elements to which a signer can affix a digital signature.
MS is the set of elements to which the signature transformations are applied.
MR is the image of a redundancy function R where R is one-to-one mapping
from M to MS .
Qn be the set of all quadratic residues in Zn [4].

Appendix scheme

Appendix scheme can only verify message m. If a scheme uses a redundancy
function R, R is typically selected as collision-free hash function [4].

Message recovery scheme

Message recovery scheme recovers the original message m from the signature
s. Redundancy function R and R−1 are public knowledge. Suitable choice of
R is critical to security of the scheme and should be chosen such that MR
should be much smaller than MS . If MR ≈ MS then it is probable that a
modified message m′ can be transformed by R−1(m′) and the signature seems
valid [4].

4

Chapter 1
Integer factorization

1.1 Description

Definition 1.1.1 (Integer factorization problem). Given a positive integer n,
find its prime factorization; that is, write n = pe1

1 · p
e2
2 · · · p

ek
k where the pi are

pairwise distinct primes and each ei ≥ 1 [4].

1.2 Ciphers and protocols

In this section protocols and ciphers basing their security on integer factor-
ization problem are described.

1.2.1 RSA encryption scheme

RSA encryption scheme is named after its authors – Ron Rivest, Adi Shamir
and Leonard Adleman [4]. This scheme was however first invented at Gov-
ernment Communications Headquarters by Clifford Cocks in 1973, four years
before Rivest, Shamir and Adleman came up with this idea. This was kept
secret and after 24 years, in the year 1997, the true history of RSA was an-
nounced by Cocks [5].

Algorithm 1.1 [4] generates a pair of a private key and a public key.

Algorithm 1.1 RSA key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq, ϕ← (p− 1)(q − 1)
3: Choose e, 1 < e < ϕ such that gcd(e, ϕ) = 1
4: Compute d such that ed ≡ 1 (mod ϕ)
5: Private key Ks ← (n, d)
6: Public key Kp ← (n, e)

5

1. Integer factorization

Algorithm 1.2 [4] encrypts a chosen message using the public key generated
by Algorithm 1.1 and outputs a ciphertext.

Algorithm 1.2 RSA encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, 0 ≤ m < n
2: Ciphertext c← me (mod n)

Choosing a message m = 0 or m = 1 will result in ciphertext c = m.
Algorithm 1.3 [4] decrypts the ciphertext generated by Algorithm 1.2 using

the private key generated by Algorithm 1.1 and outputs the original message.

Algorithm 1.3 RSA decryption
Input: ciphertext c, private key Ks

Output: message m
1: Message m← cd (mod n)

1.2.2 RSA signature scheme

RSA signature scheme is a message recovery signature scheme. This scheme
is based on the RSA encryption scheme, the difference is that the order of
encryption and decryption is reversed and a redundancy functionR :M→ Zn

is used [4].
RSA signature scheme key generation is the same as in Algorithm 1.1.

Algorithm 1.4 [4] signs a chosen message by using the private key generated
by Algorithm 1.1 and outputs a signature.

Algorithm 1.4 RSA signature
Input: private key Ks

Output: signature s
1: Choose a message m
2: m̃← R(m)
3: Signature s← m̃d (mod n)

Algorithm 1.5 [4] verifies the signature generated by Algorithm 1.4 using
the private key generated in Algorithm 1.1 and outputs the original message
if the signature is valid.

6

1.2. Ciphers and protocols

Algorithm 1.5 RSA verification
Input: public key Kp, signature s
Output: message m

1: m̃← se (mod n)
2: Verify that m̃ ∈MR
3: Message m← R−1(m̃)

1.2.3 RSA pseudorandom bit generator

RSA pseudorandom bit generator is a cryptographically secure pseudorandom
bit generator [4].

Algorithm 1.6 [4] generates a pseudorandom sequence of bits.

Algorithm 1.6 RSA pseudorandom bit generation
Output: pseudorandom sequence (z1, z2, . . . , zl)

1: Choose two distinct primes p and q
2: n← pq, ϕ← (p− 1)(q − 1)
3: Choose e, 1 < e < ϕ such that gcd(e, ϕ) = 1
4: Choose a random integer x0, 1 ≤ x0 ≤ n− 1
5: for i← 1, 2, . . . , l do
6: xi ← xi−1

e (mod n)
7: zi ← the least significant bit of xi

8: end for

Choosing x0 = 1 will result in generating a constant sequence of 1’s and
choosing x0 = n− 1 will result in a constant sequence of −1’s.

1.2.4 Dependent-RSA encryption scheme

David Pointcheval proposed three encryption schemes based on RSA in 1999
[6]. The author formulates a new algebraic problem called the Dependent RSA
problem. Dependent RSA problem is defined as: given an element α ∈ Z∗

n, a
composite modulus n and an exponent e relatively prime to ϕ(n), find (a+1)e

(mod n) where α = ae (mod n). All of the three schemes are semantically
secure meaning that a ciphertext does not leak any information about the
plaintext except the length.

Dependent-RSA key generation is same as in Algorithm 1.1. Algorithm
1.7 [6] encrypts a chosen message using the public key generated by Algorithm
1.1 and outputs a ciphertext.

7

1. Integer factorization

Algorithm 1.7 Dependent-RSA encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, 0 ≤ m < n
2: Choose a random integer k ∈ Z∗

n

3: A← ke (mod n)
4: B ← m(k + 1)e (mod n)
5: Ciphertext c← (A,B)

Choosing a message m = 0 will result in B = 0 and if B = 0 then either
m = 0 or gcd(k + 1, n) > 1. Choosing k such that gcd(k, n) > 1 will result
in obtaining a different message instead of the original message m in the
decryption phase.

Algorithm 1.8 [6] decrypts the ciphertext generated by Algorithm 1.7 using
the private key generated by Algorithm 1.1 and outputs the original message.

Algorithm 1.8 Dependent-RSA decryption
Input: private key Kp, ciphertext c
Output: message m

1: k ← Ad (mod n)
2: Message m← B/(k + 1)e (mod n)

1.2.5 DRSA-1 encryption scheme

DRSA-1 encryption scheme was proposed by David Pointcheval in 1999. This
scheme is based on the Dependent RSA problem and is semantically secure
[6].

DRSA-1 key generation is the same as in Algorithm 1.1. Algorithm 1.9 [6]
encrypts a chosen message using the public key generated by Algorithm 1.1
and outputs a ciphertext. Algorithm 1.9 uses a hash function H : Zn × Zn →
{0, 1}l where l is a security parameter.

Algorithm 1.9 DRSA-1 encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, 0 ≤ m < n
2: Choose a random integer k ∈ Z∗

n

3: A← ke (mod n)
4: B ← m(k + 1)e (mod n)
5: H ← H(m, k)
6: Ciphertext c← (A,B,H).

8

1.2. Ciphers and protocols

Algorithm 1.10 [6] verifies and decrypts the ciphertext generated by Al-
gorithm 1.9 using the private key and the public key generated by Algorithm
1.1 and outputs the original message on successful verification.

Algorithm 1.10 DRSA-1 decryption
Input: private key Ks, public key Kp, ciphertext c
Output: message m

1: k ← Ad (mod n)
2: Message m← B/(k + 1)e (mod n)
3: Verify that H = H(m, k).

1.2.6 DRSA-2 encryption scheme

DRSA-2 encryption scheme was proposed by David Pointcheval in 1999. This
scheme is based on the Dependent RSA problem and is semantically secure
[6].

DRSA-2 key generation is same as in Algorithm 1.1. Algorithm 1.11 [6]
encrypts a chosen message using the public key generated by Algorithm 1.1.
Algorithm 1.11 uses a hash function H1 : Zn → {0, 1}k1 , where k1 is the size
of the message and a hash function H2 :→ {0, 1}k2 where k2 is a security
parameter.

Algorithm 1.11 DRSA-2 encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, 0 ≤ m < n
2: Choose a random integer k ∈ Z∗

n

3: A← ke (mod n)
4: B ← m⊕H1((k + 1)e (mod n))
5: H ← H2(m, k)
6: Ciphertext c← (A,B,H)

Algorithm 1.12 [6] verifies and decrypts the ciphertext generated by Algo-
rithm 1.11 using the private key and the public key generated by Algorithm
1.1 and outputs the original message on successful verification.

Algorithm 1.12 DRSA-2 decryption
Input: private key Ks, public key Kp, ciphertext c
Output: message m

1: k ← Ad (mod n)
2: Message m← B ⊕H1((k + 1)e (mod n))
3: Verify that H = H2(m, k)

9

1. Integer factorization

1.2.7 Chaum blind signature scheme

Chaum blind signature scheme was proposed by David Chaum who invented
the notion of blind signatures and blind unanticipated signatures. This scheme
[7] is based on the RSA algorithm.

Chaum key generation is the same as in Algorithm 1.1. Algorithm 1.13 [7]
enables B to sign the message of A without revealing the message to B and
outputs a signature. B uses a private key, A uses a public key, and both keys
are generated by Algorithm 1.1.

Algorithm 1.13 Chaum signature
Input: private key Ks, public key Kp

Output: signature s
1: A chooses a message m and a random integer k, 1 < k < n
2: A computes t← mke (mod n)
3: B signs the blind message by sb ← td (mod n)
4: A unblinds sb and obtains signature s by s← sb/k (mod n)

Chaum blind signature is based on RSA therefore the message m should
be 0 ≤ m < n. Choice of m = 0 will result in t = 0 and if t = 0 then either
m = 0 or gcd(k, n) > 1. Choice of k such that gcd(k, n) > 1 will result in
obtaining a different signature for the message m and consequently obtaining
a different message in the verification phase.

The author in [7] does not specify any verification algorithm. Algorithm
1.14 verifies the signature generated by Algorithm 1.13 using the public key
generated by Algorithm 1.1. The verification algorithm requires the original
message.

Algorithm 1.14 Chaum verification
Input: public key Kp, message m, signature s

1: m′ ← se (mod n)
2: Verify that m′ = m

1.2.8 Rabin encryption scheme

Rabin encryption scheme was proposed by Michael C. Rabin. This scheme is
based on the intractability of finding square roots modulo a composite number
which is equivalent to factoring [7].

Algorithm 1.15 [7] generates a pair of a private key and a public key.

10

1.2. Ciphers and protocols

Algorithm 1.15 Rabin key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q such that p ≡ q ≡ 3 (mod 4)
2: n← pq
3: Private key Ks ← (p, q)
4: Public key Kp ← n

Algorithm 1.16 [7] encrypts a chosen message using the public key gener-
ated by Algorithm 1.15 and outputs a ciphertext.

Algorithm 1.16 Rabin encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, m < n
2: Ciphertext c← m2 (mod n)

Choosing a message m = 0 or m = 1 will result in ciphertext c = m.
Algorithm 1.17 [7] decrypts the ciphertext generated by Algorithm 1.16

using the private key generated by Algorithm 1.15 and outputs the original
message.

Algorithm 1.17 Rabin decryption
Input: private key Ks, ciphertext c
Output: message m

1: m1
′ ← c(p+1)/4 (mod p)

2: m2
′ ← p− c(p+1)/4 (mod p)

3: m3
′ ← c(q+1)/4 (mod q)

4: m4
′ ← q − c(q+1)/4 (mod q)

5: a← q(q−1 (mod p))
6: b← p(p−1 (mod q))
7: m1 ← am1

′ + bm3
′ (mod n)

8: m2 ← am1
′ + bm4

′ (mod n)
9: m3 ← am2

′ + bm3
′ (mod n)

10: m4 ← am2
′ + bm4

′ (mod n)
11: One of the four results m1,m2,m3,m4 is the original message m

Determining which mi is the original message is easy if the original message
is in human language however if the original message is a random bit string
there is no way to determine the original message [7].

1.2.9 Rabin signature scheme

Rabin signature scheme [4] is a message recovery scheme proposed by Michael
C. Rabin. As in the RSA signature scheme, the redundancy function is critical

11

1. Integer factorization

to the security of the scheme. In practice choosing a redundancy function for
this scheme is a hard task as the image of every possible message must be a
quadratic residue modulo n.

Algorithm 1.18 [4] generates a pair of a private key and a public key.

Algorithm 1.18 Rabin key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq
3: Private key Ks ← (p, q)
4: Public key Kp ← n

Algorithm 1.19 [4] signs a chosen message using the private key generated
by Algorithm 1.18 and outputs a signature.

Algorithm 1.19 Rabin signature
Input: private key Ks

Output: signature s
1: Choose a message m
2: m̃← R(m) where R :M→Qn

3: Signature s← sqrt(m̃) (mod n)

Algorithm 1.20 [4] verifies the signature generated by Algorithm 1.19 using
the public key generated by Algorithm 1.18 and outputs the original message
on successful verification.

Algorithm 1.20 Rabin verification
Input: public key Kp, signature s
Output: message m

1: m̃← s2 (mod n)
2: Verify that m̃ ∈MR.
3: Message m← R−1(m̃)

1.2.10 Modified Rabin signature scheme

Modified Rabin signature scheme [4] is a message recovery scheme and is more
useful in practice than the original Rabin signature scheme as this scheme does
not require a redundancy function.

Algorithm 1.21 [4] generates a pair of a private key and a public key.

12

1.2. Ciphers and protocols

Algorithm 1.21 Modified Rabin key generation
Output: private key Ks, public key Kp

1: Select two primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8)
2: n← pq
3: d← (n− p− q + 5)/8.
4: Private key Ks ← d
5: Public key Kp ← n

Algorithm 1.22 [4] signs a chosen message using the private key generated
by Algorithm 1.21 and outputs a signature.

Algorithm 1.22 Modified Rabin signature
Input: private key Ks

Output: signature s
1: Choose a message m ∈ Zn such that m ≤ ⌊(n− 6)/16⌋
2: m̃← 16m+ 6
3: J ←

(
m̃
n

)
4: if J = 1 then
5: Signature s← m̃d (mod n)
6: else if J = −1 then
7: Signature s← (m̃/2)d (mod n)
8: end if

Algorithm 1.23 [4] verifies the signature generated by Algorithm 1.22 using
the public key generated by Algorithm 1.21 and outputs the original message
on successful verification.

