
Instructions

Based on the previous thesis 'Security of IoT Devices Based on ESP32,' analyze threats related to the

Firmware Over the Air (OTA) update of IoT devices.

Describe related ESP32 platform security features. Analyze remote server authentication options and the

client authenticity verification. Analyze the possibility to upgrade the authentication process in the

future. Create an ESP32 application that will securely download and apply a new firmware from a remote

server. The update process will verify the authenticity of both the server and firmware and the integrity of

the firmware. Test and evaluate the result in terms of cybersecurity.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 30 January 2021 in Prague.

Assignment of bachelor’s thesis

Title: Secure Over the Air Update of ESP32

Student: Marek Kočí

Supervisor: Ing. Jiří Dostál, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security and Information technology

Department: Department of Computer Systems

Validity: until the end of summer semester 2021/2022

Bachelor thesis

SECURE OVER THE AIR
UPDATE OF ESP32

Marek Koč́ı

Faculty of Information Technology CTU in Prague
Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.
May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Marek Koč́ı. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. This thesis is protected by
the Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Marek Koč́ı. Secure Over the Air Update of ESP32. Bachelor thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgements vii

Declaration viii

Abstract ix

Introduction x

Goal xi

Acronyms xii

1 Internet of Things and Firmware Update 1
1.1 Definition of IoT . 1
1.2 How Does IoT Work? . 1
1.3 Examples of IoT Applications . 1
1.4 Connecting IoT Devices . 2

1.4.1 IoT Data Protocols . 3
1.4.2 IoT Network Protocols . 3

1.5 Over the Air Firmware Update . 3
1.5.1 Device Firmware . 3
1.5.2 Local Firmware Update . 5
1.5.3 Remote Firmware Update . 6
1.5.4 Centralized Firmware Update . 6

2 Cybersecurity and FOTA 9
2.1 Cybersecurity Principles and Terms . 9

2.1.1 Encryption Algorithms . 9
2.1.2 Hash Functions . 10
2.1.3 Public Key Infrastructure (PKI) . 10
2.1.4 Digital Signature . 11
2.1.5 Transport Layer Security . 12

2.2 Cybersecurity Threats Related to FOTA . 13
2.2.1 Common Vulnerabilities and Exposures 14
2.2.2 OWASP Internet of Things Project . 15

2.3 Firmware Image Encryption . 15
2.3.1 Importance of Image Encryption . 15
2.3.2 Image Encryption Implementation . 15

2.4 Firmware Integrity . 16
2.4.1 Importance of the Firmware Integrity . 16
2.4.2 Firmware Integrity Implementation . 16

2.5 Server Authentication . 17
2.5.1 Server Authentication using PKI . 17

2.6 Device Authentication . 17

iii

iv Contents

2.6.1 Two-factor Authentication . 18
2.6.2 Other Software Authentication Methods 18
2.6.3 Hardware Authentication . 18

2.7 Hardware Supporting Cryptography . 19
2.7.1 Hardware Acceleration . 19
2.7.2 Key Management . 19

3 Security Features of ESP32 21
3.1 ESP32 platform . 21

3.1.1 ESP32 Hardware Versions . 22
3.1.2 ESP32 Family . 22

3.2 ESP32 Security . 23
3.2.1 eFuse . 24
3.2.2 Hardware Cryptography Feature . 24
3.2.3 Random Number Generator . 25
3.2.4 Secure Boot V2 . 25
3.2.5 Flash Encryption . 26
3.2.6 Firmware Signature Verification . 26
3.2.7 TLS Support . 27
3.2.8 Automatic Rollback . 28
3.2.9 Anti-rollback . 28

3.3 Software Solution for ESP32 . 28
3.3.1 ESP-IDF Features . 28
3.3.2 ESP-TLS Component . 29

4 Practical Part - Secure FOTA on ESP32 31
4.1 Environment and Toolchain . 31

4.1.1 Software Toolchain . 31
4.1.2 Hardware . 32

4.2 Common Part Of The Implementations . 32
4.2.1 High-level Implementation Architecture 32
4.2.2 Periodical Firmware Check . 32
4.2.3 Project Configuration . 33

4.3 Basic Insecure Firmware Over the Air . 34
4.3.1 Implementation . 34
4.3.2 Verification Of The Results . 34

4.4 Secure Firmware Over the Air . 35
4.4.1 Secure File Transfer . 36
4.4.2 Firmware Signing . 37
4.4.3 Encryption Of The Firmware . 38
4.4.4 Verification of the results . 39

5 Summary and Discussion 43
5.1 Results of the Implementation and Tests . 43
5.2 Security Recommendations . 43
5.3 Secure File Transfer . 44
5.4 IoT Device Authentication . 44

6 Conclusion 45

A Web Interface Screenshot and Serial Console Logs 47

Contents of enclosed media 57

List of Figures

1.1 An example of how an IoT system works from collecting data to taking action . . 2
1.2 Firmware structure (bootloader and firmware images) 5

2.1 Signing of PKI certificate . 11
2.2 Digital Signature diagram . 12
2.3 TLS 1.2 and 1.3 handshake . 13

3.1 ESP-WROOM-32 development board . 21
3.2 Architecture of the ESP32-WROOM series . 24
3.3 ESP-IDF Software Components . 29

4.1 High-level implementation architecture . 32
4.2 Life-cycle of the firmware image . 35
4.3 Generating Certification Authority and server keys and certificates 36

A.1 Screenshot of the device web interface . 47
A.2 Serial console log from the device (basic implementation - first part) 48
A.3 Serial console log from the device (basic implementation - second part) 49
A.4 Serial console log from the device (secure implementation - first part) 50
A.5 Serial console log from the device (secure implementation - second part) 51

List of Tables

1.1 Pros and cons of the OTA modes . 7

3.1 Content of the Signature Block . 27

4.1 Cryptographic keys and certificates included in the source code 35

5.1 Summary of the performed tests . 43

v

vi List of code listings

List of code listings

2.1 Snippet of the get tr by url() function . 14
3.1 Remote signing of a firmware image . 27
4.1 Common content of the sdkconfig.defaults . 33
4.2 Common content of the Kconfig.projbuild . 33
4.3 Additional content of sdkconfig.defaults . 34
4.4 Run (insecure) HTTP server . 34
4.5 Example of the incomplete TLS 1.3 implementation in the mbedTLS 36
4.6 Generating CA and server keys and certificates 37
4.7 Generate RSA signing key . 37
4.8 Include the signing key into project configuration 37
4.9 Enable firmware signing in the project configuration 38
4.10 Generating key for the firmware encryption . 38
4.11 Encryption of the firmware . 38
4.12 Run HTTPS server . 39
4.13 Run HTTPS server with only TLS 1.1 supported 40
4.14 Test result with TLS 1.1 enforced by the server (serial console log from the device) 40
4.15 Run HTTPS server with only TLS 1.2 supported 40
4.16 Test result when the server certificate is signed by another certification authority 40
4.17 Test result with the unsigned firmware image . 41
4.18 Test result with a firmware image signed by another key 41
4.19 Test result with a unnencrypted firmware (device console log) 41
4.20 Test result with a firmware encrypted by a wrong RSA key (device console log) . 41

I would like to thank my student colleagues for support, discussions
and help during my studies, my wife for endless patience and under-
standing, my colleagues and manager for encouragement and sup-
port, and my supervisor for the flexibility, advisory and his empathy.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Prague on May 11, 2022 .

viii

Abstract

This bachelor thesis deals with the cybersecurity concerns and vulnerabilities related to the IoT
device Over the Air firmware update.

The analytical part of the thesis describes the firmware update mechanism, the related cy-
bersecurity technologies and the ESP32 platform and its hardware and software cybersecurity
features such as Secure Boot, Anti-rollback, or Flash Encryption.

The thesis describes two versions of the ESP32 firmware. A basic firmware version without
any cybersecurity measures and a firmware version which includes verification of the firmware
integrity, the firmware image encryption and the secure firmware image transfer using the Trans-
port Layer Security (TLS).

The performed tests confirmed that the listed cybersecurity features are supported by the
ESP32 platform. It also confirmed that the TLS 1.2 is fully supported and found that the version
1.3 has only limited support and cannot be used.

The evaluation of the security measures discussed in this thesis helps the IoT community to
choose the proper solutions for the development of the OTA firmware for IoT devices.

The thesis is complemented by the firmware source code implementing the mitigation de-
scribed in it.

Keywords ESP32, over the air, firmware update, IoT security, server authentication, firmware
integrity, IoT device

Abstrakt

Obsahem této bakalářské práce je analýza bezpečnostńıch rizik a zranitelnost́ı souvisej́ıćıch
s Firmware Over the Air aktualizaćı IoT zař́ızeńı.

Analytická část práce popisuje princip aktualizace firmware, souvisej́ıćı bezpečnostńı tech-
nologie a platformu ESP32 včetně jejich bezpečnostńıch prvk̊u jako Secure Boot, Anti-rollback
a šifrováńı paměti flash, pro které platforma poskytuje hardware a software podporu.

Práce popisuje dvě verze firmware pro platformu ESP32. Základńı firmware, který neob-
sahuje žádná bezpečnostńı opatřeńı, a dále verzi, která zahrnuje ověřeńı integrity firmware, jeho
zašifrováńı a zabezpečený přenos nového firmware ze serveru za využit́ı protokolu Transport
Layer Security (TLS).

Provedené testy potvrdily, že navrhovaná bezpečnostńı opatřeńı maj́ı na platformě ESP32
podporu. Dále potvrdily, že protokol TLS verze 1.2 je plně podporován, zat́ımco verze 1.3 je ve
fázi implementace a neńı prozat́ım vhodná k použit́ı v praxi.

Vyhodnoceńı bezpečnostńıch opatřeńı diskutovaných v této práci pomůže IoT komunitě zvolit
správná řešeńı při návrhu a vývoji nových IoT zař́ızeńı.

Př́ılohu práce tvoř́ı zdrojové kódy, v kterých jsou implementovány diskutovaná opatřeńı.

Kĺıčová slova ESP32, over the air, aktualizace firmware, IoT bezpečnost, autentizace serveru,
integrita firmware, IoT zař́ızeńı

ix

Introduction

In the early stage of IoT (Internet of Things) devices’ firmware development the cybersecurity
concerns were usually not considered a very high priority. Nowadays with millions of IoT de-
vices surrounding us and being a part of our daily lives the cybersecurity has become a crucial
requirement for the firmware development. It protects us from turning each of those devices into
an open door for potential attackers. It helps with a prevention of data breach, attackers gaining
access to our private data or attackers gaining control of our devices and computers. Ensuring
the secure firmware update has become one of the key aspects for the IoT devices’ development.

The thesis is focused on the two main topics: to define and summarize general suggestions for
the secure firmware over the air update principles, which will be beneficial for a wide community
and for the firmware development of the IoT devices. Secondly the thesis will provide an example
of an implementation of those principles on the ESP32 platform and therefore will become the
source of inspiration for the community leveraging the ESP32 platform.

The choice of the topic for the bachelor thesis was inspired by the importance of the IoT
and related issues in general and their importance in everyone’s life. Furthermore the author has
passion for embedded devices, which is his original background and experience. Most importantly
the topic can be beneficial for both commercial and hobby IoT application developers building
IoT devices.

The thesis provides an introduction to the cybersecurity topics, describes the firmware over
the air update principle and provides an overview of the ESP32 and its security features. The
practical part of the thesis explains a proof of concept firmware application.

This bachelor thesis is a follow up of the diploma thesis Security of IoT Devices Based on
ESP32 authored at Faculty of Informatics by Bc. Michal Vácha in February 13, 2020, which
describes the general cybersecurity concerns of IoT devices and how they are addressed on the
ESP32 platform. The thesis is focused on the over the air firmware update part of the previous
thesis and related cybersecurity concerns. The thesis proposes mitigation of those concerns
independently of the platform as well as addressing those concerns on the ESP32 platform.

x

Goal

The first goal of the theoretical part is to describe mechanism of the IoT (Internet of Things)
device Firmware Over The Air (FOTA) update. The second goal is to describe terms and
technologies used for the FOTA update of IoT devices. The third goal is to analyse threats related
to the FOTA update of IoT devices. The fourth goal is to analyse remote server authentication
options and the IoT device authenticity verification. The fourth goal is to analyse the possibility
to upgrade the authentication process in the future. The last goal is to describe security features
of the ESP32 platform.

The main goal of the practical part is to create an ESP32 application that will securely down-
load and apply a new firmware from a remote server. Related goal is to verify the authenticity
of both the server and the firmware as well as the integrity of the firmware. The last goal is to
test and evaluate the result in terms of the cybersecurity.

xi

Acronyms

2FA Two-Factor Authentication
3-DES Tripple Data Encryption Standard

AES Advanced Encryption Standard
AIoT Artificial Intelligence of Things

ALPN Negotiation Application-Layer Protocol Negotiation (extension of TLS)
AMQP Advanced Message Queuing Protocol

API Application Programming Interface
Bluetooth (LE) Bluetooth Low Energy

CA Certification Authority
CISA Cybersecurity and Infrastructure Security Agency

CLI Command Line Interface
CN Common Name

CoAP Constrained Application Protocol
CRC Cyclic Redundancy Check
CSR Certificate Signing Request
CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System
DDS Data Distribution Service

ECDSA Elliptic Curve Digital Signature Algorithm
ESP Espressif

ESP-IDF Espressif Integrated Development Framework
FOTA Firmware Over The Air
FQDN Fully Qualified Domain Name

FTP File Transfer Protocol
GCM Galois/Counter Mode
GPIO General Purpose Input Output

HMAC Hash-based Message Authentication Code
HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure
IIoT Industrial Internet of Things

IoMT Internet of Military Things
IoT Internet of Things
IP Internet Protocol

IPEX miniature surface-mount coaxial connectors
M2M Machine to Machine
MCU Microcontroller Unit
MD5 Message Digest

MQTT Message Queuing Telemetry Transport
NIST National Institute of Standards and Technology
NVD National Vulnerability Database
NVS Non-Volatile Storage
OTA Over The Air
PCB Printed Circuit Board
PKI Public Key Infrastructure

xii

xiii

PSRAM Psuedostatic Random Access Memory
RF Balun Radio Frequency Balun (transformer between balanced and unbalanced)

RFC Request for Comments
RISC Reduced Instruction Set Computer
RNG Random Number Generator
RoT Root of Trust
RSA Cipher developed by Rivest, Shamir, Adleman

RSA-PSS RSA Probabilistic Signature Scheme
SHA Secure Hash Algorithm
SNI Server Name Indication

SNOW Word-based Synchronous Stream Ciphers
SoC System on Chip

SPIRAM Serial Peripheral Interface Random Access Memory
SRAM Static Random Access Memory

SSL Secure Sockets Layer
TEE Trusted Environment Execution
TLS Transport Layer Security

UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus

Chapter 1

Internet of Things and Firmware
Update

This chapter describes the basic information and principles of the Internet of Things (IoT). It
gives example of IoT devices and explains what is firmware update and its importance.

