
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Web Application WeFix

Aydin Misirzade

Ing. Michal Valenta, Ph.D.

Informatics

Web and Software Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

The goal of the thesis is to design and develop a web application that helps to find a

service for broken electronics like smartphones, laptops, washing machines, etc.

1. Make a review of similar solutions on the market, discuss their pros and cons.

2. Design and develop a solution that will solve the customer’s problem in a user-friendly

way. Choose application architecture and implementation platform is part of the thesis.

3. Focus on correct design, documentation, and testing according to standard software

engineering approaches.

Starting requirements for the application are:

- application with web-based frontend with responsive design,

- help to find repair services based on their specialization, ratting, pricing, or location,

- ability to manage the content (new services, user's rating, registered users, etc.)

Other requirements will be clarified after analyses of similar applications.

Electronically approved by Ing. Michal Valenta, Ph.D. on 27 October 2021 in Prague.

Bachelor’s thesis

WEB APPLICATION
WEFIX

Bc. Aydin Misirzade

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.
May 17, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Bc. Aydin Misirzade. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Misirzade Aydin. Web Application WeFix. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

First of all, I would like to thank my family and friends for their
infinite support throughout my studies.
I want to thank Mrs. Ludmila Facer, who always helped me with
any of my administrative queries. She was always there to help and
was worrying for me.
I would like to express my immense gratitude and respect to Ing.
Jan Trávńıček, Ph.D. for teaching me the basics of coding within
the BIE-PA1 lessons and Ing. Ladislav Vagner, Ph.D. for his deep
expertise in CS theory and, of course, for the almighty Progtest.
My special thanks goes to my supervisor Ing. Michal Valenta, for
all the support and guidance with the actual thesis.

iii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 17, 2022 .

iv

Abstrakt

Ćılem této práce je vyvinout webovou aplikaci určenou k vyhledáńı opravárenského servisu pro
jakýkoli druh elektroniky, domáćıch spotřebič̊u, vozidel včetně daľśıch druh̊u stroj̊u a popsat
celý proces jej́ıho vývoje. Práce také popisuje proces aplikačńı analýzy se zkoumáńım podobných
řešeńı. Konečným výstupem práce je kromě popisu procesu vývoje také funkčńı webová aplikace.

Kĺıčová slova Webová aplikace, opravy, design, implementace, Javascript, React

Abstract

The aim of this thesis is to develop a web application designated to find a repairing service
for any kind of electronics, household appliances, vehicles, including other kinds of machinery,
and to describe the whole process of its development. The thesis also describes the process
of application analysis with examination of similar solutions. Besides the description of the
development process, the final output of the thesis is also a working web application.

Keywords Web Application, repairment, design, implementation, Javascript, React

v

Contents

Acknowledgments iii

Declaration iv

Abstrakt v

List of Abbreviations viii

1 Introduction 1

2 Motivation 3

3 Analysis of existing solutions 5
3.1 NejŘemeslńıci.cz . 5
3.2 Opravárna . 6
3.3 Final conclusion . 7

4 The Solution 9
4.1 The Idea . 9

4.1.1 What is MVP? . 9
4.1.2 Type of Application . 9

4.2 Requirements . 10
4.2.1 Functional Requirements . 10
4.2.2 Non-functional Requirements . 11

4.3 Design and Architecture . 11
4.3.1 Application Architecture . 11
4.3.2 Database Design . 13

4.4 Technologies . 13

5 Implementation 17
5.1 API Implementation . 17

5.1.1 Authentication . 17
5.2 The back-end side . 17
5.3 Security . 18
5.4 Error handling . 19
5.5 The front-end side . 19

5.5.1 Tailwind CSS . 19
5.5.2 DaisyUI . 20
5.5.3 Custom Theme . 20
5.5.4 Card-style components . 21
5.5.5 Grid . 22

5.6 Google Maps Integration . 23

vi

Contents vii

6 Testing and Pipelines 25
6.1 Testing . 25

6.1.1 Usability Testing . 25
6.1.2 Unit Testing . 26

6.2 Pipelines . 26
6.2.1 GitLab CI . 27

7 Conclusion 29
7.1 Evaluation . 29
7.2 Drawbacks and Future Improvements . 30
7.3 Final Thoughts . 31

List of Abbreviations 35

List of Attached Files 39

List of Abbreviations

API Application Programming Interface
CD Continuous Delivery
CI Continuous Integration

CSS Cascading Style Sheets
DB Database

HTML Hypertext Markup Language
JS Javascript

JSON Javascript Object Notation
JWT JSON Web Token
MVP Minimum Viable Product

UI User Interface
UX User Experience

viii

Chapter 1

Introduction

Continuous technological advancements have an impact on every important aspect of our lives,
whether it’s an indirect effect like the ability to purchase almost every kind of product in our local
stores as a result of globalization based on technological progress in logistics, or a more direct
effect like vast improvements in medicine or facilitation in human communication all around the
world. Even though the humanity has advanced immensely in the latter, it is still possible to
find a niche, which has not been filled yet.

Figure 1.1 A person uses his smartphone and Uber application to order a taxi

The idea of this thesis was originally inspired by services such as Uber, Airbnb, Wolt, i.e.
online service providers, which make our daily life a little bit more comfortable. Even though
the Czech Republic has always been renowned for its advanced competency in IT market and
there has been a number of online service providers (Dáme Jidlo, Rohlik.cz) emerging during the
last decade, there is one specific field which has not been digitalized yet in the Czech Republic.

This thesis aims to examine and solve a problem of finding a repair service for a broken
machinery. It will describe the whole process of development of the minimum viable product,
known as MVP, from design to actual implementation, while the practical output of the thesis
will be a functional web application which can be used by people.

1

2 Introduction

The thesis is divided into seven chapters. The second chapter provides the motivation and
describes the stated problem in more details. Following that, a chapter focused on analysis of
the existing solutions on the Czech market is present, outlining their strengths and weaknesses.

Chapter four will discuss the proposed MVP solution. It will focus on the design and the
architecture, describe functional and non-functional requirements. Moreover, there will be an
overview of the technologies used while implementing the application and reasons behind choosing
them.

Chapter five is called Implementation, which consists of description of the actual develop-
ment process, including back-end and front-end implementation nuances, and describing API
implementation and its authorization.

The sixth chapter will give a review of the testing process and CI/CD pipelines. Chapter
seven concludes the whole thesis.

Chapter 2

Motivation

Imagine a situation:
You are on a road trip with your family somewhere far away from the city you live. Suddenly,

you find out that you can’t start the engine of your car. As you are not an auto mechanic, you
are not able to identify the cause of the problem, let alone fixing it.

You don’t know the city you are in, don’t know the people here, but need to have your vehicle
fixed as quickly as possible. You go to Google to find some repairing service, but realize that the
search results returned are of no value. Either there is no phone or address provided for a given
business, or a service has only one one-star review, which does not really make you want to go
there.