Algorithm 1.23 Modified Rabin verification
Input: public key Kp, signature s
Output: message m

1: m′ ← s2 (mod n)
2: if m′ ≡ 6 (mod 8) then
3: m̃← m′

4: else if m′ ≡ 3 (mod 8) then
5: m̃← 2m′

6: else if m′ ≡ 7 (mod 8) then
7: m̃← n−m′

8: else if m′ ≡ 2 (mod 8) then
9: m̃← 2(n−m′)

10: end if
11: Verify that m̃ ≡ 6 (mod 16)
12: Message m← (m̃− 6)/16.

13

1. Integer factorization

1.2.11 Rabin oblivious transfer scheme

Rabin oblivious transfer scheme [7] was proposed by Michael C. Rabin. This
scheme enables A to send a message to B with 50% chance of success and A
does not know whether the message has been sent successfully. This scheme
was not proven to be secure and there may be a way for B to gain some
information about the message even if the transfer was not successful [8].

Rabin key oblivious transfer key generation is same as in Algorithm 1.18.
Algorithm 1.24 [7] enables A to send two primes p and q to B with the prob-
ability of 50%.

Algorithm 1.24 Rabin oblivious transfer
Input: private key Ks, public key Kp

1: B chooses a random integer x, x < n such that gcd(x, n) = 1
2: B sends a← x2 (mod n) to A
3: A then computes roots of a: x, n− x, y and n− y, randomly chooses one

of them and sends it to B
4: If B receives y or n−y, B obtains either p or q by computing gcd(x+y, n)

This scheme has a weakness – there is a possibility that B can compute
an a such that it is possible to compute factor of n in all cases [7].

1.2.12 Williams encryption scheme

Hugh Williams redefined Rabin encryption scheme that the decryption is no
longer ambiguous [7]. This scheme is proven to be as secure as factoring [9].

Algorithm 1.25 [7] generates a pair of a private key and a public key.

Algorithm 1.25 Williams key generation
Output: private key Ks, public key Kp

1: Choose two primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8)
2: n← pq.
3: Choose s such that

(
s
n

)
= −1

4: k ← 1/2 ∗ (1/4 + (p− 1)(q − 1) + 1)
5: Private key Ks ← k
6: Public key Kp ← (n, s)

Algorithm 1.26 [7] encrypts a chosen message using the private key gener-
ated by Algorithm 1.25 and outputs a ciphertext.

14

1.2. Ciphers and protocols

Algorithm 1.26 Williams encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m, m < n
2: Compute c1 such that

(
m
n

)
= (−1)c1

3: m′ ← sc1m (mod n)
4: cm ← m′2 (mod n)
5: c2 ← m′ (mod 2).
6: Ciphertext c← (cm, c1, c2).

Message m should be chosen such that gcd(m,n) = 1, otherwise
(

m
n

)
= 0

and c1 such that
(

m
n

)
= (−1)c1 does not exist.

Algorithm 1.27 [7] decrypts the ciphertext generated by Algorithm 1.26
using the private key generated by Algorithm 1.25.

Algorithm 1.27 Williams decryption
Input: private key Ks, ciphertext c
Output: message m

1: Compute m′′ such that cm
k ≡ ±m′′ (mod n)

2: Message m← sc1(−1)c1m′′ (mod n)

1.2.13 ESIGN

ESIGN was proposed by Atsushi Fujioka, Tatsuaki Okamoto, Shoji Miyaguchi.
This scheme was patented in the United States, Canada, England, France,
Germany and Italy. Due to the efficiency of the scheme, it is suitable for
smart card implementation [7, 10].

Algorithm 1.28 [10] generates a pair of a private key and a public key.

Algorithm 1.28 ESIGN key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← p2q
3: Private key Ks ← (p, q)
4: Public key Kp ← n

Algorithm 1.29 [10] signs a chosen message using the private key generated
by Algorithm 1.28 and outputs a signature.

15

1. Integer factorization

Algorithm 1.29 ESIGN signature
Input: private key Ks

Output: signature s
1: Choose a message m
2: Choose a random integer x, x < pq
3: w ← ⌈(H(m) − xk (mod n))/pq⌉ where H is a hash function such that
H(m) ∈ Zn for any positive integer m and k ≥ 4

4: y ← w/(kxk−1) (mod p)
5: Signature s← x+ ypq

The recommended values for security parameter k are 8, 16, 32, 64, 128,
256, 512, 1024 [7].

Algorithm 1.30 [10] verifies the signature generated by Algorithm 1.29
using the public key generated by Algorithm 1.28. The verification algorithm
requires the original message.

Algorithm 1.30 ESIGN verification
Input: public key Kp, signature s, message m

1: Verify that H(m) ≤ sk (mod n) < H(m) + 22/3(⌊log2(n)⌋+1)

1.2.14 Schmidt-Samoa encryption scheme

Schmidt-Samoa encryption scheme [11] was proposed by Katja Schmidt-Samoa.
Author presents a new trapdoor permutation with integers of type p2q.

Algorithm 1.31 [12] generates a pair of a private key and a public key.

Algorithm 1.31 Schmidt-Samoa key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← p2q
3: d← n−1 (mod lcm(p− 1, q − 1))
4: Private key Ks ← (p, q, d)
5: Public key Kp ← n

Algorithm 1.32 [12] encrypts a chosen message using the public key gen-
erated by Algorithm 1.31 and outputs a ciphertext.

Algorithm 1.32 Schmidt-Samoa encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m
2: Ciphertext c← mn (mod n)

16

1.2. Ciphers and protocols

The authors in [12] dot no specify any requirements for choosing the mes-
sage m however m = 0 or m = 1 will result in ciphertext c = m and should
m be chosen as m ≥ n, the decryption is ambiguous.

Algorithm 1.33 [12] decrypts the ciphertext generated by Algorithm 1.32
using the private key generated by Algorithm 1.31 and outputs the original
message.

Algorithm 1.33 Schmidt-Samoa decryption
Input: private key Ks, ciphertext c
Output: message m

1: Message m← cd (mod pq).

1.2.15 Schmidt-Samoa signature scheme

Schmidt-Samoa signature scheme [12] is based on Schmidt-Samoa encryption
scheme as the only difference is that the order of encryption and decryption
is reversed.

Schmidt-Samoa key generation is same as in Algorithm 1.31. Algorithm
1.34 [12] signs a chosen message using the private key generated by Algorithm
1.31 and outputs a signature.

Algorithm 1.34 Schmidt-Samoa signature
Input: private key Ks

Output: signature s
1: Choose a message m
2: Signature s← md (mod n)

Algorithm 1.35 [12] verifies the signature generated by Algorithm 1.34
using the public key generated by Algorithm 1.31. The verification algorithm
requires the original message.

Algorithm 1.35 Schmidt-Samoa verification
Input: public key Kp, message m, signature s

1: Verify that m = sn (mod n)

1.2.16 Benaloh encryption scheme

Benaloh encryption scheme [13] was proposed by Josh Benaloh in 1994. In
the second chapter Goldwasser-Micali probabilistic encryption scheme will be
introduced which is a special case of this encryption scheme with r = 2.

Algorithm 1.36 [14] generates a pair of a private key and a public key.

17

1. Integer factorization

Algorithm 1.36 Benaloh key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq, ϕ← (p− 1)(q − 1)
3: Choose block size r such that:
4: r | p− 1
5: gcd(r, (p− 1)/r) = 1
6: gcd(r, q − 1) = 1
7: Choose y such that x← yϕ/r (mod n) ̸= 1
8: Private key Ks ← (p, q, x)
9: Public key Kp ← (y, r, n)

Algorithm 1.37 [14] encrypts a chosen message using the public key gen-
erated by Algorithm 1.36 and outputs a ciphertext.

Algorithm 1.37 Benaloh encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m and an integer u such that 1 ≤ u < n
2: Ciphertext c← ymur (mod n).

Choosing a message m ≥ ϕ will result in ambiguous decryption. Choosing
y or u such that gcd(y, n) ̸= 1 or gcd(u,m) ̸= 1 may result in ciphertext c = 0
and therefore unability to decrypt. Choosing y = 0 will result in ciphertext
c = 0.

Algorithm 1.38 [14] decrypts the ciphertext generated by Algorithm 1.37
using the private key generated by Algorithm 1.36 and outputs the original
message.

Algorithm 1.38 Benaloh decryption
Input: private key Ks, ciphertext c
Output: message m

1: a← cϕ/r (mod n)
2: e← 0
3: while xe (mod n) ̸= a do
4: e← e+ 1
5: end while
6: Message m← e.

1.2.17 Djebaili-Melkemi encryption scheme

Djebaili-Melkemi encryption scheme [15] was proposed by Karima Djebaili
and Lamine Melkemi in 2020. This scheme is based on decisional generator

18

1.2. Ciphers and protocols

problem: Given a, b, f, g ∈ Z∗
n determine whether f ∈< a > and g ∈< b >.

Decisional generator problem is based on integer factorization problem.
Algorithm 1.39 [15] generates a pair of a private key and a public key.

Algorithm 1.39 Djebaili-Melkemi key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq
3: α← p−1

2 and β ← q−1
2

4: Compute γ, δ such that δα+ γβ = 1
5: Choose a, b where α and β are the least positive integers such that aα ≡ 1

(mod n) and bβ ≡ 1 (mod n)
6: Private key Ks = (p, q, δ, γ)
7: Public key Kp = (n, a, b)

Algorithm 1.40 [15] encrypts a chosen message using the public key gen-
erated by Algorithm 1.39 and outputs ciphertext.

Algorithm 1.40 Djebaili-Melkemi encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m where m is associated with the message space of Kp

2: Choose random integers x, y ∈ Z∗
n

3: c1 ← axm (mod n)
4: c2 ← bym (mod n)
5: Ciphertext c← (c1, c2)

Algorithm 1.41 [15] decrypts the ciphertext generated by Algorithm 1.40
using the private key generated by Algorithm 1.39 and outputs the original
message.

Algorithm 1.41 Djebaili-Melkemi decryption
Input: private key Ks, ciphertext c
Output: message m

1: Message m← cδα
1 cγβ

2 .

1.2.18 Djebali-Melkemi signature scheme

Djebali-Melkemi signature scheme [15] was proposed by Karima Djebaili and
Lamine Melkemi in 2020. This scheme is based on Djebaili-Melkemi encryp-
tion scheme.

19

1. Integer factorization

Djebaili-Melkemi key generation is the same as in Algorithm 1.39. Al-
gorithm 1.42 [15] signs a chosen message using the private key generated by
Algorithm 1.39 and outputs a signature.

Algorithm 1.42 Djebaili-Melkemi signature
Input: private key Ks

Output: signature s
1: Choose a message m where m is associated with the message space of Kp

2: Choose random ϕ ∈< a > and ψ ∈< b > where < x > denotes the
subgroup generated by x

3: c1 ← (ϕH(m))β (mod n) where H is a cryptographic hash function
4: c2 ← (ψH(m))α (mod n)
5: ω ← (ϕψ)−1 (mod n)
6: Signature s = (c1, c2, ω)

Algorithm 1.43 [15] verifies the signature generated by Algorithm 1.42
using the public key generated by Algorithm 1.39.

Algorithm 1.43 Djebaili-Melkemi verification
Input: public key Kp, signature s

1: Verify that H(m) = c1
γc2

δω (mod n)

1.2.19 Ariffin-Asbullah-Abu-Mahad encryption scheme

Ariffin-Asbullah-Abu-Mahad encryption scheme [16] was proposed by M.R.K.
Ariffin, M.A. Asbullah, N.A. Abu and Z. Mahad in 2013. This scheme is
quite efficient as it has lower complexity order for the encryption compared
to RSA and ECC. The decryption is faster than RSA and marginally slower
than ECC.

Algorithm 1.44 [16] generates a pair of a private key and a public key.

Algorithm 1.44 Ariffin-Asbullah-Abu-Mahad key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes n-bit primes p and q such that p, q ≡ 3 (mod 4)
where 2n < p, q < 2n+1

2: Choose a random d such that d > (p2q) 4
9

3: Compute e such that ed ≡ 1 (mod pq)
4: Add multiples of pq until 23n+4 < e < 23n+6

5: A1 ← p2q, A2 ← e
6: Private key Ks = (pq, d)
7: Public key Kp = (n,A1, A2)

20

1.2. Ciphers and protocols

Algorithm 1.45 [16] encrypts a chosen message using the public key gen-
erated by Algorithm 1.44 and outputs a ciphertext.

Algorithm 1.45 Ariffin-Asbullah-Abu-Mahad encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m such that m = 24nm1 +m2 where 24n < m1 < 24n+1

and 22n−2 < m2 < 22n−1

2: Ciphertext c← A1m1 +A2m2
2

Algorithm 1.46 [16] decrypts the ciphertext generated by Algorithm 1.45
using the private key generated by Algorithm 1.44 and outputs the original
message.

Algorithm 1.46 Ariffin-Asbullah-Abu-Mahad decryption
Input: private key Ks, ciphertext c
Output: message m

1: W ← cd (mod pq)
2: xp ←W

p+1
4 (mod p)

3: xq ←W
q+1

4 (mod q)
4: M1 = q−1 (mod p) and M2 = p−1 (mod q)
5: m21 = xpM1q + xqM2p (mod pq)
6: m22 = xpM1q − xqM2p (mod pq)
7: m23 = −xpM1q + xqM2p (mod pq)
8: m24 = −xpM1q − xqM2p (mod pq)
9: for i← 1, 2, 3, 4 do

10: m1i ← c−m2i
2A2

A1
11: end for
12: Choose the only value of m1j which is equal to an integer
13: Sort the pair (m1j ,m2j)
14: Message m = 24nm1 +m2

1.2.20 Kurosawa-Itoh-Takeuchi encryption scheme

Kurosawa-Itoh-Takeuchi encryption scheme [17] was proposed by Kaoru Kuro-
sawa, Toshiya Itoh and Masashi Takeuchi. This scheme is another modifica-
tion of Rabin encryption scheme so that the decryption is no longer ambiguous
and unlike Williams encryption scheme does not require primes p and q to be
of a special form. It is proven to be as difficult as factoring a large number.

