
Instructions

The goal of this thesis is to reconstruct a scene from the video recordings captured by the multi-

camera system into 3D animated point cloud. In the processing, benchmark setup will be created and

capabilities of modern photogrammetry software will be tested on non-ideal conditions. The resulting

point clouds will then be visualized.

Tasks:

1) Analyze current solutions and their capabilities for multi-camera systems

2) Propose a solution that utilizes existing 3D photogrammetry reconstruction software

3) Create a multi-camera benchmark setup

4) Create a pipeline that performs proposed solution (multi-camera system and photogrammetry

system)

5) Evaluate results and discuss possible extensions or improvements

Electronically approved by Ing. Radek Richtr, Ph.D. on 11 February 2022 in Prague.

Assignment of bachelor’s thesis

Title: 3D point cloud from multi-camera system

Student: Tomáš Reinhold

Supervisor: Ing. Jan Buriánek

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

3D POINT CLOUD FROM
MULTI-CAMERA
SYSTEM

Tomáš Reinhold

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jan Buriánek
May 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Tomáš Reinhold. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Reinhold Tomáš. 3D point cloud from multi-camera system. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Introduction 1

2 Analysis 3
2.1 Multi-camera system . 3

2.1.1 Cameras . 4
2.1.2 Light source . 6
2.1.3 Fiducial markers . 7
2.1.4 Existing systems . 7

2.2 Photogrammetry . 10
2.2.1 Structure from motion . 11
2.2.2 Multi-view stereo . 13
2.2.3 Existing software solutions . 13

2.3 Visualization . 15
2.3.1 Existing software solutions and libraries 15

2.4 Our solution . 15

3 Implementation 17
3.1 Multi-camera benchmark system . 17

3.1.1 Simulation . 17
3.1.2 Installation . 18
3.1.3 Camera configuration . 20
3.1.4 Acquisition control . 20
3.1.5 Calibration . 22

3.2 Animated point cloud pipeline . 24
3.2.1 Synchronized acquisition . 25
3.2.2 Undistortion . 25
3.2.3 Image sets preparation . 25
3.2.4 Meshroom reconstruction . 25
3.2.5 Visualization . 26

4 Experiments 27
4.1 Camera synchronization solutions comparison . 27
4.2 Realized camera layouts comparison . 29
4.3 Dependence of point cloud density on the number of cameras 30
4.4 Photogrammetry software comparison . 32
4.5 Dynamic scene reconstruction . 34

iii

iv Contents

4.5.1 Moving box . 34
4.5.2 Human interaction . 34

5 Conclusion 41

Contents of the attached media 49

List of Figures

2.1 Bayer filter . 5
2.2 Three-sensor camera . 5
2.3 Pinhole camera model . 5
2.4 Example of fiducial markers . 7
2.5 Multi-camera system for paleontology built by Technical University Berlin 8
2.6 Multi-camera system at University of Maryland 9
2.7 Multi-camera system DI-One . 10
2.8 Incremental structure from motion . 11
2.9 SIFT features on noisy texture . 12
2.10 Photogrammetry software solutions GUI . 14

3.1 Used camera layouts . 18
3.2 Our multi-camera system . 19
3.3 Camera flickering . 20
3.4 Spatial compression artifacts . 21
3.6 Image undistortion with highlighted edges . 23
3.7 Animated point cloud pipeline . 24
3.8 Image directory structures . 25
3.9 Meshroom graph . 26
3.10 Animated point cloud visualizer . 26

4.1 Captured stopwatches from synchronization experiment 28
4.2 Layout experiment scene . 29
4.3 Comparison between realized camera layouts . 29
4.4 Camera count experiment scene . 30
4.5 Dependence of point cloud density on the number of cameras 31
4.6 Photogrammetry software solutions comparison based on point cloud density . . 32
4.7 Resulting cropped point clouds of photogrammetry software solutions 33
4.8 Example of an image set for the moving box experiment 35
4.9 Animated point cloud of moving box . 36
4.10 Example of an image set for the human interaction experiment 37
4.11 Animated point cloud of human interaction with the box 38
4.12 Image overlaid with point cloud . 39

List of Tables

4.1 Collected times from control station synchronization 28
4.2 Collected times from camera independent synchronization 28
4.3 Computational time of photogrammetry software solutions 33

v

Firstly, I would like to thank my supervisor Ing. Jan Buriánek for
valuable advice and great guidance throughout the process. Next, I
would like to thank my family who supported me and provided me
with the necessary equipment that was needed for this thesis.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modifying the Work, by
combining the Work with another work, by including the Work in a collection of works or by
adapting the Work (including translation), and at the same time make available the source code
of such work at least in a way and scope that are comparable to the way and scope in which the
source code of the Work is made available.

In Prague on May 10, 2022 .

vii

Abstract

3D reconstruction, especially photogrammetry is a common way of acquiring static 3D models
of the real world. There exist multiple software solutions performing photogrammetry that
process overlapping images, for example, taken from multi-camera systems. This thesis aims
to create a new pipeline that utilizes already existing photogrammetry software solutions and
multi-camera systems. This pipeline starts with synchronized image acquisition of the scene and
ends with visualization of an animated point cloud. To understand the demands and capabilities
of photogrammetry, a custom multi-camera benchmark system was created. This system was
used for photogrammetry experiments and as a starting point for the introduced pipeline. The
results show that it is possible to create an animated point cloud even when using a low-cost
multi-camera system, like ours created. Using this pipeline on high-end multi-camera systems
may introduce new interesting dynamic visualization of captured scene.

Keywords animated point cloud pipeline, multi-camera system, HIKVISION IP surveillance
camera, photogrammetry, Meshroom, point cloud visualization

Abstrakt

3D rekonstrukce, zejména fotogrammetrie, je běžný zp̊usob źıskáváńı statických 3D model̊u
reálného světa. Existuje celá řada softwarových řešeńı, která prováděj́ı fotogrammetrii, jež
zpracovává překrývaj́ıćı se sńımky, poř́ızeny např́ıklad multi-kamerovým systémem. Ćılem této
práce je vytvořit nový postup, který využ́ıvá existuj́ıćı fotogrammetrické softwarové řešeńı a
multi-kamerové systémy. Tento postup zač́ıná se synchronizovaným pořizováńım sńımk̊u a konč́ı
vizualizaćı animovaného mračna bod̊u. Pro pochopeńı nárok̊u a možnost́ı fotogrammetrie jsme
sestavili vlastńı multi-kamerový systém. Tento systém byl využit ve fotogrammetrických ex-
perimentech a jako výchoźı bod našeho navrhnutého postupu. Výsledky ukazuj́ı, že animované
mračno bod̊u je možné vytvořit i za použit́ı levného multi-kamerového systému, jako je ten
náš. Použit́ı tohoto postupu na profesionálńıch multi-kamerových systémech by mohlo přinést
zaj́ımavou dynamickou vizualizaci sńımané scény.

Kĺıčová slova postup pro źıskáńı animovaného mračna bod̊u, multi-kamerový systém, HIKVI-
SION IP bezpečnostńı kamera, fotogrammetrie, Meshroom, vizualizace mračna bod̊u

viii

List of abbreviations

AC Alternating Current
BA Bundle Adjustment

CCD Charge-Coupled Device
CLI Command-Line Interface

CMOS Complementary Metal–Oxide–Semiconductor
CPU Central Processing Unit
CSV Comma-Separated Values

CUDA Compute Unified Device Architecture
DC Direct Current

DSLR Digital Single-Lens Reflex camera
FTP File Transfer Protocol
GPU Graphics Processing Unit
GUI Graphical User Interface

IP Internet Protocol
LED Light Emitting Diode
MVS Multi-View Stereo
NTP Network Time Protocol

OS Operating System
PnP Perspective-n-Point
PoE Power over Ethernet

RANSAC Random Sample Consensus
RTSP Real Time Streaming Protocol

SfM Structure from Motion
SNTP Simple Network Time Protocol

URL Uniform Resource Locator
VITC Vertical Interval Timecode

ix

x List of abbreviations

Chapter 1

Introduction

3D reconstruction has grown massively in the past few years. We can see it being used in the gam-
ing industry, digitization of cultural heritage, visualizations, metaverses, and many others. Due
to this growth, many software solutions and camera systems that perform such reconstructions
were created and are still being improved to meet the diverse needs.

The most common reconstruction method is photogrammetry. In essence, it takes a set of
overlapping images as input and reconstructs a 3D model from it. Generally, these 3D models
are static, but what happens if we introduce time? Performing multiple reconstructions of the
same scene in short time intervals gives us multiple static models that, if shown in the right
order, could represent motion and animate the scene. This approach of reconstructing multiple
models from video recordings is innovative.

Our main motivation is to introduce these animated reconstructions to already existing multi-
camera systems. These multi-camera systems then obtain a new form of output (animated point
cloud) with minimal additional cost. We want to focus on all systems, not only those made
especially for photogrammetry.

In order to introduce a new form of output, we will first analyze and compare current
multi-camera systems and photogrammetry software solutions. Then we will create our low-
cost multi-camera system. We will experiment with reconstructing scenes with different objects
and environments. These experiments will tell us which conditions work the best and how our
multi-camera system performs overall. After that, we will implement an animated point cloud
pipeline utilizing the current photogrammetry software solution, which allows us to automate
the reconstruction process. Finally, we will create a simple application to visualize animated
point clouds.

In the second chapter, we analyze key parts of the thesis solution. Starting with multi-camera
systems, we look at cameras, synchronization, and calibration. Next, we look at the concept,
requirements, and available software solutions for the photogrammetry pipeline. And finally,
what we can use to visualize animated point clouds.

In the third chapter, we take advantage of the information we gathered in the second chapter.
First, we simulate a multi-camera system and then set up our system with affordable resources.
We describe each part of the system individually and how it affects the system as a whole. Then
we propose our implementation of the animated point cloud pipeline and describe how each step
was implemented.

In the fourth chapter, we evaluate experiments we performed with our multi-camera system
and photogrammetry software solutions.