Alternatively, there is another case which is more likely to occur in our daily life:
You suddenly find out that your washing machine, which you have happily used for 2 years

now, breaks and starts leaking. You have never encountered such a situation, and don’t know
the right person for it. Of course, you may call your friends and ask them, or go to Google
yet again and ”feel yourself lucky”. But given the times we’re living in, all the ”digitalization”
around us, is it really convenient and in modern fashion? Wouldn’t it be better to have this all
in one place, as you do whenever you order your favorite food through Wolt, or get yourself a
taxi through Uber?

Those are the examples of the situations when an application like WeFix might come in
handy. The idea is to provide one common platform, where people would be able to find a place,
or a person, which would help them with their broken devices. The idea itself is not new, there
are already applications like Allbetter, Handy, Taskrabbit[1], and other solutions serving the
same purpose. Unfortunately, they are not available in the Czech Republic.

While investigating the case, I ran across two companies, which operate in the Czech Repub-
lic, namely, NejŘemeslńıci.cz and Opravárna[2][3]. Even though they seemingly serve the same
idea, I find these solutions to be not user-friendly and obsolete. They lack features that come
with WeFix, and don’t provide a modern approach to finding a handyman. Following chapter
will go further into details of comparing the mentioned applications and their functionalities
between themselves and WeFix.

In conclusion, the aim was to implement an application which:

is easy to use both for the people and the repairing services, or individual contractors,

facilitates and significantly simplifies the process of finding the right treatment for broken
equipment

The application was developed with people in mind. The users will benefit from finally having
one platform where they can both offer and look for repairs, individual repairers will also profit

3

4 Motivation

from having more people seeing the services they provide, and simple users, or consumers, will
have a wide selection of services to choose from. Furthermore, WeFix provides functionality to
look for services on a city map, meaning that users can find repairing services nearby, or select
the best one based on ratings and reviews left by real people. Those are the features that the
Czech market currently lacks, but can be brought in by WeFix.

Chapter 3

Analysis of existing solutions

As mentioned in the previous chapters, the Czech market for online repair services is pretty rare.
When you try to find any in the vastness of Czech internet, only two companies catch your eye:
NejŘemeslńıci.cz and Opravárna. Both of the companies provide assistance in finding a good
repair company, but the way they do it is significantly different than the idea of WeFix. In this
chapter, I will go deeper into how each of the competitors work, and compare them with WeFix.

3.1 NejŘemeslńıci.cz

Figure 3.1 An interface for new order at NejŘemeslńıci.cz

NejŘemeslńıci.cz is a company that has been on the Czech market since 2009, and which has
gathered a solid number of partners, such as Velkopopovický Kozel, Stavebniny DEK, and even
Saint-Gobain, the French giant, specializing in the construction field.

While analyzing the way NejŘemeslńıci works from the user perspective, I found out that,
on the high-level, their business follows a very simple process:

1. The user selects the type of work he/she wants to be done.

5

6 Analysis of existing solutions

2. Then, the user fills out the form with all the contact data and the detailed description of the
service to be provided

3. After that, the user receives an email from NejŘemeslńıci with a number of offers from their
partners to choose the service from.

This business process is somewhat similar to that of WeFix, but WeFix does not make users
wait for an email with offers and does not make users fill out a detailed description of the work.
In other words, WeFix provides one interface for all things and offers its users relevant services
based on the user’s query. The offering is done based on the location and rating, and it’s totally
up to the user which company or an individual repairer to select. To put it another way, WeFix
does not make individual or tailored offerings, but supplies its users with everything there is to
select.

Moreover, the focus of NejŘemeslńıci is mainly in the field of construction or in-house works,
such as plumbing, cleaning, interior restoration, housekeeping, etc. In contrast to that, WeFix
works with a broader range of categories, and is open for partners specializing all types of repair
works. NejŘemeslńıci is more oriented on business, rather than individual clients, while WeFix
can be equally used by both.

Now, let us take a look at the technical part of our analysis. When you type in NejŘemeslńıci.cz
in your browser, all you get is a plain landing page with one submission form to make an order,
and the description of the business and how it works. This contrasts well with WeFix, as it is a
fully-fledged Web application with all the common functionalities a user would expect.

In conclusion, after careful examination of NejŘemeslńıci.cz, it can be clearly seen that We-
Fix is totally a different product. NejŘemeslńıci is a well-established business that works in a
more traditional way and lacks an online tool similar to WeFix.

3.2 Opravárna

Figure 3.2 Home page of Opravárna

In contrast with NejŘemeslńıci, Opravárna’s domain includes not only construction services
and household works, but also categories such as PCs and mobile phones, watches, automobiles,

Final conclusion 7

electronics, and many other types. The other important aspect of Opravárna’s domain of business
which makes it different from NejŘemeslńıci, but similar to WeFix, is that Opravárna works both
with individual repairers and repair services. As for the user flow, the process is not that different
from that of NejŘemeslńıci, but has some advantages and additional features over it. The process
is:

1. The user logs in, or registers, his/her account in Opravárna.cz.

2. The user selects the type of work he/she wants to be done.

3. Then, the user fills out the form with the detailed description of the service to be provided,
or the broken goods.

4. As soon as the user receives submits the form, he/she can see the map with different repairers
or services marked on it.

5. The user has to make a payment of 75 Kč in order for Opravárna to send out the user’s order
to its partner network.

6. The user will get offers from repairers/services to his/her email address, or get his money
back

This flow has the same mistakes as the process at NejŘemeslńıci. First, Opravárna does not
provide one common interface. The user has to make the order on their website, and then proceed
to his/her mailbox. Second, they make the user wait for the reply from repairers. Moreover,
they make user pay the small fee for the mediation. I will not discuss the pros and cons of such
business model, as it is out of the scope of this thesis, but from the user experience point of view,
the mentioned process is a poor one.

While Opravárna.cz’s platform follows the same ”Make an order, and we’ll respond” pattern,
from technical point of view, they have a working Web application, where a user is able to sign
up (log in), select the category of service, and make the order. There is a ”My Orders” page,
which lists the history of the orders made by user. There is no option to rate a repairer or a
service company, though.

Finally, I think Opravárna has a product which can be considered a rival to WeFix. Opravárna.cz
lacks some of the key features WeFix has, and operates as a mediator between a client and a
repairer. WeFix, on the other hand, is a platform for both actors, and does not get involved into
communication between them.

3.3 Final conclusion
As a result of my analysis, I can conclude that WeFix has a right to live. It is a platform, which
is rather new, different from its potential competitors, and bringing new unique functionality to
the Czech market.

8 Analysis of existing solutions

Chapter 4

The Solution

4.1 The Idea

4.1.1 What is MVP?
A minimum viable product (MVP) is a concept from ”Lean Startup”1 that stresses the impact of
learning in new product development. Eric Ries defined an MVP as that version of a new product
which allows a team to collect the maximum amount of validated learning about customers with
the least effort. This validated learning comes in the form of whether your customers will actually
purchase your product.

A key premise behind the idea of MVP is that you produce an actual product (which may be
no more than a landing page, or a service with an appearance of automation, but which is fully
manual behind the scenes) that you can offer to customers and observe their actual behavior
with the product or service. Seeing what people actually do with respect to a product is much
more reliable than asking people what they would do.