Algorithm 1.47 [17] generates a pair of a private key and a public key.

21

1. Integer factorization

Algorithm 1.47 Kurosawa-Itoh-Takeuchi key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq

3: Choose c such that
(

c
p

)
=

(
c
q

)
= −1

4: Private key Ks = (p, q)
5: Public key Kp = (n, c)

Algorithm 1.48 [17] encrypts a chosen message using the public key gen-
erated by Algorithm 1.47 and outputs a ciphertext.

Algorithm 1.48 Kurosawa-Itoh-Takeuchi encryption
Input: public key Kp

Output: ciphertext c
1: Choose message m, 0 < m < n such that gcd(m,n) = 1
2: E ← m+ cm−1 (mod n)
3: if

(
c
m

)
= 1 then

4: s← 0
5: else if

(
c
m

)
= −1 then

6: s← 1
7: end if
8: if c/m (mod n) > m then
9: t← 0

10: else if c/m (mod n) < m then
11: t← 1
12: end if
13: Ciphertext c← (E, s, t)

Algorithm 1.49 [17] decrypts the ciphertext generated by algorithm 1.48
using the private key generated by 1.47 and outputs the original message.

22

1.2. Ciphers and protocols

Algorithm 1.49 Kurosawa-Itoh-Takeuchi decryption
Input: private key Ks, ciphertext c
Output: message m

1: Let a1, a2 be the roots of m2 − Em+ c = 0 (mod p)
2: Let b1, b2 be the roots of m2 − Em+ c = 0 (mod q)
3: Then m2 − Em+ c = 0 (mod n) has the following 4 roots:

m1 ← [a1, a2],m2 ← [a2, b2]
m3 ← [a1, b2],m4 ← [a2, b1]

4: if s = 0 then
5: if t = 0 then
6: Message m← min(m1,m2)
7: else if t = 1 then
8: Message m← max(m1,m2)
9: end if

10: end if
11: if s = 1 then
12: if t = 0 then
13: Message m← min(m3,m4)
14: else if t = 1 then
15: Message m← max(m3,m4)
16: end if
17: end if

1.2.21 Kurosawa-Itoh-Takeuchi signature scheme

Kurosawa-Itoh-Takeuchi signature scheme [17] was proposed by Kaoru Kuro-
sawa, Toshiya Itoh and Masashi Takeuchi.

Kurosawa-Itoh-Takeuchi key generation is the same as in Algorithm 1.47.
Algorithm 1.50 [17] signs a chosen message using the private key generated by
Algorithm 1.47 and outputs a signature.

Algorithm 1.50 Kurosawa-Itoh-Takeuchi signature
Input: private key Ks

Output: signature s
1: Choose a message m, 0 < m < n such that gcd(m,n) = 1
2: E ← m+ cm−1 (mod n)
3: Ej ← E + j
4: while ¬(((Ej

2 − 4c)/p) = ((Ej
2 − 4c)/q) = 1) do

5: j ← j + 1
6: end while
7: Signature s← j

23

1. Integer factorization

The authors in [17] do not specify any verification scheme for signature,
therefore a proposal for a verification scheme is provided instead.

Algorithm 1.51 verifies the signature generated by Algorithm 1.50 using
the public key generated by Algorithm 1.47. The verification requires the
original message.

Algorithm 1.51 Kurosawa-Itoh-Takeuchi verification
Input: public key Kp, message m, signature s

1: E ← m+ cm−1 (mod n)
2: Ej ← E + j
3: Verify that ((Ej

2 − 4c)/p) = ((Ej
2 − 4c)/q) = 1

1.2.22 Galindo encryption scheme

Galindo encryption scheme [18] was proposed by David Galindo, Sebastià
Mart́ın, Paz Morillo, and Jorge L. Villar. This scheme is a modification of the
RSA-Paillier scheme.

Algorithm 1.52 [18] generates a pair of a private key and a public key.

Algorithm 1.52 Galindo key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q such that p ≡ q ≡ 3 (mod 4)
2: Choose e > 2 such that gcd(e, λ(n2)) = 1 and gcd(e, n) = 1
3: d← e−1 (mod λ(n))
4: Private key Ks ← (p, q, d)
5: Public keyKp ← (n, e)

Algorithm 1.53 [18] encrypts a chosen message using the public key gen-
erated by Algorithm 1.52 and outputs a ciphertext.

Algorithm 1.53 Galindo encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m ∈ Zn

2: Choose a random integer r ∈ Qn

3: Ciphertext c← r2e +mn (mod n2)

Algorithm 1.54 [18] decrypts the ciphertext generated by Algorithm 1.53
using the private key generated by Algorithm 1.52 and outputs the original
message.

24

1.2. Ciphers and protocols

Algorithm 1.54 Galindo decryption
Input: private key Ks, ciphertext c
Output: message m

1: t← cd (mod n)
2: r ← sqrt(t) (mod n)
3: Message m← (c−r2e) (mod n2)

n

1.2.23 Okamoto–Uchiyama encryption scheme

Okamoto–Uchiyama encryption scheme [19] is a probabilistic encryption scheme
proposed by Tatsuaki Okamoto and Shigenori Uchiyama. The authors present
a new technique different from Rabin scheme and Diffie-Hellman.

Algorithm 1.55 [19] generates a pair of a private key and a public key.

Algorithm 1.55 Okamoto–Uchiyama key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q, such that |p| = |q| = k
2: Choose a random integer g ∈ (Z/nZ)∗ such that the order of gp = gp−1

(mod p2) is p
3: h← gn (mod n)
4: Private key Ks ← (p, q)
5: Public Key Kp ← (n, g, h, k)

Algorithm 1.56 [19] encrypts a chosen message using the public key gen-
erated by Algorithm 1.55 and outputs a ciphertext.

Algorithm 1.56 Okamoto–Uchiyama encryption
Input: public key Kp

Output: ciphertext c
1: Choose message m, 0 < m < 2k−1

2: Choose r ∈ Z/nZ
3: Ciphertext c← gmhr (mod n)

Algorithm 1.57 [19] decrypts the ciphertext generated by Algorithm 1.56
using private key generated by Algorithm 1.55 and outputs the original mes-
sage.

Algorithm 1.57 Okamoto–Uchiyama decryption
Input: private key Ks, ciphertext c
Output: message m

1: cp ← cp−1 (mod p2)
2: Message m← cp−1

gp−1 (mod p)

25

1. Integer factorization

1.2.24 LUC

LUC [7] is a generalization of RSA using Lucas numbers. This scheme was
proposed by Peter J. Smith and Michael J. J. Lenon and patented in 1993.
The security of LUC is not better than RSA and several sources show how to
break LUC at least in some implementations.

Algorithm 1.58 [7] generates a pair of a private key and a public key.

Algorithm 1.58 LUC key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq
3: Choose a random integer e such that gcd(e, p − 1) = 1, gcd(e, p + 1) =

1, gcd(e, q − 1) = 1 and gcd(e, q + 1) = 1
4: There are four possible decryption keys:

d = e−1 (mod lcm((p+ 1), (q + 1)))
d = e−1 (mod lcm((p+ 1), (q − 1)))
d = e−1 (mod lcm((p− 1), (q + 1)))
d = e−1 (mod lcm((p− 1), (q − 1)))

5: Private key Ks ← (d, n)
6: Public key Kp ← (e, n)

Algorithm 1.59 [7] encrypts a chosen message using the public key gener-
ated by Algorithm 1.58 and outputs a ciphertext.

Algorithm 1.59 LUC encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m
2: Ciphertext c← Ve(m, 1) (mod n)

Algorithm 1.60 [7] decrypts the ciphertext generated by Algorithm 1.59
using the private key generated by Algorithm 1.58 and outputs the original
message.

Algorithm 1.60 LUC decryption
Input: private key Ks, ciphertext c
Output: message m

1: Message m← Vd(m, 1) (mod n) with the proper d

26

Chapter 2
Quadratic residuosity problem

2.1 Description

Definition 2.1.1 (Quadratic residuosity problem). Given an odd composite
integer n and an integer a having Jacobi symbol

(
a
n

)
= 1, decide whether or

not a is a quadratic residue modulo n [4].

2.2 Ciphers and protocols

In this section protocols and ciphers basing their security on quadratic resid-
uosity problem are described.

2.2.1 Blum-Blum-Shub pseudorandom bit generator

Blum-Blum-Shub pseudorandom bit generator was proposed by Lenore Blum,
Manuel Blum and Michael Schub in 1982 [20]. This is a cryptographically
secure pseudorandom bit generator meaning that no statistical polynomial
time test can distinguish between random uniformly distributed sequences
and sequences generated by the Blum-Blum-Shub generator.

Algorithm 2.1 [4] generates a pseudorandom bit sequence.

27

2. Quadratic residuosity problem

Algorithm 2.1 Blum-Blum-Shub pseudorandom bit generator
Output: pseudorandom bit sequence (z1, z2, . . . , zl)

1: Choose two primes p and q such that p ≡ q ≡ 3 (mod 4)
2: n← pq
3: Choose a random integer s such that 1 ≤ s ≤ n− 1 and gcd(s, n) = 1
4: x0 ← s2 (mod n)
5: for i← 1, 2, . . . , l do
6: xi ← xi−1

2 (mod n)
7: zi ← the least significant bit of xi

8: end for
9: Pseudorandom bit sequence is (z1, z2, . . . , zl)

2.2.2 Goldwasser-Micali encryption scheme

Goldwasser-Micali encryption scheme [21] was proposed by Shafi Goldwasser
and Silvio Micali in 1984. This is a probabilistic encryption scheme meaning
that the same message can be encrypted to different ciphertexts and is one
of the first semantically secure schemes meaning that the ciphertext bears no
information about the message except for the length.

Algorithm 2.2 [4] generates a pair of a private key and a public key.

Algorithm 2.2 Goldwasser-Micali key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq
3: Choose y such that y is quadratic non-residue modulo n and

(y
n

)
= 1

4: Private key Ks ← (p, q)
5: Public key Kp ← (n, y)

Algorithm 2.3 [4] encrypts a chosen message using the public key generated
by Algorithm 2.2 and outputs a ciphertext.

28

2.2. Ciphers and protocols

Algorithm 2.3 Goldwasser-Micali encryption
Input: public key Kp

Output: ciphertext c
1: Let the message m be represented as a t–bit vector
2: for i← 1, 2, .., t do
3: Select random integer x ∈ Zn

4: if mi = 1 then
5: ci ← yx2 (mod n)
6: else
7: ci ← x2 (mod n)
8: end if
9: end for

10: Ciphertext c← (c1, c2, ..., ct)

Algorithm 2.4 [4] decrypts the ciphertext generated by Algorithm 2.3 using
the private key generated by Algorithm 2.2 and outputs the original message.

Algorithm 2.4 Goldwasser-Micali decryption
Input: private key Ks, ciphertext c
Output: message m

1: for i← 1, 2, . . . , t do
2: if

(
ci
p

)
= 1 then

3: mi ← 0
4: else
5: mi ← 1
6: end if
7: end for
8: Message m← (m1,m2, . . . ,mt)

2.2.3 Blum-Goldwasser probabilistic encryption scheme

Blum-Goldwasser probabilistic encryption scheme was proposed by Blum and
Goldwasser in 1985. This scheme [21] is based on the Blum-Blum-Shub pseu-
dorandom generator.

Algorithm 2.5 [4] generates a pair of a private key and a public key.

Algorithm 2.5 Blum-Goldwasser key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q such that p ≡ q ≡ 3 (mod 4)
2: Compute a and b such that ap+ bq = 1
3: Private key Kp = (p, q, a, b)
4: Public key Kp = n

29

2. Quadratic residuosity problem

Algorithm 2.6 [4] encrypts a chosen message using the public key generated
by Algorithm 2.5 and outputs a ciphertext.

Algorithm 2.6 Blum-Goldwasser encryption
Input: public key Kp

Output: ciphertext c
1: k ← ⌊log n⌋, h← ⌊log k⌋
2: Let m be a binary string m = (m1,m2, . . . ,mt) of length t where each mi

is a binary string of length h
3: Select x0 such that x0 is a quadratic residue modulo n
4: for i← 1, 2, . . . , t do
5: xi ← x2

i−1 (mod n)
6: Let pi be the h least significant bits of xi

7: ci ← pi ⊕mi

8: end for
9: xt+1 ← x2

t (mod n)
10: Ciphertext c← (c1, c2, . . . , ct, xt+1)

Algorithm 2.7 [4] decrypts the ciphertext generated by Algorithm 2.6 using
the private key generated by Algorithm 2.5 and outputs the original message.

Algorithm 2.7 Blum-Goldwasser decryption
Input: private key Ks, ciphertext c
Output: message m

1: d1 ← ((p+ 1)/4)t+1 (mod p− 1)
2: d2 ← ((q + 1)/4)t+1 (mod q − 1)
3: u← xd1

t+1 (mod p)
4: v ← xd2

t+1 (mod q)
5: x0 ← vap+ ubq (mod n)
6: for i← 1, 2, . . . , t do
7: xi ← x2

i−1 (mod n)
8: Let pi be the h least significant bits of xi

9: mi ← pi ⊕ ci

10: end for
11: Message m← (m1,m2, . . . ,mt)

2.2.4 Feige-Fiat-Shamir identification scheme

Feige-Fiat-Shamir identification scheme was proposed by Uriel Feige, Amos
Fiat and Adi Shamir. This scheme [22] uses zero-knowledge proofs and is
suitable for smart card implementation.

Algorithm 2.8 [7] generates a pair of a private key and a public key.