1.1 Definition of IoT

Alexander S. Gillis in his article ”What is the internet of things (IoT)?” defines the Internet of
Things as a ”system of interrelated computing devices, mechanical and digital machines, objects,
animals or people that are provided with unique identifiers and the ability to transfer data over
a network without requiring human-to-human or human-to-computer interaction”. [1]

1.2 How Does IoT Work?
The IoT solutions typically consist of multiple devices collecting data. These devices are often
directly accessible locally for a purpose of installation, configuration, firmware updates or to
read a status and measures of the device. The devices can integrate into a bigger infrastructure
with a cloud1 solutions, which provide users comprehensive overview of all the data received
from a single device or multiple devices. The cloud application can also provide more complex
analysis of the data. It can compare or merge the data from multiple devices. [1]

In some applications it is convenient to use a gateway2, which can pre-process data from
multiple devices and send them merged or consolidated to the cloud. This solution can be
beneficial to reduce the amount of the data sent to the cloud or to connect the gateway to the
devices locally using a low-consumption technology, which prolongs the life-time of the battery
in the device and reduces the manufacturing costs of the IoT devices.

An example of how IoT system works is shown in the figure 1.1.

1.3 Examples of IoT Applications
There are many types of IoT applications based on their usage. These are some of the most
common ones:

1Cloud or Cloud Computing can host services such as storage, email or document and data processing. [2]
2A device used to connect two different networks, especially a connection to the internet.

1

2 Internet of Things and Firmware Update

IoT device
(e.g., senzor)

Collect data Collate and
transfer data

Analyze data,
take action

IoT hub or
IoT gateway

User interface (e.g.,
smartphone,

human-machine

IoT device
(e.g., antenna)

IoT device (e.g.,
microcontroller)

Analytics of
business

application
(e.g., customer

relationship
management, ERP)

Back-end
systems

Figure 1.1 An example of how an IoT system works from collecting data to taking action [1]

Consumer IoT for our everyday use (home appliances, voice assistance, and light fixtures),

Commercial IoT used in the healthcare and transport industries (smart pacemakers and mon-
itoring systems),

Military Things (IoMT) used for the application of IoT technologies in the military field
(surveillance robots and human-wearable biometrics for combat),

Industrial Internet of Things (IIoT) used with industrial applications, such as in the man-
ufacturing and energy sectors (Digital control systems, smart agriculture and industrial big
data),

Infrastructure IoT used for connectivity in smart cities (infrastructure sensors and manage-
ment systems). [3]

1.4 Connecting IoT Devices

The IoT devices can be connected via several different physical protocols. Although ethernet
connection via cable is in many cases possible, most of the today IoT devices are connected via
one of the wireless technologies (especially when the device is portable). To transfer the data
on the physical layer, there are multiple standard data protocols defined for the link/application
layer. [4]

Over the Air Firmware Update 3

1.4.1 IoT Data Protocols
IoT data protocols are used to connect low-power IoT devices. The connectivity in the IoT data
protocols and standards is done through a wired or cellular network. Some examples of the IoT
data protocols are:

MQTT (Message Queuing Telemetry Transport),

CoAP (Constrained Application Protocol),

AMQP (Advanced Message Queuing Protocol),

DDS (Data Distribution Service),

HTTP (HyperText Transfer Protocol),

WebSocket. [4]

1.4.2 IoT Network Protocols
IoT network protocols are used to connect devices over a network, typically used over the internet.
Here are some examples of various IoT network protocols:

Wifi,

Bluetooth,

ZigBee,

Z-Wave,

LoRaWan. [4]

1.5 Over the Air Firmware Update
This sections describes what is the firmware update in general and introduces some of the best
practices used to upgrade the firmware. It also describes the basic Over The Air update performed
locally on one device and variants of the centralized firmware update, when the user wants to
update multiple devices at the same time without the need to connect directly to each of the
devices.

1.5.1 Device Firmware
The following text describes the definition of the firmware and information which is common to
all the variants of the firmware update.

1.5.1.1 Firmware Definition
Firmware is a type of software. Compared to any other software people use in their computers
(games, internet browser, email client, calculator, . . .) the firmware runs directly on a dedicated
piece of hardware (typically a small device with a simple and specific purpose). [5]

The firmware is usually linked to the embedded system or embedded device terms. ”An em-
bedded system is a stand alone, intelligent system dedicated to running a set of tasks from the
moment it is powered on.” These devices are usually connected to a variety of sensors to process
various inputs and to a multiple outputs to provide a control or show a status. [6]

4 Internet of Things and Firmware Update

A washing machine is one of many examples where the embedded device and the firmware
are used. The firmware collects various inputs (water level, desired washing program, length of
washing or speed of drying), it constantly processes all the mentioned inputs and based on the
values received it controls the outputs (displays remaining time, tells the motor how fast and
when to rotate, locks the door of the machine, and many more). [6]

Embedded devices surround us everywhere and they have become inseparable part of ev-
eryone’s life. Examples of the embedded devices are: keyboard, wireless printer, smart power
socket, smart bulb, remote control, smart TV, elevator control, wrist watch, auto-adjusting lights
in a car, bike speedometer and many others.

1.5.1.2 Firmware Life-cycle
Firmware is always uploaded into a device during the manufacturing process. The firmware
which is installed on a device should be updated by a newer version of the firmware regularly
depending on a use case (and therefore complexity of the firmware). In some cases the updates
are necessary every few weeks, in other cases only once a year or never. The life-cycle of the
device can be long. After the device is manufactured it can be stored for several months in
a stock and at the time when it is being commissioned by the customer, there are very likely
newer versions of the firmware already available and the firmware needs to be updated. [7]

1.5.1.3 Firmware Update Need
There are three main triggers for a new version of the firmware to be developed and updated to
a device:

addition of a new features (requested by the customers, suggested by the manufacturer or
enforced by a new standards),

fixing a cybersecurity vulnerability3,

fixing a bug4 found after the firmware has been released to the public. [7]

1.5.1.4 Firmware Structure
Performing the firmware update should not require a trained person and it needs to be done
quickly and reliably. At every step of the update process there must be a safety mechanisms to
allow a recovery with no or minimal intervention from the end user.

The firmware to be launched on the device is loaded from a flash5 into the a Random Access
Memory (RAM)6 during the start up of the device. The program is then executed from the
RAM and therefore the new firmware can be written into the flash instead of the original one.
This would be a very risky step in case that the new firmware contains an issue or the device is
restarted during the update process and it is very probable that the device would not be able to
recover from this state. [8]

The solution to prevent this situation is keeping at least two versions of the firmware in the
device – the active one and the one which is getting uploaded. Most of the embedded devices
contain a bootloader, which is typically a small read-only program located in the flash, which
is executed as first after the device start up. Bootloader decides which of the two firmware
images in the flash should be launched as illustrated in the figure 1.2. After the firmware update
is completed, the update mechanism will switch the configuration flag so that during the next
startup the bootloader runs the new version of the firmware. [8]

3A flaw in a system related to the internet and network security.
4Malfunction of the firmware or its unexpected behavior.
5Non-volitile permanent storage.
6Volatile memory, which contains random date in case of device reboot.

Over the Air Firmware Update 5

Image 0 Image 1

Boot config
image: 0

Boot loader

Figure 1.2 Firmware structure (bootloader and firmware images) [8].

Depending on the size of the firmware images and the size of the memory on the device, more
then two partitions can be used. There is also an option to use a factory default firmware, which
is never overwritten by the update. The usage of this partition can be used either when by a user
decides to restore the factory default settings and behavior or as an automatic roll-back option
in case that the firmware update fails and there are no other valid partitions present.

1.5.2 Local Firmware Update
Based on the author’s experience, there are multiple ways how to update the device firmware.
Some of the options are used mainly during the development phase of the firmware – prior the
release is provided to the users. The other means are common for the development phase and
can be also used by end users. And lastly there are means which are mainly used by the users.
Some of the local firmware options are:

JTAG is a programming and debugging device connected via USB to the programmers com-
puter. It is a mean which is only used by the developers while working actively on the new
firmware development. It is never used by the end users. The JTAG connects directly to the
pins of the microcontroller. [9]

Serial Line is previously RS232 a nowadays USB cable connection, which is used for the upload
of the firmware to the device mainly by the developers. In the past this was one of the most
common way to perform the firmware update also by the users. The same serial connection
is typically used also for the logging of the device messages (such as errors, warnings or
informative) or even to configure the device.

USB Stick or SD Card has benefit, that user when performing the update, doesn’t need to
have computer connected to the device. There is also no need to connect any special devices or

6 Internet of Things and Firmware Update

tools or install any related software on the computer to perform the update. Files downloaded
from the internet are copied to the USB/SD card, which is then inserted to the device and
the device will perform the update typically while it’s restarted.

Both the serial connection and USB/SD card options can be used as a recovery solution
performed by a user in case that a remote update described in the next sections fails and the
device becomes inaccessible remotely.

1.5.3 Remote Firmware Update
In this section, we assume that the device is connected to a network and accessible from a
computer via the HTTP, SSH or FTP protocol.

Comparing to the section 1.5.2 the mechanism is very similar. The main difference is that the
firmware file is transferred to the device via the network connection using one of the following
protocols:

HTTP request will make the device receive the firmware file and the device will then perform
the needed actions to parse and apply the new firmware and will typically restart the device
automatically,

File Transfer such as via FTP protocol or similar can be used to send a new firmware file to
the device and the update mechanism can be launched by other action (automatic or for
example by user connecting to the device via the HTTP or SSH and running a script to start
the update itself).

The firmware can be either fully updated or only partially updated. In the IoT environment,
partial updates should be possible in particular for the IoT devices that do not have enough
capabilities. This option would decrease the bandwidth consumption and on-device processing
time since less code is downloaded and processed. It would also reduce the total update time and
make it easier to update even an isolated and rarely awake devices when the update is properly
scheduled. [10]

1.5.4 Centralized Firmware Update
The firmware update can be performed remotely without a user directly connecting to the IoT
device (Push Mode). The update can also be triggered by the device and download the firmware
from the mentioned centralized storage (Pull Mode). Some implementations combine the two
modes to have more flexibility for updating different types of IoT devices. [10]

Pull Mode ”is practical for capable devices, such as gateways, that can manage other devices
and has the support of a wide range of communication protocol stacks. Moreover, they are
most likely always powered and directly connected to the Internet. It is a client-initiated mode,
where the client queries the update server for new updates periodically, and when an update
is available the client downloads, verifies and then installs the new firmware. In this case,
the remote firmware server sends either a URI of the firmware image repository via a data
structure or directly the new firmware image binary.” [10]

Push Mode ”is mainly applicable for resource-constrained IoT devices with limited protocol
stack support. It can also be seen as a server-initiated mode, where the update server pushes
the updates to the client when there is a new patch available. The same procedure of down-
loading, verifying and installing the new image is then launched.” [10]

There are multiple options to deploy centralized firmware update. Either via in house created
solution with the servers deployed in the company infrastructure or in a public cloud. An alter-
native is to use cloud solutions offered for example by Microsoft, Amazon or Google providers.

Over the Air Firmware Update 7

Table 1.1 Pros and cons of the OTA modes [10]

Mode Strength Weaknesses

Push Efficient for small-sized
updates.

Allows automatic scheduling
for pushing updates when
there is a zero-day for instance
or a new version.

Several IoT devices (e.g. from
the same brand and version)
could be updated in a con-
trolled manner.

IoT devices must be registered into the up-
date server and must be uniquely identified.

For security concerns, a secure channel must
be established, which is not simple for con-
strained IoT devices.

The scheduling of the updates is not also easy
to keep the availability of all the devices and
additionally real-time can be an issue for the
last-scheduled devices.

The firmware server needs to securely store
and remember all the IoT devices.

Spike of update transmission and load in
the firmware server, which is caused by in
case of a tight scheduling of FoTA update
for each IoT device (or with the correspond-
ing gateways) with the corresponding secure
channels.

Pull A good alternative when a
gateway is deployed.

Each gateway can schedule the
locally managed network.

Pull is not done in real-time, which can be
an issue for urgent updates.

A significant scale of pull may apply a signif-
icant resource consumption on the firmware
server side.

Chapter 2

Cybersecurity and FOTA

This chapter describes the known threats related to the IoT devices and FOTA. It also explains
the security mechanisms, that can be used to mitigate the threats. Some the mechanisms are
described in the following sections.

2.1 Cybersecurity Principles and Terms
This section describes the cybersecurity terms and common practices used in the computer and
IoT security.

2.1.1 Encryption Algorithms
Encryption is a way of scrambling data so that only authorized parties can understand the
information. Encryption takes readable data and alters it so that it appears random. It requires
use of a cryptographic key or key-pair which the sender and the recipient of an encrypted message
use to encrypt and decrypt the text, while anyone else is unable to decrypt the content. [11]

The two main kinds of encryption are symmetric and asymmetric encryption:
Symmetric encryption only uses one key and all communicating parties use the same (secret)

key for both encryption and decryption.