The primary benefit of an MVP is you can gain understanding about your customers’ interest
in your product without fully developing the product. The sooner you can find out whether your
product will appeal to customers, the less effort and expense you spend on a product that will
not succeed in the market.

From software engineering perspective, an MVP is a working product, which is able to provide
features required for the essential use cases, but not enriched by some additional functionality,
or fancy design, and which can be developed by a small team (in our case, by a team of one).

It is important to understand what the term MVP is, because the application discussed in
this thesis is a clear example of a minimum viable product.

4.1.2 Type of Application
In today’s diverse world of software, there are numerous ways to design and implement an
application. There are virtually countless possibilities and options to choose from, starting
from the choice of the application type, followed up by the choice of environment, programming
languages, technologies, and frameworks. This section will discuss these choices. Furthermore,
this chapter contains a section about database design.

The first choice that has to be made is what kind of application is best in the circumstances.
Considering the domain of the application, potential customers and use cases of the application,
there are two main approaches which would be possible – either implementing native applications

1A book by Eric Ries

9

10 The Solution

both for computers (for the administrators) and smartphones (for the receivers of the messages)
or creating a web application – or, of course, combining both approaches.

When making this choice, it has to be acknowledged that recent surveys show that smartphone
users are becoming less and less motivated to download extra applications, as not to bloat
their own devices. [4][5] The same can be said with desktop applications – installing a desktop
application might seem as a kind of commitment for a user. Moreover, developing a single web
application with responsive design is far less time demanding than building a native application
for every mobile and desktop environment.

So far, a web application seems like a good option. Of course, web applications do have
their downsides – it is hard to ensure good user experience for users of all internet browsers and
devices of all different sizes, and they tend to be slower and worse adjusted than their native
counterparts. However, in this situation, the advantages seem to outweigh the disadvantages, so
it was decided to develop a web application, with a possibility to transforming it to Progressive
Web App, or developing native mobile applications in the future.

4.2 Requirements
Requirements that are well thought through and clearly documented are essential to any suc-
cessful software engineering project. There are two main different types of system requirements
that should be gathered by those working on software projects. System requirements can be
categorized as either functional requirements or non functional requirements. Understanding the
difference between the two helps to ensure that developers will deliver a product that performs
as expected. Research shows that 68% of IT projects fail[6]. One of the main reasons for this is
poor definition of requirements at the start.

In this section, two type of system requirements will be presented – functional requirements,
summarizing what operations should the user of the application be able to do, and non-functional
requirements, summing up everything else about the application but the functionality – for
example, reliability or usability of the application.

4.2.1 Functional Requirements
The functional requirements are logically divided into groups by their relation to an application
user. There are two user types in the application: a general user (or a customer), and a repairer.

Both user types are able to:

Sign up in the system.

Log in to the system.

Log out from the system.

View ”My orders” section.

View a page about a repairing service/repairer.

View a page about an order.

A user of type customer is additionally able to:

Navigate on a map with repairing services/repairers pinned onto it.

Leave a rating for the repairing service/repairer.

See a list of repairing services/repairers.

Design and Architecture 11

A user of type repairer is additionally able to:

Accept or decline an order.

Update the status of order (In progress, completed).

4.2.2 Non-functional Requirements
This section will provide a list of non-functional requirements, excluding the choice of program-
ming language, platform, and frameworks – these important aspects will be discussed more
thoroughly in the next section.

Accessibility – application is accessible through all standard internet browsers on stable
URL to everyone with internet access.

Integrability – application should provide an open API to be easily integrated with other
systems.

Adaptability – as should be clear from the previous chapters, the system can be used for a
wide variety of use cases, and thus is fairly adaptable.

Availability - application should be available (online) for at least 90% of the time

Security – core functionality is available only to authorized users, moreover divided by user
roles as specified above.

Usability – application is easy to use for people of all ages and education levels.

Language - application supports English language only

4.3 Design and Architecture

4.3.1 Application Architecture
Web application architecture can refer to several design points of the application. In this section,
I will provide a brief summary to two of these approaches - one describing options to intercon-
nect the application logic between client and server side [7] and other describing the relationships
and interactions between the application inner components, such as database, different point of
application logic, etc. [8]

Distributing application logic

There are three main options:

Server side HTML

Also referred to as a ”Legacy HTML Web App Architecture”, this architecture is the oldest
and most common approach used. It refers to a situation where the client’s only job is to send
request to the server, which generates a whole page in HTML and sends it back to the client [9].
Due to small interactivity of the app (the whole page has to be reloaded with every request), this
approach is nowadays more commonly used for static websites than dynamic web applications
[10, 11]. The biggest advantage of this approach is high security [10].

JS Widgets

12 The Solution

Also known as Widget Web app, this approach divides each of the client’s pages into several
sections called widgets. Each of these widgets are responsible for loading a different piece of data
- and thus are independent. The name JS Widgets is indicating technology used for this type
of architecture - which is JavaScript’s AJAX, which allows calling HTTP requests from client
asynchronously and independently on the actual page load [9]. With this architecture, data
can be updated separately for every widget without the need to reload whole page, which pro-
vides better experience for data dynamic applications without using the single-page architecture.

SPA

SPA or Single-page application is the most modern approach. While using this architecture,
user only requests the whole page once. After that, reacting on user’s actions, parts of the web
page are rendered independently - this means not only data on the page, but whole structure
can be changed based on received responses from server. The communication is – as with the
previous architecture option – based on asynchronous HTTP requests, using AJAX. The biggest
advantage of this approach is its interactivity – user can usually interact with parts of the web
page while other (for example data-heavy) parts are being rendered [9].

Chosen architecture

One of the selling features of WeFix is its ease of use. Single-page applications offer a much
better user experience, meaning that users can navigate easily between the different pages of an
app without waiting for the pages to load. As soon as a user interacts with the app, only the
required component will be modified, not the complete application, which makes a single-page
app much faster in terms of interactivity. [12] Another point in favor of SPA is that single-page
applications are easier to develop, thus making single-page applications the best option for an
MVP of WeFix

Relationship of components

There are three main approaches:

Monolithic architecture

Monolithic architecture is the most traditional and oldest approach to software architecture
– the application is build as one unified component, where every part of the application runs
on a single machine [13]. The application may interact with other services, but the main part
of its behaviour runs ”within its own process” [14]. The application is usually decomposed into
several layers - data access layer, business logic layer and presentation layer in order to achieve
at least some level of loose coupling [15] - despite this, the application is still very connected –
this brings many disadvantages, such as limiting options for application scaling – the only way
to horizontally scale such application is to duplicate the whole application on several machines
[13]. However, this architecture is easiest to develop and deploy, which still makes it a viable
choice for app development[16].

SOA

Service-oriented architecture is aiming to resolve the tight coupling of monolithic architecture.
The application is usually decoupled into several smaller modules, which then communicate be-
tween them- selves [15]. With right implementation, the application is very loosely coupled and
offers high reusability of individual services and better maintainability – as the application is

Technologies 13

much less coupled together, an error in one module usually does not directly affect another mod-
ule [16]. However, bigger decoupling of services means that communication between individual
parts of the application gets harder - which can lead to errors [15].