30

2.2. Ciphers and protocols

Algorithm 2.8 Fiat-Feige-Shamir key generation
Output: private key Ks, public key Kp

1: Choose two distinct primes p and q
2: n← pq.
3: Choose k different numbers v1, v2, ..., vk where each vi is a quadratic

residue mod n.
4: Compute s1, s2, ..., sk where each si is the smallest integer such that si =

sqrt (v−1
i) (mod n).

5: Private key Ks ← s1, s2, ..., sk

6: Public key Kp ← v1, v2, ..., vk

Algorithm 2.9 [7] enables V to verify the identify of P . V uses the public
key and P uses the private key, both keys are generated by Algorithm 2.9.

Algorithm 2.9 Feige-Fiat-Shamir identification
Input: private key Kp, public key Kp

P chooses a random integer r less than n
P computes x← r2 (mod n)
P sends x to V
V sends random binary k-bits long string b1, b2, . . . , bk to P
P computes y ← rsb1

1 s
b2
2 · · · s

bk
k (mod n) and sends it to V

V verifies x = y2(vb1
1 v

b2
2 · · · v

bk
k) (mod n)

In every round P has 2−k chance of fooling V. If this scheme [7] is repeated
t times, P has 2−kt chance of fooling V .

2.2.5 Fiat-Shamir signature scheme

Fiat-Shamir signature scheme was proposed by Amos Fiat and Adi Shamir
in 1986. This scheme [7] is a modification of Feige-Fiat-Shamir identification
scheme, the main difference is turning V into a hash function.

The key generation is same as in Algorithm 2.8. Algorithm 2.10 [7] signs
a chosen message using the private key generated by Algorithm Algorithm 2.8
and outputs a signature.

31

2. Quadratic residuosity problem

Algorithm 2.10 Fiat-Shamir signature
Input: private key Ks

Output: signature s
1: Choose t random integers r1, r2, ..., rt where 1 ≤ ri ≤ n
2: Compute x1, x2, ..., xt such that xi = ri

2 (mod n).
3: Hash the concatenation of the message m and values of xi,
H(m,x1, x2, ..., xt) and use first kt bits as values of bij where i goes from
1 to t and j goes from 1 to k.

4: Compute y1, y2, ..., yt where yi = ri(s1
bi1s2

bi2 · · · sk
btk) (mod n)

5: Signature s← ((b11, b12, . . . , btk), (y1, y2, . . . , yt))

Algorithm 2.11 [7] verifies the signature generated by Algorithm 2.10 using
the public key generated by 2.8. Algorithm 2.11 requires the original message.

Algorithm 2.11 Fiat-Shamir verification
Input: public key Kp, message m, signature s

1: Compute z1, z2, ..., zt where zi = yi
2(v1

bi1v2
bi2 · · · vk

bik) (mod n)
2: Verify that the first kt bits of H(m, z1, z2, ..., zt) are equal to bij .

32

Chapter 3
Discrete logarithm problem

3.1 Description

Definition 3.1.1. Given a prime p, a generator α of Z∗
p, and an element

β ∈ Z∗
p, find the integer x, 0 ≤ x ≤ p− 2, such that αx ≡ β (mod p) [4].

3.2 Ciphers and protocols

In this section protocols and ciphers basing their security on discrete logarithm
problem are described.

3.2.1 Pohlig-Hellman encryption scheme

Pohlig-Hellman encryption scheme [7] was proposed by Stephen C. Pohlig and
Martin E. Hellman and patented in the United States in 1984. This scheme
is symmetric and unlike most of schemes based on discrete logarithm problem
or integer factorization problem and is very similar to RSA.

Algorithm 3.1 [7] generates a key used for both encryption and decryption.

Algorithm 3.1 Pohlig-Hellman key generation
Output: Key K

1: Choose n
2: Choose e such that gcd(e, ϕ(n)) = 1
3: d← e−1 (mod n)
4: Key K ← (e, d)

Encryption exponent e and decryption exponent d should be kept in secret
due to no requirements on n therefore e may be easily computed from d and
vice versa [7].

Algorithm 3.2 [7] encrypts a chosen message using the key generated by
Algorithm 3.1 and outputs a ciphertext.

33

3. Discrete logarithm problem

Algorithm 3.2 Pohlig-Hellman encryption
Input: Key k
Output: ciphertext c

1: Ciphertext c← me (mod n)

Algorithm 3.3 [7] decrypts the ciphertext generated by Algorithm 3.2 using
the key generated by Algorithm 3.1 and outputs the original message.

Algorithm 3.3 Pohlig-Hellman decryption
Input: Key k, ciphertext c
Output: message m

1: Message m← cd (mod n)

3.2.2 Diffie-Hellman key agreement

Diffie-Hellman key agreement [7] is the first public-key algorithm ever in-
vented. It was proposed by Whitfield Diffie and Martin E. Hellman in 1976.
This scheme was patented in the United States and Canada. Though the
scheme is presented as key agreement between two parties, it can be used for
key agreement between unlimited number of parties.

Algorithm 3.4 [4] generates a prime and a generator.

Algorithm 3.4 Diffie-Hellman precomputations
Output: prime p, generator α

1: Choose a prime p
2: Choose a generator α of group Z∗

p

Algorithm 3.5 [4] enables two parties A and B to establish a shared key,
both parties are using the prime and the generator generated by Algorithm
3.4.

Algorithm 3.5 Diffie-Hellman key exchange
Input: prime p, generator α
Output: shared key K

1: A chooses x such that 2 ≤ x ≤ p− 2
2: B chooses y such that 2 ≤ y ≤ p− 2
3: A sends ta ← αx (mod p) to B
4: B sends tb ← αy (mod p) to A
5: A receives tb and computes K ← tb

x (mod p)
6: B receives ta and computes K ← ta

y (mod p)

34

3.2. Ciphers and protocols

3.2.3 ElGamal encryption scheme

ElGamal encryption scheme [4] was proposed by Taher A. ElGamal. This
scheme utilizes a random element in the encryption therefore the same message
may be encrypted to different ciphertexts.

Algorithm 3.6 [4] generates a pair of a private key and a public key.

Algorithm 3.6 ElGamal key generation
Output: private key Ks, public key Kp

1: Choose a prime p
2: Choose generator α of the multiplicative group Z∗

p

3: Choose random integer a such that 1 ≤ a ≤ p− 2
4: y = αa (mod p)
5: Private key Ks ← a
6: Public key Kp ← (p, α, y)

Algorithm 3.7 [4] encrypts a chosen message using the public key generated
by Algorithm 3.6 and outputs a ciphertext.

Algorithm 3.7 ElGamal encryption
Input: public key Kp

Output: ciphertext c
1: Choose a random integer k such that 1 ≤ k ≤ p− 2
2: γ ← αk (mod p)
3: δ ← m · ya (mod p)
4: Ciphertext c← (γ, δ)

Algorithm 3.8 [4] decrypts the ciphertext generated by Algorithm 3.7 using
the private key generated by Algorithm 3.6 and outputs the original message.

Algorithm 3.8 ElGamal decryption
Input: private key Ks, ciphertext c
Output: message m

1: γ′ ← γ−a (mod p)
2: Message m← γ′δ (mod p)

3.2.4 ElGamal signature scheme

ElGamal signature scheme key generation is the same as in Algorithm 3.6.
Algorithm 3.9 [4] signs a chosen message using the private key generated by
Algorithm 3.6 and outputs a signature.

35

3. Discrete logarithm problem

Algorithm 3.9 ElGamal signature
Input: private key Ks

Output: signature s
1: Choose a random integer k such that 1 ≤ k ≤ p−2 and gcd(k, (p−1)) = 1
2: r ← αk (mod p)
3: y ← k−1 (mod p)
4: t ← y(h(m) − ar) (mod p − 1) where h is hash function such that h :
{0, 1}∗ −→ Zp

5: Signature s← (r.t)

Algorithm 3.10 [4] verifies the signature generated by Algorithm 3.9 us-
ing the public key generated by Algorithm 3.6. The verification requires the
original message.

Algorithm 3.10 ElGamal signature verification
Input: public key Kp, message m, signature s

1: Check if 1 ≤ r ≤ p− 1
2: v1 ← yrrt

3: v2 ← αh(m) (mod p)
4: Check if v1 = v2

3.2.5 Guillou-Quisquater identification scheme

Guillou-Quisquater identification scheme was proposed by Louis Guillou and
Jean-Jacques Quisquater. The scheme [7] is suited for smart card implemen-
tation.

Algorithm 3.11 [7] generates a pair of a private key and a public key.

Algorithm 3.11 Guillou-Quisquater key generation
Output: private key Ks, public key Kp

1: Let J be the string of information of Peggy’s identity
2: If J is too long use hash of J instead
3: Let n be product of two primes
4: Choose an integer v
5: Compute B such that JBv ≡ 1 (mod n)
6: Private key Ks ← B
7: Public key Kp ← (J, n, v)

Algorithm 3.12 [7] enables V to verify the identity of P. V uses the public
key and P uses the private key, both keys are generated by Algorithm 3.11

36

3.2. Ciphers and protocols

Algorithm 3.12 Guillou-Quisquater identification
Input: private key Ks, public key Kp

1: P chooses a random integer r, 1 ≤ r ≤ n− 1
2: P computes T ← rv (mod n) and sends it to V
3: V chooses a random integer d, 0 ≤ d ≤ v − 1 and sends it to P
4: P computes D ← rBd and sends it to V
5: V verifies that T ≡ DvJd (mod n)

3.2.6 Guillou-Quisquater signature scheme

This scheme [7] is based on the Guillou-Quisquater identification scheme and
is suited for smart card implementation. It can be also modified to a multiple
signatures scheme.

Guillou-Quisquater key generation is the same as in Algorithm 3.11. Al-
gorithm 3.13 [7] signs a chosen message using the private key generated by
Algorithm 3.11 and outputs a signature.

Algorithm 3.13 Guillou-Quisquater signature
Input: private key Ks

Output: signature s
1: Let m be the message A wants to sign
2: Choose a random integer r, 1 ≤ r ≤ n− 1
3: T ← rv (mod n)
4: d← H(m,T) (mod v) where H is a one-way hash function
5: D ← rBd (mod n)
6: Signature s← (d,D)

Algorithm 3.14 [7] verifies the signature generated by Algorithm 3.13 us-
ing the public key generated by Algorithm 3.11. The verification algorithm
requires the original message.

Algorithm 3.14 Guillou-Quisquater verification
Input: public key Kp, message m, signature s

1: T ′ ← DvJd (mod n)
2: d′ ← H(m,T ′)
3: Verify that d = d′

3.2.7 Schnorr authentication protocol

Schnorr authentication protocol was proposed by Claus Schnorr. This scheme
[7] was patented in the United States and many other countries.

Algorithm 3.15 [7] generates a pair of a private key and a public key.

37

3. Discrete logarithm problem

Algorithm 3.15 Schnorr key generation
Output: private key Ks, public key Kp

1: Choose two primes p and q such that q|p− 1
2: Choose and integer a ̸= 1 such that aq ≡ 1 (mod p)
3: Choose a random integer s, s < q
4: v ← s−s (mod n)
5: Private key Ks ← s
6: Public key Kp ← v

Algorithm 3.16 [7] enables V to authenticate P. V uses the public key, P
uses the private key, and both keys are generated by Algorithm 3.15.

Algorithm 3.16 Schnorr authentication
Input: private key Ks, public key Kp

1: P chooses a random integer r, r < q
2: P computes x← ar (mod p) and sends it to V
3: V chooses a random integer e, 0 ≤ e ≤ 2t−1 where t is a security parameter

and sends it to P
4: P computes y ← (r + se) (mod q) and sends it to V
5: V verifies that x ≡ avxe (mod n)

3.2.8 Schnorr signature protocol

Schnorr signature protocol was proposed by Claus Schnorr. This protocol [7]
is a modification of the Schnorr authentication protocol.

Schnorr key generation is same as in Algorithm 3.15. Algorithm 3.17 [7]
signs a chosen message using the private key generated by Algorithm 3.15 and
outputs signature.

Algorithm 3.17 Schnorr signature
Input: private key Ks

Output: signature s
1: Choose a random integer r < q
2: x← ar (mod p)
3: e← H(m,x) where H is a one-way hash function
4: y ← (r + se) (mod q)
5: Signature s← (e, y)

Algorithm 3.18 [7] verifies the signature generated by Algorithm 3.17 using
the public key generated by Algorithm 3.15. The verification requires the
original message.

38

3.2. Ciphers and protocols

Algorithm 3.18 Schnorr verification
Input: public key Kp, message m, ciphertext c

1: x′ ← ayve (mod p)
2: Verify that e = H(m,x′)

3.2.9 Chaum undeniable signature scheme

Chaum undeniable signature scheme was proposed by David Chaum. Unlike
signatures, undeniable signatures require the participation of both the signer
and the verifier. It may be the case that the signer would try to give a false
response to deny the signature however this can be detected by the verifier
with exponentially high probability [23].

Algorithm 3.19 [7] generates a pair of a private key and a public key.

Algorithm 3.19 Chaum key generation
Output: private key Ks, public key Kp

1: Choose a prime p and a primitive element g
2: Choose an integer x
3: e← gx (mod p)
4: Private key Ks ← x
5: Public key Kp ← (p, g, e)

Algorithm 3.20 [7] signs a chosen message using the private key generated
by Algorithm 3.19 and outputs a signature.

Algorithm 3.20 Chaum signature
Input: private key Ks

Output: signature s
1: B chooses two random integers a < p and b < p and sends them to A
2: A computes t← x−1 (mod p− 1)
3: A computesc← zaeb (mod p)
4: Signature s← ct (mod p)

Algorithm 3.21 [7] verifies the signature generated by Algorithm 3.20 using
the public key generated by Algorithm 3.19.

Algorithm 3.21 Chaum verificaton
Input: public key Kp, signature s

1: B verifies that s = mdgb

39

3. Discrete logarithm problem

3.2.10 Cramer-Shoup encryption scheme

Cramer-Shoup encryption scheme was proposed by Ronald Cramer and Victor
Shoup. The authors claim that this is the first scheme that is both practical
and provably secure against adaptive chosen ciphertext attack under standard
intractability assumptions [24].

