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Abstract

This thesis aims at using artificial neural networks in machine music generation. We emphasized
using natural language processing techniques based on attention mechanisms. The work describes
the whole music generation pipeline from data selection through tokenization (transforming music
from raw data into a format digestible by selected models) up to model training.

We used state-of-the-art models based on the Transformer architecture commonly used in
NLP to answer whether these well-performing models in domains like text generation or text
translation can also be used to generate music. We also tested some proposed enhancements to
the Transformer model and the attention mechanism and compared them to the vanilla Trans-
former model.

We used the MAESTRO dataset for the training process that contains hundreds of hours of
classical piano pieces. The songs used for training the models are in symbolic MIDI representa-
tion.

We found out that the original Transformer is not suitable for the music generation task an
it’s better to use Music Transformer that reaches 25.13 % accuracy on test set.

Keywords music generation, MIDI, transformers, natural language processing, artificial neural
networks, PyTorch, Python

Abstrakt

Tato bakalářská práce zkoumá využití umělých neuronových sítí v oblasti strojového generování
hudby. Zaměřili jsme se na využití technik používaných ve zpracování přirozeného jazyka za-
ložených na attention mechanismu. Práce popisuje celý proces generování hudby od výběru dat,
přes tokenizaci (transformace hudby ze surových dat do formátu vhodného pro vybrané modely)
až po trénování modelu.

Použili jsme nejmodernější modely založené na Transformer architektuře, běžně užívaných
v NLP, abychom získali odpověď na otázku, jestli lze tyto modely, které mají skvělé výsledky
v doménách generování textu a strojového překladu, použít také pro generování hudby. Vyzk-
oušeli jsme také několik navrhovaných vylepšení Transformer modelu a attention mechanismu
a porovnali je s původním Transformer modelem.

Pro trénování neuronových sítí jsme využili dataset MAESTRO, který obsahuje stovky hodin
klasických klavírních skladeb. Skladby použité pro trénování modelů jsou v symbolické MIDI
reprezentaci.

Zjistili jsme, že originální Transformer není pro tvorbu hudby vhodný a je lepší zvolit Music
Transformer, který dosahuje přesnosti 25,13 % na testovací sadě.

Klíčová slova generování hudby, MIDI, transformers, zpracování přirozeného jazyka, umělé
neuronové sítě, PyTorch, Python
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Introduction

From the beginnings of modern humanity to this day and age, music has played an ever-present
part in our lives. Up until the upswing of the computer era, music composing was carried out
mainly by humans, though there were some experiments with algorithmic music generation even
before the first computer1. However, after scientists developed the first computers, people became
interested in whether computers could also perform complex and creative tasks like self-driving
or music generation.

Lately, artificial intelligence has crept into our lives more than ever before. From fraud
detection, personalization, and content recommendation to image enhancement and facial recog-
nition, AI helped drive all those things forward. The inventions in artificial intelligence and
machine learning techniques, along with advances in computer hardware performance, helped
tremendously with the ability to perform complex tasks like those mentioned above.

Even music did not escape this evolution, and there have been attempts at using RNNs,
GRUs, and LSTMs for automated music generation with promising results. With the Trans-
former being one of the newer models, not many papers exist on utilizing it for music composition,
in contrast to recurrent neural networks.

This thesis aims to research possible ways of generating musical compositions using artificial
neural networks. Specifically, this work focuses on leveraging neural network architectures used
in natural language processing (GRU, LSTM, Transformer, …). The goal of the practical part
of this work is to create a functioning music generation model that would be able to generate
songs from scratch or generate continuation for an existing song. This solution could help music
composers with the creative part of music composition.

1the musical piece was composed using defined musical segments selected by dice roll [1]

1



2 Introduction



Chapter 1

Music theory

Since our goal is to research music and see how we can compose it algorithmically, it is rea-
sonable to start with some fundamentals of music theory. This chapter will cover the basics
of sound, music, and different music terminology.

1.1 Sound

We can define sound as an auditory sensation we perceive when exposed to certain types of
atmospheric disturbances (sound waves). Sound waves are produced by a vibration of some
source, like human vocal cords, an instrument, or a loudspeaker. [2]

1.2 Music

Music can be defined as “organized sound” in the broadest possible sense. This open-ended
and safe definition is coherent regardless of era, style, culture, or the mechanics of musical
organization. Each successive historical era produces musically artistic expressions of its own
time and musical aura. The study of Music Theory is how we investigate this. [3]

1.3 Music theory

As described by [3], Music Theory is a scientific study of music and its organizational character-
istics. Its purpose is to examine questions like how we perceive music aurally, how we experience
music aesthetically, and how we can symbolize it visually. We can learn to associate sounds
with symbols to aid our ability to perceive music at levels of increasing depth and better our
comprehension.

Moreover, [3] states that while studying music, we employ two approaches:

Analysis – we learn to employ commonly accepted techniques and specialized language to
describe the musical organization. These techniques share analytical language throughout
the community of musicians. This is conceptual knowledge and evaluation.

Composition – either by actively creating our own works or (as is the case of this thesis)
imitating or emulating the works of earlier composers. This is active knowledge and procedure.

3



4 Music theory

Figure 1.1 A piano with 88 keys and indicated pitches [4]

Figure 1.2 The staff with a treble clef [4]

1.4 Pitch
We can describe pitch as a perceived highness or lowness of a sound; this directly corresponds to
the frequency of the sensed sound. On a piano, there are 88 notes. Each of the notes corresponds
to a different pitch. Notes placed on the left side of a piano correspond to a lower pitch, and
as we go to the right side of the piano, the pitch gets progressively higher 1.1. [4]

1.5 Notation
Notes are written on a five-line staff (figure 1.2). A clef orients the lines to a reference point.
For example, when placed on a five-line staff, the G clef becomes the treble clef, the most
well-known clef. In treble clef, the notes on the lines are E–G–B–D–F from lowest to highest,
often remembered through the traditional mnemonic1. The spaces are F–A–C–E from lowest to
highest. Staves (the plural of “staff”) are extended by the ledger lines (figure 1.2). [4]

1.6 Octave registers
The note names used in music are ABCDEFG (known as the “musical alphabet”). After G,
note A returns, and ABCDEFG occurs again. An octave is a distance from any note to the
same note in the next or previous register. A piano also contains so-called accidentals (special
keys that raise or lower a note’s pitch). The piano keyboard with 88 notes consists of seven
octaves (composed of seven notes and five accidentals) along with three extra notes and one
extra accidental. [4]

When learning about octave registers, we focus on note C for reasons that will soon become
clear after learning about the major scale. We use octave registers (C4, D5, …) to specify the
note’s exact register. The note C4 is known as “middle C” and is a vital reference point. See
the keyboard in the figure 1.3. [4]