Microservices

Microservices is an architecture which is following the decoupling requirement even more thor-
oughly – same as service-based architecture, microservices divide the application into several
loosely coupled, discrete units. The biggest difference between microservices and service- ori-
ented architecture is the granularity of the individual modules, while some sources even state
that microservices architecture just a variant of service-oriented architecture[13].

Chosen architecture

Because I am developing an MVP version of WeFix within this thesis, the back-end of which will
not be heavily loaded, it was decided to use monolithic architecture, which is also simplest, and
thus the fastest to implement.

4.3.2 Database Design
For the MVP, I decided to choose one central database which holds all of the information about
orders, repairers and of course all users.

WeFix uses MongoDB as its database platform. We will revise what MongoDB is about in the
next section. MongoDB is not a canonical relational database, and does not have tables. It uses
a JSON object, which is called a document, as an entry in the database, and the documents are
grouped into collections. There are 3 collections in WeFix’s database: users, orders, repairers.
Each of the collection consists of documents which all have common schemas, as depicted in
Figure 4.1.

Figure 4.1 Database Design of WeFix MVP

For the relationship between documents, I used the technique called ”Embedded documents”.
To put it simply, it is a JSON objected nested in a JSON object. Documents of type order have
embedded documents for fields executed by and requested by.

4.4 Technologies
When choosing the production environment and programming language, several factors have to
be taken into consideration – firstly, the decision made about the type of the application has
to be reflected on – which makes the list of technologies possible to use substantially smaller.
Another aspect worth taking into account is popularity of a language and environment, as more
popular languages have bigger communities and therefore it is much easier to find solutions to

14 The Solution

problems which will undoubtedly occur. Final and the most influencing element, which has to
be considered is that it is preferable to use the languages and environment which are usually
used in the company I am employed in while developing products, as WeFix will be maintained
and modified by other employees of the company. The company is based on Microsoft technolo-
gies, which narrowed the final choice of technologies to only a few options. Considering all the
previous points, I chose following technologies:

Back-end Technologies

JavaScript

JavaScript (JS) is a lightweight, interpreted, or just-in-time compiled programming language
with first-class functions. While it is most well-known as the scripting language for Web pages,
many non-browser environments also use it, such as Node.js, Apache CouchDB and Adobe Ac-
robat. JavaScript is a prototype-based, multi-paradigm, single-threaded, dynamic language,
supporting object-oriented, imperative, and declarative (e.g. functional programming) styles.

Express.js

Express is a minimal and flexible Node.js web application framework that provides a robust
set of features to develop web and mobile applications. It facilitates the rapid development of
Node based Web applications. Following are some of the core features of Express framework:

Allows to set up middlewares to respond to HTTP Requests.

Defines a routing table which is used to perform different actions based on HTTP Method
and URL.

Allows to dynamically render HTML Pages based on passing arguments to templates.

MongoDB

MongoDB is a document-oriented NoSQL database used for high volume data storage. In-
stead of using tables and rows as in the traditional relational databases, MongoDB makes use
of collections and documents. Documents consist of key-value pairs which are the basic unit of
data in MongoDB. Collections contain sets of documents and function which is the equivalent of
relational database tables.

Why MongoDB?

Each database contains collections which in turn contains documents. Each document can
be different with a varying number of fields. The size and content of each document can be
different from each other.

The document structure is more in line with how developers construct their classes and objects
in their respective programming languages. Developers will often say that their classes are
not rows and columns but have a clear structure with key-value pairs.

The rows (or documents as called in MongoDB) does not need to have a schema defined
beforehand. Instead, the fields can be created on the fly.

The data model available within MongoDB allows you to represent hierarchical relationships,
to store arrays, and other more complex structures more easily.

Scalability – The MongoDB environments are very scalable. Companies across the world have
defined clusters with some of them running 100+ nodes with around millions of documents
within the database

Technologies 15

Front-end Technologies

JavaScript + TypeScript

TypeScript is an object-oriented language designed by Microsoft in 2012. It is a superset of
JavaScript and can be used both a language and a set of tools. It provides static typing, which
can help to catch errors as they appear making it ideal for large team collaborations. One of the
big benefits is to enable IDEs to provide a richer environment for spotting common errors as you
type the code. For a large JavaScript project, adopting TypeScript might result in more robust
software, while still being deployable where a regular JavaScript application would run.

React

React.js is an open-source JavaScript library that is used for building user interfaces specifi-
cally for single-page applications. It’s used for handling the view layer for web and mobile apps.
React also allows us to create reusable UI components. React was first created by Jordan Walke,
a software engineer working for Facebook. React first deployed on Facebook’s newsfeed in 2011
and on Instagram.com in 2012.

React allows developers to create large web applications that can change data, without reload-
ing the page. The main purpose of React is to be fast, scalable, and simple. It works only on
user interfaces in the application.

Why React?

Simplicity – ReactJS is just simpler to grasp right away. The component-based approach,
well-defined lifecycle, and use of just plain JavaScript make React very simple to learn, build a
professional web (and mobile applications), and support it. React uses a special syntax called
JSX which allows you to mix HTML with JavaScript. This is not a requirement; Developer
can still write in plain JavaScript but JSX is much easier to use.

Native Approach – React can be used to create mobile applications (React Native). And
React is a diehard fan of reusability, meaning extensive code reusability is supported. So at
the same time, we can make IOS, Android and Web applications.

Testability – ReactJS applications are super easy to test. React views can be treated as
functions of the state, so we can manipulate with the state we pass to the ReactJS view and
take a look at the output and triggered actions, events, functions, etc.

Components Support – The use of HTML tags and JS codes makes it easy to work with a
huge dataset containing DOM. React acts as an intermediary that represents the DOM and
helps you decide which component requires changes to get accurate results.

One-way Data Binding – One-way data-binding implies that absolutely anyone can trace all
the changes that have been made to a segment of the data. This is also one of the reasons
that makes React so easy.

Other used Technologies

JWT (Json Web Token)

Json Web Token (JWT) is a RFC standard for secure transmission of information as a JSON
object. It can be used for two purposes – authorization or information exchange between two
parties. The JWT consists of three parts, which are separated by dots: header, payload, and
signature. The header typically contains information about the type of token being sent (JWT
in our case) and the signing algorithm used. Payload contains the actual data being transmitted

16 The Solution

– in case of authorization a set of claims which unambiguously determine the user. Signature
is created from the Base64Url encoded and concatenated header and payload. Created token is
then sent with HTTP request, typically passed in the Authorization header.[17]

Why JWT?

Instead of storing information on the server after authentication, JWT creates a JSON web
token and encodes, sterilizes, and adds a signature with a secret key that cannot be tampered
with. This key is then sent back to the browser. Each time a request is sent, it verifies and sends
the response back.

The main difference here is that the user’s state is not stored on the server, as the state is
instead stored inside the token on the client-side.