Algorithm 3.22 [24] generates a pair of a private key and a public key.

Algorithm 3.22 Cramer-Shoup key generation
Output: private key Ks, public key Kp

1: Choose a group G of prime order q
2: Choose random g1, g2 ∈ G
3: Choose random x1, x2, y1, y2, z ∈ Zq

4: c← gx1
1 gx2

2 , d← gy1
1 g

y2
2 , h← gz

1
5: Choose a hash function H from the universal family of one-way hash func-

tions
6: Private key Ks ← (x1, x2, y1, y2, z)
7: Public key Kp ← (g1, g2, c, d, h,H)

Algorithm 3.23 [24] encrypts a chosen message using the public key gen-
erated by Algorithm 3.22 and outputs ciphertext.

Algorithm 3.23 Cramer-Shoup encryption
Input: public key Kp

Output: ciphertext c
1: Choose a message m ∈ G
2: Choose random integer r ∈ Zn

3: u1 ← gr
1, u2 ← gr

2
4: e← hrm
5: α← H(u1, u2, e)
6: v ← crdrα

7: Ciphertext c← (u1, u2, e, v)

Algorithm 3.24 [24] decrypts the ciphertext generated by Algorithm 3.23
using the private key generated by Algorithm 3.22 and output the original
message.

Algorithm 3.24 Cramer-Shoup decryption
Input: private key Ks, ciphertext c
Output: message m

1: α← H(u1, u2, e)
2: Verify that v = ux1+y1α

1 ux2+y2α
2

3: Message m← e/uz
1

40

Chapter 4
Implementations setup

4.1 Tools

This section presents mathematical software chosen for implementation com-
parison.

4.1.1 Magma

Magma [25] is developed and distributed by the Computational Algebra Group
at the University of Sydney. This software is designed for computations in
algebra, number theory, algebraic geometry and algebraic combinatorics.

4.1.2 SageMath

SageMath [26] is a free open-source mathematics software, that offers python
based language and builds on top of many mathematical packages such as
NumPy, SciPy, R and more. The mission of SageMath is to be a viable free
open-source alternative to Magma, Maple, Mathematica and MATLAB.

4.1.3 MATLAB

MATLAB [27] is a programming and numeric platform and offers many fea-
tures such as signal processing, deep learning and machine learning. MATLAB
is developed by MathWorks.

4.2 Integer factorization problem

Known algorithms for integer factorization are: Trial division, Pollard’s Rho,
Pollard p−1, Williams’s p+1, Shanks square form factorization, Elliptic curve
method, Quadratic sieve and Number field sieve and others [4].

41

4. Implementations setup

4.2.1 Magma

This section specifies the choice of arguments for algorithms implemented in
Magma. All Magma functions having an optional argument ”Proof” were run
with ”Proof := false” meaning that no time was spent on proving that the
number n being factored is a prime.

4.2.1.1 TrialDivision

Function TrialDivision requires 2 arguments: the number n to be factored and
bound B as the upper bound [28]. B is chosen such that B = ⌊

√
n⌋ in the

case of n = pq and B = ⌊n1/3⌋ in the case of n = p2q.

4.2.1.2 Cunningham

Function Cunningham requires 3 arguments: b, k and c such that n = bk + c,
where c ∈ {−1, 1} and n is the number to be factored [28]. Arguments k, c
are determined for the lowest value of b where b ∈ {2, 3, 5, 6, 7, 10, 11, 12} as
in [29]. SageMath implementation [30] uses the same values.

4.2.1.3 PollardRho

Function PollardRho requires 4 arguments: the number n to be factored, c and
s are parameters for xi = x2

i−1 + c where x0 = s and the number of iterations
k. Parameters c and s are set to 1 which are the default values and k = 109

which is the maximum value that can be chosen for number of iterations [28].

4.2.1.4 pMinus1

Function pMinus1 requires 2 arguments: the number n to be factored and B1
such that all primes should be less or equal to B1 except one which is less or
equal to the optional parameter boound B2 [28].

B1 is chosen as B1 = min(1
2⌊
√
n⌋, 109) in the case of n = pq and B1 =

min(1
2⌊n

1/3⌋, 109) in the case of the n = p2q where 109 is the maximum value
that can be chosen for bound B1.

4.2.1.5 pPlus1

Function pPlus1 requires 2 arguments: the number n to be factored and B1
such that p + 1 has all primes less or equal to B1 except for one which may
be less than or equal to B2 where p is a prime factor of n. The algorithm
succeeds only if

(
x02−4

p

)
= −1 where x0 is a randomly chosen seed but may

be specified with paramater x0 instead [28].
Therefore B1 is chosen as B1 = min(1

2⌈
√
n⌉, 109) in the case of n = pq and

B1 = min(1
2⌈n

1/3⌉, 109) in the case of n = p2q where 109 is limit for bound

42

4.3. Quadratic residuosity problem

B1. An optional parameter x0 is chosen as the least positive integer such
that

(
x02−4

p

)
= −1. This choice is however not possible without knowing the

factorization of n beforehand.

4.2.1.6 ECM

Function ECM requires 2 arguments: the number n to be factored and bound
B1 [28]. As no additional information about bound B1 is provided in [28] we
assume that bound B1 is equivalent to B1 in pMinus1 based on description in
[31].

Therefore B1 should be chosen such that p − 1 has all prime factors
less than B1 except one which is less than B2. Therefore we choose B1 =
min(1

2⌊
√
n⌋, 109) in the case of form pq and B1 = min(1

2⌊n
1/3⌋, 109) in the

case of form p2q. This will however result in worse performance [31].

4.2.1.7 MPQS

Function MPQS requires 1 argument: the number n to be factored, the func-
tion is specified in [28].

4.2.1.8 Factorization

Function Factorization requires 1 argument: the number n to be factored, the
function is specified in [28].

4.2.2 SageMath

SageMath’s functions factor cunningham, factor trial division, factor, qsieve,
ecm factor, pollardrho brent, pollard pm1, williams pp1 require 1 argument:
the number n to be factored [30, 33].

4.2.3 MATLAB

MATLAB’s function factor requires 1 argument: the number n to be factored,
the function is specified in [34].

4.3 Quadratic residuosity problem

There are no known efficient algorithms for solving the quadratic residuosity
problem if the factorization of the modulus n is not known [4].

4.3.1 Magma

Magma does not offer any algorithms for determining whether or not a given
number a is a quadratic residue in Zn where n is a product of two distinct

43

4. Implementations setup

primes and
(

a
n

)
= 1. Therefore, exhaustive search was implemented for com-

parison with SageMath.

4.3.2 SageMath

This section specifies SageMath’s implementations for solving quadratic resid-
uosity problem. Also, exhaustive search was implemented as computing i2

(mod n) for i ∈ {0, 1, . . . , n− 1} until x = i2 (mod n) where x is the element
of Zn for which the algorithm determines quadratic residuosity.

4.3.2.1 quadratic residues

SageMath’s only implementation for solving quadratic residuosity problem is
the quadratic residues function. This function requires one argument: the
number n of Zn and return value is a list of all quadratic residues in Zn, this
function is specified in [35].

4.4 Discrete logarithm problem

Known algorithms for discrete logarithm problem are exhaustive search, Baby-
step Giant-step, Pollard’s rho, Pohlig-Hellman, Index calculus and others [4].

4.4.1 Magma

In this section Magma’s implementations for solving discrete logarithm prob-
lem are specified.

4.4.1.1 Log

Function Log requires 2 parameters: a primitive element b of Zp and the
element x to compute discrete logarithm for, the function is specified in [36].

4.4.2 SageMath

In this section, SageMath’s implementations for solving discrete logarithm
problem are specified.

4.4.2.1 bsgs

Function bsgs requires 3 arguments: a primitive element a of Zp, the element b
to compute discrete logarithm for and pair of bounds for exponent n, l ≤ n ≤ u
where an ≡ b (mod p), the function is specified in [37]. The bounds were
chosen as l = 0 and u = p− 2.

44

4.4. Discrete logarithm problem

4.4.2.2 discrete log

Function discrete log requires 2 parameters: the element a to compute discrete
logarithm for and a primitive element b of Zp, the function is specified in [37].

45

Chapter 5
Implementations comparison

5.1 Integer factorization problem

Implementations were tested on composite numbers of form pq and p2q where
p and q were primes of length of 10k bits, starting with k = 2 and k was
incremented by 1 until the implementation gave correct results within 3600
seconds. For each bit length, 40 random primes were generated to form 20
composite numbers. All implementations were tested on the same set of com-
posite numbers. Random primes were generated with OpenSSL [38] version
1.1.1k.

Magma’s implementation of Number field sieve was not tested as neither
SageMath nor MATLAB provide implementations of this algorithm and there-
fore could not be compared. Furthermore, choosing parameters for Number
field sieve is out of the scope of this thesis.

5.1.1 Form pq

This section presents the results of integer factorization algorithms implemen-
tations tested on composite numbers of form pq.

5.1.1.1 Trial division

SageMath’s implementation of trial division is faster as it could factor all
numbers with a prime factor of 40 bits with an average time of 2074.35 seconds
as shown in Table 5.2 whereas Magma’s implementation could not factor any
of those numbers within 3600 seconds as shown in Table 5.1.

5.1.1.2 Cunningham

Magma’s implementation of Cunningham was not tested as none of the 80
composite numbers with a prime factor between 20 bits and 50 bits were in
the required form.

47

5. Implementations comparison

5.1.1.3 Pollard’s p− 1

In Pollard’s p− 1, both speed and success of the algorithm depend on chosen
parameters. Magma’s implementation is concluded to be both faster and more
reliable as it could factor 19 out of 20 numbers with a prime factor of 50 bits
within 60 seconds on average as shown in Table 5.3. Sage’s implementation
could not factor 8 of these numbers within 3600 seconds and the remaining 12
took 125 seconds on average which is more than twice than Magma as shown
in Table 5.4.

5.1.1.4 Pollard’s Rho

The efficiency of the Magma and Sage implementations is the same for 50 bits
factor however, Magma’s implementation fails to factor 11 out of 20 numbers
with 60 bits factor as shown in Table 5.5 whereas Sage’s implementation fac-
tored all numbers with 60 bits factor although need almost 1480 seconds on
average as shown in Table 5.6.

5.1.1.5 Williams’s p+ 1

The results are similar to Pollard’s p − 1 implementations, Magma’s imple-
mentation could factor 18 out of 20 numbers with a prime factor of 60 bits
with 210 seconds on average as shown in Table 5.7. Sage’s implementation
factored 14 of these numbers with 633 seconds on average, the remaining 6
numbers were not factored within 3600 seconds as shown in Table 5.8.

5.1.1.6 Elliptic curve method

Sage’s implementation outperformed Magma’s implementation as it could fac-
tor all 20 numbers with a 120-bit prime factor in 968 seconds on average com-
pared to Magma which could factor only 7 out of 20 numbers with a prime
factor of 100 bits and needed almost twice as much time as shown in Table
5.9 and Table 5.10.

5.1.1.7 Quadratic sieve

Sage’s implementation is faster than Magma as it factored all numbers with a
factor of the length of 150 bits within 17 minutes and factored half of the 160-
bit factor numbers within 1 hour as shown in Table 5.11. Whereas Magma’s
implementation needed more than 30 minutes on average for 150-bit factor
numbers and could not factor any of 160-bit factor numbers as shown in Table
5.12.

48

5.1. Integer factorization problem

5.1.1.8 Generic factor implementation

Both Magma’s Factorization and Sage’s factor factored all 20 numbers with a
prime factor of 140 bits, Magma needed 2135 seconds on average seconds and
Sage needed 2542 seconds on average as shown in Table 5.13 and Table 5.14.
MATLAB’s implementation was less efficient as it could factor 16 out of 20
numbers with a prime factor of 100 bits and needed 1947 seconds on average
as shown in Table 5.15.

5.1.2 Form p2q

This section presents the results of integer factorization algorithms implemen-
tations tested on composite numbers of form p2q where p and q are distinct
primes of the same size.

5.1.2.1 Trial division

As in the case of form pq SageMath’s implementation is faster than Magma’s
implementation as it factored all 20 instances with a prime factor of the length
of 40 bits whereas Magma’s implementations did not factor any within one
hour as shown in Table 5.16 and Table 5.17.

5.1.2.2 Cunningham

Magma’s implementation of Cunningham was not tested as none of the 80
composite numbers with a prime factor between 20 bits and 50 bits were in
the required form.

5.1.2.3 Pollard’s p− 1

As in case of form pq Magma’s implementation was more efficient than Sage-
Math’s implementation as shown in Table 5.18 and Table 5.19.

5.1.2.4 Pollard’s rho

SageMath’s implementation of Pollard’s Rho is concluded to be more efficient
as it factored all 20 composite numbers with 60-bit prime factor as shown
in Table 5.21. Magma’s implementation factored only 9 out of 20 composite
numbers with 60-bit prime factor as shown in Table 5.20.

5.1.2.5 William’s p+ 1

Magma’s implementation of William’s p+ 1 is concluded to be more efficient.
It has lower failure rates than SageMath’s implementation for composite num-
bers with prime factor between 60 and 90 bits as shown in Table 5.22 and Table
5.23.

49

5. Implementations comparison

5.1.2.6 Elliptic curve method

SageMath’s implementation was more efficient as it factored all 20 generated
instances with 120 bit prime factor compared to Magma’s implementation
factored only 1 out of 20 instances with 110-bit prime factor as shown in
Table 5.24 and Table 5.25.

5.1.2.7 Quadratic sieve

SageMath’s implementation factored all 90-bit factor instances two times
faster than Magma’s implementation and factored 15 out of 20 instances with
a 100-bit prime factor. Magma’s implementation could not factor any of the
100-bit prime factor instances. SageMath’s implementation is concluded to
be more efficient as shown in Table 5.27 and Table 5.26.