Notice that the register number changes after note B each time (e.g., B4 is followed by C5).
In the treble clef notation, middle C is placed on the ledger line below the staff. In the bass
clef, the middle C is placed on the ledger line above the staff. Both notations are visible in
figure 1.4. [4]

1Every Good Boy Does Fine
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Figure 1.3 A piano with octave registers denoted [4]

Figure 1.4 Middle C (C4) in treble clef and bass clef [4]

When we join the treble and the bass clef together by a bracket, we create the so-called grand
staff, how piano music is written. An example of the grand staff is shown in figure 1.5. [4]

1.7 Accidentals

Accidentals are characters that we use to modify the following note (either raise or lower the
note pitch). The following five symbols exist [4]:

Sharp symbol (\) raises pitch half a step

Flat symbol (Z) lowers pitch half a step

Double sharp symbol (]) raises pitch two halves a step (a whole step)

Double flat symbol ([) lowers pitch two halves a step (a whole step)

Natural symbol (^) cancels out accidentals previously applied in a measure of Major Key
Signatures or Minor Key Signatures

Figure 1.5 The grand staff [4]



6 Music theory

Figure 1.6 The half step and whole step [4]

Figure 1.7 The D major scale on a keyboard [4]

1.8 Half Steps and Whole Steps
A half step on a piano keyboard is the distance from one note to the following immediate note.
A whole step composes of two half steps (figure 1.6). [4]

1.9 The Major scale
A specific sequence of whole and half steps is called a major scale. It is helpful to think of the
pattern as consisting of two tetrachords2 and a single whole step. The lower tetrachord is of the
following pattern: whole step, whole step, half step. A whole step then joins both tetrachords
together. The upper tetrachord consists of the same pattern as the lower one: whole step, whole
step, half step. If we use W for the whole step and H for the half step, we can write the major
scale pattern as W–W–H, Whole–step connection, W–W–H. [4]

Note that all major scales use the notes of the musical alphabet in order; no notes get skipped,
and no note occurs twice. In figure 1.8, the first four notes are D–E–F\–G, not D–E–GZ–G. In
D–E–GZ–G, G incorrectly occurs twice, and the F\ between E and G gets skipped. [4]

2“a tetrachord is a four-note scale segment” [4]
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Figure 1.8 The D major scale in treble clef [4]

Figure 1.9 Major key signatures in sharps [4]

1.10 Major key signatures
The key signature is a notation positioned next to the clef at the beginning of a piece or section.
We use it to hint which sharps or flats are in the piece’s scale to prevent the composer from
writing every sharp/flat from the scale each time it occurs. [4]

There are 15 major key signatures. The key of C major has no sharps or flats in the key
signature, while the other key signatures can have between 1 to 7 sharps and 1 to 7 flats, resulting
in the other 14 key signatures. Notations of the major key signatures can be seen in figures 23
and 24 for sharps and flats, respectively. [4]

“A helpful learning device to remember the order of keys in relation to the order of sharps and
flats is the circle of fifths. As you ascend in fifths (clockwise), key signatures get one degree
‘sharper.’ (C to G is a fifth because C=1, D=2, E=3, F=4, and G=5.) As you descend in fifths
(counterclockwise), key signatures get one degree ‘flatter.’” [4] (figure 1.11)

Notice the overlapping keys at the bottom of the circle. B major is enharmonically3 the same
as CZ major, F\ major is enharmonically the same as GZ major, and C\ major is enharmonically
the same as DZ major. [4]

3pitches that are the same notes on a piano but are written differently on the staff

Figure 1.10 Major key signatures in flats [4]



8 Music theory

Figure 1.11 Circle of fifths in major keys [4]

Figure 1.12 Melodic minor scale [4]

1.11 Minor scales
Alongside the major scale, there are also three minor scales: the natural minor scale, the har-
monic minor scale, and the melodic minor scale. The melodic minor scale has an ascending
version, and a descending version that is the same as the natural minor scale. Both can be seen
in figure 1.12.

1.12 Minor key signatures
Minor key signatures agree with the notes of the natural minor scale. Since the C natural minor
scale had EZ, AZ and BZ accidentals, the key signature of C minor has three flats, written in the
order of flats (BZ, EZ, AZ). [4]

A minor key signature will have three lowered notes—the third, sixth and seventh—related
to the corresponding major key signature. We use the term parallel minor when referring to
a minor scale (e.g., the parallel major of F minor is F major) with the same first scale degree (in
this case C) as the major. One method of figuring out a minor key signature is to add three flats
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Figure 1.13 Natural minor scale in major key signature [4]

Figure 1.14 Natural minor scale in minor key signature [4]

(or subtract three sharps) to the parallel major key signature. When writing below the five-line
staff to designate keys, we use upper case for major keys and lowercase for minor keys. [4]

We also add figures of minor key signatures (figure 1.16) and circle of fifths (figure 1.17) for
minor scale for completeness.

1.13 Time signature
The staff can also contain a time signature next to a clef. We denote it as two stacked numbers;
the lower number is typically a number corresponding to a power of 2 and tells us the relative
duration of a note, while the upper number hints at how many pulses (or beats) we can expect
per bar4. [4]

1.14 Durational symbols
The most common time signature is 4

4 (also known as “common time”). It makes sense to
introduce durational symbols in the context of 4

4 time signature because a whole note takes up
a full measure in 4

4, a half note takes up half a measure of 4
4, a quarter note takes up 1

4 of
a measure, and so on.

Meter describes the number of beats in a measure (also called a bar) and how we typically
divide the beats. A beat is a basic pulse measured in music and thus the unit in which we think
about music. Pulse and beat are interchangeable. The speed of a beat is called tempo. We can
state tempo in beats per minute (bpm), such as 60bpm (where the rate of the beat would be equal

4specified segment of time corresponding to the number of beats

Figure 1.15 Parallel minor keys signatures [4]
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Figure 1.16 Minor keys signatures [4]

Figure 1.17 Circle of fifths in minor keys [4]
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Figure 1.18 Different notes used for a common time [4]

Figure 1.19 Durational symbols for rests [4]
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to a second), or, in classical music, with terms like Allegro, Andante, and Adagio, sometimes in
combinations with “M.M.” for Maelzel’s Metronome. [4]

Some meters have a special name; meters with two beats in a bar are called duple, three
beats in a bar triple, and four beats in a bar quadruple. Meter is described as simple if the beats
are normally divided into two parts and compound if the beats are normally divided into three
parts. [4]



Chapter 2

Automated music generation

When talking about automated music generation, we may want to distinguish between com-
position assistance (software that is not generating the music from scratch but instead helps
the composer incrementally with suggestions, auto-completion, etc.) and autonomous music
generation (which takes over the whole music composing process and users are restricted just
to parametrization of the generation process). In this chapter, we will focus on the latter.
We will briefly go over the history of the music generation and then move on to modern
techniques utilizing machine learning techniques. [1]