JWT also allows us to use the same JSON Web Token in multiple servers that you can
run without running into problems where one server has a certain session, and the other server
doesn’t.

Most modern web applications use JWT for authentication reasons like scalability and mobile
device authentication.

Mongoose

Mongoose is an object document modeling (ODM) layer that sits on top of Node’s2 MongoDB
driver. It’s similar to an object-relational mapping for a relational database.

Why Mongoose?

While it’s not required to use Mongoose with the MongoDB, there is a bunch of reasons why
using Mongoose with MongoDB is generally a good idea.

MongoDB is a denormalized NoSQL database. This makes it inherently schema-less as doc-
uments have varying sets of fields with different data types. While this provides your data
model with flexibility as it evolves over time, it can be difficult to cope with coming from a
SQL background. Mongoose defines a schema for the data models so the documents follow a
specific structure with pre-defined data types.

Mongoose has built in validation for schema definitions. This saves from writing a bunch
of validation code that you have to otherwise write with the MongoDB driver. By simply
enforcing in your schema definitions, Mongoose provides out-of-the-box validations for the
collections.

Mongoose abstracts away most of the MongoDB code from the rest of the application.

Jest

Jest is a JavaScript open-source framework mainly used for testing. Jest is majorly used to
work with React-based web applications, and it mostly focuses on simplicity while doing any
unit testing. The framework helps developers validate everything built with JavaScript, whether
it is browser rendering of web applications or any mobile applications. Along with this, Jest also
provides a blended package of a built-in mocking library, an assertion library and a test runner.

2Node.js. A runtime environment for JavaScript

Chapter 5

Implementation

5.1 API Implementation
One of the application requirements was a functioning API, as the application may supposedly
be integrated with other applications. So far, only an easy API has been implemented, allowing
the user of the API to get all possible data that the current MVP operates on. The API is
planned to be extended accordingly to third-party applications needs.

5.1.1 Authentication
The hardest part of API implementation was without a doubt creating functional and secure
authentication. As there is no way how to keep session between individual API requests, every
request has to be authenticated. After some consideration it was decided to use authentication
based on Json Web Tokens (JWT) – basic principles of this authentication are explained in
chapter 4. To make the implementation easier, library jsonwebtoken was used for the elemental
functions:

JWT creation – using function generateAccessToken, which returns a signed JWT token with
a validity of 1 hour. The duration of an hour was selected as the most optimal time a user
might spend in the system.

JWT validation – using function authenticateToken, which extracts the token sent in Autho-
rization header, checks the validity, and blocks the request if the token sent is not valid.

5.2 The back-end side
The back-end part of WeFix is fairly simple. The entry point for the whole app is server.js file,
in which the main connection to the database happens, the app subscribes to the routers, and
the middleware for error handling is set up. Controllers, or routers, are the separate modules
logically divided by their domains:

UserController

OrdersController

RepairersController

MapsController

17

18 Implementation

While it is obvious what the first 3 routers do, we shall talk about the MapsController in the
coming sections. The behavior of all controllers is similar: they listen to a specific endpoint, and
when that endpoint is called, they delegate the work to the relevant service and send the data
returned by that service.

Now, services are the places where all the data processing and business logic processes hap-
pen. As with the controllers, services are also divided by the field they are responsible for:

UserServices

OrdersServices

RepairersServices

GMapsServices

Services use Mongoose to interact with the MongoDB, namely, to extract and update the data
inside. UserServices handle the authentication logic described in section 5.1.1, while OrdersSer-
vices and RepairersServices both take care of creating, updating, and retrieving lists of orders
and repairers, respectively. GMapsServices use interact with Google Maps API to get the needed
data.

5.3 Security
Security is very important when dealing with real users’ data. One of the most important as-
pects of user security on any platform is the user’s password and the way the platform stores it.
Storing passwords in clear text is the equivalent of writing them down in a piece of digital paper.
If an attacker was to break into the database and steal the passwords table, the attacker could
then access each user account. This problem is compounded by the fact that many users re-use
or use variations of a single password, potentially allowing the attacker to access other services
different from the one being compromised.

A more secure way to store a password is to transform it into data that cannot be converted
back to the original password. This mechanism is known as hashing. By dictionary definition,
hashing refers to ”chopping something into small pieces” to make it look like a ”confused mess”.
That definition closely applies to what hashing represents in computing.

In cryptography, a hash function is a mathematical algorithm that maps data of any size to
a bit string of a fixed size. We can refer to the function input as message or simply as input.
The fixed-size string function output is known as the hash or the message digest. As stated by
OWASP1, hash functions used in cryptography have the following key properties:

It’s easy and practical to compute the hash, but ”difficult or impossible to re-generate the
original input if only the hash value is known.”

It’s difficult to create an initial input that would match a specific desired output.

Thus, in contrast to encryption, hashing is a one-way mechanism. The data that is hashed can-
not be practically ”unhashed”.

But hashing plain-text passwords is not enough. Without adding a “salt”, passwords are still
vulnerable. Password salting is a technique of adding a random sequence of data (approximately
32 characters) to each password and then hashing it. Password hashing means turning your
password into a string of random numbers by using a mathematical algorithm.

This protects the password from being reverse-engineered by hackers.
1Open Web Application Security Project®, https://owasp.org/

Error handling 19

If a platform stored your password in plain text, then during a data breach, the hacker could
easily access it, steal it, and use it against you.

If a platform only hashed your password, hackers could still reveal the password by figuring
out the encryption key (or hash) used. One of the ways this is achieved is with a rainbow
table attack that cracks the hashes.

If the platform salted and only then hashed the password, they then ensured your password
is extra difficult to expose.

In WeFix, I used bcryptjs library to address this important nuance. Using bcrypt’s gen-
SaltSync the salt is generated, which subsequently gets consumed by hashSync method along
with the password. The resulting output is the hashed password with the generated salt. The
UserService then saves this secure version of the password to the database.

5.4 Error handling
Continuing the topic of the secureness of a web application, it is very important to take care
of the error handling. According to OWASP, improper handling of errors can introduce a va-
riety of security problems for a web site. The most common problem is when detailed internal
error messages such as stack traces, database dumps, and error codes are displayed to the user
(hacker). These messages reveal implementation details that should never be revealed. Such
details can provide hackers important clues on potential flaws in the site and such messages are
also disturbing to normal users. These errors must be handled according to a well thought out
scheme that will provide a meaningful error message to the user, diagnostic information to the
site maintainers, and no useful information to an attacker.

Due to the size and the scale of the current MVP, there was no need in a thoroughly-structured
error handling. But still, a middleware for error handling was setup in our Express.js server.
The middleware intercepts and filters all the caught errors and exceptions, both the server and
database errors, and sends a generic ”Internal Server Error” message to the client. Only for the
cases, when a user attempts to access a restricted resource, the server would respond with an
HTTP status 401 and ”Unauthorized” message.

5.5 The front-end side
The ultimate goal of WeFix is to provide a smooth user experience and an eye-catching user
interface. The go-to-market feature of WeFix is the user-friendly and modern front-end, which
none of the competitors of WeFix currently provides. By keeping it minimalistic, I tried to make
the interface of WeFix easy to navigate in, and will described how I managed to achieve this in
the further sections.