5.1.2.8 Generic factor implementation

Magma’s generic factor implementation is more efficient than both SageMath’s
and MATLAB’s implementations. Magma’s implementation needed less time
and had higher success rate than SageMath’s and MATLAB’s for composite
numbers with 120-bit factor as shown in Table 5.28, Table 5.29 and Table
5.30. SageMath and MATLAB performed similarly.

5.2 Quadratic residuosity problem

Implementations were tested in Zn where n = pq and p and q are primes of
the same size. For each of 10-bit, 15-bit and 20-bit lengths of primes p and
q, 40 random primes were generated to form 20 composite numbers. Primes
were generated with OpenSSL [38] version 1.1.1k and random elements a in
Zn were generated with OpenSSL and then udjusted with Magma [25] so that(

a
n

)
= 1. As Magma does not offer any implementation for solving quadratic

residuosity problem, exhastive search was implemented in Magma. Also, ex-
haustive search was implemented in SageMath as SageMath implementation
quadratic residues computes all quadratic residues in Zn which is memory
demanding and therefore comparing exhaustive search in Magma to this im-
plementation would not be impartial.

5.2.1 Type Zn

5.2.1.1 Exhaustive search implementation

Implementation of exhaustive search in Magma was more efficient than ex-
haustive search implementation in SageMath. For a 15-bit prime factor,
Magma needed 194.80 seconds on average compared to 239.62 seconds needed
by SageMath. For a 20-bit prime factor, both Magma and SageMath gave

50

5.3. Discrete logarithm problem

results only for one instance within 3600 seconds, Magma needed 1112.26
seconds and SageMath needed 1270.00 as shown in Table 5.31 and Table
5.32. Also, the exhaustive search implemented in Magma was more efficient
than SageMath’s quadratic residues as for 15-bit prime factor, Magma needed
194.80 seconds on average compared to 722.75 seconds on average needed by
SageMath as shown in Table 5.31 and Table 5.33.

5.3 Discrete logarithm problem

Implementations were tested in Zp with prime p, generator g and random
element x of Zp. Prime p is of length of 10k bits starting with k = 2 and
k was incremented until the implementation gave correct results within 3600
seconds. For each bit length of p, 20 random primes p, 20 generators g and
20 elements x were generated. Every implementation was tested on the same
set of primes, generators and random elements of Zp. All primes and random
elements of Zp were generated with OpenSSL [38] version 1.1.1k, generators
were computed with Magma [25].

Magma’s implementation of Index calculus was not tested as neither Sage-
Math nor MATLAB provide implementations of this algorithm and therefore
could not be compared. Furthermore, choosing parameters for Index calculus
is out of the scope of this thesis.

5.3.1 Type Z∗
p

5.3.1.1 Generic discrete logarithm implementation

Magma’s generic function log is supreme to SageMath’s functions log and
bsgs. Magma’s log found all solutions in Zp with p being a 210 bit prime
whereas SageMath’s log and bsgs could solve all instances only up to a 60
bit prime as shown in Tables 5.34, 5.35, 5.36. SageMath’s implementation of
the Baby-step Giant-step algorithm was part of the generic discrete logarithm
function comparison as Magma’s Log uses the Baby-step Giant-step algorithm
for small instances of modulus p [36].

51

Conclusion

This thesis described almost 40 protocols and ciphers based on integer factor-
ization problem, quadratic residuosity problem and discrete logarithm prob-
lem. Some of the described schemes are widely recognized such as the RSA
encryption scheme whereas some other schemes are quite new such as the
Djebaili-Melkemi encryption scheme.

SageMath and MATLAB were chosen as an alternative to Magma. Both
Magma and SageMath offer a large number of algorithms for solving integer
factorization problem. Integer factorization problem was tested on instances
of n where n = pq or n = p2q where p and q are primes of the same size. For
both forms of n, SageMath’s implementations of trial division, Pollard’s Rho,
Elliptic curve method and Quadratic sieve algorithms were more efficient than
Magma’s implementations.

For discrete logarithm problem, Magma’s generic discrete logarithm imple-
mentation outperformed SageMath’s generic discrete logarithm and Baby-step
Giant-step implementations.

As this thesis has a wide range of interests many works can continue from
this point. Choosing optimal parameters for Pollard’s p− 1, Williams’s p+ 1
and Elliptic curve method, choosing parameters for NFS or index calculus
algorithms. Also, different hard mathematical problems can be chosen.

53

Measurements

This chapter contains results presented in tables. 20 instances were generated
for each bit length of p. Each table has 6 columns: avg – average time in sec-
onds for instances that did not take longer than 3600 seconds, std – standard
deviation in seconds, min – minimum time in seconds needed for solving one
instance, max – maximum time in seconds needed for solving one instance,
> 3600s – number of instances that did not finish within 3600 seconds and
fails – number of instances for which tested implementation did not give any
result.

Integer factorization problem

This section contains tables of results of Magma, SageMath and MATLAB
implementations of algorithms solving integer factorization problem.

Form pq

This section contains measurements of implementations tested on composite
numbers of form pq where p and q are primes of the same size.

Trial division

|p| / time avg std min max > 3600s fails
20 bit 0.26 0.06 0.19 0.49 0 0
30 bit 9.42 0.71 8.63 11.45 0 0

Table 5.1: Magma TrialDivision

55

Measurements

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.01 0 0
30 bit 1.90 0.14 1.69 2.19 0 0
40 bit 2074.35 320.81 1737.00 2827.00 0 0

Table 5.2: SageMath factor trial division

Pollard’s p− 1

|p| / time avg std min max > 3600s fails
20 bit 1.39 0.30 0.65 1.69 0 0
30 bit 21.10 2.70 12.55 25.65 0 0
40 bit 65.42 23.66 37.17 136.88 0 1
50 bit 59.26 20.55 36.80 120.76 0 1
60 bit 60.15 25.51 36.99 145.21 0 2
70 bit 92.54 23.00 59.65 168.43 0 8
80 bit 86.58 22.37 59.17 145.42 0 6
90 bit 89.86 10.71 58.58 94.89 0 15
100 bit 119.10 8.21 84.79 123.40 0 17
110 bit 122.34 0.76 121.41 125.19 0 15
120 bit 119.39 8.68 82.54 121.96 0 18
130 bit 158.72 1.76 155.20 165.11 0 20

Table 5.3: Magma pMinus1

|p| / time avg std min max > 3600s fails
20 bit 0.01 0.01 0.00 0.04 5 0
30 bit 1.73 6.87 0.00 28.40 3 0
40 bit 3.18 9.19 0.01 34.80 6 0
50 bit 135.42 191.81 0.51 461.00 8 0
60 bit 124.70 182.46 4.69 456.00 11 0
70 bit 535.25 18.39 520.00 562.00 16 0
80 bit 580.67 257.31 0.69 732.00 13 0
90 bit 66.00 0.00 66.00 66.00 18 0
100 bit 736.00 0 736.00 736.00 19 0

Table 5.4: SageMath pollard pm1

56

Integer factorization problem

Pollard’s Rho

|p| / time avg std min max > 3600s fails
20 bit 0.02 0.01 0.00 0.04 0 0
30 bit 0.46 0.35 0.11 1.38 0 0
40 bit 1.93 0.39 1.35 2.83 0 0
50 bit 30.82 16.78 6.16 60.00 0 0
60 bit 517.07 162.28 83.38 628.82 0 11
70 bit 918.31 6.65 905.86 926.85 0 20

Table 5.5: Magma PollardRho

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.00 0 0
30 bit 0.05 0.03 0.01 0.11 0 0
40 bit 0.88 0.49 0.27 2.12 0 0
50 bit 30.78 20.10 4.87 82.00 0 0
60 bit 1478.65 642.96 563.00 2518.00 0 0

Table 5.6: SageMath pollardrho brent

Williams’s p+ 1

|p| / time avg std min max > 3600s fails
20 bit 1.60 0.24 0.92 1.91 0 0
30 bit 119.06 9.53 97.19 136.24 0 0
40 bit 233.98 77.86 162.37 332.44 0 0
50 bit 238.40 87.48 156.44 422.14 0 0
60 bit 209.71 70.26 157.74 409.82 0 2
70 bit 269.49 89.76 199.54 593.29 0 6
80 bit 285.62 48.22 232.70 432.51 0 10
90 bit 372.73 61.35 353.38 629.03 0 15
100 bit 369.48 81.78 282.34 709.18 0 16

Table 5.7: Magma pPlus1

57

Measurements

|p| / time avg std min max > 3600s fails
20 bit 0.03 0.08 0.00 0.38 0 0
30 bit 0.61 2.38 0.00 10.70 0 0
40 bit 4.96 15.71 0.01 71.00 0 0
50 bit 182.48 419.75 0.05 1720.00 3 0
60 bit 632.68 914.97 6.60 3100.00 6 0
70 bit 1713.00 1241.64 67.00 3050.00 16 0
80 bit 1576.33 1231.79 227.00 3168.00 14 0
90 bit 101.00 0 101.00 101.00 19 0
100 bit 2922.00 0 2922.00 2922.00 19 0

Table 5.8: SageMath williams pp1

Elliptic curve method

|p| / time avg std min max > 3600s fails
20 bit 1.13 0.45 0.44 1.66 0 0
30 bit 23.76 15.72 3.99 56.74 0 0
40 bit 496.17 259.16 109.77 967.51 0 0
50 bit 699.64 355.50 199.64 1510.03 0 0
60 bit 886.90 276.30 482.48 1395.52 0 2
70 bit 1046.29 231.79 670.02 1695.95 0 5
80 bit 1132.34 179.59 847.30 1747.27 0 6
90 bit 1124.63 14.64 1102.81 1151.31 0 15
100 bit 1406.76 197.60 1075.73 2116.38 0 13
110 bit 1427.41 37.42 1372.09 1507.89 0 16
120 bit 1376.49 21.32 1337.03 1408.80 0 20

Table 5.9: Magma ECM

58

Integer factorization problem

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.00 0 0
30 bit 0.02 0.01 0.01 0.03 0 0
40 bit 0.03 0.01 0.02 0.06 0 0
50 bit 0.07 0.03 0.03 0.13 0 0
60 bit 0.33 0.22 0.04 0.79 0 0
70 bit 1.81 1.35 0.32 5.44 0 0
80 bit 6.93 8.10 0.15 32.10 0 0
90 bit 22.44 17.76 2.63 64.00 0 0
100 bit 101.83 75.07 16.10 273.00 0 0
110 bit 286.38 215.50 15.90 887.00 0 0
120 bit 967.44 706.47 42.80 2596.00 0 0
130 bit 1950.45 1062.39 369.00 3411.00 9 0
140 bit 1947.75 832.14 909.00 2691.00 16 0

Table 5.10: SageMath ecm.factor

Quadratic sieve

|p| / time avg std min max > 3600s fails
20 bit 0.45 0.22 0.32 1.15 0 0
30 bit 0.40 0.03 0.36 0.44 0 0
40 bit 0.66 0.05 0.56 0.73 0 0
50 bit 1.03 0.23 0.80 1.65 0 0
60 bit 1.60 0.14 1.11 1.71 0 0
70 bit 1.85 0.05 1.77 1.93 0 0
80 bit 2.19 0.31 1.63 2.67 0 0
90 bit 4.48 0.63 2.70 5.42 0 0
100 bit 16.99 2.59 10.98 22.34 0 0
110 bit 51.52 6.71 38.97 65.94 0 0
120 bit 170.91 20.74 135.48 199.58 0 0
130 bit 565.23 97.93 395.93 755.77 0 0
140 bit 1652.10 311.85 1146.69 2209.17 0 0

Table 5.11: Magma MPQS

59

Measurements

|p| / time avg std min max > 3600s fails
70 bit 0.57 0.14 0.39 0.83 1 0
80 bit 0.87 0.15 0.69 1.29 0 0
90 bit 1.61 0.19 1.18 2.00 0 0
100 bit 8.45 1.68 5.34 10.20 0 0
110 bit 23.43 4.22 18.00 34.40 0 0
120 bit 68.95 8.55 55.10 84.00 0 0
130 bit 349.45 77.79 249.00 529.00 0 0
140 bit 836.00 128.58 550.00 1064.00 0 0
150 bit 3251.87 406.07 2595.00 3588.00 5 0

Table 5.12: SageMath qsieve

Generic factorization

|p| / time avg std min max > 3600s fails
20 bit 0.01 0.01 0.00 0.02 0 0
30 bit 0.06 0.05 0.01 0.17 0 0
40 bit 0.88 0.56 0.15 1.74 0 0
50 bit 1.55 0.31 0.87 1.94 0 0
60 bit 1.95 0.24 1.60 2.32 0 0
70 bit 2.05 0.40 1.20 2.63 0 0
80 bit 2.13 0.52 0.45 3.03 0 0
90 bit 5.37 0.63 3.61 6.52 0 0
100 bit 20.19 2.75 14.09 26.02 0 0
110 bit 70.53 6.61 57.86 84.81 0 0
120 bit 223.07 21.38 183.12 254.53 0 0
130 bit 732.52 99.06 556.48 920.53 0 0
140 bit 2135.51 316.56 1606.66 2753.87 0 0

Table 5.13: Magma Factorization

60

Integer factorization problem

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.00 0 0
30 bit 0.00 0.00 0.00 0.01 0 0
40 bit 0.04 0.06 0.01 0.25 0 0
50 bit 0.26 0.20 0.02 0.76 0 0
60 bit 0.06 0.02 0.04 0.12 0 0
70 bit 0.22 0.04 0.16 0.35 0 0
80 bit 0.61 0.08 0.45 0.73 0 0
90 bit 2.31 0.42 1.51 3.18 0 0
100 bit 9.81 1.32 7.15 11.90 0 0
110 bit 33.55 6.63 23.70 51.30 0 0
120 bit 122.05 26.59 86.00 188.00 0 0
130 bit 546.55 124.40 340.00 789.00 0 0
140 bit 2542.25 406.76 1886.00 3312.00 0 0

Table 5.14: SageMath factor

|p| / time avg std min max > 3600s fails
20 bit 0.02 0.01 0.02 0.03 0 0
30 bit 0.19 0.04 0.18 0.36 0 0
40 bit 0.22 0.03 0.18 0.29 0 0
50 bit 0.57 0.37 0.19 1.34 0 0
60 bit 2.13 1.52 0.36 6.20 0 0
70 bit 15.80 17.48 3.65 76.41 0 0
80 bit 53.91 40.42 5.85 157.60 0 0
90 bit 456.25 359.97 5.40 1630.86 1 0
100 bit 1947.04 1048.55 33.98 3415.25 4 0
110 bit 1260.72 1702.06 596.19 2402.66 17 0

Table 5.15: MATLAB factor

Form p2q

This section contains measurements of implementations tested on composite
numbers of form p2q where p and q are primes of the same size.