1

2 Introduction

Chapter 2

Analysis

In this chapter, we investigate the individual parts needed in our pipeline. Starting with the
multi-camera system, which is necessary for capturing image data sets that are later used. We
study the requirements that we put on such a system and how we can achieve them. We also
present a basic theoretical foundation with reference to more in-depth sources. In the following
section, we introduce photogrammetry, how it works, and what software solutions that perform
it already exist. In the last section, we explore the possible solutions or libraries that we can use
to visualize an animated point cloud.

2.1 Multi-camera system
Since photogrammetry 2.2 requires many overlapping images captured from different positions,
we consider only inward-looking cameras. Now we have two options when it comes to image
acquisition.

The first option is to have one or more cameras that we move around the object (e.g., using
a robotic arm, unmanned aerial vehicle) or eventually move the object in front of the cameras
(e.g., turntable). Sometimes a combination of both is used, see the systems [1, 2]. This solution
is useful when we have limited resources, mainly cameras, which are the most expensive elements
of the whole system. With controlled motion, we can still preserve information about camera
positions that can be later used to improve reconstruction. However, with this option, we cannot
achieve image acquisition in the short time intervals that we need for later motion visualization,
therefore, it is only suitable for static objects.

The second option, on which we focus mainly, is to have multiple cameras around the object
that capture at the same time, see the system [3]. In photogrammetry, we usually want as many
images as possible. However, when it comes to more images, we also need more cameras, and
since quality reconstruction takes tens or hundreds of images, such a system can be rather costly.
However, this option is faster and more reliable because we do not move the camera, therefore,
there is less room for errors or imperfections. We choose this option over the first option because
we can capture both static and dynamic objects.

All operations are usually controlled from one station (usually a personal computer), where
images from all the cameras are also stored. For the second option, we need a powerful station
because we store many images at once with every acquisition. Some systems even have substa-
tions to overcome the data transfer bottleneck. Assuming an 18 megapixel, 14-bit camera, we
can easily calculate that the file size of one raw image will be around 31.5 MB. With 90 cameras,
that is, approximately 2.8 GB per 1 acquisition.

3

4 Analysis

2.1.1 Cameras
We can divide cameras into two groups, digital and analog. Since we are interested in computer
vision, we focus only on digital cameras.

The cameras used in a typical multi-camera system built for photogrammetry [1, 2, 3] are dig-
ital single-lens reflex cameras (DSLR). They usually come with a large image sensor that provides
high-resolution images. Unfortunately, these cameras are quite expensive, therefore, we will not
use them in our benchmark setup. We aim toward cheaper cameras that put photogrammetry
software solutions capabilities on their edge.

One of the cheaper cameras that were used while solving a similar application as ours are
action cameras. The focus of this master thesis [4] was reconstructing human faces using a
custom-built multi-camera system with ten GoPro Hero 7 Silver cameras.

Internet protocol (IP) surveillance cameras are also one of the cheaper solutions. These
cameras aim for the lowest possible bandwidth and achieve it using compression standards such
as H.264 or more recent H.265, which both utilize a discrete cosine transform [5]. High lossy
compression and low resolution are the exact reason why these cameras are not typically used.

2.1.1.1 Image formation
Image is formed by the light reflected from objects that is focused through the camera optics
on the camera sensor (film plane). The aperture modifies the amount of light that is passed on
the sensor. The shutter then closes the light path to the image sensor to create the image from
the collected light. The time representing how long the shutter was open is called the exposure
time. The distance between the optical center of the lens and the camera sensor is called the
focal length. Summarized from [6, pp. 184–195].

These mentioned parameters and many others have a crucial impact on image acquisition.
Cameras allow us to change these parameters, so knowing them and how they impact the image
is necessary. A detailed description is out of the scope of this work, so the reader can study these
parameters before proceeding.

The most common image sensor used today is a complementary metal-oxide-semiconductor
(CMOS). This sensor slowly replaced the charge-coupled device (CCD) sensor. Both of these
matrix sensors respond to wavelengths in the range of 200 nm to 1100 nm (visible to near-
infrared). Some of the CMOS advantages over CCD:

lower manufacturing cost, power consumption, image noise

higher frame rates, dynamic range

To capture color images with the sensor, we need to separate light into different wavelengths
(red, green, blue). The most common technique is using the Bayer filter, which is a color filter
directly on the sensor grid. The filter in Figure 2.1 is inspired by the human eye, therefore, it
prioritizes green. The other, more expensive, method is to use three sensors, see Figure 2.2, each
equipped with a different color filter. Based on [6, pp. 171–179].

2.1.1.2 Mathematical models
Cameras are mathematically represented by models. Basically, the camera projects a 3D real-
world on the 2D image plane. The most common model is called the pinhole camera model.
This model is only an approximation because the real model is rather hard to obtain due to
imperfections of the optics and the whole capturing system. In Figure 2.3 we can see the real-
world point X being mapped on the image plane as point x.

The general pinhole camera model can be represented by a matrix P , see 2.1. Where K
represent internal camera parameters and R | t represents external camera parameters. Param-
eters of matrix K are called intrinsic and consist of focal length fx, fy and principal point cx, cy.

Multi-camera system 5

Figure 2.1 Bayer filter [7] Figure 2.2 Three-sensor camera [6, p. 177]

Figure 2.3 Pinhole camera model [8, p. 154]

6 Analysis

External parameters consist of rotation R and translation t. A detailed description of why we
have these parameters and what role they play can be found here [8, pp. 153–174].

P = K[R | t] =

fx 0 cx

0 fy cy

0 0 1

 r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 (2.1)

It is important that the intrinsic matrix does not change if we move the camera around. It only
changes if we modify the focal length (e.g., replace the lens, alter focus). Two identical cameras
with identical lenses usually have different intrinsic matrices. This is caused by manufacturing
imperfections.

The pinhole camera model is usually not precise enough because it does not deal with lens
distortion. Distortion occurs when the camera projects straight lines as curved lines. One of
the models used is the Brown-Conrady model [9]. This model models radial and tangential
distortion, two of the most common distortions.

2.1.1.3 Calibration
To estimate the camera (projection) matrix, we usually capture multiple images of the calibration
pattern, which is an object with known geometry (e.g., chessboard, asymmetrical circle pattern).
After taking these images, we identify 3D scene points with image points, which is done mostly
algorithmically [10, pp. 378–401]. With these correspondences, we can estimate the camera
matrix and distortion coefficients.

2.1.1.4 Synchronization
In our application, where we want to capture dynamic objects, synchronization is critical. There
are multiple ways to achieve image acquisition from all cameras simultaneously. Some are more
precise but can only be used with specialized hardware. If we do not use synchronized cameras,
the recordings slowly drift apart due to the usage of quartz crystals and other variables.

The first option is to use the generator locking technique (genlock). This solution is widely
used in the broadcast world and is very robust. All cameras are usually physically connected to
the unit that generates pulses that tell the cameras to produce a frame. This generator unit can
be either an external device or one of the cameras. To use this method, we need cameras that
support it, therefore, it is not very useful for already existing systems. This approach was used
in the system [2].

The second option is to use the timecode (e.g., vertical interval timecode [VITC]). This option
is useful in postproduction, where we can find time metadata in all recordings. VITC works by
inserting frame numbers, timestamps, and correction bits into the vertical blanking interval of
the video signal [11].

The third option utilizes the network time protocol (NTP) or its simpler version (SNTP) to
correct the inner time of the cameras. This is useful for cameras where specialized hardware
cannot be used. This approach was tested [12] and gave satisfactory results.

2.1.2 Light source
It is recommended to capture images of a well-lit scene with minimal casted shadows. Shadows
may help reconstruction in some cases because they bring new points of interest, which we
describe in 2.2.1.1. However, they appear in the resulting model, which is mostly unwanted.

We have two options to produce light. We can light the scene all the time as in systems [1, 2]
or only while acquisition (camera external or internal flash) as in system [3]. A universal option
is to produce light all the time because not all cameras support flash.

Multi-camera system 7

Choosing the correct light source is important because some may cause flickering, mainly
those powered by alternating current (AC), because they turn on and off very quickly. So,
ideally, we want a constant light source like the day light or sources powered by direct current
(DC). Most multi-camera systems use DC light-emitting diode (LED) technology. But we still
have to be careful because some LED drivers, which control dimming, use methods that interrupt
the light source [13].

2.1.3 Fiducial markers
Among the objects we want to capture, we usually place reference markers at known positions in
the scene. These markers help the camera alignment process and maintain scale and orientation
in later image processing and reconstruction. Because there is no default marker, we usually
have multiple types of marker so that we can use the captured images in multiple applications.
We can divide markers into two groups, circular markers [14, 15] and square markers [16, 17].

CCTag marker [14] (see Figure 2.4a) is an example of a circular marker commonly used in
photogrammetry applications. Its strong attribute is its robustness against motion blur. With
CCTag, we can accurately locate the center of the markers, which can be used for tracking and
motion estimation. We need more than one reference point for many applications, so we usually
place at least four markers.

AprilTag marker [16] (see Figure 2.4b) is an example of a square marker, which we can use to
find four reference points (corners) from only one marker. It is widely used in augmented reality
and robotics.

Both of these markers store a few bits of information, such as identification. In addition to
these two markers, there are many more. Another example of circular markers is TRIP [15] and
an example of square markers is ARTag [17]. However, CCTag and AprilTag markers are mostly
used in photogrammetry software solutions.

(a) CCTag marker (b) AprilTag marker

Figure 2.4 Example of fiducial markers

2.1.4 Existing systems
In this section, we present some already existing multi-camera systems with their specifications.

2.1.4.1 Multi-camera system for paleontology
This multi-camera system [1] is mainly used for reconstructing paleontological finds (objects of
size 5 cm to 1.2 m). Camera movement is controlled with a custom script that sequentially reads
a simple comma-separated values (CSV) file, which stores position, tilt, and whether the camera
should capture or not for each camera and turntable rotation.