2.1 Pre-computer techniques
First experimentations with algorithmic composition took place in the late 15th century by
employing ”canonic composition.” [5]

“The prevailing method was to write out a single voice part and to give instructions to the
singers to derive the additional voices from it. The instruction or rule by which these further
parts were derived was called a canon, which means ‘rule’ or ‘law.’ For example, the second
voice might be instructed to sing the same melody starting a certain number of beats or measures
after the original; the second voice might be an inversion of the first or it might be a retrograde
[etc.]” [6]

These rules of imitation and manipulation form an algorithm by which performers unfold the
music. In this automatical process, we see a clear removal of the composer from a large portion
of the compositional process: the composer himself only invents a core of the music, a single
melody or section. [5]

Wolfgang Amadeus Mozart experimented with automated composition techniques using the
so-called Musikalisches Wurfelspiel (“musical dice game”). The game worked by joining several
predefined musical segments selected by dice roll. This simple form of stochastic algorithmic
composition left the creative decisions in the hands of chance, letting the dice roll decide what
notes to use. [5]

2.2 Use of computers
There are three possible approaches when using a computer to generate a composition:

Stochastic

Rule-based

13
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Sunny Windy Rainy( )Sunny 0.6 0.3 0.1
Windy 0.7 0 0.3
Rainy 0.5 0.2 0.3

Figure 2.1 Markov chain represented by transition matrix [7]

Artificial intelligence

The stochastic way involves randomness and can be as simple as Mozart’s Musical dice game
we already briefly touched upon; however, we can also use more complex methods like statistical
theory and Markov chains. Many creative decisions are merely left to chance when generating
a composition using the stochastic method. Another example of non-computer-oriented stochas-
tic composition can be found in Karlheinz Stockhausen’s Klaveirstucke XI, in which the sequence
of various fragments of music is to be performed by a pianist in random order. [5]

2.2.1 Markov chains
So-called Markov chains are a major technique for generating musical compositions using stochas-
tics. We define the Markov chain using a simple sequence of random variables X1, X2, X3, . . . , Xi

1;
we call this sequence a stochastic process. For this process to be the Markov chain, the following
equivalence must be true:

[Xi|X1, . . . , Xi−1] ∼ [Xi|Xi−1]

In this context, the equivalence means that the probability distribution on the left-hand side
is equivalent to the probability distribution on the right-hand side. For a fixed value of i, Xi

is called the state of the Markov chain. The equivalence implies that the value of ith state
is purely dependent on the immediately previous state, a trait also called memoryless. [7]

Markov chains are primarily represented in two ways a transition matrix (figure 2.1) or
a directed graph (figure 2.2). The transition matrix M is a matrix with dimensions n by n, where
n is the number of different states the Markov chain maintains. The Ma,b value then represents
P(b|a), the probability of transition from the state a to state b. This representation is practical
for use in computers. The directed graph is a good representation for visualization; each vertex
represents a state, and the directed edges represent the probability of a transition between two
states. [7]

2.2.1.1 Generating music
Once we have the Markov chain defined, we can use it to generate music in a simple manner;
we want to create a model that will contain sound objects (notes or chords and their duration)
as states and probabilities of transitions between them. We do this by using existing music pieces
and using them as training input. We compose the states by extracting all different sound objects
occurring in the training pieces. We can compute the transition probabilities by gathering all
possible bigrams (sequences of two adjacent objects). The probability of transition from the state
a to state b is then computed by following division P(b|a) = #ab

#ac , where ab represents bigrams
of sound object a followed by sound object b, and ax represents all bigrams starting with the
object a. Using this method we compose the whole transition matrix.

With the transition matrix available, we can move on to the music generation itself. In order
to utilize the matrix for generating transitions, we first need to select the first sound object the

1the index i in this context is sometimes referred to as the time
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Figure 2.2 Markov chain represented by directed graph [7]

musical piece will start with. We can do that by manually picking the desired sound object, or we
can generate it randomly by composing a vector of probabilities of starting sound objects, where
the probability of each object being the starting object is the number of times it was starting
object in training musical pieces divided by the total number of training musical pieces. So to
generate the piece, we select starting object from the initial vector (the likelihood of selecting
an object is determined by its computed probability). Then for every other state, we receive the
vector of probabilities by using a row of the transition matrix corresponding to the current state.
We iteratively continue until we are satisfied with the length of a piece. [7]

2.2.2 Rule-based music generation
Music theory traditionally describes rules that help to direct the compositional process. While
composers regularly break those rules, they can be successfully used to implement a system for
generating music. One of the examples would be the Illiac Suite, composed in 1957 by professors
Lejaren Hiller and Leonard Issacson, where the rule-based system was used to help generate the
first two movements. [8]

“The general idea is to use screening rules to accept or reject randomly generated pitches and
rhythms. Probability distribution and Markov processes can also be found in the suite.” [9]

2.2.2.1 Formal Grammars
In the 1950s, Noam Chomsky introduced the concept of Generative Grammars, a tool for analyz-
ing language that became highly influential in linguistic studies. In a Generative Grammar, two
alphabets of terminal and non-terminal symbols are used, along with a set of rewriting rules given
over the union of these two alphabets that allow transforming non-terminal symbols (or string
of non-terminal and terminal symbols) into other symbols (both terminals and non-terminals).
The generated language is the set of all possible strings of terminal symbols generated from
a special starting variable (usually called S) and applying any number of rewriting rules in se-
quence. These Grammars can be seen as an implementation of the beforementioned rule-based
systems. [8]
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Lindenmayer Systems (L-Systems) are a variant of Generative Grammars used for music
generation; the difference from Chomsky’s Grammars is that they implement parallel rewriting,
applying all the rewriting rules at once instead of only one at a time. This characteristic makes
these systems less inclined to generate sequential data, like simple melodies, and have been used
to generate stunning visual effects. When applied to music generation, a common approach was
to map visual data generated by L-systems to score information or to a sequence of musical
segments. [8]

One of the most influential researchers of rule-based music generation is Ebcioǧlu, who imple-
mented a custom logic language that he used to create CHORAL, a system for the generation of
Bach-like chorales that uses some 350 rules for harmonization and generation of melodies [10].
The hardship of designing such a system lies in the complexity of explicitly coding enough rules,
many of which often do not have a formal definition in musicology literature. [8]

2.2.3 Artificial intelligence
“Artificial Intelligence (AI) is the property of machines, computer programs and systems to
perform the intellectual and creative functions of a person, independently find ways to solve
problems, be able to draw conclusions and make decisions.” [11]

AI is a buzzword that contains two main branches, the original symbolic AI and machine
learning. The symbolic AI are systems where we capture knowledge using formal mathematical
logic, genetic algorithms, state-space search, automated planning, … . The machine learning
AI builds models with a set of hidden internal parameters we are trying to fine-tune so that the
model performs well on predefined metrics; this optimization process is called learning. In this
thesis, we will specifically focus on artificial neural networks, which are subset of ML techniques.