Asymmetric encryption is also known as the public key encryption. It uses a pair of keys
(public and private). One key is used for encryption, and a different key is used for decryption.
The decryption key is kept private, while the encryption key is shared publicly, for anyone to
use. Asymmetric encryption is a foundational technology for Transport Layer Security (TLS)
often called as Secure Socket Layer (SSL) which is a predecessor of TLS. [11]
An encryption algorithm is the method used to transform data into ciphertext and back.

Commonly used algorithms for symmetric encryption are:
AES,

3-DES,

SNOW,
commonly used algorithms for asymmetric encryption:

RSA,

Elliptic curve cryptography. [11]

9

10 Cybersecurity and FOTA

2.1.2 Hash Functions
Hash is a tool used in cryptographic to securely store passwords in databases to ensure data
integrity, and to make secure authentication possible. [12]

Hash function is defined as a unique identifier for a given content. It can also convert a plain-
text on the input into a unique cipher text of a specific length. It is a one-way cryptographic
algorithm, which means that thre is no possibility to convert the cipher text back to the original
plaintext. The output of the hash function is called hash digest, hash value or hash code. Strong
hash algorithm should have the following properties:

determinism ensures that the same input we will always result in the same hash on the output,

pre-image resistance makes it impossible to reverse the hash back into the original plaintext,

collision resistance ensures that every hash is matching only one original plaintext (the other
words two different plaintexts on the input will never result into the same hash),

avalanche effect means that minor input text change will result in a completely different hash,

hash speed says that the calculation of the hash should be done in a reasonable time. [12]

One of the use cases for the hash is to ensure the data integrity. A simple example is to create
the hash of a file, which is stored on the internet and which user downloads to their computer.
In case that the owner of the file created and attached also hash for this file, the user can then
calculate the hash of the file after it’s downloaded and compare it to the hash created by the file
author. In case that the hash is different it means that either content of the file has changed or
is corrupted or less likely case, that the downloaded hash code was not downloaded correctly. In
case that the file will be modified by its owner they will also have to generate a new hash. [12]

Commonly used hash functions are:

MD5 (deprecated),

SHA1 (deprecated),

SHA2 (SHA-224, SHA-256 - most common, SHA-384, SHA-512),

SHA3 (SHA3-224, SHA3-256, SHA3-384, SHA3-512). [12]

2.1.3 Public Key Infrastructure (PKI)
PKI is based on the public-private key pair mentioned in the section 1.2. PKI is the basic
authentication and identity verification process used for secure communication (for example
with the internet websites), for document signing and many other applications where security is
involved. The public key is a very long sequence of numbers, which is embedded into a certificate.
[13]

The certificate (referred to as X.509 certificate) contains private key mentioned in the previous
chapter as well as many other information. The certificate is assigned to one entity, which wants
to use the PKI-secured communication. It also includes information about it’s authenticity. To
obtain the trusted certificate it must be issued by a trusted source called Certification Authority
(CA). The certification authority is an entity, which is generally trusted. If anyone wants the CA
to issue the certificate, it will require them to proof their identity and provide their public key
to be included in the certificate. The CA will then sign(explained in 2.1.4 the new certificate.
The certificate which is to be signed is passed to the CA via Certificate Signing Request (CSR)
as illustrated in 2.1. [13]

When using the PKI to establish secure communication, the client/user/device will get the
certificate of the server and will verify its authenticity using the trusted signature by the CA.

Cybersecurity Principles and Terms 11

Figure 2.1 Signing of PKI certificate [14]

The root CA might issue so-called intermediate certificate, which is used to sign the applicant’s
certificate. In this case the client must validate the complete chain of trust to make sure all the
certificates used are trusted and authentic. [13]

For the test purpose developers often use self-signed certificate. That means, that the devel-
oper will create a Certification Authority locally (on their computer or withing their network)
and will use this CA to sign their certificates. Such a certificate will appear as a signed one,
but if the CA certificate itself isn’t signed by a trusted authority, then the self-signed certificate
should neither be trusted.

2.1.4 Digital Signature
The figure 2.2 illustrates the process of signing data by the author of the data and verification
of the authenticity and integrity of the data by the consumer.

The signing process will firstly calculate hash of the data, which is then encrypted by the
private key of the server. Because the key is private no-one else should be able to modify the
data and them sign them using the same key. The signed hash is published together with the
certificate of the author (which contains the public key of the author). [15]

In this example, the data themselves are not encrypted, but the signing process is in place to
ensure that no-one has modified the data during the download and that they were not corrupted.
It means that anyone can read the content of the data unless it is encrypted before or after the
signing.

To verify the integrity and authenticity of the data anyone can calculate the hash of the data.
As the certificate contains the public key, it means that anyone can decrypt the hash, which
has been sent together with the data. The last step of this process is to compare the calculated
hash against the decrypted hash received from the author. If they are equal then the data are
considered valid and authentic. If any part of the data or the encrypted hash were corrupted or
modified during the transfer the final comparison would fail. [15]

Digital signature can be used to sign email, document, bank transaction and also electronic
certificates by the certification authority.

12 Cybersecurity and FOTA

Figure 2.2 Digital Signature diagram [16]

Data

Hash
function 101100110101

Hash

Encrypt hash
using signer's
private key

111101101110

SignatureCertificate

Attach
to data

Digitally signed data

Digitally signed data

Data

Hash
function

101100110101

Hash

111101101110

Signature

Decrypt
using signer's

public key

101100110101

Hash

?

If the hashes are equal, the signature is valid.

Signing Verification

2.1.5 Transport Layer Security
”Transport Layer Security (TLS) is one of the most important and widely used security protocols.
It protects a significant proportion of the data that gets transmitted online. It’s most prominently
used to secure the data that travels between a web browser and website via HTTPS, but it can
also be used to secure email and a host of other protocols.” [17]

TLS is a successor of the previous Secure Sockets Layer (SSL) protocol and even today these
terms are being used interchangeably. Like its predecessor it is valuable because it ensures
authenticity of the other party, helps with the data integrity and provides confidentiality to the
data transferred. TLS is used to secure many network protocols such as HTTP, SMTP, FTP,
XMPP or NNTP. [17]

The first version of the TLS was introduced in 1999 in the RFC 2246 document. The most
recent version of TLS (1.3) was introduced in 2018. Since 2019 the protocol went through multiple
improvements such as adding of a new cryptographic ciphers1 or removal of the ciphers, which
have been proven weak or obsolete and also changes to the utilization of the hash functions. [17]

The main part of the TLS protocol is called record protocol, which is the underlying proto-
col for all further steps. The record protocol contains five separate sub-protocols (Handshake,
Application, Alert, Change CIpher Spec and Heartbeat). [17]

The TLS 1.2 handshake protocol is used to establish the connection between the entities in
a secure way.

1Cipher is an algorithm for performing the encryption or decryption.

Cybersecurity Threats Related to FOTA 13

There are three sub-types of the handshake:

basic handshake uses a sequence described in the diagram 2.3. It only authenticates the server
but not the client. In the hello messages the server and the client agree on the cipher suite
and compression to be used. In the next step the server sends its certificate for the server
authentication. Lastly the server and the client will agree on a common secret (typically using
Diffie-Hellman key exchanges) which will be used for the further encrypted communication.

Client-authenticated handshake also verifies the client authenticity,

abbreviated handshake can restart the communication between the server and client using
previously agreed common secret and parameters. [17]

Figure 2.3 TLS 1.2 and 1.3 handshake [18]

The transferred data are encrypted using a symmetric encryption algorithm (for example
AES) and the data are signed using authentication algorithms based on hash (for example
HMAC-MD5, HMAC-SHA2 and others). [17]

The newest version TLS 1.3 (introduced in August 2018) is becoming dominant in the IT
environments. It’s main advantages are simplified handshake protocol (Client Hello message
assumes that the server will accept the suggested key exchange parameters) and it supports less
cipher suites, which makes it more straightforward to use. [17]

2.2 Cybersecurity Threats Related to FOTA

This section speaks about cybersecurity threats related to the firmware over the air update. It
also shows examples of the FOTA related vulnerabilities.

14 Cybersecurity and FOTA

2.2.1 Common Vulnerabilities and Exposures
This term is more known as a CVE. It is a list of publicly disclosed computer security flaws.
Most of the public vulnerabilities are tracked by Mitre corporation2 with support from the Cy-
bersecurity and Infrastructure Security Agency (CISA) being part of the U.S. Department of
Homeland Security. CVEs can also be found in other databases such as National Vulnerability
Database (NVD) maintained by the National Institute of Standards and Technology (NIST).
The purpose of CVEs is to help professionals coordinate their efforts to prioritize and address
these vulnerabilities. [19]

Each CVE is given a unique ID and every year researchers, users and vendors submit thou-
sands of new CVEs. To rate and prioritize the CVEs the Common Vulnerability Scoring System
(CVSS) has been established to rate the CVE from 0.0 to 10.0 based on several criteria such as
impact or probability of the flaw. The CVE ID has the following format: ”CVE-year-number”
(for example CVE-2021-22909). [19]

2.2.1.1 CVE-2021-22909 – Ubiquiti Firmware Update Bug
In February 2021, Ubiquiti released a new firmware update, to fix the CVE-2021-22909. The
vulnerability described in this CVE is about a vulnerability in the firmware update procedure
itself allowing a man-in-the-middle attacker to execute a code as the root on the device by
replacing the official firmware by a malicious firmware created by the attacker. This CVE has
been rated 7.5 (high). [20]

The devices created by the Ubiquiti allow user to log in via Command Line Interface (CLI)
providing limited access to the device. One of the commands is used to trigger the remote update.
The script will check the availability of a new firmware on the server. If there is a new firmware
image available, the device will download it and perform the actual firmware update. [20]

The developers have used parameter -k when performing the curl operation, which disables the
certificate verification for the TLS connections. That means the attacker can create a malicious
firmware, upload it to his server and redirect the firmware update request to his server which
might use a self-signed certificate. [20]

Code listing 2.1 Snippet of the get tr by url() function [20]

get_tar_by_url ()
{

mkdir $TMP_DIR
if [" $NOPROMPT " -eq 0]; then

echo " Trying to get upgrade file from $TAR"
fi

if [-n " $USERNAME "]; then
auth="-u $USERNAME : $PASSWORD "

else
auth=""

fi

filename ="${ TMP_DIR }/${TAR ##*/}"
if [" $NOPROMPT " -eq 0]; then

curl -k $auth -f -L -o $filename $TAR # <-----
else

curl -k $auth -f -s -L -o $filename $TAR # <-----
fi

2https://cve.mitre.org

Firmware Image Encryption 15

2.2.2 OWASP Internet of Things Project
The Open Web Application Security Project (OWASP) is a nonprofit foundation that works on
improving the security of a software. Through the community-led open-source software projects,
hundreds of local chapters worldwide, tens of thousands of members, and leading educational
and training conferences, the OWASP Foundation is the source for developers and technologists
to secure the web.

Owasp has dedicated suggestion for the IoT devices and selected Top 10 most common vul-
nerabilities and weaknesses in the IoT devices defined in 2018 and most of them relate to the
firmware update itself. Sorted by the priority:

1. Weak Guessable, or Hard-coded Passwords

2. Insecure Network Services

3. Insecure Ecosystem Interfaces

4. Lack of Secure Update Mechanism

5. Use of Insecure or Outdated Components

6. Insufficient Privacy Protection

7. Insecure Data Transfer and Storage

8. Lack of Device Management

9. Insecure Default Settings

10. Lack of Physical Hardening [21]

2.3 Firmware Image Encryption
This section describes what the firmware image encryption is, how it increases the security of
the FOTA update and how it can be implemented into the IoT Device and integrated to the new
firmware release process.

2.3.1 Importance of Image Encryption
Encrypting firmware image, rather than sending it as a plain-text, improves the protection of the
image confidentiality and intellectual property. Performing the device update without encryption
increases risk of the firmware source code exposure. This could allow an attacker to subvert other
protections in the device through reverse engineering thus allowing all similar devices in the field
to become exploited. Alternatively a competitor could extract valuable algorithms or techniques
in the software and use them to their advantage. [22]

The encryption of the firmware image before its transmission and then decryption of the
image after it is downloaded to the device can reduce the risk of exposure during the transmission
regardless of the communications paths of the image. [22]

2.3.2 Image Encryption Implementation
The image encryption is handled in the application layer of the ISO-OSI model3. [22]

3https://www.itu.int/rec/T-REC-X.200-199407-I/en

16 Cybersecurity and FOTA

In a resource restricted environment it should be considered to use a Lightweight Encryption4

described by the NIST in their report. [22]
Further security measures should be considered such as making sure the firmware image

cannot be obtained by a physical attack on the device during or after the firmware update.
These measures are described in the section 2.7. [22]

It is also suggested to use a secure data transfer (for example TLS) as a secondary level of
the encryption to further mitigate the risk of exposure while the encrypted update deliverable
is being distributed to the device. The communications path encryption only prevents exposure
over the communications path. Any intermediate holding locations may result into exposure of
the information. [22]

2.4 Firmware Integrity
This section describes what is the firmware integrity, why the integrity verification should be
part of the firmware update process and describes the existing mechanisms to implement it.

2.4.1 Importance of the Firmware Integrity
The integrity check is commonly used mechanism to validate, that the data transferred or down-
loaded are complete and not corrupted (for example when downloading a file form a network
shared drive or a web page).

Without integrity check, there is no way of verifying what the device received is what it was
supposed to receive. Changing the code on the device could lead to any number of deviations
from the intended functionality including preventing expected operations, adding new, undesired
functions, changing how the data flow from the machine, or weaponizing the device to attack
any other targets. [22]

Traditionally the file integrity can be achieved by usage of non-cryptographic hash functions
such as a Cyclic Redundancy Check (CRC) or the checksum. The non-cryptographic hashes can
validate the integrity against naturally occurring corruption of the payload, but can be easily
subverted by bad actors. [22]

A more common mean of the integrity check is the use of cryptographic hash function to
ensure the firmware file integrity, including undetected intentional modification by a bad actor
as well as its authenticity (discussed in the next chapters). Even the cryptographic hash or
other functions might fail to completely mitigate the risks. For the older, weaker hash functions,
an attacker with a sufficient motivation and resources could generate a malicious update that
generated the same hash as the legitimate update. [22]

2.4.2 Firmware Integrity Implementation
The suggested practice to ensure the firmware integrity is using the cryptographic signature of
the firmware image. Its benefit is that it performs data integrity check and in case that the
public key used for the firmware signing is only used within the secure build environment and
not available publicly it can be considered as server authenticity verification.