8 Analysis

3 cameras: Canon EOS 700D with tilt, of which 2 move vertically, 1 horizontally

lenses: Canon EF-S 18-55 mm

motorized turntable

led lights

Figure 2.5 Multi-camera system for paleontology built by Technical University Berlin [18]

Multi-camera system 9

2.1.4.2 Multi-camera system at University of Maryland
This multi-camera system [3] is capable of reconstructing larger objects, such as human bodies.
We can see that this system has data projectors. They are used to project patterns on surfaces.
Combining projection with cameras is a special case of photogrammetry called fringe-projection
photogrammetry [19].

One recent project that uses this system is the time-lapse 3D reconstruction of plant growth,
which is very similar to our idea of dynamic reconstruction. More details can be found in [20].

94 cameras: Canon EOS T5i

lenses: 18-55 mm and 55-250 mm

8 flashes: Alienbees B 1600

8 data projectors

4 computers

Figure 2.6 Multi-camera system at University of Maryland [21]

2.1.4.3 Multi-camera system DI-one
This multi-camera system [2] was created for commerce. It is designed for robust reconstructions
of small to medium objects (50 cm3). It uses many proprietary solutions, and therefore not many
specifications are published.

The interesting thing about this system is that it masks the reconstructed object by sub-
tracting background before reconstruction and performs radiometric calibration to accurately
represent the colors.

10 Analysis

31 cameras: Sony, model unspecified

lenses: unspecified

motorized basement

Figure 2.7 The DI-One multi-camera system [2, p. 786]

2.2 Photogrammetry
“Photogrammetry is the science of making measurements from photographs. It infers the geometry
of a scene from a set of unordered photographies or videos. Photography is the projection of a
3D scene onto a 2D plane, losing depth information. The goal of photogrammetry is to reverse
this process.” [22]

According to photogrammetry categorization [6, p. 6] we focus in our work on a close-range,
multi-image, digital, offline structure from motion photogrammetry. Furthermore, we consider
only this category of photogrammetry.

The typical photogrammetry pipeline, according to [22] consists of two individual computer
vision pipelines connected together. The first is called structure from motion (SfM), and the
second is multi-view stereo.

Photogrammetry 11

2.2.1 Structure from motion
As its name suggests, it is a process of recovering the 3D structure from camera motion. From
an unordered set of images, structure from motion creates a sparse point cloud and estimates
camera poses and intrinsic camera parameters.

The widely used approach to SfM is incremental SfM [23], which is based on incrementally
adding images to reconstruction, see Figure 2.8. Some other approaches are global [24, 25],
hierarchical [26, 27, 28], multi-stage [29].

Figure 2.8 Incremental structure from motion [23, p. 4105]

We describe the parts of the incremental SfM pipeline below fairly briefly. The curious reader
may find more information on incremental SfM in the second chapter of [23] from which we mainly
drew information.

2.2.1.1 Image features
Image feature can be described as an interesting part in an image such as shapes, corners, edges,
blobs, ridges. Features are widely used in computer vision applications, for example, in machine
learning and pattern recognition. The finding of image features is usually one of the first steps
in the SfM pipeline.

We use feature detectors, which are algorithms that detect features in images. These features
are then described using feature descriptors. Usually, each feature detector has its feature de-
scriptor. The widely used feature detectors/descriptors are SIFT [30] and AKAZE [31]. Other
detectors/descriptors with their comparison can be found here [32]. Our advantage is that we
can use slower but better detectors, such as SIFT, which positively affect the reconstruction
quality.

When the object we want to reconstruct does not contain many features, we can manually
add interesting points, depending on the feature detector, such as a noisy texture. In Figure 2.9,
we can see the SIFT features (blue squares) located on a rendered cube with a Musgrave texture.

2.2.1.2 Matching
Image matching is performed after feature extraction. We want to compare and eventually match
the descriptors of one image with those of the others. The brute-force approach would be to
compare all the descriptors of each pair of images, but some algorithms significantly speed up
this process [33]. The result of this step are image pairs with the corresponding features.

2.2.1.3 Geometric verification
In this step, we verify if the matches we found correspond, therefore, if the images actually look
at the same object. We try to estimate the transformation that maps the corresponding features
of one image to another. The matched features of the previous step usually contain many outliers
that we want to eliminate. A common approach is to apply random sample consensus (RANSAC)
[34], which filters them. The output of this step is a graph, where the nodes represent images
and the edges represent if the connected nodes are verified.

12 Analysis

Figure 2.9 SIFT features on noisy texture

2.2.1.4 Initialization
With initialization, the reconstruction itself begins. One pair of images is selected [35] and a
two-view reconstruction is performed. The selection of the initial pair has a significant impact
on the rest of the reconstruction and partly defines how good it will be.

2.2.1.5 Image registration
New images are added to the current model by solving the Perspective-n-Point (PnP) problem
[36] which uses correspondences of previously triangulated 3D points to points in the image that
we want to add, resulting in an estimation of the camera pose of this image.

2.2.1.6 Triangulation
Newly registered image may add new points to the resulting reconstruction using triangulation.
The only condition is that the newly added points must be seen from at least one already
registered image from a different viewpoint.

2.2.1.7 Bundle adjustment
Image registration and triangulation give us rough estimates of 3D points and camera poses. To
further improve these estimates, we use an optimization method called bundle adjustment (BA)
[37] that tries to minimize reprojection errors and eventually discards these points or poses.

Photogrammetry 13

2.2.2 Multi-view stereo
Multi-view stereo algorithms aim to reconstruct dense models from images and their correspond-
ing camera parameters. Here, we can see why multi-view stereo (MVS) comes after SfM. It uses
estimated camera poses and tries to reconstruct more detailed, dense models. More detailed
information on MVS and its types can be found here [38].

2.2.2.1 Depth maps estimation
The depth of each pixel is calculated in all images. There exist many approaches, such as
Semi-Global Matching [39, 40] or ADCensus [41].

2.2.2.2 Meshing
In this step, all depth maps are merged into a structure representing the mesh. Further proce-
dures and filterings (described in [38, pp. 73–98]) are performed to retrieve the final mesh.

2.2.3 Existing software solutions
Writing our implementation of the photogrammetry pipeline would be ineffective and probably
would not even compete with existing ones. Therefore, in this subsection, we try to discover
and compare multiple existing solutions from which we choose one. The solution must support
automation, either a command-line interface (CLI) or scripting, because we will run multiple
reconstructions. The solution should also support fiducial markers because we need to scale and
orient the models correctly, so the resulting visualization is consistent.

2.2.3.1 3DF Zephyr
3DF Zephyr [42] is a proprietary software solution that comes in three different variants (Zephyr,
Zephyr Lite, Zephyr Free), of which only one is free. Each variant has its limitations, and our
requirements would require the Zephyr variant, which is the most expensive one. It supports
only the Windows operating system (OS) and recommends an NVIDIA CUDA-enabled GPU for
better performance.

2.2.3.2 Agisoft Metashape
Metashape [43] is another proprietary software that comes in two variants (standard, profes-
sional), both paid. It officially supports Windows, Linux (Debian, Ubuntu), and macOS. We
cannot use the standard edition because it lacks support for CLI and fiducial markers. With
Metashape, we can also use AMD GPUs since it is not restricted to NVIDIA.

2.2.3.3 Meshroom
Meshroom [44] is a free open-source software solution, written in Python, available from both the
graphical user interface (GUI) and CLI. It is written around the AliceVision framework. It uses a
nodal system, see Figure 2.10a, that provides many options for customization, including writing
custom nodes. The first release came out in 2018, so it is relatively new software, but developers
are still improving it, including the community ones. For now, Meshroom only supports the
fiducial marker CCTag. It can be run on both Windows and Linux OS, leaving macOS as the
only non-supported among the major OS. Unfortunately, to fully utilize its potential NVIDIA
CUDA-enabled GPU is necessary. Without it, some nodes do not work.

14 Analysis

2.2.3.4 RealityCapture

RealityCapture [45] basic version uses a pay-per-input licensing that allows the user to reconstruct
the model for free and pay only for model export. The fee depends on the quality of the
reconstructed model. Unlike Meshroom it uses more classical controls placed in the top bar of
the window, see Figure 2.10b. It requires a Windows OS and an NVIDIA CUDA-enabled GPU.
It supports both circular and square fiducial markers (e.g., AprilTag).

Its advantage over the other software solutions is the fast processing speed. This would suit
our application, but the automation support comes only with the Enterprise version.

(a) Meshroom

(b) RealityCapture

Figure 2.10 Photogrammetry software solutions GUI

Visualization 15

2.3 Visualization
We want to combine all the previous reconstructions into one dynamic visualization in this last
part. Since photogrammetry software usually exports point clouds in various formats, we want
to find a universal tool that allows us to visualize them.

As the name suggests, the point cloud is a set of points, where each point is represented with
coordinates and usually color information. They are often used in the creation of meshed models
from 3D reconstruction [46].

2.3.1 Existing software solutions and libraries
Writing our visualizer from scratch would probably be better because our task is atypical. How-
ever, for now, when we only experiment with the whole idea, we can take advantage of already
existing solutions and modify them according to our needs.

2.3.1.1 Blender
Blender [47] is free and open-source 3D graphics software that supports many formats, including
point clouds (with improved rendering from version 3.1). We can write our own add-on that
could control the point cloud visualization.

2.3.1.2 Open3D
Open3D [48] is an open-source library for 3D data processing. It can be used with Python and
C++ programming languages. It has support for point clouds and visualization, which we can
slightly modify to our needs.

2.3.1.3 MeshLab
MeshLab [49] is another free open-source option. It focuses mainly on mesh processing, but also
provides support for point clouds and visualization. Its visualization is very minimalistic and
does not suit our needs.

2.4 Our solution
We will use eight IP surveillance cameras in our solution because we have easy access to them.
As we stated in our goals, we want to introduce new possibilities to most existing multi-camera
systems. Thus, a few non-ideal cameras should cover many of them since most systems are better
equipped.