The increased computational power of computers and the widespread general-purpose GPU
programming recently made deep learning2 techniques extremely popular, with applications span-
ning from NLP to image processing to music generation.

While the interest in these algorithms grew exponentially in the last decade, the first music
generation system to use ANNs was that of Peter M. Todd[12], who used a three-layered Recurrent
Neural Network (RNN) to generate monophonic melodies. Recurrent Networks reuse the results
of the computations from previous steps every time a new input is fed, allowing them to encode
temporal sequences. Still, standard feed-forward networks are also an option for music generation.
There is also room for standard feed-forward networks: in 1991, J. P. Lewis trained a network[13]
with musical patterns ranging from random to well-constructed to learn a measure of “musicality”
used by his music generation system to select pleasing compositions.

As mentioned, RNNs are a popular choice for music generation. In particular, LSTMs[14]
are a special variant of recurrent networks that use gates to decide the amount of information
taken from novel input and what is maintained from older inputs, hence the memory. The first
LSTM used for music generation was applied to blues improvisation[15]. Another deep learning
approach is that of Generative Adversarial Networks (GANs)[16]; the concept behind this method
is to train two networks at the same time, one generates musical compositions imitating what
is learned from real-world examples, and the other tries to discriminate between original and
imitated compositions. As one network gets better, the other must improve as well in order to
“beat” the other network (therefore making them “Adversarial”).

2use of ANNs with more than three hidden layers



Chapter 3

Digital representation of music

In reality, sounds manifest as continuous waves propagating through a medium (like air).
On the other hand, personal computers are digital by design and cannot easily represent
continuous information; therefore, when storing audio in a computer, we have to perform
conversions for the computer to accommodate our audio track. This chapter will look over
possible representations of music representation in a computer.

3.1 Wave representation
The first possible option when representing an audio track in a computer is to try and capture
characteristics of the beforementioned sound wave. In order to manipulate this continuous signal
via a digital computer, the signal must be digitalized with an analog-to-digital converter (A/D).
The converter repeatedly samples the instantaneous voltage amplitude of the analog input signal
at a given sample rate, commonly thousands or tens of thousands of times per second. In the
audio signal, the measured voltage of the input signal is proportional to the sound pressure
measured by a device such as a microphone. The final discrete representation of the converted
signal created by the converter consists of a sequence of numeric values (hence the term digital)
representing the amplitude of the original waveform at evenly spaced points in time. [17]

3.2 Symbolic representation
Another option is to represent music symbolically. Unlike the wave representation, which rep-
resents music (any audio generally) in a low-level physical fashion, the symbolic representation
uses special symbols to represent different musical elements like notes and rests.

The downside of this representation is that it can only depict specific musical instruments,
unlike wave representation, which can also depict vocals and arbitrary sounds. However, this
approach is much better suited for our application, as it expresses the essential musical prop-
erties. Therefore, it will be much easier for our neural nets to learn the intrinsic properties of
compositions provided as learning data and thus will presumably be more successful at imitating
them. We will now go over the most common symbolic formats for music.

3.2.1 MIDI
The MIDI abbreviation stands for the Musical Instrument Digital Interface. It is a protocol
developed in the early 1980s to standardize the exchange and storage of musical information. It

17
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Figure 3.1 Digitization of signal via sampling [18]

is the most widespread binary communication protocol intended to connect electronic musical in-
struments such as synthesizers and other electronic music equipment to a computer for recording,
editing, and programming. MIDI protocol appeared as a response to the need to standardize the
communication between the synthesizers and other musical equipment and was created when
electronic music was developed by a consortium of Japanese and American manufacturers of
Synthesizers (Sequential Systems, Roland Corporation, Yamaha, Kurzweil, …). It is used to
transmit data using serial ports but can also be written to a file and be used as a means of stor-
age. MIDI is an extensive standard consisting of hardware, drivers, communication channels,
messages, modes, controllers, visual effects control, and a file format standard. In this work,
we will only concern ourselves with the MIDI file format, as it is the thing that we will need
during the implementation part. Since the protocol was developed in the 80s, it was designed
to have low overhead and, therefore, low-level. We do not need to go into the detail of binary
encoding used to describe different MIDI events; instead, we will present an abstracted high-level
overview, which is sufficient for our application. [19]

3.2.1.1 MIDI file format
The MIDI file starts with a header, where the format type (single track, multiple synchronous
tracks, or multiple asynchronous tracks), the number of tracks, and time division (ticks per beat).
The file body composes of an array of MIDI messages. Each message denotes the message content
and ∆ (delta) time; the amount of ticks the event is shifted after the preceding event. There
are some meta-messages that specify additional information like song lyrics, tempo, state end
of the track, and others. There are multiple message types like control_change for specifying
pedal/slider position or program change to choose one of 128 instruments. However, the most
substantial messages are note_on and note_off. These take arguments pitch (0-127) and velocity
(0-127) and specify the pressing and releasing of a note specified by pitch number. The velocity
controls the force of a note being pressed. Zero velocity has the same meaning as the note_off
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Figure 3.2 Example of a musical score [19]

message, so the release of a key. Please take a look at figure 3.2, which contains an example of
a score. [19]

This would translate into following messages in MIDI:

midi message pitch note value
note_on 64 E4
note_on 67 G4
note_off 67 G4
note_on 69 A4
note_off 69 A4
note_off 64 E4
note_on 60 C4
note_on 71 B4
note_off 71 B4
note_on 72 C5
note_off 72 C5
note_off 60 C4
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Chapter 4

Neural networks

Artificial neural networks (ANNs), or just neural networks, are a class of mathematical models
used for various tasks, including data classification, self-driving, chatbots, sentiment analysis,
time series prediction, computer vision, art generation, and many more. As the name suggests,
ANNs are a set of artificial neurons specially arranged into so-called layers. Neural networks are
somewhat inspired by biological neural nets; hence we will now briefly examine them. [20]

The brain consists of many neurons (figure 4.1) consisting of dendrites, a cell body, and an
axon. Dendrites are branched connections of a neuron that received propagate the electrochem-
ical stimulation received from other neurons and send them to the cell body, where the signals
are summed up, and once the triggering threshold is reached, the signal propagates through
the axon. The last part of a neuron is the axon, the long connection leading from a neuron
that transmits a signal to different neurons, muscles, or glands. Neurons can communicate with
other neurons’ dendrites and other body parts via these connections, so-called synapses, and pass
on their electrochemical potential. A depiction of the triggering threshold and voltage output
is illustrated in figure 4.2. [20]