Based on the NIST, the acceptable key lengths for the signing are 2048 bit for RSA and 224
bit for ECDSA, and acceptable hash functions are the SHA-2 family or newer. Eight other, less
computationally intensive, algorithms exist (e.g. hashing functions like MD5, SHA-1, etc.) but
have been found to be susceptible to various forms of attacks. [22]

The firmware integrity can be verified in a multiple steps. The first verification can be done
when the firmware image is being downloaded from the remote server to the device. The firmware

4https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

Server Authentication 17

update process usually requires restart of the device and in case that the firmware image in-
tegrity check fails, the device will not reboot and will continue running the current version of
the firmware. Secondly the firmware integrity can be verified during the boot sequence of the
processor by the bootloader. In case that the verification fails, the device will launch previous
firmware (the previously downloaded firmware via the OTA or even the factory firmware which
was uploaded during the manufacturing process. [23]

2.5 Server Authentication
This section describes how the firmware update server authentication can be done and why it is
crucial for the FOTA.

The authentication of the update server and verification of its identity is important step of
the FOTA to ensure that the server is trusted and known by the device. If this step is not
performed as part of the update process then the device could connect to a non-trusted server
and download an image created by the attacker. Just like the other potential risks this could
result into the attacker gaining control of our device and use it for further attacks.

There are multiple tools to verify the server authenticity:

X.509 certificates are probably the most common way for the authentication (more details in
2.5.1) and is part of the TLS negotiation,

Trusted Platform Module (TPM) is a hardware platform which can be used to store X.509
certificates (more details in 2.6.3.2),

Symmetric Key is known to both server and device, it is easy to establish, but it is less secure
than X.509 and is not considered best practice,

Shared Symmetric Key between multiple devices should never be used. In case of loosing
control of one device, attacker has access to all the others. [24]

2.5.1 Server Authentication using PKI
The CA root certificate or intermediate certificate must be present in the device to verify the
authenticity of the server. It can be uploaded as a part of the firmware or independently. It
is typically uploaded during the manufacturing process or during the the device commissioning.
[18]

The certificate always has a limited validity (in case of IoT devices it’s typically 10 years).
After this time (or earlier in case that the certificate is invalidated) the device needs to obtain
a new certificate. It is a good practice to have multiple CA certificates present in the device in
parallel to ensure the smooth transition from the old certificate to the new one. In case that the
certificate is not updated on time and it expired, the device would lose the possibility to connect
to the server and other devices and will require more complex solution (for example a physical
connection to the device). [24]

An alternative solution to the complete certificate being stored in the device is to store just
a thumbprint (hash) of the certificate to verify it. [24]

2.6 Device Authentication
There are multiple IoT authentication methods, including the digital certificates or the two-factor
authentication and also hardware options such as hardware Root of Trust or Trusted Platform
Module.

18 Cybersecurity and FOTA

2.6.1 Two-factor Authentication
The two-factor authentication (2FA) method used to access websites works also for IoT devices.
For the machine to machine (M2M) communication the 2FA requires a specific Bluetooth beacon
or a near-field communication dongle in the requesting device that the remote server can use to
ensure the authenticity of the device. [25]

2.6.2 Other Software Authentication Methods
”Depending on the IoT device and its network role, IT admins can use other software authenti-
cation methods such as digital certificates, organization-based access control and distributed au-
thentication through the Message Queuing Telemetry Transport (MQTT) protocol. The MQTT
connects the IoT device to a broker – a server that stores digital identities or certificates – to
verify its identity and grant the access. Many manufacturers and vendors adopt the protocol
because it’s scalable to monitor thousands of IoT devices.” [25]

2.6.3 Hardware Authentication
Hardware-based authentication methods, such as the hardware Root of Trust (RoT) and the
Trusted Execution Environment (TEE), have become industry standards to secure IoT devices.

2.6.3.1 Hardware Root of Trust
RoT security model is a separate computing engine that manages devices’ trusted cryptographic
processors. This model finds application mainly in the IoT domain. This helps to protect the
device from being hacked and keeps it locked onto the relevant network. The hardware RoT
protects the devices from the hardware tampering and automates the reporting of unauthorized
activity. [25]

Ideal implementation is used for devices, that transmit a high-value data such as financial or
health, devices in remote locations and devices in public areas. [25]

2.6.3.2 Trusted Platform Module
”Another hardware authentication method is Trusted Platform Module (TPM), a specialized IoT
device chip that stores host-specific encryption keys for hardware authentication. Within the
chip, software can’t access authentication keys, which makes them safe from digital hacks. When
the device tries to connect to the network, the chip sends the appropriate keys and the network
attempts to match them to known keys. If they match and have not been modified, the network
grants access. If they don’t match, the device locks and the network sends notifications to the
appropriate monitoring software.” [25]

Ideal implementation is used for devices connecting to a single server or other devices within
the network. [25]

2.6.3.3 Trusted Execution Environment
”The TEE authentication method isolates authentication data from the rest of the IoT device’s
main processor through higher level encryption. The method runs parallel to the device’s OS
and any other hardware or software on it. IT admins find the TEE authentication method ideal
for IoT devices because it puts no additional strain on the device’s speed, computing power or
memory.” [25]

Hardware Supporting Cryptography 19

Ideal implementation is used for devices, that transmit a high-value data, devices which have
less powerful CPUs and smaller memory caches and for the IoT gateways and other sensitive
devices requiring higher security protection. [25]

2.7 Hardware Supporting Cryptography
This section describes hardware solutions allowing a simple implementation of the cryptographic
mechanism and algorithms. The previous section 2.6.3 already described the hardware solutions
that can be used for the authentication of the IoT devices.

2.7.1 Hardware Acceleration
The cryptographic functions discussed in this thesis (including the decryption, hashes such as
SHA1 / SHA256 / HMAC, and also the Random Number Generation (RNG), Physically Unique
Function (PUF) and the Secure Boot) are slow and consume significant amounts of the CPU
power when implemented solely in a firmware. The hardware acceleration offers orders of mag-
nitude differences in performance, as well as very large savings in the RAM and program space
utilization. Most of the modern CPUs offer these cryptographic capabilities without a signif-
icant cost increases. These hardware accelerated cryptographic functions are compatible with
the results of the software based cryptographic functions. They can be used interchangeably in
the device firmware. Whenever possible the hardware accelerated functions should be used in
preference to the software-based operations. [22]

2.7.2 Key Management
Most of the cryptographic principles rely on a “shared secrets” such as cryptographic encryption
keys. These keys should be ephemeral5 and unique to the target device to mitigate the risk that
any additional devices could be attacked if one device’s keys are exposed. [22]

Ideally these keys are created / exchanged and stored in the device in “secured nonvolatile
memory” in a manner that should protect these keys from exposure. To mitigate the risk of key
exposure a proper key management techniques should be followed. [22]

The attacker may try to read the keys from the device’s memory during the decryption phase.
Against this level of attacker the device would be better protected through usage of a hardware
component designed specifically to store, use, and process the cryptographic keys. [22]

5Cryptographic key is called ephemeral if it’s generated for each execution of a key establishment process. [26]

Chapter 3

Security Features of ESP32

This chapter describes the ESP32 platform in general, it introduces the hardware variants and
their features and it provides a list of ESP32 security related features.

3.1 ESP32 platform
ESP32 is ”a feature-rich MCU with integrated Wi-Fi and Bluetooth connectivity for a wide-
range of applications” [27]. It combines many different features normally provided by a different
hardware components in a single chip.

Figure 3.1 ESP-WROOM-32 development board [28]

The ESP32 provides robust design capable of functioning reliably in industrial environments,
with an operating temperature ranging from –40°C to +125°C. It is powered by an advanced
calibration circuits. [27]

The platform has ultra-low power consumption and therefore is an ideal solution for mobile,
wearable and IoT applications and devices. The ESP32 also includes state-of-the-art features,
such as fine-grained clock gating, various power modes and dynamic power scaling. [27]

The ESP32 is highly-integrated with in-built antenna switches, RF balun, power amplifier,
low-noise receive amplifier, filters, and power management modules. The ESP32 provides ex-
tremely large functionality in one chip with a minimal Printed Circuit Board (PCB) requirements.
[27]

The ESP32 can perform as a standalone system or as a slave device to a host MCU. It can
interface with other systems to provide Wi-Fi and Bluetooth functionality through its SPI /
SDIO or I2C / UART interfaces. [27]

21

22 Security Features of ESP32

3.1.1 ESP32 Hardware Versions
The ESP32 modules are split into the following series (each having an integrated flash memory):

ESP32-WROOM are modules with the Wi-Fi and Bluetooth/Bluetooth LE-based support a
a dual-core processor,

ESP32-WROVER have the SPIRAM1 and they contain a dual-core processor and are suited
for applications requiring more memory (e.g. AIoT or gateway applications),

ESP32-MINI provide a cost-effective solution for simple Wi-Fi and Bluetooth/Bluetooth LE-
based connectivity applications. [29]

3.1.2 ESP32 Family
All the module series and families are available in versions with either an integrated PCB antenna
or with a connection to an external IPEX2 antenna.

There are 4 families (also called series) of the ESP32 modules which are described in the next
sections.

3.1.2.1 ESP32-S3
The newest S3 family has hav32-bit MCU & 2.4 GHz Wi-Fi & Bluetooth 5 (LE) and the following
key parameters:

Xtensa® 32-bit LX7 dual-core microprocessor, up to 240 MHz,

512 KB of SRAM and 384 KB of ROM on the chip,

up to 32 MB flash, up to 8 MB PSRAM (depending on the module),

Vector instructions to accelerate neural network computing and signal processing,

45 programmable GPIOs,

security features: RSA-based secure boot, AES-XTS-based flash encryption, digital signature
and the HMAC. [30]

3.1.2.2 ESP32-S2
The S2 family contains 32-bit MCU & 2.4 GHz Wi-Fi, but compared to other families it doesn’t
support the Bluetooth communication. These are its key parameters:

Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz,

320 KB SRAM and 128 KB ROM,

up to 16 MB of Flash and up to 2 MB of PSRAM (depending on the module),

ultra-low-power performance: fine-grained clock gating, dynamic voltage and frequency scal-
ing,

37 programmable GPIOs,

Security features: eFuse, flash encryption, secure boot, signature verification, integrated AES,
SHA and RSA algorithms. [30][31]

1RAM memory connected via SPI bus.
2Standard connector used for antennas.

ESP32 Security 23

3.1.2.3 ESP32-C / ESP32-C3

The C family has single-core 32-bit RISC-V3 MCU & 2.4 GHz Wi-Fi & Bluetooth 5 (LE) and
the following key parameters:

32-bit RISC-V single-core processor, up to 160 MHz,

400KB of SRAM and 384 KB of ROM on the chip,

up to 4MB of flash memory on the chip (depending on the model),

state-of-the-art power and RF performance,

15 programmable GPIOs,

Security features: RSA-3072-based secure boot, AES-128-XTS-based flash encryption, digital
signature and the HMAC. [30][32]

3.1.2.4 ESP32

The original ESP32 family is still available and supported, but most of the modules from this
family are not recommended by the manufacturer for the development of a new products.

This version of ESP32 has one or two 32-bit MCUs & 2.4 GHz Wi-Fi & Bluetooth/Bluetooth
LE and following parameters:

One or two Xtensa® 32-bit LX6 microprocessor(s), 80 MHz to 240 MHz,

520 KB of SRAM and 448 KB of ROM on the chip,

up to 16 MB of Flash, up to 2 MB PSRAM in the chip and up to 8 MB external (depending
on the module),

sleep current below 5 µA,

Bluetooth & Bluetooth Low Energy (Bluetooth LE),

support for capacitive touch sensors, Hall sensor, SD card interface and Ethernet.

26 programmable GPIOs. [30][33]

The figure 3.2 shows architecture of an ESP32-WROOM module.

3.2 ESP32 Security

This section describes both the hardware and software features that are offered by the ESP32
modules and by the development framework provided by the manufacturer.

3An international non-profit organization supporting the free and open RISC instruction set architecture and
extensions.