These cameras are known for their high field of view, which causes distortion in the captured
images. To overcome this, we will use the OpenCV library [50] to estimate the camera parameters
and distortion coefficients for each camera. With these parameters and coefficients, we will be
able to undistort the captured images.

For 3D reconstructions, we will use Meshroom. We find this open-source software solution
ambitious, and thanks to its support for CLI and great customizability, we choose it for our
implementation over the others.

Lastly, for our animated point cloud visualizer we will use the Open3D library and for illus-
trative, more specific visualizations we will use Blender.

16 Analysis

Chapter 3

Implementation

In this chapter, we describe how we installed our multi-camera benchmark system and how we
implemented the pipeline to create an animated point cloud and its visualization. Programming
was done in Python [51], with packages handled by Anaconda [52]. The Anaconda environment
initialization file with all necessary packages (primarily for Windows OS) can be found in other/
env.yml.

3.1 Multi-camera benchmark system
Creating our own benchmark system with synchronized cameras was necessary because it showed
us some minimal requirements that systems should have to run our proposed pipeline and pho-
togrammetry in general. The hardware used in our system can be seen below:

8 cameras: HIKVISION DS-2CD2723G1-IZ, IP surveillance camera [53]

resolution: 2 MP, 1920 x 1080
image sensor: 1/2.8” CMOS
lens: varifocal 2.8 to 12 mm
aperture: F1.6
compression: MJPEG, H.264, H.265

switch: Aruba 2530 48 PoE+ Switch [54]

3 m LED strip

input voltage: DC 24 V
power: 9,6 W/m
color temperature: 3000 K

control station: notebook with external network card

3.1.1 Simulation
Before installing the whole system, we wanted to simulate it in Unreal Engine [55] to see how it
can perform under ideal conditions. We created a simple scene with eight cameras with param-
eters very similar to the cameras we use. We then tried to run reconstructions in Meshroom.

17

18 Implementation

However, none of the reconstructions completed the pipeline. We also tried to run recon-
structions in other software solutions to eliminate software problems. On further examination,
we found that feature extraction is not working correctly because the render engine created ar-
tifacts in the images, thus the whole SfM pipeline did not work. We tried different rendering
settings but failed each time. We believe that these artifacts came from post-processing.

After an unsuccessful simulation in Unreal Engine, we switched to Blender [56]. We rendered
the scene with disabled shaders and used the Eevee rendering engine without any post-processing,
especially dither. The resulting rendered images were used again in Meshroom and successfully
completed the entire pipeline with the correct estimation of camera poses.

We tried two different camera layouts, both of which worked. The first layout, we call it
the 360 layout, has cameras around the object in approximately 45 ° angle difference between
cameras, see Figure 3.1a. The other layout, we call it the 180 layout, has cameras only around
half of the object with approximately 25 ° angle difference between cameras, see Figure 3.1b.

(a) 360 camera layout (b) 180 camera layout

Figure 3.1 Used camera layouts

3.1.2 Installation
We installed our multi-camera system in a room of size approximately 4 x 4 m. The cameras
were attached to metal profiles so that they could be easily moved around. The floor of the room
was covered with carpet. For some experiments we laid four matte plastic sheets over the carpet.

We connected the cameras to a switch outside the room with Cat.6e cables. Thanks to the
power over ethernet (PoE) support on our switch, we only had to run one cable to each camera
for both power supply and data transfer.

We first placed the cameras according to the 360 layout, see Figure 3.2a. This layout has
more coverage at the cost of smaller overlaps between camera views. After some experimenting,
we changed the layout to 180 layout, see Figure 3.2b. This layout has less coverage but more
overlapping camera views. The impact of these layouts on the reconstructions can be seen in the
experiment 4.2.

Before installing the LED strip, we tried to use the light fixture in the room. As expected, the
cameras flickered, and the captured images were degraded. Changing the camera configuration
to PAL 50 Hz helped a little bit but did not solve the problem entirely, see Figure 3.3. So, we cut

Multi-camera benchmark system 19

the LED strip into four pieces. These pieces were attached to the construction, made of plastic
wiring conduits, and hung from the light fixture in the room.

(a) 360 layout

(b) 180 layout

Figure 3.2 Our multi-camera system

20 Implementation

(a) Degraded image (b) Highlighted flickering

Figure 3.3 Camera flickering

3.1.3 Camera configuration
After connecting the cameras, we configured their IP addresses and credentials. This was done
in software provided by HIKVISON called iVMS-4200 [57]. After this initial configuration, we
had access to the cameras through a web browser interface. At first, we updated the firmware to
the latest version (5.6.6). Then we moved the cameras so that they were looking at the center
of the room. After that, we set the camera zoom to maximum and started the automatic focus
procedure on each camera.

The cameras deliver three independent video streams. We used the first (main) stream,
which we set to H.264 lossy compression (with the highest possible image quality and bitrate)
and resolution to 1920 x 1080 px at 25 fps.

The compression ratio is large in IP surveillance cameras because their main focus is to store
as much footage with the smallest possible file size. Due to this reason, one image captured from
our camera takes on average 400 KB. Raw 1920 x 1080, 8-bit image has a size of 6220.8 KB.
We can easily calculate the compression ratio using the formula 3.1, which is equal to 15.5. This
high compression ratio results in many spatial artifacts that significantly degrade our images. In
Figure 3.4, we can see the blocking artifact.

Compression ratio = Uncompressed size

Compressed size
(3.1)

We changed the white balance and the shutter speed to manual so that all cameras have
a similar image. We also disabled all filters (e.g., smoothing), this resulted in noisy but more
accurate images. There are many less important parameters that we changed, but we cannot
list all of them. For this reason, we also exported the configuration files from each camera and
stored them on the provided media in other/camera_configs.

3.1.4 Acquisition control
We implemented a simple class that communicates with the camera web server. Communication
is done through HTTP requests, for which we used the Requests library [58] for Python. The
uniform resource locators (URLs) on which these requests are made are defined by ISAPI [59]
by HIKVISION. A typical workflow is to make a GET request for which the camera returns the
XML file. Modify the XML file and make a PUT request to overwrite the old file.

We implemented two different solutions for synchronized image acquisition and one solution
for capturing images on demand (e.g., for capturing calibration images). The comparison of the
first two solutions can be seen in the experiment 4.1.

Multi-camera benchmark system 21

Figure 3.4 Spatial compression artifacts

3.1.4.1 Independent camera acquisition

The first solution uses the file transfer protocol (FTP) and NTP server. The cameras are con-
figured to communicate with both servers. In our implementation, we used the pyftpdlib library
[60] to run a simple FTP server on the control station. For the NTP server, we used a nearby
public server, for which we had to connect the whole system to the Internet. It should be noted
that the Internet connection may raise some security concerns. The NTP server kept all the
cameras’ time synchronized.

To start the recording, we enable, through our implemented camera class, the built-in function
on all cameras that saves the current image on the FTP server in configurable time intervals.
Enabling this function is a critical point of this solution because if we do not activate it at
ideally the same time, the cameras will never synchronize. To overcome this critical point, we
use multiple threads, each communicating with one camera. In this way, we prevented resource
blocking while waiting for the cameras to respond. To stop the recording, the built-in cameras’
function is disabled.

To summarize this solution, we enable the cameras’ built-in function for recording from the
control station, and then the cameras independently store captured images on the FTP server.

3.1.4.2 Acquisition from control station

The second solution uses the master/slave model (similar to genlock 2.1.1.4), where the control
station acts as a master, asking all cameras to send the current image at the same time. We
ask for images through our implemented camera class. Again, to prevent resource blocking, we
use multiple threads with a shared clock, each communicating with one camera. This represents
a limitation because between each acquisition, each thread must wait for a response with the
image payload and store it. On the other hand, we do not need Internet access.

22 Implementation

3.1.4.3 Image on demand
The third solution is much simpler. It uses the real time streaming protocol (RTSP) to display
the live feed of one camera, and the image is stored only when a user demands it (by clicking on
the live feed window). This sends a request to the previewed camera, which responds with the
image that is stored. The RSTP stream is only for preview, we do not save images directly from
it. This was implemented mainly for calibration purposes.

3.1.5 Calibration
To calibrate the cameras, we used the OpenCV library [50] with support for camera calibration.
It is important to note that we used camera calibration only for distortion correction. We did
not provide any camera parameters to the photogrammetry software.

We used a chessboard pattern printed on A3 paper, which was adhered to a rigid board. We
then captured around 20 images (OpenCV suggests at least 10) for each camera with different
rotations and positions of the pattern in the camera view. An example of a calibration image
can be seen in Figure 3.5.

For both camera layouts, we performed calibration on all cameras individually. In total, we
had 173 calibration images for 180 layout and 184 images for 360 layout. We had to calibrate
the cameras for each layout separately because we changed the focus on all cameras after the
rearrangement. We then saved the results in files so that we could later use them.

Since we zoomed in all the cameras, it significantly reduced the distortion in the produced
images, but not completely. We can see the effect of the image undistortion of the 1 cm grid
pattern in Figure 3.6.

Figure 3.5 Example of calibration image

Multi-camera benchmark system 23

(a) Before undistortion

(b) After undistortion

Figure 3.6 Image undistortion with highlighted edges

24 Implementation

3.2 Animated point cloud pipeline
The whole pipeline can be separated into three individual parts. The first part of the pipeline is
the preparation of image sets for the reconstruction pipeline, namely image acquisition, undis-
tortion, and image ordering. The second part is the reconstruction itself. And the third part is
the visualization of the results produced by reconstructions. In Figure 3.7, we can see the whole
sequence. The first three steps are specific to the multi-camera system used.

The examples can be found in 4.5 and the described usage in the jupyter notebook [61] in
src/pipeline.ipynb.

Figure 3.7 Animated point cloud pipeline

Animated point cloud pipeline 25

3.2.1 Synchronized acquisition
In this step, the scene is captured from all cameras in short time intervals. In our implementation,
we ended up using the acquisition from control station described in 3.1.4.3. We set the duration
of the recording and the interval between frames. At the end of the recording, each camera has
its own directory containing images named after the timestamp at which they were captured,
see Figure 3.8a.