5.5.1 Tailwind CSS
According to the official documentation, Tailwind CSS is a utility-first CSS framework for rapidly
building custom user interfaces. In other words, it is a nice and convenient way to write inline
styling and achieve an awesome interface without writing a single line of your own CSS. Tailwind
CSS provides a set of utility classes that lets developers work with exactly what they need. This
allows to create user interfaces that are more flexible to developers’ creativity. Tailwind CSS is
also easy to set up with a React application.

20 Implementation

The codebase of WeFix’s front-end inventory is fully written using Tailwind’s classes, and does
not contain any .css files.

5.5.2 DaisyUI
Writing your own UI library is always a great idea, but when the time and resources are not
in the developer’s favor, it is worth checking out some lightweight and popular UI kits. The
one I selected for WeFix is DaisyUI. DaisyUI is a plugin for TailwindCSS, which boosts the
development and makes the HTML code cleaner. It is written in pure CSS, and thus can work
with any framework. DaisyUI provides a set of components, such as buttons, toggles, footers,
cards and other elements, which can be easily integrated into the code.

5.5.3 Custom Theme
DaisyUI provides the theming feature. Each theme defines a set of colors which will be used on
all daisyUI elements. In WeFix, I took it even further, and replaced the default theme with my
customly designed one. Below is the list of colors used in WeFix theme, their codes, and how

Figure 5.1 WeFix Theme Palette

they are used in the UI.

The ”Charcoal” (#374151) color is the primary contrasting color. It is used in texts and
buttons.

The ”Gainsboro” (#E5E7EB) color is the secondary color of the theme, and is used for
suggestive texts, like labels

The ”Dark Pastel Green” (#22C55E) color is also one of primary colors of WeFix. It is used
for success messages, and in the logo.

The ”Light Gray” (#D1D5DB) color is a neutral color intended for buttons and hover colors.

The ”Minion Yellow” (#FDE047) color is the color for warning messages. Currently, there
are none in the app, so this color will not appear, when browsing WeFix. But any theme
needs a color of this type, and the ”Minion Yellow” will definitely be present in future updates
of WeFix

The ”Red Salsa” (#EF4444) color is used for important error messages in the interface.

The front-end side 21

5.5.4 Card-style components
To make WeFix even more outstanding and its design more catchy, I decided to build the whole
interface of WeFix around the so-called ”card” components. Technically, a card is just a cen-
tered rectangle with some content inside. I put significant focus on making the cards look more
realistic, so I added the three-dimensional effect by rendering shadow along the bottom border
line of the cards. This looks fresh, modern, and unique.

Figure 5.2 WeFix ”My Orders” widget

Figure 5.3 WeFix Registration Page

22 Implementation

5.5.5 Grid
CSS Grid Layout is a CSS layout method designed for the two-dimensional layout of items on a
webpage or application. I have been working with the specification over the last five years. On
this site is a growing collection of example code, video tutorials and other resources to help you
learn the specification.

Grid Layout gives us a method of creating grid structures that are described in CSS and not
in HTML. It helps us to create layouts that can be redefined using Media Queries and adapt to
different contexts.

Grid Layout lets us properly separate the order of elements in the source from their visual
presentation. As a designer this means you are free to change the location of page elements as is
best for your layout at different breakpoints and not need to compromise a sensible structured
document for your responsive design.

It’s very easy to make grid adapt to the available space. With each element having an area
on the grid, things are not in risk of overlapping due to text size change, more content than
expected or small viewports.

The goal for the homepage was to make it 2x2, i.e. two rows and two columns, but with a
little catch. The tricky part was to make the three widgets fit into this layout, namely, somehow
handle the way that each widget spans different rows/columns, as depicted in the picture:

Figure 5.4 Desired home page layout

Tailwind CSS provides a native support for grid, so it was easy to plug in the grid layout
for the home page. The actual output looks exactly as expected.

Figure 5.5 WeFix Home Page

Google Maps Integration 23

5.6 Google Maps Integration
Google Maps API

A Google Maps API is an API that allows developers to access Google Maps data and func-
tionality for their own projects. Developers may also incorporate customized Google Maps on
their websites or applications using the Google Maps API.

The Google Maps API is actually much broader than only maps and navigation. The specific API
I used for WeFix is called Geocoding API. Geocoding API, provided latitude and longitude of a
location, returns a detailed information about the place: street name, district name, city, and the
country in which the specified place is located. This is called reverse geocoding. And conversely,
you may get the exact geometrical information about the place, information such as its latitude
and longitude, if you feed the Geocoding API with an address like Thákurova 9, Prague, Czechia.

The above mentioned is exactly what is used in WeFix. I will start with the Geocoding API.
Currently, our back-end exposes only one endpoint related to Google Maps. As described earlier
in this chapter, MapsController is the router responsible for this. GMapsServices, used by the
MapsController, has two methods:

getLatLng - takes in the address provided by user, talks to the Geocoding API to retrieve
information about the place, parses the response, and sends the latitude and longitude of the
location back to the client

getUserAddress - the name of the method speaks for itself. It takes in the latitude and
longitude of the user, and returns human-readable address. This service is currently used
only to retrieve the current address of the user and properly display the map in ”Around
You” widget.

But the aforementioned is not the only way WeFix utilizes the Google Maps Platform. By means
of the @react-google-maps library, written specifically for React apps, I was able to easily embed
the map itself into the interface.

Figure 5.6 ”Around You” widget

24 Implementation

Chapter 6

Testing and Pipelines

6.1 Testing
Testing is an integral part of a software development – it aims to find defects of the application,
check that the application meets business requirements and can even serve as a mean to find out
new requirements. If conducted correctly, it is very powerful tool which can be used to improve
the application immensely. In this chapter, testing of the application functionality is described.

6.1.1 Usability Testing
As the name suggests, the primary goal of usability testing is to improve the usability of the
application. The premise is fairly simple – participants who represent potential users of the
product are chosen and are assigned series of the tasks which would be typically carried out in
the application. Participants are observed while completing the tasks and are asked about their
decisions throughout the process, recording everything any of them says. Next, all of the notes
are analyzed and used for creating list of problems which need to be fixed and list of requirements
which might serve for implementing new features in the future.

The application was tested on a total of 4 people, with most of them being tested on com-
pleting all the chosen tasks. The main purpose was to reveal problems with the application
and finding new potential functional requirements or need to modify already existing functional
requirements. Main drawbacks pointed out by participants were related to missing features at
certain steps or pages, for example:

Missing hints about password strength and length in the registration step

Missing section for user profile settings to be able to perform actions such as username change,
or password update.

No option to invite friends.

No way to modify the layout of the Home Page

Missing feature to clean order history

Missing contact details for a repairer

Moreover, participants were asked three simple questions about the application:

1. On a 1-5 scale, how easy is the application to use?

25

26 Testing and Pipelines

2. On a 1-5 scale, how useful is the application?

3. On a 1-5 scale, would you recommend the application to your friend?

Below, we can see the answers of each of the respondents to the simple questionnaire.