24 Security Features of ESP32

Figure 3.2 Architecture of the ESP32-WROOM series [34]

3.2.1 eFuse
”The ESP32 has a number of eFuses which store system parameters. Fundamentally, an eFuse
is a single bit of non-volatile memory with the restriction that once an eFuse bit is programmed
to 1, it can never be reverted to 0. Software can instruct the eFuse Controller to program each bit
for each system parameter as needed. Some of these system parameters can be read by software
using the eFuse Controller. Some of the system parameters are also directly used by hardware
modules.” [35]

The ESP32 has 4 eFuse blocks each of the size of 256 bits:

EFUSE BLK0 is used entirely for the system purposes,

EFUSE BLK1 is used for the flash encrypt key. If not using the Flash Encryption feature,
they can be used for another purpose,

EFUSE BLK2 is used for the security boot key. If not using the Secure Boot feature, they
can be used for another purpose,

EFUSE BLK3 can be partially reserved for the custom MAC address, or used entirely for the
user application. Note that some bits are already used in IDF. [35]

3.2.2 Hardware Cryptography Feature
”The ESP32 platform provides hardware acceleration for the AES, SHA, RSA and RNG cryp-
tographic features. It allows the ESP32 based devices to use strong encryption algorithms for

ESP32 Security 25

example for the flash encryption, image signature verification and TLS protocol support. With-
out the hardware support the ESP32 platform would not have enough power to use all of these
features.” [23]

3.2.2.1 Advanced Encryption Standard
”The Advanced Encryption Standard (AES) Accelerator speeds up AES operations significantly,
compared to AES algorithms implemented solely in software. The AES Accelerator supports
six algorithms of FIPS PUB 197, specifically AES-128, AES-192 and AES-256 encryption and
decryption.” [23]

3.2.2.2 Secure Hash Algorithm
”The Secure Hash Algorithm (SHA) Accelerator is included to speed up SHA hashing operations
significantly, compared to SHA hashing algorithms implemented solely in software. The SHA
Accelerator supports four algorithms of FIPS PUB 180-4, specifically SHA-1, SHA-256, SHA-
384 and SHA-512.” [23]

3.2.2.3 RSA Cipher
”The RSA Accelerator provides hardware support for multiple precision arithmetic operations
used in RSA asym- metric cipher algorithms. Sometimes, multiple precision arithmetic is also
called ”bignum arithmetic”, ”bigint arithmetic” or ”arbitrary precision arithmetic”.” The RSA
Accelerator supports keys of length up 4096 bits long. [23]

3.2.3 Random Number Generator
The ESP32 contains the hardware Random Number Generator (RNG), which produces truly
random numbers during the following conditions:

RF subsystem is enabled (Wi-Fi or Bluetooth),

the internal entropy source has been enabled by calling bootloader random enable(). [36]

When one of the conditions is true, the samples of a physical noise are mixed into the internal
hardware RNG state to provide the entropy. If none of the above conditions are true, the output
of the RNG should be considered pseudo-random only. [36]

3.2.4 Secure Boot V2
This part describes the Secure Boot V2, which is supported by the chips with version ECO3
onwards. The previous versions only support the the Secure Boot V1. [23]

The Secure Boot protects a device from running any software, which is not signed. This soft-
ware includes the second stage bootloader and each application binary. The first stage bootloader
does not require to be signed as it cannot be changed during the firmware updates. [23]

If the Secure Boot V2 is enabled in the corresponding eFuse the boot sequence will proceed
in the following steps:

1. the second stage bootloader’s RSA-PSS signature block is verified,

2. the bootloader image is verified,

3. the bootloader image is executed,

4. the bootloader verifies the application image’s RSA-PSS signature block,

26 Security Features of ESP32

5. the bootloader verifies the application image

6. if the previous check fails, the bootloader will try to verify next image using from the step 5,

7. the bootloader executes application image (if any found). [23]

The RSA-3072 public key is stored on the device and it’s digest is stored in an eFuse. The
corresponding RSA private key is kept at a secret place and is never accessed by the device.
Only one public key can be generated and stored in the chip during manufacturing. No secrets
are stored on the device and it is immune to a passive side-channel attacks (for example timing
or power analysis). The same image format and signature verification method is used to sign
applications and bootloader images. [23]

3.2.5 Flash Encryption
”Flash encryption is intended for encrypting the contents of the ESP32’s off-chip flash memory.
Once this feature is enabled, firmware is flashed as plaintext, and then the data is encrypted in
place on the first boot. As a result, physical readout of flash will not be sufficient to recover most
flash contents.” Flash encryption protects firmware against unauthorised readout and modifica-
tion. [37]

All the production firmware images should be published in the ”Release” mode with the en-
cryption enabled. When the encryption is enabled then the bootloader, the partition table and
all ”app” partitions are encrypted. Other partitions can also be encrypted based on the config-
uration. As of now the Non-volatile Storage (NVS) used for data storing cannot be encrypted
due to incompatibility between the flash encryption and the NVS library. [37]

The flash encryption operation is controlled by the various eFuses available on the ESP32.
It can for example disable the flash encryption when performing the firmware update via the
UART (serial connection). One of the eFuses stores the encryption key used for the AES-256
encryption and it is by default protected from the software access. [37]

Flash encryption does not prevent an attacker from understanding the high-level layout of
the flash, because the same AES key is used for the different blocks and the blocks with the
identical content (such as empty or padding areas) result into a matching pairs of the encrypted
blocks. [37]

It is recommended to always use the Secure Boot (V1 or V2) as the flash encryption alone
may not prevent an attacker from modifying the firmware of the device. [37]

3.2.6 Firmware Signature Verification
When using the Secure Boot V2 3.2.4 the image is being signed and the signature is not only
verified during the boot sequence, but also during the FOTA update. [23]

The ESP32 also allows a verification of the firmware’s signature without the use of the Secure
Boot. The signing scheme is exactly the same as when the Secure Boot is being used. The
firmware signing adds the information described in the table 3.1 to the firmware image file. This
option can be used in case that the device needs to boot up very quickly and to avoid the Secure
Boot process which would prolong the start up sequence. In this case the attacker should not
be allowed to gain physical access to the device, which would allow him tampering of the device
and eventually changing the bootloader or the actual firmware in the device. [23]

With this option the currently running firmware is being considered as a trusted one. It must
contain the public key in its signature block which is used to verify the signature of the newly
updated firmware. The check can be performed during the firmware start and also during the
FOTA process. It’s essential that the initial app flashed to the device is also signed. [23]

Older revisions of the ESP32 hardware (below ESP32-ECO3) only support the ECDSA based
signing scheme. All the newer revisions (ESP32-ECO3 and newer, ESP32-S2, ESP32-C3 and

ESP32 Security 27

Table 3.1 Content of the Signature Block [23]

Offset Size (bytes) Description
0 1 Magic byte
1 1 Version number byte (currently 0x02), 0x01 is for Secure Boot V1.
2 2 Padding bytes, Reserved. Should be zero.
4 32 SHA-256 hash of only the image content, not including the signature

block.
36 384 RSA Public Modulus used for signature verification. (value ‘n’ in

RFC8017).
420 4 RSA Public Exponent used for signature verification (value ‘e’ in

RFC8017).
424 384 Pre-calculated R, derived from ‘n’.
808 4 Pre-calculated M’, derived from ‘n’
812 384 RSA-PSS Signature result (section 8.1.1 of RFC8017) of image con-

tent, computed using following PSS parameters: SHA256 hash, MFG1
function, salt length 32 bytes, default trailer field (0xBC).

1196 4 CRC32 of the preceding 1095 bytes.
1200 16 Zero padding to length 1216 bytes.

ESP32-S3) support the RSA-3072 based Signature. To ensure the support of the RSA, the
configuration flag CONFIG ESP32 REV MIN has to be set to Rev 3. This and other firmware
signing settings can be modified in the Security features within the Project Configuration Menu.
[23]

If possible the device should always use the Secure Boot signature verification, which also
verifies the signature of the bootloader instead of this simple signature verification. [23]

By default the image signing is performed as part of the build process. An alternative solution
is to perform a remote signing described in the next section.

3.2.6.1 Remote Signing of Images
In case that the Sign binaries during build option is disabled in the Project Configuration Menu,
then the image needs to be signed remotely (typically as part of the Continuous Integration
process). In the production, it is good practice to store the signing key on a remote secured
server, which is not the same machine as the one used for the creation of the image.[23]

The espsecure.py command line program can be used to sign the firmware image on a remote
server:

Code listing 3.1 Remote signing of a firmware image [23]

espsecure .py sign_data --version 2 --keyfile PRIVATE_SIGNING_KEY \
--output SIGNED_BINARY_FILE BINARY_FILE

3.2.7 TLS Support
The ESP32 has support for the TLS communication (both hardware and software).

The latest stable version of ESP-IDF (version 4.4) supports various version of SSL/TLS up
to TLS 1.2. There is already support for the TLS 1.3 possible using WolfSSL, but it has much
stronger license and is not free for use in commercial projects. [38]

The currently developed version of ESP-IDF (5.0) will have support for the TLS 1.3 using an
open source library MbedTLS (moving from version 2.X to 3.1.0). As of writing this thesis the

28 Security Features of ESP32

MbedTLS support is only experimental and only implemented for the client part of the HTTPS
connections (the server side support is not yet added). The new version of the ESP-IDF will also
restrict all the older and insecure protocols and ciphers. Therefore it will not be possible to use
TLS 1.1 and older. The TLS 1.2 will be fully supported and the TLS 1.3 should also be fully
supported. [38][39]

3.2.8 Automatic Rollback
The main purpose of the application rollback is to keep the device working after the update.”
In case that a new firmware has critical errors or when the device restarts during the start up
sequence of the new firmware then the device will roll-back and start the previous version of
the firmware. The implementation has multiple parts. After the new firmware is downloaded,
verified and stored in the flash, the device will restart. The new firmware will start and it
should perform a self-check. In case that the self check is successful, the firmware will call
esp ota mark app valid cancel rollback() and the new firmware will be considered as a valid from
that moment. [40]

The feature can be enabled by the CONFIG BOOTLOADER APP ROLLBACK ENABLE
flag in the project configuration. [40]

3.2.9 Anti-rollback
”Anti-rollback prevents rollback to application with security version lower than one programmed
in eFuse of chip.” [40]

This function works if the CONFIG BOOTLOADER APP ANTI ROLLBACK option is set.
The version in the new firmware must be greater than or equal to the version stored in the eFuse
on the device. The number of bits in the eFuse is limited to 32 bits (4 bytes). And as each of the
bits can only be changed from 0 to 1 and not back, there can only be up to 32 different security
versions preventing the rollback. [40]

3.3 Software Solution for ESP32

”ESP-IDF is Espressif’s official IoT Development Framework for the ESP32, ESP32-S and
ESP32-C series of SoCs. It provides a self-sufficient SDK for any generic application devel-
opment on these platforms, using programming languages such as C and C++. ESP-IDF cur-
rently powers millions of devices in the field, and enables building a variety of network-connected
products, ranging from simple light bulbs and toys to big appliances and industrial devices.” [41]

3.3.1 ESP-IDF Features
The ESP-IDF is an open source project available on the GitHub licensed mostly under the
Apache 2.0 license. It has defined release process offering stable versions of the source code as
well as a work in progress repository allowing the developers to test the latest features in the
development. [41]

The ESP-IDF offers large support and the components for peripherals, networking, commu-
nication protocols and many other features and it is officially supported by the Microsoft Viusal
Studio Code and Eclipse. [41]

It comes with a comprehensive documentation, API description and manuals and the project
contains over 100 examples of using various peripherals and features. [41]

Software Solution for ESP32 29

The figure 3.3 shows the key software components and the key features of the ESP-IDF are:

RTOS Kernel,

Standard Programming Interface,

Peripheral Drivers,

Wi-Fi,

Bluetooth & Bluetooth LE,

Networking Protocols,

Power Management,

Storage,

Security,

Network Provisioning,

Build Systems,

Developer Tools,

IDE Support. [41]

Figure 3.3 ESP-IDF Software Components [41]

3.3.2 ESP-TLS Component
”The ESP-TLS component provides a simplified API interface for accessing the commonly used
TLS functionality. It supports common scenarios like CA certification validation, SNI, ALPN
negotiation, non-blocking connection among others. [42]

The component has an option to use the MbedTLS or WolfSSL (an embedded SSL/TLS li-
braries providing secure communication for IoT) as their underlying library. By default MbedTLS
is used. The ESP-IDF provides the source codes and examples which are useful for understanding
the APIs. [42]

Chapter 4

Practical Part - Secure FOTA on
ESP32

This chapter speaks about the difference between the insecure and secure version of the ESP32
Firmware Over The Air update and describes how both of these versions were implemented as
part of this thesis.

4.1 Environment and Toolchain

This section describes the model of ESP32 platform used for the proof of concept design and
verification. It also contains a list of the software tools used in this work. Lastly it contains
instructions to set up the environment and to compile the firmware on the ESP32 platform.

4.1.1 Software Toolchain
To develop the proof-of-concept firmware for the purpose of this tesis and for the validation of
the firmware behavior the author has used the following tools including their versions listed:

macOS Monterey (12.1)

Visual Studio Code (1.65)

Visual Studio Espressif Integrated Development Framework (ESP-IDF) Extension (v1.4.0)

Visual Studio ESP-IDF esp encrypted img Component (2.0.2)1

Python (3.8.5)

Screen (4.00.03)

OpenSSL (1.1.1m)

Espressif ESP-IDF2(different versions described further in this chapter)
1https://github.com/espressif/idf-extra-components/tree/master/esp encrypted img
2https://github.com/espressif/esp-idf

31

https://github.com/espressif/idf-extra-components/tree/master/esp_encrypted_img
https://github.com/espressif/esp-idf

32 Practical Part - Secure FOTA on ESP32

4.1.2 Hardware
The author has decided to use ESP32-WROOM (D0WDQ6) ver. 1 without any peripherals
connected to it.

4.2 Common Part Of The Implementations

This sections describes implementation, setup up and verification parts that are common to all
the examples and implementations mentioned in the following sections.

4.2.1 High-level Implementation Architecture
The implementations contain 2 main threads. The first thread is used to handle the HTTP
requests and to provide a web page displaying a version of the currently running firmware (shown
as a screenshot in the attachment A.1). The second thread handles the checking of the availability
of the new firmware version and also performs the Over The Air firmware update itself.

Update
Server

IoT Device

Check new firmware availability
Webserver FOTA

User

Get current firmware version

Download new firmware

Figure 4.1 High-level implementation architecture, created by the author

4.2.2 Periodical Firmware Check
The implementations described in the following sections periodically check the availability of
the new firmware on the update server. In case that the version of the firmware on the server
is newer than the version currently running on the tested device, the application will start the
firmware update process.

Compared to the real life environment, the examples in this thesis check the presence of a new
version of the firmware on the update server periodically every 60 seconds. In the real-life use
case the period might be set to a several hours interval to preserve the battery capacity and
prolong the life-time of the IoT device.

Common Part Of The Implementations 33

4.2.3 Project Configuration
The prerequisite for the further steps is installation of all the tools listed in the section 4.1.1.

The ESP32 based device connects to the local WIFI network using the configuration described
in this section.

To define the macros via the project configuration and to enable some of the macros that
are defined within the source code provided by Espressif it is necessary to create and update the
following configuration files.

The lines from the code listing 4.1 must be added into the sdkconfig.defaults file and the
”hostname” replaced with the actual hostname or IP address of the update server, ”nnn” with
the firmware version in digits, ”ssid” with the actual SSID and ”password” with the actual WIFI
password.