4.1 Neurons
Now let’s look at a mathematical model of an artificial neuron. This model contains three
input nodes: X1, X2, and X3, that channel their output values multiplied by their respective
weights w11, w12, and w13, into the neuron “body.” We denote n dendrites in the input layer
nodes as x1, x2, x3, …, xn and their corresponding m weights as w11, w12, …, wnm, where wij

Figure 4.1 A typical biological neuron [20]

21
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Figure 4.2 Representation of action potentials and the triggering threshold needed to propagate
a signal [20]

Figure 4.3 A mathematical depiction of an artificial neuron [20]

refers to the weight taking xj to the node i. The body of an artificial neuron works simply by
summing input values multiplied by the connection weights along with the neuron “bias” term
b (this can be thought of as neuron resting-state potential) and passes the summed value to an
activationfunction. The activation function is usually one of the nonlinear transfer functions
described later. This value is either fed into the following layer of neurons or outputted out of
the model. A simplified model of the artificial neuron can be seen in figure 4.3. [20]

A mathematical formula for neuron internal potential is following:

y = (w11, w12, . . . , w1n)×




x11

x12

x13

...
x1n

= w11x1 + w12x2 + . . .+ w1nxn + b = w × x + b

Later we apply an activation function (figure 4.4) σ to the node’s internal potential, σ(y)
is the output of a single neuron. The activation function corresponds to the activation state of
a node. As mentioned earlier, a voltage potential must build up enough signal in the cell body to
send a signal down the axon. The activation function simulates this biological effect in a neural
network for the node and output signal. Overall, this is how we model a single neuron. A neural
network is a collection of single neurons arranged into layers. Therefore, by understanding how
a single neuron works, we can better grasp how a neural network functions. [20]
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Figure 4.4 Commonly used activation functions

4.2 Activation functions
The activation function, also known as the transfer function, corresponds to the activation state
of a neuron. It simulates the biological effect of overcoming a voltage potential to propagate
to an axon. This function manipulates internal potential (pre-state) and transforms it into the
output coming from a node. Mathematically, the transfer function σ(r) has to be differentiable
(to allow backpropagation), increasing, and has to have horizontal asymptotes. r corresponds to
a pre-state for which the activation function generates an output. A couple of typical functions
for σ(r) will be discussed. [20]

These are the formulas for the most common functions:

σ(r) = arctan(r) = tan−1(r),

σ(r) = sigmoid(r) =
1

1 + e−r
,

σ(r) =
e2r − 1

e2r + 1
,

σ(r) = reLU(r) = max(0, r)

You can see these four activation functions plotted in a graph in figure 4.4.

4.3 Network architecture
A neural network consists of a sequence of layers. The first layer is called the input layer, and the
number of neurons (or nodes) in the input layer is derived from the dimensionality of the input:
xi ∈ Rn, the layer has n nodes. The final layer is called the output layer, and the number of
neurons in the output layer is derived from the dimensionality of the output: yj ∈ Rm, the layer
has m nodes. In Figure 4.5, xi ∈ R3 and yj ∈ R1 so, there are three neurons in the input layer
and one neuron in the output layer. In between the two layers mentioned before are a number
of the hidden layers, each containing some number of k neurons. We define the neural network’s
architecture by the number of nodes in each layer. For example, figure 4.5 depicts a neural
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Figure 4.5 A 3-4-4-1 neural network [20]

network with three nodes in the input layer, four nodes in the first hidden layer, four nodes in
the second hidden layer, and one node in the output layer. This network could be described
as a 3-4-4-1 neural network. [20]

4.4 Training and application of ANNs
A neural network is a model that, when trained, recognizes patterns in data sets. Once a neural
net is trained, given enough simulation data to recognize the patterns, it can predict outputs in
future data. We can think of training a neural network as estimating a function between a given
domain and range. Once trained, any data within the domain we provide can be mapped to the
range of the function. A simple example of a neural network in action is data classification. We
are given a data set containing six characteristics of 200 wines (the input would be a 6 × 200
matrix) and knowing the properties of 5 different types of wine. We can train the neural network
on 50 different wines, and then the generated function will be able to classify the other 150 wines
into the five types of wine (the output would be a 5× 200 matrix). ANNs can be a powerful tool
for analyzing, predicting, or generating data. [20]

There are two types of learning: supervised learning and unsupervised learning. Supervised
learning is when the output or target values are known. That was the case in the beforementioned
example about the wine classification. In classifying wine into the five types, we knew the correct
wine types for the 200 bottles when used as a learning dataset. Contrary to that, unsupervised
learning does not “know” the outputs or target values. The learning process finds patterns
within the data in order to output values. Unsupervised learning is used in many complex
systems, including data processing, modeling, and classification. The goal of the training process
is to find weight and bias values that produce the most accurate function approximation. That
is easier said than done as there are many caveats when using and training neural networks, like
choosing unsuitable network architecture. [20]

4.5 Feed-Forward Neural Networks
A feed-forward neural network is one of the most straightforward ANN architectures. It is a part
of supervised learning and creates a mapping Rn → Rm. The mapping consists of an initial
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signal x, pre-states Pj , activation function σ(r), and states Sj . In order to compute the neural
network’s final output, we have to calculate all these states for each layer. We start at the input
layer and continue forward towards the output layer because each layer depends on the previous
one. [20]

These are the formulas for calculating pre-states Pj and states Sj :

Pi = WiSi−1 + bi, Si = σ(Pi)

4.6 Backpropagation
The goal of a neural network is to approximate a function between a given range and domain.
Our aim is to build the function so that the determined outputs equal the given target values,
F (xi) = ŷi, where F is the function created by ANN, xi the inputs, and ŷi the target values. The
typical to go about this is to create a loss function that computes the error between our prediction
ŷi and the actual output yi. We then find the values of parameters that minimize it. The loss
function depends on what type of problem we are solving. Mean Squared Error is mainly used
for regression and Categorical Cross-Entropy is most commonly used for classification. [20]
Since we know the targets yi and the outputs ŷi = F (xi) (as we just described earlier), our error
functions will be the following:

Mean Squared Error:
L = (yi − ŷi)

2

Categorical Cross-Entropy (given M classes):