The implementation can be found in src/modules/multicamera/hikvision_camera.py.

3.2.2 Undistortion
For each camera directory, the camera parameters and distortion coefficients are loaded from the
corresponding calibration file. Using these parameters and coefficients, each image is undistorted
and copied to a new directory.

The implementation can be found in src/modules/multicamera/calibration.py.

3.2.3 Image sets preparation
So far, the images were grouped by cameras, in this step they are grouped by frames. The whole
process starts with collecting all possible timestamps (image names). For each timestamp, the
corresponding images are copied from all camera directories. If any image is missing, the warning
message is printed. This results in new directories named after frames, each of which contains
the corresponding images, see Figure 3.8b.

The implementation can be found in src/modules/multicamera/image_sets.py.

destination directory
cam0

1651150344.6485198.jpg
1651150345.6485198.jpg
...

cam1
1651150344.6485198.jpg
1651150345.6485198.jpg
...

...

(a) After image acquisition

image sets
0

cam0.jpg
cam1.jpg
...

1
cam0.jpg
cam1.jpg
...

...

(b) After image sets preparation

Figure 3.8 Image directory structures

3.2.4 Meshroom reconstruction
Meshroom provides an executable file called meshroom_batch that can be called from the CLI.
This file starts the default reconstruction pipeline unless a graph file (with a different photogram-
metry pipeline) is provided. This provides great flexibility in reconstructions because this graph
file can be changed to suit the captured scene. We can create a new graph file using the Mesh-
room GUI by setting the nodes and saving the project, see Figure 3.9. The saved project file
ending with .mg represents the graph.

Our implementation calls meshroom_batch with a predefined graph for each set of images.
The predefined graph can be freely changed, but it has to contain one publish node, which yields

26 Implementation

a point cloud, and one SfMTransform node, which correctly scales and rotates the reconstructions
(ideally with CCTags used).

In the current version of Meshroom (2021.1.0) there are some limitations and bugs when
using CCTags in the FeatureExtraction node. The images we provide must have a maximum
resolution of 6144 px. We also have to set the Max Nb Threads to 1, otherwise the node fails.
This slows down the extraction of other features and significantly extends the processing time.
For a better understanding of the Meshroom nodes, refer to the manual [62], which can also be
found in other/meshroom_manual.pdf.

The implementation can be found in src/modules/meshroom_bash.py.

Figure 3.9 Meshroom graph

3.2.5 Visualization
Visualization is the last step of the pipeline, which loads the reconstructed point clouds and
shows them one by one in the correct order.

We used a VisualizerWithKeyCallback class from the Open3D library [48]. We configured
the visualizer to show different point clouds without resetting the view. We also added basic
control over the visualization, such as pause, speed control, and manual skipping.

The implementation can be found in src/modules/visualizer.py.

Figure 3.10 Animated point cloud visualizer

Chapter 4

Experiments

In this chapter, we present the experiments we have performed and their results. We have
experimented with our multi-camera system, photogrammetry software solutions, and animated
point cloud pipeline. Please note that Meshroom uses absolute file paths, therefore, the provided
Meshroom project files will need to be adjusted. The Blender project of the simulated scene can
be found in experiments/blender_simulated_scene.

All reconstructions in the experiments were performed on a computer with the specifications
listed below:

CPU: Intel Core i7-4770

GPU: NVIDIA GeForce RTX 3060 Ti

RAM: 16 GB DDR3

4.1 Camera synchronization solutions comparison
We compared our implemented synchronize acquisition solutions with a simple stopwatch exper-
iment. We placed a screen displaying stopwatches in the middle of the captured scene and ran
the recording, with the interval between images set to one second and the duration of recording
to 60 seconds.

From the captured images (see Figure 4.1), we could extract the time on the stopwatches and
compare the time between each acquisition (frames) and the maximum differences between each
camera. Some of the collected times from the acquisition from the control station solution can
be seen in Table 4.1 and from the independent camera acquisition solution in Table 4.2.

From the recorded times, we calculated the average time between frames and the average
maximum time difference between the cameras. The average times between frames were 0.9999 s
for control station and 1.0002 s for independent camera acquisition. We can see that both results
are very close to configured 1 s. However, the independent camera acquisition solution failed
to save one image (Frame 19) from Camera 1. The average maximum times difference between
frames were 83 ms for the control station and 722 ms for independent camera acquisition. In
conclusion, the acquisition from the control station solution performs overall better.

All images and recorded times can be found in experiments/synchronization.

27

28 Experiments

(a) Camera 0 (b) Camera 1 (c) Camera 2 (d) Camera 3

(e) Camera 4 (f) Camera 5 (g) Camera 6 (h) Camera 7

Figure 4.1 Captured stopwatches from synchronization experiment (rotated, cropped)

Table 4.1 Collected times from control station synchronization

Cam. 0 Cam. 1 Cam. 2 Cam. 3 Cam. 4 Cam. 5 Cam. 6 Cam. 7
Frame 0 0.906 0.842 0.842 0.842 0.875 0.842 0.842 0.842
Frame 1 1.930 1.834 1.834 1.834 1.834 1.834 1.802 1.834
Frame 2 2.891 2.827 2.827 2.858 2.858 2.827 2.827 2.858
Frame 3 3.914 3.818 3.818 3.882 3.882 3.818 3.818 3.818
Frame 4 4.938 4.842 4.842 4.875 4.875 4.842 4.842 4.842
Frame 9 9.898 9.866 9.835 9.866 9.866 9.835 9.835 9.866
Frame 19 19.882 19.850 19.818 19.882 19.882 19.818 19.818 19.850
Frame 29 29.898 29.866 29.866 29.866 29.898 29.866 29.866 29.866
Frame 39 39.914 39.818 39.818 39.850 39.914 39.818 39.818 39.818
Frame 49 49.898 49.867 49.803 49.867 49.898 49.803 49.803 49.867
Frame 59 59.882 59.851 59.851 59.851 59.882 59.818 59.818 59.851

Table 4.2 Collected times from camera independent synchronization

Cam. 0 Cam. 1 Cam. 2 Cam. 3 Cam. 4 Cam. 5 Cam. 6 Cam. 7
Frame 0 0.062 0.580 0.489 0.705 0.419 0.062 0.384 0.802
Frame 1 1.060 1.579 1.477 1.697 1.441 1.600 1.252 1.796
Frame 2 2.047 2.564 2.466 2.722 2.436 2.047 2.369 2.784
Frame 3 3.071 3.584 3.468 3.584 3.428 3.071 3.392 3.585
Frame 4 4.066 4.544 4.450 4.640 4.450 4.066 4.384 4.866
Frame 9 9.088 9.567 9.349 9.704 9.420 9.088 9.343 9.792
Frame 19 19.073 NONE 19.424 19.717 19.424 19.073 19.395 19.842
Frame 29 29.898 29.866 29.866 29.866 29.898 29.866 29.866 29.866
Frame 39 39.080 39.592 39.428 39.714 39.428 39.045 39.397 39.813
Frame 49 49.090 49.559 49.474 49.735 49.408 49.055 49.376 49.823
Frame 59 59.081 59.585 59.465 59.711 59.465 59.013 59.422 59.812

Realized camera layouts comparison 29

4.2 Realized camera layouts comparison

We reconstructed two very similar scenes, see Figure 4.2, one real (captured by our multi-camera
system) and one simulated (renders). We arranged the cameras according to both 180 layout and
360 layout. For all reconstructions, we used the exact same computational graph. The measured
criterion was the number of points in the resulting point cloud and in the cropped point cloud
containing only the object of interest. The results can be seen in the graphs 4.3.

As we can see, the 180 layout performs better even in the simulated scene. This shows us
that to perform dense reconstruction, we must have large overlapping areas between images, and
the 360 layout does not provide them with only eight cameras. However, with the 180 layout,
we do not cover one side of the captured scene, which results in a hollow side in the point cloud.

The resulting point clouds, source images, and Meshroom project files can be found in
experiments/layout.

(a) Captured image (b) Rendered image

Figure 4.2 Layout experiment scene

raw cropped
0

10000

20000

30000

40000

50000

25
79

7

11
25

1

12
01

6

61
50

#
po

in
ts

180 layout
360 layout

(a) Captured images

raw cropped
0

20000

40000

60000

80000

100000

73
25

3

24
08

0

25
54

2

85
87

#
po

in
ts

180 layout
360 layout

(b) Rendered images

Figure 4.3 Comparison between realized camera layouts

30 Experiments

4.3 Dependence of point cloud density on the number of
cameras

Since we only have eight cameras, we performed this whole experiment in a simulated scene. We
placed a more complex model with Musgrave texture in the middle of the scene and made renders
from 4, 8, 16, 32 and 48 cameras that were around the model, see Figure 4.4. The cameras were
arranged in one (4, 8, 16 cameras), two (32 cameras) or three (48 cameras) rows. We then
reconstructed multiple point clouds from these renders using the exact same computational
graph. As in the previous experiment, our measured criterion was the number of points in the
resulting point cloud and in the cropped point cloud containing only the object of interest. The
results can be seen in graph 4.5.

Reconstruction of 4 and 8 cameras failed because SfM could not estimate enough camera
poses. The first successful reconstruction was with 16 cameras. For 16 and 32 cameras, SfM
correctly estimated all cameras. For 48 cameras, only 46 were estimated. We can see that when
we doubled the number of cameras, we got almost twice as many points. This was mainly caused
by the fact that the newly added cameras captured lower parts of the object that were before
unseen.

We assumed that this experiment would show us the optimal number of cameras, where
adding more would not change the point cloud density. However, trying up to 48 cameras did
not achieve that, and there was still room for improvement. On the other hand, we found out
that having 16 cameras around the object is the recommended minimum, which corresponds to
our multi-camera system, where we had 8 cameras around half of the object.