Person 1: 5, 4, 2

Person 2: 4, 4, 3

Person 3: 4, 4, 1

Person 4: 5, 5, 4

In conclusion, the user testing showed that despite certain shortcomings, the application is fairly
easy to use and serves its purpose well. There were fairly low numbers for the 3rd question due
to a number of reported missing functionality, which was expected. It is not possible to deduce
much because of the small number of responses, however it is fair to assume that the application
will follow the same trend as applications do in general – getting more user recognition and
custom acquisition as the application grows and improves.

6.1.2 Unit Testing
Unit testing is a type of software testing where individual units or components of a software are
tested. The purpose is to validate that each unit of the software code performs as expected.
Unit testing should be done during the development of an application by the developers. Unit
Tests isolate a section of code and verify its correctness. A unit may be an individual function,
method, procedure, module, or object.

A unit test typically comprises of three stages: plan, cases and scripting and the unit test
itself. In the first step, the unit test is prepared and reviewed. The next step is for the test cases
and scripts to be made, then the code is tested. Each test case is tested independently in an
isolated environment, as to ensure a lack of dependencies in the code. The developer should note
criteria to verify each test case, and a testing framework can be used to report any failed tests.

In WeFix, unit tests were written using the Jest framework. The framework allows to easily
test React components. Due to lack of a massive business logic on the front-end side, in our unit
tests, only things like proper component rendering were tested.

6.2 Pipelines
Today’s world of software engineering cannot be imagined without the famous terms ”Continuous
Integration” (CI) and ”Continuous Delivery” (CD). CI/CD is the combination of principles,
practices, and capabilities that allow for software changes of all kinds to get users in a quick,
repeatable, and safe manner. This allows for software developers to integrate their feature or
service changes continuously and for IT and operations teams to deliver with the standards,
security, and confidence businesses need.

For the sake of this project, I will only focus on the continuous integration, because the
continuous delivery is not relevant for the project in the scope of this thesis.

CI requires a version control system that can track changes and versions of software code.
Git is a popular version control system. Using a git workflow, you can start the CI process.
Developers working on a codebase use their version control systems to push their changes to a
repository of code. The developers working on the codebase merge these changes into the main
code branch once it has been reviewed.

Pipelines 27

Commonly, a developer will commit some code to a version control system like Git, which will
trigger the CI process. This codebase is often scanned or analyzed using a static code analysis
tool to determine code quality. If the source code passes all checks, including unit testing, the CI
process will attempt to package or compile the code. CI can also involve tagging or annotating
specific versions of code or managing resources such as branches within a version control system.

6.2.1 GitLab CI
Because I use GitLab version control system to store the project repository, I decided to use
GitLab’s native continuous integration tool called GitLab CI. The way it works is very easy:
whenever you push a code to the GitLab, GitLab CI starts a pipeline with that specific commit
and runs scripts against the code in that commit. The scripts are defined in .gitlab-ci.yml file,
which is stored in the root of the repository. Creating the .gitlab-ci.yml file is all it takes to set
up the CI tool.

GitLab CI also provides functionality to schedule pipelines. The pipelines schedule runs
pipelines in the future, repeatedly, for specific branches or tags. Those scheduled pipelines will
inherit limited project access based on their associated user. Another helpful feature of GitLab
CI is analytical dashboard, which shows the statistics for pipelines

Figure 6.1 An example of a CI pipeline run after commit

It can be seen from the figure 6.1, that there are two stages in our pipelines: build and test.
For the current scale of our project, I decided that these two stages will be enough. After all, the
project is developed by me only. Normally, companies would add a bunch of more stages, like
smoke tests and integration tests, with the deployment to some staging (sometimes called alpha)
environment as the last stage. On the figure, test stage has been figured to be run manually,
while the build was run automatically and passed. Whenever any of the stages fails, that specific
stage will be colored red, and the whole pipeline will be marked as failed.

The build stage, as the name suggests, builds the application. If at this stage, the pipeline
fails, it means that there are serious problems in the code, and WeFix will not start. The test
stage triggers the unit tests, and will fail if any of the tests fail.

28 Testing and Pipelines

Clicking on the failed stage will reveal the terminal window with the detailed errors. The ter-
minal window shows all the processes related to scripts specified in the pipeline configuration
file, including all the ”print statements” and errors. This is very convenient to understand what
happened wrong in your last commit.

Figure 6.2 Detailed view of failed CI stage

Chapter 7

Conclusion

7.1 Evaluation

In this section, the final results of the development process in a form of screenshots are shown,
drawbacks of the application are mentioned and corresponding solutions to them examined and
new functionality proposed.

The application is currently deployed to Microsoft Azure server and accessible from the
internet on https://we-fix.cz and is already fully functional. Figures 7.1, 7.2, 7.3 and 7.4 on next
pages show screenshots of the current version of the application.

Figure 7.1 Home Page of WeFix

29

30 Conclusion

Figure 7.2 Registration View

Figure 7.3 Order View

Figure 7.4 Repairer Page

7.2 Drawbacks and Future Improvements
The main drawbacks of the application is that it is not really a fully-fledged product, ready for
a wide number of customers. It is still an MVP, which showcases how the problem described in

Final Thoughts 31

the first two chapters may be solved. The product lacks some of the basic use cases, which were
described in chapter 5.

The plans for the future of the product is clear: continue supplying the product with new
features, support more use cases, and continue researching and improving the UI of the app.
Some of the future features currently under consideration are:

Search System

Notification System

Full support for account management

Interactive (or customizable) homepage layout

I believe that at least with these features shipped, the product has a potential to conquer
Czech market and easily become number one, given that there is still no similar product in
existence.

7.3 Final Thoughts
The objective of this thesis was an implementation of a web application designed for facilitat-
ing repairer, or repairing services, finding. The whole process of the application creation was
described – starting from the motivation, showing the reason it was decided to implement this
application, continuing with thorough analysis, describing our brainstorming, from which the
basic principles and functional requirements of the application emerged. The analysis continued
with comparing the application with similar solutions already available on the Czech market,
while emphasizing the main advantage of our application – uniqueness, and ease of use. Follow-
ing the analysis, the next chapter focused on the design of the application, briefly going through
technologies which were used, explaining the database design and briefly describing web applica-
tion architectures. This served as basis to next chapter, implementation, which describes certain
parts of implementation process in detail, such as API implementation, integration with Google
Maps, and the front-end architecture.

The methodology of continuous integration was also integrated into the development process.
The application was deployed to a Microsoft Azure server and deployed there. The concluding
chapter, Testing and Pipelines, described this integration, and the way the application was tested.
The user testing turned out to be quite useful, as it revealed a number of mistakes and the notes
taken while conducting the testing were the basis for list of improvements and features to be
implemented in next version.

To conclude, the application was successfully analysed, designed, implemented and tested
and every part of the process was described in the thesis. Despite few listed drawbacks, the
application is currently fully functional and has a potential to be offered to potential customers
all over the Czech Republic soon.