L =

M∑
i=1

yi log ŷi

The loss function is dependent on the weight matrices Wi and the bias vectors bi for each
layer of the neural network. In order to decrease the error of the neural net, we will use the
gradient of the error function. We calculate the derivative of the loss function, compute the
direction of the gradient and change the weights and biases to move in the opposite direction
of the gradient. Moving in the direction of the gradient achieves the fastest ascend, so moving
in the direction opposite to the gradient results in the fastest descent. [20] Unsurprisingly this
method is called gradient descent, where the parameter u (the actual parameters of the function
are the weights Wi and biases bi) is updated by:

unew = uold − α
dL

du

Where � is the learning rate, controlling how big the leaps are taken when updating the weights
and biases to reduce error. “Generally, a large learning rate allows the model to learn faster, at
the cost of arriving on a sub-optimal final set of weights. A smaller learning rate may allow the
model to learn a more optimal or even globally optimal set of weights but may take significantly
longer to train.” [21] We use backpropagation in order to determine the term dL

du . While there
are other techniques (like genetic algorithms), backpropagation of error is an efficient way of
computing the change of the error in a network. For backpropagation, we first run a forward
pass through the network to determine each node’s state conditions. We determine the partial
derivatives through the network to get each node’s error term ∆l

m when going backward. [20]
Following is the formula to update the weight W l

mn, which connects node n in layer l−1 to node
m in layer l:

new W l
mn = W l

mn + ε
dL

dW
= W l

mn + ε∆l
mSl−1

n
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∆l
m here means the error term that measures how much node m in layer l was responsible

for overall errors in our output, and Sl−1
n is the state of node n in layer l − 1. ∆l

m is defined
explicitly as δLj = (ŷj − yj)σ

′(PL
j ) for the output layer L and recursively for preceding layers

l = 1, 2, . . . , L − 1 as ∆l
m = σ′(P l

m)
∑

j∈l+2 ∆
l+1
j W l+1

jm . [20] For updating the biases, following
formula is used:

new blk = blk + ε
dL

db
= blk + ε∆l

k
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The Transformer architecture

The Transformer is a unique ANN architecture researched at Google Brain and proposed in
2017 in the paper ”Attention Is All You Need[22].” The model was a massive success in the
natural language processing field. It was first designed for machine translation but has since
been adapted to many other NLP tasks like text classification, text generation[23, 24, 25], text
summarization, question answering, and was even extended to work in computer vision[26,
27, 28].

5.1 Overview

The Transformer model takes advantage of an encoder-decoder structure. The encoder maps the
input sequence x = (x1, . . . , xn) to a sequence of continuous representations z = (z1, . . . , zn).
We then pass representation z to the decoder that generates the final output sequence y =
(y1, . . . , ym) one symbol at a time. At each step, the model is auto-regressive, meaning it con-
sumes previously generated symbols as additional input for the following step. The Transformer
implements this architecture using stacked point-wise, fully connected layers and self-attention
for both the encoder and the decoder. Please see the overall structure of the Transformer in
figure 5.1. [22]

5.2 Encoder

The encoder is formed of a stack of N = 6 identical layers. Each layer has two sub-layers; a multi-
head self-attention mechanism and a simple, position-wise, fully connected feed-forward network.
The sub-layers use a residual connection1 around each of the two sub-layers, followed by layer nor-
malization[30]. To sum it up, the output of each sub-layer is LayerNorm(x+Sublayer(x)), where
Sublayer(x) is the function implemented by the sub-layer itself (self-attention/feed-forward
ANN). To enable these residual connections, all sub-layers in the model and the embedding
layers produce outputs of dimension dmodel = 512. Visualization of the encoder module can be
seen in figure 5.2. [22]

1residual connection means that not only consecutive layers are connected, but there are also additional con-
nections bypassing a certain number of layers[29]

27
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Figure 5.1 The Transformer - model architecture [22]

Figure 5.2 The encoder and decoder module detail [31]
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Figure 5.3 Depiction of Scaled-Dot-Product Attention (left) and Multi-Head Attention (right) [22]

5.3 Decoder
The decoder comprises a stack of N = 6 identical layers as well. The decoder module uses
the same two sub-layers (just like the encoder) but, in addition to that, introduces a third
sub-layer, which performs multi-head attention over the encoder’s stack output. Analogous to
the encoder, we use layer normalization and residual connections when connecting sub-layers.
The self-attention sub-layer in the decoder is modified to forbid positions from attending to
successive positions. Using this masking (also called teacher-forcing) and the fact that the
output embeddings are shifted by one position ensures that predictions for an ith position depend
exclusively on known positions less than i. [22] The decoder and its relation to the encoder can
be seen in figure 5.2.

5.4 Attention
Attention is the heart of the Transformer architecture; it maps a query and a set of key-value
pairs to an output. The output is computed as a sum weighted by a compatibility function of the
query with the corresponding key. The query, keys, and values are all represented as vectors. [22]
The representation of attention can be seen in figure 5.3.

5.4.1 Scaled Dot-Product Attention
The input for ”Scaled Dot-Product Attention” consists of queries, keys, and values. The keys
and queries take up dimension dk, and the values take up dimension dv. The weights of values
are computed by calculating the dot products of the query with all keys, each divided by

√
dk,

and finally, a softmax functio is applied. In practice, the attention function is computed on
a set of queries, values, and keys simultaneously by packing them into matrices Q, K, and V,
respectively. [22] The matrix of outputs is computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
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The authors suspect that for large values of dk, the dot products grow large in magnitude,
pushing the softmax function into regions with minimal gradients. Hence, to counteract this
effect, the dot products are scaled by 1√

dk
. [22]

5.4.2 Multi-Head Attention
The authors found that instead of using Scaled Dot-Product Attention isolated, it is beneficial to
linearly project queries, keys, and values h times with different learned linear projections to dk,
dk, and dv dimensions. The attention function is computed on all these projected versions of Q,
K, and V in parallel, yielding dv-dimensional output values. Those are then concatenated and
projected again, resulting in the final values. Multi-head attention allows the model to attend to
information from different representation subspaces at different positions at once. [22] Following
is the formula for Multi-Head Attention:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

The projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv ,

and WO ∈ Rhdv×dmodel .

5.4.3 Use of Attention inside the Transformer
Multi-head attention is used in three different places inside the Transformer. The first occurrence
is in the encoder-decoder layers. The queries come from the previous decoder layer, and keys
and values come as outputs from the decoder. Another way the multi-head attention is used
is self-attention (figure 5.4)), that is, when queries, keys, and values are all taken from the
same place, in this case, from the output of the previous layer in the encoder. The decoder also
contains self-attention layers to allow all positions in the decoder to attend to any of the previous
positions. It must be prevented from attending a position that is after a given position to retain
auto-regressivity. This is implemented inside the scaled dot-product attention by masking out
all following values in the input. [22]

5.5 Feed-forward networks
Aside from attention sub-layers, each layer in our encoder and decoder module contains a fully
connected feed-forward network applied to each position separately and identically [22]. The
operation composes of two linear transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2

The input and output dimensions are dmodel = 512, and the inner-layer has dimensionality
dff = 2048 [22].