The rendered images, resulting point clouds, and Meshroom project files can be found in
experiments/camera_count.

(a) Object of interest (b) 16 cameras

(c) 32 cameras (d) 48 cameras

Figure 4.4 Camera count experiment scene

Dependence of point cloud density on the number of cameras 31

4 8 16 32 48
0

50000

100000

150000

200000

250000

0 0

86
78

3

15
43

84

19
63

21

0 0

61
66

9

11
36

16

15
09

09

#cameras

#
po

in
ts

raw
cropped

Figure 4.5 Dependence of point cloud density on the number of cameras

32 Experiments

4.4 Photogrammetry software comparison
Even when we chose Meshroom as our photogrammetry software solution, our pipeline can be
modified to utilize a different one. For this reason, we compared the mentioned software solutions
in 2.2.3 so that we can see how open-source software compares with proprietary software. The
measured criterion was again the number of points in the resulting point cloud and in the cropped
point cloud and the computational time. We used one image set from the experiment 4.5.2 and
performed reconstruction with the highest possible quality that these software solutions provide.
Number of points can be seen in graph 4.6, computational times in table 4.3. and resulting
cropped point clouds in Figure 4.7.

As we assumed, open-source Meshroom is still behind the proprietary competitors in both
computational time and point cloud density. Agisoft Metashape excelled in point cloud density
and is comparable to 3DF Zephyr in computational time. However, if we take a look at the
resulting cropped point clouds, see Figure 4.7, we can see that RealityCapture and Agisoft
Metashape results are very similar. RealityCapture achieved this result in less than half the time
and fifth of the points compared to Agisoft Metashape. Therefore, RealityCapture would suit
our application the best.

The source images, resulting point clouds, and project files can be found in experiments/
software_comparison.

3DF Zephyr Agisoft Metashape Meshroom RealityCapture
0

1000000

2000000

3000000

4000000

5000000

98
09

2

43
61

11
5

12
83

27 64
77

86

32
45

2

97
99

80

29
97

9

19
12

81

#
po

in
ts

raw
cropped

Figure 4.6 Photogrammetry software solutions comparison based on point cloud density

Photogrammetry software comparison 33

Table 4.3 Computational time of photogrammetry software solutions

3DF Zephyr Agisoft Metashape Meshroom RealityCapture
Features extr. + match. 2 s 41 s 7 s 1 s
Alignment 2 s 2 s 6 s 1 s
Depth maps 54 s 9 s 70 s 6 s
Dense point cloud 3 s 12 s 33 s 17 s
Total 61 s 64 s 116 s 25 s

(a) 3DF Zephyr (b) Agisoft Metashape

(c) Meshroom (d) RealityCapture

Figure 4.7 Resulting cropped point clouds of photogrammetry software solutions

34 Experiments

4.5 Dynamic scene reconstruction
For this experiment, we took 30 s recordings from two different scenes using our multi-camera
system with cameras arranged in 180 layout. The first scene contained a box that was slowly
moved on plastic sheets using rope, see Figure 4.8. The second scene contained the lower half
of a human sitting on a carpet interacting with the same box as in the first scene, see Figure
4.10. We then used these two recordings and continued following our proposed animated point
cloud pipeline. This experiment showed us how capable our multi-camera system and proposed
pipeline are.

4.5.1 Moving box
The Meshroom reconstruction part of our pipeline successfully reconstructed 20 of the 30 pro-
vided image sets. The other 10 had to be manually modified, mostly because SfM could not
approximate all the cameras, which caused that not all CCTags were localized, and the SfM-
Transform node failed. One reconstruction took approximately 90 s. In Figure 4.9, we can see
half of the point clouds captured from our visualizer.

Using the feature-less white plastic sheets on the ground, we achieved that the resulting point
clouds mainly contained the object of interest. However, this caused fewer detected features and
a lower success rate (66 %). This showed us that to perform better reconstructions, we need
to reconstruct the static part of the scene as well, and that requires a different, feature-rich
background.

The pipeline file with all the necessary source images can be found in experiments/dynamic_
reconstructions/moving_box.

4.5.2 Human interaction
In this scene, we mainly focused on reconstructing a human that is interacting with some object.
We chose specific clothing with a well-defined pattern, which helps in feature detection. Com-
pared to the previous moving box scene, there is more motion, which is also faster. Therefore,
the reconstructions were severely affected by our camera synchronization. However, unlike in the
previous scene, all 30 of the 30 image sets were successfully reconstructed. One reconstruction
took approximately 110 s. In Figure 4.9, we can see half of the point clouds captured from our
visualizer. In Figure 4.12, we can see image overlaid with uncolored point cloud, which represents
the depth information we gathered.

We achieved a better success rate with the carpet on the ground, even when reconstructing a
more complicated scene. The reconstructions are still not perfect (e.g., the box texture is applied
to the carpet as well), but we get more sense of what was happening in the scene compared to
the previous moving box reconstructions 4.5.1.

The pipeline file with all the necessary source images can be found in experiments/dynamic_
reconstructions/human_interaction.

Dynamic scene reconstruction 35

(a) Camera 0 (b) Camera 1

(c) Camera 2 (d) Camera 3

(e) Camera 4 (f) Camera 5

(g) Camera 6 (h) Camera 7

Figure 4.8 Example of an image set for the moving box experiment

36 Experiments

(a) Frame 0 (b) Frame 2 (c) Frame 4

(d) Frame 6 (e) Frame 8 (f) Frame 10

(g) Frame 12 (h) Frame 14 (i) Frame 16

(j) Frame 18 (k) Frame 20 (l) Frame 22

(m) Frame 24 (n) Frame 26 (o) Frame 28

Figure 4.9 Animated point cloud of moving box

Dynamic scene reconstruction 37

(a) Camera 0 (b) Camera 1

(c) Camera 2 (d) Camera 3

(e) Camera 4 (f) Camera 5

(g) Camera 6 (h) Camera 7

Figure 4.10 Example of an image set for the human interaction experiment

38 Experiments

(a) Frame 0 (b) Frame 2 (c) Frame 4

(d) Frame 6 (e) Frame 8 (f) Frame 10

(g) Frame 12 (h) Frame 14 (i) Frame 16

(j) Frame 18 (k) Frame 20 (l) Frame 22

(m) Frame 24 (n) Frame 26 (o) Frame 28

Figure 4.11 Animated point cloud of human interaction with the box

Dynamic scene reconstruction 39

Figure 4.12 Image overlaid with point cloud

40 Experiments

Chapter 5

Conclusion

In this thesis, we have focused on creating our own multi-camera system and implementing a
reconstruction pipeline that creates an animated point cloud from such systems utilizing an
existing photogrammetry software solution.

For this reason, we first studied the multi-camera systems, their individual components,
and already existing systems. Then we studied the photogrammetry pipeline and the software
solutions that perform it. Finally, we studied existing solutions for visualizing point clouds that
can be used to visualize animated point clouds.

Our newly acquired knowledge was applied while building our own low-cost multi-camera
system. We implemented basic controls over this system, including two solutions for synchronized
acquisition without special hardware, of which one was good enough to be used.

We proposed and implemented an animated point cloud pipeline that utilizes the current
photogrammetry software solution. This pipeline starts with synchronized acquisition and ends
with visualization of the animated point cloud, for which we implemented our own visualizer.

Several experiments were performed, capturing scenes that contain both static and dynamic
objects. It turned out that even our low-cost multi-camera system, together with current pho-
togrammetric software, performs successful and accurate reconstructions, provided that we have
enough overlapping camera views. The proposed pipeline worked for both simulated and real
image data sets.

This thesis introduced a new way to reconstruct and visualize dynamic scenes. Other multi-
camera systems, not only those for photogrammetry, may implement our proposed pipeline
with slight modifications. This solution may especially be helpful in reviewing simulated medical
procedures (e.g., resuscitation), where surveillance cameras overwatching participants are already
installed. This may give new insight into simulation evaluation because the scene could be
reviewed from more angles than only cameras provide.

Although our multi-camera system made successful reconstructions using only eight cameras,
it would be interesting to see how it will perform with more and better cameras. We could also
calibrate the system as a whole, not just individual cameras, as we did. This would result in
known external camera parameters that could speed up and improve reconstructions.

The resulting animated point clouds could also be visualized differently, for example, in
virtual or augmented reality, where fiducial markers could also be used for alignment. This
would introduce a whole new way of reviewing reconstructions.

41

42 Conclusion

Bibliography

1. MALLISON, Heinrich. My “self-built” photogrammetry rig [online]. Tübingen: Mallison,
2020 [visited on 2022-03-30]. Available from: https://dinosaurpalaeo.wordpress.com/
2020/12/03/my-self-built-photogrammetry-rig.

2. LANZ, Oswald; SOTTSAS, Fabian; CONNI, Michele; BOSCHETTI, Marco; NOCERINO,
Erica; MENNA, Fabio; REMONDINO, Fabio. A versatile multi-camera system for 3D acqui-
sition and modeling. International archives of the photogrammetry, remote sensing and spa-
tial information sciences. 2020, vol. 43, pp. 785–790. Available from doi: 10.5194/isprs-
archives-XLIII-B2-2020-785-2020.

3. About: Photogrammetry 3D Scanner [online]. Baltimore: UMBC, 2015 [visited on 2022-03-
30]. Available from: https://photogrammetry.irc.umbc.edu/about.

4. VAŠTA, Jakub. Extrakce statického modelu lidského obličeje ze stereo/multiview videa.
Plzeň, 2020. Available also from: http://hdl.handle.net/11025/41747. Master thesis.
Západočeská univerzita v Plzni, Fakulta aplikovaných věd, Katedra informatiky a výpočetńı
techniky.

5. WENGER, Stephan. H.264/AVC over IP. IEEE Transactions on Circuits and Systems for
Video Technology. 2003, vol. 13, no. 7, pp. 645–656. Available from doi: 10.1109/TCSVT.
2003.814966.