Code listing 4.1 Common content of the sdkconfig.defaults

CONFIG_FIRMWARE_UPGRADE_URL =" hostname "
CONFIG_APP_PROJECT_VER_FROM_CONFIG =y
CONFIG_APP_PROJECT_VER ="nnn"
CONFIG_EXAMPLE_CONNECT_WIFI =y
CONFIG_EXAMPLE_WIFI_SSID ="ssid"
CONFIG_EXAMPLE_WIFI_PASSWORD =" password "
CONFIG_EXAMPLE_CONNECT_IPV6 =y

Kconfig.projbuild file must be created and filled with the content shown in the code listing
4.2.

Code listing 4.2 Common content of the Kconfig.projbuild

menu "FOTA Configuration "

config FIRMWARE_UPGRADE_URL
string " firmware upgrade url endpoint "
default " 192.168.1.200 "
help

URL of server which hosts the firmware
image.

config APP_PROJECT_VER_FROM_CONFIG
bool "Get the project version from Kconfig "
default y
help

If this is enabled , then config item APP_PROJECT_VER
will be used for the variable PROJECT_VER .
Other ways to set PROJECT_VER will be ignored .

config APP_PROJECT_VER
string " Project version "
default "100"
depends on APP_PROJECT_VER_FROM_CONFIG
help

Project version

endmenu

After the update of the files it is necessary to run idf.py menuconfig script to apply the
changes.

34 Practical Part - Secure FOTA on ESP32

4.3 Basic Insecure Firmware Over the Air

This section describes implementation of the most basic Firmware Over The Air update on
the ESP32 platform, which doesn’t implement any of the common cyber security practices. It
only supports the HTTP connection between the ESP32 and the update server containing the
firmware package.

The basic implementation is based on the stable ESP-IDF release branch version 4.43.

4.3.1 Implementation

To perform the FOTA update without any security features, the HTTP (non-secure) has to be
explicitly enabled in the project configuration using the following macro.

Code listing 4.3 Additional content of sdkconfig.defaults

CONFIG_ESP_HTTP_CLIENT_ENABLE_HTTPS =y

To use this basic HTTP version, there is no certificate needed (neither for version checking,
nor for the OTA itself).

The application will download a file called version from the IP address defined in the config-
uration, which contains 3 digit number representing the firmware version of the newest firmware
file available on the server. It will compare the number in that file with the currently running
version of the firmware. If the new version is larger than the current one, then the simple FOTA
update via HTTP will be performed. The prototype code uses esp https ota() function call which
handles both the download of the new image as well as the firmware upgrade itself.

The firmware file has the following name: imageXXX.bin, where XXX is replaced with the
number read from version file (for example image101.bin).

4.3.2 Verification Of The Results

To test this basic version the author used a basic HTTP server provided by python. The author
created two firmware files (image100.bin and image101.bin) and the version file containing the
number 100. The HTTP server was started using the command shown in the code listing 4.4.

Code listing 4.4 Run (insecure) HTTP server

python -m http. server 80

The ESP32 board was flashed with the firmware version 100. During the first minute the
device verified presence of a new firmware. The update was not performed as the firmware
currently running was matching the version of the firmware available on the server.

In the next step the author changed the content of the version file from 100 to 101. After
this change the device compared the current version with the one obtained from the version file.
The new version was greater than the previous one and the device performed successful FOTA
update.

3https://github.com/espressif/esp-idf/tree/release/v4.4

https://github.com/espressif/esp-idf/tree/release/v4.4

Secure Firmware Over the Air 35

4.4 Secure Firmware Over the Air
The secure implementation of the FOTA in this thesis uses three following security mechanisms
(described in more detail in the next sections):

1. secure file transfer using TLS 1.2,

2. firmware signing,

3. firmware image encryption.

These mechanisms are used in a different stages of the firmware creation process and its
transfer to the device. Figure 4.2 illustrates that the first step after the firmware image is
compiled is signing of the image followed by the its encryption. During the FOTA process the
file is transferred to the device using TLS 1.2 and the image decryption and verification is done
in the reverse order (firstly the firmware needs to be decrpyted and in the next step its signature
is verified). If all these steps are performed successfully, the firmware is upgrade is performed
and the device is restarted.

Transport Socket Layer 1.2

Creation of a firmware image

Build EncryptSign

Update on the device side

DecryptVerify
Signature

Upgrade

Figure 4.2 Life-cycle of the firmware image, created by the author

Each of the security mechanisms requires an encryption key, certificate or key-pair. They
need to be integrated into the firmware build process. The keys / certificates are listed in the
table 4.1 and the way to obtain the keys is described in the related sections.

Table 4.1 Cryptographic keys and certificates included in the source code

File Key type Purpose / Section
server certs/ca cert.pem RSA4096 Secure file transfer 4.4.1
secure boot signing key.pem RSA3072 Firmware image signing 4.4.2
rsa key/private.pem ECDSA256 Firmware image encryption 4.4.3

The secure firmware update implementation is based on the most recent version of the ESP-
IDF4, which contains many new security implementations and features including the firmware
signing, image encryption and draft of the TLS 1.3 protocol.

4https://github.com/espressif/esp-idf/commit/45c1d1cba212b2012d53a55fcf9d338a959c2ece.

https://github.com/espressif/esp-idf/commit/45c1d1cba212b2012d53a55fcf9d338a959c2ece

36 Practical Part - Secure FOTA on ESP32

4.4.1 Secure File Transfer
The section 3.2.7 already describes, that the latest version of MbedTLS supporting the TLS 1.3
is being integrated into the ESP-IDF platform at the time of creation of this thesis. The available
version supports TLS 1.2 and it forbids using any older TLS/SSL versions and related ciphers.
For the purpose of the proof of concept application only the TLS 1.2 protocol is enabled.

The author investigated whether the implementation of TLS 1.3 version is sufficient for the
purpose of this thesis. Unfortunately the implementation still contained errors and missing
implementation. Example of the missing implementation is a missing macro in the error check
in the check config.h5 file (code listing 4.5). The implementation is very basic and is more of
a starting point to implement all the features that the TLS 1.3 offers.

Code listing 4.5 Example of the incomplete TLS 1.3 implementation in the mbedTLS, the TLS 1.3
is missing in the list and enabling only TLS 1.3 support causes a compilation error

558 #if defined (MBEDTLS_SSL_TLS_C)
&& (! defined (MBEDTLS_SSL_PROTO_SSL3) && \

559 ! defined (MBEDTLS_SSL_PROTO_TLS1)
&& ! defined (MBEDTLS_SSL_PROTO_TLS1_1) && \

560 ! defined (MBEDTLS_SSL_PROTO_TLS1_2))
561 #error " MBEDTLS_SSL_TLS_C defined , but no protocols are active "
562 #endif

The TLS protocol firmware requires presence of the trusted Certification Authority certificate
in the firmware running on the device. The same authority must sign the certificate of the FOTA
server. The process is illustrated in the figure 4.3 and the shell commands which were used to
create the keys and certificates are in the code listing 4.6.

HTTP server

1. Create server private key
(server_key.pem)

3. Create certificate
signing request

(server_signing_request.pem)

Certification Authority (CA)

2. Create CA private key and
self-signed certificate

(ca_key.pem, ca_cert.pem)

4. Sign the certificate
(server_cert.pem)

Figure 4.3 Generating Certification Authority and server keys and certificates

The ca cert.pem file must be copied to the server certs folder in the project before the com-
pilation. All the certificates signed by this certification authority are trusted by the device.

5https://github.com/wolfeidau/mbedtls/blob/master/mbedtls/check config.h

Secure Firmware Over the Air 37

Code listing 4.6 Generating CA and server keys and certificates

Generate the private key of the web server
openssl genrsa -out server_key .pem 4096

Create CA private key and certificate
openssl req -x509 -newkey rsa :4096 -keyout ca_key .pem \

-out ca_cert .pem -sha256 -days 3650 \
-subj "/C=CZ/O=Marek ’s CA/CN= localhost " -nodes

Create Certificate Signing Request (CSR),
Common Name (CN) has to be set to the FQDN or IP address of the server
openssl req -new -sha256 -key server_key .pem \

-out server_signing_request .pem \
-subj "/C=CZ/O=FOTA HTTP server /CN =192.168.50.203 "

#Sign the server certificate
openssl x509 -req -sha256 -in server_signing_request .pem \

-CA ca_cert .pem -CAkey ca_key .pem \
-CAcreateserial -out server_cert .pem -days 3650

Verification of the TLS functionality is described in the chapter 4.4.4.1.

4.4.2 Firmware Signing
Firmware signing is a feature present in the ESP32 platform. The firmware signing is used
together with the firmware encryption and therefore the signing has to be the first step after the
compilation. The verification of the signature in the device during the update can only be done
after the firmware is decrypted (encryption and decryption is described in the next section).

The firmware signing uses the same headers and structures as the Secure Boot feature. The
proof of concept application uses the firmware signing without the Secure Boot feature being
enabled.

Revision of the hardware used for this thesis is below rev. 3, which means that the ECDSA
algorithm had to be used for the image signing (as explained in section 3.2.6).

The signing has been included in the build process, which produces both the firmware files
with and without signature.

The certificate used for the firmware signing has been generated using the command shown
in the code listing 4.7.

Code listing 4.7 Generate RSA signing key

˜/esp -idf/ components / esptool_py / esptool / espsecure .py \
generate_signing_key --version 1 \
--scheme ecdsa256 secure_boot_signing_key .pem

The signing key has to be saved in the project source code root folder and the the line shown
in the code listing 4.8 must be added into the main/CMakeList.txt file.

Code listing 4.8 Include the signing key into project configuration

EMBED_TXTFILES ${ project_dir }/ secure_boot_signing_key .pem

To enable the signing verification and generation the configuration has to be updated using
idf.py menuconfig command or by adding it to the sdkconfig file. The required configuration is
done in the sdkconfig.defaults file which is part of the source code. The lines added are shown in

38 Practical Part - Secure FOTA on ESP32

the code listing 4.9. When building the project for the first time the sdkconfig file inherits the
content from the sdkconfig.defaults file.

Code listing 4.9 Enable firmware signing in the project configuration

#
Security features
#
CONFIG_SECURE_SIGNED_ON_UPDATE =y
CONFIG_SECURE_SIGNED_APPS =y
CONFIG_SECURE_BOOT_V1_SUPPORTED =y
CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT =y
CONFIG_SECURE_SIGNED_APPS_ECDSA_SCHEME =y
CONFIG_SECURE_SIGNED_ON_UPDATE_NO_SECURE_BOOT =y
CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES =y
CONFIG_SECURE_BOOT_SIGNING_KEY =" secure_boot_signing_key .pem"
end of Security features

Verification of the firmware signing functionality is described in the chapter 4.4.4.2.

4.4.3 Encryption Of The Firmware
The previous section mentions that the firmware encryption is the last step of the image building
process and at the same time it is the first step of verification during the FOTA update (firmware
needs to be decrypted prior verification of the image signature).

To add support for the firmware image encryption, the author has installed a Visual Studio
Code (VS Code) component called esp encrypted img. The code of the component and link for
the Component Manager can be found in a Github repository containing idf-extra-components6.
Installation using VS Code can be done using ESP-IDF: Component Registry from the Command
Palette.

The ESP-IDF provides an example application of the firmware encryption, which was in-
spiration for the proof of concept application developed by the author. This example called
pre encrypted ota7 can be found in the Espressif Github repository.

The project doesn’t require any further configuration as the encryption is enabled by adding
the related callbacks into the application.

The encryption of the image needs to be done after the successful build process is completed.
The firmware encryption requires RSA key to be generated. The code listing 4.10 shows the
script which the author used to generate the encryption key. To encrypt the built image using
the generated key, the author has executed command shown in the code listing 4.11. The
command uses the esp enc img gen.py8 script.

Code listing 4.10 Generating key for the firmware encryption

openssl genrsa -out private .pem 3072.

Code listing 4.11 Encryption of the firmware

./ esp_enc_img_gen .py encrypt secure_ota .bin private .pem image201 .bin

Verification of the firmware encryption functionality is described in the chapter 4.4.4.3.
6https://github.com/espressif/idf-extra-components
7https://github.com/espressif/esp-idf/tree/master/examples/system/ota/pre encrypted ota
8https://github.com/espressif/idf-extra-components/blob/master/esp encrypted img/tools/esp enc img gen.py

https://github.com/espressif/idf-extra-components
https://github.com/espressif/esp-idf/tree/master/examples/system/ota/pre_encrypted_ota
https://github.com/espressif/idf-extra-components/blob/master/esp_encrypted_img/tools/esp_enc_img_gen.py

Secure Firmware Over the Air 39

4.4.4 Verification of the results
Multiple versions of the firmware are used for the verification of the FOTA feature. The starting
version which is in the source code is 200. Version 201 is used for the positive test scenario
with a successful firmware update result and for the test with the invalid TLS certificate. The
versions 202 to 205 are used to simulate an unsuccessful FOTA update. All of these scenarios
are described in the following sections.

Same as the basic version, the HTTP server provides version file containing version of the
newest firmware (or better version of the firmware which should be downloaded). At the begin-
ning the version is set to 200. The version is changed to a value between 201 and 205 depending
on the test being performed. After this change the device compares the current firmware version
with the one obtained from the version file from the server. If the new version is greater than
the previous one then the device performs the FOTA update.

The implemented security features must be tested all together for the positive test result. For
the negative test results of the individual features the author performed test of only one feature
at a time (for example by providing wrong image signature or wrong encryption key), but never
a combination of the two features at a time.

All the binaries used for the FOTA verification are stored on the attached media inside the
tests/advanced folder.

All the performed tests include secure file transfer. For the initial positive result tests there
is no limitation of the TLS protocol version and the server key and certificate created earlier in
section 4.4.1 are used. The next section describes how to start the HTTP server using TLS.

4.4.4.1 Secure File Transfer
To start the server using the TLS the author has used the command shown in the code listing
4.12. The server must be started from the folder which contains all the test files (image201.bin,
. . . , and version).