32 Conclusion

Bibliography

1. ALLBETTER. 5 Best On-Demand Handyman Apps of 2022. Available also from: https:
//allbetterapp.com/5-handyman-apps/.

2. NejŘemeslńıci.cz. Available also from: https://nejremslnici.cz.
3. Opravárna. Available also from: http://opravarna.cz.
4. LI, Shirley. Most People Can’t Be Bothered to Download Apps. Available also from: https:

//www.theatlantic.com/technology/archive/2014/08/most- people- cant- be-
bothered-to-download-apps/378989/.

5. KAFKA, Peter. Most People Can’t Be Bothered to Download Apps. Available also from:
https://www.vox.com/2016/6/8/11883518/app-boom-over-snapchat-uber.

6. KRIGSMAN, Michael. Study: 68 percent of IT projects fail. Available also from: https:
//www.zdnet.com/article/study-68-percent-of-it-projects-fail-6103001175/.

7. YASKEVICH, Anastasia. Web application architecture: Components, models and types.
Available also from: https://www.scnsoft.com/blog/web-application-%20architecture.

8. TEDIKOV, Oleksandr. Uncovering web application architecture: How to Choose the right
type. Available also from: https://perfectial.com/blog/web-application-%20architecture/.

9. OSETSKYI, Victor. Web application architecture. Available also from: https://medium.
com/existek/web-application-architecture-da77ea0cb520.

10. Web Application Architecture: Definition, Working And Types. TechSocial. Available also
from: http://techssocial.net/web-application-architecture/.

11. WEB APPLICATION ARCHITECTURE: THE BASICS. Intellectsoft US. Available also
from: https://www.intellectsoft.net/blog/web-application-architecture/.

12. SINGHAL, Gaurav. Why Do We Need Single-page Applications? Available also from: https:
//www.pluralsight.com/guides/why-do-we-need-a-single-page-application.

13. Understanding the Differences Between Microservices, Monoliths, SOA and APIs. CMS
Wire. Available also from: https://www.cmswire.com/web-development/understanding-
the-differences-between-microservices-monoliths-soa-and-apis/.

14. Common web application architectures. Microsoft. Available also from: https://docs.
microsoft.com/en- us/dotnet/standard/modern- web- apps- azure- architecture/
common-web-application-architectures.

15. ARSHED, Saad. Monolithic vs SOA vs Microservices: How to Choose Your Application Ar-
chitecture. Available also from: https://medium.com/@saad_66516/monolithic-vs-soa-
vs-microservices-how-to-choose-your-application-architecture-1a33108d1469.

33

https://allbetterapp.com/5-handyman-apps/
https://allbetterapp.com/5-handyman-apps/
https://nejremslnici.cz
http://opravarna.cz
https://www.theatlantic.com/technology/archive/2014/08/most-people-cant-be-bothered-to-download-apps/378989/
https://www.theatlantic.com/technology/archive/2014/08/most-people-cant-be-bothered-to-download-apps/378989/
https://www.theatlantic.com/technology/archive/2014/08/most-people-cant-be-bothered-to-download-apps/378989/
https://www.vox.com/2016/6/8/11883518/app-boom-over-snapchat-uber
https://www.zdnet.com/article/study-68-percent-of-it-projects-fail-6103001175/
https://www.zdnet.com/article/study-68-percent-of-it-projects-fail-6103001175/
https://www.scnsoft.com/blog/web-application-%20architecture
https://perfectial.com/blog/web-application-%20architecture/
https://medium.com/existek/web-application-architecture-da77ea0cb520
https://medium.com/existek/web-application-architecture-da77ea0cb520
http://techssocial.net/web-application-architecture/
https://www.intellectsoft.net/blog/web-application-architecture/
https://www.pluralsight.com/guides/why-do-we-need-a-single-page-application
https://www.pluralsight.com/guides/why-do-we-need-a-single-page-application
https://www.cmswire.com/web-development/understanding-the-differences-between-microservices-monoliths-soa-and-apis/
https://www.cmswire.com/web-development/understanding-the-differences-between-microservices-monoliths-soa-and-apis/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/common-web-application-architectures
https://medium.com/@saad_66516/monolithic-vs-soa-vs-microservices-how-to-choose-your-application-architecture-1a33108d1469
https://medium.com/@saad_66516/monolithic-vs-soa-vs-microservices-how-to-choose-your-application-architecture-1a33108d1469

34 Bibliography

16. Best Architecture for an MVP: Monolith, SOA, Microservices, or Serverless. Ruby Garage.
Available also from: https://rubygarage.org/blog/monolith-soa-microservices-
serverless.

17. JSON Web Token. Available also from: https://jwt.io.

https://rubygarage.org/blog/monolith-soa-microservices-serverless
https://rubygarage.org/blog/monolith-soa-microservices-serverless
https://jwt.io

List of Abbreviations

API Application Programming Interface
CD Continuous Delivery
CI Continuous Integration

CSS Cascading Style Sheets
DB Database

HTML Hypertext Markup Language
JS Javascript

JSON Javascript Object Notation
JWT JSON Web Token
MVP Minimum Viable Product

UI User Interface
UX User Experience

35

36 List of Abbreviations

List of Figures

1.1 A person uses his smartphone and Uber application to order a taxi 1

3.1 An interface for new order at NejŘemeslńıci.cz 5
3.2 Home page of Opravárna . 6

4.1 Database Design of WeFix MVP . 13

5.1 WeFix Theme Palette . 20
5.2 WeFix ”My Orders” widget . 21
5.3 WeFix Registration Page . 21
5.4 Desired home page layout . 22
5.5 WeFix Home Page . 22
5.6 ”Around You” widget . 23

6.1 An example of a CI pipeline run after commit . 27
6.2 Detailed view of failed CI stage . 28

7.1 Home Page of WeFix . 29
7.2 Registration View . 30
7.3 Order View . 30
7.4 Repairer Page . 30

37

38 List of Figures

List of Attached Files

readme.txt.............................the file that contains all the technical explanation
src

wefix...source code of the front-end application
backend.......................................source code of the back-end application
thesis the directory of LATEX source codes of the thesis

text
thesis.pdf.. the thesis text in PDF format

39

	Acknowledgments
	Declaration
	Abstrakt
	List of Abbreviations
	Introduction
	Motivation
	Analysis of existing solutions
	NejŘemeslníci.cz
	Opravárna
	Final conclusion

	The Solution
	The Idea
	What is MVP?
	Type of Application

	Requirements
	Functional Requirements
	Non-functional Requirements

	Design and Architecture
	Application Architecture
	Database Design

	Technologies

	Implementation
	API Implementation
	Authentication

	The back-end side
	Security
	Error handling
	The front-end side
	Tailwind CSS
	DaisyUI
	Custom Theme
	Card-style components
	Grid

	Google Maps Integration

	Testing and Pipelines
	Testing
	Usability Testing
	Unit Testing

	Pipelines
	GitLab CI

	Conclusion
	Evaluation
	Drawbacks and Future Improvements
	Final Thoughts

	List of Abbreviations
	List of Attached Files