61

Measurements

Trial division

|p| / time avg std min max > 3600s fails
20 bit 0.23 0.05 0.18 0.41 0 0
30 bit 9.86 1.00 8.21 11.87 0 0

Table 5.16: Magma TrialDivision

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.01 0 0
30 bit 1.92 0.18 1.63 2.17 0 0
40 bit 2004.25 184.84 1737.00 2289.00 0 0

Table 5.17: SageMath factor trial division

Pollard’s p− 1

|p| / time avg std min max > 3600s fails
20 bit 0.89 0.24 0.59 1.35 0 0
30 bit 18.36 1.48 16.28 21.43 0 0
40 bit 41.86 19.68 37.16 125.46 0 0
50 bit 71.45 15.84 59.57 93.16 0 1
60 bit 80.35 29.09 59.20 182.23 0 2
70 bit 112.13 15.19 82.50 126.26 0 8
80 bit 112.21 26.02 82.56 186.35 0 6
90 bit 151.76 14.23 110.68 165.71 0 15
100 bit 155.90 10.67 110.96 162.81 0 17
110 bit 194.85 2.17 193.03 203.44 0 15
120 bit 193.07 13.20 138.08 204.29 0 18
130 bit 235.44 3.00 233.19 246.60 0 20

Table 5.18: Magma pMinus1

62

Integer factorization problem

|p| / time avg std min max > 3600s fails
20 bit 0.01 0.02 0.00 0.04 0 0
30 bit 1.94 8.28 0.00 37.10 0 0
40 bit 8.06 16.56 0.01 46.90 1 0
50 bit 152.73 228.82 0.53 556.00 7 0
60 bit 989.45 745.81 41.10 2930.00 0 0

Table 5.19: SageMath pollard pm1

Pollard’s Rho

|p| / time avg std min max > 3600s fails
20 bit 0.02 0.01 0.00 0.05 0 0
30 bit 0.49 0.24 0.13 1.18 0 0
40 bit 1.89 0.39 1.21 2.77 0 0
50 bit 38.31 26.13 6.75 100.19 0 0
60 bit 800.50 276.80 93.89 1011.57 0 11
70 bit 1288.94 11.34 1275.03 1324.58 0 20

Table 5.20: Magma PollardRho

|p| / time avg std min max > 3600s fails
20 bit 0.01 0.00 0.00 0.01 0 0
30 bit 0.04 0.02 0.01 0.08 0 0
40 bit 0.97 0.45 0.28 2.26 0 0
50 bit 39.70 21.08 9.95 85.00 0 0
60 bit 931.05 593.01 161.00 2929.00 0 0

Table 5.21: SageMath pollardrho brent

63

Measurements

William’s p+ 1

|p| / time avg std min max > 3600s fails
20 bit 1.55 0.19 0.89 1.77 0 0
30 bit 146.91 17.17 116.34 200.41 0 0
40 bit 230.23 80.92 157.67 341.99 0 0
50 bit 290.90 101.63 202.62 523.86 0 0
60 bit 245.02 68.66 195.97 482.73 0 2
70 bit 311.64 75.63 236.99 533.56 0 6
80 bit 280.48 36.46 231.91 352.04 0 10
90 bit 368.42 63.82 345.50 638.29 0 15
100 bit 369.79 82.34 284.64 712.84 0 16
110 bit 419.73 0.94 417.97 420.97 0 18
120 bit 423.21 1.79 421.43 427.26 0 20

Table 5.22: Magma pPlus1

|p| / time avg std min max > 3600s fails
20 bit 0.04 0.10 0.00 0.47 0 0
30 bit 0.93 3.55 0.00 16.00 0 0
40 bit 9.63 31.44 0.02 142.00 0 0
50 bit 353.32 833.77 0.07 3407.00 3 0
60 bit 579.43 620.23 15.10 1625.00 8 0
70 bit 1758.50 2290.32 139.00 3378.00 18 0
80 bit 973.67 652.82 408.00 1688.00 17 0
90 bit 216.00 0 216.00 216.00 19 0

Table 5.23: SageMath williams pp1

64

Integer factorization problem

Elliptic curve method

|p| / time avg std min max > 3600s fails
20 bit 0.62 0.08 0.52 0.69 0 0
30 bit 33.90 23.19 4.82 88.85 0 0
40 bit 490.66 329.65 104.80 1224.08 0 0
50 bit 1062.83 511.38 189.21 2041.16 0 0
60 bit 1014.52 280.24 830.89 1912.37 0 2
70 bit 1382.99 368.38 555.62 2119.59 0 4
80 bit 1421.64 273.68 1052.07 2100.28 0 7
90 bit 1828.72 236.32 1329.75 2114.48 0 8
100 bit 1699.36 33.59 1648.05 1823.85 0 15
110 bit 1972.96 88.96 1601.47 2022.70 0 19

Table 5.24: Magma ECM

|p| / time avg std min max > 3600s fails
20 bit 0.02 0.01 0.01 0.04 0 0
30 bit 0.02 0.01 0.01 0.04 0 0
40 bit 0.03 0.01 0.02 0.07 0 0
50 bit 0.12 0.08 0.04 0.31 0 0
60 bit 0.56 0.25 0.06 1.07 0 0
70 bit 3.03 2.31 0.20 8.44 0 0
80 bit 6.80 5.44 0.71 20.20 0 0
90 bit 41.36 41.73 7.35 183.00 0 0
100 bit 121.72 120.53 22.00 530.00 0 0
110 bit 490.35 402.21 78.00 1549.00 0 0
120 bit 1287.60 791.37 279.00 3054.00 0 0
130 bit 1926.00 1073.63 752.00 3283.00 14 0
140 bit 712.00 0 712.00 712.00 19 0

Table 5.25: SageMath ecm.factor

65

Measurements

Quadratic sieve

|p| / time avg std min max > 3600s fails
20 bit 0.54 0.21 0.38 1.12 0 0
30 bit 0.95 0.26 0.66 1.46 0 0
40 bit 1.55 0.12 1.11 1.70 0 0
50 bit 2.05 0.10 1.93 2.33 0 0
60 bit 4.26 0.48 3.30 5.13 0 0
70 bit 27.39 3.91 19.35 35.19 0 0
80 bit 176.66 28.48 129.45 221.83 0 0
90 bit 907.44 110.60 762.75 1123.26 0 0

Table 5.26: Magma MPQS

|p| / time avg std min max > 3600s fails
50 bit 0.81 0.32 0.49 1.41 0 0
60 bit 2.17 0.35 1.68 3.02 0 0
70 bit 9.52 1.41 6.77 11.60 0 0
80 bit 67.10 12.34 51.20 94.00 0 0
90 bit 456.40 55.28 384.00 603.00 0 0
100 bit 3164.93 344.99 2821.00 3593.00 5 0

Table 5.27: SageMath qsieve

66

Integer factorization problem

Generic factorization

|p| / time avg std min max > 3600s fails
20 bit 0.06 0.04 0.01 0.18 0 0
30 bit 0.27 0.14 0.10 0.63 0 0
40 bit 0.84 0.52 0.17 1.60 0 0
50 bit 1.54 0.15 1.16 1.75 0 0
60 bit 2.07 1.13 1.15 5.62 0 0
70 bit 5.90 10.28 0.66 37.20 0 0
80 bit 9.93 9.31 0.51 35.28 0 0
90 bit 68.62 56.59 15.11 217.88 0 0
100 bit 213.66 139.72 23.15 542.01 0 0
110 bit 779.13 746.99 70.68 2550.94 0 0
120 bit 2256.47 1269.47 261.03 3427.71 10 0
130 bit 1700.09 2204.25 1666.92 1733.25 18 0
140 bit 2664.79 889.36 1638.45 3208.58 17 0

Table 5.28: Magma Factorization

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.01 0.00 0.01 0 0
30 bit 0.04 0.05 0.01 0.18 0 0
40 bit 0.05 0.02 0.03 0.10 0 0
50 bit 0.64 0.26 0.06 1.05 0 0
60 bit 2.09 0.48 0.35 2.75 0 0
70 bit 15.50 5.52 1.14 24.40 0 0
80 bit 116.20 27.88 80.00 198.00 0 0
90 bit 529.14 573.88 26.40 1629.00 0 0
100 bit 751.62 441.39 66.00 1423.00 4 0
110 bit 1380.00 1599.96 607.00 2229.00 16 0
120 bit 3324.00 0 3324.00 3324.00 19 0

Table 5.29: SageMath factor

67

Measurements

|p| / time avg std min max > 3600s fails
20 bit 0.18 0.04 0.16 0.34 0 0
30 bit 0.18 0.01 0.17 0.21 0 0
40 bit 0.21 0.03 0.17 0.27 0 0
50 bit 0.62 0.43 0.19 1.75 0 0
60 bit 3.35 2.42 0.58 10.10 0 0
70 bit 16.00 17.49 3.57 76.52 0 0
80 bit 53.95 40.45 5.84 157.64 0 0
90 bit 362.30 246.68 5.41 916.77 0 0
100 bit 1972.34 1052.21 34.04 3411.37 4 0
110 bit 1287.38 836.88 611.09 2466.68 17 0

Table 5.30: MATLAB factor

Quadratic residuosity problem

This section contains tables of results of Magma and SageMath implementa-
tions of algorithms solving quadratic residuosity problem.

Type Zn

This section contains measurements of implementations tested in Zn where n
is a product of two primes of the same size.

|p| / time avg std min max > 3600s fails
10 bit 1.47 0.63 0.00 2.04 0 0
15 bit 194.80 161.09 1.76 430.20 0 0
20 bit 1112.26 0 1112.26 1112.26 19 0

Table 5.31: Magma exhaustive search implementation

|p| / time avg std min max > 3600s fails
10 bit 0.31 0.21 0.00 0.56 0 0
15 bit 239.62 200.26 1.94 549.00 0 0
20 bit 1270.00 0 1270.00 1270.00 19 0

Table 5.32: SageMath exhaustive search implementation

68

Discrete logarithm problem

|p| / time avg std min max > 3600s fails
10 bit 0.39 0.07 0.26 0.50 0 0
15 bit 722.75 147.54 391.00 1014.00 0 0

Table 5.33: SageMath quadratic residues

Discrete logarithm problem

This section contains tables of results of Magma and SageMath implementa-
tions of algorithms solving discrete logarithm problem.

Type Z∗
p

This section contains measurements of implementations tested in Zp where p
is a prime.

69

Measurements

Generic discrete logarithm

Magma Log
|p| / time avg std min max > 3600s fails

20 bit 0.00 0.01 0.00 0.01 0 0
30 bit 0.01 0.02 0.00 0.10 0 0
40 bit 0.07 0.14 0.01 0.62 0 0
50 bit 0.31 0.29 0.02 0.95 0 0
60 bit 0.55 0.45 0.04 1.66 0 0
70 bit 1.16 0.53 0.29 1.64 0 0
80 bit 1.61 0.41 0.04 2.16 0 0
90 bit 1.64 0.53 0.07 1.91 0 0
100 bit 1.74 0.49 0.81 3.25 0 0
110 bit 2.47 1.81 0.80 8.35 0 0
120 bit 3.21 3.02 0.29 15.73 0 0
130 bit 6.73 7.73 4.01 39.49 0 0
140 bit 9.36 0.85 8.06 11.73 0 0
150 bit 22.39 2.40 19.49 31.36 0 0

160 bit * 41.21 3.17 35.20 45.77 0 0
170 bit 81.18 4.55 71.85 89.48 0 0

180 bit ** 161.82 11.40 135.32 185.62 0 0
190 bit 320.85 21.53 284.76 353.04 0 0
200 bit 658.28 89.94 534.73 917.19 1 0
210 bit 1539.21 138.74 1337.71 1806.49 0 0
220 bit 2987.64 373.13 2427.41 3453.76 5 0

Table 5.34: Magma Log

* Two instances caused segmentation fault, therefore the results are for 18 instances.
** One instance caused segmentation fault, therefore the results are for 19 instances.

70

Discrete logarithm problem

|p| / time avg std min max > 3600s fails
20 bit 0.00 0.00 0.00 0.00 0 0
30 bit 0.00 0.01 0.00 0.02 0 0
40 bit 0.06 0.20 0.00 0.88 0 0
50 bit 2.67 6.64 0.00 28.70 0 0
60 bit 70.45 231.80 0.00 1038.00 0 0
70 bit 222.85 836.35 0.04 3358.00 4 0
80 bit 423.81 924.54 0.00 3387.00 6 0
90 bit 807.72 1016.07 0.01 2810.00 8 0
100 bit 248.45 629.31 0.17 2023.00 10 0
110 bit 272.62 468.31 0.10 1163.00 11 0
120 bit 424.28 1008.21 0.07 2482.00 14 0
130 bit 618.60 960.92 21.70 2036.00 16 0

Table 5.35: SageMath discrete log

SageMath bsgs
|p| / time avg std min max > 3600s fails

20 bit 0.00 0.00 0.00 0.00 0 0
30 bit 0.02 0.01 0.02 0.03 0 0
40 bit 1.65 0.10 1.47 1.88 0 0
50 bit 52.90 4.29 44.20 59.10 0 0
60 bit 2156.80 268.62 1669.00 2558.00 0 0

Table 5.36: SageMath bsgs

71

Bibliography

[1] Carmichael Function. Wolfram MathWorld [online]. Weisstein,
Eric W., ©1999–2022 [cit. 2022-04-26]. Dostupné z: https:
//mathworld.wolfram.com/CarmichaelFunction.html

[2] SHANKS, Daniel. Solved and unsolved problems in number theory. Amer-
ican Mathematical Soc., 2001.