5.6 Embeddings and Softmax
The model uses learned embeddings2 to convert the input tokens and output tokens to vectors of
the dmodel dimension. The softmax function converts the decoder output to predicted next token

2“Embeddings are functions that map raw input data to low-dimensional vector representations, while preserv-
ing important semantic information about the inputs.”[32]
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Figure 5.4 High-level depiction of self-Attention [31]

probabilities. The Transformer model shares the same weight matrix between the two embedding
layers and the pre-softmax linear transformation. The weights are then multiplied by dmodel in
the embedding layers. [22]

5.7 Positional encoding
The model does not use any recurrent or convolutional layers, so for the model to understand the
positions of all elements, we must provide additional information about the relative or absolute
position of the tokens in a sequence. We add positional encodings to the input embeddings at the
bottoms of the encoder and decoder stacks to provide this information. The positional encodings
have the same dimension dmodel as the input embeddings to make summing possible. [22] Position
encodings in the Transformer are calculated using the following formulas:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

Where i is the dimension and pos is the position. This results in each dimension of the positional
encoding corresponding to a sinusoid. The wavelengths create a geometric progression from 2π
to 10000 · 2π. The authors chose the sinusoidal version as they hypothesize it may allow the
model to extrapolate to sequence lengths longer than the ones encountered during training. [22]

5.8 Music Transformer
The Music Transformer is an auto-regressive model based on the original Transformer. A decoder-
based3 model introduces modifications to the attention mechanism to enable relative positional
encoding and decrease memory requirements. [33]

3the encoder blocks from the original Transformer model are not used
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5.8.1 Relative positional encoding
“Music has multiple dimensions along which relative differences arguably matter more than their
absolute values; the two most prominent are timing and pitch. To capture such pairwise relations
between representations, Shaw et al.[34] introduce a relation-aware version of self-attention which
they use successfully to modulate self-attention by the distance between two positions. We extend
this approach to capture relative timing and” [33]

Shaw et al.[34] introduced relative position encoding as an alternative to the Transformer’s
absolute position realized via positional sinusoids. The relative positional encoding allows at-
tention to be informed by how far two positions are apart in a given sequence. This is done by
training a separated relative position embedding Er of shape (H,L,Dh), embedding every possi-
ble pairwise distance r = jk− iq between a query and key in position iq and jk, respectively. The
embeddings are then ordered by their distance from −L+1 to 0 (where L means sequence length)
and are learned separately for each head. In the “Self-attention with relative position represen-
tations,”[34] the relative embeddings interact with queries and form a Srel; L × L dimensional
logits4 matrix that modulates the attention probabilities for each head as follows[33]:

RelativeAttention = Softmax
(
QKT + Srel

sqrtDh

)
V

The Music Transformer uses the same approach to introduce relative distance information to
the attention computation while introducing a novel way of computing the Srel, resulting in
a significant memory footprint decrease. In the “Self-attention with relative position represen-
tations,”[34] there is an intermediate tensor R of shape (L,L,Dh), instantiated for each head
containing the embeddings corresponding to the relative distances between all keys and queries.
Q is then reshaped to an (L, 1, Dh) tensor and Srel = QRT . This burdens the embedding
computation to O(L2D) space complexity, restricting use for longer sequences. [33]

5.8.1.1 Efficient implementation
The Music Transformer improves the implementation of relative attention by reducing its in-
termediate memory requirement from O(L2D) to O(LD). The authors observed that all of the
terms needed from QRT are already available by directly multiplying Q with Er, the relative
position embedding. After the QErT is computed, the (iq, r) entry contains the dot product of
the query in position iq with the embedding of relative distance r. Nevertheless, each relative
logit (iq, jk) in the matrix Srel from the previous equation should instead be the dot product of
the query in position iq and the embedding of the relative distance jk − iq , to match with the
indexing in QKT . Therefore, we need to “skew” QErT to move the relative logits to their correct
positions, as is illustrated in figure 5.5. The time complexity for both methods is O(L2D), but
in practice, the authors report their method to be 6× faster at length 650. [33]

5.8.2 Relative local attention
Local attention is not a new concept; it has been used, for example, in Wikipedia and image
generation[35]. It is realized by chunking the input sequence into non-overlapping blocks; each
block attends to itself and the one before, as shown by the smaller thumbnail on the top right
corner of figure 5.6. To extend the concept of relative attention to this local scope, we note that
the right block has the same configuration as in the global case (see figure 5.5) but smaller: ( L

M )2

(where M refers the number of blocks, and N be the resulting block length) instead of L2. The
left block is unmasked with relative indices going from −1 (top right) to −2N +1 (bottom left).
Because of that, the learned Er for the local scope has shape (2N − 1, N). Like the global case,

4output layer values, before passed to softmax and becoming probabilities
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Figure 5.5 Relative global attention: the bottom row describes the memory-efficient “skewing”
algorithm. Gray indicates masked or padded positions. Each color corresponds to a different relative
distance. [33]

Figure 5.6 Relative local attention: the thumbnail on the right shows the desired configuration for
Srel. The “skewing” procedure is shown from left to right. [33]

we first compute QErT and afterward use the following procedure to “skew” it to have the same
indexing as QKT >, as shown in figure 5.6. The procedure is as follows[33]:

1. Pad dummy column vector with length N after the rightmost column.

2. Flatten the matrix and then pad with a dummy row having length N − 1.

3. Reshape the matrix to the shape (N + 1, 2N − 1).

4. Slice obtained matrix to retain only the first N rows and last N columns, resulting in a matrix
of shape (N,N).
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Chapter 6

Music generation pipeline

This chapter will follow up on the research done in previous chapters and implement the
original Transformer model and the Music Transformer. We will then obtain a suitable
dataset and describe the steps leading to a fully trained model.

6.1 Dataset
In order to train a machine learning model, we first need some dataset on which the model will
train. For this purpose, we used the MAESTRO (MIDI and Audio Edited for Synchronous
TRacks and Organization v3.0.0) dataset[36], distributed by Magenta – a research project from
Google that researches applications of AI for creating art. The dataset consists of mostly classical
pieces, including composers from the 17th to early 20th century. The dataset was composed
utilizing a MIDI capture system integrated into concert-quality acoustic grand pianos used in the
International Piano-e-Competition1. Each piece was captured into a MIDI format during
the competitions as the pianists played, producing 2̃00 hours of high-quality musical audio. The
dataset contains a train/validation/test split configuration to prevent the same composition from
appearing in multiple subsets even if played by multiple contestants. [36] Below is a summary of
this dataset:

Split Performances Duration (hours) Notes (millions)
Train 962 159.2 5.66
Validation 137 19.4 0.64
Test 177 20.0 0.74
Total 1276 198.7 7.04

6.2 Tokenization
For the model to digest tracks from the dataset, we first have to convert it from MIDI repre-
sentation into a vector of integers (vector of tokens). Before we get into tokenization, we first
preprocess the dataset by splitting the track if the piece contains a rest longer than 3 seconds
and removing tracks shorter than 10 seconds. This process is called tokenization. We have three
reserved tokens with special meanings:

START – denotes the start of the track

END – denotes the end of the track
1https://piano-e-competition.com/

35
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PADDING – used as padding after the END token if the tokenized track is shorter than the
vector length

We propose two different tokenization methods; the first focuses on the note_on and note_off
events themselves, while the second aggregates all notes pressed simultaneously.