6. LUHMANN, Thomas; ROBSON, Stuart; KYLE, Stephen; BOEHM, Jan. Close-range pho-
togrammetry and 3D imaging. 2nd ed. Berlin: De Gruyter, 2013. isbn 978-3-11-030269-1.
Available from doi: 10.1515/9783110302783.

7. The Bayer arrangement of color filters on the pixel array of an image sensor [online].
San Francisco (CA): Wikimedia Foundation, 2001 [visited on 2022-03-31]. Available from:
https://en.wikipedia.org/wiki/Bayer_filter%5C#/media/File:Bayer_pattern_on_
sensor.svg.

8. HARTLEY, Richard; ZISSERMAN, Andrew. Multiple view geometry in computer vision.
2nd ed. Cambridge: Cambridge University Press, 2003. isbn 978-0521540513.

9. BROWN, Duane C. Decentering distortion of lenses. Photogrammetric Engineering and
Remote Sensing. 1966, vol. 32, no. 3, pp. 444–462. issn 991112.

10. BRADSKI, Gary R.; KAEHLER, Adrian. Learning OpenCV. Sebastopol: O’Reilly, 2008.
isbn 978-0596516130.

11. ST 12-1:2014 - SMPTE Standard - Time and Control Code. ST 12-1:2014. 2014, pp. 1–41.
Available from doi: 10.5594/SMPTE.ST12-1.2014.

43

https://dinosaurpalaeo.wordpress.com/2020/12/03/my-self-built-photogrammetry-rig
https://dinosaurpalaeo.wordpress.com/2020/12/03/my-self-built-photogrammetry-rig
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-785-2020
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-785-2020
https://photogrammetry.irc.umbc.edu/about
http://hdl.handle.net/11025/41747
https://doi.org/10.1109/TCSVT.2003.814966
https://doi.org/10.1109/TCSVT.2003.814966
https://doi.org/10.1515/9783110302783
https://en.wikipedia.org/wiki/Bayer_filter%5C#/media/File:Bayer_pattern_on_sensor.svg
https://en.wikipedia.org/wiki/Bayer_filter%5C#/media/File:Bayer_pattern_on_sensor.svg
https://doi.org/10.5594/SMPTE.ST12-1.2014

44 Bibliography

12. LITOS, Georgios; ZABULIS, Xenophon; TRIANTAFYLLIDIS, Georgios. Synchronous Im-
age Acquisition based on Network Synchronization. In: 2006 Conference on Computer Vi-
sion and Pattern Recognition Workshop (CVPRW’06). 2006, p. 167. Available from doi:
10.1109/CVPRW.2006.200.

13. BIERY, Ethan; SHEARER, Thomas; LEDYARD, Roland; PERKINS, Dan; FERIS, Manny.
Controlling LEDs [online]. Lutron, 2014 [visited on 2022-04-08]. Available from: https:
//www.lutron.com/TechnicalDocumentLibrary/367-2035_LED_white_paper.pdf.

14. CALVET, Lilian; GURDJOS, Pierre; GRIWODZ, Carsten; GASPARINI, Simone. Detec-
tion and Accurate Localization of Circular Fiducials under Highly Challenging Conditions.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 562–570. Available from doi: 10.1109/CVPR.2016.67.

15. LOPEZ DE IPINA, Diego; MENDONÇA, Paulo R. S.; HOPPER, Andy. TRIP: A low-cost
vision-based location system for ubiquitous computing. Personal and Ubiquitous Comput-
ing. 2002, vol. 6, no. 3, pp. 206–219. Available from doi: 10.1007/s007790200020.

16. OLSON, Edwin. AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE
International Conference on Robotics and Automation. 2011, pp. 3400–3407. Available from
doi: 10.1109/ICRA.2011.5979561.

17. FIALA, Mark. ARTag, a fiducial marker system using digital techniques. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).
2005, vol. 2, pp. 590–596. Available from doi: 10.1109/CVPR.2005.74.

18. MALLISON, Heinrich. My “self-built” photogrammetry rig [online]. Tübingen: Mallison,
2020 [visited on 2022-03-30]. Available from: https://dinosaurpalaeogerman.files.
wordpress.com/2016/04/rig_01.jpg.

19. XIAO, Yong-Liang; XUE, Junpeng; SU, Xianyu. Robust self-calibration three-dimensional
shape measurement in fringe-projection photogrammetry. Optics letters. 2013, vol. 38, no.
5, pp. 694–696. issn 0146-9592.

20. Ecomimesis [online]. Baltimore: Lynn Cazabon, 2018 [visited on 2022-04-23]. Available from:
https://www.lynncazabon.com/ecomimesis.

21. As a test subject, Chris Peregoy, Visual Arts, along with his antique camera, is being 3D
scanned in the newly installed 90 digital camera rig [online]. Baltimore: UMBC, 2015 [vis-
ited on 2022-03-30]. Available from: https://photogrammetry.irc.umbc.edu/images/
ChrisPeregoy.jpg.

22. Photogrammetry Pipeline [online]. AliceVision [visited on 2022-04-10]. Available from: https:
//alicevision.org.

23. SCHÖNBERGER, Johannes L.; FRAHM, Jan-Michael. Structure-from-Motion Revisited.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 4104–4113. Available from doi: 10.1109/CVPR.2016.445.

24. CRANDALL, David; OWENS, Andrew; SNAVELY, Noah; HUTTENLOCHER, Dan. Discrete-
continuous optimization for large-scale structure from motion. In: CVPR 2011. 2011, pp. 3001–
3008. Available from doi: 10.1109/CVPR.2011.5995626.

25. MOULON, Pierre; MONASSE, Pascal; MARLET, Renaud. Global Fusion of Relative Mo-
tions for Robust, Accurate and Scalable Structure from Motion. In: 2013 IEEE International
Conference on Computer Vision. 2013, pp. 3248–3255. Available from doi: 10.1109/ICCV.
2013.403.

26. GHERARDI, Riccardo; FARENZENA, Michela; FUSIELLO, Andrea. Improving the effi-
ciency of hierarchical structure-and-motion. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2010, pp. 1594–1600. Available from doi:
10.1109/CVPR.2010.5539782.

https://doi.org/10.1109/CVPRW.2006.200
https://www.lutron.com/TechnicalDocumentLibrary/367-2035_LED_white_paper.pdf
https://www.lutron.com/TechnicalDocumentLibrary/367-2035_LED_white_paper.pdf
https://doi.org/10.1109/CVPR.2016.67
https://doi.org/10.1007/s007790200020
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1109/CVPR.2005.74
https://dinosaurpalaeogerman.files.wordpress.com/2016/04/rig_01.jpg
https://dinosaurpalaeogerman.files.wordpress.com/2016/04/rig_01.jpg
https://www.lynncazabon.com/ecomimesis
https://photogrammetry.irc.umbc.edu/images/ChrisPeregoy.jpg
https://photogrammetry.irc.umbc.edu/images/ChrisPeregoy.jpg
https://alicevision.org
https://alicevision.org
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2011.5995626
https://doi.org/10.1109/ICCV.2013.403
https://doi.org/10.1109/ICCV.2013.403
https://doi.org/10.1109/CVPR.2010.5539782

Bibliography 45

27. HAVLENA, Michal; TORII, Akihiko; PAJDLA, Tomáš. Efficient Structure from Motion by
Graph Optimization. In: Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6312,
chap. 2, pp. 100–113. Computer Vision – ECCV 2010. issn 0302-9743.

28. TOLDO, Roberto; GHERARDI, Riccardo; FARENZENA, Michela; FUSIELLO, Andrea.
Hierarchical structure-and-motion recovery from uncalibrated images. Computer Vision and
Image Understanding. 2015, vol. 140, pp. 127–143. issn 1077-3142. Available from doi:
10.1016/j.cviu.2015.05.011.

29. SHAH, Rajvi; DESHPANDE, Aditya; NARAYANAN, P.J. Multistage SFM: Revisiting In-
cremental Structure from Motion. In: 2014 2nd International Conference on 3D Vision.
2014, vol. 1, pp. 417–424. Available from doi: 10.1109/3DV.2014.95.

30. LOWE, David G. Distinctive Image Features from Scale-Invariant Keypoints. International
journal of computer vision. 2004, vol. 60, no. 2, pp. 91–110. issn 0920-5691.

31. ALCANTARILLA, Pablo; NUEVO, Jesus; BARTOLI, Adrien. Fast Explicit Diffusion for
Accelerated Features in Nonlinear Scale Spaces. In: Proceedings of the British Machine
Vision Conference. BMVA Press, 2013. Available from doi: 10.5244/C.27.13.

32. TAREEN, Shaharyar Ahmed Khan; SALEEM, Zahra. A comparative analysis of SIFT,
SURF, KAZE, AKAZE, ORB, and BRISK. In: 2018 International Conference on Comput-
ing, Mathematics and Engineering Technologies (iCoMET). 2018, pp. 1–10. Available from
doi: 10.1109/ICOMET.2018.8346440.

33. MUJA, Marius; LOWE, David. Fast Approximate Nearest Neighbors with Automatic Al-
gorithm Configuration. VISAPP 2009 - Proceedings of the 4th International Conference on
Computer Vision Theory and Applications. 2009, vol. 1, pp. 331–340.

34. FISCHLER, Martin; BOLLES, Robert. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM. 1981, vol. 24, no. 6, pp. 381–395. issn 0001-0782.

35. BEDER, Christian; STEFFEN, Richard. Determining an Initial Image Pair for Fixing the
Scale of a 3D Reconstruction from an Image Sequence. In: Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, vol. 4174, pp. 657–666. Pattern Recognition. issn 0302-9743.

36. LEPETIT, Vincent; MORENO-NOGUER, Francesc; FUA, Pascal. EPnP: An Accurate
O(n) Solution to the PnP Problem. International Journal of Computer Vision. 2008, vol. 81,
no. 2, p. 155. issn 1573-1405. Available from doi: 10.1007/s11263-008-0152-6.