Code listing 4.12 Run HTTPS server

openssl s_server -WWW -key server_key .pem -cert server_cert .pem -port 443

To verify the functionality of the secure data transfer using TLS the author has performed
the following tests:

Enforcing TLS version 1.1 results into the error shown in the 4.14, because the firmware
update mechanism only supports TLS 1.2 protocol. Any older versions are not supported.
Running the server with enforced TLS 1.1 protocol is done using the command shown in the
code listing 4.13. The error returned in the message means ”Handshake protocol not within
min/max boundaries.” [43].

Enforcing TLS version 1.2 works as expected and the firmware update is performed success-
fully. The command used to run server with restriction to only the TLS 1.2 protocol is shown
in the code listing 4.15. The serial console log is shown in the attachment A.2.

Malicious Certification Authority was tested by generating a new server certificate using
exactly the same workflow as described in the 4.6 section with exception of the server private
key. The same private key was used both for the original server certificate for the previous
tests and for this test. The new server certificate is signed by the new certification authority
while the device firmware contains the certificate of the original authority. Even though the
information listed in the certificate seems to be correct and the certificates contain the right
attributes, the CA is different than the original one and therefore the server certificate is not
trusted and the server authenticity verification fails with the message shown in 4.16. The
alternate certificates are stored on the attached media in the alternate ca folder.

40 Practical Part - Secure FOTA on ESP32

Code listing 4.13 Run HTTPS server with only TLS 1.1 supported

openssl s_server -WWW -key server_key .pem -cert server_cert .pem \
-port 443 -tls1_1

Code listing 4.14 Test result with TLS 1.1 enforced by the server (serial console log from the device)

E (126259) esp -tls - mbedtls : mbedtls_ssl_handshake returned -0x6E80
I (126269) esp -tls - mbedtls : Certificate verified .
E (126269) esp -tls: Failed to open new connection
E (126269) TRANSPORT_BASE : Failed to open a new connection
E (126279) HTTP_CLIENT : Connection failed , sock < 0
E (126279) ota.c: Error perform http request ESP_ERR_HTTP_CONNECT

Code listing 4.15 Run HTTPS server with only TLS 1.2 supported

openssl s_server -WWW -key server_key .pem -cert server_cert .pem \
-port 443 -tls1_2

Code listing 4.16 Test result when the server certificate is signed by another certification authority

I (16239) esp -tls - mbedtls : Failed to verify peer certificate !

4.4.4.2 Firmware Signature
As described in the section 4.4.2, the firmware is signed automatically as part of the build process
(in this work the configuration flag to enable this behavior has been set).

Apart from the positive test scenario it is important to verify also the negative scenarios which
should fail. For the firmware signing feature verification the author has created two firmware
files to test with. The test files are image202.bin which is not signed at all and image203.bin
which is signed by another key than the one used for verification.

Signed image using the correct key results into the expected behavior.

Unsigned image caused an error as expected. The error message is shown in the code listing
4.17.

Signed image by another key results into an error. The error message is shown in the code
listing 4.18. To create the firmware image signed by another certificate, the author has
followed the same steps as described in the section 4.4.2. Before compiling with the new
signing key the author recommends to delete the content of the build folder to avoid any
issues caused by caching and potential reuse of the previously provided signing key.

Based on the serial console logs provided by the device, it is not possible to distinguish
between the firmware image which doesn’t have the signature at all and the image, which is
signed by another key.

Author has also tested the newer version of the firmware signing using RSA, but unfortunately
that version is only available on the newer hardware revisions, which the author didn’t have
available to perform such a test.

Secure Firmware Over the Air 41

Code listing 4.17 Test result with the unsigned firmware image

E (48669) secure_boot_v1 : image has invalid signature version field
0 xffffffff (image without a signature ?)
E (48679) esp_image : Secure boot signature verification failed
I (48679) esp_image : Calculating simple hash to check for corruption ...
W (48939) esp_image : image valid , signature bad
E (48949) ota.c: Image validation failed , image is corrupted
E (48949) ota.c: ESP_HTTPS_OTA upgrade failed 0x1503

Code listing 4.18 Test result with a firmware image signed by another key

E (47690) secure_boot_v1 : image has invalid signature version field
0 xffffffff (image without a signature ?)
E (47700) esp_image : Secure boot signature verification failed
I (47700) esp_image : Calculating simple hash to check for corruption ...
W (47970) esp_image : image valid , signature bad
E (47970) ota.c: Image validation failed , image is corrupted
E (47970) ota.c: ESP_HTTPS_OTA upgrade failed 0x1503

4.4.4.3 Encryption Of The Firmware
Three different tests were performed to verify the firmware encryption feature. Firmware:

Encrypted with the correct RSA key which resulted into the correct behavior.

Not encrypted at all resulting into an error and the device logged the message shown in the
code listing 4.19. The firmware file image204.bin was used for this test.

Encrypted with a different RSA key also resulting into an error and the device logged the
message shown in the code listing 4.20. The firmware file image205.bin was used for this test.
The procedure to encrypt the firmware and to generate the alternate RSA key is the same as
described in the section 4.4.3.

Code listing 4.19 Test result with a unnencrypted firmware (device console log)

E (9269) esp_encrypted_img : Magic Verification failed
E (9279) esp_https_ota : Decrypt callback failed -1
E (9279) esp_https_ota : Decryption of image header failed
E (9289) ota.c: Complete data was not received .
E (9299) ota.c: ESP_HTTPS_OTA upgrade failed

Code listing 4.20 Test result with a firmware encrypted by a wrong RSA key (device console log)

E (9659) esp_encrypted_img : failed
! mbedtls_pk_decrypt returned -0x4100

E (9659) esp_encrypted_img : Unable to decipher GCM key
E (9669) esp_https_ota : Decrypt callback failed -1
E (9669) esp_https_ota : Decryption of image header failed
E (9679) ota.c: Complete data was not received .
E (9689) ota.c: ESP_HTTPS_OTA upgrade failed

Chapter 5

Summary and Discussion

5.1 Results of the Implementation and Tests

Table 5.1 contains the summary of all the performed tests. By default the Transport Layer
Security (TLS) 1.2, firmware signing and firmware encryption have been used. Each line in the
table represents different test conditions. The specific conditions which deviated from the default
ones are described in the first column. The second column shows the firmware file name with the
version, which was used for the test and which is stored on the attached media. The third column
shows the expected result of the FOTA update attempt and the last column shows whether the
test resulted into the expected behavior. Each of the tests was performed from a version 200
running on the device.

Table 5.1 Summary of the performed tests

Changed conditions Firmware file Expected
result

Worked as
expected

None image201.bin PASS Yes
Server restricted to TLS 1.1 image201.bin Fail Yes
Server restricted to TLS 1.2 image201.bin PASS Yes
Server certificate signed by another CA image201.bin Fail Yes
Binary not signed image202.bin Fail Yes
Binary signed by another key image203.bin Fail Yes
Binary not encrypted image204.bin Fail Yes
Binary encrypted using another key image205.bin Fail Yes

5.2 Security Recommendations

This section provides security recommendations for the secure firmware over the air update based
on the analysis done in this thesis and also based on the authors experience and the challenges
experienced during the work on this bachelor thesis:

Use new TLS protocol versions which means disabling the Transport Layer Security (TLS)
1.1 and older versions and enabling the TLS 1.2 and also the TLS 1.3 in case that it is
supported.

43

44 Summary and Discussion

Enable all security features provided by the platform (both hardware and software) such
as the Secure Boot (v1 or better v2), flash encryption, firmware signing, or anti-rollback.

Use the latest revision of the hardware to avoid any limitations due to an insufficient hard-
ware acceleration of the cybersecurity features.

Never provide development version to customers or anyone else. If some of the security
features are not enabled in the beta version it is easier for the potential attacker to gain the
access to the device, analyze the firmware and discover weaknesses of the system.

Use secure environment for firmware signing purpose and storing the private keys.

Generate private keys on a system with a high quality source of the entropy - outside of the
build server.

5.3 Secure File Transfer
The new versions the ESP-IDF (later than 4.4) do not support the Transport Layer Security
(TLS) version 1.1 or older by default and it is strongly recommended not use any of the disabled
protocols and related ciphers.

The author attempted to enable the TLS 1.3 protocol support, but unfortunately the im-
plementation done using the MbedTLS library was not yet fully done nor integrated into the
ESP-IDF release 5.0, which was under development at the time of writing this thesis.

For the purpose of the proof of concept application the author has created certificates with
ten years of validity. For the real application it would be sufficient to use shorter validity and
provide a new Certification Authority (CA) certificate as part of the future firmware images to
make a smooth transition between the old and new CA certificates.

5.4 IoT Device Authentication
The device authentication is out of the scope of this thesis and was only introduced in its
theoretical part.

At the same time the firmware encryption was performed using asymmetric cryptography
(public and private key pair). The public key was used to encrypt the firmware while the private
key stored on the device was used for the firmware decryption.

In case that each device has its own private key (obtained from a hardware security module,
created by the device, or uploaded by a manufacturer during the manufacturing process within
the secure environment) and the matching public key is maintained by the firmware update server
and it is used to sign the firmware update files individually for each device by the corresponding
public key, then the firmware encryption mechanism ensures also the device identity verification.
Although that any malicious device would be able to download the firmware binary, the binary
would be encrypted and therefore the full firmware update process would not be completed.

The ideal device identity verification would confirm the device’s authenticity before allowing
the device to download the actual firmware package.

Chapter 6

Conclusion

The main goal of this thesis was to develop a proof of concept application which will perform
the over the air firmware update using the ESP32 platform. This goal has been successfully
achieved.

To achieve the goal the author had to analyze the general cybersecurity concepts and the
features used for the IoT (Internet of Things) applications and specifically for the firmware over
the air update feature. The next step was to understand the ESP32 platform, its hardware
and software features and the related development tools. The result of the analysis helped the
author to understand the differences between the ESP32 hardware variants and versions and
their compatibility with the cybersecurity features.

The provided solution implements the secure file transfer using the TLS protocol, the firmware
image encryption and the firmware signing features. One of the main challenges was the imple-
mentation of the secure file transfer using the TLS protocol. The author attempted to use the
TLS version 1.3, which at the time of writing this thesis had not yet been fully supported by the
MbedTLS library providing the ESP32 platform with the TLS capabilities.

The author believes that the result of the thesis will be used as a source of inspiration and
the starting point for developers implementing IoT solutions and mainly solutions based on the
ESP32 platform.

The future works following up on this thesis could focus on the TLS 1.3 implementation,
deeper analysis of the authentication of the devices or the most recent models of the ESP32
microcontrollers and their cybersecurity features.

45

Attachment A

Web Interface Screenshot and
Serial Console Logs

Figure A.1 Screenshot of the device web interface
Screenshot of the device web interface. The webpage is accessible from a web serve running on
the tested device. It displays the currently running version of the firmware. The FOTA starts

at timestamp 5758.

47

48 Web Interface Screenshot and Serial Console Logs

Figure A.2 Serial console log from the device (basic implementation - first part)
Serial console log from the device (basic implementation - first part). The log is showing a

successful update of the firmware from the version 100 to 101. The device started using a new
firmware (timestamp 482)

49

Figure A.3 Serial console log from the device (basic implementation - second part)
Serial console log from the device (basic implementation - second part). The log is showing a

successful update of the firmware from the version 100 to 101.

50 Web Interface Screenshot and Serial Console Logs

Figure A.4 Serial console log from the device (secure implementation - first part)
Serial console log from the device (secure implementation - first part). The log is showing a

successful update of the firmware from the version 200 to 201. The FOTA starts at timestamp
7709.

51

Figure A.5 Serial console log from the device (secure implementation - second part)
Serial console log from the device (secure implementation - second part). The log is showing a
successful update of the firmware from the version 200 to 201. The device started using a new

firmware (timestamp 523).

Bibliography

1. GILLIS, Alexander. What is internet of things (IoT)? [Online]. 2021. Available also from:
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-
IoT. Last accessed 2nd April 2022.

2. RAY, Partha Pratim. An introduction to dew computing: Definition, concept and implica-
tions. IEEE Access. 2018, vol. 6, pp. 723–737. Available from doi: 10.1109/ACCESS.2017.
2775042.

3. DUGGAL, Nikita. What Are IoT Devices : Definition, Types, and 5 Most Popular Ones for
2022 [online]. 2022. Available also from: https://www.simplilearn.com/iot-devices-
article. Last accessed 3rd April 2022.

4. GREGERSEN, Carsten. Complete Guide to IoT Protocols & Standards In 2021 [online].
2020. Available also from: https://www.nabto.com/guide-iot-protocols-standards.
Last accessed 3rd April 2022.

5. CHAKRABORTY, Kuntal. Firmware [online]. 2021. Available also from: https://www.
techopedia.com/definition/2137/firmware. Last accessed 7th April 2022.

6. LITINGTUN, Shawn. Introduction to Embedded Firmware Development [online]. 2021.
Available also from: https://predictabledesigns.com/introduction-to-embedded-
firmware-development/. Last accessed 7th April 2022.

7. ECLYPSIUM. Enterprise Best Practices for Firmware Updates [online]. 2020. Available also
from: https://securityboulevard.com/2020/04/enterprise-best-practices-for-
firmware-updates/. Last accessed 7th April 2022.

8. RYABKOV, Deomid. Updating firmware reliably [online]. 2016. Available also from: https:
//www.embedded.com/updating-firmware-reliably/. Last accessed 10th April 2022.

9. XJTAG. What is JTAG? [Online]. 2022. Available also from: https://www.xjtag.com/
about-jtag/what-is-jtag/. Last accessed 8th April 2022.

10. EL JAOUHARI, Saad; BOUVET, Eric. Secure firmware Over-The-Air updates for IoT:
Survey, challenges, and discussions. Internet of Things. 2022, vol. 18, p. 100508. issn 2542-
6605. Available from doi: https://doi.org/10.1016/j.iot.2022.100508.

11. CLOUDFLARE. What is encryption? — Types of encryption [online]. [N.d.]. Available also
from: https://www.cloudflare.com/en-gb/learning/ssl/what-is-encryption/. Last
accessed 15th April 2022.

12. CRANE, Casey. What Is a Hash Function in Cryptography? A Beginner’s Guide [online].
2021. Available also from: https://www.thesslstore.com/blog/what- is- a- hash-
function-in-cryptography-a-beginners-guide/. Last accessed 15th April 2022.