6.2.1 Note-centric tokenization
Note-centric tokenization method closely maps MIDI events onto different tokens; we have 128
tokens for note_on events and 128 tokens for note_off events. Their values correspond to
different note pitches (0-127 is the MIDI pitch range). Besides note tokens, we also need to
encode the rest information. To encode the rests, we first decrease the MIDI resolution down to
10 ms; this reduces the sequence length while still not being noticeable to humans. Since the rest
periods are variable in time, we have to be able to tokenize arbitrary rest length. We do this by
introducing rest tokens with values of powers of two. So, for example, let us say we have 530 ms
rest. That is 53 rest units since the resolution is 10 ms. This number has a binary representation
110101, implying four rest tokens with powers 0, 2, 4, and 5. Now, these powers are turned into
tokens by shifting them after special tokens and tokens representing the notes.

6.2.2 Chord-centric tokenization
The chord-centric tokenization solves this problem in another way. Instead of tokenizing single
note_ons and note_ofs, it encodes whole chords (more accurately currently pressed keys) and
the duration for which this specific combination of keys is pressed. The pressed keys are repre-
sented by a single intermediate number obtained again by binary representation; the ith bit is 1
if the note corresponding to pitch i is pressed, 0 otherwise. The obtained intermediate chord
representation can be any value from 0 to 2128 − 1. Once we have this chord representation, we
use it to create a mapping between chord representation and tokens by assigning a unique token
value to each new chord representation discovered. The final sequence is then encoded like this:
<chord_representation_1>, <duration_representations_1>, <chord_representation_2>,
<duration_representations_2>, …. Durations are also represented as powers of two, like in
the note-centric tokenization.

6.3 Training
For the final training, we will use two models mentioned in this thesis’s research part: the
Transformer and the Music Transformer2. Also, both tokenization methods will be used and
compared. Following hyper-parameter (parameters set manually, instead of being discovered
through optimization) are used:

Transformer – note-centric:

seq-len: 4096
vocabulary-size: 270
dmodel: 512
dff : 2048
enc-layers: 6
attention-heads: 8
dropout: 0.1

2this model implementation was used: https://github.com/jason9693/MusicTransformer-pytorch

https://github.com/jason9693/MusicTransformer-pytorch
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Transformer – chord-centric:

seq-len: 1024
vocabulary-size: 543892
dmodel: 256
dff : 1024
enc-layers: 6
attention-heads: 8
dropout: 0.1

Music Transformer – note-centric:

seq-len: 4096
vocabulary-size: 270
dmodel: 512
dec-layers: 6
dropout: 0.1

Music Transformer – chord-centric:

seq-len: 512
vocabulary-size: 543892
dmodel: 256
dec-layers: 6
dropout: 0.1

Note: the hyperparameters for models were decreased for chord-centered tokenization, as this
tokenization method came with greater memory requirements, and the models otherwise would
not fit into GPU memory.
Meaning of the hyperparameters:

seq-len: Length of the tokenized vector – dataset is trimmed to this value

vocabulary-size: Number of different tokens

dmodel: Embedding dimension

dff : Feed-forward network dimension

enc-layers: Number of encoding layers

dec-layers: Number of decoding layers

attention-heads: Number of attention heads

dropout: Percentage of randomly dropped nodes used to reduce over-fitting3.
3state when training loss decreases, but test loss increases
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6.3.1 Metrics
Two metrics are used to evaluate model performance, specifically cross-entropy loss, and cate-
gorical accuracy. Following is the cross-entropy loss formula:

ℓ(x, y) = L = {l1, . . . , lN}T , ln = −ωyn log
exp(xn,yn)∑C
c=1 exp(xn,c)

· 1{yn ̸= ignore_index}

[37] The categorical accuracy simply calculates the percentage of predicted tokens that match
the sequence’s actual values fed to a model.

acc(x, y) = #tokens matched
sequence length

6.3.2 Environment
Python 34 programming language is used for implementation along with the ML framework
PyTorch5. For training, cloud environment Google Colab6 is used as it is a free (with limitations)
service that allows executing Jupyter Notebooks7 and is very useful for training of ANN models
since the environment also allows allocation of powerful GPUs like NVIDIA Tesla P100, NVIDIA
Tesla V100, and NVIDIA A100.

6.4 Evaluation
All four model/tokenization combinations were trained for 50 epochs (one epoch is counted as an
iteration over the whole training dataset). The progression of test accuracy of all trained models
can be seen in figure 6.1.As can be seen, the Music Transformer outperforms Vanilla Transformer
for both tokenization methods. This, however, comes at the cost of significantly longer training
time, as can be seen in figure 6.2. The problem with the Vanilla Transformer is that the model
generates the first note and then keeps generating rests only, resulting in an empty composition.
We hypothesized that this is because of low note density in the tokenized sequences (most of the
tokens are rests) and believed that the chord tokenization might mitigate this issue. It seems,
however, that the problem prevails even with the chord tokenization.

On the other hand, this is fixed with the Music Transformer, where the model always generates
a non-empty composition. Instead, it has the opposite problem. When listening to the generated
compositions, it can be heard that there are too many notes being played simultaneously, which
does not sound very pleasant. This problem is more significant for the chord-centered tokenization
than the note-centered tokenization. We provide a table with validation results for all of the
models.

Model Tokenization Validation accuracy Validation loss
Vanilla Transformer note 30.34 % 2.83
Vanilla Transformer chord 28.23 % 4.58
Music Transformer note 21.60 % 3.74
Music Transformer chord 25.13 % 5.77

4https://www.python.org/
5https://pytorch.org/
6https://colab.research.google.com/
7https://jupyter.org/

https://www.python.org/
https://pytorch.org/
https://colab.research.google.com/
https://jupyter.org/
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Figure 6.1 Accuracy of models on test set

Figure 6.2 Models training time
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Figure A.1 Accuracy of models on training set

Figure A.2 Accuracy of models on test set
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Figure A.3 Loss of models on training set

Figure A.4 Loss of models on test set
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Figure A.5 Models training time
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