37. TRIGGS, Bill; MCLAUCHLAN, Philip F.; HARTLEY, Richard I.; FITZGIBBON, Andrew
W. Bundle Adjustment — A Modern Synthesis. In: Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, vol. 1883, pp. 298–372. Vision Algorithms: Theory and Practice. issn
0302-9743.

38. FURUKAWA, Yasutaka; HERNANDEZ, Carlos. Multi-view stereo: a tutorial. Boston: Now
Publishers, 2015. isbn 978-1-60198-836-2.

39. HIRSCHMULLER, Heiko. Accurate and efficient stereo processing by semi-global matching
and mutual information. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). 2005, vol. 2, 807–814 vol. 2. Available from doi: 10.
1109/CVPR.2005.56.

40. HIRSCHMULLER, Heiko. Stereo Processing by Semiglobal Matching and Mutual Informa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008, vol. 30, no.
2, pp. 328–341. Available from doi: 10.1109/TPAMI.2007.1166.

41. MEI, Xing; SUN, Xun; ZHOU, Mingcai; JIAO, Shaohui; WANG, Haitao; ZHANG, Xi-
aopeng. On building an accurate stereo matching system on graphics hardware. In: 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops). 2011,
pp. 467–474. Available from doi: 10.1109/ICCVW.2011.6130280.

https://doi.org/10.1016/j.cviu.2015.05.011
https://doi.org/10.1109/3DV.2014.95
https://doi.org/10.5244/C.27.13
https://doi.org/10.1109/ICOMET.2018.8346440
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1109/CVPR.2005.56
https://doi.org/10.1109/CVPR.2005.56
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/ICCVW.2011.6130280

46 Bibliography

42. 3DF Zephyr [online]. Verona: 3Dflow, 2022 [visited on 2022-04-11]. Available from: https:
//www.3dflow.net/3df-zephyr-photogrammetry-software.

43. Agisoft [online]. St. Petersburg: Agisoft, 2022 [visited on 2022-04-11]. Available from: https:
//www.agisoft.com.

44. GRIWODZ, Carsten; GASPARINI, Simone; CALVET, Lilian; GURDJOS, Pierre; CAS-
TAN, Fabien; MAUJEAN, Benoit; LILLO, Gregoire De; LANTHONY, Yann. AliceVision
Meshroom: An open-source 3D reconstruction pipeline. In: Proceedings of the 12th ACM
Multimedia Systems Conference - MMSys ’21. ACM Press, 2021. Available from doi: 10.
1145/3458305.3478443.

45. RealityCapture [online]. Epic Games Slovakia, 2022 [visited on 2022-04-11]. Available from:
https://www.capturingreality.com/realitycapture.

46. WHAT ARE POINT CLOUDS? [Online]. Aberdeen: Tech27 systems, 2020 [visited on 2022-
04-12]. Available from: https://tech27.com/resources/point-clouds.

47. COMMUNITY, Blender Online. Blender - a 3D modelling and rendering package. Stichting
Blender Foundation, Amsterdam, 2018. Available also from: http://www.blender.org.

48. ZHOU, Qian-Yi; PARK, Jaesik; KOLTUN, Vladlen. Open3D: A Modern Library for 3D
Data Processing. arXiv, 2018. Available from doi: 10.48550/ARXIV.1801.09847.

49. CIGNONI, Paolo; CALLIERI, Marco; CORSINI, Massimiliano; DELLEPIANE, Matteo;
GANOVELLI, Fabio; RANZUGLIA, Guido. MeshLab: an Open-Source Mesh Processing
Tool. In: SCARANO, Vittorio; CHIARA, Rosario De; ERRA, Ugo (eds.). Eurographics
Italian Chapter Conference. The Eurographics Association, 2008. isbn 978-3-905673-68-5.
Available from doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136.

50. OPENCV. Open Source Computer Vision Library [software]. 2018. Version 4.0.1. Available
also from: https://opencv.org.

51. VAN ROSSUM, Guido; DRAKE, Fred L. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. isbn 1441412697.

52. ANACONDA SOFTWARE DISTRIBUTION. Anaconda [software]. 2016. Version 4.10.1.
Available also from: https://anaconda.com.

53. HIKVISION DIGITAL TECHNOLOGY. DS-2CD2723G1-IZ(S): 2 MP IR Varifocal Dome
Network Camera [online]. Hikvision Digital Technology, 2019. Available also from: https:
//www.hikvision.com/content/dam/hikvision/products/S000000001/S000000002/
S000000003/S000000025/OFR000038/M000000137/Data_Sheet/DS- 2CD2723G1- IZS_
Datasheet_V5.6.0_20210326.pdf.

54. ARUBA NETWORKS. ARUBA 2530 48 POE+ SWITCH (J9778A): Fixed Port L2 Man-
aged Ethernet Switches [online]. Hewlett Packard Enterprise Development, 2022. Available
also from: https://www.hpe.com/psnow/doc/PSN5384996USEN.pdf.

55. EPIC GAMES. Unreal Engine [software]. 2021. Version 4.27.0. Available also from: https:
//www.unrealengine.com.

56. BLENDER ONLINE COMMUNITY. Blender [software]. 2022. Version 3.1.2. Available also
from: https://www.blender.org/download.

57. HIKVISION DIGITAL TECHNOLOGY. iVMS-4200 [software]. Hikvision Digital Technol-
ogy, 2022. Version 3.6.1.5. Available also from: https://www.hikvision.com/cz/support/
download/software/ivms4200-series.

58. REITZ, Kenneth. Requests: HTTP for Humans [software]. 2022. Version 2.27.1. Available
also from: https://docs.python-requests.org/en/latest/user/install.

https://www.3dflow.net/3df-zephyr-photogrammetry-software
https://www.3dflow.net/3df-zephyr-photogrammetry-software
https://www.agisoft.com
https://www.agisoft.com
https://doi.org/10.1145/3458305.3478443
https://doi.org/10.1145/3458305.3478443
https://www.capturingreality.com/realitycapture
https://tech27.com/resources/point-clouds
http://www.blender.org
https://doi.org/10.48550/ARXIV.1801.09847
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://opencv.org
https://anaconda.com
https://www.hikvision.com/content/dam/hikvision/products/S000000001/S000000002/S000000003/S000000025/OFR000038/M000000137/Data_Sheet/DS-2CD2723G1-IZS_Datasheet_V5.6.0_20210326.pdf
https://www.hikvision.com/content/dam/hikvision/products/S000000001/S000000002/S000000003/S000000025/OFR000038/M000000137/Data_Sheet/DS-2CD2723G1-IZS_Datasheet_V5.6.0_20210326.pdf
https://www.hikvision.com/content/dam/hikvision/products/S000000001/S000000002/S000000003/S000000025/OFR000038/M000000137/Data_Sheet/DS-2CD2723G1-IZS_Datasheet_V5.6.0_20210326.pdf
https://www.hikvision.com/content/dam/hikvision/products/S000000001/S000000002/S000000003/S000000025/OFR000038/M000000137/Data_Sheet/DS-2CD2723G1-IZS_Datasheet_V5.6.0_20210326.pdf
https://www.hpe.com/psnow/doc/PSN5384996USEN.pdf
https://www.unrealengine.com
https://www.unrealengine.com
https://www.blender.org/download
https://www.hikvision.com/cz/support/download/software/ivms4200-series
https://www.hikvision.com/cz/support/download/software/ivms4200-series
https://docs.python-requests.org/en/latest/user/install

Bibliography 47

59. HIKVISION DIGITAL TECHNOLOGY. Intelligent Security API (General): Developer
Guide. Hikvision Digital Technology, 2020.

60. RODOLA, Giampaolo. pyftpdlib [software]. 2018. Version 1.5.4. Available also from: https:
//pyftpdlib.readthedocs.io/en/latest/install.html.

61. PROJECT JUPYTER. jupyter notebook [software]. 2014. Available also from: https://
jupyter.org/install.

62. MESHROOM CONTRIBUTORS. Meshroom [online]. Meshroom Contributors, 2021. Ver-
sion 2021.0.1. Available also from: https://meshroom- manual.readthedocs.io/en/
latest.

https://pyftpdlib.readthedocs.io/en/latest/install.html
https://pyftpdlib.readthedocs.io/en/latest/install.html
https://jupyter.org/install
https://jupyter.org/install
https://meshroom-manual.readthedocs.io/en/latest
https://meshroom-manual.readthedocs.io/en/latest

48 Bibliography

Contents of the attached media

calibration...................................directory with calibration images and files
experiments.......................................directory with data from experiments
Meshroom-2021.1.0.........................Meshroom prebuilt binaries for Windows OS
other

camera configs.........................directory with exported camera configurations
printable cctags...................................directory with printable CCTags
env.yml...Anaconda environment file
isapi.pdf..........................HIKVISION ISAPI documentation in PDF format
meshroom manual.pdf...............................meshroom manual in PDF format

src
modules...................................source codes of the implementated modules
thesis...LATEX source codes of the thesis
pipeline.ipynb..........................described usage of the implemented pipeline

video recorded animated point clouds in visualizer
human interaction.mp4
moving box.mp4
simulated moving box.mp4

readme.txt additional information about the media content
thesis.pdf ... the thesis text in PDF format

49

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Analysis
	Multi-camera system
	Cameras
	Light source
	Fiducial markers
	Existing systems

	Photogrammetry
	Structure from motion
	Multi-view stereo
	Existing software solutions

	Visualization
	Existing software solutions and libraries

	Our solution

	Implementation
	Multi-camera benchmark system
	Simulation
	Installation
	Camera configuration
	Acquisition control
	Calibration

	Animated point cloud pipeline
	Synchronized acquisition
	Undistortion
	Image sets preparation
	Meshroom reconstruction
	Visualization

	Experiments
	Camera synchronization solutions comparison
	Realized camera layouts comparison
	Dependence of point cloud density on the number of cameras
	Photogrammetry software comparison
	Dynamic scene reconstruction
	Moving box
	Human interaction

	Conclusion
	Contents of the attached media