53

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://doi.org/10.1109/ACCESS.2017.2775042
https://doi.org/10.1109/ACCESS.2017.2775042
https://www.simplilearn.com/iot-devices-article
https://www.simplilearn.com/iot-devices-article
https://www.nabto.com/guide-iot-protocols-standards
https://www.techopedia.com/definition/2137/firmware
https://www.techopedia.com/definition/2137/firmware
https://predictabledesigns.com/introduction-to-embedded-firmware-development/
https://predictabledesigns.com/introduction-to-embedded-firmware-development/
https://securityboulevard.com/2020/04/enterprise-best-practices-for-firmware-updates/
https://securityboulevard.com/2020/04/enterprise-best-practices-for-firmware-updates/
https://www.embedded.com/updating-firmware-reliably/
https://www.embedded.com/updating-firmware-reliably/
https://www.xjtag.com/about-jtag/what-is-jtag/
https://www.xjtag.com/about-jtag/what-is-jtag/
https://doi.org/https://doi.org/10.1016/j.iot.2022.100508
https://www.cloudflare.com/en-gb/learning/ssl/what-is-encryption/
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/
https://www.thesslstore.com/blog/what-is-a-hash-function-in-cryptography-a-beginners-guide/

54 Bibliography

13. FRUHLINGER, Josh. What is PKI? And how it secures just about everything online [on-
line]. 2020. Available also from: https://www.csoonline.com/article/3400836/what-
is-pki-and-how-it-secures-just-about-everything-online.html. Last accessed
15th April 2022.

14. TEAM, SSL.com Support. What Is a Certificate Authority (CA)? [Online]. 2021. Available
also from: https://www.ssl.com/faqs/what- is- a- certificate- authority/. Last
accessed 15th April 2022.

15. RAVNEET KAUR, Amandeep Kaur. Digital Signature. In: 2012 International Conference
on Computing Sciences. Phagwara, India: IEEE, 2012.

16. ACDX. Digital Signature diagram [online]. 2012. Available also from: https://commons.
wikimedia.org/w/index.php?curid=5251510. CC BY-SA 3.0, Last accessed 15th April
2022.

17. LAKE, Josh. What is TLS and how does it work? [Online]. 2021. Available also from:
https://www.comparitech.com/blog/information-security/tls-encryption/. Last
accessed 16th April 2022.

18. SSL2BUY. Expired Root Certificates: The Main Reason to Weaken IoT Devices [online].
2022. Available also from: https://www.ssl2buy.com/wiki/expired-root-certificates-
main-reason-to-weaken-iot-devices. Last accessed 23rd April 2022.

19. REDHAT. What is a CVE? [Online]. 2020. Available also from: https://www.redhat.
com/en/topics/security/what-is-cve. Last accessed 17th April 2022.

20. LEE, Vincent. CVE-2021-22909 – DIGGING INTO A UBIQUITI FIRMWARE UPDATE
BUG [online]. 2021. Available also from: https://www.zerodayinitiative.com/blog/
2021/5/24/cve-2021-22909-digging-into-a-ubiquiti-firmware-update-bug. Last
accessed 17th April 2022.

21. OWASP. OWASP Internet of Things Project [online]. 2018. Available also from: https:
//wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project. Last accessed
17th April 2022.

22. CAPABILITIES, Technical; PATCHING EXPECTATIONS WORKING GROUP, NTIA.
Voluntary Framework for Enhancing Update Process Security [online]. 2017. Available also
from: https://www.ntia.doc.gov/files/ntia/publications/ntia_iot_capabilities_
oct31.pdf. Last accessed 17th April 2022.

23. ESPRESSIF. Secure Boot V2 [online]. 2022. Available also from: https://docs.espressif.
com/projects/esp-idf/en/v4.3.2/esp32/security/secure-boot-v2.html. Last ac-
cessed 17th April 2022.

24. BERDY, Nicole. IoT device authentication options [online]. 2018. Available also from:
https://azure.microsoft.com/es-es/blog/iot-device-authentication-options/.
Last accessed 23rd April 2022.

25. BORGINI, Julia. IoT device authentication methods that increase security [online]. 2021.
Available also from: https : / / www . techtarget . com / iotagenda / tip / IoT - device -
authentication-methods-that-increase-security. Last accessed 18th April 2022.

26. NIST. NIST Gloassary - Ephemeral Key [online]. 2022. Available also from: https://csrc.
nist.gov/glossary/term/ephemeral_key. Last accessed 21st April 2022.

27. SYSTEMS, Espressif. ESP32 [online]. 2022. Available also from: https://www.espressif.
com/en/products/socs/esp32. Last accessed 24th April 2022.

28. IoT ESP-WROOM-32 2.4GHz Dual-Mode WiFi+Bluetooth rev.1, CP2102 [online]. 2022.
Available also from: https://www.laskakit.cz/iot- esp- 32s- 2- 4ghz- dual- mode-
wifi-bluetooth-rev-1--cp2102. Last accessed 9th April 2022.

https://www.csoonline.com/article/3400836/what-is-pki-and-how-it-secures-just-about-everything-online.html
https://www.csoonline.com/article/3400836/what-is-pki-and-how-it-secures-just-about-everything-online.html
https://www.ssl.com/faqs/what-is-a-certificate-authority/
https://commons.wikimedia.org/w/index.php?curid=5251510
https://commons.wikimedia.org/w/index.php?curid=5251510
https://www.comparitech.com/blog/information-security/tls-encryption/
https://www.ssl2buy.com/wiki/expired-root-certificates-main-reason-to-weaken-iot-devices
https://www.ssl2buy.com/wiki/expired-root-certificates-main-reason-to-weaken-iot-devices
https://www.redhat.com/en/topics/security/what-is-cve
https://www.redhat.com/en/topics/security/what-is-cve
https://www.zerodayinitiative.com/blog/2021/5/24/cve-2021-22909-digging-into-a-ubiquiti-firmware-update-bug
https://www.zerodayinitiative.com/blog/2021/5/24/cve-2021-22909-digging-into-a-ubiquiti-firmware-update-bug
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.ntia.doc.gov/files/ntia/publications/ntia_iot_capabilities_oct31.pdf
https://www.ntia.doc.gov/files/ntia/publications/ntia_iot_capabilities_oct31.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.3.2/esp32/security/secure-boot-v2.html
https://docs.espressif.com/projects/esp-idf/en/v4.3.2/esp32/security/secure-boot-v2.html
https://azure.microsoft.com/es-es/blog/iot-device-authentication-options/
https://www.techtarget.com/iotagenda/tip/IoT-device-authentication-methods-that-increase-security
https://www.techtarget.com/iotagenda/tip/IoT-device-authentication-methods-that-increase-security
https://csrc.nist.gov/glossary/term/ephemeral_key
https://csrc.nist.gov/glossary/term/ephemeral_key
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.laskakit.cz/iot-esp-32s-2-4ghz-dual-mode-wifi-bluetooth-rev-1--cp2102
https://www.laskakit.cz/iot-esp-32s-2-4ghz-dual-mode-wifi-bluetooth-rev-1--cp2102

Bibliography 55

29. SYSTEMS, Espressif. ESP32 Series of Modules [online]. 2022. Available also from: https:
//www.espressif.com/en/products/modules/esp32. Last accessed 24th April 2022.

30. SYSTEMS, Espressif. Modules [online]. 2022. Available also from: https://www.espressif.
com/en/products/modules. Last accessed 24th April 2022.

31. SYSTEMS, Espressif. ESP32-S2-WROVER ESP32-S2-WROVER-I Datasheet [online]. 2022.
Available also from: https://www.espressif.com/sites/default/files/documentation/
esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf. Last accessed 24th April
2022.

32. SYSTEMS, Espressif. ESP32-C3-WROOM-02 ESP32-C3-WROOM-02U Datasheet [online].
2022. Available also from: https : / / www . espressif . com / sites / default / files /
documentation / esp32 - c3 - wroom - 02 _ datasheet _ en . pdf. Last accessed 24th April
2022.

33. SYSTEMS, Espressif. ESP32-WROOM-32E ESP32-WROOM-32UE Datasheet [online]. 2022.
Available also from: https://www.espressif.com/sites/default/files/documentation/
esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf. Last accessed 24th April 2022.

34. WILLIAMS, Elliot. ESP32 HANDS-ON: AWESOME PROMISE [online]. 2016. Available
also from: https://hackaday.com/2016/09/15/esp32-hands-on-awesome-promise/.
Last accessed 9th April 2022.

35. SYSTEMS, Espressif. ESP32 Technical Reference Manual [online]. 2021. Available also
from: https://www.espressif.com/sites/default/files/documentation/esp32_
technical_reference_manual_en.pdf. Last accessed 29th April 2022.

36. SYSTEMS, Espressif. Random Number Generation [online]. 2022. Available also from:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/random.html. Last accessed 29th April 2022.

37. SYSTEMS, Espressif. Flash Encryption [online]. 2022. Available also from: https://docs.
espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.
html. Last accessed 29th April 2022.

38. SYSTEMS, Espressif. Migration of Protocol Components to ESP-IDF 5.0 [online]. 2022.
Available also from: https://docs.espressif.com/projects/esp- idf/en/latest/
esp32/migration-guides/protocols.html. Last accessed 6th May 2022.

39. SYSTEMS, Espressif. Mbed TLS [online]. 2022. Available also from: https : / / docs .
espressif.com/projects/esp- idf/en/latest/esp32/api- reference/protocols/
mbedtls.html. Last accessed 6th May 2022.

40. SYSTEMS, Espressif. Over The Air Updates (OTA) [online]. 2022. Available also from:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/ota.html. Last accessed 1st May 2022.

41. SYSTEMS, Espressif. ESP-IDF Official IoT Development Framework [online]. 2022. Avail-
able also from: https://www.espressif.com/en/products/sdks/esp-idf. Last accessed
29th April 2022.

42. SYSTEMS, Espressif. ESP-TLS [online]. 2022. Available also from: https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html.
Last accessed 29th April 2022.

43. MBED, arm. ssl.h File Reference [online]. 2015. Available also from: https://tls.mbed.
org/api/ssl_8h.html#ae8285bd18c5cbf25d9a9b6780f335081. Last accessed 8th May
2022.

https://www.espressif.com/en/products/modules/esp32
https://www.espressif.com/en/products/modules/esp32
https://www.espressif.com/en/products/modules
https://www.espressif.com/en/products/modules
https://www.espressif.com/sites/default/files/documentation/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2-wrover_esp32-s2-wrover-i_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://hackaday.com/2016/09/15/esp32-hands-on-awesome-promise/
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/random.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/random.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/migration-guides/protocols.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/migration-guides/protocols.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mbedtls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mbedtls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mbedtls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://www.espressif.com/en/products/sdks/esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://tls.mbed.org/api/ssl_8h.html#ae8285bd18c5cbf25d9a9b6780f335081
https://tls.mbed.org/api/ssl_8h.html#ae8285bd18c5cbf25d9a9b6780f335081

Contents of enclosed media

/
readme.txt..basic information about the thesis
source

advanced.................................source code of the secure implementation
main......................................folder with the main source code files
managed components..........source code of the firmware encryption component
rsa key...................................RSA key for the firmware encryption
server certs.....................folder with Certification Authority certificates
seure boot signing key.pem....ECDSA encryption key for the firmware signing

basic................................source code of the non-secure implementation
tex. ... thesis source files in the LATEXformat

tests.. test files used to verify the firmware
201...working binary, keys and certificates
202 no signing...unsigned binary
203 different signing key.......................binary and alternate signing key
204 no encryption..unencrypted binary
205 different encryption key................binary and alternate encryption key
alternate ca CA certificate used for the TLS test

pdf... textual part
kocimar8 2022.pdf...................................thesis text in the pdf format

57

	Acknowledgements
	Declaration
	Abstract
	Introduction
	Goal
	Acronyms
	Internet of Things and Firmware Update
	Definition of IoT
	How Does IoT Work?
	Examples of IoT Applications
	Connecting IoT Devices
	IoT Data Protocols
	IoT Network Protocols

	Over the Air Firmware Update
	Device Firmware
	Local Firmware Update
	Remote Firmware Update
	Centralized Firmware Update

	Cybersecurity and FOTA
	Cybersecurity Principles and Terms
	Encryption Algorithms
	Hash Functions
	Public Key Infrastructure (PKI)
	Digital Signature
	Transport Layer Security

	Cybersecurity Threats Related to FOTA
	Common Vulnerabilities and Exposures
	OWASP Internet of Things Project

	Firmware Image Encryption
	Importance of Image Encryption
	Image Encryption Implementation

	Firmware Integrity
	Importance of the Firmware Integrity
	Firmware Integrity Implementation

	Server Authentication
	Server Authentication using PKI

	Device Authentication
	Two-factor Authentication
	Other Software Authentication Methods
	Hardware Authentication

	Hardware Supporting Cryptography
	Hardware Acceleration
	Key Management

	Security Features of ESP32
	ESP32 platform
	ESP32 Hardware Versions
	ESP32 Family

	ESP32 Security
	eFuse
	Hardware Cryptography Feature
	Random Number Generator
	Secure Boot V2
	Flash Encryption
	Firmware Signature Verification
	TLS Support
	Automatic Rollback
	Anti-rollback

	Software Solution for ESP32
	ESP-IDF Features
	ESP-TLS Component

	Practical Part - Secure FOTA on ESP32
	Environment and Toolchain
	Software Toolchain
	Hardware

	Common Part Of The Implementations
	High-level Implementation Architecture
	Periodical Firmware Check
	Project Configuration

	Basic Insecure Firmware Over the Air
	Implementation
	Verification Of The Results

	Secure Firmware Over the Air
	Secure File Transfer
	Firmware Signing
	Encryption Of The Firmware
	Verification of the results

	Summary and Discussion
	Results of the Implementation and Tests
	Security Recommendations
	Secure File Transfer
	IoT Device Authentication

	Conclusion
	Web Interface Screenshot and Serial Console Logs
	Contents of enclosed media