[3] Jacobi Symbol. Wolfram MathWorld [online]. Weisstein, Eric
W., ©1999–2022 [cit. 2022-04-26]. Dostupné z: https://
mathworld.wolfram.com/JacobiSymbol.html

[4] MENEZES, A. J., Paul C. VAN OORSCHOT a Scott A. VANSTONE.
Handbook of applied cryptography. Boca Raton: CRC Press, c1997. ISBN
0849385237.

[5] Dr Clifford Cocks CB. University of Bristol [online]. Bris-
tol: University of Bristol, © 2002-2021 [cit. 2022-04-26].
Dostupné z: http://www.bristol.ac.uk/graduation/honorary-
degrees/hondeg08/cocks.html

[6] POINTCHEVAL, David. New Public Key Cryptosystems Based on the
Dependent-RSA Problems. In: Advances in Cryptology — EUROCRYPT
’99. EUROCRYPT 1999. Lecture Notes in Computer Science, vol 1592.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48910-
X_17

[7] SCHNEIER, Bruce. Applied cryptography: protocols, algorithms, and
source code in C. 2nd ed. New York: Wiley, c1996. ISBN 0-471-12845-7.

[8] FISCHER, Michael J.; MICALI, Silvio; RACKOFF, Charles. A secure
protocol for the oblivious transfer. Journal of Cryptology, 1996, 9.3: 191-
196.

73

https://mathworld.wolfram.com/CarmichaelFunction.html
https://mathworld.wolfram.com/CarmichaelFunction.html
https://mathworld.wolfram.com/JacobiSymbol.html
https://mathworld.wolfram.com/JacobiSymbol.html
https://doi.org/10.1007/3-540-48910-X_17
https://doi.org/10.1007/3-540-48910-X_17

Bibliography

[9] WILLIAMS, Henry. A modification of the RSA public-key encryption
procedure (Corresp.). IEEE Transactions on Information Theory, 1980,
26.6: 726-729.

[10] FUJIOKA, Atsushi; OKAMOTO, Tatsuaki; MIYAGUCHI, Shoji. ES-
IGN: An efficient digital signature implementation for smart cards. In:
Workshop on the Theory and Application of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 1991. p. 446-457.

[11] SCHMIDT-SAMOA, Katja. A new rabin-type trapdoor permutation
equivalent to factoring. Electronic Notes in Theoretical Computer Sci-
ence, 2006, 157.3: 79-94.

[12] AL-HAIJA, Qasem Abu; ASAD, Mohamad M.; MAROUF, Ibrahim. A
systematic expository review of Schmidt-Samoa cryptosystem. Int. J.
Math. Sci. Comput.(IJMSC), 2018, 4.2: 12-21.

[13] BENALOH, Josh. Dense probabilistic encryption. In: Proceedings of the
workshop on selected areas of cryptography. 1994. p. 120-128.

[14] BUDIMAN, M. A.; RACHMAWATI, D. A tutorial on using Benaloh pub-
lic key cryptosystem to encrypt text. In: Journal of Physics: Conference
Series. IOP Publishing, 2020. p. 012039.

[15] DJEBAILI, Karima; MELKEMI, Lamine. A Different Encryption Sys-
tem Based on the Integer Factorization Problem. Malaysian Journal of
Computing and Applied Mathematics, 2020, 3.1: 47-51.

[16] ARIFFIN, Muhammad Rezal Kamel, et al. A New Efficient Asymmetric
Cryptosystem Based on the Integer Factorization Problem of N = p2q.
Malaysian Journal of Mathematical Sciences, 2013, 7: 19-37.

[17] KUROSAWA, Kaoru; ITO, Toshiya; TAKEUCHI, Masashi. Public key
cryptosystem using a reciprocal number with the same intractability as
factoring a large number. Cryptologia, 1988, 12.4: 225-233.

[18] GALINDO, David, et al. A practical public key cryptosystem from Pail-
lier and Rabin schemes. In: International Workshop on Public Key Cryp-
tography. Springer, Berlin, Heidelberg, 2003. p. 279-291.

[19] OKAMOTO, Tatsuaki., UCHIYAMA, Shigenori. A new public-key cryp-
tosystem as secure as factoring. In: Advances in Cryptology — EURO-
CRYPT’98. EUROCRYPT 1998. Lecture Notes in Computer Science, vol
1403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054135

[20] BLUM, Lenore; BLUM, Manuel; SHUB, Michael. A simple secure pseudo-
random number generator. Electronics Research Laboratory, College of
Engineering, University of California, 1982.

74

Bibliography

[21] RICHARDSON, Kert. Progress on probabilistic encryption schemes.
2006.

[22] FEIGE, Uriel; FIAT, Amos; SHAMIR, Adi. Zero-knowledge proofs of
identity. Journal of cryptology, 1988, 1.2: 77-94. https://doi.org/
10.1007/BF02351717

[23] CHAUM, David; ANTWERPEN, Hans Van. Undeniable signatures. In:
Conference on the Theory and Application of Cryptology. Springer, New
York, NY, 1989. p. 212-216.

[24] CRAMER, Ronald; SHOUP, Victor. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In: Annual
international cryptology conference. Springer, Berlin, Heidelberg, 1998.
p. 13-25.

[25] Magma Computational Algebra System. Magma Computational Algebra
System [online]. Computational Algebra Group, © 2010-2022 [cit. 2022-
05-08]. Dostupné z: http://magma.maths.usyd.edu.au/magma/

[26] SageMath - Open-Source Mathematical Software System. SageMath -
Open-Source Mathematical Software System [online]. [cit. 2022-05-08].
Dostupné z: https://www.sagemath.org

[27] MATLAB & Simulink - MathWorks. MATLAB & Simulink - MathWorks
[online]. The MathWorks, © 1994-2022 [cit. 2022-05-08]. Dostupné z:
https://www.mathworks.com/products/matlab.html

[28] Factorization. Magma Computational Algebra System [online]. Compu-
tational Algebra Group, © 2010-2022 [cit. 2022-04-16]. Dostupné z:
http://magma.maths.usyd.edu.au/magma/handbook/text/182#1445

[29] BRILLHART, John, et al. Factorizations of bn ± 1, b =
2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers. 1988. Dostupné z
https://cir.nii.ac.jp/crid/1571698599389824512

[30] Integer factorization functions. SageMath Documentation [online]. The
Sage Development Team, © 2005-2022 [cit. 2022-04-16]. Dostupné
z: https://doc.sagemath.org/html/en/reference/rings_standard/
sage/rings/factorint.html

[31] SILVERMAN, Robert D.; WAGSTAFF, Samuel S. A practical analysis of
the elliptic curve factoring algorithm. Mathematics of computation, 1993,
61.203: 445-462.

[32] Integer Factorization. SageMath Documentation [online]. The Sage
Development Team, © 2005-2022 [cit. 2022-04-18]. Dostupné z:

75

https://doi.org/10.1007/BF02351717
https://doi.org/10.1007/BF02351717
http://magma.maths.usyd.edu.au/magma/
https://www.sagemath.org
https://www.mathworks.com/products/matlab.html
http://magma.maths.usyd.edu.au/magma/handbook/text/182#1445
https://cir.nii.ac.jp/crid/1571698599389824512
https://doc.sagemath.org/html/en/reference/rings_standard/sage/rings/factorint.html
https://doc.sagemath.org/html/en/reference/rings_standard/sage/rings/factorint.html

Bibliography

https://doc.sagemath.org/html/en/thematic_tutorials/explicit_
methods_in_number_theory/integer_factorization.html

[33] Primefac. The Python Package Index [online]. Lucas Brown, © 2022 [cit.
2022-04-18]. Dostupné z: https://pypi.org/project/primefac/

[34] Factorization - MATLAB factor. MathWorks - Makers of MATLAB and
Simulink - MATLAB & Simulink [online]. The MathWorks, © 1994-
2022 [cit. 2022-04-16]. Dostupné z: https://www.mathworks.com/help/
symbolic/factor.html

[35] Elementary number theory. SageMath Documentation [online]. The Sage
Development Team, © 2005-2022 [cit. 2022-04-18]. Dostupné z: https:
//doc.sagemath.org/html/en/constructions/number_theory.html

[36] Discrete Logarithms. Magma Computational Alge-
bra System [online]. Sydney: Computational Alge-
bra Group, © 2010-2022 [cit. 2022-04-16]. Dostupné z:
http://magma.maths.usyd.edu.au/magma/handbook/text/211

[37] Miscellaneous generic functions. SageMath Documentation [online].
The Sage Development Team, © 2005-2022 [cit. 2022-04-16]. Dos-
tupné z: https://doc.sagemath.org/html/en/reference/groups/
sage/groups/generic.html

[38] OpenSSL. OpenSSL [online]. The OpenSSL Project Authors, © 1999-2021
[cit. 2022-05-08]. Dostupné z: https://www.openssl.org/

76

https://doc.sagemath.org/html/en/thematic_tutorials/explicit_methods_in_number_theory/integer_factorization.html
https://doc.sagemath.org/html/en/thematic_tutorials/explicit_methods_in_number_theory/integer_factorization.html
https://pypi.org/project/primefac/
https://www.mathworks.com/help/symbolic/factor.html
https://www.mathworks.com/help/symbolic/factor.html
https://doc.sagemath.org/html/en/constructions/number_theory.html
https://doc.sagemath.org/html/en/constructions/number_theory.html
https://doc.sagemath.org/html/en/reference/groups/sage/groups/generic.html
https://doc.sagemath.org/html/en/reference/groups/sage/groups/generic.html

Appendix A
Acronyms

gcd Greatest common divisor

lcm Least common multiple

DLP Discrete logarithm problem

ECC Elliptic curve cryptography

ECM Elliptic curve method

MPQS Multiple polynomial quadratic sieve

QRP Quadratic residuosity problem

77

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
thesis...text of the thesis

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
latex...............the directory of LATEX source codes of the thesis

test generator........the directory of source codes for generating tests

79

	Introduction
	Notation
	Mathematical notation
	Carmichael's function
	Euler totient function
	Jacobi symbol
	Legendre symbol
	Operation

	Digital signature schemes
	Appendix scheme
	Message recovery scheme

	Integer factorization
	Description
	Ciphers and protocols
	RSA encryption scheme
	RSA signature scheme
	RSA pseudorandom bit generator
	Dependent-RSA encryption scheme
	DRSA-1 encryption scheme
	DRSA-2 encryption scheme
	Chaum blind signature scheme
	Rabin encryption scheme
	Rabin signature scheme
	Modified Rabin signature scheme
	Rabin oblivious transfer scheme
	Williams encryption scheme
	ESIGN
	Schmidt-Samoa encryption scheme
	Schmidt-Samoa signature scheme
	Benaloh encryption scheme
	Djebaili-Melkemi encryption scheme
	Djebali-Melkemi signature scheme
	Ariffin-Asbullah-Abu-Mahad encryption scheme
	Kurosawa-Itoh-Takeuchi encryption scheme
	Kurosawa-Itoh-Takeuchi signature scheme
	Galindo encryption scheme
	Okamoto–Uchiyama encryption scheme
	LUC

	Quadratic residuosity problem
	Description
	Ciphers and protocols
	Blum-Blum-Shub pseudorandom bit generator
	Goldwasser-Micali encryption scheme
	Blum-Goldwasser probabilistic encryption scheme
	Feige-Fiat-Shamir identification scheme
	Fiat-Shamir signature scheme

	Discrete logarithm problem
	Description
	Ciphers and protocols
	Pohlig-Hellman encryption scheme
	Diffie-Hellman key agreement
	ElGamal encryption scheme
	ElGamal signature scheme
	Guillou-Quisquater identification scheme
	Guillou-Quisquater signature scheme
	Schnorr authentication protocol
	Schnorr signature protocol
	Chaum undeniable signature scheme
	Cramer-Shoup encryption scheme

	Implementations setup
	Tools
	Magma
	SageMath
	MATLAB

	Integer factorization problem
	Magma
	TrialDivision
	Cunningham
	PollardRho
	pMinus1
	pPlus1
	ECM
	MPQS
	Factorization

	SageMath
	MATLAB

	Quadratic residuosity problem
	Magma
	SageMath
	quadratic_residues

	Discrete logarithm problem
	Magma
	Log

	SageMath
	bsgs
	discrete_log

	Implementations comparison
	Integer factorization problem
	Form pq
	Trial division
	Cunningham
	Pollard's p - 1
	Pollard's Rho
	Williams's p + 1
	Elliptic curve method
	Quadratic sieve
	Generic factor implementation

	Form p2q
	Trial division
	Cunningham
	Pollard's p - 1
	Pollard's rho
	William's p + 1
	Elliptic curve method
	Quadratic sieve
	Generic factor implementation

	Quadratic residuosity problem
	Type Zn
	Exhaustive search implementation

	Discrete logarithm problem
	Type Zp*
	Generic discrete logarithm implementation

	Conclusion
	Measurements
	Integer factorization problem
	 Form pq
	Trial division
	Pollard's p - 1
	Pollard's Rho
	Williams's p + 1
	Elliptic curve method
	Quadratic sieve
	Generic factorization

	 Form p2q
	Trial division
	Pollard's p - 1
	Pollard's Rho
	William's p + 1
	Elliptic curve method
	Quadratic sieve
	Generic factorization

	Quadratic residuosity problem
	Type Zn

	Discrete logarithm problem
	Type Zp*
	Generic discrete logarithm

	Bibliography
	Acronyms
	Contents of enclosed CD

